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1. Introduction 

Although the stochastic behaviour of many economic time series has been reported in 

the literature to be well approximated by integrated processes oforder one, denoted /(1), 

there are sorne series, especiaIly nominal ones (e.g., money holdings, prices, wages, etc.) 

which appear to be potentiaIly better described as /(2) processes. In this case, a shock to 

the series in one perlod wiIl have a permanent influence on both future growth rates and 

the levels of the series so that it wiIl appear having an extremely smooth path. Sorne 

recent contributions on this topie inelude Haldrup (1991, 1994a, 1994b), Haldrup and 

Simon (1995), Johansen (1992a, 1992b, 1995a, 1995b), Juselius (1993, 1994), King et 

al. (1991), Kitamura (1995) and Paroolo (1992, 1994). 

Considering the problem of testing for a double unít root, Diekey and Pantula (1987) 

and Pantula (1989) have suggested a popular sequential testing procedure in applied 

work whieh takes the largest number of unit roots under consideration as the first 

maintained hypothesis and then decreases the order of differencing each time the current 

nuIl hypothesis is rejected. 

In general, /(1) and /(2) processes can be considered as particular cases of the more 

general family of fractionaIly integrated processes, denoted F/(d). As is weIl-known, a 

stochastic process YI is called F/(d) if t1.,dYI - /(0), where d is allowed to be a real 

number rather than just an integer one. When d ~ t, the series is nonstationary, denoted 

NF/(d). SoweIl (1990) derived the limit distribution ofthe standard Dickey-FuIler (DF) 

test for a single unít root, based upon the t-statistic when the true process is NF/(d) with 

d E(t ' t), showing that it diverges to -00 ( +00) when d < 1 (d > 1). Hence, the t-test is 

consistent for d E ( t ,1) ami has zero power for d E ( 1, t) . 

In this paper we extend the previous arguments to the sequential testing procedure 

advocated by Dickey and Pantula (DP), allowing the analysis to cover the case of /(2) 

processes. We find that SoweIl's results can be generalized to these higher integrated 

processes. In fact, the properties of the testing sequence are derived for all values of d 
\ 

within the nonstationary range and thus can be extended to testing for three or more unít 

roots in the presence ofNF/(d) alternatives. 
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2. The Model and the Dickey-Pantula Test 

Throughout the paper, we shall assume that the true data generating process (DGP) of 

Yr is the following NF1 process 

(1) 

where d ¿ t, er - iid(O, d) and Yo O for t 5, o. Noticing that d can always be 

decomposed as d =a+ O, where a =1,2,3, ... and I~ < t, (1) can be reparameterized as 

(2) 

that is, any NF1(d) process can be expressed as an integer 1(a) process with stationary 

and ergodic fractionally integrated SF1( o) innovations. 

Let d r¡T var(Sr), where St =:L:=I r/j. The growth rate of this pardal sums' variance 

was proved by Sowell (1990) to be equal to 

(3) 

say, where rO denotes the gamma or generalized factorial function. Furthermore, under 

the additional assumption that e, verifies Elel < 00 for g ¿ max{4, -88/1 +20}, the 

following functional central limit theorem due to Davydov (1970) and Taqqu (1975) 

applies to this type of processes: 

a-;;'S[rr]=> (1 ,Í(r-stdW(s), (=df~(r)), (4)
r 1+0 o 

where W(r) is a standard Brownian motion on [0,1] associated with the et sequence and 

the symbols "=>" and "---4n denote weak convergence and convergence in 

probability, respectively. 

Consider now the two steps involved in the DP sequential tests. In the first stage, the t­
" 

rado ofPI in the following regression 

'~?Yt =P/1Yt_t +res., (5) 

is compared with the ¡:::orresponding DF critical values in a one-sided lower-tail test in 

order to test the null hypothesis of two unít roots (Yt - 1(2)) against the alternative of a 

single unít root (Yt - /(1)). Then, the following theorem holds. 
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A 

Theorem L Under DGP (2), the t-test ofPI in (5) verifies that 

(i)ifO.55.:d<1.5, tA =Op(Tl12 
) andtA -4-00, 

(ii) if1.5 5.: d < 2, t = Op(T2
-

d 
) and tA -00,

PI 

(iii) ifd =2, tPI =Op(l), 


(iv)if2<d<2.5. t =Op(Td
-

2
) andtA -400, and


P1 

(v) ifd?:. 2.5, tA =Op(TI/2 
) and t -400.PI 

Proof: See Appendix. 

As expected, these properties mimic those obtained by Sowell (1990) in the test ofthe 

null ofa single unÍt root versus the altemative of stationarity. Thus, the t-ratio only has a 

well-defined asymptotic distribution when d 2, it is a consistent test for d < 2 and has 

zero power when d > 2. 

Next, if the null hypothesis aboye is rejected, the second stage in the DP procedure 

proceeds to test the null ofYI ~ /(1) against the altemative ofYI ~ /(0) computing the t-
A 

ratio ofPz in the regression model 

/J,?YI =P/'J.YI_¡ +P2Yt-¡ +res., (6) 

and comparing it with the DF critical value in a one-sided test. In this case, the following 

theorem applies. 

A 

Theorem 2. Under DGP (2), the t-test ofP2 in (6) verifies that 

(i) ifO.55.:d < 1, tP2 Op(T1
-

d 
) alld tpz -4-00, 

(ii) ifd =1, tP2 =Op(l), 

(iii) ifl < d < 1.5, t =Op(Td
-

l
) and t -400, and

P2 P2 

(v) ifd ?:.1.5, tP2 =Op(Tl/2 
) and ttt,. -400. 

Proof: See Appendix. 
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The most remarkable feature of this result is that it mirnics the findings in Theorem 1. 

The relevant t-statistic has only a well-defined lirniting distribution when d =1. If d < 1, 

the test will be consistent and if d > 1, it will have zero power. Finally, if 1< d < 2, the 

sequential testing procedure will classify the process as an 1(1) one. For instance, if . 

d =L8, then, following Theorem 1, the null hypothesis of two unít roots is 

asymptotically rejected in a one-sided test whereas, following Theorem 2, the null of a 

single unít root is not rejected. Consequently, the DP test classifies a NF1( L8) as an 1(1) 

process as the sample size gets sufficiently large. More in general, Theorems 1 and 2 

together conform a complete testing-decision sequence as the following figure illustrates: 

Possibilities: d<2 d=2 d>2 

Fírst Stage: 
(modeI5) 
(Theorem 1) 

Ho rejected correct H 1\ not rejected 
o 

(with probability one) (with probability one) 

•
/I~ 

Possibilities: d<l d=l 2>d> 1 

Second S tage: 
(mode16) 
(Theorem 2) 

1\ rejected correct 1\ Ha not rejected 

(with probability one) (with probability one) 


Figure: Testing seque ce of the Dickey-Pantula test against NFl altematives. 

5 



To check these results, we generated a NF/(L8) process, based on 5,000 replications 

with T =100 and T =250 observations, with standard Gaussian innovations. For 

T = 100 and considering one-sided tests with level 0.05 1, the percentage of rejections in 

the first stage ofthe DP procedure is 39.3 % whilst the corresponding proportion in the 

second stage is 17.7 %. For T 250, the rejection rates are 68.1 % and 4.3 %, 

respectively. 

In line with the Monte Cario evidence reported in Diebold and Rudebusch (1991) and 

Hassler and Wolters (1994), the previous results point out that asymptotic considerations 

can be severely misleading in finite samples, since the power of unit root tests can be 

very low within the Euclidean interval Id - 1/21 of the corresponding null hypothesis. 

As Sowell (1990) conjectures, this is because the limit distributions of the t-statistics 

depend upon two underIying random variables (expressions (A6)-(A8) in Appendix) with 

a slow rate of convergence to its asymptotic distribution for a plausible range ofd values. 

3. Concluding Remarks 

Theorems 1 and 2 characterize the asymptotic behaviour of the DP testing sequence 

under fractional alternatives, extending previous results on the properties ofDF unit root 

tests. 

Our basic conclusion is that mechanical application of the DP procedure can lead to 

misleading results. Moreover, this conclusion can be extended to other testing 

approaches within the same family, such as those proposed by Hasza-Fuller (1979), Sen 

and Dickey (1987) and Haldrup (1994b) . 
. 

Finally, although, for the sake ofbrevity, we have conflned the results to a maximum of 

two unit roots, the above findings can be easily generalized to the more general 

sequential procedure consisting of testing a null hypothesis of k unit roots against an 

alternative of k-l unít roots. Namely, as Ti 00, the sequence will stop when the true d 

verifies the inequality ~ - 1 < d < k. 

1AlI computations were done in S-plus. 
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Appendix: Proofs of the theorems 

In order to safe notation, stochastic processes such that W(r) or W,lr) will be written 

as Wand WC' until otherwise be stated. Similarly, we shall write integral s with respect to 

Lebesgue measure such as f~W(s)ds more simply as f W and the symbol :L~=l will be 

denoted simply as :L. Equally, w.,a(r) stands for the (a 1) -fold integral of w.,(r) 

recursively defined as W"a(r) = J; w.,a-l (s)tÚ', with W1(r) = WAr). 

PROOF OF THEOREM 1. Under model (5), the least squares slope estímate and its 

corresponding t-ratio have the following expressions: 

:L (LlYI_I)(Ll2YI)" 
PI= 

:L(LlYHf 
, (Al) 

and 

:L (LlYt_J( Ll2Yt)
t - (A2) 
PI - ~:L(LlYH)2r2' 

where 

;; = rl:L(Ll2YI - P1LlYHf· (A3) 

When dE(t,f), d=2+8 and LlYt -NFI(d-l)=NFI(I+8), i.e., LlYt satisfies the 

following difference equation: 

LlYt =LlYH + TJt :::: St =SH + TJI :::: S[Tr] + TJo 

under the assumptions ma~e on the initíal terms, and where S; r < t, for t == 1,2, ... , T. 

Consequently, with respect to the denominator in (Al), using (3), (4) and the continuous 

mapping theorem (CM]), we get 

T2
-

Zd :L(LlYt-JY =rz-z":L(LlYH)2 == rl-Z"a;,Trl:L( a~LlYt_J 

(A4) 
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As regards the L (~Yt-I)(~2Yt) tcnn, we have that 

The first tenn when multiplied by r l
-

2o converges in distribution to f{t[Wo(I)f 

because of the CMT, (3) and (4), whilst the limiting distribution of the second tenn 

follows by using the ergodic theorem 

1"",..) p ()_dr(l 20)r ~ 'It ~var 17t - 2( ~, (AS)r l-u} 

Therefore, when 0= 0, i.e., when d =2, f{ =d, Wo(r) =W(r) for Vr E[O,l] and 

(A6) 

whereas when o> 0, Le., when 2 < d <f, 

(A7) 

and when 0< 0, Le., when t <d < 2, 

(A8) 

Hence, using (A4), (A6)-(A8), and the CMT, we obtain that 

(A9) 

when 0=0, 

(A 10) 

if o> 0, and 

rlL(~Yt_l)(~2Yt) dr(S-2d)
-=------:,-- => (AIl)
T-2-20",,(~ )2

~ !YH 

ir 0<0 . 

• 
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Therefore, when d E ( t, f) we observe that PI ~°for aH d, even that, when 

d E(t,2), this convergence depends on d. Notice, as weH, that if d E(2,f), the limiting 

distribution of PI has nonnegative support. SimilarIy, if d E ( t, 2), the support is 
A 

nonpositive. If d =2, the support ofthe limiting distribution ofPI is the entire realline. 

With regard the t-Student statistic, first notice that 

el =T-l¿(~2YI -PI~YI-Ir =r-I¿ ri; +r-I~¿(~YI_IY -2r-Ip¿(~YI_JT/I' 
Hence, by using (A4), (AS), (A9)-(All) and the éMT, it foHows that el ~var(T/I) 

for aH 8 E(-t, t), meaning that 

when 8=0, 

when 8> 0, and 

in the case where 8 < O. 

When d> f, then a;:: 3, ~YI - NFI(d -1) and ~2YI - NFI(d - 2). In this case, if ~dYI 

is decomposed as in (2), then 

~d-l(~y,) =e, <=> ~a-l(~y,) = T/, ~lJT/I =e" 

and 

with a - 2 ;:: 1. 

9 



Using (3), (4) and the (MT, it is straightforward to prove that 

aT1- -1 ('1 w.a ( ) > 1 
O"r¡TU[TrJ => " r, a - . (A12) 

Hence, 

T2- 2d " (A )2 =T2- 2a-2"" (A )2 =T-I-2"el:. r1"(THa-1) -1 A )2k... ~t-1 k... ~t-1 r¡T k... O"r¡T ~t-l 

(AI3) 

In the sarne rnanner, after sorne rnanipulation, it follows that 

and then, 

T3
-

2d L:(AYt_¡)(A2yJ ~ T3
-

2d (AYT)2 +op(l) 

=.!.. r l - 2"el:. [r1-(a-l) -1 A]2 (1) 1o: [W.a-1(1)]2 (AI4)2 r¡T O"r¡T ~T +op => 2 r¡" • 


Consequently, using (Al), (A13), (AI4) and the CMTyields 


(AI5) 

In the sarne rnanner, using (A13)-(AI5) and the CMT, it follows that 


rs-2d (l = r-2d L:(A2yJ2 +T2p;T2
-

2d L:(AYHY -2rjn+2d L:(AYt_I)(A2yJ 


~ o: [J(W.a-2)2 _ [~a-I(l)r]= o: el:. (A16) 
r¡ ¡; 4J(~a-I)2 r¡ ro' 

say, and then, frorn (A13), (AI4), (A16) and the CMT, we get 
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FinalIy, when d EH, t), .1YI =171- SFI( o) and .12YI =.1 171 = 171 - 171-1> a non-invertible 

(but stationary) fractionally integrated process of order J E ( - t , - t), denoted NIFI(J), 

with J 0- 1. In this case, notice that 

L: (.1YH )(.12
YI) =L: 171-1 (.1 171) =L: 17t 17t-1 L: 1ft-1 , 

which implies 

(A17) 

Therefore, 

r-
I
L: 171171-1 

T- I 
""" ,t...¡ ...;;.Ilt_1 

where 

(A18) 

and then, 

A p 20-1 O
PI~--< . (AI9)

1-0 

With respect to the corresponding t-Student statistic, from the manipulation of its 

expression, we have that 

( """ 2 ) 112 
,t...¡ 17t-1 

(A20)A 

a 

As regards the estimator of the variance of the perturbation terms, one gets 

d- = r-1~).117t)2 +'jI¡r-1L: 1ft-1 -2pl r- I L: T/t-I.1T/t 

=r-1L: 1ft +(PI +Ir r-1L: 17;-1 - 2(p) + l)rl L: 17t 171-1 

which converges in probability to 

d (1 20)r(l- 20) 
(A2I)

(1- 0)2r2{I_ o)' 
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after using (Al 8), (Al9) and the CMT. ConsequentIy, from (Al8), (A20), (A2l) and the 

CMT we finally obtain that r-112 tPI OP ( l). Thus, when d EH, t) the least squares 

" estimator PI is inconsistent but the t-Student test provides a consistent statistics .• 

PROOF OF THEOREM 2. Under model (6), the least squares slope estimate of Yt-l 

and its corresponding t-ratio have the following expressions: 

(A22) 

and 

(A23) 

with 

,,~,,~ [:¿(fíYt_¡}2] 
(A24) 

()fl2 =() [:¿Y;-I][:¿(fíYt-lY] [:¿Yt-lfíYHf' 


When d > t, by using (Al2) and the CMTwe get 


T-u"" 2 =T-I-28 --.2 r-1"" (T1-a -1 !)2 6! f(w.a)2
L...tYt-1 U1]T 1 L...t U1]TJt-l => (71] 1) , (A25) 

(A26) 

Tl 
-

2d"" y fílJL...t H ~t 

(A27) 

and 

TI-2d"" A2 TI-U"" A TI-2d"" A 16![W.a (l)]2 J'Ílfw.aw.a-1 
L...tYt-1Ll Yt = L...tYt-1LlYt - L...tYt-ILlYt-1 => 2" (71] 1) - U1] 1)1) • 

(A28) 
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Then, using (A13), (A14), (A22), (A25)-(A28) and the CUT, we have that 

[~[Woa(l)r - JwcaWoa-l]U(WcU-l)2]_ 
(A29)~ [J(w:Y!f(w:-'l'] [fw:w:-'j' ~P2.· 

Equally, given that 

p =[L>~Yt_IA2Yt LY;-l] -[LYt_lAYt-l][LYt_l A2Yt] 
(A30) 

1 [LY;-IJ[L(AYt-l)2]_[LYt-lAYt-lr • 

it is straightforward to prove that 

(A3I) 

In the same manner, given that 

=r 1L(A2Ytt +~rlL(AYt_l)2 -2P1r1LA2YtAYt-l 

+p;r1LyLl - 2P2T1 LYt_lA2Yt +2/3¡pZT1LYt-IAYt-l 
it follows that 

(A32) 

which, in tum, from (A24) implies that 
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and hence, 

T-1I2t -"- P2a> 
f12 -,1' 'ríl..

apZ r:1r¡ 

a :;;; 2. This, in tum, irnplies that 

2d"" 2 1-2.5~ -1""( -1 -1 )2 ~f( 2)2 

T

r ",--Yt-I =r ur¡TT "'-- T (1,¡TYt-l => ~ w., , (A33) 

l - 2d"" A r l-2.5,.J. T-1"" (T-1 -1 )( -1 A )"'--Yt-\LlYH = ur¡T "'-- (1rjTYt_1 (1r¡T LlYt-1 

(A34) 

and 

2-2d"" d{ f fw.,2} . (A35)T ",--Yt-I'l}t => Ur¡ w.,(1) W,,-

Collecting aH the preceding results, it is rather direct to prove that, for d E ( t, t), 

T2P2 =Op(1) , T3
-

2d Cl :::: Op(l), T3&/12 0/1) and T-1/2tfl2 op(I). 

FinaHy, in the case where d E(t,t), Yt - NFI(d) , ¿\Yt - SFI(d -1) = SFI(8) , 

¿\2Yt - NIFI(d - 2) = NIFI(8-1), with a= 1. This allows to rewrite PI> P2 and Cl after . 

sorne direct but tedious calculus as follows: 

P2 = [2:Yt-¡ 'l}t ][2: ri-1 - 2: 'l}t 77t-l] - [~ 77t 77t-l ][2: ri-I] , (A36) 
[2:yLI][2: ri-I]-[2:Yt-l77t]

2 

-[2: ri-I] -2[2:Yt-l'l}t][2: ri-I] 

,. [2:y;-¡][2: 77t77t-1 2: ri-I]-[2:Yt-¡77J -[2:Yt-l77t][2: ti-l] 
(A37) 

PI [2:yLl][2: 77;-I]-[2:Yt-l77tf -[2: 77;-lr -2[2:Yt-177J2: ti-Ir 
and 

,... \ A A. '" 

-2PIT-I 2:77t77t_1 +2p¡r l 2: ri-l +~rl2:Y;_1 -2P2rl 2: 77t77t-1 

+2P2TI 2: 77;-1 +2PIP2T-12:Yt_l77t +2PIP2rl2: ti-l· (A38) 
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Therefore, using (A4)-(A8), the weak law of large numbers and the CMT, it can be 

proved that when d =1, TP2 Op(1), PI 0/1),;; =Op(l) and tpz =Op(I), while tbat 

in the case where 1 <d < t, TP2 =0p(1), PI =Op(1) , ;; =Op(l), TI-dtfJz =Op(l) and 

tpz ~oo. Conversely, in the case where t <d < 1, PI =Op(I), ;; =Op(l) and 

A 

so that the limiting distribution of P2 has nonpositive support. This, in turn, induces the 

fact that its corresponding t-test be Td-1t/Jz =0/1) and tP1 ~-oo. 

Lastly, it is also ofinterest to derive the asymptotic behaviour of tA in model (6). In 

this case, and collecting all the aboye results, the following results can be proved: if 

d;:::.2.5, t =Op{TII2 
) and t ~oo; if 1.75<d<2.5, t =Op{T7I2 

-
U 

) andA A A 

t ~O; if d 1.75, t =op(IL if 1.5 sd < L75, t = Op(T7I2
-

2d ) and tA ~ooPI PI PI 

and ¡fO.5:s;d < L5, fA Op{TI1Z ) and tA ~oo .• 

15 



1------------------------------------------------------·--------------------------


References 

DAVYDOV, YA. (1970), "The Invariance Principie for Stationary Processes", Theory 

ofProbability and Its Applications 15,487-489. 

DICKEY, D.A. and S.G. PANTULA (1987), "Determining the Order ofDifferencing in 

Autoregressive Processes", Journal ofBusiness and Economic Statistics 15, 455-461. 

DIEBOLD, F.X. and G.D. RUDEBUSCH (1991), "On the Power ofDickey-Fuller Tests 

Against Fractional Altematives", Economics Letters 35, 155-160. 

HALDRUP, N. (1991), "Multivariate Regression Models with 1(2) Variables", mimeo, 

University of Aarhus. 

_____ (1994a), "The Asyrnptotics of Single-Equation Cointegration Regressions 

with 1(1) and 1(2) Variables", Journal ofEconometrics 63, 153-181. 

____ (1994b), "Semiparametric Tests for Double Unít Roots", Journal of 

Business & Economic Statistics 12, 109-122. 

HALDRUP, N. and M. SALMON (1995), "Representations of 1(2) Cointegrated 

Systems Using the Smith-McMillan Form", mimeo, University of Aarhus. 

HASSLER, U. and J. WOLTERS (1994), "On the Power of Unít Root Tests Against 

Fractional Alternatives", Economics Letters 45, 1-5. 

HASZA, D. and W. FULLER (1979), "Estimation of Autoregressive Processes with 

Unít Roots", The Annals ofStatistics 7, 1106-1120. 

JOHANSEN, S. (1992a), "A Statistical Analysis of Cointegration for 1(2) Variables", 

Econometric Iheory 11, 25-59. 

____ S. (1992b), "An 1(2) Cointegration Analysis of the Purchasing Power Parity 
. 

Between Australia and USA", in C. Hargreaves (ed.), Macroeconomic Modeling of the 


Long Run, London: Edward EIgar. 


____ (1995a), "A Representation of Vector Autoregressive Processes Integrated 


ofOrder 2", Ecollometric Theory 8, 188-202. 


(19951:1>, Likelihood-Based Inference in Cointegrated Vector 

Autoregressive Models, Oxford: Oxford Uníversity Press. 

16 



"'1'-1' --'-___ , __________ .-1.... _______________________ _ 

JUSELIUS, K. (1993), "Do Purchasing Power Parity and Uncovered Interest Rate Parity 

HoId in the Long Run?- An Example on Likelihood Inference in an Multivariate Time­

Series Model", Discussion Paper, University ofCopenhagen. 

___---J' K. (1994), "On the Duality Between Long-Run Relations and Common 

Trends in the /(1) versus /(2) Model. An Application to Aggregate Money Holdings", 

Econometric Reviews, 13, 151-178. 

KING, R.G., PLOSSER, CJ., STOCK, lH. and M.W. WATSON (1991), "Stochastic 

Trends and Economic Fluctuations", American Economic Review 81,819-840. 

KITAMURA, Y. (1995), "Estimation of Cointegrated Systems with /(2) Processes", 

Econometric Theory 11, 1-24. 

PANTULA, S.G. (1989), "Testing for Unit Roots in Time Series Data", Econometric 

Theory 5,256-271. 

PARUOLO, P. (1992), "Testing for Multicointegration in an Two-Stage AnaIysis of/(2) 

Variables", Working Paper,University ofBologna. 

____ (1994), "Asymptotic Efficiency of the Two-Step Estimator in /(2) VAR 

Systems", Working Paper,University ofBologna. 

SEN, D and D. DICKEY (1987), "Symmetric Test for Second Differencing in Univariate 

Time Series2, Journal 01Business alld Economic Statistics 5, 463-473. 

SOWELL, F. (1990), "The Fractional Unít Root Distribution", Econometrica 58, 495­

505. 


TAQQU, M.S. (1975), "Weak Convergence to Fractional Brownian Motion and to the 


Rosenblatt Process", Z. Wahrscheinlichkeitstheorie venv. Gebiete 31,287-302. 


17 


