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Abstract The introduction of learning to the search mechanisms of optimization
algorithms has been nominated as one of the viable approaches when dealing
with complex optimization problems, in particular with multi-objective ones. One
of the forms of carrying out this hybridization process is by using multi-objective
optimization estimation of distribution algorithms (MOEDAs). However, it has been
pointed out that current MOEDAs have an intrinsic shortcoming in their model-
building algorithms that hamper their performance. In this work, we put forward
the argument that error-based learning, the class of learning most commonly used
in MOEDAs is responsible for current MOEDA underachievement. We present
adaptive resonance theory (ART) as a suitable learning paradigm alternative and
present a novel algorithm called multi-objective ART-based EDA (MARTEDA)
that uses a Gaussian ART neural network for model-building and a hypervolume-
based selector as described for the HypE algorithm. In order to assert the im-
provement obtained by combining two cutting-edge approaches to optimization
an extensive set of experiments are carried out. These experiments also test the
scalability of MARTEDA as the number of objective functions increases.
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1 Introduction

Multi-objective optimization problems (MOPs) are problems where a set of
(conflicting) features or objectives must be simultaneously optimized. The solution
to these problems is a set of trade-off points that represent different compromises
between those objectives. Having this set of trade-offs a decision maker applies
higher-order criteria in order to determine which of them should be realized in
practice.

MOP related research has seen a great deal of development as a result of the
involvement of the evolutionary computation community. This fact has lead to the
creation of multi-objective evolutionary algorithms (MOEAs) (cf. [20]).

There is a class of MOPs that are particularly appealing because of their inherent
complexity: the so-called many-objective problems [44]. These are problems with a
relatively large number of objectives (usually four or more). Although somewhat
counterintuitive and hard to visualize for a human decision maker, these problems
are not uncommon in real-life engineering practice. For example, [48] details some
relevant real problems of this type.

It has been shown that “established” approaches fail to yield adequate solutions
because, as more objective functions are added, the optimization algorithms suffer
heavily under the curse of dimensionality [6]; requiring an exponential increase of
the resources made available to them (see [30, 43, 44] and [22, pp. 414–419]).

Approaches to the many-objective issue can be grouped in three main fronts:

1. the design of better selection (fitness assignment) functions;
2. the use of objective reduction strategies, and;
3. application of better variation (search) methods.

There has been a relatively large body of work on the first two issues. For example,
it has been shown that the use performance indicators, which were originally meant
for contrasting results and experiment analysis, for individuals selection allows the
resulting algorithm to cope better with higher dimension problems (cf. [4, 5, 49]).
Similarly, some works have focused on the reduction of the amount of objectives to
a minimum by eliminating redundant or irrelevant objectives (cf. [16, 17, 23]).

The third direction, however, remains relatively unexplored. Here, a viable ap-
proach is to employ cutting-edge evolutionary algorithms that could effectively deal
with high-dimensional problems more efficiently.

The incorporation of learning as part of the search processes has been nominated
as a viable way of achieving progress in this direction [21]. A form of carrying out
this task is to resort to estimation of distribution algorithms (EDAs) [33]. EDAs
are capable of learning the problem structure. They replace the application of
evolutionary operators with the creation of a statistical model of the fittest elements
of the population in a process known as model building. This model is then sampled
to produce new elements.

In spite of the a priori expectations, the so-called multi-objective EDAs
(MOEDAs) [41] have not yielded the anticipated results. This fact necessarily
prompts a set of reflections regarding the causes of this underperformance.

Most MOEDAs have limited themselves to transforming single-objective EDAs
into a multi-objective formulation by including an existing multi-objective fitness
assignment function. It can be hypothesized that the straightforward extrapolation
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might had lead to skip the fact that most current EDAs have some characteristics
that hinders their capacity of handling some of the requirements of multi-objective
optimization. In a previous work [35], we identified three of those characteristics,
in particular, those derived from the incorrect treatment of outstanding but isolated
elements of the population (outliers); the loss of population diversity, and that too
much computational effort is being spent on finding an optimal population model.

The performance issue of current MOEDAs has been traced back to the their
underlying learning paradigm: the dataset-wise error minimization learning, or error-
based learning, for short [35]. This class of learning, in different forms, is shared
by most machine learning algorithms. It implies that a model is tuned in order to
minimize a global error measured across the dataset. In this type of learning isolated
data is not taken into account because of their little contribution to the overall error
and therefore they do not take an active part of learning process. This assertion is in
part supported by the fact that most the approaches that had a better performance in
comparative experiments like [35] do not exactly conform to the error-based scheme.
That is why, other learning paradigms should be assessed.

Some approaches have been proposed with success with the purpose of overcom-
ing this issue. That is the case of the model-building growing neural gas (MB-GNG)
model-building algorithm [36]. However, in spite of the positive results obtained so
far a more systematic approach is needed. It is important to understand the role of
the learning paradigm in model building and, particularly, what are the consequences
of not using error-based learning.

Adaptive resonance theory (ART) [28] is a theory of human cognition that has
seen a realization as a family of neural networks. It relies on a learning scheme
denominated match-based learning and on intrinsic topology self-organization. These
features make it interesting case study as model-building approach. Match-based
learning equally weights isolated and clustered data [45], and, therefore, the algo-
rithm does not disregard outliers. Similarly, self-organization makes possible the on-
the-fly determination the model complexity required to correctly represent the data
set, thus eliminating the need of an external algorithm for that task.

In this work we engage and develop the argument that error-based learning,
the class of learning most commonly used in MOEDAs is responsible for current
MOEDA underachievement. We discuss in detail ART-based learning as a viable
alternative and present a novel algorithm called multi-objective ART-based EDA
(MARTEDA) that uses a modification of the Gaussian ART neural network [52]
for model building. This novel model-building approach is complemented by the
use of the hypervolume performance indicator-based selection as described for the
hypervolume estimation algorithm for multi-objective optimization (HypE) [5]. This
selection method, as previously commented, has been shown to yield relevant results
when dealing with many-objective problems. We experimentally show that thanks
to MARTEDA’s novel model-building approach and an indicator-based population
ranking the algorithm it is able to outperform similar MOEDAs and MOEAs.

The main contributions of this paper can be summarized as follows:

– introduction and discussion of the use of ART and its match-based learning
paradigm in the EDA context;

– description of MARTEDA, a novel MOEDA based on ART, and;
– realization of an extensive experimental study that contrasts the results of

MARTEDA with the current state-of-the-art MOEAs and MOEDAs.
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The remaining part of the work proceeds by briefly introducing the theoretical
notions required for the presentation of the proposal. After that, we examine the
model-building issue. Following that, in Section 4, we discuss the nature of ART
and describe the modified Gaussian ART network that is used as start point for
our model-building algorithm. Subsequently, MARTEDA is introduced in Section
5, describing how the HypE selection and Gaussian ART are blended together in a
MOEDA framework. Section 6 presents and discusses the results of the comparative
experiments involving MARTEDA and a selection of other current state-of-the-
art algorithms dealing with a set of community accepted problems. Some of these
problems are configured with an progressive number of objectives (3, 6, 9, 12 and
15) in order to assess the performance of our proposal in the context of many-
objective optimization. Finally, some conclusive remarks and future lines of research
are outlined.

2 Theoretical foundations

Many real-world optimization problems involve more than one goal to be optimized.
This type of problems is known as multi-objective optimization problems (MOPs). A
MOP can be expressed as the problem in which a set of objective functions f1(x), . . . ,

fM(x) should be jointly optimized;

min F(x) = 〈 f1(x), . . . , fM(x)〉 ; x ∈ S ; (1)

where S ⊆ R
n is known as the feasible set and could be expressed as a set of

restrictions over the decision set, in our case, R
n. The image set of S produced by

function vector F(·), O ⊆ R
M, is called feasible objective set or criterion set.

The solution to this type of problem is a set of trade-off points. The optimality of
a solution can be expressed in terms of the Pareto dominance relation.

Definition 1 (Pareto dominance relation) For the optimization problem specified in
(1) and having x, y ∈ S , x is said to dominate y (expressed as x ≺ y) iff ∀ f j, f j(x) ≤
f j(y) and ∃ fi such that fi(x) < fi(y).

Definition 2 (Non-dominated subset) In problem (1) and having the set A ⊆ S . ˆA ,
the non-dominated subset of A , is defined as

ˆA = {
x ∈ A

∣∣
 ∃x′ ∈ A : x′ ≺ x
}
.

The solution of (1) is Ŝ , the non-dominated subset of S . Ŝ is known as the
ef f icient set or Pareto-optimal set [14]. The Pareto-optimal front, Ô , is the image of
Ŝ in the feasible objective set.

If problem (1) has certain characteristics, e. g., linearity or convexity of the objec-
tive functions or convexity of S , the efficient set can be determined by mathematical
programming approaches [14]. However, in the general case, finding the solution of
(1) is an NP–complete problem [2]. In this case, heuristic or metaheuristic methods,
like evolutionary algorithms, can be applied in order to have solutions of practical
value at an admissible computational cost.
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2.1 Evolutionary algorithms

In rough terms, an evolutionary algorithm (EA) is a population-based metaheuristic
that can be characterized by how it implements a set of processes, in particular,

– Mating selection: that establishes a partial order of individuals in the population
using their fitness function value as reference and determines the degree at which
individuals in the population will take part in the generation of new (offspring)
individuals.

– Of fspring generation (variation): which applies a range of evolutionary oper-
ators, like crossover, mutation, etc., to synthesize offspring individuals from
the current (parent) population. This process is supposed to prime the fittest
individuals so they play a bigger role in the generation of the offspring.

– Parents and of fspring combination (environmental selection): that merges the
parent and offspring individuals to produce the population that will be used in
the next iteration. This process often involves the deletion of some individuals
using a given criterion in order to keep the amount of individuals bellow a certain
threshold.

In single objective EAs there is only one objective function to be minimized or
maximized. Thanks to that, it is straightforward to use that function for determining
the fitness of individuals. However, in the multi-objective case, finding this scalar
indicator is a complex matter since, as in any dimensionality reduction, relevant
information may be lost. Furthermore, a MOP solver is not only expected to yield
solutions as close as possible to the Pareto-optimal front. Its solutions should also be
as diverse as possible, therefore offering a good coverage of Ô .

Because of these reasons the ranking of individuals is one of the key issues in the
MOEAs’ field of research. The strategies that have been proposed to circumvent this
problem can be grouped in three classes:

– Objective function aggregation: where objective values are combined using a
weighted aggregation function of either linear or non-linear nature.

– Pareto-based ranking: that generate an ordering of the population individuals
relying on the Pareto dominance relation.

– Indicator-based ranking: which use the performance indicators that were origi-
nally meant for assessing MOP optimizer’s performance.

Indicator-based selection seems to have a superior performance in complex and
many-objective problems [50]. Among these “good performing” algorithms we can
find the hypervolume estimation algorithm for multi-objective optimization (HypE)
[5]. HypE relies on the hypervolume performance indicator for mating and environ-
mental selection.

The hypervolume indicator, Ihyp(A ), [31, 32, 59, 60] computes the volume of the
region, H, delimited by a given set of points, A , and a set of reference points, N .

Ihyp
(
A

) = volume

⎛
⎝ ⋃

∀a∈A ;∀n∈N

hypercube(a, n)

⎞
⎠ . (2)
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Therefore, larger values of the indicator will correspond to better solutions. It has
many attractive features that had favored its application and popularity. In particular,
it is the only indicator that has the properties of a metric and the only to be strictly
Pareto monotonic [25, 62]. Because of these properties this indicator has been
used not only for performance assessment but also as part of some evolutionary
algorithms.

To measure the absolute performance of an algorithm the reference points should
ideally be nadir points. These points are the worst elements of O , or, in other words,
the elements of O that do not dominate any other element. To contrast the relative
performance of two sets of solutions, though, one can be used as the reference set.
These matters are further detailed in [31, 61].

A lot of research has focused on improving the computational complexity of this
indicator [7, 9, 26, 51]. The exact computation of the algorithm has been shown to be
#P-hard [15] in the number of objectives. #P problems are the analogous of NP for
counting problems [39]. Therefore, all algorithms calculating a hypervolume must
have an exponential run-time with regard to the number of objectives if P
=NP,
something that seems to be true [24].

HypE addresses the computational cost of the hypervolume indicator by propos-
ing Monte Carlo sampling method that approximates the value of the hypervolume
at a lower computational cost. This approximation, even when it might not be
adequately accurate for performance assessment is usable for the fitness assignment
purpose. In this work we use HypE’s hypervolume-based mating selection.

2.2 Estimation of distribution algorithms

EDAs have been claimed as a paradigm shift in the field of evolutionary compu-
tation. Like EAs, EDAs are population-based optimization algorithms. However,
in EDAs the variation step where the evolutionary operators are applied to the
population is substituted by construction of a statistical model of the most promising
subset of the population. This model is then sampled to produce new individuals
that are merged with the original population following a given substitution policy.
Therefore, a benefit of EDAs is that not only do they return a solution to a problem,
but a model representing the solutions is presented as well.

Because of this model-building feature EDAs have also been called probabilistic-
model-building genetic algorithms (PMBGAs) [40]. A framework similar to EDAs is
proposed by the iterated density estimation evolutionary algorithms (IDEAs) [10].
Early approaches assumed that the different features of the decision variables
were independent. Subsequent methods started to deal with interactions among the
decision variables, first in pair-wise fashion and later in a generalized manner, using
n-ary dependencies.

Multi-objective EDAs (MOEDAs) [41] are the extensions of EDAs to the multi-
objective domain. Most MOEDAs consist of a modification of existing EDAs whose
fitness assignment function is substituted by one taken from an existing MOEA.

There are two complementing EDA approaches for storing or representing the
search individuals. One keeps a population for search individuals and, in every itera-
tion model the most promising subset of such population and create new individuals.
On the contrary, there are other approaches that store search information as the
learned model. Therefore, this model is sampled and updated based on the adequacy
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of the sample. The first approach is, to the best of our knowledge, the most popular
one in the multi-objective context.

Methods based on regularity, like RM-MEDA and MMEA exploit the properties
(those required to apply the KKT condition) of the problem being solved. In real
life practice the properties it is often impossible to check if the problem meets the
requirements to apply the KKT condition. Furthermore, as they model the Pareto
front as an (m-1)-dimensional manifold they have high computational demands as
the number of objectives grows and these many-objective problems are the ones in
which we are more interested.

The MMEA paper deals with a particular class of MOP, in which the dimension-
alities of the Pareto front and the Pareto set manifolds are different. In this case
the approximation of the Pareto front might not yield a correct approximation to the
Pareto set. MMEA is and EDA that approximates the Pareto set and the Pareto front
simultaneously for an MOP of the class above-described. In this regard, our approach
offers a comparable solution, as we focus on the modeling and approximation of the
Pareto set, and therefore, the Pareto front.

It must be pointed out, however, that EDAs are not the only form way of
incorporating learning in the optimization process. There are some approaches that
perform this task by providing hybrid evolutionary/machine learning method, like,
for example, the learnable evolution model (LEM) [38]. This approach is similar
in spirit to EDAs although it also incorporates some EA features. Something that
complicates its application in real-world practice. Furthermore, these efforts seem to
have been concentrated on single-objective optimization (c.f. [46, 47]).

3 The model-building issue

Notwithstanding the diverse efforts dedicated to providing usable model-building
methods for EDAs the nature of the problem itself has received relatively low
attention and, instead, most works have just used off-the-shelf machine learning
algorithms. An analysis of the results yielded by current multi-objective EDAs and
their scalability with regard to the number of objective leads the identification of
certain issues that might be hampering the obtention of substantially better results
with regard to other evolutionary approaches.

Data outliers issue is a good example of insufficient comprehension of the nature
of the model-building problem. In machine-learning practice, outliers are handled as
noisy, inconsistent or irrelevant data. Therefore, outlying data is expected to have
little influence on the model or just to be disregarded.

However, that behavior is not adequate for model-building. In this case, is known
beforehand that all elements in the data set should be take into account as they
represent newly discovered or candidate regions of the search space and therefore
must be explored. Therefore, these instances should be at least equally represented
by the model and perhaps even reinforced.

As model-building strategies varies from EDA to EDA, it is hard to back the
previous statement with a general theoretical support. In order to do so, we must
define an individual zi as the pair representing values in decision and objective sets,

zi = 〈xi, F(xi)〉 . (3)
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In a simplified case, we can state that model building is an unsupervised machine
learning problem with learning dataset,

� = {xi} ; ∀zi = 〈xi, F(xi)〉 ∈ P̂t , (4)

where P̂t is the model-building dataset which is a subset of the algorithm population
at iteration t.

The machine learning algorithm tunes the model M(x, θ, φ) by adjusting its
topology θ and parameters φ. In error-based learning this process involves the
calculation of a set-wise error to which each element-wise error contribute to a
different degree,

Etot =
∑
xi∈�

E (M(xi, θ, φ)) . (5)

There are many different forms of the set-wise and element-wise errors, Etot and E(·)
respectively, but they can be formulated in a more or less similar fashion as above.

If Etot is to be minimized, then θ and φ will be set in such way that the aggregation
of element-wise contributions is as minimal as possible. As outliers, by their own
definition, are rare and infrequent, their element-wise contribution to Etot could be
left to be relatively large as it is more convenient to focus on those that by being more
popular, have a larger contribution to Etot.

Therefore, model M(x, θ, φ) would end up representing more accurately elements
more densely grouped than those isolated. However, as we already mentioned, in
the model-building case, all elements of � are important, and, perhaps, the isolated
ones might be even more important than the clustered ones, as they represent locally
optimal zones of the objective set that have not been properly explored.

Another weakness of most MOEDAs (and most EDAs, for that matter) is the loss
of population diversity. Diversity loss can be attributed to two main causes:

– biased selection processes, and;
– incorrect model building.

As described in the previous section, the matting selection in EDAs extracts the best
subset of the population to build the model. The continuous selection of the best
part of the population could lead to a premature homogenisation of the population
and, therefore, to the stagnation of the search process. In the second case, the loss of
diversity can be traced back to the above-described outliers issue of model-building
algorithms and also to the incorrect estimation or sampling of the model. This fact
leads us back to the statement referring that model building has not been correctly
acknowledged as a different problem with particular requirements.

A number of works that have tried to “patch” current methods and, therefore
make them more suitable for this context. For example, in [54] it is proposed a
method for avoiding that the variances of a multivariate Gaussian model to drop
to “quickly” drop to zero. Similarly, [13] introduced a permutation sampling that
eliminates the sampling errors of UMDA. Other approaches [42, 56] have tried
strategies to re-inject “fresh” individuals that are kept on a evolutionary algorithm
that is run in parallel.

In previous approaches to this issue [35], different alternatives to model building
were compared. The outcome of these experiments supported the hypothesis the
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approaches that had a better performance do not follow the error-based scheme,
like the k-means algorithm, randomized leader algorithm and the growing neural
gas network. That is why, perhaps another classes of learning, like instance-based
learning or match-based learning would yield a sizable advantage.

4 Model building with Adaptive Resonance Theory

Adaptive Resonance Theory (ART) is a theory of human cognition. ART was
put forward with the purpose of dealing with stability-plasticity dilemma [18]. This
dilemma is concerned with how can a learning system be designed to remain adaptive
(or plastic in ART terminology) in response to significant events and yet remain
stable in response to irrelevant ones? In other words, how to switch between stable
and its plastic modes to achieve stability without rigidity and plasticity without
chaos? Furthermore, how can it preserve its previously learned knowledge while
continuing to incorporate new information, while preventing this new learning from
“overwriting” the codes previously stored?

The cornerstone property of ART systems is a pattern matching process that
compares an external input with a pattern stored in the internal memory. As
matching takes place, it leads either to a resonant or stable state, which persists long
enough to permit learning, or to a parallel memory search. If the search ends with a
positive match with stored code, the memory representation may either remain the
same or incorporate new information from matched portions of the current input. If
the search indicates that a new code is needed, then memory representation learns
the current input. This match-based learning process is the foundation of ART code
stability.

Match-based learning allows memories to change only when input from the ex-
ternal world is close enough to internal expectations, or when something completely
new occurs. This feature makes ART systems well suited to problems that require on-
line learning of large and evolving databases. This class of learning is complementary
to error-based learning, which responds to a mismatch by changing memories so
as to reduce the difference between a target output and an actual output, rather
than by searching for a better match. Error-based learning, as explained in the
previous section, minimizes is naturally suited to problems such as adaptive control
and the learning of sensory-motor maps, which require ongoing adaptation to present
statistics. It has been pointed out that ART networks are not suitable for this class
of classical machine-learning applications [45], however, what is an inconvenience in
that area is a positive feature in the case of model-building.

ART-based neural networks are capable of fast, stable, on-line, unsupervised or
supervised, incremental learning, classification, and prediction following a match-
based learning scheme [28]. During training, ART networks adjust previously-
learned categories in response to familiar inputs, and create new categories dynami-
cally in response to inputs different enough from those previously seen. A vigilance
test allows to regulate the maximum tolerable difference between any two input
patterns in a same category. As ART networks provide a compromise between
adding new knowledge and improving the representation of the existing one, it could
be hypothesized that, thanks to that, they would deal in a proper manner with data
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outliers. When using ART, outliers would not be disregarded since the matching
process could take care of determining that they are different from currently stored
elements and they will not be disregarded in later learning iterations as the model
creation process proceeds. This reasoning motivated our interest in developing a
MOEDA that uses an ART-inspired method for model building.

4.1 Gaussian ART for model building

There are many variations of ART networks. Among them, the Gaussian ART [52] 
is most suitable for model building since it capable of handling continuous data. The 
result of applying Gaussian ART is a set of nodes each representing a local Gaussian 
density. These nodes can be combined as a Gaussian mixture that can be used to 
synthesize new individuals.

Gaussian ART creates classes of similar inputs (Fig. 1). It has a layer of afferent 
or input nodes, F1, and a classification layer, F2 (we have kept this nomenclature 
for the sake of homogeneity with other ART networks). The F2 layer stores classes 
of inputs. Its activation is a combined measure of the similarity of the input and the 
prototype of each class, and the size of the given class.

For the model-building task we have modified the original formulation of the
network to make it more suited for the task. When an input x ∈ R

n is presented
to the input layer it is propagated to the F2 layer. F2 has N∗ nodes, c1, . . . .cN∗ with N
of them committed. Each committed node models a local density of the input space

F2 layer

Input (F1) layer

Outputs

μ ,σ

g =
0?

“commit node”

c1 c2 . . . cj . . . cNG

xn. . .x2x1

vN. . .v2v1

Fig. 1 Gaussian ART neural network used for model building. When an input x is presented to the
input layer it is propagated to the F2 layer. Each F2 node c j represents a local Gaussian density
characterized by its weights μ j and σ j. The match function G j is calculated for each node. If its
value is smaller than vigilance ρ then its corresponding input strength, g j is set to zero. If all g j are
set to zero, it means that no node could be activated and, therefore, an uncommitted node must be
committed. The network output v is computed by normalizing the g j’s. Concurrent to this learning
takes place
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using Gaussian receptive fields with mean μ j and standard deviation σ j. A node is
activated if it satisfies the match criterion. That is, the match function,

G j = exp

(
−1

2

n∑
i=1

(
xi − μ ji

σ ji

)2
)

, j = 1, . . . , N , (6)

must be greater than the F2 vigilance parameter, ρ; according to this, the input
strength of a node is computed as

g j =
⎧⎨
⎩

η j∏n
i=1 σ ji

G j, if G j > ρ

0 otherwise
, ρ > 0 , (7)

where η j is a measure of the node a priori activation probability. This is different from
the original Gaussian ART network where only one node was allowed be active after
an input presentation.

After the presentation of an input, if no F2 node is active, then an uncommitted
node must be committed. The task of detecting when an input is not sufficiently
coded in F2 is accomplished by the F2 gain control, G, that fires if no committed
nodes are active. The signal

� =
{

1 if max j=1,...,N g j = 0
0 otherwise

(8)

is used to commit an uncommitted node. It can also be used to offer an “I don’t
know” answer during the non-adaptive use of a network.

The activation of each node is then calculated normalizing the node’s input
strength,

v j = g j∑N
l=1 gl

. (9)

As other ART networks, this model is an on-line learning neural network.
Therefore, all adaptation processes have local rules. In F2, μ j and σ j are updated
using a learning rule based on the gated steepest descent learning rule [27].

The gated steepest descent rule for an adaptive weight w ji can be expressed as

ε
∂w ji

∂t
= y∗

j

[
f (xi) + w ji

]
. (10)

Using a neural network notation, this rule can be explained as how the post-synaptic
activity, y∗

j , modulates the rate at which w ji tracks the pre-synaptic signal f (xi).
The previous continuous formulation must be transformed in order to be able to

apply it in an iterative fashion. The discrete-time formulation of (10) becomes

w ji(t + 1) =
(

1 − ε−1 y∗
j

)
w ji(t) + ε−1 y∗

j f (xi) . (11)

Modifying (11) we can obtain the learning equations for the F2 nodes. The
constant change rate is replaced by η j. η j is updated to represent the cumulative
category activation,

η j (t + 1) = η j (t) + v j , (12)
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and, therefore, the amount of training that has taken place in the jth node. The use
of η j equally weights inputs over time with the intention to measure their sample
statistics.

The pre-synaptic signal f (xi) is substituted by xi and x2
i , respectively, for learning

the first and second moments of the input,

μ ji (t + 1) =
(

1 − η−1
j v j

)
μ ji (t) + η−1

j v jxi , (13)

λ ji (t + 1) =
(

1 − η−1
j v j

)
λ ji (t) + η−1

j v jx2
i . (14)

The standard deviation,

σ ji (t + 1) =
√

λ ji (t + 1) − μ ji (t + 1)2 , (15)

is calculated using (13) and (14) as in [53].
Gaussian ART is initialized with all nodes uncommitted (N = 0). Learning takes

place in active (v j > 0) F2 nodes following (13)–(15). However if no F2 nodes
becomes active an uncommitted node is committed and therefore N is incremented.
The new node is indexed by N and initialized with vN = 1, ηN = 0. Learning will
proceed as usual but a constant ϕ2

i will be added to each λNi to set σNi = ϕi. The value
of ϕi has a direct impact on the quality of learning. A larger ϕi slows down learning
in its corresponding input feature but warranties a more robust convergence.

The local Gaussian densities resulting from the described algorithm can be
combined to synthesize a Gaussian mixture. This Gaussian mixture is then used can
be used by the EDA to generate new individuals.

5 Multi-objective ART-based EDA

The multi-objective ART-based EDA (MARTEDA) is a MOEDA that uses the
previously described Gaussian ART network as its model-building algorithm. Al-
though it intends to deal with the issues raised by the previous discussion, it was
also designed with scalability in mind, since it is expected to cope with many-
objective problems. It also exhibits an elitist behavior, as it has proved itself a very
advantageous property. Finally, thanks to the combination of fitness assignment and
model-building it promotes diversity preservation.

MARTEDA maintains a population, Pt, of npop individuals; where t is a given
iteration. The algorithm’s workflow is similar to other EDAs. It starts with a random
initial population P0 of individuals.

At a given iteration t the algorithm determines the set P̂t containing the best⌊
α
∣∣Pt

∣∣⌋ elements. ∣∣∣P̂t

∣∣∣ = α ∣∣Pt
∣∣� = ⌊

αnpop
⌋

. (16)

P̂t is constructed by determining the elements of Pt that produce the larger value
of the hypervolume indicator, as in the HypE algorithm. For problems of two and
three objectives this task is carried out by exactly calculating it. For cases of more
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objectives the Monte Carlo sampling alternative is used, as it is more computational
cost-effective.

A Gaussian ART network is then trained using P̂t as its training data set. In
order to have a controlled relation between size of P̂t and the maximum size of the
network, Nmax, these two sizes are bound by the rate γ ∈ (0, 1],

Nmax =
⌈
γ

∣∣∣P̂t

∣∣∣⌉ = ⌈
γ
⌊
αnpop

⌋⌉
. (17)

The trained network is a model of P̂t. The network can be interpreted as a
Gaussian mixture, as explained in the previous section. Therefore it can be used to
sample new individuals. In particular,

⌊
ω
∣∣Pt

∣∣⌋ new individuals are synthesized.
The local Gaussian densities resulting from the described algorithm can be

combined to synthesize the Gaussian mixture with parameters �,

P (x|�) = 1

N

N∑
i=1

P (x|μi, σi) . (18)

Each Gaussian density is formulated as

P (x|μi, σi) = 1

(2π)n/2|�i|1/2
exp

(
−1

2
(x − μi)

� �−1
i (x − μi)

)
, (19)

with the covariance matrices �i defined as a diagonal matrix with its non-zero
elements set to the values of the deviations σi. The Gaussian mixture can be used by
the EDA to generate new individuals. These new individuals are created by sampling
the P (x|�). The generation of randomly distributed numbers that follow a given
distribution has been dealt in depth by many authors. In our case, we applied the
Box-Muller transformation [12].

Each one of these individuals substitute a randomly selected ones from the section
of the population not used for model-building Pt \ P̂t. The set obtained is then
united with the best elements, P̂t, to form the population of the next iteration Pt+1.
Some other substitution strategies could be used in this step. For example, the new

Fig. 2 Algorithmic
representation of MARTEDA

Parameters:
ϕ , initial deviations.
ρ , F2 vigilance threshold.
npop, population size.
α ∈ (0, 1 , selection percentile.
ω ∈ (0, 1 , substitution percentile.

Algorithm:
t ← 0.
Randomly generate the initial population 0 with npop individuals.
repeat
Sort population t using the HypE+ ranking algorithm.
Extract firstα | t | elements the sorted t to ˆ t .
A Gaussian ART with ˆ t as training data set and ϕ and as parameters.
Sample ω | t | from the network.
Substitute randomly selected individuals of t ˆ t with the new individ-
uals to produce t .

t 1 ˆ t t .
t t 1.

until end condition = true
Determine the set of non-dominated individuals of t , t .
return t as the algorithm’s solution.

13



individuals could substitute the worst individuals of Pt \ P̂t. We have chosen the
previously described approach because it promotes diversity and avoids stagnation.

Iterations are repeated until a given stopping criterion is met. The output of the
algorithm is a subset of Pt that contains the non-dominated solutions, P∗

t (Fig. 2).

6 Experimental study

The results of the experiments involving MARTEDA, some current state-of-the-
art MOEDAs and MOEAs in a selection of current community-accepted problems
are reported in this section. In particular we deal with problems drawn from two
current and complex problem sets: the Walking Fish Group (WFG) problems and
the test instances of the CEC’09 multi-objective optimization special session and
competition.

6.1 WFG problems

The Walking Fish Group (WFG) problem toolkit [29] is a toolkit for creating
complex synthetic multi-objective test problems. The WFG test suite exceeds the
functionality of previous existing test suites. These include: non-separable problems,
deceptive problems, a truly degenerate problem, a mixed shape Pareto front prob-
lem, problems scalable in the number of position related parameters, and problems
with dependencies between position- and distance-related parameters. The WFG
test suite provides a better form of assessing the performance of optimization
algorithms on a wide range of different problems.

From the set of nine problems WFG4 to WFG9 were selected because of the
simplicity of their Pareto-optimal front that lies on the first orthant of a unit
hypersphere. This decision was also caused by the high computational cost of the
experiments being carried out and by the length restriction imposed upon this
contribution. Each of these problem was devised to challenge the capacity of the
optimizer with regard to different aspects. For example, WFG4 is a separable and
strongly multi–modal problem while WFG5 is also a separable problem but it has a
set of deceptive locally optimal fronts. WFG6 is also separable without the strong
multi-modality of WFG4. The remaining three problems have the added difficulty of
having a parameter-based bias. WFG7 is uni-modal and separable, like WFG4 and
WFG6; WFG8 is a non-separable problem and WFG9 is non-separable, multi-modal
and has deceptive local-optima. Each problem was configured with 3, 6, 9, 12 and 15
objective functions. For all cases the decision set dimension was fixed to 30.

Besides applying MARTEDA to the aforementioned problems some other
MOEDAs and MOEAs are also assessed in order to provide a comparative ground
for the tests. One algorithm is of particular interest, the MONEDA [37] algorithm.
This approach was previously proposed by the authors to deal with the model-
building issue of MOEDAs and MARTEDA is supposed to be an improvement
over it. However, as MONEDA used the less-performing NSGA-II selection, we
have also tested MONEDA with the HypE selection, in order to have some basis for
comparison.

Besides MONEDA, we also tested the naïve MIDEA [11], MrBOA [1] and RM-
RMEDA [57] MOEDAs and the SMS-EMOA [8], HypE [5], MOEA/D [55], and
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NSGA-II [20] MOEAs. The parameters of the algorithms are summarized in Table 1.
For each problem/dimension pair each algorithm was executed 30 times. The quality
of the solutions is determined by the use of the hypervolume indicator [31].

Table 1 Parameters of the
algorithms used in the
experiments

Common parameters (if applicable)
Population size (npop) 250 · 10

M
3 −1

MARTEDA
F2 vigilance threshold (ρ) 0.05
Initial standard deviations (ϕ) 0.01
Selection percentile (α) 0.3
P̂t to N∗ ratio (γ ) 0.5
Substitution percentile (ω) 0.25

MONEDA
Number of initial GNG nodes (N0) 2
Maximum edge age (νmax) 40
Best node learning rate (εb) 0.1
Neighboring nodes learning rate (εv) 0.05
Insertion error decrement rate (δI) 0.1
General error decrement rate (δG) 0.1
Accumulated error threshold (ρ) 0.2
Selection percentile (α) 0.3
P̂t to Nmax ratio (γ ) 0.5
Substitution percentile (ω) 0.25

Naïve MIDEA
Selection percentile (τ ) 0.3
Diversity percentile (δ) 15
Number of parents of a variable (κ) 2
Maximum number of clusters �0.5τnpop��
Threshold for the leader algorithm 0.1

SMS-EMOA
Distribution index for SBX (ηc) 15
Dist. index for polyn. mutation (ηm) 20

MrBOA
Selection portion (τ ) 0.3
Number of parents of a variable 5
Number of mixture components 3
Threshold of leader algorithm 0.3

MOEA/D
Number of subproblems (N) 300M
Number of the weight vectors in the 0.1N

neighborhood of weight vector (T)
Max. num. of solutions replaced (nr) 0.01N
Parent solution selection prob. (δ) 0.9

NSGA-II
Tournament selection size 5
Number of parent individuals 0.3npop�
Number of offspring individuals 0.25npop�
Crossover probability (pc) 0.7
Distribution index for SBX (ηc) 15

Mutation probability (pm)
1

npop
Dist. index for polyn. mutation (ηm) 20
Monte Carlo sample size (for M > 3) 104
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Table 1 (continued)

Note that each parameter
follows the notation of the
algorithm’s author(s)

RM-MEDA
Selection portion 0.3

Number of LPCA clusters
10

3
M

Maximum training steps in LPCA
20

3
M

Extension rate 0.25
HypE

—Variation operators as in NSGA-II—
Monte Carlo sample size (for M > 3) 104

The stochastic nature of evolutionary algorithms prompts the use of statistical
tools in order to reach a valid judgement of the quality of the solutions and how
different algorithms compare with each other. Box plots [19] are one of such
representations and have been repeatedly applied in our context. Although box plots
allows a visual comparison of the results and, in principle, some conclusions could be
deduced out of them.

Still, as we are aware that box plots are a helpful and popular visualization tool
we have included the ones corresponding to our experiments in Figs. 3 and 4 for
problems WFG4–WFG6 and WFG7–WFG9, respectively. Both sets of experiments
share some interesting results. First of all, it is noticeable that in most problems,
when configured with three objectives the results are very similar. In many cases,
even when some algorithms perform better than others, the performance indicators
of the different runs overlap. Probably this situation might change if the parameters
were tuned for each problem configuration instead of keeping them constant for
all instances. This situation changes dramatically as the number of objectives is
increased.

Nevertheless, in order to reach a substantiated judgement it is necessary go
beyond reporting the descriptive statistics of the performance indicators. For this
task is required to carry out a set of statistical inferences that would support any
judgements made from the data.

The statistical validity of the judgment of the results calls for the application of
statistical hypothesis tests. It has been previously remarked by different authors that
the Mann–Whitney–Wilcoxon U test [34] is particularly suited for experiments in the
context of multi-objective evolutionary optimization [31]. This test is commonly used
as a non-parametric method for testing equality of population medians. In our case
we performed pair-wise tests on the significance of the difference of the indicator
values yielded by the executions of the algorithms. A significance level, α, of 0.05
was used for all tests.

The visual analysis of the results is rather difficult as it implies cross-examining and
comparing the results presented separately. That is why we decided to adopt a more
integrative representation such as the one proposed in [3]. That is, for a given set of
algorithms A1,. . . , AK, a set of P test problem instances �1,m,. . . ,�P,m, configured
with m objectives, the function δ(·) is defined as

δ
(

Ai, A j,�p,m
) =

{
1 if Ai � A j solving �p,m

0 in other case
, (20)

where the relation Ai � A j defines if Ai is significantly better than A j when solving
the problem instance �p,m, as computed by the statistical tests previously described.
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Fig. 3 Summary as box plots of hypervolume indicator obtained from the results of MARTEDA
(MART), hypervolume-based MONEDA (MO/H), non-dominated sorting MONEDA (MO/NS),
naïve MIDEA (nMID), MrBOA (MrB), HypE, SMS-EMOA (SMS), MOEA/D (MEA/D) and
NSGA-II (NS-II) when solving WFG4, WFG5 and WFG6 with different number of objectives
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Fig. 4 Summary as box plots of hypervolume indicator obtained from the results of MARTEDA
(MART), hypervolume-based MONEDA (MO/H), non-dominated sorting MONEDA (MO/NS),
naïve MIDEA (nMID), MrBOA (MrB), HypE, SMS-EMOA (SMS), MOEA/D (MEA/D) and
NSGA-II (NS-II) when solving WFG4, WFG5 and WFG6 with different number of objectives
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Fig. 5 Mean values of the performance index of MARTEDA (MART), MONEDA with HypE
(MON/H) or NSGA-II selection (MON/NS), naïve MIDEA (n.MID), MrBOA, HypE, SMS-EMOA
(SMS-EM), MOEA/D (MEA/D) and NSGA-II (NSG-II) across the different problems, Pp (·)

Relying on δ(·), the performance index Pp,m(Ai) of a given algorithm Ai when
solving �p,m is then computed as

Pp,m (Ai) =
K∑

j=1; j
=i

δ
(

Ai, A j, �p,m
)
. (21)

This index intends to summarize the performance of each algorithm with regard to
its peers.

Figures 5 and 6 exhibit the results computing the performance indexes grouped by 
problems and dimensions.

Figure 5 represents the mean performance indexes yielded by each algorithm 
when solving each problem in all of its configured objective dimensions,

Pp (Ai) = 1∣∣M ∣∣ ∑
m∈M

Pp,m (Ai) , with M = {3, 6, 9, 12, 15} in our case. (22)
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Fig. 6 Mean values of the performance index across the different space dimensions, Pm (·). See Fig. 5
for a description of the acronyms
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It is worth noticing that MARTEDA has better overall results with respect to
the other algorithms in all problems, except WFG7. As it could be expected, the
use of indicator-based selection in MONEDA has yielded better results than the
original MONEDA. Indicator-based MONEDA and the indicator-based MOEAs
have a similar performance. It can be hypothesized that these results can be biased by
the three objective problems, having dramatic differences in their results with respect
to the rest of the dimensions considered. In the case of WFG7, that is unimodal al
separable, it could be argued that it posses a lesser challenge to the optimizers, and,
in many cases, some of them could yield similar results to MARTEDA.

This situation is clarified in Fig. 6, which presents the mean values of the index
computed for each dimension

Pm (Ai) = 1

P

P∑
p=1

Pp,m (Ai) . (23)

In this case, MARTEDA exhibits an outstanding perfomance with regard to the
other algorithms in more than three dimensions. Still, another important conclusion
can be extracted. For more than three objectives, the MOEDAs that attempt to
tackle the model-building issue (MONEDA and MARTEDA) and that also exploit
indicator-based selection have outperformed the rest of the methods. This is very
important, as it transcends the particular results of a given algorithm but instead
casts some light on what should be the proper trend of development in this field.

It is relevant the fact that, as the objective set dimension is increased, the
difference of performance between MARTEDA and the rest becomes more evident.

Finally, the above experiments lead us to hypothesize that thanks to the treatment
of the outliers in the model-building data-set, the MARTEDA approach manages to
overcome the difficulties that hampers the rest of the methods. Another important
result is that MARTEDA was able to yield good results across a varied set of
problems without tuning its parameters in every case. This implies that MARTEDA
has a certain degree of robustness regarding its parameters.

6.2 CEC’09 problems

As already commented, we will be now focusing of a set of problems previously
proposed in the CEC 2009 MOP competition [58]. From that set of problems
proposed we selected the unconstrained optimization problems UF1 to UF7. These
are seven two-objective problems that can be configured to have any desired number
of variables. These problems are well-known for the complexity of their Pareto-
optimal sets and fronts. They were selected in order to be able to plot the results
and to visually compare results.

The problems were configured with 30 decision variables and population size,
when applicable, was set to 1,000 individuals. The rest of the experimental setup was
kept as in the previous experiment.

Figure 7 contains the plots of the Pareto-optimal fronts produced by different
algorithms. It is noticeable how in some cases algorithms converge to local Pareto-
optimal fronts, not being able to progress towards the optimal solution.

This form of result presentation is valuable from a didactic point of view.
However, in order to reach a substantiated judgement a methodology like the one
described for the previous experiment should be followed. The outcome of applying
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Fig. 7 Non-dominated fronts produced by MARTEDA (◦), hypervolume-based MONEDA (×),
non-dominated sorting MONEDA (�), naïve MIDEA (�), MrBOA ( ), HypE ( ), SMS-EMOA
(�), MOEA/D (∗), RM-MEDA (+) and NSGA-II (�) when solving UF1–UF7 problems. Pareto-
optimal fronts (·) are also shown

that approach to the experimental results can be observed as box plots in Fig. 8. Here
it can be noted that MARTEDA yielded remarkable results, competing in many
cases with MOEA/D for the best position.

Figure 9 summarizes the results of the experiments. This figure prompts a very in-
teresting conclusion. In most problems it can be observed that there is an established 
difference on the performance of the algorithms. However, in UF5 many algorithms 
yield relatively similar results. This might be an indication that either this is a more 
complex problems or that more resources should be allotted to the optimization. In 
any case, the outperformance of MARTEDA can be asserted as it is one of the best 
performing methods.

It is noticeable, however that also MOEA/D and RM-MEDA manage to yield
quality results. Methods based on regularity, like RM-MEDA, exploit the properties
(those required to apply the KKT condition) of the problem being solved. In real
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Fig. 8 Summary as box plots of hypervolume indicator obtained from the results of MARTEDA
(MART), hypervolume-based MONEDA (MO/H), non-dominated sorting MONEDA (MO/NS),
naïve MIDEA (nMID), MrBOA (MrB), HypE, SMS-EMOA (SMS), MOEA/D (MEA/D), RM-
MEDA (RMMED) and NSGA-II (NS-II) when solving problems UF1 to UF7
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Fig. 9 Mean values of the performance index of MARTEDA (MART), MONEDA with HypE
(MON/H) or NSGA-II selection (MON/NS), naïve MIDEA (n.MID), MrBOA, HypE, SMS-EMOA
(SMS-EM), MOEA/D (MEA/D) and NSGA-II (NSG-II) across the different problems, Pp (·)

life practice the properties it is often impossible to check if the problem meets the
requirements to apply the KKT condition. Furthermore, as they model the Pareto
front as an (m − 1)-dimensional manifold they have high computational demands as
the number of objectives grows and these many-objective problems are the ones in
which we are more interested.

7 Final remarks

In this paper we have explored the model-building issue of MOEDAs and the re-
quirements it imposes on its supporting learning paradigm. We put forward adaptive
resonance theory as a alternative learning paradigm. Based on it, we introduced a
novel algorithm called multi-objective ART-based EDA (MARTEDA) that uses
a Gaussian ART neural network for model-building and the hypervolume-based
selection described for the HypE algorithm. We showed that by using this novel
model-building approach and an indicator-based population ranking the algorithm
is able to outperform similar MOEDAs and MOEAs.

Still, the main conclusion of this work is that we provide strong evidences that
further research must be dedicated to the model-building issue in order to make
current MOEDAs capable of dealing with complex multi-objective problems with
many objectives. In spite of the fact that obviously further studies are necessary,
these extensive experiments have provided solid ground for the use of MARTEDA
in a real-world application context.

From a theoretical perspective some points still need to be explored. For exam-
ple, a computational complexity study is necessary in order to grasp the resource
consumption of MARTEDA when advancing into higher dimensions. On the other
hand, more model-building approaches that follow our premises should be tested.
Getting a proper understanding of the implication of following the learning paradigm
put forward by ART in the context of model building, in particular from an statistical
point of view is also necessary. If new ART-based approaches show themselves
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as efficient as the one described here, it would help to corroborate the working
hypothesis of this contribution.
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