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Deep Neural Network-Based QoT Estimation for
SMF and FMF Links
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Abstract—Quality of transmission (QoT) estimation tools for
fiber links are the enabler for the deployment of reconfigurable
optical networks. To dynamically set up lightpaths based on
traffic request, a centralized controller must base decisions on
reliable performance predictions. QoT estimation methods can
be categorised in three classes: exact analytical models which
provide accurate results with heavy computations, approximate
formulas that require less computations but deliver a reduced
accuracy, and machine learning (ML)-based methods which
potentially have high accuracy while maintaining at same time
very low complexity. To operate an optical network in real-time,
beside accurate QoT estimation, the speed in delivering results is
a strict requirement. Based on this, only the last two categories
are candidates for this application.

In this paper, we present a deep neural network (DNN)
structure for QoT estimation considering both regular single-
mode fiber (SMF) and future few-mode fiber (FMF) proposed
to increase the overall network capacity. We comprehensively
explore ML-based regression methods for estimating generalized
signal-to-noise ratio (GSNR) in partial-load SMF and FMF
links. Synthetic datasets have been generated using the enhanced
Gaussian noise (EGN) model. Results indicate that the proposed
DNN-based regressor can provide high accuracy in terms of root
mean square error, and requires less computation complexity,
compared with other state-of-the-art methods such as extended
gradient boosting regressor and closed-form-EGN.

Index Terms—Deep neural network, single-mode fiber, few-
mode fiber, quality of transmission estimation, regression.

I. INTRODUCTION

S Ingle-mode fiber (SMF) communication systems are
achieving their theoretical capacity limits due to nonlinear

effects [1]. Few-mode fiber (FMF) can significantly increase
the capacity of optical networks by combining mode division
multiplexing (MDM) with wavelength division multiplexing
(WDM) techniques [2], [3]. The quality of transmission (QoT)
estimation in SMF and FMF links has crucial importance for
optimizing optical network design. Reconfigurable networks
need a fast and accurate prediction of lightpaths performance
to allow the centralized control and to act in an optimized
way. Beside the accumulation of the optical amplified spon-
taneous emission (ASE) noise introduced by Erbium doped
fiber amplifiers, nonlinear effects must be considered as they
are dominant in fiber propagation. For this reason, nonlinear
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interference (NLI) noise estimation in SMF and FMF links is
an important aspect in QoT prediction. The NLI noise can be
estimated by exact analytical models, e.g. enhanced Gaussian
noise (EGN) model [4], [5], or by approximate analytical mod-
els, e.g. closed-form (CF)-EGN model [6], [7]. The first option
provides accurate results with high computational complexity,
and the second choice is faster but less accurate.

Machine learning (ML) has recently been proposed as an
alternative approach for QoT estimation in SMF links and can
overcome the above-mentioned disadvantages [8]-[20]. In [8]
the performance of a data-driven QoT model is investigated
in a dynamic metro optical network that supports both unicast
and multicast connections. The authors of [9] used ML for
the evaluation of optical performance or more generally, to
achieve a cognitive network awareness. In [10], ML is used
for improving the accuracy of modeling nonlinear impairments
on a per-link basis. The authors of [11] deployed different
ML methods as regressors to estimate the penalties due to
erbium-doped fiber amplifier gain ripple and filter spectral
shape uncertainties at the re-configurable add/drop nodes. In
[12], two ML-based regression methods are presented for QoT
estimation by taking into account fiber attenuation, dispersion
and nonlinear coefficients together with amplifier noise figure
per span. ML is used in [13]-[15] as classifier to predict if
lightpaths satisfy bit error rate requirements. In [16], different
ML methods are used as regressors for predicting generalized
signal to noise ratio (GSNR) considering full-load links. In
[17], authors propose an ML-based QoT estimator which uses
precomputed self channel interference values of each WDM
channel as feature and total NLI for all channels as labels.
An artificial neural network is used as regressor for QoT
estimation in [18] in the presence of uncertainty on span
lengths, and in [19] considering unestablished lightpaths in a
live network with production channels. Authors of [20] report
the performance of different ML-based QoT predictors includ-
ing deep neural network (DNN) for unestablished lightpaths
in agnostic optical networks.

In this paper, we propose a DNN-based regressor to es-
timate the GSNR. The GSNR accounts for the ASE noise
introduced by the presence of optical amplifiers and the NLI
noise generated by nonlinear effect. In particular, this is the
first study on QoT estimation for FMF systems based on
joint MDM-WDM. Furthermore, we present a comprehensive
investigation and compare the proposed DNN-based regressor
with other well-known ML-based regressors as well as the CF-
EGN model. The rest of this paper is organized as follows:
Section II presents the considered SMF and FMF propagation
models for the analyzed links, Section III describes the ML-
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Fig. 1. The considered link setup for: a) SMF, and b) FMF.

based QoT estimation models, and Section IV describes the
generation of the synthetic dataset. Section V discuss the
optimization of the dataset by adjusting the size and selecting
only relevant features. Section VI provides the model selection
and performance comparison between proposed DNN-based
regressor and other ML-based methods. Section VII is the
conclusion of this paper.

II. PROPAGATION MODELS AND LINK DESCRIPTION

The considered SMF and FMF setups are respectively
depicted in Figs. 1(a) and 1(b). The transmitted signal on
SMF links is a combination of Nch polarization multiplexed
(PM)-WDM channels. In FMF links we have a further level
of multiplexing based on D spatial modes. On each mode (a
single one for SMF) we consider the propagation of a WDM

comb where each channel has a rectangular spectrum (ideal
Nyquist shaping with roll-off set to zero). The analyzed link
has Ns spans, an amplifier at the end of each span compensates
for the fiber attenuation. The signal propagation suffers from
both linear and nonlinear effects including chromatic (modal)
dispersion, nonlinear Kerr-effect, as well as modal linear and
nonlinear coupling. The received signal is ideally demulti-
plexed and it enters a digital signal processing section for
compensating all linear effects. The nonlinear phase rotation
is also assumed to be recovered by a carrier phase estimator
(CPE) [5].

The received signal of nth channel and pth mode, after the
CPE, can be modeled as the sum of the original transmitted
signal plus two interfering terms: ASE and NLI noise [4]-
[5], both modeled as additive Gaussian noise sources with
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Fig. 2. Diagram describing the process of comparison between approximated (CF-EGN and ML-based) models with reference EGN model.

zero mean and variances σ2
ASE,p and σ2

EGN,n,p, respectively.
Here, σ2

ASE,p = NsFp(Gp − 1)hν∆fn where Ns is number
of spans, Fp is the amplifier noise figure of pth mode, Gp is
amplifier gain of pth mode equal to the span fiber loss of pth
mode, h is the Planck's constant, and ν is central frequency
[4], [5]. The NLI variance of nth channel and pth mode,
σ2
EGN,n,p, can be evaluated through Eq. (1) [4], [5] where

κ
(n,p)
1 = µ

(n,p)
2 , κ(n,p)2 = µ

(n,p)
4 − 2µ

(n,p)2

2 , and κ
(n,p)
3 =

µ
(n,p)
6 − 4µ

(n,p)
4 µ

(n,p)
2 + 12µ

(n,p)3

2 , with µ
(n,p)
2 , µ(n,p)

4 , and
µ
(n,p)
6 denoting the second, fourth, and sixth order moments

of the constellation of nth channel and pth mode, respectively.
Here, Pn,p is the launched power and g(n,p)(.) is the spectral
shape of transmitted signal in nth channel and pth mode which
is here assumed to be rectangular Nyquist shaping, γ̃pq is
nonlinear (coupling) coefficient between pth and qth mode, αp
is attenuation of pth mode, and β1p and β2p are respectively
the modal and chromatic dispersion coefficients of pth mode
[4], [5]. Ls is the span length. To have a second reference we
consider also the CF-EGN model through the formulation for
the NLI noise variance of nth channel and pth mode defined
by Eq. (2) [6], [7] where Leff = (1 − e−αpLs)/αp, and
Leff,a = 1/αp, and Bch,n and fn are respectively bandwidth
and center frequency of nth channel.

III. ML-BASED QOT ESTIMATION MODELS

Fig. 2 describes the process we followed to statistically
compare QoT predictions of approximated (CF-EGN and ML-

based) models with the reference EGN model. QoT estimation
is performed in terms of GSNR, defined as:

GSNRn,p =
Pn,p

σ2
ASE,p + σ2

EGN,n,p

. (3)

To determine the performance of CF-EGN and ML-based
regression model we compare predicted GSNR values
(GSNRpred) with the accurate EGN model, defined as refer-
ence (GSNRref ). Besides quantifying the level of accuracy of
CF-EGN, the main goal of this paper is to propose and analyze
ML-based models. We train and optimize ML-based regression
models such that GSNRpred becomes close to GSNRref : as
performance criteria we consider the root mean square error
(RMSE).

The DNN-based regressor model is composed of an input
layer with Nf input neurons corresponding to the number of
features, Nhid hidden layers each with Nneu hidden neurons,
and a single output neuron. The aim of the training phase is to
adjust the weight matrix, W , and bias vectors b, such that the
output converge to the reference GSNR. Therefore, we define
the following loss function:

L(θ) =
1

Nb

Nb∑
i=1

(GSNRpred,i(θ)−GSNRref,i)2, (4)

where θ = {W , b} is the set of trainable parameters, and Nb
is number of batch samples. θ can be obtained by minimizing
the loss function using the stochastic gradient descent method.
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TABLE I
GENERATED DATASET DESCRIPTION

Dataset Description
D1 SMF 3 level sub-band
D2 SMF 7 level sub-band
D3 FMF 3 level sub-band
D4 FMF 7 level sub-band

TABLE II
DEPLOYED TRAIN:TEST DATASET COMBINATIONS

Combination Train:Test
C1 D1:D2
C2 D2:D2
C3 D3:D4
C4 D4:D4

The well-known ML-based regression models include sup-
port vector machine (SVM) [21], K-nearest neighborhood
(KNN) [22], decision tree (DT) [23], random forest (RF) [24],
extended gradient boosting (XGB) [25], linear regression (LR)
[26], ridge regression (RR) [27], and Bayesian ridge regression
(BR) [28].

IV. DATASET GENERATION

To obtain a good QoT estimation and avoid biases, the
dataset should be large enough and properly generated cover-
ing the entire space of the features. We synthetically generate
the dataset based on the EGN models [4]-[5]. Common
and fixed parameters are the wavelength multiplexing in a
fixed-grid allocated in the C-band, (5 THz) centered around
1550 nm, with a channel spacing of 75 GHz and transceivers
set to work with a symbol-rate of 64 Gbaud. Therefore, both
SMF and FMF links consist of a maximum of 66 WDM
channels multiplexed either over 1 or 3 modes, respectively.

The overall set of possible links analyzed is considered by
randomizing:

• the link state, intended as the selection of channels in ON
state;

• the modulation format on each channel;
• the number of spans;
• the equal span length.
The modulation format of each channel is randomly chosen

with same probability between PM binary phase-shift keying
(BPSK), PM quaternary phase-shift keying (QPSK), and PM
M-QAM, with M ∈ {8, 16, 32, 64}. The number of span
composing the link is randomly selected in the range from
1 to 8 spans. All spans in a link have the same length that is
randomly selected with a uniform distribution between 80 to
120 km.

In all cases, fiber parameters (non-linear coefficients, cou-
pling coefficients in case of FMF, chromatic dispersion, modal
dispersion for FMF, and attenuation) are taken from [29].
After each span, an ideal amplifier with 5 dB noise figure
compensates for fiber attenuation.

Between randomized link parameters, the most critical is the
link state, because it has the larger dimension. We consider
the condition where we have an average of 50% randomly
ON channels. The uniform launch power per channel and

mode is optimized case by case depending on the link state.
Considering 66 channels with TWO possible states, ON and
OFF, we have a total of 266 ∼= 7.37 · 1019 cases for SMF (and
266·3 ∼= 4.01 · 1059 cases for FMF). Consider that link state
is only one of the randomized input parameters: it must be
combined with all other to generate the input space.

To reduce at least the dimension of the link state, we
approach the dataset generation on a sub-band basis instead of
on a channel basis [30]. We group channels into 11 sub-bands
each with 6 channels. Each sub-band has 7 possible levels of
filling, depending on the number of channels in the ON state:
from 0 to a maximum of all 6. Now the number of total cases
is reduced to 711 ∼= 1.98 · 109 for SMF (and 733 ∼= 7.73 · 1027

for FMF): a huge reduction but still a very large space to be
explored. To further reduce this number we also considered
a simplified approach where the whole sub-band can assume
only three states: empty, 50% ON and fully ON. Now the
total number of case is only 311 ∼= 1.77 · 105 for SMF (and
333 ∼= 5.55 · 1015 for FMF). Accordingly, we generate two
datasets for each fiber type, SMF and FMF, both based on the
sub-band approach: a first one with 7-levels and a second one
with 3-levels. Each dataset is composed of 60000 train and
6000 test samples.

Generated datasets are described in Table I, the 3 and 7-
level sub-band datasets are respectively named D1 and D2 for
SMF link, and D3 and D4 for FMF link. Thereby, we consider
the train:test combinations described by Table II.

In order to move to the dataset optimization, we must first
define and determine features, intended as a selected list of
input parameters or derived quantities describing the link and
having an impact on QoT. We selected the following list of
features:

• the modulation format of channel and mode under test
(CUT) (1st feature)

• CUT position in the WDM comb, i.e. channel and mode
under test indices (2nd and 3rd features)

• span length (4th feature)
• number of spans (5th feature)
• the left and right traffic volumes (6th and 7th features)
• the left and right guard bands, i.e. the number of empty

channels on left and right side of CUT (8th and 9th
features)

• the modulation format of closest ON channel on left and
right side of CUT (10th and 11th features for SMF, and
10th to 15th features for FMF)

• the link state, i.e. the number of occupied channels per
sub-band as 12th to 22th features for SMF, and 16th
to 48th features for FMF. An important aspect of the
generated dataset is the consideration of partial load of
link state for D modes and Nch channels with Nsub sub-
bands per mode.

SMF and FMF have 22 and 48 features, respectively. Then the
GSNR is calculated as the single label and associated.

V. DATASET OPTIMIZATION

Dataset optimization is the procedure of adjusting the size
of the dataset, preprocessing the features and the labels,
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Fig. 3. RMSE values for training dataset sizes 60, 600, 6000, and 60000,
leveraging combinations C1, C2, C3, and C4.

selecting the relevant feature set, and reducing the feature
dimension. Therefore, for dataset optimization we need to
compare the result of applying different dataset adjustments
on an employed ML model. Here, due to space limitation, we
only report the results for the DNN-based regressor structure
provided by ”MLPRegression” package from Python/Scikit-
learn library [31].

A. Dataset size adjustment

To evaluate the impact of the dataset size on the perfor-
mance, in Fig. 3 we show the RMSE values for training dataset
sizes 60, 600, 6000, and 60000, leveraging combinations C1,
C2, C3, and C4. The test dataset size is set to 6000 over
all the paper. As seen, the DNN-based regressor provides the
same performance in C1 and C2 while the performance in C4
is better than C3. Actually, in SMF, the regressor only learns
the information about inter/intra channel nonlinear interactions
while in FMF case, it should also learns the inter/intra modal
nonlinear interactions as well as coupling. Therefore, the FMF
case is a more complex scenario and the DNN requires more
dataset point to properly train. The obtained results show that
increasing the number of data points reduces the RMSE in all
combinations. With a dataset of 60000 samples, the RMSE
for C1 and C2 is 0.14 dB while the RMSE for C3 and C4 is
0.89 and 0.63, respectively. The main issue towards training a
DNN-based regressor for QoT estimation is dataset generation.
We rely on synthetic dataset generation by an accurate model
such as EGN. We generate the 60000 point D1, D2, D3, and
D4 datasets in 3 months by utilizing 200 parallel CPUs. For
SMF, steep descent shown in Fig. 3 is such that further dataset
size increase does not improve RMSE so much. However, in
FMF, the obtained values for RMSE per dataset size indicate
the RMSE can be improved more by further increasing the
dataset points. We use this dataset size in the remainder of
this paper.

B. Feature preprocessing

Regressors tend to weight larger the bigger features, in
fact, features with variances larger orders of magnitude than
the others prohibit regressor to learn properly from other
features. Feature preprocessing, a common requirement for
regression, is the method of changing the raw dataset into
a more proper representation through scaling, transformation,
normalization, and discretization. Scaling is the method of
individual standardization of the features which presents them
in a fixed range in order to handle highly varying features.
The common scalers are Standard, Min-Max, and Max-Abs
scalers. Standard scaler is a quick and easy way for scaling
the features into a zero mean and unit variance version.

The Min-Max scaler scales the features between a given
minimum-maximum value, often between zero and one is
preferred. The Max-Abs scaler scales the maximum absolute
value of each feature to the unit value. In scaling, we change
the range of features while in transformation, we change
the shape of features distribution. The general transformation
methods include quantile and power transformers. These non-
linear transformers are based on monotonic transformations
of the features. Quantile transformation is a non-parametric
transformer and maps the feature distribution to uniform
between [0, 1]. This method deploys a rank transformation and
smooths out unusual distributions. Quantile transformation is
less affected by outliers compared with scaling. Power trans-
formation is a parametric transformer and maps the feature
distribution close to Gaussian to stabilize the variance and
minimize the skewness. Normalization scales each feature to
have a unit norm. Discretization separates continuous features
into discrete values and transforms the features with contin-
uous attributes into features only with nominal attributes. It
is similar to constructing discrete histograms for the contin-
uous features. Histograms counts features that fall into bins,
however, discretization assigns feature values to bins.

Fig. 4 shows the RMSE values for different preprocessing
methods including scaling, transformation, normalization, and
discretization, considering combinations C1, C2, C3, and C4.
Min-Max scaler has better performance than the others, and
normalization obtains higher RMSE values than the others.
In SMF, Standard, Min-Max, Max-Abs scaling, and quantile
transformation provide the same RMSE values. However, in
FMF, the choice of feature preprocessing affects the perfor-
mance. In conclusion, we choose the Min-Max scalar for
feature preprocessing.

C. Feature selection

Feature selection is the procedure of isolating the most
relevant, non-redundant, and consistent features to be use in
regression. We have so far considered 22 and 48 features in
the regressor models. An important question is which features
are more important to achieve good regression performance,
as removing worthless features leads to a regressor with
less cost and complexity while removing the worthwhile
features degrades the performance. Hence, we now evaluate
the usefulness of each feature by comparing the regression
performance after training the regressor, considering seven
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TABLE III
CONSIDERED FEATURE SETS

F1 F2 F3 F4 F5 F6 F7
Modulation format of CUT * * * * - * *

CUT position in the WDM comb * * * * * * *
Span length * * * * * - *

Number of spans * * * * * - *
Left and right traffic volumes * * - * * * -

Left and right guard bands * * * - * * -
Modulation format of closest ON * * * * - * -

channel on left and right side of CUT
Link state * - * * * * -
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different feature sets (F1 to F7) of features listed in Section IV.
The considered subsets are listed in Table III. The obtained
RMSE values for these feature sets are reported in Fig. 5,
considering combinations C1, C2, C3, and C4. Results also
show that, in both topologies, training the regressor with the
feature sets F1, F4, and F5 leads to the highest and comparable
RMSE values. Note that F1 includes all features, whereas F4
and F5 exclude the features characterizing left and right guard
bands and modulation format, respectively. However, results
obtained in scenario F1 are slightly higher, which leads us to
conclude that information on these does provide some insight
into regression, and we properly designed features. Nothing
can be removed because it is already a sort of best feature
set including all important parameters affecting optical signal
propagation. However, if we further remove either the Link
state or the left and right traffic volumes from set F1 (as
in subsets F2 and F3, respectively), regression performance
degrades. In particular, results related to F7 show that attributes
characterizing the neighbor ON channels (left and right traffic
volumes, left and right guard bands, modulation format, and
Link state) are very useful. Performance degradation becomes
extremely severe when eliminating the span length and number
of spans from the feature set, as done in F6.

D. Feature reduction

Feature dimension reduction decreases the processing time
and required memory. It removes multi-collinearity and im-
proves the interpretation of the parameters of the regression
model. One of the most popular techniques for dimension
reduction is principal component analysis (PCA) which iden-
tifies the patterns in features based on their correlation. In
a nutshell, PCA finds the directions of maximum variance
in high-dimensional features and depending on the PCA
components projects them into a new subspace with equal or
lower dimensions than the original one. PCA assumes some
dimensions of the dataset are affected by sources of noise,
artifact, or interference and removes them while we generated
the dataset synthetically based on EGN model without con-
sidering any of these sources, therefore, the generated dataset
has proper dimensions and no reduction is required.

E. Label preprocessing

Besides feature preprocessing, label preprocessing is also
crucial in regression. The common label preprocessing ap-
proaches include scaling by log(.) and log2(.). Note that the
calculated label (the GSNR) is in dB which means that the
scaling is already done while dataset generation and further
scaling would not change anything. Therefore, we do not need
to deploy any more preprocessing on the Labels.

VI. MODEL SELECTION

Model selection is the task of tuning hyperparameters for
each of available ML models and selecting one of them.
Regarding this, we first tune hyperparameters of a selected
set of regressors described by section III, and compare the
complexity and performance of different ML-based regressors.

A. Hyperparameter tuning

Reporting the hyperparameter tuning results for selected
set of regressors requires a large space. Thereby, here we
demonstrate hyperparameter tuning for DNN-based regressor,
and just report the tuned hyperparameter values for other
regressors. Hyperparameter tuning for DNN-based regressor
studies its convergence through adjusting iteration number,
learning rate, number of hidden layers, number of hidden
neurons, and optimizer. Figs. 6(a), 6(b), 6(c), 6(d), and 6(e),
present RMSE values respectively for different iteration num-
bers, learning rates, number of hidden layers, number of
hidden neurons, and optimizers, for combinations C1, C2,
C3, and C4. The DNN-based regressor is iteratively trained
considering the stochastic gradient descent (SGD) optimizer
with learning rate 0.001, batch size of 100, and the ReLU
and linear activation functions in the hidden and last layers
as baselines. We early terminate the training if the RMSE
value does not improve for 30 iterations to avoid overfitting.
It should be noted that the DNN weight and bias parameters
are randomly initialized before training, therefore, even with
the same dataset and DNN, the optimization trajectories might
be different. However, the train and test RMSE values are
consistent and similar. Fig. 6(a) shows convergence for C1
and C2 happens after 100 iterations while in C3 and C4 it
occurs after 50 iterations. Fig. 6(b) shows the learning rate
0.001 is a proper choice for C1, C2, C3, and C4. Figs. 6(c)
and 6(d) depict that 2 hidden layers with 1000 hidden neurons
provide a convergence for C1, C2, C3, and C4. Fig. 6(e) plots
RMSE values for Adam, SGD, RMSprop, Adadelta, Adagrad,
Adamax, Nadam, and Ftrl optimizers. As seen, in SMF, Adam,
SGD, RMSprop, Adamard, and Nadam, and in FMF, Adam,
SGD, Adamard perform close. However, Adam achieves lower
RMSE values than the others and is a good choice for both
SMF and FMF.

For SVM, we use radial basis function (RBF) kernel with
the γ equal to the inverse of multiplication of number of fea-
tures and variance of features without limitation on maximum
iteration number. The KNN is employed by five neighbors
and all points in each neighborhood are weighted equally.
Ball tree algorithm with 30 leaves was used to compute the
nearest neighbors based on euclidean distance metric. In DT
(and also in DTs inside RF and XGB), we deploy the mean
squared error as the function to measure the quality of a split,
and the variance reduction as feature selection criterion which
minimizes the L2 loss based on the mean of each terminal
node. At each node, we choose the best split by considering all
features, and expand the trees until all leaves contain less than
2 samples. The minimum number of samples at each leaf node
is 1. In RF and XGB use squared error loss with 0.1 learning
rate and 100 DTs. In RR, we consider α = 1 as the constant
multiplied by L2 term, controlling regularization strength. For
optimizing the weights, we use stochastic average gradient
descent with 1000 iterations. In BR, we use α1 = 10−6

as shape parameter of Gamma distribution prior over α,
α2 = 10−6 as rate parameter of Gamma distribution prior
over α, λ1 = 10−6 as shape parameter of Gamma distribution
prior over the λ, and λ2 = 10−6 as rate parameter of Gamma
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Fig. 6. RMSE values for different a) iteration numbers, b) learning rates, c) number of hidden layers, d) number of hidden neurons, and e) optimizers, for
combinations C1, C2, C3, and C4.

distribution prior over λ. The maximum number of iterations
is 300.

B. Comparison between different ML-based regressors

Fig. 7 shows the RMSE versus normalized runtime for
regression methods DNN, SVM, KNN, DT, RF, XGB, LR,
RR, BR, and CF-EGN for combinations a) C1, b) C2, c) C3,
and d) C4. DNN-based regressor always performs better than
other ML-based regressors and CF-EGN in terms of RMSE.
DNN-based regressor is 100 times faster than CF-EGN. DNN-
based regressor has a more complex structure compared with
other ML regressors and that is why it is slower than the
others (except SVM and KNN). However, this difference is
not so much and DNN-based regressor is fast enough for real
time QoT estimation applications. As seen, each regressor
perform the same in C1 and C2 while performance in C4
is better than C3. Since the dataset D3 does not contain all

required information about feature space of D4 and needs to
be increased.

Fig. 8 introduces the CDF of ∆GSNR = |GSNRpred −
GSNRref |, for DNN, XGB, and CF-EGN, considering com-
binations a) C1, b) C2, c) C3, and d) C4. Here, to avoid con-
gestion, we only compare our proposed DNN-based regressor
with XGB which has the best performance among ML-based
regressors, and CF-EGN which is a well-known conventional
method and could be an alternative approach. At 99% of cases,
the GSNR estimation error by DNN-based regressor is lower
than 0.3 dB, 0.3 dB, 1.2 dB, and 1 dB for C1, C2, C3, and
C4, respectively. In C1 and C2 (the simpler scenarios) DNN
takes the advantages of its complex structure and provides
slightly better results at 99% of cases than XGB while in
C3 and C4 (the complex cases) DNN and XGB perform the
same. Although XGB has less normalized runtime than DNN,
DNN is fast enough for real time applications and we could
trade a small loss of speed for higher accuracy in C1 and
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Fig. 7. RMSE versus normalized runtime for regression methods DNN, SVM, KNN, DT, RF, XGB, LR, RR, BR, and CF-EGN for combinations a) C1, b)
C2, c) C3, and d) C4.
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Fig. 8. CDF of ∆GSNR, for proposed DNN, XGB, and CF-EGN, considering combinations a) C1, b) C2, c) C3, and d) C4.
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Fig. 9. Scatterplots of reference GSNR and predicted GSNR by DNN-based regressor, for combinations a) C1, b) C2, c) C3, and d) C4.

C2. At 99% of cases, the GSNR estimation error by CF-
EGN is lower than 0.8 dB, 0.8 dB, 2.5 dB, and 2.5 dB
for C1, C2, C3, and C4, respectively. In C1 and C2, the CF-
EGN provides closer GSNR estimations to DNN at 99% of
cases than C3 and C4. The CF-EGN is accurate for cases with
channel bandwidth close to the symbol rate [7] which is hard
to achieve while dealing with a fully randomized link state
especially in FMF case wherein this assumption should be
consistent for all modes.

Fig. 9 describes scatterplots of reference GSNR and pre-
dicted GSNR by DNN-based regressor, for combinations a)
C1, b) C2, c) C3, and d) C4. As seen, the scatterplots are
propagated along y = x line which means that the DNN-
based regressor achieves a good performance. In C1 and C2
we experience denser plots compared with C3 and C4, as
FMF scenario is a more complex problem. In C3, the GSNR
estimation has more bias than C4, as we train the DNN based
on D3 and test on D4, this in turn results in higher RMSE
values for C3 compared with C4.

VII. CONCLUSION

In this paper, we have proposed a DNN structure for QoT
estimation of optical communication links. We have presented
a comprehensive investigation considering different ML-based
regression methods for estimating GSNR in partial-load SMF
and FMF links. Synthetic datasets have been generated based
on EGN model. Results have shown that the DNN-based
regressor can provide higher accuracy in terms of RMSE
compared with other state-of-the-art methods such as XGB
regressor and analytical approaches as the CF-EGN. In 99%
of cases, the GSNR estimation error obtained by DNN-based
regressor is lower than 0.3 dB for SMF and and 1 dB

for FMF. Moreover, the DNN-based regressor requires much
less computation complexity compared with CF-EGN and is
candidate solution for real time QoT estimation applications
needed in control plane of dynamically reconfigurable optical
networks.
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Muñoz, “Modeling EDFA gain ripple and filter penalties with ML for
accurate QoT estimation”, Journal of Lightwave Technology, Vol. 38, pp.
2616–2629 2020.

[12] I. Sartzetakis, K. K. Christodoulopoulos, and E. M. Varvarigos, “Accu-
rate quality of transmission estimation with ML”, J. Opt. Commun. Netw.,
Vol. 11, pp. 140–150, 2019.

[13] C. Rottondi, L. Barletta, A. Giusti, M. Tornatore, “Machine-learning
method for quality of transmission prediction of unestablished lightpaths”,
Journal of Optical Communications and Networking, Vol. 10, No. 2, pp.
A286-A297, 2018.

[14] S. Aladin, A. V. S. Tran, S. Allogba, C. Tremblay, “Quality of Trans-
mission Estimation and Short-Term Performance Forecast of Lightpaths”,
Journal of Lightwave Technology, Vol. 38, No. 10, 2020.

[15] A. A. Diaz-Montiel, S. Aladin, C. Tremblay, M. Ruffini, “Active
wavelength load as a feature for QoT estimation based on support
vector machine”, In ICC 2019-2019 IEEE International Conference on
Communications (ICC), pp. 1-6, May 2019.

[16] R. M. Morais, J. Pedro, “Machine Learning Models for Estimating
Quality of Transmission in DWDM Networks”, Journal of Optical
Communications and Networking, Vol. 10, No. 10, 2018.

[17] J. Müller, S. K. Patri, T. Fehenberger, C. Mas-Machuca, H. Griesser, J. P.
Elbers, “A QoT Estimation Method using EGN-assisted Machine Learn-
ing for Network Planning Applications”, In 2021 European Conference
on Optical Communication (ECOC), pp. 1-4, Sep. 2021.

[18] J. Pesic, M. Lonardi, N. Rossi, T. Zami, E. Seve, and Y. Pointurier, “How
uncertainty on the fiber span lengths influences QoT estimation using ML
in WDM networks”, In Optical Fiber Communication Conference and
Exhibition (OFC), 2020.

[19] J. Müller, T. Fehenberger, S. K. Patri, K. Kaeval, H. Griesser, M. Tikas,
J. P. Elbers, “Estimating Quality of Transmission in a Live Production
Network using Machine Learning”, In Optical Fiber Communication
Conference and Exhibition (OFC), pp. 1-3, 2021.

[20] I. Khan, M. Bilal, V. Curri, “Assessment of cross-train machine learn-
ing techniques for QoT-estimation in agnostic optical networks”, OSA
Continuum, Vol. 3, No. 10, pp. 2690-2706, 2020.

[21] M. Martin, “On-line support vector machine regression”, In European
Conference on Machine Learning, pp. 282-294, Aug. 2002.

[22] Y. Song, J. Liang, J. Lu, X. Zhao, “An efficient instance selection
algorithm for k nearest neighbor regression”, Neurocomputing, Vol. 251,
pp. 26-34, 2017.
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