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Abstract

According to the Taylor-Effect the autocorrelations of absolute financial returns are higher
than the ones of squared returns. In this work, we analyze this empirical property for
three different asymmetric stochastic volatility models, with short and/or long memory.
Specially, we investigate how the Taylor-Effect relates to the most important model char-
acteristics: its asymmetry and its capacity to generate volatility persistence and kurtosis.
Finally, we realize Monte Carlo experiments to infer about possible biases of the sample
Taylor-Effect and fit the models to the return series of the Dow Jones.
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1 Introduction

Taylor (1986), Granger et al. (1999), and Dacorogna et al. (2001) have shown, among others,

that the absolute autocorrelations of financial return series are usually higher than the ones

of squared observations. This phenomena is known as Taylor-Effect, first defined by Granger

and Ding (1995). Recently, He and Teäsvirta (1999), Malmsten and Teräsvirta (2004) and

Mora-Gálan et al. (2004) concluded that the GARCH, EGARCH, and the symmetric autore-

gressive stochastic volatility model (ARSV(1)) have difficulties in generating the Taylor-Effect,

specially if the implied kurtosis is not big enough.

The aim of this paper is threefold: First, we relate the sign of asymmetry to the Taylor-

Effect in the context of stochastic volatility. Second, we analyze the influence of volatility

persistence and kurtosis on the Taylor-Effect and, finally, we perform Monte Carlo exper-

iments in order to see if this empirical property is a sampling phenomena caused by the

existence of biases in the sample autocorrelations.

The paper is organized as follows: In the next section, we present the models and derive

their autocorrelation structure. We run Monte Carlo experiments in Section 3. In Section 4,

we report the estimation results and, in Section 5, we conclude.
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2 Stochastic Volatility Models and the Taylor-Effect

In this section, we review first the two factor long memory stochastic volatility model (2FLMSV)

of Veiga (2006). The objective of the first factor is to capture persistence in volatility and

is similar in its spirit to the volatility process of Breidt et al. (1998). The second factor

accommodates the short run dynamics and helps generating extra kurtosis. Formally,

yt = εtσ exp

(

h1t + h2t

2

)

(1)

h1t = φh1t−1 + ηt (2)

h2t = (1 − L)−dζt. (3)

In equation (1), σ denotes a scale parameter, σ2
t is the conditional variance of yt, εt is

NID(0, 1), and ηt and ζt are NID(0, σ2
η) and NID(0, σ2

ζ ), respectively. Veiga (2006) as-

sumed additionally that (εt, ζt+1)
′ follows the bivariate normal distribution

(

εt

ζt+1

)

∼ NID

((

0

0

)

,

(

1 δσζ

δσζ σ2
ζ

))

, (4)

where δ, the correlation between εt and ζt+1, induces correlation between returns and changes

in volatility, (see Taylor, 1994; Harvey and Shephard, 1996). We relate the asymmetry to the

long memory volatility factor due to the results found in Durham (2006) and Bollerslev et al.

(2006). They evidenced for daily and high frequency data, respectively, that the correlation

with the persistent volatility factor was large and negative and the correlation with the short-

run volatility factor was small and positive.

As suggested by Ruiz and Veiga (2006), equations (1) and (4) together with

(1 − φ1)(1 − L)dht = ζt (5)

define the asymmetric extension of the LMSV specification of Breidt et al. (1998). We call

it the ARLMSV(1) model. On the other hand, the equations (1) and (2) together with

the hypothesis that (εt, ηt+1)
′ follows a bivariate normal distribution similar to equation (4)

specifies the asymmetric ARSV(1) model.

Although the series of returns is a martingale difference and, consequently, an uncorre-

lated sequence, it is not independent. Next, we provide the expressions of the first order

autocorrelations of the absolute (c = 1) and squared returns (c = 2) for the 2FLMSV and

the ARLMSV(1) models. We simplify the analysis by considering first order autocorrela-

tions throughout. Observe that the analogous for the ARSV(1) model can be obtained by

restricting the following expressions accordingly. For the 2FLMSV model (equations (1)-(4))

we obtain that

corr(|yt|
c, |yt+1|

c) =

exp
(

c2

4

(

σ2
h1

ρh1
(1) + σ2

h2
φ
)

)

(

1 + δcσc
ζ

(

4
kc

)
c−2
2

)

− 1

kc exp
(

c2

4 σ2
h1 + σ2

h2

)

− 1
, (6)
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where kc = Γ(c+0.5)Γ(0.5)

[Γ(0.5(c+1))]2
, ρh1

(1) = Γ(1−d)Γ(1+d)
Γ(d)Γ(2−d) , and σ2

ζ = Γ(1−2d)
Γ(1−d) (Γ(.) denotes the gamma

function). Moreover, the excess kurtosis of yt is given by EK = 3[exp(σ2
h1

+ σ2
h2

) − 1], (see

Veiga, 2006).

Similarly, we obtain for the ARLMSV(1) model that

corr(|yt|
c, |yt+1|

c) =

exp
(

c2

4 σ2
hρh(1)

)

(

1 + δcσc
ζ

(

4
Kc

)
c−2
2

)

− 1

Kc exp( c2

4 σ2
h) − 1

, (7)

where σ2
h = σ2

ζ
Γ(1−2d)

[Γ(1−d)]2
· F (1,1+d;1−d; φ1)

(1+φ1) (F (., .; .; .) denotes the hypergeometric function) and

ρh(1), the autocorrelation of order 1 of ht, is equal to d
1−d

·F (1,d+1;1−d+1;φ1)+F (1,d−1;1−d−1;φ1)−1
(1−φ1)F (1,1+d;1−d;φ1) .

Finally, the excess kurtosis of yt was shown to be equal to 3
[

exp(σ2
h) − 1

]

, (see Ruiz and Veiga,

2006).
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Figure 1: Relationship between the Taylor-Effect and δ, the parameter of asymmetry.

Figure 1 shows the relationship between the Taylor-Effect and δ, the parameter that cap-

tures the correlation between the volatility factors and the return process. We see that the

models are only able to generate the Taylor-Effect when the correlation is positive. More-

over, it seems to exist a positive relationship between the parameters that induce volatility

persistence (d, φ, and φ1) and the Taylor-Effect. In particular for δ < 0, the higher the

values of these parameters the less negative is the difference between corr(|yt|, |yt+1|) and

corr(y2
t , y

2
t+1). This is more evident in the ARLMSV(1) and 2FLMSV models.

Malmsten and Teräsvirta (2004) and Mora-Gálan et al. (2004) showed that if the kur-

tosis of the returns is relatively small, neither the EGARCH nor the ARSV(1) are able to

reproduce the Taylor-Effect. Table 1 reports the kurtosis for all specifications. The kurtosis

of yt ranges from 3.16 to 6.71 for M1 and M2 and it increases substantially for the third

specification of the ARSV(1) model. Since we observe that an increase of φ leads to a less

negative difference between the autocorrelations of the absolute and squared observations for

the ARLMSV(1) model, specially when δ < 0, we have considered additionally the values

{φ, d, σ2
ζ , δ} = {0.5, 0.49, 0.05,−0.8}. This specification produces a Taylor-Effect of 0.0274

and a kurtosis of 71.14. This allows us to highlight that if Ky is ”unrealistic” high, it is

possible to annulate the effect of negative δ’s and reproduce the Taylor-Effect. The same

happens in the 2FLMSV model.
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Models ARSV(1) ARLMSV(1) 2FLMSV

M1 3.16 3.18 3.33

M2 3.90 6.71 4.12

M3 37.0 8.17 7.15

Table 1: Kurtosis generated by the models.

3 Finite Sample Properties

So far we have seen that the three stochastic volatility models do not always generate the

Taylor Effect. Harvey and Streibel (1998), Pérez and Ruiz (2003), and Mora-Gálan et al.

(2004) showed for symmetric stochastic volatility models that the sample autocorrelations

are negative biased and that the biases of the sample autocorrelations of squared returns are

higher than the ones of absolute returns. Hence, it is possible to observe the Taylor-Effect

empirically even if it does not exist in the population and viceversa.

T=500 T=1000 T=5000

{φ1, σ2

η , δ} T.E. MC.T.E. R.B. S.D. MC.T.E R.B. S.D. MC.T.E R.B. S.D.

{0.1,0.05,-0.8} -0.21 -0.006 -0.97 0.02 -0.007 -0.97 0.02 -0.008 -0.96 0.01

{0.1, 0.05, −0.2} -0.05 0.0001 -1.00 0.02 -0.0007 -0.99 0.02 -0.0005 -0.99 0.01

{0.1, 0.05, 0.0} -0.0002 0.0006 -4.00 0.02 -0.0002 0.00 0.02 -0.00002 0.90 0.01

{0.1, 0.05, 0.2} 0.05 0.0003 -0.99 0.02 -0.0008 -1.02 0.02 -0.0004 -1.01 0.01

{0.1, 0.05, 0.8} 0.17 -0.006 -1.04 0.02 -0.007 -1.04 0.02 -0.007 -1.04 0.01

{0.9, 0.05, −0.8} -0.19 0.004 -1.02 0.04 0.002 -1.01 0.03 -0.0002 -1.00 0.02

{0.9, 0.05, −0.2} -0.05 -0.0001 -1.00 0.03 -0.001 -0.98 0.03 -0.001 -0.98 0.01

{0.9, 0.05, 0.0} -0.002 -0.0001 -0.95 0.03 -0.001 -0.50 0.03 -0.001 -0.50 0.01

{0.9, 0.05, 0.2} 0.04 0.0001 -1.00 0.03 -0.001 -1.03 0.03 -0.002 -1.05 0.01

{0.9, 0.05, 0.8} 0.16 0.005 -0.97 0.04 0.001 -0.99 0.03 -0.001 -1.01 0.02

{0.99, 0.05, −0.8} -0.02 0.12 -7.00 0.07 0.15 -8.50 0.07 0.18 -10.0 0.07

{0.99, 0.05, −0.2} 0.11 0.09 -0.18 0.07 0.11 0.00 0.07 0.13 0.18 0.06

{0.99, 0.05, 0.0} 0.14 0.08 -0.43 0.07 0.10 -0.29 0.06 0.13 -0.07 0.06

{0.99, 0.05, 0.2} 0.16 0.09 -0.44 0.07 0.11 -0.31 0.06 0.14 -0.13 0.06

{0.99, 0.05, 0.8} 0.23 0.13 -0.43 0.08 0.15 -0.35 0.07 0.18 -0.22 0.06

Table 2: Monte Carlo finite sample Taylor effect (MC.T.E), relative biases (R.B.), Monte Carlo standard deviations

(S.D.), Taylor-Effect (T.E.) in ARSV(1) models. T is the sample size.

In order to investigate if this also occurs in the context of asymmetry, we run several

Monte Carlo experiments. All results are based on 1000 replicates of the models. We

have selected fourteen cases for each model and in all cases we have imposed a scale pa-

rameter, σ, of one. The results are presented in Tables 2-4. The first conclusion is that

the biases exist and are of big magnitude. Second, the models have difficulties to gener-

ate the Taylor-Effect even when it is observed in the population. This happens for the

parametrizations {0.1, 0.05, 0.2} and {0.1, 0.05, 0.8} in the ARSV(1) model, for the parame-

trizations {0.1, 0.2, 0.05, 0.2} and {0.1, 0.49, 0.05,−0.2} in the ARLMSV(1) model, and for

{0.1, 0.2, 0.05, 0.05, 0.2} and {0.1, 0.49, 0.05, 0.05, 0.2} in the 2FLMSV model. Third and less

frequent, the Taylor-Effect seems to be a sampling consequence of the estimation biases of

the sample autocorrelations. This occurs for {0.99, 0.05,−0.8} in the ARSV(1) model and

for {0.9, 0.2, 0.05,−0.8} in the ARLMSV(1) model. Note that these parametrizations have

a very negative asymmetry in common that has not been reported so far in the literature.

In particular, Sandmann and Koopman (1998) and Yu (2005), for the asymmetric ARSV(1)

model, estimated values of δ that ranged between -0.32 till -0.48. Considering the 2FLMSV

model, the same phenomena is only observed for the relatively small sample size T=1000.
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T=500 T=1000 T=5000

{φ1, d, σ2

ζ , δ} T.E. MC.T.E. R.B. S.D. MC.T.E R.B. S.D. MC.T.E R.B. S.D.

{0.1, 0.2, 0.05, −0.8} -0.21 -0.0009 -1.00 0.02 -0.0009 -1.00 0.02 -0.0005 -1.00 0.01

{0.1, 0.2, 0.05, −0.2} -0.05 -0.0008 -0.98 0.02 -0.0008 -0.98 0.02 -0.0003 -0.99 0.01

{0.1, 0.2, 0.05, 0.0} -0.01 -0.0007 -0.93 0.02 -0.0008 -0.92 0.02 -0.0003 -0.97 0.01

{0.1, 0.2, 0.05, 0.2} 0.05 -0.0007 -1.01 0.02 -0.0008 -1.02 0.02 -0.0003 -1.01 0.01

{0.1, 0.2, 0.05, 0.8} 0.17 -0.0008 -1.00 0.02 -0.0009 -1.01 0.02 -0.0004 -1.00 0.01

{0.9, 0.2, 0.05, −0.8} -0.13 0.002 -1.02 0.03 0.003 -1.02 0.03 -0.003 -0.98 0.01

{0.9, 0.2, 0.05, −0.2} -0.01 -0.002 -0.80 0.03 -0.003 -0.70 0.02 -0.003 -0.70 0.01

{0.9, 0.2, 0.05, 0.0} 0.03 -0.002 -1.07 0.03 -0.003 -1.10 0.02 -0.003 -1.10 0.01

{0.9, 0.2, 0.05, 0.2} 0.06 -0.002 -1.03 0.03 -0.003 -1.05 0.02 -0.003 -1.05 0.01

{0.9, 0.2, 0.05, 0.8} 0.16 0.002 -0.99 0.03 0.001 -0.99 0.03 0.001 -0.99 0.02

{0.1, 0.49, 0.05, −0.8} -0.11 -0.002 -0.98 0.03 -0.002 -0.98 0.02 -0.004 -0.96 0.01

{0.1, 0.49, 0.05, −0.2} 0.01 -0.002 -1.20 0.03 -0.003 -1.30 0.02 -0.003 -1.30 0.01

{0.1, 0.49, 0.05, 0.0} 0.04 -0.002 -1.05 0.03 -0.003 -1.08 0.02 -0.003 -1.08 0.01

{0.1, 0.49, 0.05, 0.2} 0.08 -0.002 -1.03 0.03 -0.003 -1.04 0.02 -0.003 -1.04 0.01

{0.1, 0.49, 0.05, 0.8} 0.17 -0.002 -1.12 0.03 -0.003 -1.02 0.02 -0.003 -1.02 0.01

Table 3: Monte Carlo finite sample Taylor effect (MC.T.E), relative biases (R.B.), Monte Carlo standard deviations

(S.D.), Taylor effect (T.E.) in ARLMSV(1) models. T is the sample size.

T=500 T=1000 T=5000

{φ1, d, σ2

ζ , σ2

η, δ} T.E. MC.T.E. R.B. S.D. MC.T.E R.B. S.D. MC.T.E R.B. S.D.

{0.1, 0.2, 0.05, 0.05, −0.8} -0.20 -0.002 -0.99 0.02 0.0005 -1.00 0.02 -0.001 -1.00 0.01

{0.1, 0.2, 0.05, 0.05, −0.2} -0.05 -0.002 -0.96 0.02 0.001 -1.02 0.02 -0.001 -0.98 0.01

{0.1, 0.2, 0.05, 0.05, 0.0} -0.0004 -0.002 -4.00 0.02 0.001 -3.50 0.02 -0.0005 0.25 0.01

{0.1, 0.2, 0.05, 0.05, 0.2} 0.04 -0.002 -1.05 0.02 0.001 -0.98 0.02 -0.0005 -1.01 0.01

{0.1, 0.2, 0.05, 0.05, 0.8} 0.17 -0.002 -1.01 0.02 0.0006 -1.00 0.02 -0.0006 -1.00 0.01

{0.9, 0.2, 0.05, 0.05, −0.8} -0.17 -0.002 -0.99 0.03 0.0001 -1.00 0.03 -0.001 -0.99 0.01

{0.9, 0.2, 0.05, 0.05, −0.2} -0.04 -0.002 -0.95 0.03 0.0001 -1.00 0.03 -0.001 -0.98 0.01

{0.9, 0.2, 0.05, 0.05, 0.0} 0.002 -0.002 -2.00 0.03 0.0001 -0.95 0.03 -0.001 -1.50 0.01

{0.9, 0.2, 0.05, 0.05, 0.2} 0.04 -0.002 -1.05 0.03 0.0002 -1.00 0.03 -0.001 -1.03 0.01

{0.9, 0.2, 0.05, 0.05, 0.8} 0.15 -0.002 -1.01 0.03 0.0003 -1.00 0.01 -0.001 -1.01 0.01

{0.1, 0.49, 0.05, 0.05, −0.8} -0.12 -0.002 -0.98 0.03 -0.001 -0.99 0.02 -0.002 -0.98 0.01

{0.1, 0.49, 0.05, 0.05, −0.2} -0.003 -0.002 -0.33 0.03 -0.001 -0.67 0.02 -0.002 -0.33 0.01

{0.1, 0.49, 0.05, 0.05, 0.0} 0.03 -0.002 -1.07 0.03 -0.001 -1.03 0.02 -0.002 -1.07 0.01

{0.1, 0.49, 0.05, 0.05, 0.2} 0.07 -0.002 -1.03 0.03 -0.001 -1.01 0.02 -0.002 -1.03 0.01

{0.1, 0.49, 0.05, 0.05, 0.8} 0.17 -0.001 -1.01 0.03 -0.0005 -1.00 0.02 -0.002 -1.01 0.01

Table 4: Monte Carlo finite sample Taylor effect (MC.T.E), relative biases (R.B.), Monte Carlo standard deviations

(S.D.) and Taylor effect (T.E.) in 2FLMSV models. T is the sample size.

4 An Empirical Example

In this section, we take real data from the Dow Jones Industrial Index in order to determine

whether the models are able to reproduce the empirical properties. The daily returns of the

Dow Jones span the period 3/01/90 to 11/01/07 including a total of 4293 observations. The

kurtosis of this series is 7.71 and the first order autocorrelations of the absolute and squared

observations are 0.15968 and 0.15965, respectively. This implies a very small Taylor-Effect of

0.00003.

We have estimated the models using the Efficient Method of Moments (EMM) of Gallant

and Tauchen (1996). The estimated parameters together with the implied Taylor-Effects are

presented in Table 5. The results show that both the ARSV(1) and the 2FLMSV models are

not able to reproduce the sample Taylor-Effect while the ARLMSV(1) model overestimates

its magnitude.
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φ φ1 d σ2
η σ2

ζ δ σ Estimated T.E.

ARSV(1) 0.98 0.02 -0.35 0.93 -0.04

ARLMSV(1) 0.93 0.40 0.01 -0.27 0.76 0.09

2FLMSV 0.99 0.41 0.01 0.06 -0.66 0.84 -0.11

Table 5: EMM estimates of the parameters. T.E. denotes Taylor-Effect. All parameters are statistical significant.

5 Conclusion

We have shown that not only the sign of asymmetry affects the Taylor-Effect but also the

volatility persistence. In particular, a higher persistence and kurtosis lead to a more positive

Taylor-Effect. These results are consistent with the ones found in the literature for the

symmetric ARSV(1) model. Our Monte Carlo results reenforce the evidence that the models

have difficulties in generating the Taylor-Effect even when it is present in the population.

Finally, only in very special situations (high persistence and kurtosis) it happens that the

Taylor-Effect is a sampling result due to the biases in the sample autocorrelations.
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