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I. Starting point

Sampling Theory deals with the reconstruction of functions (signals) through their
values (samples) on an appropriate sequence of points by means of sampling expansions
involving these values. The most famous result in this direction goes by the name
of Whittaker-Shannon-Kotel’'nikov formula, which allows to reconstruct bandlimited
signals 1i.e., signals containing no frequencies beyond a critical value w, from an
equidistant sequence of samples whose spacing depends on w.

Concerning the fatherhood of the above referred sampling formula there exists some
historical controversy, which involves famous mathematicians as A. L. Cauchy or E.
Borel, among others. The interested reader can find some historical sources in the
references mentioned in the introduction of Section IT. In any case, there is no doubt as
to when did modern sampling theory start out: it was in 1949, when Shannon published
his famous paper Communication in the presence of noise [113]. Although it is almost
certain that Shannon was not the discoverer of “his formula”, his paper triggered an
avalanche of works, which have eventually produced a flourishing body of results on
sampling methods and their applications.

What started as a theorem for reconstructing bandlimited signals from uniform
samples has now become, from a mathematical point of view, a whole branch of ap-
plied mathematics, known as Sampling Theory. This new field turned out to be very
useful in many mathematical areas, such as Approximation Theory, Harmonic Analysis,
Theory of Entire Functions, Theory of Distributions, and Stochastic Processes, among
others. The efforts in extending Shannon’s fundamental result point in various direc-
tions: nonuniform samples, other discrete data taken from the signal, multidimensional
signals, and more. This, together with the technological impact of sampling in Com-
munication Theory and Signal Processing, can provide a clearer idea of the importance
this topic has nowadays.

As a consequence, a tremendous amount of material can be gathered under the title
Sampling Theory, and therefore, any survey in this topic, in particular this one, must
necessarily be summarized. In answer to questions about the title of these notes, we
have chosen the expression “brief walk” to indicate a personal choice of summarizing an
introduction to Sampling Theory. The main aim in writing this paper is to serve as an
introduction to Sampling Theory for the interested non-specialist reader. Despite the



introductory level, some hints and motivations are given on more advanced problems
in Sampling Theory. The presentation of the work is self-contained and mostly elemen-
tary. The only prerequisites are a good understanding of the fundamentals of Hilbert
spaces and Harmonic Analysis, although a mastery on those theories is by no means
required. We have stressed motivations and ideas at the expense of a formal math-
ematical presentation. As a result, the reader will not find the customary sequences
of definitions, theorems and corollaries, although the author has striven to keep the
mathematical rigor in all arguments.

A few words about the structure of this work are in order. In Section II a sur-
vey about orthogonal sampling formulas is given. The classical Whittaker-Shannon-
Kotel’'nikov one is the leitmotiv to introduce a general theory for orthogonal sampling
formulas in the framework of orthonormal bases in a Hilbert space. Most of this section
stems from the reference [48]. The procedure, which is illustrated with a number of ex-
amples, closely parallels the theory of orthonormal bases in a Hilbert space and allows
a quick immersion into orthogonal sampling results. Section III is devoted to a deeper
study of the spaces of classical bandlimited functions, i.e., the classical Paley-Wiener
spaces. It includes sampling formulas which use other types of samples, like derivatives
or the Hilbert transform of a given signal, an idea already proposed in Shannon’s pa-
per. We also deal, at an introductory level, with nonuniform sampling involving Riesz
bases or frames. For the sake of completeness, we also include an introductory theory
of these mathematical concepts. In Section IV, a flavour on sampling bandlimited sta-
tionary stochastic processes is given from an abstract point of view. Finally, Section
V covers a rapid overview on important sampling topics not included or mentioned in
previous sections. They are accompanied with a suitable list of references for further
reading. The main aim of this closing section is to address the interested reader to the
appropriate references to be acquainted with more advanced topics on sampling.

Finally, most of the results stated throughout the work are well-known, and the
author only claims for originality in the way of setting them out. He will be satisfied if
this contributes to make Sampling Theory better known to the scientific community.

II. Orthogonal Sampling Formulas

In 1949 Claude Shannon [113] published a remarkable result:

If a signal f(t) (with finite energy) contains no frequencies higher than w cycles
per second, then f(t) is completely determined by its values f(n/2w) at a discrete set
of points with spacing 1/2w, and can be reconstructed from these values by the formula

f= 3 (L) smrut o), <1>

2w/ 72wt —n)

In engineering-mathematical terminology, the signal f is bandlimited to [—27w, 2mw),
meaning that f(¢) contains no frequencies beyond w cycles per second. Equivalently,



its Fourier transform F' is zero outside this interval:

== [ ™ @), 2)
\/ﬂ —2mw
The engineering principle underlying (1) is that all the information contained in
f(t) is stored in its samples {f(n/2w)}. The cut-off frequency determines the so-called
Nyquist rate, the minimum rate at which the signal needs to be sampled in order to
recover it at all intermediate times ¢. In the case above, 2w = 47w/27 is the sampling
frequency and 1/2w is the sampling period. This rate is named after the engineer H.
Nyquist, who was the first to point out its importance in connection with telegraph
transmission [92].
The sampling functions used in the reconstruction (1) are

sin (2wt — n)

Snlt) = m(2wt — n)

They satisfy the interpolatory property Sp(tx) = 0p i at ty = ﬁ, k € Z, where oy

equals 1 ifn =k, and 0 if n # k. A series as in (1) is known as a cardinal series because
the sampling functions involve the cardinal sine function (or sinc function)

sin 7t if ¢ 0
sinc(t) = {1 mo ! 7_é ’
ift =0.

These series owe their name to J. M. Whittaker [129], a reference cited by Shannon in
[113]. To be precise, J. M. Whittaker’s work was a refinement of his father’s, the eminent
British mathematician E. T. Whittaker [128]. However, it is not clear whether or not
they were the first mathematicians to introduce these kinds of expansions. Another
famous mathematicians like E. Borel, A. L. Cauchy, W. L. Ferrar or K. Ogura are
attributed its fatherhood. Some interesting historical notes concerning this controversy
can be found in [28, 63, 64, 74, 135]. See also the master references [19, 33, 47, 93].

The Shannon sampling theorem provides the theoretical foundation for modern
pulse code modulation communication systems, which were introduced, independently,
by V. Kotel’'nikov [72] in 1933 (an English translation from the original Russian manu-
script can be found in [14]) and by Shannon in 1949. This sampling theorem is presently
known in the mathematical literature as the Whittaker-Shannon-Kotel’nikov Theorem
or WSK sampling theorem.

In general, the problem of sampling and reconstruction can be stated as follows:
Given a set H of functions defined on a common domain (2, is there a discrete set
D = {t,} C Q such that every f € H is uniquely determined by its values on D? And
if this is the case, how can we recover such a function? Moreover, is there a sampling
series of the form

F(t) = F(tn)Sn(t) (3)

4



valid for every f in H, where the convergence of the series is at least absolute and
uniform on closed bounded intervals?

In many cases of practical interest, the set H is related to some integral transform
as in (2), and the sampling functions satisfy an interpolatory property. All this leads
us to propose a general method to obtain some sampling theorems in a unified way. In
Section A we obtain orthogonal sampling theorems by following these steps:

1. Take a set of functions {S,(¢)} interpolating at a sequence of points {¢,}.
2. Choose an orthonormal basis for an L? space.

3. Define an integral kernel involving {Sy,(¢)} and the orthonormal basis. Consider the
corresponding integral transform in the L? space.

4. Endow the range space of this integral transform with a norm which provides an
isometric isomorphism between the range space and the L? space via the integral
transform.

5. Thus, any Fourier expansion in the L? space is transformed into a Fourier expansion
in the range space whose coefficients are the samples of the corresponding function,
computed at the sequence {t,}.

6. Convergence in this norm of the range space implies pointwise convergence and, as
a consequence, we obtain a sampling expansion which holds for all functions in the
range space. The idea underlying the whole procedure is borrowed from Hardy [61],
who first noticed that (1) is an orthogonal expansion.

This methodology is put to use in Section B, where several well-known sampling
formulas are derived in this way. Thus the main features of our approach are the
following:

I. The fact of placing the problem in a functional framework, common to many
diverse situations, allows us to introduce Sampling Theory through the well-
developed theory of orthonormal bases in a Hilbert space. A number of well-known
sampling formulas are obtained in this unified way.

II. The functional setting we have chosen only permits us, in principle, to derive
orthogonal sampling expansions. However, it can be enlarged to more general
settings including Riesz bases or frames as will be pointed out in Section ITL.E.1.

A. A unified approach

We begin this section with a brief reminder of orthonormal bases in a separable Hilbert
space Hj i.e., a Hilbert space containing a countably dense set. This well-known con-
cept will be a basic tool along this section, and it will allow us to draw nontrivial
consequences in sampling.



An orthonormal basis for H is a complete and orthonormal sequence {e,}5>, in H, i.e.,
(en,em) = On,m (orthonormality) and the zero vector is the only wector orthogonal to
every e (completeness).

Given an orthonormal sequence {e,}52; in H, the following statements are equiva-
lent [91, p. 307]

(1) For every = € H we have the Fourier series expansion

(e}

T = Z<$,6n>€n, (4)

n=1
in the H-norm sense.

(2) For every z and y in H we have

(z,y) = Z(x,en><y,en> : (5)
(3) For every z € H, the Parseval formula

l]|? = ZI z, en)] (6)

holds.

In this section we will deal with L2(I) spaces, i.e.,
LA(I) = {F : I — C measurable and / |F () dz < oo} ,
I

where I is an interval in ]R bounded or not. As usual, the inner product in L2(I) is
given by (F, G) L2 =[,F 7 d:c All these spaces are separable and, consequently,
possess a countable orthonormal ba51s [91, p. 314]. Throughout this section, {¢,(z)}2
will denote an orthonormal basis for a fixed L2(I) space.

Let {Sp}>2; be a sequence of functions S, : @ C R — C, defined for all t € Q,
and let {t,}>° ; be a sequence in Q satisfying conditions C1 and C2:

n=1

Cl. Sp(tx) = andn where d, j denotes the Kronecker delta and a, # 0,

o0
C2. Z 15, (t)|? < oo for each t € Q.



Define the function K (z,t) as
K@,) =Y Sa®)tn@), (2,8) €Tx0 ()

Note that, as a function of z, K (-,t) belongs to L?(I) since {¢y, }°, is an orthonormal
basis for L2(I) as well.

Now, consider K (z,t) as an integral kernel and define on L?(T) the linear integral
transformation which assigns

£(t) = / F(2)K (z,t)dz (8)

to each F € L2(I).

The integral transform (8) is well defined because both F' and K(-,t) belong to
L?(I) and the Cauchy-Schwarz inequality implies that f(t) is defined for each t € .
Also, this transformation is one-to-one, since {K(z,t) = ardr(z)}3°, is a complete
sequence for L2(I), i.e., the only function orthogonal to every K(z,t;) is the zero
function. Actually, if two functions f and g are equal on the sequence {tk } k 1, they
necessarlly 001nc1de on the whole set Q. Indeed, suppose that f(¢t) = [; F I K(z,t)dx
and g(t) = [, G(x)K(z,t)dx; then, f(ty) = g(tx) for every k can be wrltten as

/, F(z) — G(@)]K(, ty)dz = 0,

and this implies F — G = 0 in L?(I). Hence, f(t) = g(t) for each t € Q.
Now, define H as the range of the integral transform (8)

:{f;Q—w\f /F xtde€L2(I)}

endowed with the norm |[f[j3 := [|F|z2(;). Recall that, in a Hilbert space H, the
polarization identity [91, p. 276] allows us to recover the inner product from the norm
by

1
(w.y) = 7z +ul* = llz - yI*}, =yeM,
in the case of a real vector space, or by
1 . . . .
{@,y) = [z + ylI? = llz — yl? +ille + iy|* - ille — iy|®}, =,y €H,

in the case of a complex vector space. Using the polarization identity, we have a first
result



o (H,| - lln) is a Hilbert space, isometrically isomorphic to L?(I). For each f,g € H

(f,9)n = (F, G>L2(I)a (9)
where f(t) = [, F( (z,t)dz and g(t) = [, G( (z,t)dz.

Since an isometric isomorphism transforms orthonormal bases into orthonormal
bases, we derive the following important property for 4 by applying the integral trans-
form (8) to the orthonormal basis {¢,(x)}52

n=1
o {Sn(t)}2, is an orthonormal basis for .

Now, we will see that (#,|| - ||%) is a reproducing kernel Hilbert space, a crucial
step for our sampling purposes. For more details on this topic, see Aronszajn’s seminal
paper [7] or references [64, 109, 132, 135]. We recall that

A Hilbert space H of functions on  is said to be a reproducing kernel Hilbert space,
hereafter RKHS, if all the evaluation functionals Ei(f) := f(t), f € H, are continuous
for each fized t € Q (or equivalently bounded since they are linear).

Then, by the Riesz representation theorem [91, p. 345], for each ¢ € 2 there exists a
unique element k; € H such that f(¢) = (f, k), f € H, where (-,-) is the inner product
in H. Let k(t,s) = (ks, kt) = ks(t) for s,t € Q. Then,

(F(-),k(-y8)) = (f, ks) = f(s), foreveryse Q. (10)

The function k(t, s) is called the reproducing kernel of H. Equivalently, a RKHS can
be defined through the function k(¢, s) instead of the continuity of the evaluation func-
tionals. Namely,

A functional Hilbert space H is a RKHS if there exists a function k : Q@ x Q — C such
that for each fized s € Q, the function k(-,s) belongs to H, and the reproducing property
(10) holds for every f € H and s € Q.

In this case, the continuity of E; follows from the Cauchy-Schwarz inequality. The
reproducing property (10) looks somewhat strange since the knowledge of f at a point
s € Q requires the inner product (f, k(-,s)) which involves the whole f. However, this
property has far-reaching consequences from a theoretical point of view as we will see
later on.

One can easily prove that the reproducing kernel in a RKHS is unique. Indeed, let
K'(t, s) be another reproducing kernel for H. For a fixed s € 2, consider k.(t) = k'(¢, ).
Then, for t € Q we have

and hence, k(s,t) = k'(s,t) for all ¢t,s € Q.

oo



Finally, if {e,(¢)}7; is an orthonormal basis for H, then the reproducing kernel can
be expressed as k(t,s) = Y .o, en(t)en(s). Indeed, expanding k; in the orthonormal
basis {e, }52; we have

o0 o0

ky = Z<ktaen>en = Zen(t)ena

and by using (5),
k(t,s) = (ks, k) = Zen 8)en(t (11)

As a consequence of the above discussion about RKHS we obtain

o (H,|l - |l%) is a RKHS whose reproducing kernel is given by

$) =Y Sn(8)Sn(t) = (K (1), K(-8))12(1) (12)
n=1

To prove it, we use the Cauchy-Schwarz inequality in (8), obtaining for each fixed
te)

|E:(F)] = [f O] < |1Fll 2@l K C D)2y = IF I K )22y (13)
for every f € H.

As to the reproducing kernel formula (12), due to (11) we only need to prove the
second equality. To this end, consider

K(t5) = (K(8), K(,8)) ey = /1 K(z,t)K(z,8)dz.

Then, for a fixed s € Q, k'(t, s) is the transform of K(z,s) by (8). Using the isometry
(9) we have

K G ) = (F K@ 8)) gy = / F(2)K (2, 5)de = f(s).

I

The uniqueness of the reproducing kernel leads to the desired result.
It is worth pointing out that inequality (13) has important consequences for the
convergence in H. More precisely

e Convergence in the norm ||-|| implies pointwise convergence and uniform convergence
on subsets of Q where [|[K(-,t)||2(1) = \/k(t,t) is bounded.

At this point we have all the ingredients to obtain a sampling formula for all the
functions in H. Indeed, expanding an arbitrary function f € H in the orthonormal
basis {Sn(¢)}52,, we have



where the convergence is in the H-norm sense and hence pointwise in 2. Taking into
account the isometry between H and L2(I), we have that

<f’ S”>H = <Fa ¢n>L2(I) = M

an
for each n € N. Hence, we obtain the following sampling formula for ‘H

e Each function f in H can be recovered from its samples at the sequence {tn}2,
through the formula

£ =3 £t >0 (14)
n=1 n

The convergence of the series in (14) is absolute, and uniform on subsets of Q where
1K)l z2y = Vk(t, 1) is bounded.

Note that an orthonormal basis is an unconditional basis in the sense that, due to
Parseval’s identity (6), any of its reorderings is again an orthonormal basis. Therefore,
the sampling series (14) is pointwise unconditionally convergent for each ¢t €  and
hence, absolutely convergent. The uniform convergence follows from inequality (13).

Note that we could also have obtained the formula (14) by applying the integral
transform (8) to the Fourier series expansion F(z) = > 7" | (F, ¢n)2(1)dn(z) of a func-
tion F in L2(I).

A comment about the functional space # is in order. Any f € H can be described
using the sequence of its values {f(t,)}52; by means of formula (14). In particular,
the inner product and the norm in H can be expressed as

00 —_— o )
o= 1ol gy 5
n=1 " n=1 n

Some properties for the functional space H can be easily obtained by using the
reproducing property (10). Namely

o In the case when H is a closed subspace of a larger Hilbert space H, the reproducing
formula (10) applied to any f € H gives its orthogonal projection, Py f, onto H, i.e.,

PHf(s):<fak('as)>Ha f€Hand s €. (15)
Indeed, let f = f1 + f2 be the orthogonal decomposition of f € H with f; € H, i.e.,
fl = P’Hf Then,
<fak('as)>H = <f1 + f2ak('as)>H = <f1ak("3)>7-l = fl(s)’

since fa is orthogonal to any k(-, s), s € Q.

10



Next we solve, in an easy way, some extremal problems in a RKHS. We refer the
interested reader to [69, 109, 131] for deeper results.

o Fizingty € 2, E >0 and M € C, we have in H the following relations

max_|f(to)|®> = Ek(to,to), reached for f*(s)= ﬂ:\/EM

IfIP<E Vk(to, to)

and 2 " )
S,to

reached for f*(s)=M )

for 77(s) k(to,to)

min || f||* =

f(to)=M k(to,to)’

In fact, both results come out from the inequality

[F(8)12 = (£, k(. 8)) 2 < IfIPk(s, ), s€Q,
where we have used the reproducing property and the Cauchy-Schwarz inequality.

We close this section with two approaches to orthogonal sampling formulas which
are readily seen to be related with the one proposed in this section:

(a) Note that given an integral kernel K (z,t), conditions C1 and C2 can be read as the
existence of a sequence {t,}°° ; C Q, such that {K(z,t,)}2  is an orthogonal basis for
L?(I). This was the way originally suggested by Kramer in [73] to obtain orthogonal
sampling theorems. Kramer’s result reads as follows

o Let K(z,t) be a kernel belonging to L%(I), I being an interval of the real line, for
each fized t € Q C R. Assume that there ezists a sequence of real numbers {t, }nez
such that {K(z,t,)}nez is a complete orthogonal sequence of functions of L?(I). Then
for any f of the form

£(t) = / F(2)K (z,1) dz,

I
where F € L?(I), we have

f(t) = Z f(tn)sn(t)a (16)
with
[; K(z, t)K (z,t,) dz
f] |K(xatn)|2 dz

The series (16) converges absolutely and uniformly wherever ||K(-,t)||z2(r) is bounded.
One of the richest sources of Kramer kernels is in the subject of self-adjoint boundary
value problems. See [41, 64, 142, 134, 135] for more details and references.
By using orthonormal bases in £? spaces to define the kernel (7), one can easily
arrive to sampling expansions associated with discrete transforms of the type

f) =Y F()K(n,t), {F(n)}ef.

Sn(t) =

11



This leads to the discrete version of Kramer’s result. See [6, 49] for a more specific
account of the theory and examples.

(b) Another similar formulation is the one given in [90, 109]:

o Let H be a RKHS of functions defined on a subset Q0 of R with reproducing kernel k.
Assume there exists a sequence {t,}5° C Q such that {k(-,t,)}>; is an orthogonal
basis for H. Then, any f € H can be expanded as

7(t) = Zf(tn)M

—~ k(tn,tn)’

with convergence absolute and uniform on subsets of Q2 where k(t,t) is bounded.

o
This result follows from the expansion of f in the orthonormal basis {%} .
nyin n=

Note that, in our construction,
k(t,tn) = (K (1), K("tn»L?(I) = @nSn(t),

and k(tn,t,) = |an|?. We will use this approach in the Finite Sampling Section II.C.

B. Putting to work the theory

Our main aim in this section is to derive some of the well-known sampling formulas by
following the method exposed in the previous section. All the examples in this section
are based on the knowledge of specific orthonormal bases for some L2-spaces (see [91,
pp- 322-329] and [136] for an account of bases and integral transforms, respectively).

1. Classical bandlimited functions

The set of functions {€~""* //27 }pcz is an orthonormal basis for L2[—, 7r]. We consider
the Fourier integral kernel K (z,t) = €** /+/2m. For a fixed t € R, we have

itz 1 X . ) ine
€ - < ezta: ema:> 2 €
o o ’ L2[—m,m) o

<~ sin7(t —n) en®
B Z m(t—n) V2or

n=—oo

in L*[—m, 7).
n=—oo
. sinm(t — n) . .
Therefore, taking Sy, (t) = t—n) and t, = n, n € Z, we obtain the WSK sampling
w(t—mn
theorem
o Any function of the form

1 " ,
F(z)e'®dz, with F € L*[—m, 7],

f(t):\/T_w o

12



e., bandlimited to [—m, x| in the classical sense, can be recovered from its samples at
the integers by means of the cardinal series

=Y fn S”“Z_n)”). (17)

n=—oo
The series converges absolutely, and uniformly on R because, in this case,
||K(‘;t)||%z[,mr] =1 forall teR.

For the moment, we denote as H, the corresponding H space. We will come back to
this space, the so-called Paley-Wiener space, in a subsequent section. The reproducing
kernel in ‘H, space is given by

_ sin7(t — s)
L2[=mm] = m(t — )

<~ sin7(t —n)sin7(s — n)
B Z n(t—n) w(s—n) ’

1 .
_<eztz’e

k’/r(t’ 8) = 2ﬂ_

isz)

n=—oo

where we have used (12) and (11) respectively.

Actually, the sampling points need not be taken at the integers in order to recover
functions in #,. For a fixed real number «a, one can easily check that the sequence of
functions {e #("t®)% /\/27}, 7 is also an orthonormal basis for L?[—m,7]. For a fixed
t € R, we have the expansion

et i sinm(t —n — ) efnte)z
Vera mt—n—a) 2r

sinm(t —n — a)
w(t—n—

o Any function in H, can be recovered from its samples at the integers shifted by a real

constant o by means of the cardinal series

> s+ iitonoe), (18)

in L[, 7.

n=-—oo

Taking S, (t) = and t, = n+ a, n € Z, we obtain that

n=—oo
The above result shows that, in regular sampling, the significance relies on the
spacing of the sampling points and not on the sampling points themselves.

Note that {e~"*®/y/27}nc7 is also an orthonormal basis for any L2?[wg — 7, wq + 7],
with wy a fixed real number. We then obtain that

eita: 1 o : einw
_ = it _inx e
\/2—7_[_ - 20 n:§oo<e € >L2[w0—7r,wo+7r} \/2—71_

o0

B Z giwo(t—n) sinm(t —n) e
- m(t—n) V2

ine

in L2[wy — m,wp + 7.

n=—oo

13



As a consequence, the following sampling result for signals with non-symmetrical band
of frequencies with respect to the origin arises
o Any function of the form

1 wo+m

f(t):E B

can be recovered by means of the series

giwa(t—n) ysinm(t —n)
=Y et = (19)

F(z)e'®dx, with F € L?[wy — m,wo + 7],

n=—oo

It is worth pointing out the following result concerning the band of frequencies of a
bandlimited real-valued signal f: if the Fourier transform F' of a real-valued function
f is zero outside an interval, then it must be symmetrical with respect to the origin.
Indeed,

is an even function.

The choice of the interval [—m,n| is arbitrary. The same result applies to any
compact interval [—mo,mo| taking the samples {f(n/o)}nez and replacing t by ot
in the cardinal series (17). Indeed, {e ¥"*/? /\/27G}ncz is an orthonormal basis for
L?[—7o,no]. For a fixed t € R, we have the expansion

eite Z ite 'ma:/a'> einx/a
o c
m 27‘_\/— L?[—7o,mo] o
sinm(ot — n) e¥/7
= Z (ot —m) ) el L*[—7o, ma].
S t—
Therefore, taking S,(t) = \/Eim(w(: )n), th = E, n € Z and a, = /o we obtain
m(ot—n o

that

o Any function of the form
o

f(t)z\/iz_ﬁ [

can be expanded as the cardinal series

Z f n sin (ot — ) (20)

F(z)e'®dz, with F € L*[—wo, o],

(ot —n)
n=—oo
We have the same convergence properties like in (17) since || K(-, %)/, rome] = O
Moreover, the reproducing kernel for the corresponding space Hyqs is
. ‘_
kro(t,s) = sinmo(t —s) = osinco(t — s). (21)

w(t —s)
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2. Bandlimited functions in the fractional Fourier transform sense

The sequence {Le*”m’/ "} is an orthonormal basis for L?[—0,0]. It is easy
V2o neZ

to prove that {Le*”m’/ "ei““’2} , with @ € R, is also an orthonormal basis for
V20 neL

L?[—0,0]. Let a and b be two nonzero real constants. For notational ease we denote

2ab = —. We will see later the meaning of these constants. Direct calculations show
c
that the expansion

e imne/o imne/o
—ia(t2+x2—2bxt) _ —ia(t24+z2—2bzt) © / —iaz? € / —iaz?
‘ - ‘ Voo V2o
n=—00 o L2[~0,0] o
e __ nhmc imne /o
c( ol ) € / 71.(1{172

I
N
qQ
m\
L
M)
©
q| B

- psin Z(t — BE€
holds in the L2[—o,0] sense. Set S,(t) = \/206_“”2# and t, = @,
o

2t - )
n € Z. Since Sy(tx) = 2oe—iath On k>, We obtain the result
e For any function f of the form
a- .
ft) = / F(a:)efw(tu“’z*zbwt)dm, with F € L*[—0,0], (22)
—0
the following sampling formula
a2 smg(t—w)
Z f za(t —t g(ct — wcr) (23)
C g

n—=—oo

holds.
Here, the reproducing kernel obtained from (12) is

fia(t2fs2) sin %(t — S)

2(t—s)

Since kq(t,t) = 20, the series in (23) converges uniformly in R .

ks (t,s) = 20€

Our next purpose is to see how formula (22) and the fractional Fourier transform
(FRFT) are related. Recall that the FRFT with angle o ¢ {0, 7} of a function f(t) is

defined as
Falfl@ / F(O)Ka(e,t) dt

where, apart from a normalization constant, the integral kernel K, (z,t) is given by

cotar (42, 2\ _at
ezcoza(t +z?)—igr . (24)
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For a = 0 the FRFT is defined by Fy[f] () = f(x), and for a = 7 by F [f](z) =
f(—z). Whenever a = 7/2, the kernel (24) coincides with the Fourier kernel. Other-
wise, (24) can be rewritten as

eia(a)[t2 +z2—-2b(a)zt]

I

t
where a(a) = % and b(a) = seca. The inversion formula of the FRFT (see [138])

is given by
f(t) = %2_% / Fa@) Ko, t)de.

Consequently, formula (23) is just the sampling expansion for a function bandlimited
. 1 .
to [—o,0] in the FRFT sense (22). Note that 2a(a)b(a) = ——, and ¢ = sina in the
sina
sampling expansion (23).

The fractional Fourier transform has many applications in several areas including
quantum mechanics, optics and signal processing [5, 89, 94, 95]. In particular, the
propagation of light can be viewed as a process of continual fractional Fourier transform.
This allows to pose the FRFT as a tool for analyzing and describing some optical

systems [95]. For the FRFT properties and its relationship to sampling see [130, 138,
139, 140, 141].

3. Finite sine and cosine transforms
In this section we deal with two transforms closely related with the Fourier one.
a. Finite cosine transform

Let us consider the orthogonal basis {cos nz}%  in L?[0, 7]. Note that || cos n:z;||%2[0 ]
equals /2 for n > 1, and 7 for n = 0. For ¢t € R fixed, we expand the function costz
in this basis obtaining

= cos nx cos nT
cost:v:z<costa:,7> —
| cos || / papg x|l cos na|

n=0

sinmt <= (—1)" 2t sin ¢ .12
- — ZW osnz, in L*[0,7].
n=1
in7t —1)" 2tsinnt
Therefore, choosing Sp(t) = 812: , Sp(t) = (7r()tz—_i;1)7r and t, = n, n € NU {0},

we have that

o Any function of the form

f) :/ F(z)costzdr, with F € L*[0,7]
0

16



can be expanded as

o0

f(t) = fo) 22t 4 2 Zf(n)w_

t2—n

n=1

The convergence of the series is absolute and uniform on R since

T  sin2tw

2 —
||K('7t)||L2[0,7r} ) + At

is bounded for all £ € R. The reproducing kernel for the corresponding Hcos space is
given by

i 1 [sinm(t—s) sinm(t+s)
k t = t der = =
cos(t, 8) /0 cos tz cos sx dx 2[ et

1 . .
= ﬁ[t sin ¢t cos s — s cos tmsin s7).
—s

b. Finite sine transform
(o]

2 .
In a similar way, let us consider the orthonormal basis {\/j sin nx} in L2[0, 7).
™ n=1

For a fixed t € R, we have

o0

. 2 . . .
sintr = — E (sintz, sinnx)2(g 5 sinnz
T n=1
> " nsinwt
g sinnz, in L?[0,7].
t2 _ n2

2(-1)"nsinmnt
w(t2 — n?)

o Any function of the form

Taking S, (t) = and t, = n, n € N, we obtain that
g

f(t) :/ F(z)sintzdz, with F € L0,
0

can be expanded as

£(t) = %Zf(n)(—l)"nsinﬂt ‘

t2—n2

The convergence of the series is absolute and uniform on R, since in this case

9 _m sin2tm
I G D z2p0m = 5~ 55

17



is bounded for all ¢ € R. The reproducing kernel for the corresponding Hgi, space is
given by

" 1
ksin(t, s) =/ sintrsinsx dx = 2 [
0

sinm(t—s) sinw(t+ s)
t—s t+s

=g _ 2 [—tcostmsinsm + ssintm cos s .
—s

The cardinal series (17) is absolutely convergent and hence unconditionally conver-
gent. Therefore, it can be written, gathering terms, in the equivalent form

ft) = Smﬂ{ +Z (t_n+%>}.

As a consequence, the sampling expansion associated with the finite cosine transform
(finite sine transform) is nothing more than the cardinal series (17) for an even (odd)
function. Moreover, it is easy to prove that the orthogonal sum

Hr = ,Hsin S Hcos

holds. In fact, using Euler formulas

ite _ —ite ite —itz
sintr = i and costr = $,
23 2
we obtain that Hgn C H, and Heos C Hy as sets, and (f,g)n,,. = %(f, 9)n, for
fy9 € Hgin (the same occurs for f,g € Hcos).- Then, having in mind the reproducing
property (10) and equation (15), for s € R and f € H, we have

f(S) = <f’ kﬂ('vs» (k51n+kc08)( ))Hn

(
= <fa ksin("s»'ﬂsm <f cos('vs)>7'lcos
_fls) = f(=s) | f(s)+ f(=s)
= 9 + 3 .

Using an appropriate normalization one could avoid the factor 1/7.

4. Classical bandlimited functions again

Consider the product Hilbert space H = L2[0,n] x L2[0, 7] endowed with the norm
|F |34 = ||F1||L2 om T+ ||F2||L2 o.x for every F = (F1, F>) € H. The system of functions

{%(cos nz,sinnz) is an orthonormal basis for H. For a fixed ¢ € R we have
™ nez
ad 1
costz,sintz) = costz,sintz), —(cos nz,sinnx cos ne, sinnx
costesinta) = 3 ((conte, sinta), - (cosnasinne) ) )

o0
sm7r t — n 1 .
E (cos nz,sinnz),

 Vrlt—n) VT
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sinm(t —n)

in the H sense. Taklng Sn(t) = m

and t, = n € Z we have that S,(tx) =

/0 . As a consequence

e Any function of the form
™
£(t) = / (Fi(z) costz + Fy(z)sintz}dz, with Fy, Fy € L0, 7]
0

can be expanded as the cardinal series

sm7r sinm(t —n)
Z fn w(t—mn)

n=——oo
The corresponding # space is the space H, in section II.B.1. Indeed, for f € H,
we have
1

ot ° it " it
f(t) \/2_7r/—7r dx—\/T_ﬂ{ _ﬁF(:L')e dm—i—/o F(z)e dx}

1 0
= — {/ F(z)(costx + isintx) dx+/ F(z cost:z:—{—zsmtx)dx}

:/ {\/_[F F(-z )]costw—l—\/—_[F() F(—:r,)]sint:c}d:c

= / )costx + Fa(z)sintz}dz,
where Fy(z) = F[F( z)+ F(—z)] and Fr(z) = \/127[F(x) — F(—)] belong to L2[0, 7.
In particular, taking F; = F» = F € L?[0, 7] we obtain the sampling expansion for
a function f bandlimited to [0, 7] in the sense of the Hartley transform. To be more
precise

e Any function of the form
= / F(z)[costz +sintz]dz, with F € L*[0,x],
0

can be ezpanded as a cardinal series (17).
Recall that the Hartley transform of a function F', defined as

flt)= /000 F(z)[costx + sintz]dz,

was introduced by R. V. L. Hartley, an electric engineer, as a way to overcome what
he considered a drawback of the Fourier transform, namely, representing a real-valued
function F(z) by a complex-valued one

g(t) = /00 F(z)[costx — isintz|dx.

—0o0

For more information about the Hartley transform see, for instance, [136, p. 265].
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5. The v-Bessel-Hankel space

The Fourier-Bessel set {v/zJ,(z\,)}S; is known to be an orthogonal basis for L2[0, 1],
where A, is the nth positive zero of the Bessel function J,(t), v > —1/2 [127, p. 580].
The Bessel function of order v is given by

Ju(t) = 2u1“u+1 +Zn'1—l—v "( )G)%]

Jy, satisfies the Bessel differential equation

t2y” +ty' + (t2 _ I/2)y =0.

Using special function formulas [1, 11.3.29], for a fixed ¢ > 0, we have

ZJ,WtTJ ))\/_J( n), in L%[0,1].

Hence

o The range of the integral transform

1
£(t) = / F(a)Watd,(wt)dz, F e I2)0,1] (25)
0
is a RKHS H, and the sampling expansion
2\/ Andy
=3 10w 26)

holds for f € H,,.
Using a well-known integral [127, p. 134], the reproducing kernel is

buls.) = 220 (07 (6) = sT,11(5) T (0).

Furthermore,

1
1K) 20 = Rt t) = ¢ /0 2], (b2 da
2
= 3 {Lor +a - er} =to6)

t2

as t goes to 0o [127]. As a consequence, the convergence of the series in (26) is absolute
and uniform in any interval [tg, 00) with ¢y > 0.
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Note that the integral kernel in (25) is that of Hankel transform. Recall that the
Hankel transform of a function F' is defined as

£(t) = fooo Fla)Watd,(at)dz, t>0, v>—1/2.

It defines an unitary, i.e., a bijective isometry, operator L?[0,00) — L2[0,00) which
is self-inverse [91, p. 366]. Therefore, functions in H, are those functions in L2]0, c0),
bandlimited to [0, 1] in the Hankel transform sense, and (26) is the associated sampling
formula. See [62] and [136, p. 371] for more details about Hankel transform and its
associated sampling series.

6. The continuous Laguerre transform

The sequence {e ®/2L,(z)}%2, is an orthonormal basis for L2[0,cc), where L, (z) =
Sro(—1)* L (7)a" is the nth Laguerre polynomial. A continuous extension Ly(x) of
the Laguerre polynomials can be found in [135, p. 144]. It is given by

s1n7r sinm(t —n)
ZL Tw(t—n)

Li(z) is a C*°-function that satisfies the Laguerre differential equation
zy'+(1—2)y' +ty =0,

which is the same differential equation satisfied by L,,(z) when ¢ is replaced by n. For
our sampling purposes, the most important feature is that the expansion

o .
e 2Ly (z) = Y %e—w/%n(x)
n=0
holds in L2[0,00). Therefore
e Any function of the form

F(t) = /0 ” F(z)e ®?Ly(z)dz, with F € L0, 00)

can be expanded as the sampling series

Zf s1n7rt—n)‘

(t —n)

In a similar way, one can consider other families of special functions defining in-
tegral transforms and seek the associated sampling expansion. This is the case, for
instance, of the continuous Legendre transform involving the Legendre function, the
finite continuous Jacobi transform involving the Jacobi function or more general ver-
sions of the continuous Laguerre transform considered in this example. See [135, Ch.
4] for a complete discussion of this topic.
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7. The multidimensional WSK theorem

The general theory in Section A can be easily adapted to higher dimensions. For
simplicity we consider the bidimensional case.

The sequence {e e ™ /27} is an orthonormal basis for L?(R), where R denotes
the square [, 7] x [, n]. For a fixed (¢,s) € R?, we have
1 itazeisy — Z Sinﬂ-(t — n) Sinﬂ'(s — m) 1 inz _imy in L2(R) ]

o m(t—n) w(s—m) o €

n,m

sinm(t — n) sinw(s —m)

The functions Sy, (t,s) = and the sequence {tnm = (n,m)},

m(t—n) w(s—m
n, m € Z, satisfy conditions C1 and C2 in Section 2. Therefore

e Any function of the form
1 T T o
f(t,s) = %/ / F(z,y)e'®e®¥dzdy with F € L*(R),

can be recovered by means of the double series

f(t,S) :Zf(nam)

sinm(t — n) sinw(s — m)

m(t—n) w(s—m)

The series converges absolutely, and uniformly on R2.

Similarly, one can get bidimensional versions of sampling formulas like (18) or (19)
by considering orthonormal bases in L?(R) obtained from orthonormal bases in each
separate variable.

Certainly, one can always find a rectangle enclosing the bounded support B of the
bidimensional Fourier transform of a bidimensional bandlimited signal f. Thus, we can
use the bidimensional WSK formula to reconstruct f. However, this is clearly inefficient
from a practical point of view, since we are using more information than strictly needed.
In general, the support of the Fourier transform B will be an irregularly shaped set.
So, obtaining more efficient reconstruction procedures depends largely on the particular
geometry of B. See [64, Ch. 14] for a more specific account.

On the other hand, regular multidimensional sampling corresponds to a cartesian
uniform sampling grid which is used in signal and image processing whenever possible.
However, the practice imposes other sampling grids, like the polar grid used in comput-
erized tomography or the spiral grid used for fast magnetic resonance (see for example
[20, 118]). Consequently, in general, irregular sampling is more suitable than regular
sampling for multidimensional signals.

8. The Mellin-Kramer sampling result

First, we introduce the necessary ingredients to understand the subsequent develop-
ment. They are taken, besides the main result, from reference [24]. A function
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f : Rt — C is called c-recurrent for ¢ € R, if f(z) = 2™ f(e?"x) for all z € R"
where Rt stands for (0, +00). The functional space

er d
Y2 = {f :RY — C; f € Lj,.(R"), c-recurrent, and / ()22 ZE < oo},
- T

is a Hilbert space under the inner product

o = [ 1@

It is known that the sequence {e~*27~%}, ., forms an orthogonal basis for Y,2. The

same occurs for its conjugate sequence. Next, we consider the kernel
K (t,z) =t Czctlo8t = ¢ cRT | zcle™em.
For a fixed t € R™, we have the expansion

Kc(t, (L‘) = Z Sc,k: (t)e_Ck :v_c_ik
keZ

in Y2, where

e2ck k 1 4 —k,\—Cc—iu
Sea(®) = S Kelt, D Eeleb Maee = o= [ ()™ du.
-

For the proofs and more details, see the mentioned reference [24]. Therefore, taken
ty = ¥, k € Z, as sampling points and taking into account that Se x(tm) = gm We
obtain the following exponential sampling result

o If f can be represented in the form

X

f(t):/e F)Ko(t,2) 2% %, teRrt,

o T

for some ¢ € R and some F € Y2, then f can be reconstructed by means of the
exponential sampling

F@&) = D f(eF)Sen(t).

k=—o00
This sampling result is valid for Mellin-bandlimited functions, i.e., functions f repre-
sented as

1
f(t) = %/_IM[f](c+iu)t_°_i“du, teRt.

Recall that Mellin transform is defined by

M(f](s) = /Ooof(u) uldu, s=c+iteC
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whenever the integral exists. Again, we address the interested reader to [24] to complete
the details. An application of exponential sampling in optics can be found in [55].

Finally we can add that, generally speaking, one can easily construct spaces H as
in Section II.A having a sampling property at a sequence {¢,}32; as in formula (14).
To this end, let t1,t2,--- be distinct real numbers such that Y, 1/|t,|> < co. There
exists an analytic function P(t) with simple zeros at the sequence {¢,}>2 [85, p. 457].
Specifically, the function P(t) is given by the canonical product

1— —)exp(t/t,) if Z\tn| =

t
t
P(t) = .
if Z ta ™! < o0
n=1

(
(l_t_

o
11 )
no:ol n
11 )
n=1 n
whenever t,, # 0 for all n € N, or by

o t o
t]Ja - —)exp(t/tn) if D el =
n=2 n n=2

= t P
tH(l—a) if ) |tn] Tt < 00
n=2 n=2

in the case when, for instance, t; = 0 (see [132, p. 55] for the details).

P(t) =

P(t .

Taking S, (t) = ; (t) and any orthonormal basis {¢, ()}, for an L?(I) space,
we can follow the steps in Section A in order to construct a RKHS # with the sam-
pling property at the given sequence {¢,}52,. Thus, taking into account the fact that
Sn(tr) = P'(tn)dnk, formula (14) ensures that any function of the form (8) can be

expanded as the Lagrange type interpolation series

P(t)
Z F(tn —tn)P'(ty)

This result was introduced for the first time, in connection with an inverse sampling
problem, in [137].

C. Finite sampling

Consider (Hn, (-,-)#,) an euclidean finite dimensional functional space comprising
functions defined on 2 C R. Let N be its dimension and let {¢1,¥2,...,on} be an
orthonormal basis for . Since in a finite dimensional space every linear functional
is bounded, Hy is a RKHS whose reproducing kernel, given by (11), is

N
= " @i(t)pi(s)
i=1
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One can easily check that if f(t) = Zf\il a;pi(t) € Hn, where a; € C, then

N N N N
(1, 0i®)ei(9)an = O aipi(t), Y @i)pi(s)an = Y aipi(s) = f(s).-
i=1 i=1 i=1 i1

In the case where H is a subspace of a larger Hilbert space H (for instance, when
{¢i}2, is an orthonormal basis for ), by applying property (15), for every f € H we

obtain that
N

<f: kN(‘,3)>’HN = Z(fa‘Pz)‘Pz(s)a (27)
i=1
i.e., its orthogonal projection onto Hy. The reproducing formula for Hy is a useful
tool to prove pointwise convergence of the generalized Fourier expansion Y o, a;p;(t)
whenever it holds (see in this direction reference [126]).
We can derive a finite sampling expansion for #y in the following way. Assume
that there exists a finite sequence of points {s,}Y_; in Q such that {kn(t,s,)}Y_; are
orthogonal in Hpy, i.e.,

<kN(" Sm); kN(" 3n)>7~LN = kN(Sm Sm)dnm .

Then, expanding any function f € Hy in the orthogonal basis {kx (¢, s,)}2_; we obtain
the following finite sampling expansion

Zf ) Fvltoon) (28)

kN s’na sn)

In this context, two examples are of particular interest

1. Trigonometric polynomials

Consider H the space of trigonometric polynomials of degree < N and period 27.
Hy is a subspace of L2[—, 7] endowed with the usual inner product. An orthonormal
basis for H is given by the set of exponential complex {e*!/\/27}IY_ . Therefore,
the reproducing kernel for Hy is

N

1 ; 1
kn(t, s) = o Z et =) = 2_DN(t —5),

™ ™
k=—N

where Dy denotes the N-th Dirichlet kernel defined as
N

: sin(V + 1)t
Dyt = Y o= T2
k=—N 2
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As a consequence of (27), we obtain the following well-known result for f € L2[—, 7]

N

1 o
(Sl D pomm = 3 3 (el
=N

i.e., its N-th Fourier partial sum.

Now we can obtain a sampling formula for the space Hy of the trigonometric

. . . . 2

polynomials of degree < N. To this end, consider the points s, = % € [-m,
n=-—N,---,0,--- ,N. Since

1 sint(m—n) 2N +1

kN(Sm Sn) = 5= Omn
) . ( _ ) )
27 gin ”2%+? 2r
a direct application of the sampling formula (28) gives
N . (2N+1 2
p(t) = 1 Z p( 2mn )sm( 7)) (t— o)
= 1 P )
2N +1 =T \2N +1 sin 5 (t — 5a777)

for every trigonometric polynomial p(t) = Ziv:_ ~ck€*® in Hy. This interpolation
formula, due to Cauchy [34], goes back to 1841 and is related to the finite version of
Shannon’s sampling theorem.

2. Orthogonal polynomials

Another important class of examples is given by finite families of orthogonal polyno-
mials on an interval of the real line. As an illustration, we restrict ourselves to the
particular case of the Legendre polynomials {P,}°° ; defined, for instance, by means of

their Rodrigues formula
1 40

Po(t) = onpl din [(tz - 1)71] :

It is known that they form an orthogonal basis for L?[—1, 1] and that | P, ||? = (n+3)~".
Consider H the finite subspace of L?2[—1,1] spanned by {Py, P\, ..., Px}. For this
space we have that

N
bv(t,s) = 3 Palt) Pa(s) = L A PN OBN) = N (O 0],
n=0

where we have used the Christoffel-Darboux formula for Legendre polynomials. Note

that
N+1

hn(t,t) = =

[Pn11(6) P (t) — Py (t) Py (t)] -
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We seek points {s,}Y  in [-1,1] such that kn(sm,ss) = 0 for m # n, i.e.,

Prnii(sm) _ Pnii(sn)
PN(Sm) N PN(Sn)

In particular we can take for {s,}~_; the N + 1 simple roots of Py in (—1,1). Thus,
we obtain the finite sampling formula

N
Py1(t)
= f(sn) !

(t - Sn)PN+1(5n) ’

for every f(t) = Zﬁ:o cky/ (k + ) Pi(t). Note that this formula is nothing but Lagrange
interpolation formula for the samples {f(s,)}Y_,. In general, we can take as sampling
points {s,}Y_, the N + 1 simple roots of the polynomial Py.1(t) — cPy(t) in (—1,1),
where ¢ € R. The sampling formula in this general case reads

PN+1 t)Pn(sn) — Pn(t)Pn+1(3n)
Zf t— 8n) PN (t)[Py 1 (8n) — ¢Py(sn)]

General results about families of orthogonal polynomials can be found, for instance, in
classical references [110, 121] or in [126]. More examples and applications can be found
in [6, 64, 102].

III. Classical Paley—Wiener spaces revisited

In this section we will extend the important example of the classical bandlimited func-
tions given in section IL.B.1. by digging a little more in the space (H, || - ||, ) and in
the isometry between H, and L2[—m, 7] obtained there.

It is well-known that the Fourier transform  is a unitary operator on L2(R), i.e.,

F:L*(R) — L*(R)
f—FH=7,

is a linear, bijective transform satisfying || f||12x) = || f|| r2(r) for every f € L*(R) [91,

p. 362]. Whenever f or f arein L* (R)N L2 (R), the Fourier or inverse Fourier transform
coincide with the parametric integrals

~

flw) = (t)e ™ dt or f(t) w)e™dw

1 o ]_ oo ~
respectively [91, p. 335]. For functions f, fin L2 (R), the integrals must be understood
as limits in the mean. Thus, for f we have

.

~

= g5z [ 10

27

dw—)O




as N — oo [91, p. 362].
As a consequence of this discussion, the space

,,:{f:R—w\f( F( )imdx,FeL2[—7r,7r]}

V —T
coincides with the closed subspace of L2(]R) given by F~1 (L2[—7r, 71']), i.e., the classical
Paley-Wiener space given by

PW, == {f € I*(R)NC(R), supp f C L’[-m,]},

where supp f denotes the support of the Fourier transform of f. Hence, f is zero
outside [—m, 7] for any f € PW,. The isometry between #, and L?[—x, 7] is nothing
more that the restriction of the Fourier transform to PW,, and the inner product is
given by

/ F(@)3(@) dz = (f,g) 12

A. Fourier duality

The Paley-Wiener space PW, can be expressed without resorting to the Fourier trans-
form. Namely, any function f € PW, can be extended to any z € C as

1 izw
z — dw. 29
1) = o= [ Flwie (29)
Thus we get a holomorphic (or analytic) function on C, i.e., an entire function. To this
end, first we prove that f is a continuous function on C by using a standard argument
allowing interchange the limit with the integral. After, we apply Morera’s theorem [85,
p. 173]: whenever v : [a,b] — C is a closed curve in C, the integral

[rera= [ ’ ([ Fwren®2as)ot oy

is shown to be zero by interchanging the order of the integrals.

Moreover, f is a function of exponential type at most 7, i.e., satisfies an inequality
|f(2)| < Ae™! for all z € C and some positive constant A. Tt follows from (29) by
using the Cauchy-Schwarz inequality. Indeed, for z = z + iy € C we have

eyl pm
flo+iy) < —— / oo < S [ fwldo < flew, - (30)

Conversely, the classical Paley-Wiener theorem [132, p. 100] shows that PW, coincides
with the space of entire functions of exponential type at most 7 with square integrable
restriction to the real axis, i.e.,

PWy = {f € H(O) : |f(z)| <A™, flz € LR}
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The isometric isomorphism given by the Fourier transform

F 2 1 [T
PW, — L?|—m,n] izw
; f , f(z) = 7 ) . flw)e*“dw,

is called the Fourier duality between the spaces PW, and L?[—x, 7], and it has far-
reaching consequences. Any expansion converging in L?[—n, 7] is transformed by F !
into another expansion which converges in the topology of PW,. This implies, by the
reproducing kernel property, that it converges uniformly on R as we showed in Section
II.B.1.

The following nontrivial properties of PW, can be easily established by using the

Fourier duality:

(a)

(d)

()

The energy of f € PWy, i.e., its L?> norm, is contained in that of its samples
{f(n)}nez.

Indeed, since {f(n)}necz are the coefficients of the Fourier expansion of f in the
orthonormal basis {€~"®/v/27 }pcz, the Parseval formula (6) gives

[e o)

1w, = 7o mm = Y £ = I{F ()} o) -

n=—oo

The sequence {sinc (z — n)}nez is an orthonormal basis in PW,. Ezpanding f €
PW, in this basis we obtain its WKS expansion (17). Also, for each fized a € R,
{sinc (z—n—a) }nez is an orthonormal basis for PW, giving the sampling expansion
(18).

PW, is a RKHS whose reproducing kernel is given by kr(z,w) = sinc(z — w),
whenever z,w in C.

Recall that for real variables ¢, s we obtained k(t,s) = sinc(t — s). For complex
variables is necessary to conjugate the second variable in the cardinal sine function.
Indeed,

j— 1 ry

f(w) \/2—7T<f(x),e_m>n[ﬂr,7r] = (f(2),sinc(z —w))pw,., weC,

by using the Fourier duality.

Convergence in the norm of f € PW, implies uniform convergence in horizontal
strips of C.

It is a consequence of the inequality |f(2)| < e™¥| f| pw,, 2 = = +iy € C, in (30).

For any f € PW,y, |f(z)| goes to zero as to |x| — oo, z € R.
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This is a straightforward consequence of the Riemann-Lebesgue lemma [8, p. 170].
Furthermore, using the properties of the inverse Fourier transform with respect to
the derivation, we see that the smoother f is, the faster the decay of f is [8, p.
334].

PW, is closed under derivation, and for every f € PW, the following Bernstein-
type inequality holds:
1 lpw, < 7l fllpw, -

This follows from ) .
"(z :—/ iwf(w) € dw
1) == [ i) éan,

applying the Cauchy-Schwarz inequality.

The classical Bernstein’s inequality also holds: for f € PWy, [|f'lle < | f]loo,
where we are using the supremun norm || f||e = sup|f(¢)| [99, p. 209].
teR

The orthogonal projection Ppw, f of f € L>(R) onto PWy is given by

Ppw, f(t) = F (XnmFf)(t) = (f,sinc(- — t)) pw, = (f *sinc)(t),

for t € R, where X[ _r x denotes the characteristic function of the interval [—m, 7]
and * the convolution operator.

The first equality comes from the minimum norm property of the orthogonal pro-
jection [91, p. 302]. Indeed, for f € L*(R) and g € PW,, we have

~ 1 [ - .
I = 9l = IF =3l = 5 / () - §(w)Pdw

| [ Feras+ [T 1fw - gepars [T IePas,

which is mimimun for § = f X[, when the second summand equals zero. The
other equalities come from (15) and the definition of the convolution.

In PW,, fitingty € R, E >0 and M € C, we have

. —t)
t)? = E, reached for f*(s :ivEm.
”ﬁ‘lggElf( 0)| for  f*(s) p p——

Similarly,
min ||f||> = M2, reached for f*(s)=M sinm(s —to)
flo=it , (s —to)
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feprw, L fel-nn

s| |?

{f(W)}nez € C(Z) — f, € L[, 7]
Figure 1: Fourier duality and sampling.

Using Fourier duality allows to derive other expansions, not necessarily a sampling
one. For instance, the use of the Legendre polynomials {P,}°2, leads to the so-called
Bessel-Neumann expansion in

PWy = {f € L*(R) NC(R), supp fc [-1,1]}.

o0
It is well-known that { n+ 3P, (x)} . is an orthonormal basis for L*[—1,1] and
that "
Z’n

ot iy 0] @) = Pa@xgan(@)

for any neNU {0}, where J, 1 (t) is the Bessel function of half odd integer order. For

7

any f € PWi, we expand its Fourier transform f as

1.~

flz) = Zanpn(x)a an = (n+ §)<f7Pn>L2[—1,1]-
n=0

As a consequence of the inverse Fourier transform, we get

o Any f € PW7 can be expanded as

N, ey
f(Z) nz_;)a’n \/ﬂz Jn+§(z).

The convergence is absolute and uniform on horizontal strips of C.

Next, we are going to explore the meaning of the Fourier duality in terms of Signal
Theory by using the commutative diagram showed in figure 1.

All mappings included in this diagram are bijective isometries: the signal energy
is preserved. S denotes the sampling mapping with sampling period T; = 1. P is the
2m-periodization mapping which extends a function f in [—m, 7] to the whole R with
period 27. The other two mappings are, respectively, the functional Fourier transform
and the Fourier transform in ¢2(Z), defined as

—inw

eﬁ, {an}nez € (7).

F{an)w):= Y an

n=—oo
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f(t) fw)

S P
{f(m}_- I

et P =

t —-3m - m 3t w

Figure 2: Time-frequency interpretation of the WSK sampling theorem.

Thus, we obtain the very well-known result by signal processing engineers, which states
that sampling a signal (with a sampling period T; = 1 in this case), matches a peri-
odization of its spectrum (with a period 27 in this case). The situation described by
the diagram in figure 1 is illustrated in figure 2. In the next section we will deal with
the general case, i.e., when we sample a signal in PW, with a sampling period T > 0.

Finally to say that, under minor changes, all the results in this section apply for
any general Paley-Wiener space PW,, defined by

PWeo i ={f € L*(R) NC(R), supp fg L*[~7o, mol},
or expressed in the form
PWro = {f € H(C) : |f(2)| <A™, flrn € L(R)},

by using the classical Paley-Wiener theorem.

B. Undersampling and oversampling

As it was mentioned in the preceding section, if we sample a signal f in PW, with a
general sampling period Ts > 0, the question arises whether it is possible to reconstruct
it from its samples {f(nT)}. We will see that it is indeed possible in the case where
0 < T, <1, ie, sampling the signal at a frequency higher than that given by its
bandwidth. For sampling periods 75 > 1, we cannot reconstruct the signal due to the
aliasing phenomenon, which will be explained later.

In the next section, by using a version of the Poisson summation formula, it will be
shown that sampling a signal with a sampling period T} is equivalent to periodize its
spectrum with a period 27 /T5.
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1. Poisson summation formula

Consider the sequence of samples {f (nT )}nez taken from a mg\nal f € PW, with a
sampling period T > 0. Let fp be the perlodlzed version of f, i.e.,

o0

Z (w+

Obviously, fp is a perlodlc function. Now, we calculate its Fourier expansion with re-

spect to the orthonormal basis {4/ 22 e*’mTS“’}m ez of L?[0, TS] The Fourier coefficient
¢m 1s calculated as

cm =\ 5 / Folw)e™ T dy = V5, /Ts Z f w + )e™ e dw
_ E Ts N 2_71’ imTsw
_1/2ﬂn;oo/0 f(w+T5n)e dw

The change of variable w + 7.n =  allows us to obtain

2 (n+1) A
Cm = Z /T f zmezdx — 3 f zstwdx
V 2r V or o

= \/fsf (mTs)

Therefore, the Fourier expansion for f, is

—zstw

ifw—l——n: meT \/_

- m=—00

Thus we have obtained the Poisson summation formula applied to fwith period 27/ T.
From this formula we deduce that the spectrum of the sequence {f(mTs)}mez, i-e., the
sampled 51gnal is precisely (up to a scale factor) the 2¢ perlodlzed version of the
spectrum f of f.

As a consequence, in the oversampling case, where 0 < Ts < 1, we can recover
the spectrum of f from the spectrum of the sampled signal, and hence, recover the
signal f. In terms of the WSK sampling theorem, the explanation is easy: if a signal is
bandlimited to the interval [—, 7], is also bandlimited to any interval [—mo, 7o| with
o > 1. This situation is depicted in figure 3.

In the so-called undersampling case, where T; > 1, we cannot obtain the spectrum of
f from the spectrum of the sampled signal because the copies of f overlap in fp Hence,
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{f(0TS)} -, Iy
W‘NM’T’MHH‘H\T_WH\T\W; L m_n | n/w\w

Figure 3: Oversampling.

{HOT), < [f(co)
| T 1 | M_TT\T\‘ —

Figure 4: Undersampling.

it is impossible to recover the signal from its samples. The alluded overlap produces
the aliasing phenomenon, i.e.. some frequencies go under the name of another ones. As
pointed out by Hamming in [60, p. 14], this is a familiar phenomenon to the watchers
of TV and western movies. As the stage coach starts up, the wheels start going faster
and faster, but then they gradually slow down, stop, go backwards, slow down, stop,
go forward, etc. This effect is due solely to the sampling the picture makes of the real
scene. The undersampling situation is depicted in figure 4.

This undersampling/oversampling discussion clarifies the crucial role of the critical
Nyquist period which is given by Ty = 1/0 whenever supp f C [-mo, ma].

Some comments about the Poisson summation formula are in order:

(a) Poisson summation formula is a fundamental way to link a function f with its
Fourier transform f or vice versa. Namely

n=—oo
Whenever f € L!(R), the left-hand in (31) denotes a 27-periodic function belong-
ing to L'[0,27/T]. Expanding this function in Fourler series with respect to the

orthonormal basis {e™T?/, / %}m ¢z, We obtain the right-hand of (31) (see [54, 64]

for the details). Under smooth hypotheses on f, it can be proved that (31) also
holds pointwise (see, for instance, references [54, 99]).

(b) The following formalism, very familiar in the engineering literature, can be used
to deduce the WSK sampling formula. Namely, it is a common use to write the
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sampled signal {f(n)}necz (we are assuming by simplicity that T = 1) as

Z f t—’l’L (f*A)(t)v

n=—oo

where A :=>">° _ §(t —n) denotes the so-called Dirac’s comb or train of deltas
at the integers. We want to recover the signal f from its sampled signal f,; by using
an appropriate filtering device, i.e.,

F&) = (fax g)(t Zf g(t —n)

n=—oo

for an appropriate impulse response g. By taking Fourier transform we obtain

fw) = f(w)gw) =§w) Y flw+2mm),

n=—oo

where we have used the Fourier transform for f; given by Poisson summation
formula. Whenever supp f C [, 7], the appropriate g is X[_r ] and consequently
g(t) = sinc(t) i.e., an ideal low-pass filter. All the steps in the above reasoning can
be made rigorous at the light of the theory of distributions [54].

2. Robust reconstruction

The actual computation of the cardinal series (17) presents some numerical difficulties
since the cardinal sine function behaves like 1/t as |t| — co. An easy example is the

given by the numerical calculation of f(1/2), for a function f in PW,,, from a noisy
)"0n
%)

, even when

sequence of samples {f(n) + §,}. The error in this case ‘Z

|0n| < 4, could be infinity!

One way to overcome this difficulty is again the oversampling technique, i.e., sam-
pling the signal at a frequency higher than that given by its bandwidth. In this way we
obtain sampling functions converging to zero at infinity faster than the cardinal sine
functions. Indeed, consider the bandlimited function

1 o
V2T J 7o

Extending F' to be zero in [—m, 7| \ [-7o, mo], we have

Zf

n=-—oo

F(w)e™'dw with F € L?[—7no,n0] and o < 1.

ft) =

—'an

in L[~ 7).
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Let 6(w) be a smooth function taking the value 1 on [—mo, o], and the value 0 outside
[—m,m]. As a consequence,

—inw
e

Fw)=0w)F(w)= Y f(n)f(w) N in L?[—m, 7],

n=—oo

and the sampling expansion

f&)= Y f(n)S(t—n)

n—=—oo

holds, where § is the inverse Fourier transform F ! of §/4/2m and, consequently,
S(t —n) = Fl[f(w)e ™™ /+/2x](t). Furthermore, using the properties of the Fourier
transform we see that the smoother 6 is, the faster the decay of S is. However, the new

sampling functions {S(t —n)}32_ are no longer orthogonal.

Next, we consider a particular example. Assume that o0 = 1 — e with 0 < € < 1,
and consider for 8 the trapezoidal function

1 if |w| < 7(1—¢),
)1 lw|\ .
fw)=4-(1-=) ifr(l—e) <|w| <,

€ s

0 if |w| > .
i t sinmt

One can easily obtain that S(t) = S E: Sm: . Note that, in this case, S behaves like

ET ™

1/t? as |t| — co. The corresponding sampling expansion takes the form

sinem(t — n) sinw(t — n)
en(t—n) w(t—n)

fOy = > fn)

n=—oo

In this example, if each sample f(n) is subject to an error 4, such that |d,| < §, then
the total error in the above calculated f(¢) is bounded by a constant depending only
on ¢ and € [99, p. 211]. Thus we have obtained a robust reconstruction for f by using
the oversampling technique.

C. Sampling by using other type of samples

A sampling series in PW, may also contain samples from a transformed version of
the signal as, for instance, its derivative or its Hilbert transform. This is the so-called
multi-channel sampling setting: the signal is processed through various channels before
being sampled. This idea is in Shannon’s famous paper [113], where he suggests taking
samples of the signal and its derivative. General methods for multi-channel sampling go
back to Papoulis’ work [97], as pointed out in the expository paper [22]. As this author
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says: “for certain applications, data about a given bandlimited signal can be available
from several sources”. As we will see in the below examples, in the multi-channel case
the sampling points can occur at a density below the Nyquist one, but maintaining the
overall “number” of samples.

1. Using samples from the derivative

Now we prove that it is possible to recover a signal f € PW, by using its samples
{f(2n)}nez, taken at a half of the Nyquist rate, along with the samples {f/'(2n)}ncz
taken from its first derivative. Namely

e Any function f € PW; can be recovered from the sequences of samples {f(2n)}nez
and {f'(2n)}nez by means of the formula

S {f@2n) + (t - 2n)f'(2n)} [S“:(t(t_i;j)”)] (32)

n=—oo

To this end, we consider F € L2[—, 7] the Fourier transform of f. The following
Fourier expansions in L2[—, 7] hold
—mw x —inw

— > and Flw—m)= Y (-1)"f(n)"

n=—oo n=—oo

1
As a consequence, the function S(w) = E[F(w) + F(w —m))] admits the Fourier expan-

sion

Z —z2nw 5
f(2n) in L*[0, 7] .
n=—o0o v
In a similar way, since
1 4 ;
"t) = — iwF (w)e™dw ,
)= o | iwF)

we obtain the Fourier expansion

iwF(w Z fl(n

n—=—oo

—'LTLUJ

in L*[—n,n].

Therefore, the function R(w) = %[wF (w)+ (w —7)F(w — )] has the Fourier expansion
—zan

Z f'(2n) \/_ in L2[0, ] .

n=—oo
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Gathering together both expansions, for w € [0, 7], we have

(%) B % (z‘i i(w . 7r>) (Fffﬂ))

or inverting the matrix

F(w) _ 2 fi(w—m) -1\ (S(w) (33)
Flw-m) =« —iw 1 R(w)
Therefore, introducing this splitting of F' into (29) and after some calculations we find,

w)e™ dw

1 T
1) = —m/ F
—12nw

/ i (w+m)f 2n)+%f’(2n)]em e duw

—i2nw

= 2 € itw
/Z;ﬂ'— 2n)——f( )]ﬁe dw

_72{/f ) a2

%/ — sgnw (2n)ei(t_2”)wdw} .

™

The desired result comes by using the Fourier duals (see for instance [64, p. 203])

. t wt zsgnw) gitw
— 4
sinc <2> 5111(2) \/2_7T/;7T dw (34)

o 3 - LB

Some additional comments may throw light on this derivative sampling result:

and

i. This case corresponds to a two-channel sampling: the signal f is filtered with two
filters with transfer functions Hy(w) = 1 and Hs(w) = iw where w € [—m, 7],
respectively, before sampling with a sampling period Ts = 2.

ii. The multi-channel approach used in [64, Ch. 12] and [106] is implicitly in the proof
of this easier example. Indeed, the matricial relation (33) can be understood as
a linear, bijective and bounded operator from the external direct sum L2[0, 7] @
L?[0, 7] onto L?[—m,7]. Recall that in this external direct sum the norm is given
by
IE GNP = 112210, + Gl Z 20,1 -
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The orthonormal basis in L2[0, 7] & L?[0, 7] given by

{(e7™ /v/m,0), (0,67 /\/T) }nez

is transformed, via (33), into a Riesz basis of L2[—, 7], a concept that will appear
later in Section IL.E.1.

ili. Reconstruction formulas from samples of f € PW, and its first p — 1 derivatives
taken at the sampling period T = p can be obtained in a similar way. See [65, p.
58] for the equivalent sampling formula to (32) in this more general setting.

2. Using samples from the Hilbert transform

In this section we show that a function f € PW; can be recovered either from the sam-
ples of its Hilbert transform {f(n)}nez, or from both sequences of samples {f(2n)}ncz
and {f(2n)}nez, where f stands for the Hilbert transform of f.

First of all we introduce the Hilbert transform for functions in L*(R), by giving the

following motivation: in the case of a real signal f € L?(R), its Fourier transform f

~

can be written as f(w) = A(w) + i B(w) where A and B are even and odd functions
respectively. Therefore, f, and consequently f, are determined by the values of f on
[0,00), i.e., by f - u where u denotes the Heaviside function

1 ift>0,
u(t) = .
0 ift<O.

The appropriate tool which allows us to take into account this feature about f is, as we
will see later, its associated analytic signal defined by means of its Hilbert transform.
a. The Hilbert transform in L%(R)

The Hilbert transform in L?(R) can be defined as
H:I*(R) — L*(R)
f— H(f) = F=F [(~isgn)f],

where ¢ stands for the imaginary unity and sgn denotes the signum function, i.e., sgn(t)
equals 1 if £ > 0 and —1 if ¢ < 0. It is straightforward to obtain the main properties
of the Hilbert transform in L?(R) by using those of the Fourier transform in L?(R).
Namely,

1) H is well defined, i.e., H(f) € L?(R) for f € L?*(R), and is linear by using the
properties of the Fourier transform in L?(R).

9) H is an isometry in L2(R) since |[H(f)|l2 = IZ (P2 = IF]l2 = |l
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3) H is bijective and moreover, H~! = —H. Indeed,

~ ~

FIH(H)] = (—isgn)Hf = (—isgn)(—isgn)f = —F,
and hence, H? = —Id.

4) If f is a real-valued signal in L2(R), the same occurs with its Hilbert transform f.
Indeed, we can write

*\

The change of variable £ = —w allows us to conclude that f(¢) = f(¢) for almost all
tin R.

Another equivalent definition for the Hilbert transform is the given by

Ft) = po () s i) =t [~ T2
I
_51—>0+7f/u|>6 u du,

where p.v. denotes the Cauchy principal value of the integral. It allows us to enlarge
the definition of the Hilbert transform to other functional spaces as the LP(R) with
1<p<oo.

The Paley-Wiener space PW, is closed under the Hilbert transform, i.e., for f €
PW, its Hilbert transform fis also in PW,. Indeed, given f € PW, we can write its
Hilbert transform as

f(t) \/2_71_/ —isgnw) f(w)eit“’dw. (35)

Since |i sgnw| = 1, it easily follows that the sequence {z sgn w %} is an orthonor-
T Jnel

mal basis for L?[—n, 7]. For a fixed t € R, we expand the Fourier kernel with respect
to this basis obtaining

—ztw ) e*inw
e "™ isgnwe "™ isgnw
Var n_zoo< B i S
. (36)
1 LT . e,
=— nzzoo sinc §(t —n) sin E(t —n)isgnw Nor: in L[—m, 7],
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where we have used formula (34) to derive the coefficients of the expansion. This
expansion allows us to prove the following sampling result in PW,

o Any function f € PW, can be recovered from the sequence of samples {f(n)}nez of
its Hilbert transform by means of the formula

Z f(n smc (t —n)sin - 5 (t —n). (37)

n=—oo

To this end, consider

e—ztw

f() <f7\/—> —7,7] -

Introducing the expansion obtained in (36) and taking into account the continuity of
the inner product with respect to the L?[—m, 7] convergence, we can take out the series.
Thus, we obtain

—inw

\/2_71' >L2[—7r,7r]

f(t)y=— i sinc%(t —n) sing(t - n)(f,isgnw

n=—oo

= — Z Sinc%(t—n)sing(t—n) (n).

n=—oo

This sampling formula can be interpreted as a single-channel sampling result: the
signal f is filtered with a filter whose transfer function is H(w) = —isgnw, w € [—m, 7],
before sampling with a sampling period 7 = 1. _

Having in mind that H?(f) = —f, if we apply (37) to f € PW, we obtain the dual
sampling formula

Z f(n)sinc = t—n)sm2(t—n)

n=—oo

Next, we introduce the concept of analytic signal associated with a real-valued signal
f in L2(R).

b. Analytic signal

Given a real signal f € L2(R), its associated analytic signal is the signal in L%(R)
defined as

foi=Ff+if.

The Fourier transform of the analytic signal f, satisfies
fa=f+i(—isgn)f =2f -u,

and consequently, supp]/"; C [0, 400).
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In signal processing, the analytic signal is used, for example, to define the in-
stantaneous frequency of a real-valued signal f. We can write its analytic signal as
fa(t) = A(t) €® in order to define its instantaneous frequency as w := ¢/(t). Thus,
for a fixed time u, the Wigner-Ville time-frequency distribution of f, given by

o

PVfa(uvg) ::/ fa(u'i‘%)fa(u_%) eiirng,

— 00
is typically concentrated in a neighborhood of the instantaneous frequency ¢ = ¢'(u)

since o
[ EPy falu, £) dé

o) = T Py falu, ) de

(see [82, p. 108]).
From now on, we confine ourselves to use analytic signals for sampling purposes.
For instance, for sampling efficiently a bandpass signal.

A signal f € L?(R) is a bandpass signal if the support of its Fourier transform satisfies
supp f C [~wg — o7, —wp| U [wp, wp + o], where wy > 0.

Whithout loss of generality we take o = 1. Naturally, one can apply the WSK
formula with the sampling period Ts = woﬂﬁ < 1 in order to recover f from its samples
{f(nTs)}. Next, we show that we can recover a bandpass signal f by sampling the
signal itself and its Hilbert transform with a sampling period T; = 2. To this end, we
use the following reasoning involving the analytic signal f,. Namely, the analytic signal

fa of the bandpass signal f satisfies

falt) = \/%7 / + 2 () dv.

As a consequence of the sampling formulas (19) and (20) we have

sinm({ —n)

—-n
m(t-n) ’

fa(t)z i fa(Qn)eiw1(t—2n)

n=—oo

(38)

where w1 = wy + 7/2. Having in mind that f = Rf, we obtain that

e Any real bandpass signal f such that suppf C [~wo — 7, —wp| U [w,wo + 7| can be
expanded as
~ . sinZ(t — 2n
flt) = Z {f(2n) coswi(t —2n) — f(2n) sinw (t — 2n)} ﬁ .

n=-—00 2
In particular, taking wy = 0 in (38) we obtain the following sampling result
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o Any real function f € PW, can be recovered by using its samples {f(2n)}nez and

those {f(2n)}nez of its Hilbert transform by means of the formula

o 3 7T
P ~ s sin Z(t — 2n)
t) = { 2n)cos —=(t — 2n) — f(2n sin—t—2n}27.
$0 = 3 {#(om)cos J(e—2m) — Famsin 70— 20} o
n=—oo
The final comment is concerning the term analytic signal used in this section. An
analytic signal f, is not, obviously, an analytic function in the context of complex
analysis. However, if we define the function

1 RPN ;
F(z):\/T_w/o 2f(w)e*¥dw, z=t+iyeC,

we obtain an analytic function on the upper half-plane Ct = {z =t +iy € C, y >
0}. Besides, its boundary function limy_,o F(¢ + iy) coincides almost everywhere with
fa € L} (R), the analytic signal associated with f € L2(R). The mathematical details,
involving the Hardy space H2(C*), can be found in [40].

For more information about the Hilbert transform and its uses in sampling purposes,
we refer the interested reader to [21, 98, 135, 136]. A unified approach to sampling
theorems for derivatives and Hilbert transforms can be found in [119].

D. Zeros of bandlimited functions

The problem of signal recovering can also be considered from a different point of view.
As we know the signals in the space PW, are entire functions of exponential type
at most 7 whose restriction to R belongs to L?(R). Although entire functions are not
completely determined by the location of their zeros, as can be seen from the Hadamard
factorization theorem [132, p. 74|, bandlimited functions are, as can be deduced from
a Titchmarsh’s theorem to which we will refer later on: any bandlimited function is
uniquely determined by its zeros up to an exponential factor depending on its spectral
interval [a,b]. If the spectral interval is of the form [—a,a], this exponential factor
reduces to a constant. Recall that it is the case for real-valued bandlimited signals as
it was pointed out in Section II.B.1.

The referred Titchmarsh’s theorem [122] providing the needed mathematical foun-
dation reads as follows

o Let F € L'[a,b] and define the entire function f to be

)= [ ’ F(w) edw.

Then f has infinitely many zeros, {zn}nen, with nondecreasing absolute values, such

that
1@ =0 I (1-2),



where the infinite product is conditionally convergent.

In the above result, it is assumed that a and b are the effective lower and upper
limits of the integral, in the sense that there are no numbers o > a and # < b such
that F'(w) = 0 (a.e.) in [a,a] or [G,b].

If f is bandlimited to [—a, a], then

=101 (1-2).
provided f(0) # 0, or

~an 1(1-5)
f(z) = Az I:[l 1=
if z =10 is a zero of f of order m.

Notice that the zeros in Titchmarsh theorem may be complex. This poses a difficulty
from a practical point of view, as complex zeros are harder to detect than real zeros.
Whenever they are real, this theorem provides a useful tool for signal recovering, usually
referred to as real-zero interpolation [18, 86]. One way to deal only with real zeros is by
using the so-called sine wave crossings technique [86] involved in the following result
from Duffin and Schaeffer [38], which reads as follows

o Let f be an entire function of exponential type at most v such that |f(z)| < 1 on the
real azis. Then for every real o the function cos(yz + a) — f(z) has only real zeros,
or vanishes identically. Moreover all the zeros are simple, excepts perhaps at points on
the real azis where f(z) = £1.

For a deeper study of the oscillatory properties of Paley-Wiener functions see ref-
erences [64, 96, 124].

E. Irregular sampling

The WSK expansion in PW,; (17) can also be written as

. G(2)
1&= 3 I G (39)
where G(z) = sinmz/m. The latter expression exhibits the Lagrange type interpolatory
character of the WSK result. Its expresses the possibility of recovering a certain kind
of signal from a sequence of regularly spaced samples.

From a practical point of view it is interesting to have a similar result, but for
a sequence of samples taken with a nonuniform distribution along the real line (a
straightforward application of this result would be the recovering of signals from samples
affected by time-jitter error, i.e., taken at points t, = n+4,, with J,, some measurement
uncertainty).
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Intuitively speaking, nonuniform sampling is the natural way for the discrete rep-
resentation of a signal. For example, let us assume there is a signal with high instan-
taneous frequency regions and low instantaneous frequency in other regions. It is more
efficient to sample the low frequency regions at a lower rate than the high frequency
regions.

An appropriate question to get such a result would be how close should the sample
points be to the regular sample points so that a similar equation to (39) still holds. A
first answer to this question was given by Paley and Wiener [96], who proved that if
the sequence of sample points, {t, }nez, satisfies

D:=suplt,—n|<T, (40)
nez
where 7 = 1/7%, and the sequence is symmetric, i.e., t , = t, (n > 1), then any
f € PW, can be expressed as

G(z)
th"af D —tn)

n=—oo

G(z):(z—to)ﬁ (1_% .

n=1

where now

Later, Levinson [79] extended condition (40) to 7 = 1/4 and nonsymmetric se-
quences. This result is related with the “maximum” perturbation of the Hilbert basis
{e=t" /\/27} ez, of the square-integrable function space L?[—m, 7], in such a way that
the perturbed sequence {e~#n“/\/27},cz is a Riesz basis, a concept which will be in-
troduced later, of the same space. Kadec proved that Levinson’s result, 7 = 1/4, is
optimal, in the sense that if D = 1/4 counterexamples can be found (see [132, pp.
42-44] for the details).

1. Introducing Riesz bases

In order to apply Riesz bases for irregular sampling purposes in Paley-Wiener spaces,
we briefly remind the more important features of these bases, giving elementary proofs
when available.

A Riesz basis {xn}>2; in a Hilbert space H is a basis obtained from an orthonormal
one {e,}52; by means of a bounded invertible operator T : H — H, i.e., T(ep) = zp
for each n € N.

Next we draw up a list of the most important properties concerning Riesz bases:

i) For each « € H there exists a unique sequence of scalars {c,}>2; such that
o0
= Z Cny
n=1
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in the H norm sense.

Indeed, for each « € H there is a unique y € H such that z = T'(y). Expanding y
in the orthonormal basis {e,}>2; we obtain

r=T(y) = T<Z<y,en)en> = Z(y, en)T'(en) = Z_:lcna:n,

n=1 n=1
with ¢, = (y,en). As a consequence, the sequence {z,}5° ; forms a complete set
in H
ii) For each n € N, the coefficient functional defined as
fn:H—C

r— fn(.’E) =Cp = <ya €n>,

is linear and bounded in HL

It easily follows from Cauchy-Schwarz inequality
[y, en)| < llyll lleall = 1T~ (@) < N1T~H 2] -

iii) For every = € H, its sequence of coefficients {c,}° ; belongs to £2(N).

iv) As a consequence of the Riesz representation theorem, for each n € N there exists
a unique y, € H such that f,(z) = (z,y,) for every © € H. Thus, for very z € H
we have the unique representation = > _>° | (2, Yn)Tn.

v) The sequences {z,}>° ; and {y,}5>; are biorthonormal, i.e., (Zm,Yn) = Onm. It
follows from the uniqueness of the coefficients since @m = >0 1 (Tm, Yn)Tn.

vi) The sequence {y,}22, also forms a Riesz basis for H and the expansions

o0 (e}

T = Z<$,9n>wn = Z(x:wn>yna

hold for every x € H. A proof of this result and more specific account of Riesz
bases can be found in [132, pp. 19-36].

2. The Riesz bases setting

In what follows {¢, }ncz will denote a sequence of real numbers such that

1
D :=suplt, —n| < —.
nEZ 4
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As a consequence of Kadec’s -theorem [132, p. 42], {e "% /\/27} ¢y is a Riesz basis
for L?[—,m]. A necessary and sufficient condition about the sequence {t, }ncz in order
to be {e %% /\/21} ez a Riesz basis for L?[—m, 7] was given by Pavlov in [100].

Consider .
G(z)=(z—t) [] (1 - %) (1 - ti) (41)

n=1
an entire, well-defined function, whose set of zeros is {t, }nez, as it will be made clear

along the proof of the following theorem, the so-called Paley-Wiener-Levinson sampling
theorem, hereafter PWL sampling theorem.

o Any f € PWy can be recovered from its sample values {f(tn)}nez by means of the
Lagrange type interpolation series

G(z)
9= ¥ Mggcy

which is absolutely and, uniformly convergent in horizontal strips of C (in particular
in R).

For the proof, let {h, (w)}nez be the unique biorthonormal basis of {e~“ /\/27 }pez,

i.e., for every m,n € Z,
e—itmw

ﬁ>[12[—ﬂ',ﬂ] = dnm -

Thus, every f € L?[—m, 7] can be expressed as

{hn,

o0

f(w):nzoo<f h >L2 71'776\/—

By using the Fourier duality in PW, we get

—itpw —itpw

Z \/_TI' L2[—7r,7r]h’n(w) :

n=—oo

o0

. efitnw oo R efz'tnw
6= Y Fm e (e )0 = 3 (RS w ).

By setting g, = F !(hy) and taking into account that (f, hn)12[—xa] = (fs9n)Pw, and
that (f, _ine = )12 nm = f(tn), We can rewrite

e}

f(z): Z <fagn>PW,r51ncz_tn = Z ftn gn

n=—00 n=—00

Now,



is an entire function, bandlimited to [—, 7] whose only zeros are {t;, }m+n. Suppose by
contrary that s ¢ {t;}mzn is a zero of g,. Using the classical Paley-Wiener theorem,

the function
z—1tn

9(2) = 2= g (2)

belongs to PW, and vanish at every t,. Taking into account the completeness of a
Riesz basis this implies that g = 0, a contradiction.
Therefore, as a consequence of Titchmarsh’s theorem, we have

G(z) .

z—1p

gn(2) = Ap

Notice that by setting n = 0, for instance, the above formula shows that G(z) is
an entire function, as stated at the beginning of this result. Since g,(¢,) = 1 then
A, = 1/G'(t,) and hence,

G(z)
Z f(tn n)(z —tn)

n=—oo

The series is convergent in the norm of PW, and, consequently, uniformly in horizontal
strips of C. The absolute convergence of the series comes from the fact that a Riesz
basis is also an unconditional basis.

Note that, as a byproduct in the proof of the PWL Theorem, we deduce that
G(z) } {smﬂ'(z tn)} . . .

il;/ev sequences {7@ @G o) nen and Gt el are biorthonormal Riesz bases in

-

A general theory for nonorthogonal sampling formulas by using Riesz bases instead
of orthonormal bases can be developed. The main steps involved in the theory are
pointed out in next section.

3. A unified approach to nonorthogonal sampling formulas

The Riesz bases setting is the appropriate framework to get nonorthogonal sampling
formulas while retaining the Riesz basis property in a unified way. The procedure closely
parallels the one given for orthogonal formulas in Section II. Due to this parallelism,
we only highlight a sequence of the most important results.

Throughout this section, {¢n(z)}o>; and {¢}(z)}52; will be denote a pair of
biorthonormal Riesz bases for a fixed L?(I) space. Note that the sequences of their
conjugate functions {¢,(z)}%°_; and {¢% ()}, are also a pair of biorthonormal Riesz
bases for L2(I).

Let {Sp}>; be a sequence of functions S, : @ C R — C and {¢,}3°; a sequence
in Q verifying conditions [C1.] and [C2.] in Section ILA.
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Define the kernel K (z,t) as

K(z,t) =) Sa(t)é(x), (z,t) €I x Q. (42)

n=1

Note that, as a function of z, K(-,t) belongs to L?(I) since {¢,}2°; is a Riesz basis
for L2(I). By using this kernel K (z,t), define on L2(I) the linear integral transform

£(t) = /I F(2) K (2, t)dz, for F e LXI). (43)

This transform is again a bijective isometry between L?(I) and its range H, provided
we endow this space with the norm || f|l3 := [|F||z2(z). The following properties for H
hold:

a) {Sn(t)}°; is a Riesz basis for H, Indeed, it is the image by (43) of the Riesz basis
{én(2)}, of L?(I). Besides, its biorthonormal basis {S} ()} is the correspond-
ing image by (43) of {¢;,(x)}32,.

b) (H,| - |l%) is a RKHS space whose reproducing kernel k(t, s) is given by

k(t,s) = (K( 1), K(,8))p2) = ) Salt)Si(s) -

F=S U508 = S m s, = 3 Llindg

n=1 n=1 n=1

we obtain the (nonorthogonal) sampling expansion

F) =3 ftn) ). (44)
n=1 n

The convergence of the series (44) is absolute, and uniform on subsets of 2 where
IK ()l L2y = V/k(t,t) is bounded.

We illustrate the proposed method with a couple of examples:

(1) Consider a sequence {t,}necz of real numbers satisfying Kadec’s condition. It can
be proved [96] that, for any fixed ¢ € R, we can expand the Fourier kernel in L?[—7, 7]
as

ez’tw B o0 G(t) eitna:
Vim0 Vo (49)



where G stands for (41), the infinite product of the sequence {t,}ncz. Regarding
expansion (45), see also the proof of the PWL sampling theorem in previous section.
G(t)
Taking S,(t) = ———————
more than the statement of the PWL sampling theorem in PW,.

and the sampling points {t,}nez, (44) is nothing

(2) Now, let {t,}2, be the sequence of positive roots of the equation sin2nt = 1/t.
It is proven in [88] that {cos[(z + m)tn)}°, forms a Riesz basis for L*[—m,n]. Its
biorthonormal basis is given by

{ - eoslla=mtn 1}; ,

where the normalization constants are «y, = S‘nz%t" + mcos2wt, > 0. For each fixed
t € R one gets the expansion

[e o] .
tsin27t — 1 .
cos[(x + m)t] = nz::l %ﬁ_t%) cos[(x + m)t,], in L*[—m,7].
tsin2nt — 1 . . .
Therefore, taking S, (t) = o —12) and the sampling points {t, }7°; we obtain the
an n

following nonorthogonal sampling result
o Any function f of the form
ﬂw:f F(z)cos|(z + m)fldz, F € L¥—m ],

can be expanded as the sampling formula
Z f tSlIl 27t — 1
t2 _ t2) )
The corresponding RKHS H has the reproducing kernel

sin2w(t +s) sin2n(t — s)

Rt 9) = =0 s 20t — s)

We close the section with a pertinent comment:

The constructive method proposed here is limited to those integral transforms whose
kernel K(x,t) can be written as (42). However, it can be proved (see [53]) that under
plausible hypotheses the integral kernel adopts the required form (42). Namely, consider
an integral transform

f@z/F@K@@m,FeﬁUL

I
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where ¢t € Q and the integral kernel belongs to L?(I) for every fixed t € Q2. Assume that,
for the functions f in the range space of this integral transform, a sampling formula
like (44) holds pointwise in Q, with {f(t,)/an}32; € £2(N), and the sampling functions
{Sn(t)}5 satisfying the two conditions:

i >0 [Sn(t)|? < oo for each t € Q, and
. 3271 apSn(t) = 0 for every ¢t € Q with {a,} € 22, implies oy, = 0 for all n.

Then the kernel of the integral transform can be expressed as
e _
K(z,t) =Y Sa(t)d(),
n=1

where {¢},}2° , is, in general, a Riesz basis for L2(I). This result includes the particular
case where {¢}}2° ; is an orthonormal basis for L?(I).

We return to the case of irregular sampling in PW,.. Kadec condition about the
sampling points {t,}ncz can be relaxed by using exponential frames in L?[—m,7]. In
next section, we introduce frames in a separable Hilbert space, giving also an account
of their most important properties.

4. Introducing frames

First, we state the definition of a frame in a Hilbert space:

A sequence {x,}5° | in a Hilbert space H is said to be a frame if there exist constants
0 < A < B, called the frame bounds, such that for any x € H the frame inequality

(e}
Allz|? <Y (@, @n)[* < Bljz|? (46)

n=1

holds.

If A = B, then the frame is called a tight frame. If the removal of one element x,,
renders the sequence {x,},2m no longer a frame, then it is called an ezact frame. The
left-hand in the frame inequalities (46) shows that a frame is a complete sequence in
H. An orthonormal basis is a tight frame with A = B = 1.

For our sampling purposes, we gather the most important properties in frame theory
in the following list:

i) For an arbitrary sequence {z,}>2; in H, the following are equivalent

(a) {zn}2, is a frame with frame bounds A and B, and

(b) the frame operator defined as S(z) := > .2 (z,zp)zy is a bounded positive
operator in H with AT < S < BI, where I denotes the identity operator in
HL.
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Recall that T is a positive operator in H (T > 0) if (T'(z),z) > 0 for all z € H.
T < S means that S —T > 0. See [8, p. 467] for a proof.

ii) S~! exists and is positive in H, and B~ < §71 < A7,

iii) {S (zn)}S2, is also a frame, called the dual frame, with frame bounds B! and

iv)

vi)

vii)

viii)

n=1
A1 [8, p. 468].
Any x € H can be written in terms of the dual frame as
o o
T = Z(xa Sil(xn»xn = Z(x: xn>‘5’71(xn) . (47)
n=1 n=1

Indeed, as S~! is the operator frame for the dual frame we have
o0 o0
z = S(S7Hz)) = s( Y (e, S_l(xn))S_l(xn)) =3 (2,5 (2n))2n.
n=1 n=1
We get the other representation for = € H by considering = = S~ 1(S(z)).
If {,}22, is a tight frame in H, then the operator frame is S = AI, and for every

x € H the representation
o0

1
T = A Z(xvxn>xn (48)
n=1

holds.
Suppose that there exists a sequence of scalars {b,}52; such that z = > % | byay.
Then,

[e 0] o o

D 1Bl = > lanl® + 3 lan —baf?,

n=1 n=1 n=1

where a, = (x,S (z,)). That is, the coefficients obtained via the dual frame
representation (47) have a minimum norm property in £2(N) [8, p. 468].

A sequence {z,}9; of a separable Hilbert space H is a Riesz basis if and only if
it is an exact frame (see [8, p. 471] or [132, p. 188] for a proof).

If {z,}%°, is an exact frame, then {z,}%; and {S~1(z,)}S; are biorthonormal
sequences, i.e., (Zn, S (Tm)) = 6nm [8, P- 471).

In the frame setting we retain the representation property, i.e., every x € H may be
written as z = Y °° | (z, S™!(zn))zn, but sacrificing uniqueness of the representation
unlike orthonormal or Riesz bases.
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It is worth to point out that, in finite dimensional spaces, proper frames correspond
to spanning sets, no necessary linearly independent. If {acn}r]:/‘r:1 is an spanning set for
CN where M > N, there exist constants A, B > 0 such that for all z € CV

M
Allz|® <) (@, za)* < Bzl

n=1

Frame theory goes back to 1952 when a seminal paper by Duffin and Schaeffer was
published in the context of Paley-Wiener spaces [39]. It was revived, in the last decade,
in connection with wavelet theory and has proved to be a fundamental tool in irregular
sampling. The reader interested in deeper knowledge in frame theory might address to
references [32, 36, 132].

5. The frame setting

Assume that, for a real sequence {t,}ncz, the family {e~%%/\/27},cz is a frame in
L?[—n, 7). Then, there exist two constants 0 < A < B such that

St e—itnw

2
Al rm < D Vo s ittomml” < Bl

n—=—oo

for each ¢ € L?[—m, n]. Taking f = F !(p) in PW, we obtain

o0

AH(P”%?[*W,H = Z |f(tn)|2 < BH(Pniz[ﬂmr]’

n=—oo

or

Alflpw, < D 1f(t)® < Bliflbw, ,

n=—oo

by using the Fourier duality. Since f(t,) = (f,sinc(- — t,))pw,, we deduce that

{sin w(t —tn)
m(t —tn)

a consequence of the representation property (47), for every f € PW, we have the

sampling formula

} ; is a frame in PW,. Let {hp}necz be its dual frame. Then, as
ne

[e 9]
ft) = Z f(tn)hn(t).
n=—oo
The problem with this sampling formula is that we do not know the dual frame {h, }cz.
We would like to have a method to recover f € PW, from the available informa-
tion, that is, the sequence of samples {f(t,)}nez, or equivalently the frame operator
S(f) = > om0 f(tn)sinc(- —t,). As we will see in next section an iterative algorithm,
essentially the Richardson method, will allow us to recover f from the operator frame
evaluated at f, S(f).
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An explanation of the oversampling technique seen in Section ITI.B.2 can be given
in the light of frame theory. Namely,
e The sequence {osinca(t —n)}nez is a tight frame with bound A = 1 for every Paley-
Wiener space PWy, with o < 1.

To this end, let f be a function in PW,,, and let F' be its Fourier transform

supported in [—mo, mo]. Extending F to be zero in [—m, 7| \ [-mo, wo], we have
e—inw

Ven

Applying Parseval’s equality in L2[—x, 7] and Fourier’s duality in PW,, we get

in L*[—m,7].

Fw = Y fo)

n=-—oo

o0 o
£ pw,, = 1FG2 nm = D If()P = D [(f,osinca(-—n))?,
n=—oo n=—oo
which proves our assertion. Note that o sinco (¢ — s) is the reproducing kernel in PW,,,
(21). As a corollary,

o Any signal f in PWys with o < 1, can be expanded by using the tight frame repre-
sentation (48) as

fit)y=0 Z f(n)sinco(t —n).

n=—oo

Finally, we close the section by giving sufficient conditions on the real sampling
points {t, }nez to guarantee that the sequence {e~%"* /\/27}pc7 is a frame in L2[—, ],
or equivalently, {sinc(¢ — t,)}nez is a frame in PW,. The first result in this direction
is due to Duffin and Schaeffer [39] and reads as follows:

Suppose that there exist constants 0 < e < 1, a, L > 0 so that the sampling sequence
{tn}nez satisfies |[t, —tm| > o for n # m and

sup |t, —en| < L.
neEZ

Then, {sinc(t — t,)}nez is a frame in PW,.

Condition |t, —t,| > a for n # m (the sampling set {t, }nez is said to be separated
or uniformly discrete) implies by itself the existence of a constant B > 0 such that
Y20 1f ()2 < Bl fllpw, for every f in PW, [99, p. 219]. Both conditions together
imply the existence of a constant A > 0 such that A||f|pw, < Yoo |f(ts)[? for
every f in PW,.

The second result, which proof can be found in [99, pp. 219-231], is the following:

Suppose that a uniformly discrete set {t,}ncz satisfies that there exists a constant k
such that

[flloo < k sup|f(tn)l, for all f € PWnx,
n
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then the sequence {sinc(t — t,)}nez is a frame in PW;.

(The renowned mathematician A. Beurling called this new condition balayage).

F. Iterative algorithms

The iterative method allowing to recover f € PW, from the frame operator S(f) is,
from a functional analysis point of view, the inversion of a linear operator by means of
a Neumann series. Recall that if T' is a continuous linear transformation of a Banach
space F into itself such that ||T|| < 1, then (I—T) ! exists and is continuous. Moreover,
it can be given by the series

o
I-T)'=I+T+T*+T*+... =) 1",
n=0

which converges in the operator norm topology (see, for instance, [91, p. 431]). Using
the above result we prove a version of the so-called extrapolated Richardson method,
i.e., an iterative method to find the solution f of a linear system Af = h.

o Let A be a bounded operator on a Banach space E such that ||f — A(f)]| < v|fll
for all f € E with v < 1. Then A is invertible on E and any f can be recovered from
A(f) by the following iteration algorithm: set fo = A(f) and fni1 = fn + A(f — fn)
for n > 0, then f = lim, . fn. After n iterations, the error estimate is given by

If — full <A™ £
Indeed, since ||[I — A|| < v < 1 then, I — (I — A) = A is invertible and A~ =
S22 o(I — A)*. Therefore,

n+1

gn+1 = Z(I—A)kA(f) —f, asn—oo.
k=0

On the other hand we can write

n+1 n

gnr1 = A(f) + (I = APA(F) = A(F) + (1= A) Y (1= ARA(S)

k=1 k=0
=gn+ -A(f - gn)

for n > 0 and g9 = A(f). Hence, we have obtained the convergence of the proposed
iterative algorithm to f. Moreover, regarding its convergence rate we have

1f =gall = | D2 (=] = 17— ™A AR <" 11,

k=n-+1

obtaining the desired result.
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Now we put to use this general iterative algorithm to recover bandlimited signals
from a frame in PW,. Assume that {sinc(t — t,)}nez is a frame in PW, with frame
bounds A and B. Let S be the frame operator given by

Z f(ty)sinc(- — t,),

n=-—oo

and consider the new operator § := 3 S. We prove that we can use this operator

A+ B
in the above iterative algorithm. To thls end, since Al < S < BI, we have
£ < s (S, 1) < o= AP

A + B + B A + B

Therefore,
2
2 2 S 2

91 = 221 2 1517 = s (S(9), ).

As a consequence,
I — 2
(- 8)($), ) < TSP

In a similar way we prove that

B—A
— gl < =8)1. 5.

Since I — § is a bounded self-adjoint operator we deduce [91, p. 371]

B—
— 8| = su ) , <
=5l = sup (1= 8.0 < 475

=v<1.

For more details about frames and irregular sampling see the references [10, 11, 16, 45].

Some comments about iterative algorithms for sampling purposes are in order:

a) One can see the crucial role played by the frame bounds in the convergence of the
above algorithm. Thus, it is of practical importance to obtain sharply estimates for
A and B. If only a crude upper bound B and the existence of a lower band A > 0
are known, the frame algorithm can still be used by using a relaxation parameter
A > 0 (see [45, 57] for more details).

b) If we are able to construct an approximation of the identity operator in PW, by
using a sequence of samples {f(¢,)}nez, we could apply the iterative algorithm to
recover f. For instance, let {t,}ncz be a strictly increasing real sequence with
limy, ;40 tp = Foo. Consider § = sup,cz(tn+1 — tn), the maximal gap between
samples, and {z,}ncz the sequence of midpoints, i.e., z, = (t, + tp+1)/2. In the

56



d)

case when § < 1, one can obtain an approximation of the identity operator in PW
by setting

[e 0]
A = Pow, (D0 Fta)Xiar o))
i.e., we interpolate f by a step function first, followed by the orthogonal projection
onto PW,. Indeed, it can be proved that ||f — A(f)|| < d|f| for every f € PW,
(see [45, 99] for the proof).

In [45] one can find another approximations of the identity operator in PW;. Let
{tn}nez be a sequence as above with maximal gap between samples §. If we define
Wy, = (th+1 — tn—1)/2 it is proved that the sequence

{V/wp, sinc(t — t,) }nez,

forms a frame for PW, with frame bounds (1 — §)? and (1 + 6)2?. Consequently, we
can recover any function f € PW, from

M) =z D waf (ta)sinel- ~ 1),

by means of the mentioned iterative algorithm with a rate of convergence y = 1_2;;2.

The amplitude factor ,/w, compensates for the non-uniformity of the density of
samples (see [45] for the proof).

The standard frame algorithm can be used in combination with acceleration methods
like Chebyshev acceleration or conjugate gradient acceleration, allowing a reduction
in the number of iterations [57].

The iterative techniques also work in higher dimensional settings [43].

The interested reader can also consult the related references [42, 46, 56, 57, 58, 59].

IV. Sampling stationary stochastic processes

A stochastic process {X(t) : t € R} defined on a probability space (Q2,.A,p) is said to
be a stationary (wide sense) stochastic process continuous in mean square if it verifies
the following assumptions:

(a) X(t) € L?(A;C), i.e., || X(t)||?> = E[|X(t)?] < oo, and E[X(t)] = 0, for each t € R

where E denotes the expectation of a random variable.

(b) {X(t)} is stationary (wide sense), i.e., Rx(t + u,t) = Rx(u) for all t € R, where

Rx stands for the autocorrelation function given by Rx(¢,t') = E[X ()X (¢')].
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(¢) The mapping defined as
R — L2?(A4;0)
t — X

is continuous when L?(A; C) is endowed with its usual norm ||U]|? = E[|U|?].

It is known that such a process admits an integral representation where the function to
be integrated is scalar and the measure takes values in the L2(A; C) space [51, 108, 117).
Moreover, whenever the process is bandlimited, it can be expanded as a Shannon
sampling series [51, 80, 108, 117].

The main aim in this section is to capture the main features from the latter def-
inition, i.e., stationarity and continuity, in order to obtain this class of results in an
abstract Hilbert space setting. Most of the ideas included here are taken from the
reference [52]. We begin by giving the definition of a generalized stationary process.

A generalized stationary process is a family {z:}1er C H satisfying the two following
conditions:

i) The function r(u) = (Tyyt, Te)m s well-defined for all u € R (Stationarity) ;
i1) The function r is continuous at 0 (Continuity).

The function r is the so-called autocorrelation function of the process. Observe that
whenever condition i) holds then, condition ii) implies that {z;}:«cr is a continuous
process (in the H-norm). Indeed,

th - -'175”%1 = <$t — Ts, Tt — .”L‘5> = 2T(0) - 2§R7‘(t - 3) .

Consequently, the continuity of {x; }:cr in the H norm is equivalent to the continuity of r
at 0. In particular, a generalized stationary process is weak continuous and consequently
r is continuous in R.

On the other hand, condition i) implies that r is a function of positive type since
for all choices of N € N, #1,...,ty € R, and ¢1,...,cny € C we have

N N N N
Z r(tm - tn)cma = Z <xtmaxtn>cm§ = < Z CmTty, Z metm> > 0.
m,n=1 m,n=1 m=1 m=1

Since r is a continuous function of positive type, by using Bochner’s theorem [107, p.
385] we obtain that

e There exists a positive finite measure y on Bg, the Borel sets in R, such that

r(u) = / e ().

—0o0

w is the so-called spectral measure associated with the process {z;}ier.
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Let Hx denote the Hilbert space spanned by the process {z¢}:cr in H, and consider
the space LZ of all complex valued measurable functions f such that [ |f(w)|* du(w) <
oo. Then

e There exists an isometric isomorphism ® between the spaces Li and Hx with corre-
sponding elements e and x;

To this end, define & : L2 — Hy by

n

n
‘i’(g) = Z apry, whenever g(w) = Z apetthY .
k=1 P

Clearly, for g(w) = > _7_; age’™* and ¢'(w) = > bjetliv we get

(®(9), (¢ = O anzy,, D bjme)m= > apbjr(ty —t;)
k=1 j=1

k=1j=1

=S ak [ et duge)

k=1j=1
00 n m

— / (Zakeitkw> (Zb_jeitjw) d,u(w)
T Np=1 j=1

= [ 97 @) du(e) = to,9')z3.

—o0

A standard limit process allow us to extend ® to an isometric linear map on the closed
linear manifold generated by {e*™“ : ¢t € R}, i.e., on all of Li. Clearly it maps LZ onto
Hy .

Now we derive the Shannon sampling theorem for bandlimited generalized station-
ary processes. A generalized stationary process is said to be bandlimited to [—m, w| if

suppp C [—m, 7], ie., r(u) = [T €™ du(w).

o Let {x¢}ier be a bandlimited generalized stationary process to [—m,m| and suppose
that u({—m,7}) = 0. Then, the following sampling formula holds

Ty = Z %xn, (49)

n=-—00
where the series converges in H for each t € R.
Indeed, for each t € R, we have in L?[—m, 7]
o .
eitw — Z Slnﬂ-(t — TL) einw ) (50)

w(t —n)

n=—0oo
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The Dirichlet-Jordan test [143, p. 57] ensures that convergence is also uniform on inter-
vals [—7 + 8, m — 8], with § > 0. Consequently, the series in (50) converges everywhere
in (—m, ), and p-almost everywhere in [—m, 7]. Besides, since the bounded function
'™ has Fourier coefficients O(1/n) as |n| — oo, the partial sums in (50) are uniformly
bounded in [—7, 7] [143, p. 90]. From the bounded convergence theorem for y we get

™
|
-7

when NV goes to co. We have convergence in the Li-sense, and by using the isometry

N . 2
itw Z sin ﬂ-(t - n) einw

- du(w) =0

=—N

& we obtain the desired expansion.

In particular, when the measure p is absolutely continuous with respect to the
Lebesgue measure on [—, 7, i.e., du = s(w)dw with s € L[, 7] the so-called spectral
density of the process, it implies that pu({—m,7}) = 0 and the following corollary holds

o If the measure p is absolutely continuous with respect to Lebesgue measure on [—m, 7],
then the sampling formula (49) holds.

Finally, it is worth to point out that formula (49) works for generalized stationary
processes whose p measure is not absolutely continuous with respect to the Lebesgue
measure. An easy example is given by {z; = €'®h}icg where a € (—m,7) and h € H
with ||k| = 1. In this case, 7(u) = €* and p = d,, the Dirac delta at the point a,
which is not absolutely continuous with respect to the Lebesgue measure on [—, 7].

Closing the section we provide some hints to go into more detail:
a) The first comment is concerning the integral representation of a generalized station-

ary process {z;}+cr by means of an orthogonal countably additive measure ® on Bg
and taking values in H such that

w .
:ct:/ ¢t 4B(w), teR. (51)

o0

Recall that a countably additive measure ® : B — H satisfies

(}(U Ap) = Z ®(An)

in the norm of H, for every disjoint sequence {A,}%, in Bg. The isometry & defines
the measure ®. Indeed, let B be a Borel set in R. Setting ®(B) = ®(xg), where
xB 1is the characteristic function of B, we obtain a countably aditive measure. This
measure takes orthogonal values for any disjoint Borel subsets since the following
equality holds (®(B), ®(B'))u = (xB, XB')12-
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b) In general, we can consider a process {z;};cr represented by (51) where the count-
ably additive measure ® is not necessarily orthogonal. These processes are the
so-called harmonizable processes. In the case of bandlimited harmonizable pro-
cesses the sampling formula (49) still remains valid whenever supp ® C [—7, 7] and
({—7}) = ®({r}) = 0 € H. Indeed, the convergence in (50) is ®-almost ev-
erywhere and bounded. The bounded convergence theorem for & applied to the
expansion (50) allows us to interchange the series with the integral obtaining the
sampling expansion for the process. Indeed

sin(t
xt:‘/_ﬂ Z t_n and@(W)
o
sinm(t —n
= Y e

w(t —n)

n=-—oo

Technical details about the integral of an scalar function with respect to a vectorial
measure ¢ have been obviously omitted. We refer the interested reader to reference
[9] for the details and proofs of convergence results.

We finish off with a note on harmonizable processes. Stationarity is an unacceptable
restriction in many problems such as signal detection. Searching a relaxation of
stationarity while still retaining the methods of harmonic analysis lead to Loéve [81]
to introduce the concept of harmonizability. An historical evolution of this concept
and its mathematical treatment can be found in [105]. In [30], the importance of
harmonizable stochastic processes in system analysis is stressed by showing that the
output of a wide class of systems is a harmonizable process. See also [35, 101] for
topics related with harmonizable processes and sampling.

V. At the end of the walk

The author is indebted to all those who, with their books, papers, and surveys, have
contributed to the revitalization of this beautiful and relevant topic in applied math-
ematics. Let me mention, as a sampling of references the surveys [13, 23, 63, 70], the
papers [10, 11, 26, 28, 45, 90, 123], and the books [14, 64, 67, 83, 84, 135]. Besides,
handling books on related subjects, such as wavelets or harmonic analysis is a highly
recommended exercise in order to place sampling theory in more general contexts. In
this respect see, for example, the books [12, 37, 82, 87, 104, 120].

To conclude these notes we venture to include a personal list of sampling topics or
group of topics not mentioned in previous sections. By no means should it be under-
stood as an updated state-of-the-art in Sampling Theory: it only intends to orientate
those curious readers into more advanced sampling problems from different points of
view.
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e Many bandlimited signals one meets in practical applications do not have finite en-
ergy (they do not belong to any PW;,) and the techniques in Section III do not apply.
Naturally, in this case it is necessary to specify the exact meaning of the word bandlim-
ited. Some generalizations of the concept of bandlimited signal have appeared in the
literature. In particular, if we allow the Fourier transform to be taken in the sense of
Schwartz distributions, then the class of bandlimited signals can be enlarged tremen-
dously. Any complex exponential signal e, (t) = €™ can be regarded as a bandlimited
signal, since its Fourier transform is essentially the Dirac delta function §(z —w), which
is a generalized function with compact support at {w}. Sampling theorems for signals
that are bandlimited in the distributional sense can be found, for instance, in refer-
ences [31, 50, 68, 125]. Other generalizations of the concept of bandlimited signal can
be found in [29, 78, 111, 133, 135].

e Another interesting issue is to enlarge the set of classical bandlimited functions by
considering new spaces where the WSK sampling theorem still applies. This leads to
the study of Bernstein spaces B where o > 0 and 1 < p < oo, defined as the set of
all entire functions of exponential type at most ¢ and whose restriction to R belongs
to LP(R). Tt also leads to the general Paley- Wiener classes PWZ, defined as the set of
functions f with an integral representation

g

flz) = / F(z)e**dx, withF € LP[—0,0].
—0a

In the particular case p = 2, both classes coincide, i.e., PW2 = B2. More specific

accounts of these spaces and their properties can be found in [17, 64, 132, 135].

e Also, it is surprising the strong relationship between the WKS sampling theorem
and other fundamental results in mathematics, such as Poisson’s summation formula or
Cauchy’s integral formula. In recent years, many authors have drawn new relationships
by showing the equivalence of the WSK sampling theorem, or any of its generalizations,
with other important mathematical results like the Euler-MacLaurin formula, the Abel-
Plana summation formula, Plancherel’s theorem, the maximun modulus principle or the
Phragmén-Lindel6t principle, among others. We refer the interested reader to sources
[25, 26, 27, 64, 66, 103].

e In practice, sampling expansions incur in several types of errors. Truncation error
results when only a finite number of samples are used; aliasing error occurs when the
bandlimiting condition is violated, or when an inappropriate bandwidth is used for
our signal; amplitude error arises when we only know approximations of the samples
of our signal; time-jitter error is caused by sampling at instants which differ from the
theoretical ones given by the corresponding sampling at hand; finally, information loss
error arises when some sampled data or fractions thereof are missing. Concerning this
topic see [26, 44, 64, 70, 71, 83, 135] and references therein.

e Bandlimited functions cannot be timelimited, i.e., they are defined for all ¢ € R.
Indeed, any f € PW; is an entire function and, as a consequence of the isolated zeros
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principle, it cannot be zero on any interval of the real line unless f is itself the zero
function. Also, due to the same mathematical reason, a bandlimited function can be
extrapolated. As pointed out by Prof. Higgins in his book [64, Ch. 17|, bandlimited
signals are the “mathematical model” of a “real signal”. In other words, a real signal is
considered to be known only in so far as we can make measurements or observations of
it. Although a Paley-Wiener function is not exactly timelimited, it can be considered
nearly timelimited in the sense that most of its energy is concentrated on a bounded
time interval. This leads to the study of the energy concentration of a signal, and
consequently, to the prolate spheroidal functions, and the uncertainty principle in signal
analysis. Further discussions and details about this topic can be found in references
(64, 75, 114, 115, 116, 123].

e Another interesting question is that concerning the density of sampling points required
to have a stable sampling in PWg = {f € L?(R) | suppf C B}. A sequence of
sampling points {t,} is a set of stable sampling for PWg if there exists a constant K,
independent of f € PWpg, such that

1£llze < K[ f(n)lle

for every f € PWp. Hence, errors in the output of a sampling and reconstruction
process are bounded by errors in the input. Although bandlimited functions are entire
functions and, as a consequence, are completely determined by their values in a sequence
of sampling points with an accumulation point (in particular, in any segment of the
real line), sampling in practice is meaningless in the absence of the stable sampling
condition. Note that whenever we are dealing with frames in PWpg (which includes,
in particular, orthonormal and Riesz bases) the involved sampling set is stable. This
is not the case when we are dealing with a set of uniqueness in PWp, i.e., f(t,) =0
for every n implies that f is the zero function. Notice that the set of uniqueness
condition is equivalent to the sequence of complex exponentials {eitnz} being a complete
set in L2(B). Although samples taken at a set of uniqueness determine elements of
PWpg uniquely, it does not lead to any process by which we can reconstruct a function
by its samples. For example, any finite set of M vectors {z,}, is always a frame
in the space generated by their linear combinations. When M increases, the frame
bounds may go respectively to 0 and +oc0, and this illustrates the fact that in infinite
dimensional spaces, a family of vectors may be complete and still not yield a stable
signal representation.

For a set of stable sampling for PWp, its density D(t,), defined (when the limit
exists) by

D(ty) == lim #{tn ity € [-1,7]} ’
r—00 2r

with # denoting the cardinality of a set, satisfies D(t,) > m(B)/2m, where m(B)
stands for the Lebesgue measure of the set B. The critical density m(B)/2x is called
the Nyquist-Landau sampling rate, below which stable reconstruction is not possible. In
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the case when B = [—mo, wo], the Nyquist-Landau density coincides with the Nyquist
one ¢. In the multi-channel setting, the Nyquist-Landau density is smaller than the
Nyquist one.

Furthermore, if {t,} is a set of interpolation for PWp then D(t,) < m(B)/2x.
Recall that {t,} is a set of interpolation for PWp if the moment problem f(t,) = a,
for every n has a solution whenever {a, } € £2. This is the case for Riesz bases [132, p.
169] and, as a consequence, the density D(t,) coincides with the Nyquist-Landau one
in the Riesz bases setting. For more details see [13, 64, 76, 77, 99, 112, 132]

e An extension of Shannon’s model has been proposed recently: it is the sampling
in shift-invariant or spline-like spaces. This is achieved by simply replacing the sinc
function by another generating function ¢. Accordingly, the basic approximation space
V() is specified as

V(p) = {s(t) = cxp(t — k) : {cx} € £7}.

kEZ

As pointed out in [123], this allows in practice for simpler and more realistic interpola-
tion models, which can be used in conjunction with a much wider class of anti-aliasing
prefilters that are not necessarily ideal low-pass. Measured signals in applications have
frequency components that decay for higher frequencies, but these signals are not ban-
dlimited in the strict sense. As a consequence, sampling in shift-invariant spaces that
are not bandlimited is a suitable and realistic model for many applications. See [123]
and references therein for this new topic. For irregular sampling in shift-invariant spaces
see [2, 3, 4].

To close this work, just a final comment: the coverage of sampling theory in these
notes is by no means intended to be exhaustive, and the author apologizes in advance
for any important omission.

Acknowledgments: The author would like to thank Prof. Peter W. Hawkes for the
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