Probabilistic Incremental Program Evolution (PIPE)

Population Based Incremental Learning [Baluja, 94]

- It learns explicitely a probabilistic model of the interesting regions of the search space
- If points in the search space are bitstrings (like "0101110"), the probabilistic model to be learned is:
 - a vector p=(p₁, p₂, ..., p_n)
 - *p*_i is the probability of generating a 1 in the *i* position of the bitstring *x*=(x₁, x₂, ..., x_n)
 - Initially p=(0.5, 0.5, ..., 0.5)

Population Based Incremental Learning [Baluja, 94]

- A population of x, is generated, their fitness is computed, and p is updated by using the M best individuals
- Update rule: $p'_i = p_i.(1-LR) + LR.x'_i$
- Eventually, p should converge to a solution like:
 - *p*=(0.99, 0.001, ..., 0.99)

Estimation of Distribution Algorithms (EDA's)

- 1. Generate an initial population and evaluate them
- 2. Select *M* best individuals
- 3. Estimate the probability distribution
- Generate a new population (sometimes, the old population is mixed with the new one)
- 5. If not-termination, go to 2

State of the Art for EDA's applied to GP

 Yin Shan, Robert McKay, Daryl Essam, Hussein Abbass. 2005. "A Survey of Probabilistic Model Building Genetic Programming". TR-ALAR-200510014

Probabilistic Incremental Program Evolution (PIPE)

- EDA's applied to the evolution of parse trees (hierarchical programs)
- PIPE [Salustowicz, Schmidhuber, 97]
- Search in the space of tree-shaped probability distributions
- Tries to find a distribution that generates good programs (trees)

Probabilistic Incremental Program Evolution (PIPE)

Programs made of:

- Functions: $F = \{F_1, ..., F_k\}$
- Terminals: $T = \{T_1, ..., T_l\}$
- The Generic Random Constant (GRC):
 - Similar to Ephemeral Random Constant (ERC)
- Closure required

Probabilistic Prototype Tree (PPT)

An Initial Node of the PPT

Initially:

$$P_j(I) := \frac{P_T}{l}, \forall I : I \in T$$
$$P_j(I) := \frac{1 - P_T}{k}, \forall I : I \in F,$$

Creation of the Initial Population

- The PPT is parsed top-down, left-to-righ
- A function or terminal is selected according to its probability
- If R is selected (the GRC), then:
 - If prob(R) > threshold, Then fixed value R
 - Else, generate a random value for R

Size of the PPT

- Empirically, it is enough with PPT three times the best solution found so far
- Initially, the PPT contains only the root node
- Nodes are created on demmand (if in a leave node, a function is selected, it is necessary to create the arguments)

PPT Growth

Ricaruo Aler. ICIVIL vo Automatic muuctive Programming rutorial

Probabilistic Incremental Program Evolution (PIPE)

- Every generation, the PPT is updated towards the best individual (just one), so that it becomes more likely to generate similar individuals
- Minimization
- If *fitness* are equal, the smaller solution is preferred

PIPE's Algorithm

Two modes of learning:

- Generation based learning (GBL): Updates the PPT towards the best individual in that generation. Increases the probability that similar individuals will be generated by the PPT
- Elitist learning (EL): Updates the PPT towards the best program found so far (it's a kind of long term memory)

PIPE's Algorithm

- 1. Initial Population
- 2. Fitness computation
- 3. PPT update: with probability P_{el}
 - 1. Generation Based Learning
 - 2. Elitist Learning
- 4. PPT mutation (exploration)
- 5. PPT prunning

- 1. Let $PROG_b$ be the target program, used to update the PPT
- Let P(PROG_b) be the probability that the PPT currently generates PROG_b

$$P(PROG_b) = \prod_{j:N_j \text{ used to generate } PROG_b} P_j(I_j(PROG_b))$$

3. The desired (target) probability for PROG_bis computed

$$P_{TARGET} = P(P_{ROG_b}) + (1 - P(P_{ROG_b})) \cdot lr \cdot \frac{\varepsilon + FIT(P_{ROG^{el}})}{\varepsilon + FIT(P_{ROG_b})}$$

- Ir = learning rate
- The quotient controls fitness-dependent learning (minimization)
- If large epsilon, learning is independent of the fitness (quotient = 1)

- 4. PPT is modified until $P(PROG_b) = P_{TARGET}$
- 5. Probabilities are updated in parallel.
- c^{lr} (0.1): tradeoff between good accuracy and fast update

REPEAT UNTIL $P(\operatorname{PROG}_b) \ge P_{TARGET}$: $P_j(I_j(\operatorname{PROG}_b)) := P_j(I_j(\operatorname{PROG}_b)) + c^{lr} \cdot lr \cdot (1 - P_j(I_j(\operatorname{PROG}_b)))$

 Normalization of PPT (instructions not in PROG_b, get decreased proportionally to their current value. Everything must add to 1.0)

$$P_j(I) := P_j(I) \cdot \left(1 - \frac{1 - \sum_{I^* \in S} P_j(I^*)}{P_j(I_j(\operatorname{PROG}_b)) - \sum_{I^* \in S} P_j(I^*)} \right) \quad \forall P_j(I) : I \neq I_j(\operatorname{PROG}_b)$$

amming Tutorial

Finally, R constants are copied from PROG_b to PPT

Mutating the PPT

- To explore around PROG_b
- Pj(Ij(PROG_b) of instructions in PROG_b get mutated
- P_M = mutation probability per program
- P_{Mp} = mutation probability per node and instruction
- z = number of possible instructions
- Dividing by |PROG_b| avoids larger programs having more mutations (the square root gives more mutations to large programs. Empirical reasons)

$$P_{M_p} = \frac{P_M}{z \cdot \sqrt{|\operatorname{PROG}_b|}}$$

Mutating the PPT

Mutation:

$$P_j(I) := P_j(I) + mr \cdot (1 - P_j(I))$$

Normalization:

$$P_j(I) := \frac{P_j(I)}{\sum_{I^* \in S} P_j(I^*)} \qquad \forall P_j(I) : I \in S$$

Results PIPE

- Symbolic regression: PIPE better than GP in 24% of runs, and worse in 33%. Larger variance
- 6-bit parity problem:
 - More successful runs (70% vs. 60%)
 - Faster (52476 vs. 120000 evaluations)
 - Smaller (61 vs. 90 nodes)
- <u>R. P. Salustowicz</u>, <u>M. A. Wiering</u>, <u>J.</u>
 <u>Schmidhuber</u>. 1998. "Learning Team Strategies: Soccer Case Studies". *Machine Learning Journal*

PIPE Applied to Soccer

- Domain similar to Robosoccer
- Actions:
 - Simple: go_forward, turn_to_ball, turn_to_goal, shoot
 - Complex: goto_ball, goto_goal, goto_own_goal, goto_player, goto_opponent, pass_to_player, shoot_to_goal

PIPE Applied to Soccer

- BRO: Biased Random Opponent. Biased random player (scores 75 goals to an static opponent)
- GO: Good Opponent. Scores 417 goals to BRO
- PIPE: fitness computed by playing against BRO
- COPIPE: co-evolution fitness
- TD-Q: Reinforcement learning
- A PPT is learned for every action

Results PIPE vs. BRO (simple actions)

Team size		GO	PIPE	CO-PIPE	TD-Q
	Maximum score difference	417	310	192	42
1	Average goals \pm st.d.	417 ± 6	320 ± 42	212 ± 97	52 ± 14
	Average BRO goals \pm st.d.	0 ± 0	10 ± 7	20 ± 10	10 ± 3
	Achieved after games	n.a.	3300	3000	1700
	Maximum score difference	481	359	310	70
3	Average goals \pm st.d.	481 ± 8	373 ± 86	324 ± 62	102 ± 14
	Average BRO goals \pm st.d.	0 ± 1	14 ± 6	14 ± 11	32 ± 8
	Achieved after games	n.a.	3300	3200	1700
	Maximum score difference	364	481	357	154
11	Average goals \pm st.d.	367 ± 18	512 ± 129	393 ± 53	212 ± 84
	Average BRO goals \pm st.d.	3 ± 1	31 ± 23	36 ± 27	58 ± 23
	Achieved after games	n.a.	3100	1900	2500

Results PIPE vs. BRO (complex actions)

	GO	PIPE	CO-PIPE	TD-Q
Maximum score difference	364	530	536	46
Average goals \pm st.d.	367 ± 18	551 ± 215	539 ± 220	76 ± 140
Average BRO goals \pm st.d.	3 ± 1	21 ± 35	3 ± 4	30 ± 29
Achieved after games	n.a.	1200	1200	900

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

PIPE Limitations

Probability distribution in a node is independent of other nodes

Estimation of Distribution Programming (EDP)

- Yanai, Iba. 2003. "Estimation of distribution programming based on Bayesian network". CEC 2003.
- Joint probability of father and children nodes

EDP Algorithm

- 1. Create population
- 2. Eval individuals
- 3. Estimate distribution
- 4. If termination, go to 7
- 5. Generate a new population
- 6. Replace old population
- 7. Return best individual

Bayesian Network

$$P(X_3 = x_3 | X_1 = x_1, X_2 = x_2, \cdots, X_6 = x_6, X_7 = x_7,)$$

= $P(X_3 = x_3 | X_1 = x_1, X_2 = x_2).$ (1)

Possible Bayesian Networks

Cost of Different Bayesian Networks m=núm. possible symbols

n=núm. nodes in the tree

 $n \cdot m^{i+1} \times (memory \ size \ of \ int).$ i=núm. dependencies

#	Graph topology	Memory size	Adequate	
	Dependency relationship	Level		sampling size
1	Only parent node	One	$n \cdot m^2 \times INT$	m^2
2	Only parent node	Up to two	$n \cdot m^3 \times INT$	m^3
3	Parent and brother nodes	One	$n \cdot m^4 \times INT$	m^{\star}
4	Parent and brother nodes	Up to two	$n \cdot m^5 \times INT$	m^5

$$P(X_i = x | C_i = c) = \frac{\sum_{j=1}^{N} \delta(j, X_i = x | C_i = c)}{N},$$

where
$$\delta(j, X_i = x | C_i = c) = \begin{cases} 1 & \text{if } X_i = x \text{ and } C_i = c \\ & \text{at the individual } j \\ 0 & \text{else} \end{cases}$$

j: individual j

Fitness Weighted Probabilities

$$P(X_i = x | C_i = c) = \frac{\sum_{j=1}^N F_j \delta(j, X_i = x | C_i = c)}{\sum_{j=1}^N F_i}.$$

Unlike PIPE, the probability distribution is generated directly from the population, withouth considering the previous distribution

Note: only father and brother nodes are considered Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Distribution from the Selected Individuals

Table 2: Estimating $P(X_3 = x_3 X_1 = x_1, X_2 = x_2)$					
X_3	X_1	X_2	Frequency	Probability $(= P)$	Modified probability $(= P')$
+	+	0.5	1	0.5	0.49
*	+	0.5	0	0	0.02
0.5	+	0.5	1	0.5	0.49
+	*	+	1	0.25	0.26
*	*	+	1	0.25	0.26
0.5	*	+	2	0.5	0.48
+	*	[~] *	0	0	0.03
*	*	*	0	0	0.03
0.5	*	*	2	1.0	0.94

Distribution Adjustement

$$P' = (1 - \alpha)P(X_i = x | C_i = c)$$
$$+ \alpha P_{default}(X_i = x | C_i = c).$$

$$P_{default}(X_i = x | C_i = c) = \frac{1}{node \ symbol \ number}$$

ome sort of a priory

It is some sort of a-priory probability. Thus, all probabilities become different than 0

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

(number of symbols)

Program Generation

First, the best k individuals are selected from the previous generation

Individual Generation

The "Max Problem"

Obtain the maximum value using +, * y 0.5

Easy for EDP-GP because 0.5 must be at the bottom, + in the middle and * at the top

Figure 6: The maximum value by a limited depth tree. Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Recursive Bayesian Networks

Figure 10: The method used in experiments

Figure 11: Recursive single Bayesian network

Figure 12: Recursive multi-Bayesian network

Limitations. Building Blocks at Different Places

Extended EDP (XEDP) [Yanai & Iba, 05]

It is like EDP, but in addition, it uses a recursive (position independent) bayesian network

XEDP. Redes bayesianas

Conditional Distribution (absolute position)

P(Children|father,grandfather) Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

XEDP. Generating Individuals

- It combines the two distributions (absolute and relative)
- 1. Generate a program T using the absolute distribution
- 2. Generate a subtree S using the relative distribution
- 3. Replace a subtree of T by S

XEDP. Experiments

- XEDP
- GP
- Type A: uses only thel absolute distribution
- Type B: uses only the relative distribution
- Type C: XEDP, but replaces the subtree by a random one
- Type D: XEDP, but only the absolute distribution without father-son dependencies (like PIPE)

Figure 2: Cumulative probability of success for the Max problem.

Figure 3: Cumulative probability of success for the Boolean 6-bit multiplexer problem.

Figure 4: Cumulative probability of success for the Wall-following problem.

Extended Compact Genetic Programming (ECGP)

- K. Sastry, D.E. Goldberg. 2003. <u>Probabilistic model</u> <u>building and competent genetic programming</u>. Genetic Programming Theory and Practice
- It uses Marginal Product Models
- Divides the PPT into several subtrees, considered independent
- Joint probabilities are computed for eery subtree (no independence assumed within subtrees)

EDA's with Grammars

- Shan, McKay, Baxter, Abbass, Essam, Nguyen. 2004. Grammar Model-Based Program Evolution: GMPE
- Learning Stochastic Context Free Grammars (SCFG)
- Each rewriting rule has a weight that indicates the probability to be used

GMPE Algorithm

Results. Max Problem

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Conclusions EDA-GP

- Probability distributions are explored explicitly
- They can also learn stochastic context free grammars
- Not well tested yet, but it seems that they are equivalent or better than GP