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Population Based Incremental 
Learning [Baluja, 94]

It learns explicitely a probabilistic model of 
the interesting regions of the search space
If points in the search space are bitstrings 
(like “0101110”), the probabilistic model to be 
learned is:

a vector p=(p1, p2, ..., pn)
pi is the probability of generating a 1 in the i
position of the bitstring x=(x1, x2, ..., xn)
Initially p=(0.5, 0.5, ..., 0.5)
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Population Based Incremental 
Learning [Baluja, 94]

A population of x, is generated, their 
fitness is computed, and p is updated 
by using the M best individuals
Update rule: pi’ = pi.(1-LR) + LR.xi

*

Eventually, p should converge to a 
solution like:

p=(0.99, 0.001, ..., 0.99)
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Update model with
best individuals pi’ = pi.(1-LR) + LR.xi

*
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Estimation of Distribution 
Algorithms (EDA’s)

1. Generate an initial population and 
evaluate them

2. Select M best individuals
3. Estimate the probability distribution
4. Generate a new population

(sometimes, the old population is
mixed with the new one )

5. If not-termination, go to 2
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State of the Art for EDA’s 
applied to GP

Yin Shan, Robert McKay, Daryl Essam, 
Hussein Abbass. 2005. “A Survey of 
Probabilistic Model Building 
Genetic Programming”. TR-ALAR-
200510014
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Probabilistic Incremental 
Program Evolution (PIPE)

EDA’s applied to the evolution of parse 
trees (hierarchical programs)
PIPE [Salustowicz, Schmidhuber, 97]
Search in the space of tree-shaped 
probability distributions
Tries to find a distribution that 
generates good programs (trees)
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Probabilistic Incremental 
Program Evolution (PIPE)

Programs made of:
Functions:  F = {F1, ..., Fk}
Terminals: T = {T1, ..., Tl}

The Generic Random Constant (GRC):
Similar to Ephemeral Random Constant 
(ERC)

Closure required
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Probabilistic Prototype Tree 
(PPT)
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An Initial Node of the PPT

Initially:
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Creation of the Initial 
Population

The PPT is parsed top-down, left-to-righ
A function or terminal is selected 
according to its probability
If R is selected (the GRC), then:

If prob(R) > threshold, Then fixed value R
Else, generate a random value for R
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Size of the PPT

Empirically, it is enough with PPT three 
times the best solution found so far
Initially, the PPT contains only the root 
node
Nodes are created on demmand (if in a 
leave node, a function is selected, it is
necessary to create the arguments)
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PPT Growth
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Pruning the PPT 

In case a symbol has a very large 
probability

Variable x
Only 1 argument
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Probabilistic Incremental 
Program Evolution (PIPE)

Every generation, the PPT is updated
towards the best individual (just one), 
so that it becomes more likely to 
generate similar individuals
Minimization
If fitness are equal, the smaller solution
is preferred
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PIPE’s Algorithm
Two modes of learning:

Generation based learning (GBL): Updates 
the PPT towards the best individual in that 
generation. Increases the probability that 
similar individuals will be generated by the 
PPT
Elitist learning (EL): Updates the PPT 
towards the best program found so far 
(it’s a kind of long term memory)
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PIPE’s Algorithm

1. Initial Population
2. Fitness computation
3. PPT update: with probability Pel

1. Generation Based Learning
2. Elitist Learning

4. PPT mutation (exploration)
5. PPT prunning
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PPT Update

1. Let PROGb be the target program, used to 
update the PPT

2. Let P(PROGb) be the probability that the
PPT currently generates PROGb
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PPT Update
3. The desired (target) probability for PROGbis 

computed

lr = learning rate
The quotient controls fitness-dependent learning
(minimization)
If large epsilon, learning is independent of the 
fitness (quotient = 1)
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PPT Update

4. PPT is modified until P(PROGb)=PTARGET 

5. Probabilities are updated in parallel. 
6. clr (0.1): tradeoff between good accuracy 

and fast update
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PPT Update

5. Normalization of PPT (instructions not in 
PROGb, get decreased proportionally to 
their current value. Everything must add to
1.0) 
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PPT Update

6. Finally, R constants are copied from 
PROGb to PPT
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Mutating the PPT
To explore around PROGb

Pj(Ij(PROGb) of instructions in PROGb get mutated
PM= mutation probability per program
PMp = mutation probability per node and instruction
z = number of possible instructions
Dividing by |PROGb| avoids larger programs having more 
mutations (the square root gives more mutations to large 
programs. Empirical reasons)
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Mutating the PPT

Mutation:

Normalization:
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Results PIPE
Symbolic regression: PIPE better than GP in 
24% of runs, and worse in 33%. Larger 
variance
6-bit parity problem:

More successful runs (70% vs. 60%)
Faster (52476 vs. 120000 evaluations)
Smaller (61 vs. 90 nodes)

R. P. Salustowicz, M. A. Wiering, J. 
Schmidhuber. 1998. “Learning Team 
Strategies: Soccer Case Studies”. 
Machine Learning Journal

http://liinwww.ira.uka.de/csbib?query=%2Bau:SalustowiczRP*+%2Bau:Salustowicz&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:WieringMA*+%2Bau:Wiering&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:SchmidhuberJ*+%2Bau:Schmidhuber&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:SchmidhuberJ*+%2Bau:Schmidhuber&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:SchmidhuberJ*+%2Bau:Schmidhuber&maxnum=200&sort=year
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PIPE Applied to Soccer

Domain similar to Robosoccer
Actions:

Simple: go_forward, turn_to_ball, 
turn_to_goal, shoot
Complex: goto_ball, goto_goal, 
goto_own_goal, goto_player, 
goto_opponent, pass_to_player, 
shoot_to_goal
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PIPE Applied to Soccer
BRO: Biased Random Opponent. Biased 
random player (scores 75 goals to an static
opponent)
GO: Good Opponent. Scores 417 goals to
BRO
PIPE: fitness computed by playing against
BRO
COPIPE: co-evolution fitness
TD-Q: Reinforcement learning
A PPT is learned for every action
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Results PIPE vs. BRO (simple 
actions)



Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Results PIPE vs. BRO 
(complex actions)
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PIPE Limitations

Probability distribution in a node is 
independent of other nodes
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PIPE, ECJP, EDP 
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Estimation of Distribution 
Programming (EDP)

Yanai, Iba. 2003. “Estimation of 
distribution programming based on 
Bayesian network”. CEC 2003.
Joint probability of father and children 
nodes
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EDP Algorithm

1. Create population
2. Eval individuals
3. Estimate distribution
4. If termination, go to 7
5. Generate a new population
6. Replace old population
7. Return best individual
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Bayesian Network
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Possible Bayesian Networks
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Cost of Different Bayesian 
Networks

m=núm. possible symbols

n=núm. nodes in the tree

i=núm. dependencies
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Computing Probabilities

j: individual j
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Fitness Weighted Probabilities

Unlike PIPE, the probability distribution is
generated directly from the population, withouth
considering the previous distribution
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Selected Individuals

Note: only father and brother nodes are considered
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Distribution from the Selected 
Individuals
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Distribution Adjustement

(number of symbols)

It is some sort of a-priory 
probability. Thus, all 
probabilities become 
different than 0
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Program Generation

First, the best k individuals are selected 
from the previous generation
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Individual Generation
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The “Max Problem”
Obtain the maximum value using +, * y 0.5

Easy for EDP-GP because 0.5 must be at the bottom, + in 
the middle and * at the top
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Results. Max Problem
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Results. 6-Multiplexer
Here EDP works slightly worse
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Recursive Bayesian Networks
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Limitations. Building Blocks at 
Different Places
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Extended EDP (XEDP) [Yanai
& Iba, 05]

It is like EDP, but in addition, it uses a 
recursive (position independent) 
bayesian network 
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XEDP. Redes bayesianas

P(Children|father,grandfather) P(children|father)

Dist. Recursiva (relative
position)

Conditional Distribution 
(absolute position)
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XEDP. Generating Individuals

It combines the two distributions
(absolute and relative)

1. Generate a program T using the 
absolute distribution

2. Generate a subtree S using the 
relative distribution

3. Replace a subtree of T by S
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XEDP. Experiments
XEDP
GP
Type A: uses only thel absolute distribution
Type B: uses only the relative distribution
Type C: XEDP, but replaces the subtree by a 
random one
Type D: XEDP, but only the absolute 
distribution without father-son dependencies 
(like PIPE)
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Results Max Problem
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Results 6-multiplexer
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Results Wall-following 
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Extended Compact Genetic 
Programming (ECGP)

K. Sastry, D.E. Goldberg. 2003. Probabilistic model 
building and competent genetic programming. 
Genetic Programming Theory and Practice 

It uses Marginal Product Models
Divides the PPT into several subtrees, 
considered independent
Joint probabilities are computed for eery 
subtree (no independence assumed within
subtrees)

http://gal31.ge.uiuc.edu/kumara/2003/10/12/probabilistic-model-building-and-competent-genetic-programming/
http://gal31.ge.uiuc.edu/kumara/2003/10/12/probabilistic-model-building-and-competent-genetic-programming/
http://gal31.ge.uiuc.edu/kumara/2003/10/12/probabilistic-model-building-and-competent-genetic-programming/
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EDA’s with Grammars

Shan, McKay, Baxter, Abbass, Essam, 
Nguyen. 2004. Grammar Model-Based 
Program Evolution: GMPE
Learning Stochastic Context Free 
Grammars (SCFG)
Each rewriting rule has a weight that 
indicates the probability to be used
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GMPE Algorithm
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Results. Max Problem 
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Conclusions EDA-GP

Probability distributions are explored 
explicitely
They can also learn stochastic context
free grammars
Not well tested yet, but it seems that 
they are equivalent or better than GP
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