
Probabilistic Incremental
Program Evolution (PIPE)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Population Based Incremental
Learning [Baluja, 94]

It learns explicitely a probabilistic model of
the interesting regions of the search space
If points in the search space are bitstrings
(like “0101110”), the probabilistic model to be
learned is:

a vector p=(p1, p2, ..., pn)
pi is the probability of generating a 1 in the i
position of the bitstring x=(x1, x2, ..., xn)
Initially p=(0.5, 0.5, ..., 0.5)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Population Based Incremental
Learning [Baluja, 94]

A population of x, is generated, their
fitness is computed, and p is updated
by using the M best individuals
Update rule: pi’ = pi.(1-LR) + LR.xi

*

Eventually, p should converge to a
solution like:

p=(0.99, 0.001, ..., 0.99)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

(0.1, 0.9, 0.5, 0.8)
0101

0111

0101

0111

0101

0010

1100

0111

0101

0111

Population
Probability model

0

0.8

0.7

0.5

0.9

0.3

0.2

0.1

0.5

0.4

Population Based Incremental
Learning [Baluja, 94]

Update model with
best individuals pi’ = pi.(1-LR) + LR.xi

*

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Estimation of Distribution
Algorithms (EDA’s)

1. Generate an initial population and
evaluate them

2. Select M best individuals
3. Estimate the probability distribution
4. Generate a new population

(sometimes, the old population is
mixed with the new one)

5. If not-termination, go to 2

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

State of the Art for EDA’s
applied to GP

Yin Shan, Robert McKay, Daryl Essam,
Hussein Abbass. 2005. “A Survey of
Probabilistic Model Building
Genetic Programming”. TR-ALAR-
200510014

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Probabilistic Incremental
Program Evolution (PIPE)

EDA’s applied to the evolution of parse
trees (hierarchical programs)
PIPE [Salustowicz, Schmidhuber, 97]
Search in the space of tree-shaped
probability distributions
Tries to find a distribution that
generates good programs (trees)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Probabilistic Incremental
Program Evolution (PIPE)

Programs made of:
Functions: F = {F1, ..., Fk}
Terminals: T = {T1, ..., Tl}

The Generic Random Constant (GRC):
Similar to Ephemeral Random Constant
(ERC)

Closure required

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Probabilistic Prototype Tree
(PPT)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

An Initial Node of the PPT

Initially:

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Creation of the Initial
Population

The PPT is parsed top-down, left-to-righ
A function or terminal is selected
according to its probability
If R is selected (the GRC), then:

If prob(R) > threshold, Then fixed value R
Else, generate a random value for R

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Size of the PPT

Empirically, it is enough with PPT three
times the best solution found so far
Initially, the PPT contains only the root
node
Nodes are created on demmand (if in a
leave node, a function is selected, it is
necessary to create the arguments)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

PPT Growth

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Pruning the PPT

In case a symbol has a very large
probability

Variable x
Only 1 argument

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Probabilistic Incremental
Program Evolution (PIPE)

Every generation, the PPT is updated
towards the best individual (just one),
so that it becomes more likely to
generate similar individuals
Minimization
If fitness are equal, the smaller solution
is preferred

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

PIPE’s Algorithm
Two modes of learning:

Generation based learning (GBL): Updates
the PPT towards the best individual in that
generation. Increases the probability that
similar individuals will be generated by the
PPT
Elitist learning (EL): Updates the PPT
towards the best program found so far
(it’s a kind of long term memory)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

PIPE’s Algorithm

1. Initial Population
2. Fitness computation
3. PPT update: with probability Pel

1. Generation Based Learning
2. Elitist Learning

4. PPT mutation (exploration)
5. PPT prunning

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

PPT Update

1. Let PROGb be the target program, used to
update the PPT

2. Let P(PROGb) be the probability that the
PPT currently generates PROGb

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

PPT Update
3. The desired (target) probability for PROGbis

computed

lr = learning rate
The quotient controls fitness-dependent learning
(minimization)
If large epsilon, learning is independent of the
fitness (quotient = 1)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

PPT Update

4. PPT is modified until P(PROGb)=PTARGET

5. Probabilities are updated in parallel.
6. clr (0.1): tradeoff between good accuracy

and fast update

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

PPT Update

5. Normalization of PPT (instructions not in
PROGb, get decreased proportionally to
their current value. Everything must add to
1.0)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

PPT Update

6. Finally, R constants are copied from
PROGb to PPT

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Mutating the PPT
To explore around PROGb

Pj(Ij(PROGb) of instructions in PROGb get mutated
PM= mutation probability per program
PMp = mutation probability per node and instruction
z = number of possible instructions
Dividing by |PROGb| avoids larger programs having more
mutations (the square root gives more mutations to large
programs. Empirical reasons)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Mutating the PPT

Mutation:

Normalization:

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Results PIPE
Symbolic regression: PIPE better than GP in
24% of runs, and worse in 33%. Larger
variance
6-bit parity problem:

More successful runs (70% vs. 60%)
Faster (52476 vs. 120000 evaluations)
Smaller (61 vs. 90 nodes)

R. P. Salustowicz, M. A. Wiering, J.
Schmidhuber. 1998. “Learning Team
Strategies: Soccer Case Studies”.
Machine Learning Journal

http://liinwww.ira.uka.de/csbib?query=%2Bau:SalustowiczRP*+%2Bau:Salustowicz&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:WieringMA*+%2Bau:Wiering&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:SchmidhuberJ*+%2Bau:Schmidhuber&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:SchmidhuberJ*+%2Bau:Schmidhuber&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=%2Bau:SchmidhuberJ*+%2Bau:Schmidhuber&maxnum=200&sort=year

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

PIPE Applied to Soccer

Domain similar to Robosoccer
Actions:

Simple: go_forward, turn_to_ball,
turn_to_goal, shoot
Complex: goto_ball, goto_goal,
goto_own_goal, goto_player,
goto_opponent, pass_to_player,
shoot_to_goal

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

PIPE Applied to Soccer
BRO: Biased Random Opponent. Biased
random player (scores 75 goals to an static
opponent)
GO: Good Opponent. Scores 417 goals to
BRO
PIPE: fitness computed by playing against
BRO
COPIPE: co-evolution fitness
TD-Q: Reinforcement learning
A PPT is learned for every action

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Results PIPE vs. BRO (simple
actions)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Results PIPE vs. BRO
(complex actions)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

PIPE Limitations

Probability distribution in a node is
independent of other nodes

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

PIPE, ECJP, EDP

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Estimation of Distribution
Programming (EDP)

Yanai, Iba. 2003. “Estimation of
distribution programming based on
Bayesian network”. CEC 2003.
Joint probability of father and children
nodes

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

EDP Algorithm

1. Create population
2. Eval individuals
3. Estimate distribution
4. If termination, go to 7
5. Generate a new population
6. Replace old population
7. Return best individual

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Bayesian Network

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Possible Bayesian Networks

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Cost of Different Bayesian
Networks

m=núm. possible symbols

n=núm. nodes in the tree

i=núm. dependencies

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Computing Probabilities

j: individual j

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Fitness Weighted Probabilities

Unlike PIPE, the probability distribution is
generated directly from the population, withouth
considering the previous distribution

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Selected Individuals

Note: only father and brother nodes are considered

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Distribution from the Selected
Individuals

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Distribution Adjustement

(number of symbols)

It is some sort of a-priory
probability. Thus, all
probabilities become
different than 0

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Program Generation

First, the best k individuals are selected
from the previous generation

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Individual Generation

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

The “Max Problem”
Obtain the maximum value using +, * y 0.5

Easy for EDP-GP because 0.5 must be at the bottom, + in
the middle and * at the top

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Results. Max Problem

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Results. 6-Multiplexer
Here EDP works slightly worse

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Recursive Bayesian Networks

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Limitations. Building Blocks at
Different Places

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Extended EDP (XEDP) [Yanai
& Iba, 05]

It is like EDP, but in addition, it uses a
recursive (position independent)
bayesian network

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

XEDP. Redes bayesianas

P(Children|father,grandfather) P(children|father)

Dist. Recursiva (relative
position)

Conditional Distribution
(absolute position)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

XEDP. Generating Individuals

It combines the two distributions
(absolute and relative)

1. Generate a program T using the
absolute distribution

2. Generate a subtree S using the
relative distribution

3. Replace a subtree of T by S

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

XEDP. Experiments
XEDP
GP
Type A: uses only thel absolute distribution
Type B: uses only the relative distribution
Type C: XEDP, but replaces the subtree by a
random one
Type D: XEDP, but only the absolute
distribution without father-son dependencies
(like PIPE)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Results Max Problem

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Results 6-multiplexer

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Results Wall-following

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Extended Compact Genetic
Programming (ECGP)

K. Sastry, D.E. Goldberg. 2003. Probabilistic model
building and competent genetic programming.
Genetic Programming Theory and Practice

It uses Marginal Product Models
Divides the PPT into several subtrees,
considered independent
Joint probabilities are computed for eery
subtree (no independence assumed within
subtrees)

http://gal31.ge.uiuc.edu/kumara/2003/10/12/probabilistic-model-building-and-competent-genetic-programming/
http://gal31.ge.uiuc.edu/kumara/2003/10/12/probabilistic-model-building-and-competent-genetic-programming/
http://gal31.ge.uiuc.edu/kumara/2003/10/12/probabilistic-model-building-and-competent-genetic-programming/

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

EDA’s with Grammars

Shan, McKay, Baxter, Abbass, Essam,
Nguyen. 2004. Grammar Model-Based
Program Evolution: GMPE
Learning Stochastic Context Free
Grammars (SCFG)
Each rewriting rule has a weight that
indicates the probability to be used

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

GMPE Algorithm

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Results. Max Problem

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Conclusions EDA-GP

Probability distributions are explored
explicitely
They can also learn stochastic context
free grammars
Not well tested yet, but it seems that
they are equivalent or better than GP

	Probabilistic Incremental Program Evolution (PIPE)
	Population Based Incremental Learning [Baluja, 94]
	Population Based Incremental Learning [Baluja, 94]
	Estimation of Distribution Algorithms (EDA’s)
	State of the Art for EDA’s applied to GP
	Probabilistic Incremental Program Evolution (PIPE)
	Probabilistic Incremental Program Evolution (PIPE)
	Probabilistic Prototype Tree (PPT)
	An Initial Node of the PPT
	Creation of the Initial Population
	Size of the PPT
	PPT Growth
	Pruning the PPT
	Probabilistic Incremental Program Evolution (PIPE)
	PIPE’s Algorithm
	PIPE’s Algorithm
	PPT Update
	PPT Update
	PPT Update
	PPT Update
	PPT Update
	Mutating the PPT
	Mutating the PPT
	Results PIPE
	PIPE Applied to Soccer
	PIPE Applied to Soccer
	Results PIPE vs. BRO (simple actions)
	Results PIPE vs. BRO (complex actions)
	PIPE Limitations
	PIPE, ECJP, EDP
	Estimation of Distribution Programming (EDP)
	EDP Algorithm
	Bayesian Network
	Possible Bayesian Networks
	Cost of Different Bayesian Networks
	Computing Probabilities
	Fitness Weighted Probabilities
	Selected Individuals
	Distribution from the Selected Individuals
	Distribution Adjustement
	Program Generation
	Individual Generation
	The “Max Problem”
	Results. Max Problem
	Results. 6-Multiplexer
	Recursive Bayesian Networks
	Limitations. Building Blocks at Different Places
	Extended EDP (XEDP) [Yanai & Iba, 05]
	XEDP. Redes bayesianas
	XEDP. Generating Individuals
	XEDP. Experiments
	Results Max Problem
	Results 6-multiplexer
	Results Wall-following
	Extended Compact Genetic Programming (ECGP)
	EDA’s with Grammars
	GMPE Algorithm
	Results. Max Problem
	Conclusions EDA-GP

