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Abstract

Robotics is an emergent field which is currently in vogue. He near future, many
researchers anticipate the spread of robots coexistifighwiinans in the real world. This
requires a considerable level of autonomy in robots. Mageow order to provide a proper
interaction between robots and humans without technicaMedge, these robots must be-
have according to the social and cultural norms. This resuocial robots with cognitive
capabilities inspired by biological organisms such as hmsma animals.

The work presented in this dissertation tries to extend thereomy of a social robot
by implementing a biologically inspired decision making®m which allows the robot to
make its own decisions. Considering this kind of decisiokimgasystem, the robot will
not be considered as a slave any more, but as a partner.

The decision making system is based on drives, motivatenstions, and self-learning.
According to psychological theories, drives are deficitttdérnal variables or needs (e.g.
energy) and the urge to correct these deficits are the miotigate.g. survival). Following
a homeostatic approach, the goal of the robot is to satsfyrives maintaining its necessi-
ties within an acceptable range, i.e. to keep the robot'tbeilg as high as possible. The
learning process provides the robot with the proper behstocope with each motivation
in order to achieve the goal.

In this dissertation, emotions are individually treatelioiwing a functional approach.
This means that, considering some of the different funstiohemotions in animals or
humans, each artificial emotion plays a different role. Hiaggs and sadness are employed
during learning as the reward or punishment respectivelihsy evaluate the performance
of the robot. On the other hand, fear plays a motivationa,rthlat is, it is considered as
a motivation which impels the robot to avoid dangerous sibua. The benefits of these
emotions in a real robot are detailed and empirically tested
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The robot decides its future actions based on what it hasdédirom previous expe-
riences. Although the current context of this robot is leditto a laboratory, the social
robot cohabits with humans in a potentially non-deternticienvironment. The robot is
endowed with a repertory of actions but, initially, it does know what action to execute
either when to do it. Actually, it has to learn the policy ofleior, i.e. what action to
execute in different world configuration, that is, in evetats, in order to satisfy the drive
related to the highest motivation. Since the robot will kerteng in a real environment in-
teracting with several objects, it is desired to achievepttiey of behavior in an acceptable
range of time.

The learning process is performed using a variation of thi-km®wn Q-Learning
algorithm, the Object Q-Learning. By using this algorithifme robot learns the value of
every state-action pair through its interaction with theiemment. This means, it learns
the value that every action has in every possible state;itgteehthe value, the better the
action is in that state. At the beginning of the learning psscthese values, called tfe
values, can all be set to the same value, or some of them cawduetéi another value.
In the first case, this implies that the robot will learn froonagch; in the second case, the
robot has some kind of previous information about the actelection. These values are
updated during the learning process.

The emotion of fear is particularly studied. The generagimotess of this emotion (the
appraisal) and the reactions to fear are really useful t@writie robot with an adaptive
reliable mechanism of “survival”. This dissertation presea social robot which benefits
from a particular learning process of new releasers of fearthe capacity to identify new
dangerous situations. In addition, by means of the decis@king system, the robot learns
different reactions to prevent danger according to diffetenpredictable events. In fact,
these reactions to fear are quite similar to the fear reagtdserved in nature.

Another challenge is to design a solution for the decisiokingasystem in such a way
that it is flexible enough to easily change the configuratioeven apply it to different
robots.

Considering the bio-inspiration of this work, this reséef@nd other related works) was
born as a try to better understand the brain processes.hi¢ iauthor’s hope that it sheds
some light in the study of mental processes, in particulaseéhwhich may lead to mental
or cognitive disorders.
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Resumen

La robdtica es un area emergente que actualmente se ercapritoga. Muchos cien-
tificos pronostican que, en un futuro proximo, los robot titas&n con las personas en el
mundo real. Para que esto llegue a suceder, se necesitasqudtds tengan un nivel de
autonomia considerable. Ademas, para que exista unadoi@naentre robots y personas
sin conocimientos técnicos, estos robots deben compedaracuerdo a las normas socia-
les y culturales. Esto nos lleva a robots sociales con cdpdes cognitivas inspiradas en
organismos biolégicos, como los humanos o los animales.

El trabajo que se presenta en esta tesis pretende aumeataoteomia de un robot
social mediante la implementacion de un sistema de tomadsialees bioinspirado que
permita a un robot tomar sus propias decisiones. Desde @ste ge vista, el robot no se
considerard mas como un esclavo, sino como un compafiero.

El sistema de toma de decisiones esta basado en necesidades,(motivaciones,
emociones y auto-aprendizaje. De acuerdo a diversassqmsieoldgicas, las necesidades
son carencias o déficits de variables internas (por ejertglenergia) y el impulso para
corregir estas necesidades son las motivaciones (comgegpaple la supervivencia). Con-
siderando un enfoque homeostatico, el objetivo del robgha#sfacer sus carencias man-
teniéndolas en un nivel aceptable. Esto quiere decir quieéstar del robot debe ser lo
mas alto posible. El proceso de aprendizaje permite al mdsdrrollar el comportamiento
necesario segun las distintas motivaciones para lograbjstivm.

En esta tesis, las emociones son consideradas de formaunlidesde un punto de
vista funcional. Esto significa que, considerando las difers funciones de las emociones
en animales y humanos, cada una de las emociones artifipialgs un papel diferente.
Por un lado, la felicidad y la tristeza se usan durante elralizaje como refuerzo o cas-
tigo respectivamente y, por tanto, evaluan el comportaimidal robot. Por otro lado, el
miedo juega un papel motivacional, es decir, es considezaim una motivacion la cual
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“empuja” el robot a evitar las situaciones peligrosas. Lelies y las ventajas de estas
emociones en un robot real se muestran empiricamente gtodareste libro.

El robot decide sus acciones futuras en base a lo que ha awesn experiencias
pasadas. A pesar de que el contexto actual del robot estadiora un laboratorio, el robot
social cohabita con personas en un entorno potencialmerdeterministico. El robot esta
equipado con un repertorio de acciones pero, inicialmetesabe qué accidn ejecutar ni
cuando hacerlo. De echo, tiene que aprender la politica iadamiento, esto es, qué
accion ejecutar en diferentes configuraciones del mundedda estado) para satisfacer
la necesidad relacionada con la motivacion mas alta. Pgestel robot aprende en un
entorno real interaccionando con distintos objetos, ess@iD que este aprendizaje se
realice en un tiempo aceptable.

El algoritmo de aprendizaje que se utiliza es una variacgdeahocido Q-Learning, el
Object Q-Learning. Mediante este algoritmo el robot apeegldvalor de cada par estado-
accion a través de interaccion con el entorno. Esto signijiea aprende el valor de cada
accion in cada posible estado. Cuanto mas alto sea el vadgoy s la accion en ese es-
tado. Al inicio del proceso de aprendizaje, estos valolasiddos valore§), pueden tener
todos el mismo valor o pueden pueden tener asignados dsstiatores. En el primer caso,
el robot no dispone de conocimientos previos; en el segueldobot dispone de cierta in-
formacion sobre la accion a elegir. Estos valores seramléados durante el aprendizaje.

La emocion de miedo es especialmente estudiada en estd_tefisma de generarse
esta emocion (edppraisa) y las reacciones al miedo resultan realmente Utiles a ader
dotar al robot con un mecanismo de supervivencia adaptdlablg. Esta tesis presenta un
robot social que utiliza un proceso particular para el agigje de nuevos “liberadores”
del miedo, es decir, dispone de la capacidad de identificewasusituaciones peligrosas.
Ademas, mediante el sistema de toma de decisiones, el roteotde diferente reacciones
para protegerse ante posibles dafios causados por diveestwssimpredecibles. De echo,
estas reacciones al miedo son bastante similares a lasomes@l miedo que se pueden
observar en la naturaleza.

Otro reto importante es el disefio de la solucidn: el sistezrtamha de decisiones tiene
que disefiarse de forma que sea suficientemente flexible paratip cambiar facilmente
la configuracién o incluso para aplicarse a distintos robots

Teniendo en cuenta el enfoque bioinspirado de este trabst@ investigacion (y mu-
chos otros trabajos relacionados) surge como un intentotg@der un poco mas lo que
sucede en el cerebro. El autor espera que esta tesis puetia apel estudio de los proce-
s0s mentales, en particular aquellos que pueden llevardadigses mentales o cognitivos.
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CHAPTER 1

Introduction

1.1 Motivation

The current society is aging. According to the data obtafrad the Spanish National
Statistics Institute, the Spanish population is gettirdgoband this tendency will remain, at
least, for the next forty years. As shown in Figlréfl ,lthe Spanish population pyramid
is expected to get wider in upper levels over the years. Tdrigesponds to a constrictive
pyramid, which means lower percentages of young peopleiagéneral, an elder popula-
tion. This is often a typical pattern of a developed countrgesults in an increment of the
percentage of the dependency ratio (everyone out of workg®). In fact, it is expected
that in 2049 the dependency ratio reachessth&%, from the currentt7,8%. These data
correspond to Spain, however a similar tendency can be wx$ar most of the developed
countries.

The consequences of the aging of the population are that maca people will de-
mand different services and, probably, the available |&rae and the economic resources
will not be enough for providing the required services. lis tontext, robots are a promis-
ing tool for increasing the labor capacity of a society, ameirtcost will be reduced once
they are mass produced. The development of new robots, whiche able to perform
tasks in the same manner (or at least close) as humans da eaohlution to many services
where, nowadays, humans cannot be replaced. Among otler tabots are already car-
rying out several works traditionally achieved by humarstfgrming as museum guides
[9], handling explosived]10], delivering medicines in pitals [11], assisting elders in

This plot has been obtained from the web of the National Stedil Institute of Spair{]8]
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daily shoppingl[[1R], facilitating daily tasks to handicapipeople[[13], or transporting in
industrial productionsT14].

Most of these tasks implies that people directly interaghwine robot. Apparently,
human-robot interactions will spread fast. Bill Gatesetith paper at Scientific American
magazine as “A robot in every house” (Jan. 2007). This isthesforecast of a relevant per-
son, but this idea has been going round and round for yeaesinthease of robots foresees
a widespread use of robots living with humans. It is expetiiatin a near future, personal
robots will be endowed with enough autonomy to work and livean individual’s home.
For these reasons, social robots (those robots interastthdnumans in natural ways) need
to be able to decide their own actions (autonomy), to makibeigtive plans (reasoning),
and to have an emotional behavior in order to facilitate tin@én-robot interaction.

The expansion of social robots will bring people without &mpwledge about robots
trying to interact with them in a natural way, i.e. in the samenner they do with animals
or other humans. Therefore, these robots must be endowbldhetrequired abilities to
provide a proper human-robot interaction and life-like egmance. In order to achieve
these capabilities, robots must be endowed with capaaitssred by humans, or at least
by animals. Thus, it is desired to equip robots withgnitive capacities which provide
enoughautonomyto develop their tasks. Accordingly, cognitive and phykitanan-robot
interaction are nowadays among the most studied aspedts obthotics[[15].
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1.1.1 Cognitive robotics

During the last few years, the interest in robots which ategrated in our everyday envi-
ronment, personal robots, has increased [16]. Human-ioteraction is one of the main
characteristics of these robots. Therefore, many eff@vg lbeen put into human-robot in-
teraction. In order to facilitate it, the robotic researsimow centered on cognitive robotics
which addresses the emerging field of autonomous systernawtiticial reasoning skills.

In the Nineties, the term “cognitive robotics” was first mduced by Ray Reiter and his
colleagues, who have a research group in this topic at theesity of Toronto. According
to them, cognitive robotics is concerned with endowing tabor software agents with
higher level cognitive functions that involve reasoninguaigoals, perception, actions,
mental states of other agents, collaborative task exetugite. In 1997, Brooks defined
cognitive roboticgL7] as the field aimed to give the robot cognitive abilitieattmake the
robot forms and develops knowledge and skills indepengamitl gradually through cog-
nitive processes. The idea is to extend the robots’ alslitieorder to implement some of
the high level cognitive functions. Some examples of higklleognitive functions already
implemented in robots are surpri§el[18], developmentahlag [19], and deception[20].

Moreover, at the beginning of the Sixties, the artificiakiitgence precursor Herbert
Simon was convinced that including emotions in the cogaitivodel to approximate the
human mind was necessary[21]. Later, near the mid Ningtie®mnio Damasio published
Descartes’s Errorf22]. His studies proved that damage to the brain’s emotieystem
caused the patient to make poor judgments despite intaitaloggasoning skills. As a
consequence, the positive role of human emotions in cagngiarted to gain prominence
among a group of researchers from the scientific communayer_other studies showed
that emotions have influence on many cognitive mechanisana$, 8 memory, attention,
perception, and reasoning[23] 24] P5, 26]. Besides, em®ptay a very important role in
survival, social interaction and learning of new behav[8i% (28 ,29].

Therefore, in recent years, the role of emotional mechasismmatural and artificial
cognitive architectures, in particular in cognitive ralsst has become very popular. Ac-
cording to Ziemke[[30], in relation to the main question: dbats need emotions? many
researchers have answered positively, mainly considéhmd¢wo aspects of emotion: the
external (social) one and the internal (individual) onsekms to be obvious that in human-
robot social interaction, expression of emotions helpsad&erninteraction more natural[31].
On the other hand, the internal aspects of emotion, i.eolésin the behavioral organiza-
tion of an individual cognitive agent, are essential foradlaéonomy issue. This is the main
concern of this dissertation.

1.1.2 Autonomy

Autonomy is a term widely used in literature and its meangugges from very different
levels. Is it possible to achieve a full autonomous robot?t tesirable? Absolutely
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autonomous robots are impossible to build. Robots are degifpr achieving duties and
this implies some kind of interaction with the world. Evenntman beings do not have
this level of autonomy, they depend on others and their enaiient. In particularsocial
robotsare intended for interacting with humans and assisting timeseveral tasks. It is
desired that such tasks are accomplished by them withowtilance and this idea implies
a certain level of autonomy.

As a result of the previous ideas, several levels of autonomgbots can be found. A
brief classification, from low to high autonomy, is listedde.

. Teleoperated robots they just execute actions commanded by an operator. Deci-
sions are made just by the operator, so the robot is extgro@titrolled by a human.
For example, a bomb disposal robot is remotely controllethbypolice.

. Robots with a minimal autonomy: still there is an operator commanding the robot
but it can make low level decisions, generally related taisgg e.g. avoiding ob-
stacles or interrupting its working cycle when a person iected nearby the robot.
For instance, in some surgical robots, the surgeon telatggethe movements but
the robot filters the motions proposed by the surgeon to kegptbose which are
compatible with the surgical plan.

. Slaverobots: the robot receives high level commands suclg@s$o a pointor per-
form certain task The robot behaves as a “slave”. The robot’s goal is deciged b
a human. Space robots are clear examples of this kind. Tleeyweeshigh level
commands, such asample the surfagdrom the earth base and perform the task
according to the circumstances.

. Repetitiverobots: these robots are endowed with predefined behaviors. It coes
receive orders from people but its actions are fixed and kndwaditionally, these

robots are employed to repetitive tasks. For example, imidlisobots in car manu-

facturing have very specific tasks assigned and they do raoigeh

. Script-basedobots: several scripts are in charge of define the robot’s behakaech
script is a fix sequence of actions and the decision of whidptso use depends on
internal and external events. For example, a guide-robatrimuseum has different
behaviors which are predefined and they depend on the pempiedathe robot, the
level of energy, the exhibition, etc.

. Self-goal-directedrobots: there is an internal state related to physical parameters
(e.g. battery level) as well as other more “cognitive” andstact” aspects, such as
happiness The internal state is related to the purpose of the robothvis able to
determine its own goals. This thesis is framed in this level.



1.1. Motivation 5

Figure[1.P depicts robots from all these levels placed aliegrto their autonomy and
the importance of humans in their control. As shown, the @idével of autonomy, the less
important the role of the humanis. This could clearly risggl risks in case of malfunction
of the robot: who is responsible for thaf?]32].

Teleoperated

Human f Minimal

control = }l autonarmy

Self
goal

directed
Script-bosed

Autonomy

Figure 1.2: Levels of autonomy in robots in relation to theeleof human control

Bellman [28] states that autonomy implies a decision makingess and this requires
some knowledge about the current state of the agent ancbenvemt, including its objec-
tives. In consequence, the level of autonomy relates to th@uat of decisional mecha-
nisms they are endowed with[33]. Moreover, several autbioch as Arkin[[34], Gadanho
[24], Bellman [28], or Cafiamerig[29], in general, state tmatautonomous agent must be
self-sustained, which implies a decision making systencofding to Hardy-Vallée[35],
making choices is a reasoning process and rational desiasi@made taking into account
the probability and the outcomes of each action.

Moreover, some definitions of robots classify them as a gpéand of agents and,
being an agent entails making choicgsl[35]. Consequerthots have to be endowed
with some kind of decision making mechanism. An autonomob®t acts on the basis
of its own decisions[]36] in order to fulfill its goals. Thus,must know what action to
execute in every situation. In the case that this robot doekawve this knowledge, it must
learn this relation between situations and actions. Adogrdo Mataric [37], learning
has been denominated as one of the distinctive marks of teligence and introducing
adaptation and learning skills in artificial systems is ohéhe greatest challenges of the
artificial intelligence. Moreover, GadanHa [24] stated tearning is an important skill for
an autonomous agent, since it gives the agent the plastieggled for being independent.



6 Chapter 1. Introduction

As in other scientific fields, researchers try to imitate alghmind and last investiga-
tions emulate animals’ decision making. Accordingly, eimwdl and motivational models
are suggested and some of them are oriented to maintairtetsmah equilibrium (home-
ostasis). As exposed in38], humans’ decision-making tsaffected only by the possible
outcomes, but also emotions play a main role. In view of kesa&l authors propose deci-
sion making systems based on motivations, drives, and enmf89[40[" 4142, 43]. In
fact, in recent years, several authors have argued thatyaitalogically inspired and truly
cognitive robotics would need to take into account homeigsganotional dynamics, i.e.,
the interplay between constitutive and interactive aspettiutonomy; for example, the
need to keep essential system-internal variables withiaiceviability ranges[[44]. In this
work, this approach is followed, and the decision makindgesyss based on drives, moti-
vations, and emotions. This approach corresponds to thesidevel of autonomy listed
above.

This bio-inspired approach provides a mechanism to testdamdlop theories for un-
derstanding the underlying structures of the animal belaviSince even nowadays a#-
cretsof the brain are still an ongoing problem, robots are an ig&sdform for researching
on different theories about minds, brains, or other areatiqolarly when experimenting
with living beings could be an ethical problem. Thereforegmitive approaches in the
development of robots can help to shed light on the ins ansl@ithe brain.

These ideas are not accepted by all researches. Brysone aomlrary, defends that
robots should be servants that people olwn [45]. She affirasrtbots should be built,
marketed and considered legally as slaves, not companiens.p&his idea restricts the
highest levels of autonomy to robots.

1.1.3 Learning

As said before, learning is a cognitive ability that prowdbe plasticity for adapting to
new situations. Then, this is a key element for autonomynipavhen dealing with high
non-deterministic environments, like the real world.

Lorenz defined learning as the adaptive changes of behantbthas is, in fact, the
reason why it exists in animals and humang [46]. Living bsingact to sensory input
coming from their environment. Some of these living beinggrge their reactions as time
goes by: given the same input (sensorial perception), teics may be totally different.
They are able to learn and update their reactions. Learrgayithms try to imitate this
ability and to explain how and why the reactions change awez.t

Most of the robots existing in unstructured environmentgine to be as autonomous
as possible. This autonomy is related to the selection abrastduring the robot'dive.
The robot self-governs its behavior through the policy tretermines the next action to be
executed at each moment. This policy can be acquired by tifiereit manners:

1. The policy is assigned and the robot just follows this ghesigned policy.
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2. The robot learns the best policy according to certainissgs.

In the first case, the policy is defined by others and it is inepdo® the robot. In
order to obtain an optimal policy, all situations and posisids should be considered in
the policy. However, in unpredictable environments, likalrscenarios where the robots
and people coexist, this is a tedious task. Sometimes itotdr@tackled. In this situations,
the available decisions of the robot are pre-programmediniied.

Learning does not restrict the possible decisions but gesva flexible mechanism to
adapt the robot’s behavior to new or unforeseeable evehen,Tearning perfectly fits the
needs of the exploration of uncharted “worlds”, or situasio

Artificial Intelligence has explored many ways of learnimgce its beginning. Learning
algorithms can be classified in three different main pamagigccording to the kind of
teaching signal, or feedback, received by the learnér [Bifufe[L3B). The first one is
known assupervised learningwhere examples (input-output pairs) are provided by a well-
informed external supervisor (Figuyre_1.3(a)); the problsrto obtain the function which
links the provided inputs with the desired outputs (inputpat mapping). For example,
children at school learn the alphabet and they are told eaxehwhat sound correspond to
what letter, so they can compare their responses to thectame.

In contrast,unsupervised learningdoes not receive any feedback at all, so there is
no way to evaluate a potential output (Figlire T.3(b)). Itasdd on the similarities and
differences among inputs. Its goal is to fully categorizeitiput data. Typical unsupervised
tasks are clustering where input data is classified. For plgrour visual system is able
to distinguish that humans are very different from elepbanhich are very different from
buildings; but these objects do not have to be labeled beéfi@eare clustered, even it is
not necessary that our brain knows what a person, an ele@raha house are in order to
discriminate them.

The last kind of learning paradigm is the one callethforcement learning (RL from
now on). In this case, the teaching signal informs about pipeapriateness of the response
by means of the reward or reinforcement signal (Figure J.3(tlooks for a state-action
mapping which maximizes the reward. Unlike the supervissdgigm, the correct output
is never presented in reinforcement learning. The reiefoient signal just informs about
whether the output is correct or incorrect and how good oritiad

In relation to learning in robotics, Mataric i _[37] statdst learning is particularly
difficult in robots. This is because interacting and feelinghe physical world requires
to deal with the uncertainty due to the partial and changmigrmation of the conditions
of the environment. Nevertheless, learning is an activa areobotics and RL is one
of the learning methods that has been most successfullyemmgatted in robots. In fact,
according to some authors, RL seems to be the natural seidcti learning policies of
mobile robot control. Instead of designing a low-level eohpolicy, a description of the
tasks at high-level can be designed through a reinforcefuantion. Frequently, for robot
tasks, rewards corresponds to physical events in the emagat. For instance, for the
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desired output
+ reward

) . . reinforcement
output input=—" unsupervised F—output  input—>" learning

input— supervised | —» output

(a) Supervised learning (b) Unsupervised learning (c) Reinforcement learning

Figure 1.3: Diagram of the main learning paradigms

obstacle avoidance task, the robot can obtain a positinéoreement if it gets its goal, and
negative if it crashes into some obstaclé [48]. Howeverrélard can be oriented to more
abstract events. This thesis presents an example of tke latt

1.2 The problem

Taking everything in mind, society is demanding robots wemlough autonomy and cogni-
tive abilities tolive with humans attending and assisting them. These robots lvelsle
to decide its actions according to external circumstansegadl as internal ones.

In this thesis, the problem to face is how to extend the autgnof a social robot in
such a way that it can decide its own behaviors. Therefoeeydbot is not considered
a slave any more, but a partner which is able to make its owisides. Human-robot
interactions are accomplished in a peer to peer manner.

Since the robot is intended for human-robot interactiomais to behave in a certain
manner that it does not cause rejection of its human coustistp

According to the kind of robots considered in this thesisi@orobots), the problem
is tackled from a bio-inspired perspective. Therefore,cepts and ideas coming from
biological fields are included in an attempt to obtain biomiim solutions.

1.3 Obijectives

This thesis is the continuation of a previous line of invgation of the same research group,
the RoboticsLab. Maria Malfaz, in her thesis, designed aghafddecision making system
based on drives, motivations, emotions, and self-leart@siggd on agents living in a virtual
world [49].

Therefore, the main goal of this thesis is the extension of throbot’s control ar-
chitecture with a decision making system where drives, motations, emotions, and
self-learning are the essential elements. By means of thigcision making system, the
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role of several emotions in robots is studied. The previous odel has been adapted
and applied to a real robotic platform.
In order to achieve the final goal, other sub-goals come up:

* The robot has to be able to learn by itself from scratch tghtrbehavior in each
situation. Then, there is not a supervisor providing inpuiiput pairs to the robot,
so supervised learning is not an option. Furthermore, iegrmust be achieved
in a reasonable amount of time and interacting with the realdv Consequently,
reinforcement learning perfectly fulfills all the requéestpreviously presented.

* The robot will have to interact with objects in its enviroamt. Then, it has to be
endowed with enough mechanisms to properly perceive theinaahover them.
Objects have to be modeled considering their potentiadstatd available capacities.

 To adapt the decision making model proposedin [49] to aphgkical robot. The
decision making module has to be incorporated into the nturadot’s control archi-
tecture with minimum modifications to the rest of the elerseActually, these other
elements will be utilized without altering them.

» The decision making system has to be designed in such a veayittls flexible
enough to be applied to heterogeneous robots. Therefa@esydtem must be de-
signed as flexible as possible so, it is easy to adapt to nestg@mnd to extend to
new requirements and configurations with minimum effort.

» The selection about what drives, motivations, and emstame considered depends
on the purpose the robot is intended for. Besides, the paessnaf each one of these
elements determines the final behavior of the robot. Thessetldetails are chief
variables that must be carefully assigned.

» Each artificial emotion has to be independently analyzediédining its right func-
tion. Later, these emotional functions are applied to thmtoln particular, the fear
emotion in animals provides a reliable adaptive mechangsdetl with dangerous
situations which threaten the survival. This function @frfevill be applied to a robot.

* Human-beings will be considered as other “object” the taam interact with. Their
relationship has to be carefully studied. Moreover, sinaméins cannot be con-
trolled, the effects of their actions must be managed.

* Finally, it must be analyzed if the inclusion of emotionsbd functionalities result on
a better performance of the robot or, in contrast, the beisafibt relevant or, even,
unfavorable.
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1.4 Overview of the contents

This thesis starts with an introduction to several biolag@oncepts which will be referred
in the rest of the book. Then, a review of other related wosksresented. Some of these
works have inspired the decision making system introduagitt after. Following, the
robotic platform, the integration of the decision makingtgyn, and its configuration used
for the experiments are presented. After, the used leamimthanism is largely exposed.
Next, the technical design of the adopted solution is dadaihnd last, the experiments and
their results are detailed. This thesis ends with severatlosions, comments, and future
works.

These contents are explained in chapters which cover tleviolg topics.

Chapter . This chapter settles the basic concepts that inspired shefréhe text. Several
concepts, such as drives, external stimuli, or emotiorsiraroduced and their role
in living beings is explained. Moreover, how humans makedgieas is commented.
In the last part, special attention is given to the emotiontaeir roles in humans
and animals.

Chapter@3. A review of the most relevant works is presented in this abagtirst, the most
important social robots, according to different purposes listed. Then, the review
is centered on social robots which are controlled by archites where motivations
and emotions are essential components. The works thatispiead this dissertation
are particularly detailed. At the end, a comparative anslgsnsidering the main
characteristics is presented.

ChapterM. In this chapter the decision making system proposed by I¥adfad followed
in this thesis, is presented. This chapter shows how bioHied concepts are trans-
lated to “synthetic life”: what a drive is, how a motivatios computed, and what
the wellbeing is. Moreover, how the reinforcement leartitggin the decision mak-
ing process is commented. Probably the most well-knowrfosiement learning
algorithm, Q-Learning, is detailed since a variation ositmplemented in the robot.
Finally, the role of the three implemented artificial ematg¢happiness, sadness, and
fear) and their generation processes are explained.

ChapterB. In this chapter the robot Maggie is presented. This is th@tiokplatform
where the ideas of this thesis are implemented. First, argkedescription of its
hardware is presented. Then, its control architecturesesrteed. Last, the particular
implementation of the decision making system is featurdeatTs, customizing the
drives and the motivations, defining how the robot interagth several items, and
the consequences of its actions.
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Chapter@. This chapter explains the learning process implementdukimdbot. Initially,
the frame of the problem is introduced and the use of the @K)elcearning algo-
rithm is justified. Two modification specially designed tdv&oproblems that appear
when it is executed in real environments have been addedrdir ¢o clarify the
ideas of the algorithm, several iterations of the learniragess in different scenarios
are evaluated.

Chapter[d. This chapter presents the technical design of the decisaking system. A
data base has been designed to provide an easy and expandabbnism for adding
new elements or easily modify the existing ones. All the @eta of the decision
making system have been modeled following an object orteapproach. Its design
is shown here. Besides, the skills implemented for int@rgatith the objects are
explained too.

Chapter@. In this chapter, several tests prove the correct setup of/ttsde system. Ini-
tially, general arrangements for the experiments aredstattter, the correct operat-
ing of the decision making system is carefully checked. évghhow the theoretical
concepts are properly working in the robot. Then, the legyaigorithm and several
improvements are justified. The results are compared witardtaditional learning
algorithm.

Chapter@. Here, several experiments show the performance of the vdyslem in this
chapter. These tests are performed by the robot Maggie ial @ngironment. First,
the use offear in a robot is carefully evaluated from several perspectihesv fear
is appraised, how to react to fear, and the convenience,tpofiv. And second, the
policy of behaviors learned by the robot are studied. Thesators are the result
of the happinessandsadnesemotions as the reward signal.

Chapter[IQ. In this last chapter, the results are commented and the usinok of this
thesis are compiled. Moreover, the main contributions aesgnted and several
future works are listed. Finally, some author’s personatie@nts are included.
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CHAPTER 2

Biological foundations

2.1 Introduction

The decision making system proposed in this dissertatisrblean inspired by mech-
anisms observed in nature. All animals are endowed wittegystwhich are in charge of
selecting the behaviors or actions to execute at each irestanrding to specific reasons.

In this chapter, a general view of some of these biologicathmaisms as well as the
reasons to behave in a particular way are exposed and egglaMoreover, similarities
with the implemented system are highlighted.

In animals, behavior is considered as a manner of actingaluaertain circumstances
in order to achieve certain goals. The brain is responsdblalf kind of behaviors arrange-
ment, from seeking for food to falling in love. Certain braieurons (electrically excitable
cells) communicate with hundreds of thousands of cellsraddbe whole body to orches-
trate their functions and, as a consequence, behavioes arflgen, behaviors can involve
many organs (the heart, the liver, lungs, kidneys, etc.d, &ithout them all behaviors
would fail.

2.2 The origin of behavior

2.2.1 Innate vs learned

When animals make decisions, these can be innate or ledm®&ate decisions are inher-
ited and are species dependent. Some authaors [50] conbiards instincts which are

13
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fundamental for the development of the individual. Foramse, a baby animal already
knows that it has to suckle from its mother. On the other hgained decisions consider
the past experiences. As a result, when a decision has bm@ede the behavior is guided
by past experiencek [b1].

Then, decisions result from a “combination” of both, innatel learned, and they exist
side-be-side.

2.2.2 Unconscious involuntary vs conscious voluntary

Veldhuis affirms that, such as in other high cognitive preessdecision making has a dual-

processing perspective: conscious and unconsdiols [&&fefore, there are two levels of
decision making which, somehow, are related:

» System 1: unconscious, fast, automatic, and high capdeitysion (e.g. intuitive
decisions). Prior knowledge is used to form a response. ignl¢kiel, decision are
involuntary.

» System 2: the highly conscious, slow, and deliberativesiaa (e.g. reflective deci-
sions). It could happen that this system does not do any{tinigpes not have any
effect), so the unconscious responses keep on workingirgniltits the unconscious

responses for developing a more conscious strategic tignHihis kind of responses
are voluntary.

According to Veldhuis, in general, decision are made unciously but, when a novel
event happens, the deliberative, conscious system takesTdvs assumption implies that
any deficit in the System 1 greatly affects our decision mgkiapacity. Without the un-
conscious decision making system, all information has tprbeessed by the deliberative
system. Due to its low capacity and slow processes, it iesultzery slow decision making
and potentially loss of information.

Automatic processes are also referred as reactive pracbgsmme researchers. Both
terms, without distinction, can be used but author prefeesatitomatic term.

2.2.3 Homeostasis

Animals have to carefully control some internal conditiof®r example, mammals live
under tight conditions of body temperature and blood presswlume and composition.
These variables must keep their values in a narrow rangehyjpethalamus adjusts these
levels in response to changes coming from the external@mwient. This regulatory pro-
cess is calledhomeostasis the maintenance of the body’s internal environment within
narrow physiological rangé&[52].

Homeostasis was discovered by Claude Bernard in the mikidl& century when he
observed that the body variations had as an objective totigesstability back to the body.
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According to the homeostatic approach, the human beha/miented to the maintenance
of the internal equilibrium(I53].

An example of this tendency towards internal stability carebsily observed on tem-
perature regulation. Cells properly work3aC and variations of more than a few degrees
are catastrophic. Precise cells belonging to the whole pedyeive modifications on body
temperature and response to this situation. On a extrenoddlysituation (e.g. you are
naked on the North Pole), the brain sends commands to gerterat in the muscles (you
shiver), to increase tissue metabolism, and to keep blotat @s possible of external cold
surfaces of our skin in order to maintain internal warm (yauntblue). In contrast, if you
are in a sauna, the brain activates cooling mechanismsd ldomoved to the external tis-
sues where heat is radiated away (you turn red) and the skovolsed by evaporation (you
sweat).

In order to maintain the homeostatic balance, the whole besiyonds with voluntary
and involuntary behaviors. All behaviors are orchestragetthe brain which reaches organs
by means of the nervous system. The combination of the nersystem and the somatic
motor system originates different behaviors.

Involuntary behaviors

The behaviors which are not intentional, i.e. they are naintary, are based on the Veld-
huis’ System 1 and they depend on the nervous system. Threeagimponents are char-
acterized by their great influence on the whole body: thessegr hypothalamus, the auto-
nomic nervous system, and the diffuse modulatory systerhsy differ on the areas they
affect (from the brain to all over the body), the duration ledéit effects (from minutes to
hours), and how they exert their influence.

The secretorjnypothalamusis a structure of the brain and a component of the nervous
system. It secrets chemical elements straight into thedskbeam and they alter activities
on both body and brain parts. FingE]ﬂbresents the hypothalamus in the brain and
how it is connected to the pituitary gland (where the hyplatimas exercises its influence).
Despite of its insignificant mass (less than 1% of brain’sspdke hypothalamus’ influence
over the rest of the body is enormous.

Hypothalamus integrates bodily and emotional responsasdardance with the needs
of the brain. Lesions in this part can result on disruptiohsvilely dispersed bodily
function. Furthermore, the hypothalamus intervenes omeonreflex where neural inputs
and neural outputs are involved. Then, it is seen as the hataglign of the autonomous
nervous system which unconsciously controls internalmsg&xperiments where certain
areas of the hypothalamus are excited result on variatianiseart rate, blood pressure,
erection of hairs, and so forth.

2This figure appears ifn[52]
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Figure 2.1: The Hypothalamus and the Pituitary gland

Some cells of the hypothalamus, theurosecretory neurgp&xtend their axons to the
pituitary (it is located just below the brain, Figurel2.1helpituitary acts as the “speaker”
the hypothalamus uses to communicate with the body. Necreteey neurons release
substances (neurohormones) into capillaries runninguline pituitary (Figurg¢ Z.1(R)) or
stimulate/inhibit the secretion of pituitary hormonesgifie[Z.1(0)). These released hor-
mones into the bloodstream reach organs whose functioradtared. The above reactions
mentioned in the example of the homeostatic temperaturdaegn are provoked due to
the activity of the hypothalamus.

The hormones secretion can be stimulated or inhibited duseveral reasons. For
example, thexytocinhormone stimulates the ejection of milk from the mammarynd&a
A suckling baby stimulates the secretion of this hormoneneawe cry or sight of a baby
does. Sensory stimulus (somatic, auditory or visual) gighge oxytocin release. This can
be seen asxternal stimuli affecting the bodily reactions. Additionally, letdown ofilkn
can be suppressed due to anxiety or other circumstances.

Another component of the nervous system responsible ofuntary behaviors is the
Autonomic Nervous System(ANS), which commands the rest of the tissues and organs
in the body. The ANS controls the physiological systems Wisiee autonomous from the
voluntary control [54]. For example, the smooth muscle exysbf digestion and blood
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flow. Therefore, ANS is constituted by a network of neurongecimg the whole body
which automatically acts, i.e. without voluntary contrdlhe influence of the ANS over
the whole body can be observed in Figlrel B.2it is anatomically separated from the
voluntary motor system.
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Figure 2.2: The sympathetic (A) and parasympathetic (Blotins of the Autonomic Ner-
vous System

The last component to mention is tbéfuse Modulatory System It is entirely part
of the Central Nervous System and it comprises several cellpgy which extend their
spatial reach to the entire brain and prolong their actidhgse groups perform regulation
functions that modulate the activity of a huge amount of oesi(each neuron may contact
other 100000 neurons). Regulated neurons become moresoexegable, more or less

3This figure has been modified from its original version obgdin from
http:// phar macol ogy- not es-free. bl ogspot . conl
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synchronously active, and so on. It is believed that theyletg the level olrousal and
mood. Since this is a cutting-edge research field, the exact ifumetof this system on
behavior are not absolutely clear and some ideas may be [52ky

Voluntary behaviors

Thus far, it has been mentioned how the brain influences arluntary reactions. Nev-
ertheless, the brain also generates intentional reactibhese are exhibited through the
Somatic Motor System (SMS). The SMS is formed by the sketetedcles and the nervous
system that controls them. Its task is to innervate and camdrskeletal muscle fibers un-
der voluntary control. Figuﬂﬂ%shows how the SMS is able to command a human arm:
the muscles, which are activated by the signals coming flerQNS through axons, are
in charge of moving the skeletal and, then, the behaviornegeed.

Muscle

fibers \

Axons from CNS

Muscle
(biceps)

Figure 2.3: Part of the Somatic Motor System involved in ttevement of a human arm

4This figure appears ifn[52]
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All the organs and tissues are highly coordinated by neurotie brain. Both systems,
SMS and ANS, have upper motor neurons in the brain that semdthemds to lower motor
neurons which, actually, act over the target structures.

In short, each of these elements has different specificifumcbut, generally speaking,
it can be said that they all maintain brain homeostasis: tegulate different processes
within a certain physiological range[52].

2.3 Motivated behavior

The key question at this point is why behavior occurs. As ipiesly presented, behaviors
involve motor responses and these can be unconscious gflexg secretion of gastric
juices before you eat) or self-conscious movements (e.groaghing the fridge because
you are starving). Intentional movements are originatestijrated) to satisfy some sort of
need [52]. The motivation to satisfy a need can be abstradigthappy) or totally real (to
drink water because you are thirsty after running a margth®hese needs are due to a
deviation in an homeostatic variable and they are refersettiges.

2.3.1 The Hull's drive-reduction theory

Clark Hull postulated in 1943 his drive-reduction thear][5This is one of the oldest the-
ories about drives. Hull suggested that privation induceawversion state in the organism,
which is termed drive. According to his theory, the drivesréase the general excitation
level of an animal and they are considered as propertiesfafitdgtates which motivate
behavior.

He stated that all the behaviors happen as the result of glogstal needs, the drives.
According to his theory, the reduction of drives is the pniyfarce behind motivatiori[56].
He based his theory around the concept of homeostasid)e oty tends to maintain cer-
tain internal balance and actively works for it. Behavicome of the resources the body has
for achieving it. Considering this approach, Hull posteththat all motivations come up
due to biological needs, which Hull referred as drives §ttyirhunger, warmth,etc.). Thus,
a drive produces an unpleasant state that has to be redueedans of the corresponding
behavior (e.g. drink when we are thirsty or close the windaiuen we are cold).

This reduction of drives serves as a reinforcement for teagkior. In the future, when
the same need arises, the reinforced behavior will be mkely lrepeated. In other words,
when a stimulus and a response provoke a reduction in the treeg@robability that the
same stimulus causes the same response incréases [57].

However, many years later the Hull's theory started to fall af fashion due to many
criticisms [58]. First, Hull's theory does not consider sedary reinforces. Primary re-
inforcers satisfy survival needs such as food, shelterafatg Secondary reinforcers are
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those that can be used to obtained primary reinforces. Scarapmes could be money,
praises, or grades in school. Moreover, this drive-redactheory does not explain the
behaviors that are not related with biological needs anefbee do not reduce drives.Why
do people eat when they are not hungry? Why do people sky dinetheory does not
answer these questions.

2.3.2 Motivations

Later, other researchers started to tackle the not explajnestions in the Hull's drive-
reduction theory. INJ50], motivation is presented as aerir@d internal state postulated to
explain variability on behavioral responses. Motivatistates represent urges or impulses
thatimpel animals into action. Initially, motivations vedinked to bodily needs such as en-
ergy or temperature regulation (classical homeostatied)i But other non-physiological
needs are well-accepted as motivations too, e.g. curiosibgx. However, all these needs
are referred as drives because they involve arousal aratisati The concept adrive is
postulated in order to explain why observable stimuli ireex&l environment are not suffi-
cient to predict behaviors. For example, sometimes foodstiarulate feeding, but others,
it results on indifference or even rejection. E.g. when yalkva street and see chocolate,
it can provoke the “need” to eat chocolate. In contrastyatteig meal, the perception of
more food activates a denial reaction.

Many drive theories between 1930 and 1970 posited that desraction is the chief
mechanism of reward. If motivation is due to drive, then, tb@uction of deficit signals
should satisfy this drive and essentially could be the gb#i® entire motivation[[53]. In
other words, the motivational state is a tendency to cothecerror (the drive) through the
execution of behaviors.

The motivations can be seen as a driving force on behaviawaeMer, just motivation
does not guarantee a behavior but it modulates the behawbaféects its probability to
happen. Beside, several motivations may interfere eadr,dtdr example the need of food
versus the need of sleeping.

The word motivation derives from the Latin womabtusand indicates the dynamic root
of the behavior, that means those internal, more than edtefactors that urge to action
[59]. Sometimes, motivational states can be explained asvgendium of internal and
external stimuli. Hencemotivation can be presented as a complex reflex under the control
of multiple stimuli, some of them internal [50]. Hul[[60] s proposed the idea that
motivation is determined by two factors. The first factoris trive. The second one is the
incentive, that is, the presence of@xternal stimulusthat predicts the future reduction of
the need. For example, the presence of food constitutecantine for a hungry animal.

The already presented hypothalamus is involved on the hstagie process and mo-
tivated behavior. Recalling, homeostasis refers to thegeges that maintain the internal
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variables of the body (temperature, fluid balance, enertgnioa, ...) within a narrow phys-

iological range. The hypothalamic regulation of homeastasarts when a regulated pa-
rameter has gone out of the desired range. Sensory neurdets thva parameter and com-
municate with hypothalamic neurons which detect the dmrnatfrom the optimal range.

Then, these neurons orchestrate an integrated responsmdathe variable back to the

normal values. Generally speaking, this responses hage tamponent§[52]:

* Humoral response: the release of pituitary hormones areistted/inhibited by hy-
pothalamus neurons.

* Visceromotor response: hypothalamic neurons act oveAte and the correspond-
ing tissues and organs accurately respond.

» Somatic motor response: hypothalamic neurons, acting@admatic motor system,
provoke a somatic motor behavior.

Hypothalamic
urons

Visceral Qomatic
responses| | (.responses

( Humoral

re;pdn e

Figure 2.4: Hypothalamus responses to homeostatic bodyaton

The following example will clarify the ideas previously intluced. When a person is
cold, dehydrated, and depleted of energy, the proper reggs@utomatically come through.
This person shivers, his blood is moved away from the bodfaser urine production is
inhibited, body fat reserves are mobilized, and so on. Hewethe most effective and
fastest way to correct the disruptions is to look for a warm@cp| to drink water and to
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eat. These arenotivated behaviorsgenerated by the SMS and incited to occur by the
hypothalamud]52].

Hypothalamus and related structures received informdtmm the internal environ-
ment and they directly act over the internal environmentdif are cold, your body temper-
ature is directly kept constant by peripheral vasocortging. Other hypothalamic neurons
are in charge of operating indirectly over the internal emwment, by means of the SMS
acting in the external environment (if you are cold, you aan the heat on). Both indirect
and direct homeostasis can work in parallel.

Besides, Veldhuis’s systems (Sectlonl 2.1) can be observéltei previous example;
vasoconstriction is a unconscious and involuntary reaatibich can be placed at System
1; turning the heat on corresponds to the System 2 where ioss&oluntary actions are
made.

The intensity of a motivation depends on several factorsisiClering hunger the moti-
vation to eat, it depends on how much you ate the last timet kihd of food, and how long
it has been since then. Moreover, the motivation to keep tingeeounts on how much and
what kind of food has already been ingested. After we eat hedligestive process has
begun, the need of energy is inhibited due to satiety sigidigse satiety signals slowly
dissipate until the need to eat again takes over. This glronship can be observed in
FigurelZBb[[52]: just after eating, satiety signal soarsntht slowly vanishes until the next
ingestion of food when it rises again. In general terms,edrjvn the sense of needs or
deficiencies, lead the regulatory process of motivatiornsved vary according to several
signals and parameters. However, the presence of incengixeernal stimuli, can alter the
course of motivations and/or drives.

Food consumption

Tl /Satiety signals

f— Meal —=| |=— Meal —=|
Time ——

Figure 2.5: Feeding behavior and satiety signal
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Cognitive aspects of motivations

After understanding the physiological aspects of the natitm of behaviors (especially
those that are basic to survival), it seems that humans &d by hormones which se-
cretion is activated by neurons all over the body. Howeesearchers clarify that one of
the main advantages of human evolution is our capacity td erggnitive control over our
more primitive instincts.

Motivational behaviors are not only attached to physiatagneeds. For example, cu-
riosity does not appear to be commanded by any physiologiwaitage. Particularly in
humans, learned behaviors and pleasant feelings can lpagaanst bodily signals. This is
the case when a person feels the need of going to the toiléehstattending an important
meeting and he cannot leave the room.

In psychological terms, according {0 ]52], there are twonof view about motivated
behaviors:

Hedonic People exhibit a behavior because tlikyg it, it feels good so people do it ( e.g.
the smell, taste, and sight of food, and the act of eatindf iise pleasant). Pleasure
serves as an hedonic reward.

Drive reduction Peopleneedto behave in such a certain way in order to satisfy a drive
(e.g. animals eat because they are hungryveauat food).

Both approaches seem to be complementary (we drink whatkegbut, apparently,
“liking” and “wanting” are controlled by different circustin the brain[[5R2].

Other researcheris [b0] identify three factors as motivaeddhviors regulators: ecologi-
cal requirements of the organism, anticipatory mechaniamghedonic factors (pleasure).

Ecological constraints Behavior patterns have been shaped by evolutionary sehedco-
logical context is analyzed by cost-benefit functions. kegtehavior includes the
cost of searching and procuring food, and the benefits of tieegg obtained from
the nutrient intake.

Anticipatory mechanisms Clock mechanisms activate physiological behavioral raspse
before the need or the deficit in the tissues occurs. Therdfomeostasis often an-
ticipates deficits.

Hedonic factors Pleasure is an undoubtedly factor in the control of motadiehavior
of animals. Frequently, humans give up some need in ordebti&@iropleasure by
satisfying others. For example, people go on a diet becdesewant to look more
attractive. It gives the idea that pleasure mechanismsarescned with reward and
reinforcement on learned behavior.
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The ecological constrains and the anticipatory mechanS@jsand the drive reduction
[52], somehow, all are related to physiological needs. Tédohic factor in motivated
behavior is clearly identified in both approaches.

Since pleasure is an evident element on motivated behaegegarchers have studied
how it is evoked. Olds[81] discovered pleasure areas onalisiforain. Later, Deutsch
and Howard[[6R] found that stimuli of pleasure areas on tlanhoriginate reinforcement
independently of the drive state of the animal. In contnaggular stimuli just function as
reward in particular states (food is considered as rewatdnthungry animals). Successive
studies have shown that pleasure areas in the brain are@d/oh initiating some complex
behaviors such as feeding and drinking. Apparently hypathas is one of the areas that
produces reward and several transmitters seem to take part.

2.4 Emotions

Thus far, emotions have not been mentioned. However, enoptay a key role in the
behavior exhibited by people and animals. Emotions arenéas@ our daily live. They
make us going high and low in all our experiences. Emotioasat easy to study and just
their behavioral manifestation can be certainly obserBasides, emotions are not exclu-
sive from humans]63], it is proved that animals also are wmdbwith emotional states
[I[7]. Actually, Charles Darwin (1809-1882) studied emoson humans and animals just
by observation of the emotional expressions during his tigqpexotic places. His evolu-
tionary theories suggested that emotions have evolveddtresir efficacy for adaptation
and for communicating the behavioral intention, and, atseir role in social interaction
[64]. Currently, it is widely accepted that humans and matershare some emotional
brain regions([54].

2.4.1 The role of emotions

Emotions are versatile mechanisms which are involved inynfianctions. According to
Rumbell [65], emotions influence the attention, alter tkellhood of behavioral responses,
activate associative memories, arrange rapid respongagerice learning, aid social be-
havior, and improve communication.

In this thesis, the attention is directed to the influence mb&ons on the decision
making process and the learning process. Cafiamero statesntiotions and motivations
play a main role in autonomy and adaptation in biologicateys [66].

According to the popular beliegmotionafreactions are undesired and not appropriated.
In contrast, rational reaction are more appreciated. Hewdoth reactions are required
and have different functions. Reason and emotions sepacaie make wrong decisions.
A reasonable action can be rated as inadequate (to kill apensorder to save many),
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as well as a decision made considering excessive reasargoleents (rejection to travel
because of the afraid of flying). Therefore, people requaereect balance between reason
and emotions in order to make right decisions. This procesisaped along the individual’s
life [67]. According to Gordillo [67], the right decision i$he most beneficial one for the
individual”.

Emotions influence decision making in two ways: expectedtEms and immediate
emotions. When an individual makes a decision, he likelyeetpcertain outcome which
can be related to an emotion (the expected emotion). UspaBitive emotional results
are preferred to negative ones. Besides, the emotional statn the individual makes a
decision (the immediate emotion) influences this decisinmgeneral, happy people over-
estimate their decisions and depressed people underéstihneaoutcomes. Considering
this, emotions can lead to wrong decisions. Many other aspeftuence decision making:
gender, development, culture, etc.

As said, an individual can seek for a particular emotionubgfoits actions. Emotions
therefore can work as important reinforcements for certaihaviors or actions[4]. For
this reason, emotions play an important role in learningentta behavior can be pursued,
among other reasons, in order to experience the emotionsias=d with the outcome of
that behaviorl[68].

According to CastelfranchiL[68], emotions activate goald plans that are functional
for re-establishing or preserving the well-being, consitgthe events that produce them.
Consequently, emotions have a conative component, thateadency towards action.
This is referred as thmotivational component of emotions It is worth mentioning that
emotions cannot be reduced to motivations, or vice verseotiénms have more functions
than the motivational and, on the other hand, there are ataiivs which are not related
to emotions. In short, to feel or not to feel an emotion canitésif, become a goal to the
individual [69].

LeDoux claims that emotional behaviors represents difidtenctions for solving prob-
lems and with different brain mechanism. Therefore, he psep to study emotions as
independent functional units [63].

2.4.2 Whatis an emotion?

Although emotionis a word commonly used, there is not a clear definition of wdrat
emotion is. For example, Ortony defines emotionSvatence reactions to events, agents,
or objects, with their particular nature being determineglthe way in which the eliciting
situation is construed[70]. Moreover, for Frijda, emotions afeesponses to events that
are important to the individual, and these responses foliewain general rules or laws”
[71]. He strengths the conative role of emotions affirmirat #Bmotions arémotivational
states that underlie emotional behavioff2]. In a definition given by Castelfranchi, he
adds a cognitive component to emotions, so he states thatrhemotions are complex and
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rich mental states, not simple reactive mechanisms [68isRemarks the adaptive role of
emotions:*Emotions are biologically adaptive mechanisms that ré$um evaluation of
one’s own relationship with the environmelfi69]. Despite the wide variety of definitions,
it seems that all of them, in one way or another, consider éhaition involves certain
conditionsthat elicit emotions and, as a result, some reaction is fexvo Further on in
this chapter, these two aspects are covered.

In an effort to not use definitions literally, in this thesesnotions follow a more practi-
cal approach. Then, emotions have a dual nature: one is tbakexpression of emotions
and the other is the internal experience of emotions. Bothtioe differentiated. When a
stimuli causes the emergence of an emotional responsdfats$ s twofold: first, it pro-
vokes non-conscious internal reactions, so the interad s¢ altered and the organism
is ready to fight, fly, sex or other adaptive behaviors; sectimel behavior is modulated
by cerebral structures during interaction with the exteemaironment[[5D]. The external
environment is richer on stimuli than the internal one, $s mhuch complex.

The behavioral signs of emotion are controlled by the sammattor system, the au-
tonomous nervous system, and the secretory hypothalamus.hyfpothalamus also or-
chestrates the internal responses. The clue is how semgaryar internal signals lead to
a particular emotion.

Hypothalamus can be interpreted as a coordinating cendriritegrates various in-
puts to ensure a well-organized, coherent, and approgrsageof autonomic and somatic
responses. These responses were observed as similar forsathbehavior, then, it is sug-
gested that the hypothalamus manages the emotional expred4oreover, it seems that
hypothalamus articulates motor and endocrine responsief whoduce emotional behav-

ior [B0].

2.4.3 Theories about emotions

About emotions, there are still not a unique theory aboutthédne of the first well-
formed theories is the James-Lange Theory (1884). It statg®motions are experienced
as a consequence of physiological changes in the body. Tis®gesystem reacts to the
changes evoked by the brain, and it is this sensation thatitaie the emotion. That is,
the physiological changes are the emotion. Thereforegifctitanges are removed, so the
emotion doed[52].

In 1927, the Cannon-Bard Theory proposed that emotionadréxpce can be indepen-
dent of emotional expression. That is to say, emotions cagxperienced even if physio-
logical changes cannot be sensed. This theory states th#tdlamus plays a special role
on emotions which are produced when signals reach the thal{2].

An example will clarify the differences between both thesriAccording to James and
Lange, when you see a rattlesnake you express fear (you ,syoug heart rate speeds up,
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and so on), and, as a consequence, you are terrified (youexpefear). In Cannon’s the-
ory, first, your thalamus is properly activated to experesfear and then the physiological
signs of fear occur.

Several works after these theories have demonstrateddtiatheories have strengths
and weaknesses. For example, perhaps some emotions dapéetiavioral manifesta-
tions: such as smiling (expression of happiness) in ordéedgbhappy; and experiencing
other does not: hope does not have to be linked to any expresgibout James-Lange
theory, even if emotion is closely related to physiologgtates, emotions can be felt in the
absence of evidence physiological signs. E.g. a persoarsudfa high-level paralysis can
experience happiness. But some strong emotions are clased¢o physiological states
and it is not clear what causes wHhatl[52].

2.4.4 Emotion systems

Currently, it seems that different emotions involve diffiet brain circuits, despite of same
brain areas could be common. In fact, Dalglelsh [73] exglaiow other theorists, inspired
by the prototypical work of Darwin, have proposed that a $s&tlof discrete emotions are
underpinned by relatively separable neural system in tam{jr4,[7%]. Then, as Kandel et
all states in[[5D], distinct emotions are located at difféngarts of the brain. Then, when
stimulating these areas in human’s and experimental asirhedins, different emotions

elicits.

These emotional theories do not mention about the podgilfiexperience several
emotions concurrently. Actually, Rosis |69] states thaksal emotions can be experienced
by the same individual at the same time, but with differetemsity each one due to many
circumstances (the kind of goal, the novelty, etc.).

Therefore, as reported by Bear et alll[52], the definitionrofaotion system is con-
troversial. Due to the broad spectrum of emotions, it is reaickhat only one system
is controlling emotions, rather than several systems. B\@e some elements involved in
emotion also take part on other functions; then, there isnetto-one relationship between
structure and function. This fact reflects that researcaergust beginning to understand
how emotions are experienced and expressed. Therefore,gaoestions are still pending.

Then, as already mentioned, instead of thinking of one emaystem, some authors
convey the impression that several separated emotionansgexist, each one relates to
an emotion and considers its stimuli and reactions.

However, from a physiological point of view, there seemsdasbveral common brain
parts that support the emotional life [54]. This is referesdthelimbic system (Figure
[Z8) and its elements are hypothetically responsible fersnsation and expression of
emotions. The concept difmbic systems controversial because there is not an universal
agreement about its components. Even some scientistsddigfersuppression of the term

50].
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Figure 2.6: The Limbic System

The limbic system is mainly composed of the cortex (the olatger of the brain), the
hypothalamus, and the amygdala. Tdwetex is the main actor in the experience of emo-
tions and théhypothalamus rules the expression of emotions. Both structures influence
each other so they are bidirectionally communicated. Tidgsdrtional link makes James-
Lange and Cannon-Board theories compatible. Then, thisidirsystem enables animals
to express and experience emotions.

Theamygdalais other element of the limbic system which plays an impdntale on
emotions. It conveys high cognitive information to the hiy@amic structures. The amyg-
dala receives inputs from cortical structures and the thata LeDoux|[75] suggested that
this direct thalamic input mediates on short-latency ptilraiemotional responses and pre-
pare the amygdala for the reception of more sophisticafediration from higher centers,
such as the prefrontal cortex. The output of the amygdalaris@cted to cortical structures
and results in a conscious emotional experience. Moreldetadut the amygdala are pre-
sented in Section2.4.7 in relation to the fear emotion ghsethat the amygdala is closely
linked to this emotion).

One of the most famous studies about the influence of the aatygad cortical struc-
tures on emotions dates from 19th century. On 1848 Phinege Gaiffered a terrible
industrial accident: an iron rod was sent into Phineas’ lteaglto an unfortunately explo-
sion. The rod destroyed much of his brain’s left frontal I@rel a considerable portion
of his skull. Miraculously, just one month after the accijdPhineas was walking again
and returned to his job. He looked like before the accidentsbmething has changed:
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his personality was totally altered. Before the accidehin®as was considered as an effi-
cient, capable, well-balanced mind, shrewd, smart busjreasl persistent man. After the
accident he was described as a fitful, irreverent, blaspbsmmpatient, obstinate, capri-

cious and vacillating. Despite of the lack of psychologitest, it appears that Phineas’
personality was dramatically changed far more than hidligeace.

In 1994, Hanna and Damasio_[77] made new studies on Gagebkusing modern
technics. FiguréZ217 shows the trajectory of the rod intonP&s’ head. The iron rod
severely damaged the cerebral cortex in both hemisphesets;iparly the frontal lobes.
As result of the damages, Phineas became to act as an gritablsuffering of strong
emotions. The significant increase on emotional behaviopgses that cerebral cortex
plays a key role in regulating emotions.

Figure 2.7: Reconstruction of Phineas’ skull and the irah ro

2.4.5 The Appraisal Theory

Especially interesting is the study of the processes imobla the generation of emotions.
The mechanism in charge of evaluating the current interméikexternal situations in terms
of affective state or emotion are referred as appraisal [Ajpraisal theories seek for
explanations of these evaluations that lead to evoke oné@mmver another.

The termappraisalwas coined in 1960 by Magda Arnold_[79] who stated that the
appraisal starts the emotional responses. The appragsaitls the claim that emotions are
elicited by evaluations of situations [80]. According tasttheory, it is the interpretations
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of situations, rather than the situations themselves, ¢chase emotions. Consequently,
emotions are differentiated by appraisals, i.e. each emasielicited by a unique pattern
of appraisal.

Most of the researches link the appraisal of certain evesitaation to the motivation of
the individual [81]. Thus, the emotion resulting from an egppal depends of the relevance
of the event to a motivation [82]. For instance, a bear caitdéar if we are picnicking;
however the same bear can result on excitement or happfnegesre hunting.

Because appraisals intervene between situations and amptilifferent individuals
who appraise the same situation in significantly differeaysvwill experience different
emotions; and even a given individual who appraises the sgmagion in significantly dif-
ferent ways at different times will experience differentations. A good example would
be a football match, the same situation, the result of theegavill produce different emo-
tions depending on your teain |83]. Another example can berebd on a student doing
an exam: if he has studied hard all the semester, he feelgleabfind relaxed; in contrast,
if he has not studied enough, he experiences fear and getsuser

At some point, this theory could seem controversial. A pateexample could be the
dead of a person: a priori, the passing of a person can bdyctagged as a sad event.
However, sometimes, this is not true. Considering the iv@atof people murdered by a
psychopath, sometimes, they experience happiness drwélén the psycho is dead. The
different outcomes of the appraisal result from the indraldconditions considered during
the personal appraisal process.

Moreover, Scheref [82] affirms that appraisals are part afcalar process where they
are “cause of emotions, components of emotions, and coaseqlof emotions”. There-
fore, it seems that appraisals are more complex than sinm@arl relations between ap-
praisals and emotions.

Following this theory, a situation cannot be tagged with mmo&onal value in advance,
it is the interpretation each person makes of that situatioich gives that individual eval-
uation.

In order to understand the appraisal mechanisms of emotioeusis, how they emerge
in our brain, itis proposed that, as LeDoux[inl[63], since &ams are produced by different
brain networks, they must be studied one by one.

The appraisal of emotional events (the releasers) can bsifodal considering how they
are acquired or its origin. Some releasers are innate oritele For instance, the pres-
ence of a cat is evaluated as dangerous by mice, and this tedge’ has been inherited.
Consequently, cats are the releasers of fear in mice. Tipkasthat they are more species
specific than those acquired during life by experience.

Other emotional releasers are learned. For example, catetdike to visit the vet-
erinarian because they usually hurt them. As a result, tesg@ate the presence of the
veterinarian with a harmful situation. Then, the percaptb the veterinarian becomes a
releaser of fear in cats.
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As seen in Sectiohd.1, dual-process theories distingua$ivden reacting (fast and
intuitive) and reasoning (slow and controlled) as a bagisitoman decision-making. This
dual-approach is observed also in relation to the generatiemotions. Based on how
the appraisal is performed, both approaches, automaticalioerative, are considered.
Castelfranchil[68] proposes to distinguish two kinds ofdiesation”: cognitive evaluation
(or just evaluation) and appraisal.

» Appraisal a non-rational appraisal based on associative learnidgraamory, but
it is not based on justifiable reasons. It is automatic, igipland intuitive orienta-
tion towards what is good and bad for the organism. Then,aaggdris an automatic
association of an affective internal state (emotion) toappraised stimulus or rep-
resentation. This involves System 1.

» Evaluation a reason-based evaluation that can be discussed, explainé argu-
mented. It is a the cognitive judgments relative to what isdgor bad for someone
(and why). It is related to System 2.

In fact, LeDoux relates this unconscious appraisal to emnoind conscious evaluation
to feelings[63]. On the other hand, Sloman]84] and Bechara [85] difieate between
primary emotions which have a reactive or automatic basissseondary emotions that
require a deliberative process to initiate them.

Taking again the fear emotion as an example, this dualigpecaach is easily observed.
In some cases, fear is automatically elicited (mice areicafvé cats), but in others fear
emerges due to a reasoning process (@lge to the actual economic circumstances, |
am afraid of loosing my job Moreover, this deliberative process affecting fear vgoak
feedback to the intensity of fear (eifjl loose my job, | will not get money, and then | will
not be able to feed my family, and finally we will all fie

These two classifications of the generation of emotions bheddlated examples about
fear are exposed in Table2.1. Each cell contains an exampledsmsy how the pro-
cess has been acquired and how it is performed. Yellow cettespond with the kind of
fear implemented in this thesis. Red cells are those cortibimawhich are impossible:
something innate has been inherited so it is a species &atucontrast, deliberation is a
particular process of each individual; in consequenceheedtive-innate processes are not
possible.

2.4.6 Emotional reactions

Often, the emotional behavior is considered as a consequéeenotions, rather than a part
of them, because other factors than emotions contributesio generation [82]. However,

without getting into the details of this discussion, eaclogam alters the behavior and
causes an emotional reaction.
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Table 2.1: Examples of different generations of fear

How is it acquired?

Innate

Learned

How is it
performed?

Appraisal
(automatic)

Evaluation
(deliberative)

Mice experience fea
when they perceive th
presence of a cat

Cats have fear when
they perceive the pres
ence of the veterinarian

The global economig
crisis

These reactions can be classified in a similar approach tagheisal: considering
how these emotional reactions were acquired (innate vedexiand how the reactions are
performed (automatic vs deliberative).

In order to clarify these ideas, several examples are predem TabldZR. This table
presents examples of different reactions to fear basedeaxamples of appraisal afore-
mentioned in TablEZ211. Both tables follow the same arrareggm

Mice inherently know that, when they experience fear in fiafra cat, they must escape

from the cat. However, cats have learned, through seveparegences, that they must run
away when a veterinarian is present. These two examplesugmmatically executed, so
these reactions are not the result of a deliberative procEssvever, when a person is
frighten because of the uncertain stability of his job, thé&son performs a reasoning
process (e.gf | don’t want to loose my job, | have to increase my produttso | have to
work more hourswhere all possibilities are considered and, as a resulgdides to work
harder.

Table 2.2: Examples of different reactions to fear
How is it acquired?

Innate

Learned

How is it
performed?

Automatic

Mice escape from cats

Cats run away when

they see the veterinar
ian

I must work harder in

order to keep my joh
position

W

Analogously to the appraisal, innate-deliberative remdiare not possible (red cells):
innate reactions have a species component and deliberaticéons are the result of an
individual cognitive process.

Automatic processes, both for appraisal as well as for i@ast can be observed in
animals. These are required for survival purposes. Inredesfare considered by some
researches as instincts which provide a key survival mastmarActually, animals without
these instincts should have difficulties to reach adulthétmvever, deliberative processes
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are specific of humans beings and this is one of our main cteststics.

2.4.7 Fear, anxiety and the amygdala

Fear is an emotion particularly studied in this dissertaffmainly the automatic aspects of
fear). Therefore, this section presents a deep analyseaaf f

In animals, fear is associated to anxiety as a response editdming situations$ [50].
Whenever an individual is afraid, he becomes anxious. hgggms are: arousal, restless-
ness, overreaction, dry mouth, desire to escape, avoidatwvior, sweat, heart-racing,
high blood pressure, etc. About the utility of fear, it camites to behave in a proper
way when a difficult situation is being faced. However, itcatein be detrimental as it is
presented at the end of this section.

LeDoux [21] states that the function of the emotion of featoisletect danger and to
produce reactions which increase the probabilities ofigalin a dangerous situation. In
other words, it is a defense mechanism. Therefore, the mapraechanism of fear is
related to the evaluation of situations as dangerous. Ttherfiear emotion is involved with
natural enemy avoidance behaviors and areas where prgvguffered fear experience
[86]. Accordingly to Darwin’s theory of evolution [64], fedas evolved as a mechanism
that enhanced chances of survival.

Most of the previous listed symptoms of fear are physiolalgieactions provoked by
fear. They are orchestrated by the hypothalamus even befeebavioral reaction appears.
Anxiety reactions are controlled by the ANS and they virtpaffect all parts in the body.
Moreover, the level of anxiety and the intensity of bodilgpenses are proportional to the
amount of perceived dangér]52]: the more danger, the modetgnand, then, the more
fear.

From a neurological perspective, it has to be explained h@artcoming information
into the brain causes behavioral and physiological reastielated to fear and anxiety.
Several studies propose that maygdalaof cerebral limbic system processes fear emotion
and plays a key role for survival of animals[86].

The amygdala is a structure placed at the pole of the temlmtr@just below the cortex
(FigurelZ8). The amygdala is one of the most important negions for emotions, with a
key role in processing social signals of emotions (paréidulinvolving fear), in emotional
conditioning and in the consolidation of emotional mem®s{i&].

Information from all of the sensory systems feeds into thggaala where the infor-
mation is integrated. It is connected to the hypothalamuse dmygdala alters the ANS
through the hypothalamus and evokes behavioral reactiarthe SMS[[52].

It is assumed that amygdala is the brain structure in chafr§eao regulation and re-
sponses: projections from the amygdala to the brainstertribaote to the expression of
fear, and the experience of fear, and other cognitive asp#atmotional processing, in-
volve projections from the amygdala to the cortex [87].
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Figure 2.8: The amygdala in the brain

As exposed in[[87], animals exhibit fear responses whenrmdtua situation where
they previously experienced fear. For example, an anirhat,ltas experienced fear in a
chamber due to footshocks, experiences fear when it retariie same chamber and the
footshocks are not present. This is caltamhtextual fear conditioning and it depends on
the amygdald[43].

According to [73], the study of fear conditioning has shown afferent routes involv-
ing the amygdala (Figufe2.9): the first route (thalamo-atlaya) processes crude sensory
aspects of incoming stimuli and directly transfers thisinfation to the amygdala, allow-
ing an early conditioned fear response if any of these creds®@y elements are signals
of threat. This enables automatic (or reactive), unconscemotion activation before we
have time to think about our responsis| [54], that is, witltmgmnition. The second route
(thalamo-cortico-amygdala) implies a more complex anglysthe incoming stimulus and
results on a slower, conscious, conditioned emotions respdn this case, a cognitive or
deliberative process could be involved. This longer pathisamore influenced by so-
cial and personal decision making processes and thus caaotreilture-specific emotional
responses [54].

Experiments have found that temporal lobotomy (suppressighe area of the brain
where the amygdala is located) in animals results in femtbehaviors. Considering ex-
periments achieved by Kliver and Bu€y[88], monkeys’ betiawiere studied in relation
with fear. Normal wild monkeys, which has been captured,adraid of people: when a
person tries to approach a monkey in a cage, it escapes guttnather corner and remain
there. In contrast, monkeys with bilateral temporal lobetes experienced some kind of
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cognitive pathway

automatic pathway Amygdala
B ‘
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emotional emotional
stimulus response

Thalamus

Figure 2.9: Fear pathways involving the amygdala

fearlessness: people approached them, touched them, eandstewke them, and picked
them up. Amygdalectomies in rats and lynxes reflect the ammdésults and fearless behav-
iors. Damage to the amygdala also affects to fear in huniafy&88§. Thus, fear provides

animals with the escaping behaviors required at certaiasdns to survive (humans can
be dangerous for monkeys). Then, fear is an adaptive resgomangerous situations.

Destruction of the amygdala affects to all emotions as wselleowing a reduction on
emotionality: expression and experience emotions areiderable flatten when amygdala
is removed. In contrast, intelligence appear to be normats& symptoms are also shown
on humans with temporal lobe lesions.

As stated, the amygdala is also involved in the modulatiomeimory consolidation.
By means of painful experiences, animals learn to avoicuarbehaviors because they are
afraid of been hurt. Those hurting experiences are quiagkdyi@ang-lasting memorized@[52]
due to the emotional content given by the amygdala. Thezefonygdala and emotions
are involved in the consolidation of long-term emotionalnnogies too. Moreover, the
amygdala has been associated with the modulation of othgitdee processes, such as
visual perception[43].

Previously, the usefulness of fear has already been meatidn contrast, fear can be
disadvantageous if anxiety is excessive, persistent,tbrefitening situations are not well
recognized. Inadequate anxiety might result in anxietyprdiers typical from humans.
From a psychological perspective, these anxiety disommbarde seen as an inappropriate
experience and expression of fear.

Following, few anxiety disorders are briefly commented teegan idea about the in-
correct use of fear. For example, General Anxiety Disorderesponds to a long-lasting,
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unrealistic or excessive worrl/ [50]. Approximately, Pastimatic Stress Disorder is re-
lated to intense or unrealistic worried suffered when slimalated to a past trauma are
present. Also, phobia is an intensive anxiety due to an expo® situations leading to
avoidance behaviors. In particular, a social phobia catieeavoidance of any social in-
teraction.

2.5 Summary

This chapter has introduced the general concepts involvéidel generation of behaviors
in animals. Several concepts, such as homeostasis, dmasations, external stimuli,
and emotions, will be re-used in the following sections tsigie and implement a decision
making system of a robot. These concepts have been biollygaca psychology justified
in this chapter.

As a general idea, animals exhibit specific behaviors dubd@tocesses occurred in
the brain. Physiological needs (food, warm, drink,...) aod physiological needs (curios-
ity, sex, happiness,...) will guide the behavior throughows responses. The observed
behaviors are based on the need to satisfy a drive or on tlemivegward.

In this dissertation, the robot has certain needs (drivba},need to be satisfied, and
motivations. Following the homeostatic approach, the sleni making system will be
oriented to maintain those needs within an acceptable raigese needs will not be just
limited to physical ones (as it is stated in the classicahpof view of the homeostasis),
but psychological and social necessities too. Throughusitihesisdrive andneedwill be
used as synonyms and they are totally interchangeable.

Emotions influence several aspects of our daily life, e.g¢ dbcision making or the
learning. The eliciting of emotions (the appraisal) andeheotional reactions can be in-
herited or learned, and they can be automatically or deltbexly performed. In this work,
artificial emotions exploits their learning and automaspects. Artificial motions are in-
volved in the decision making process and the learning gsoce

In particular, the emotion of fear is carefully studied. Fpeovides animals with a
self-defense mechanism which helps them to avoid dangertuations. This mechanism
has inspired the implementation of fear in a robot and aniikalbehaviors based in this
emotion have been observed in the robot.



CHAPTER 3

State of the Art

3.1 Introduction

This chapter presents the current state of the art relatide tmain theme of this thesis.
Since this work covers several fields, they are reviewed hadrtost relevant works are
commented here.

This dissertation introduces a decision making systemiegbpd a social robot where
motivations and emotions play a key role. Therefore, iytidghe most famous social
robots are presented. Then, the attention is centered drotarnchitectures where moti-
vations and emotions work as an adaptive mechanism shapmnolot’s behavior. After,
the most relevant works are compared considering sevgrattsand the differences with
the work developed in this dissertation are established.

3.2 Social Robots

Before talking about social robots, the questWhat is a robot“must be answered. Many
researchers can answer this question with different diefitstbut this the author of this
thesis likes the definition given by Maja J. Mataim [38]:

A robot is an autonomous system which exists in the physmddiycan sense
its environment, and can act on it to achieve some goals.

According to this definition, in the late Forties, Grey Walkwiilt the first robots that
were named as tortoises (Figlirel3.1). They were three-@tieebots with light sensors
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and bumpers connected to the drive wheels. With these sim@éhanisms, Walter’s tor-
toises shown biomimetic behaviors such us find the lightklaaay from the light, or head
towards the light[[36].

Figure 3.1: Gray Walter’s tortoise

From Grey Walter’s tortoises, robots have largely evolvad their capacities have
been extended. Recently robots are moving from factoridssaecialized environments
to homes. Even for the general public, robots seem to be samgetelatively common.
For instance, many science fiction films have deal with rofidegropolis Blade Runner
Star Wars Al, I, Robot Wall-E, etc). Even though these fiction-robots are rather far from
real robots, all of them are easily understood by peoplehigchem. Therefore, they are
endowed with some kind of social ability.

Considering the definition given by Bartneck and ForliZZi][9'a social robot is an
autonomous or semi-autonomous robot that interacts andwmamcates with humans by
following the behavioral norms expected by the people whbrwthe robot is intended
to interact”. This definition is the first one that emphasizes the humaoirmteraction
and communication. Following these ideas, many robotslarmed to be social. In this
section, some of the most remarkable social robots arewedi@ccording to the different
purposes they were designed for: research, entertainthendpeutic, or assistance. This
review does not pretend to be an exhaustive survey but arieweof the most important
social robots.
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3.2.1 Social robots for research

There are many research centers where human-robot interastone of the main in-
vestigation areas. Two of the most relevant centers, thedReCthe MIT, are analyzed
considering their social robots. These centers have beekirngain this field many years
and different robotic platforms have been developed andde$-ollowing, a brief review
about their famous social robots is presented

» Intelligent Robotics and Communication Laboratories (JRt®m Advanced Telecom-
munications Research Institute International (ATR) inadgpis a research group with along
tradition of social robotsRobovie (Figure[3:2) is a humanlike appearance robot which is
designed for communication with humansi[91] 92]. In ordeadhieve it, it is endowed
with the same kind of sensors humans have: vision, a senesedf,taudition,etc. Itis 120
centimeters high and its weight is around 40 kg. Many sersogsactuators are spread
over the entire robot. It is worth mentioning the omnidirecal vision sensor on top of
the head which provides a 360 degree visual field. Apparethméyrobot’s behaviors are
totally predefined by the developer by coupling modulesfeDéint evolutions of this robot
are shown in Figure-3.2.

In 2009, Robovie-mR2 (Figure[3.2(d)) was presented [93]. It is the Roboviesldlitt
brother (it is 30 centimeters high). Its creators stateithata communication robot which
is connected to the world through an iPod Touch placed atisity. It communicates by
means of gestures made by its arrangement of degrees obifneddur in each arm, three
in its neck, two in each eye, one in each eyelid, and one fovaist.

» Massachusetts Institute of Technology (MIT) has “prodticederal relevant social
robots (Figuré=3]13). To the best of the author’s knowledige first social robot iKismet
(late 1990s) developed by Cynthia Breazeal. The robot isxpressive anthropomorphic
robot head that engages people in natural and expresswdaddace interaction (Figure
[B:3(a)). It perceives a variety of natural social cues fresua&l and auditory channels, and
delivers social signals to the human caregiver through giazetion, facial expression,
body posture, and vocal babbles. Kismet is endowed with a/atmnal system which has
drives, motivations, and emotions (it is analyzed in thet sextion).

In 2004, Breazeal presentedonardo (Figure[3-3(0)). It quickly and effectively learns
from natural human interactions using gestures and diaegand then cooperate o per-
formed a learned task jointly with a persénl[94].

The last robot from MITNexi (Figure[3:3(d)), is a small mobile humanoid robot (the
size of a 3 year old child)) that possesses a novel combmafioobility, moderate dex-
terity, and human-centric communication and interactioifitees. This kind of robots are
referred as "MDS” for Mobile-Dexterous-Social. The purpad this platform is to support
research and education goals in human-robot interacéaming, and social learning [95].
This robot detects the emotions of humans and acts accdyding
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Figure 3.2: Several version of robot Robovie from ATR-IRC

3.2.2 Social robots for entertainment

In late Nineties, Sony (Japan) presented the first commeabat-dog calledAibo (1999)
(Figure[3:4(d)). Aibo is a well-known pet-style robot whielas designed to maintain a
lifelike appearance [96]. According to its specificatioitsis able to express emotions
through LEDs placed at its head, recognizes speech and fabes a wide repertory of
predefined actions, and learns from the user’s preferemzbtha environment.

Other robot developed by Sony @rio (2004), the biped humanoid robot (Figure
[B:4(D)). Itis also a small size robot (58 cm and 7 kg) interfdeentertaining people by in-
teracting with them through movements and speech [97].déetstands many spoken com-
mands, says thousands words, and even learns new onesn§leslored lights around its
eyes are used to express emotions. Its most importantygjisaiis motion-control system
that maintains its balance as it walks, runs, hops and daSces had created the world’s
first running humanoid robot [98]. Initially, Qrio was plaguhto be marketed too, as Aibo;
however, it was ever a prototype, and was not launched coomatigr After many years
and different generations, in 2006, Sony stopped both sotk@telopments.
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(a) Kismet (b) Leonardo (c) Nexi

Figure 3.3: Social robots from MIT

(a) Aibo N ) Qrio

Figure 3.4: Social robots developed by Sony

3.2.3 Therapeutic social robots

Many social robots have been applied to therapeutic pugpasene of them are shown
in Figure[35. Omron Corporation (Japan) developexCoRo (2001) (Figurd 3.5(&)): a
robotic cat that can be perceived as human companions addassgiagnostic and ther-
apeutic tools in psychological and clinical practi€¢el[991s real-life-looking creates a
playful, natural communication with humans by mimickingealrcat’s reactions. Its feel-
ings are generated according to recognition feedback hwidependent on configurations
based on psychological concepts, leading to cognitivest@ts and actions determined by
these feelings. Desires to sleep or be cuddled are genaaatedding to physiological
rhythms. Via a learning function, personality traits, sashselfishness and the need for
attention, will change in response to the owner]100].

Other famous therapeutic robétaro (Figure[3.5(0)), was first exhibited to the public
in 2001. This is an advanced interactive baby harp seal rd&atloped by the National
Institute of Advanced Industrial Science and Technologypéh). They tried to apply it
in treatments similar to animal therapy, a special type efdpy that helps to heal peo-
ple through contact with animals. Many successful expernisibave been achieved with
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patients in environments such as hospitals and residefocietlerly [T01 [ T0P,_103].

Robota (Figure[3.5(d))was developed by Billard as a mini-humanttishaped robot
[L04]. Its main goal is to investigate the use of toy robotsformal children and for chil-
dren with disabilities. Soon after, Robins et[al[lL05] greed the first results of long-term
experiments applying this robot to autism children. Sonthese researchers stayed in this
research line and they develogeaspar (2005) (Figur¢ 3.5(d)). Itis a friendly robot which
helps children with autism to understand to read emotionstarengage with the people
around them[[106]. It has simplified human-like features amdinimally-expressive de-
sign that invite children with autism to explore the robotev&ral body gestures allow
social interaction and collaborative games. Kaspar is teroontrolled by the therapists
or even the children themselves. Some encouraging resauts shown how some of the
children learn about social communication skills in repdatong-term interactions with
Kaspar [107].

Other robots have also been applied to children with devetyal disordersKeepon
(2004, National Institute of Information and Communicagdechnology, Japan) is a small
creature-like robot designed for simple, natural, nonakiriteraction with children suffer-
ing autism (Figur¢_3.5(p)) [108]. Its design is effectiveeiititing a motivation to share
mental states. It uses simple bodily movements (rockingbl up and down, and vibrat-
ing) to express pleasure, excitement, and fear. Moredveasibeen observed an important
role of rhythm in establishing engagement between peopleaots [109[ 110]. In this
case, this robot is also used for entertainment purposés.[11

3.2.4 Social robots for assistance

Other robotic platforms support people in different dutiesch as manipulating objects,
performing daily tasks, or increasing the capacity of peepth special necessities. These
social robots work as assistants and some of them can bevedsarFigurd-36.

Phillips Corporation developed its social roba€at (2005). This is a desktop user-
interface robot (Figurg_3.6{a)) with mechanically rendefacial expressions [112]. It is
able to recognize users, build profiles of them, and handieregjuests. These profiles are
used to personalize domestic functions performed by thetyshich as lighting and music
conditions.

The Japanese company NEC also developed its researchypetobmmunication
robot calledPaPeRo(first version on 2001) which is intended to live with peoplela
serving as companion, in particular to children and eldsr{Figuré¢ 3.6(b)). It is endowed
with autonomous behaviors (walking about, self-rechaygitc.), can play games and can
be remotely operated. A visual friendly development envinent can be used for creating
new actions or functions.

Olivia (Figure[3.6(d)) is a receptionist robot created in the Ar&acial Robotics lab,
Singapore. Using its 17 degrees of freedom, Olivia is a $ookot designed mainly for
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(a) NeCoRo

(c) Robota (d) Kaspar (e) Keepon

Figure 3.5: Therapeutic social robots

human-robot interactions and communication using speaésion, and gesture5 [113].

The Spanish company AlSoy Robotics is marketing the rébsby1 (Figure[3.6(d))
which has its own personality. It is used for entertainmerd aducational purposes. It
expresses emotions by means of its face, voice, and ligh#§.[1

In Fraunhor IPS, Germany, researchers have been workimgdoe than ten years on a
mobile service robot that performs supporting tasks in henvronments. The last version
of their robot, calledCare-O-Bot 3 (Figure[3.6(d)) was presented [n[115] (2008). Also,
it is meant to be applied in an eldercare facility in orderuport the personnel in their
daily tasks.

Finally, Figure[3.6(1) showJelenoid, an android with a minimal human appearance
for transferring different people’s presence to distamicps regardless of their personal
features[[116]. Its covering skin is made of high qualitycsih so that it feels as pleasant
and soft as human skin when touched. The remote person epdha android by an
intuitive tele-operation system. The operator’s face dio;ms, mouth movements, and
facial expressions are sent to the Telenoid. Also the opesatoice is outputted from a
loud speaker embedded inside the Telenoid.
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(b) PaPeRo (c) Olivia

(d) AiSoyl (e) Care-O-Bot3 (f) Telenoid

Figure 3.6: Assistant social robots

3.3 Control Architectures based on motivations and emo-
tions

Traditionally, decision making systems in robots dependhancontrol architecture and
its characteristics, and vice-versa. In this dissertatibe control architecture running in
the robot Maggie (Chaptéd 5) is extended by the addition oéasibn making system
with emotions and motivations. Then, since emotions andvaidns are one of the main
issues in this work, the main control architectures workimiggal robots with emotions and
motivations are studied.

Recently, some authors have implemented cognitive-itled@cepts in their control
architectures, such as motivations, emotions, learniegjethis section, a review of these
works is presented and a special interest is put on thoséakatinspired this research.

Several architectures for robots use motivations and emstiRedko affirms that mo-
tivations ensure fine adaptation of agents to external enmient variations [117]. Most
of the robotic studies regarding emotions employ them mpdorl expressing the affective
state when the robots interact with humans. For exampléeh iir al. [118] have de-
veloped the UKL Emotion-based Control Architecture whanl&o implement five emo-
tional functions (regulative, selective, expressive,iwational, and rating). However, after
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a deep reading and analyzing the experiments presenteateaply due to different under-
standings of these emotional functions, just few of themcareered and, essentially, the
expressive one. In contrast, fewer works have studied hoetiens influence other cog-
nitive states, such as motivations or decision makingl[1M4tsudal[120] considers that
emotions should be incorporated into decision making obteln order to endow them
with sociability.

In spite of the interest focused towards works implementedeal platforms, few rel-
evant works implemented just in virtual agents (at least first stage) have also been
included in this compilation. This compilation is chrongically sorted for a more com-
prehensive reading.

3.3.1 The Cathexis architecture (Velasquez, 1997)

To the best of the author's knowledge, one of the first worled tonsiders emotions as
an integral part of the decision making process was devdlbge/elasquez[121]1,1P2,
123]. He shows how drives, emotions, and behaviors can bgratied into a robust agent
architecture name@athexis This architecture models some of the aspects of emotions
as fundamental components within the process of decisidinga It has a distributed
model for the generation of emotions and their influence enlibhavior of autonomous
agents. The Cathexis architecture is formed by three maituias: the Drive System,
the Emotion Generation System, and the Behavior Systenui@@.T). In this model, the
emotional system is the main motivation of the agent.
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Figure 3.7: General view of the Cathexis architecture byasgliez(]l]

Drives represent needs that motivate the agent into acsiorthey work as internal
stimuli. Each drive uses releasers to identify special tars which either increase or
decrease the value of the associated drive. A releaserategud variable within a certain
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range. When the variable is not inside this range, an ergoiasis produced and fed to the
appropriate drive. Therefore, several error signals cazob#ined into the same drivé [1].

In this work several basic emotions are modelled. Each ometi& single affective
state but a family of related affective states (e.g. feaghfy terror, panic, etc.) which
shares certain characteristics (antecedents, expressamtions, etc.). These characteris-
tics distinguish one emotion family from other. For simgfican emotion family is just
referred as emotion.

Emotions can be elicited by internal (e.g. drivers, semsotor processes) and external
(events in the environment) stimuli which are constantlyitayed by emotional releasers.
Emotional releasers constantly check fo the appropriatelitons that would elicit the
emotion they correspond to. Velasquez takes into accoengxfstence of cognitive and
non-cognitive releasers, which are classified as neuraosenotor, motivational, and cog-
nitive. At first, these emotional releasers were pre-witBdl[[123]. In later workd]1], the
system learns them through emotional experiences assgciae emotions with different
stimuli. These new emotion-stimuli pairs will influence urtdre selection of actions when
the same stimuli is present again.

Each emotion has an activation threshold (over it, the ematifluences other emo-
tions and the behavior system) and a saturation threshadifnum arousal for an emo-
tion). Despite of the discrete approach to emotions, eaabtiemhas an intensity value
which is affected by its previous level, the emotional ¢tics, and the interaction with
other emotions (inhibitories and excitatories). Morepwsach emotion has a particular
decay function which controls the duration of the emotiooeoih has become active. Emo-
tions also interact with drives, and vice versa. For insgatteehungerdrive might increase
the distressor angeremotions, or high levels afadnessnight decreasaunger[122].

All emotion processes run in parallel and constantly uptiaée intensities. Actually,
more than one emotion may be active at the same time. Once @tioens active, it can
excite or inhibit other emotions (e.dear inhibits happiness The co-occurrence of two
or more basic emotions at a time results on secondary ensosoich agrief is a mix of
sadnessanger, fear, and eversurprise[l123].

In this architecture, emotions are differentiated from chaod temperament. Mood is
explained as low tonic levels of arousal within emotionsmperaments are associated to
different activation and saturation thresholds for the eoms (e.g. a fearful individual has
low level activation for the emotion of fear).

The behavior System selects the most appropriate behasgording to the emotional
state at some point in time. It is also a distributed systempmsed of several self-
interested behaviors (e.g. “approach human” or “play”) peting for the control. Each
behavior, when become active, has an expressive componédrihffuences the motiva-
tional system, i.e. it affects the levels of drives, the @ort, moods. and other behaviors.
behaviors can also mutually inhibit or excite each othe@whe tail” might inhibit “run-
ning”). The competition for the control is based on the valaéeach behavior which are
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determined every cycle by theehavior releaserssuch as emotions, moods, drives, pain,
and external stimuli. Initially, the selection of behaviworked in a winner-take-all man-
ner [123], but later a more elaborated combinatorial meisihamvas proposed[1]; in this
work, the active, non-conflicting behaviors (e.g. “walk’daftry”) can issue commands
simultaneously. In short, the selection loop initially deahe internal variables and the
environment which are used to update the motivation (botbtiems and drives). Then,
considering the motivations and the external stimuli, teldviors’ values are computed.
With these values, the resulting behavior is obtained.

Velasquez created models for six different emotiarger, fear, distress/sadnesen-
joyment/happinesslisgust andsurprise that were used in synthetic agents as well as in a
pet robot.

3.3.2 Cafamero’s approach (1997)

The work developed by Lola Cafiamero is other of the first rebes done in this area

[124,[40,[29]. In Cafamero’s works, the original idea wag tha behaviors of an au-

tonomous agent are directed by motivational states andsis bmotions. The motivations,
according to Cafiamero, can be viewed as homeostatic pescésg maintain a physiolog-

ical variable controlled within a certain range. When thieigaof this variable is not equal

to its ideal value, the drive emerges. Hence, the motivatistate constitute urges to action
based on internal bodily needs related to self-sufficiemzysurvival, e.g. the motivation

of cold is related to the drivéncrease temperatureThe intensity of the motivation is a

function of its related drive and a certain external stirsuhlso referred as environmental
stimuli or incentive cued[125]. Once the highest motivaii® obtained, the intensity of

every behavior linked to this motivation is calculated amel®ne with the highest intensity
is executed. For some behaviors, the intensity determireesttength of the motor actions
or the duration of the behavior. Therefore, the motivatidgtnwthe highest value organizes
the behavior of the agent in order to satisfy its drive.

The implemented artificial emotionsirfger, boredom fear, happinessinterest and
sadneskfollow a discrete approach and work as monitoring mechasito cope with
important situations related to survival. Emotions arévated as a result of the interactions
of the robot with the world, depending on different eventer &xample angerbecomes
active when the goal of the agent is not finishedboredomis activated when the agent
is enroll in a repetitive activity. Emotions in this apprbagork as second-order modifiers
or amplifiers of motivations. More precisely, emotions iefige, proportionally to their
intensities, the decision making process by releasingtiooies” in two ways. First, they
can modify the intensity of the current motivation and, asoasequence, the intensity
of the related behaviors. In fact, in extreme cases, theyavaid the execution of the
behavior. Second, they can modify the reading of the serteatsmonitors the variables
affected by emotions. Therefore, they can alter the peiaept the state of the body, as
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well as the external world. Moreover, the hormonal releaseatfect the way behaviors are
executed. For example, the sad emotion provokes that bmlsare executed slower. Then,
emotions are characterized by a triggering event, an iityeas activation threshold, a list
of hormones which are released when it is activated, a liphgsiological manifestations,
and a list of physiological variables it can affect. In thisrk, several emotions can be
simultaneously activated, all of which contribute to th@&®aor by releasing hormones or
adopt a winner-take-all stratedy [126].

The action selection loop starts by computing the effectthefemotional state and
the motivations are assessed. Then, the highest motivatidithe behaviors that can best
contribute to its satisfaction (those whose effects adlevthe drive) are selected. If none
is found, other behaviors that contribute to it to a lesséemxare selected. Finally, when
a behavior is executed, it has an associated intensity (ge and both the world and the
body state change.

Later, Avila-Garcia and Cafamero applied a “hormone-likeSchanism to adapt the
actions selection process to dynamic and changing envieatahcircumstance§ 127, 2].
Such mechanism modulates the perception of external stimatder to adapt the same
architecture to new environmental circumstances whereotha competes with others for
the same resources. Moreover, this modulation also actsaodéve making the action
selection process more sensitive to it. Fiduré 3.8 showsthewormones influence moti-
vations and behaviors.
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Figure 3.8: Hormone-like modulation for the action selectprocess proposed by Avila-
Garcia and Cafiamerd [2]
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3.3.3 The ALEC architecture (Gadanho, 1998)

Another relevant work is the one presented by Gadanhd [12&.29]. In this work, the
research is focused on how artificial emotions can improgdthavior of an autonomous
robot. In her approach, the robot adapts to its environmsimguan adaptive controller
adjusted by using reinforcement learning. Emotions arel tcsénfluence perception, as
Caflamero does, and to provide a reinforcement functionhdad works, emotions (hap-
piness, sadness, fear, and anger) are determined by ifeszhiags (hunger, pain, restless-
ness, temperature, eating, smell, warmth, and proximatyg, the relations between each
emotions and the feelings are predefined.

In later works, Gadanho presented the ALEC (Asynchronoasrieg by Emotion and
Cognition) architecture where decision making is appreddihom two perspectives: emo-
tive and cognitivel[130,13]. Then, the ALEC architectureg{i#e[3.9) is mainly composed
by the emotion and the cognitive systems. In this architectemotions take the form of
evaluations or predictions of the internal state and thdésgar@ explicitly associated to a
set of homeostatic variables [131]. These homeostati@abtas allow to learn the util-
ity of each behavior and make decisions considering thaadthtion, a cognitive system
provides an alternative decision making process which carect the emotion system’s
decision.
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Figure 3.9: The Asynchronous Learning by Emotions and Gamgnarchitecturel[3]

The emotion system is composed in turn by other two subsystdra goal system and



50 Chapter 3. State of the Art

the adaptive system. The goal system evaluates the betael@cted and notifies when a
behavior should be interrupted. In other words, it detegmitihe reinforcement and when
behavior switching should occur. The performance of a biena measured in terms of
the state of the homeostatic variables which must be maedawvithin a certain range. In
order to reflect the hedonic state of the agent, a wellbeihgeva created which mainly
depends on the value of the homeostatic variables, thegsstdneir transitions, and their
predictions. This wellbeing value is used as the reinfoerfunction.

The adaptive system is in charge of the learning processiplieiments the Q-Learning
algorithm, so it learns the utility value for each action.e$h values are stored by neural
networks which are fed with the homeostatic variables ahdratensory data. As a result,
the agent will try to maximize the reinforcement receivedsbiecting among all available
actions.

Finally, the cognitive system is based on a set of rules etdddfrom the agent-environment
interaction which represent particular successful bedtasglections. These rules can be
updated, deleted, or even merged. When one of these ruléisditairrent state, the sug-
gested behavior is promoted by adding a constant value te#pective Q-value.

As said before, following Tomkins’ idea that the human diecisnaking process con-
sists on maximizing the positive emotions and minimizing tiegative ones, emotions in
ALEC architecture are related to pleasant/unpleasannfgelvorking as reinforcement.
The wellbeing value plays this role and it also can be seem a&srentional feeling of the
overall state of the agent. Moreover, the learning processlts on associating behavior-
state pairs expecting long-term wellbeing value whichgatis thegoodnes®f the avail-
able options, similar to the somatic markers proposed byd3#fl32]. The performance
is measured in terms of the state of these homeostatic \@sialhich must be maintained
within a certain range.

3.3.4 Breazeal's model (2000)

Probably, one of the most influential works in this area isGiyathia Breazeal's thesisl[4].
She continued Velasquez’'s work and, as far as the authornslve presented the first
social robot, Kismet (Figurg_3.3{a)), endowed with a mdiormal system with emotions
and drives. Later, the system was also implemented in thet tedonardo (Figurg 3:3(b)).
She proposes a rather complex net of intertwined systerga@B.ID): the Emotion Sys-
tem where the robot’s affective state is determined, theedrihat correspond to thenate
needs, the Behavior System which is in charge of the arluitraif the available behaviors,
and other modules which are directly connected with thevaarel.

Breazeal thinks on emotions and drives as two related matha systems. Drives are
involved in the homeostatic regulation processes that taaiicritical parameters within a
bounded range. Emotions are models of basic emotions wiaicé particular functions.
They arise under particular circumstances, and motivaedhot to react in an adaptive
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manner. Each emotion has a corresponding expression vaeghibited when the emotion
arises. Breazeal centers her study on the communicatigeofadmotions and how they
improve the human-robot relationships. The role of the énat system is to influence the
cognitive system to promote appropriate and flexible denisiaking, and to communicate

the robot internal states [133, 134, 135].

Kismet's drives influence the behavior selection by pasattiyation to some behaviors
over others. Besides, drives also pass activation enermgymations influencing the robot’s
affective state too. The main characteristic of drives &rttemporally cyclic behavior,
i.e. a drive will tend to increase in intensity unless it isia@d. Moreover, drives have
an homeostatic nature: their intensities should be wittbownded range, the homeostatic
regime. The changes in a drive’s intensity reflects an orggabot’s need and the urgency
to satiate it. Kismet's drives are maintained within the lemstatic regime in a never ending
process which involves the satiatory stimuli. When drivessia the homeostatic regime,
they spread activation energy to positive emotions. Inreshtwhen drives are out of the
homeostatic regime, negative emotions are enforced.

The Emotion System determines the active emotion in a patticontext. Each emo-
tion is elicited under certain, defined conditions and pkegoa specific behavior to serve a
particular function. Thus, an emotional reaction of Kismm@tsists of some environmental
factors (releasers) and their affective appraisal, a cheariatic expression, and a behavioral
response.
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The emotional releasers are evaluated with respect toeslrikie current affective state,
the active behavior, and relevant stimuli; with all, thestigation level is determined. Re-
leasers with activation level above certain threshold Heetive appraised. Inspired by the
Somatic Markers of Damasib[132], each releaser is taggttthriee values: the arousal
(how arousing it is), the valendé (how favorable it is, pleasant/unpleasant), and the stance
S (how approachabile it is) markers. Then, each emotion hatiatoethat filters all the
incoming[A, V, S] tuples from the somatic markers and, with those that passditer,
computes the averagd, V, S]. These average values are used to calculate the activation
level for the elicitor which is passed to the arbitration gdan this phase, just emotion elic-
itors with activation level over a threshold level compitewinner-tale-all manner. Since
the activation level of an elicitor informs about its relaga to the current situation, the,
the highest one determines the active emotion. This emotaarevoke the corresponding
behavioral response and/or affective expression.

Kismet’s observable behavior is not just determined by tier@ emotion, but drives,
perceptions, and others are involved too. However, the@aetnotion spreads activation
energy to specific behavior process. If this activationnsrgj enough, the active emotion
decides the robot’s behavior.

Kismet's Behavior System is organized into a layered hamas of behavior groups
(Figure[3T1). Each group contains behaviors that competactivation with one another
(the behavior’s relevance is determined by perceptuabfacnd internal factors). The
highest level is responsible for maintaining the homedastahctions. Here, the influence
of the robot’s drives is very strong and this motivates tHstdo come into contact with
the satiatory stimulus of the most urgent need. When a behawva group requires more
specific tasks these are embraced in a child behavior grauesenting different strategies
for achieving the parent’s goal.

As said, an emotion can take control of the robot’s behawosdnding sufficient ac-
tivation energy to its affiliated behavior such that this svthe competition among other
behaviors and becomes active. Recalling, each emotion jppeaato a distinct behav-
ioral response. In this model, the active behavior also émibes the affective state, and
vice versa. For example, the succeed in achieving the goa¢lodvior is an antecedent
condition for elicitinghappiness

3.3.5 Other works
Blumberg’s approach (1996)

Blumberg presented an architecture for autonomous vidwatures, or agents, that com-
bines learning with action selection [136]. These virtuaatures are endowed with mo-
tivational internal variables used to model internal stateh as level of hunger or thirsty
(similar to drives in other works). In this system, the agearns the existing behaviors
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Figure 3.11: Kismet’'s behavior hierarchy [4]

leading to the fulfillment of some previously-unassociatedivational goal when it is per-
formed in a novel context. Then, the Behavior System coatdmthe available high-level
behaviors in a potentially unpredictable environment.

Blumberg affirms that, in nature, most of the learning fosuse the discovery either
of situations in which a consummatory behavior should bexantive (it satisfies its asso-
ciated motivational variable), or of behaviors that brihgr closer to attaining some goal
(i.e. appetitive behaviors). Thus, it can be said that ttexinal variables that these consum-
matory behaviors satisfy lead most of the learning in arsm&br that reason, Blumberg
adopted this perspective and the motivational internabhisées lead the discovery of new
strategies for their satisfaction. Based on this approtmehyariation in the value of the
motivational internal variables due to the activity of beibés is used as the reinforcement
signal for the learning process.

In the Blumberg’'s approach, there is no centralized learnin contrast, each motiva-
tional internal variables serves as independent reinfoece signal. This means that the
behaviors for each motivational internal variable are sztpdy learned.

Waiter-task robots (Murphy, 2002)

A curious application of emotional control in robots is therw presented by Murphy
[L37]. In this paper, a team of two heterogeneous robotalsothatively perform a “waiter”
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task. A robot is the waiter (it serves items to an audiencd)tha other is the refiller (it
brings a tray of refills upon request). The controller forhbodbots is implemented in a
script-like manner. Both receive as inputs the task prageesl the refiller has an extra
input: commands from the waiter. Besides, both have a Beh&tate Generator (BSG)
achieving the action selection, and a Emotional State Géore(ESG) which determines
the current emotion. The emotion can be sent to the BSG, taffethe action selection,
or to the sensory-motor level, affecting how behaviors adgomed. The authors have
defined four emotions (happy, confident, concerned, andréesl) based on high task-
dependent variablesirhe til empty(tte) andtime to refill (ttr)). For example, the waiter
robot’s emotional state ieappywhen the time to be refilled is greater than the time it
should take to be refilled if the refiller is moving at expecspeed. That isite > tir.
Each emotion has a preprogrammed corresponding actioenend E.g. if the emotion
is concerne¢the waiter sends the “hurry” request to the refiller, andrtfiler attempts
to move at her maximum speed. Therefore, the emotion’s infleiés performed at two
different levels: the waiter's emotion alters the actiolesgon, and the refiller's emotion
affects the sensory-motor level.

Color shirt-based emotional system (Hollinger, 2006)

In the work presented by Hollinger et al._[138], a continuaustidimensional emotion
space is used to determine the affective state of a sociat nelarge crowds. While mov-
ing around, the robot uses a state machine to determine waliadns it should perform.
When a face is detected, the emotional state, in combinatittmthe person’s color shirt,
determines the reaction the robot executes. This readioomposed of brief movements,
saying a sentence, or playing a sound.

The affective space to determine artificial emotions is 8ase the Mehrabian PAD
scale, where the axes represent pleasure, arousal, andatarei So, in this work, twelve
emotions are mapped into this three-dimensional spacehisrapproach, the emotional
releasers are related to different color shirts, and ealdr bas a certain coordinate in the
PAD scale. The (P,A,D) values for each emotion define theesestto say, the sounds
to play, and the parameters of the controller (maximum angmim speed, minimum
distances, amplitude and duration for wiggling, and othmrstants). The system was
tested on a crowded environment and, during the experimpetyple interacted longer
when the robot exhibited sad or happy behaviors than wheastamgry.

Lisseti’s approach (2007)

Finally, another approach is the one presented by LissetiMarpaung in[[139], where
the behavior of the robot is selected according to its ctiegerotional state. They generate
this emotional state based on the data received from the sgmsors of the robot. In fact,
each emotion is related to certain external events, e g.panameter of th&ademotion
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is increased if the door is closed or the robot does not razeggomeone. Once the emo-
tional state is determined, the robot will execute the pra@gtion tendency, i.e., the robot
identifies the most appropriate (or a set of) actions to bertéom that emotional state.

In this work, each emotion has several properties: véilencedescribes the pleasan-
t/'unpleasant dimension of an affective state, ititensityrepresents the importance and
urgency of the affective stat&cality indicates if the emotion is related to an event or an
object, theagencyindicates who is responsible for that emotion (the agealtfitd other),
modifiabilityrefers to the duration and time perspectaetjon tendencidentifies the most
appropriate action to be taken from an emotional statecandal chaindentifies the cau-
sation of a stimulus related to an emotion (e.g. happy wasezhbbecause something good
happened to me)

The resulting emotion is used for determining the facialregpion. After, theBe-
havior State Generatoexecutes the corresponding behavior according to the iinpuont
the sensors and thaction tendencyf the emotion. For examplegvoid_left walland
avoid_right_wallbehaviors can be activated when the robosusprised whoseaction
tendencys avoid

Full-configurable user-oriented emotional robot (Lee, 208)

Lee et al. [14D] follow a different approach to the use of doma for shaping robots’
behavior. They follow a user-oriented approach in develgn interactive framework
for configuring the robot’s behavior, i.e. the user can amite the behavior of his own
pet-robot. Authors propose a behavior-based control withl-&onfigurable emotion sub-
system for behavior coordination.

The emotion system models basic emotions (happy, angrydesed, shock, and sad)
to coordinate the behavior controllers the user has preeshtor his pet. Each emotion is
independently quantified based on a set of events predefindueluser. For example, a
user can define that the appearance of a stranger impliesaherhotion to be incremented
in one unit. Moreover, another set of homeostatic variablesdefined to describe the
robot’s body state (e.g. hungry). These variables have todigtained in a specific range.
These ranges, as well as the events which modify the homeosaables, can be defined
by the user too.

In order to select the appropriate behavior at any time, @-fesvard neural network
maps emotion values and body states into the desire behaviisrneural network can be
trained by the user in order to obtain the desire pet's behavi

The TAME architecture (Moshkina, 2011)

Moshkina [5] presented cognitive and psychological modéleuman Traits, Attitudes,
Moods and Emotions for their application to robots. Thesé@®were integrated into an
architecture called TAME which is intended to influence tkeeception of a user regarding
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the robot’s internal state and the human-robot interadtsatf. All these affective elements
strongly influence each other and intertwine in order to sliealike appearance in robots.
A conceptual view of TAME is exposed in Figure 3.12.
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Figure 3.12: Conceptual view of the TAME architecture [5]

Personality traits and affective attitudes represent pegmsity to behave in a certain
way. Personality traits are not essentially affective, thely influence on other affective
phenomena. They are permanent values that identify therpatof behaviors and affects
that characterize individuals. Traits are defined a prigralhuman

Attitudes aré‘general and enduring positive or negative feelingaiout objects, peo-
ple, or issues. Attitudes are object-specific and they dalimettly alter the behavior, but
rather through the emotions they invoke. They justify the okattitudes because robots
sharing attitudes with human companions easier and bettgge in interaction.

Affective state is formed by moods and emotions. Mood is &mtivation, slowly-
varying diffuse affective state; it is as a slow smooth uatah. Moods represent a con-
tinuous affective state, cyclically changing and subtlexpression. So, they only produce
small effects on the currently active behavior. Expressiogd can alert to changes in the
environment or in the robot itself. The level of mood is congolas a weighted summation
of external and internal variables. Considering an exarfipla the paper, positive mood
is more susceptible to energy consumption, and negativel imodarkness.
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Emotions are high-intensity short-duration peaks of diffecstate and provide fast and
flexible responses to relevant stimuli from the environmémthis paper, emotions’ func-
tions are mainly communicative and expressive. The selaateotions implemented were
fear, anger, disgust sadnessandjoy, because of their universal, well-defined facial ex-
pressions. Emotions are endowed with a set of propertieshadefine their intensities:
activation, saturation, response decay, and linearityreldeer, they are highly dependent
on traits and moods.

Emotions alter the robot’s behavior, from examfdabtle slowing to avoid disgustful
object” or “drastic flight in response to extreme fearExperiments presented show how
the robot expresses the corresponding emotion or how ensati@dify the current behav-
ior (for instance, slowing down the walking speed), but tdeynot decide the goal or the
behavior to execute.

Behavioral arbitration or the changes to the behaviorahmpeaters are performed on
the robot controller side, providing high portability archiability. Actually, affect can be
implemented in continuous or discrete manner. In the hudaxao, a discrete approach
with a number of affective expressions has been implemeiitieel appropriate expression
is selected according to the actual values of TAME variablEsese variables influence
the robot’s behaviors by altering certain parameters @csielg a predefined affective ex-
pression. Then, as said before, emotions are mainly emglayghow the robot’s internal
state, and they are not involved in the decision making m®c&hich is achieved in the
robot’s side considering the TAME variables.

The emotional robot head MEXI (Esau, 2011)

Esau and Kleinjohanin]6] presentfally emotional competencefobot head called MEXI,
which is intended for interaction with people by communimat It recognizes human
emotions from speech and facial expressions and it is alddequately react to them. In
addition, MEXI is endowed with drives and artificial emotsowhich are used to manage
the control of reactive behaviors, and the corresponditgt® internal state is shown
by facial expressions and utterances. The presented tanttutecture is a model-free
approach, so there is not an explicit world model and goaksmtation.

MEXI is endowed with a set of three drivesymmunicationplaying andexploration
for achieving pro-active behavior. For example, whercbrmmunicatiomrive is very high,
MEXI looks for people in the environment. When a person i€pied, theeommunication
drive is satisfied by following their face with its view andriiplies the emotiomappiness
which is expressed by the smiling behavior. MEXI’s basicdwbrs are classified into
expressive behaviomghen they depend on its emotions state generating the pomdsig
expression (facial, speech, and prosody), eoping behaviorsvhen they depend on the
drive state (talk, playing, following faces, etc).

For each drive, a range is defined and when the drive is insiddn homeostasis, i.e.
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it is balanced. The course of a drive changes over time, tlkesdinternally increase and
decrease in a cyclical manner, even in the absence of ekstimalation. By default, with-
out external stimuli, the drives follow a sine wave. The défaourse of a drive is altered
according to the acceleration factor, which determinesirifieence of stimuli. Stimuli
are perceptions and robot’s own behaviors influencing &petiives. They may accel-
erate or decelerate the drive’s increase or decrease.cdjiag behaviorsatisfy drives.
This course of drives is not very accurate in relation to aténe.g. hunger in animals
always increases until it is satisfied due to the ingestiofoofl. According to Esau and
Kleinjohann’s model, hunger would increase and decreag®wi any ingestion, just over
time.

In relation to emotionshappinessanger, sadnessandfear have been implemented
in MEXI. It strives for happinessand avoids the others. As drives, emotions develop over
time. For each emotion, there is a threshold that defines wiernobot has to show the
emotion. Stimuli influence emotions too by an acceleratamidr related to emotions. This
acceleration factor is affected by the current perceptamakdrive state. In this work, drives
are linked to emotions and, hence, the variation of a driveeeming a certain emotion,
can influence its increase and decrease.

In order to show emotional competence, MEXI selects beha@ocording to the emo-
tions of the human counterpart. Moreover, it also maintaims regulates MEXI's emo-
tional state in such a way that its drives are kept in the h@ta¢ic area, and positive
emotions are reinforced while negative ones are avoided.
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Figure 3.13: Control of the Behavior System by the Emotiogike in the robot MEXI[[5]

Behaviors are weighted according to external perceptitiesemotional state, and the
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drives. When the strength of an emotion reaches certaishblé, the gain value for cer-
tain predefinecexpressive behaviois set to the maximum value. In relation ¢oping
behaviors their gain values depend on the drives: if a drive incrddseseases, the gain
for the correspondingoping behaviois increased/decreased by a certain amount per time.
Then, the relation between drives atwping behaviorare predetermined by the robot's
designer.

Once behaviors have been weighted, they are ranked. Congjdbat the available
behaviors are also classified@smpetitiveor cooperativeif the behavior with the highest
value is competitive, this is the resulting behavior. OtVise, the first behavior is cooper-
ative and then altooperative behaviorare proportionally combined to produce the final
one.

A multi-agent approach to emotions (Nair, 2011)

In other paper, Nair et al.[[141] present a multi-agent apginofor using emotions in
robots. In this work, dedicatezinotion agenta/ork concurrently. Multiple software agents
interact with one another to produce a set of emergent emotiased on the external
perceptions the robot perceives. These agents stimulatappress other suamotion
generating agentfor certain time to finally result on aemotional control juicghat can
eventually alter the robot’s behavior.

An interesting point is that adrenaline is used as insirtr the rate at which the sen-
sors are sampled. Higher negative emotion generation sdhiserate to increase making
the system more aware of its environment. Higher positivetemms intensities cause this
rate to slow down. This metaphor for adrenaline is deterthimethe robot’s mood which
is generated by fuzzifying the emotion intensities. If theatt goes down, the system starts
to sample at faster rate as an attempt to ameliorate its ttomdirhe higher the mood, the
lesser is the sample rate.

The emotion intensities are determined by the emotion resowa time-to-live and
decay for stimulations and suppressions. The concept ofiemesource relates to the
affective capacity of a system to generate the associateti@mintensity. This is similar
to the intensity of happiness of a poor man who finds a€l®il and subsequently finds
more such bills within a short time: the emotion intensitgsgmot actually double or tre-
ble. The emotion resource diminishes with every generatiaiie emotion intensity, it
has a maximum limit of emotion generating capability, andaés not eventually lose its
secreting capability. After certain time the resource isléied, theemotion agentharges,
thus augments, the emotion resource. Also external soargg®ment resources: rewards
augment the resource of positive emotions, and penaltieslggperform for negative emo-
tions (reward and penalty are based on the task the robairpes}. This is referred as the
replenishing capability oemotion agents The conversion of an emotion resource into
emotion intensity is proportional to the intensity of theratlations received and also to
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the resource currently available. Moreover, the emoti@tay over a period of time.

The system is implemented in a Lego NXT robot where three m®tontrol its mo-
tion along a pathhappy fear, andanger. Each of them are determined by the inputs com-
ing from relevant, specific sensors: the robot becomes hajyey it senses an increasing
light intensity gradient, fear is sensed when somethingesowery close, and angry when
the sound level exceeds a threshold. Rewards and penakiesnaulated. The speed of
the robot is modulated based on the mood, so it is propolttorthe sampling rate. In the
experiments shown, the robot moves along a straight patmoves away faster from areas
with obstacles, sounds, and darkness. The dynamic samptegispired on the effects of
adrenaline drives the robot out of situations which inceghg negative emotions. Such a
mood thus serves as tkenotional control juicéo moderate the behavior of the robot.

The use of separate agents for emotion generating allowstthem in different lo-
cations, or easily add/remove concrete emotion generagegts (scalability). The elabo-
rated dynamics of emotions contribute in making the tramsstfrom one emotion type to
the other more biological equivalent. However, the gemanatf emotions is very steady
and predefined. This makes the experiments rather simplesianple results.

Fuzzyfied emotions (Kowalczuk, 2011)

Kowalczuk and Czubenk@][7] propose to utilize models of ps}agy of living creatures
for adapting autonomous robots to the environment. Theyramee concerned about the
interaction of the robot and its environment, where humamsbe part of it too, instead of
focusing on human-robot interaction as others do. In thegaep, robots are endowed with
a set of needs and these are influenced by several emotioes, @motions are used for
modeling the sense of fulfillment of needs.

Using fuzzy methods, each need results in three possililssdabeled as satisfaction,
pre-alarm, and alarm. Emotions (referredcésssical emotionn the text) are some states
of mind, which modify the system of needs and reactions. classical emotioms reduced
to a single variable, and decomposed into seven fuzzy sgiesenting each one a single
fuzzy emotion (FiguréZ314). These fuzzy emotions are Ebelsfear, anger, sadness
indifference happinesscuriosity andjoy just for differentiating them. Also emotions are
modulated by impressionsrelated to external objects (this is referred asii-emotions
by the authors). Besides, the concept of mood is also apipligds work. In this case, its
value is formed by thelassical emotiorand moderates the fuzzy membership parameters
of the needs.

The decision on the reaction is made by a combined criterionposed by the max-
imum satisfaction level of the needs and a minimum distregslI(related to the alarm
and pre-alarm thresholds). The influence of reactions omé¢eels are predefined. Using
a fuzzy-neural network, each reaction is computed by pevifoy a simulated estimation
of the effects of its application. Then, the best reactioaxiscuted with the expectation
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that the satisfaction of needs will be improved. The reacttbe context of the current
emotions, and the amendments on particular needs are staragrove the estimation of
the effects of any reaction and, thus, to optimize the dewgisi

This system has been tested on simulation and a simplifiexioverbased solely on
needs, has been implemented on a laboratory mobile plaifoeneasy environment. Au-
thors state that the robot acts like a baby satisfying thetrobeds.

Arkin’s moral emotion of guilt (2012)

An interesting application of emotions in military robossgresented i .[142]. Arkin pro-
poses a moral decision making for lethal military robotsdoaen ethical issues. Moral
emotions are used to modify the robot’s behavior based omethdts of its actions. Fo-
cusing on ethical behaviors in autonomous agents, Arkirsidens the moral emotions
proposed by Haid{]143] and, particulartilt is implemented in his system. In this case,
guilt follows the definition given in[[143]: guilt is¢aused by the violation of moral rules
and imperatives, particularly if those violations causeatrh or suffering to othefs In
Arkin’s work, guilt is originated when the military robot&ctions cause undesired effects
and it is used to alter the future robot’s behavior by prewmgnihe same actions to occur.
Guilt is implemented as a variable which will increase accordinthé feedback pro-
vided by external operators and self-monitoring proces®¥éisen this variable exceeds a
certain threshold, the robot can not perform any lethabadiiecause it is not considered as
ethical and there is no option for permission-to-fire. Orige happens, the robot can stay
in the battle field but just for non-lethal operations (sillaace, reconnaissance,etc.). This
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non-lethality state remains active in the robot until antéafiction review” or an operator
override the restriction and explicitly takes the respbitisy.

In order to modify the robot’s behavior, the weapon systernhefrobot has been clas-
sified according to the different destruction potentiatheane with a different guilt thresh-
old. Once guilt value exceeds one of these thresholds, tlagevs corresponding to the
associated class are deactivated. The higher destructigapon class is, the lower thresh-
old is assigned. When guilt reaches its maximum, all weapomdeactivated and the robot
cannot engage targets any more until “after-action reviéwiis use of guilt recognizes the
bad behaviors and provides the opportunity to reconsidecip actions and their results
for the future. Hence, guilt can alter the robot’s behaviwrdn autonomous agent.

3.3.6 Comparative analysis

After this overview, it seems that there are several elemprasent in most of the works.
The majority of the authors considers some kind of intermaiables representing needs.
Furthermore, external perceptions directly influence thasion making process itself, or
indirectly through altering other elements such as madbwat emotions, or perception.
In addition, emotions influence, in one way or another, thealbm®r selection and behav-
iors alter the internal state of the robot. Then, these idathde kept in this thesis too.
However, the above commented works differ in many aspecesxt,Nhe most relevant
differences are mentioned.

The homeostatic approach

Drives, needs, or internal stimuli, are all synonyms of thme concept related to home-
ostasis in living beings. This implies a temporally cyclmucse of these drives, but the

homeostatic approaches are significantly different. Istinesis, drives have an ideal value
of zero, and any deviation from it represents the need arehaggto satiate it. The bounded

range in Breazeal's drives does not exist in the model censdlin this thesis, but there

are activation levels for motivations that play a similderbut at a higher level. Veldsquez
suggests releasers for drives that check certain condit@rnncreasing or decreasing their
values.

The influence of behaviors

Despite of almost all authors suggest the influence of benatd drives (specially as satia-
tory stimuli), Breazeal proposes also that behaviors infteeover emotions too. However,
in this thesis, the focus is put on how emotions help to shapalécisions made by the
robot, so the flip side is not covered.
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Behavior arbitration

Just few of the authors provide a mechanism to execute s$dwehaviors concurrently
(Velasquez and Esau), in contrast with the others who peposinner-take-all manner
where one behavior is exclusively executed according tontbst relevant emotion or mo-
tivation. The present dissertation follows the last appinoa

Different models of emotions

Two main categories of models for emotions have been obdeoantinuous (or dimen-
sional) and discrete.

Many researchers think that the relation between situatéomd emotions is mediated
by a set of intermediate variables. These variables actmasrdiions of an affective space
and each emotion is associated to a different zone of thetaffespacel[31,144] 7]. These
dimensional theories represent emotions as points in ancants dimensional space.

On the other hand, other authors, such as Velasquez or Cadiacnasider emotions
as discrete categories. This approach is more focused &mgptor the adaptive function
for each emotion and, regardless of its implementatiodudethem into a model [145].
These represent a functional approach, also referrediasabtheories[[78].

In the discrete emotional approach, dimensions of emadtiatensity can be still em-
ployed, but these are applied within each emotional caye(mg. Moshkina, Esau, or
Lisseti). However, as Lazarus says [1145], the dimensidredries underestimate the im-
portance of distinctions among emotions because they lookhe minimum number of
dimensions for emotion differentiation. Moreover, the dimsional models miss interest-
ing features of emotions when several emotions fall exthgiciese on the affective space
[65]. These emotions occupy a small space and may be inglissinable in the affective
space, but easily distinguishable with characteristituies.

Besides the above mentioned models of emotions, Oltéaia¢n8iders another group
of theories: anatomic theories, which try to recreate th&raldinks and processes that
underlie organism’s emotions. However, to the best of thieais knowledge, this has not
been implemented in robots yet.

The role of emotions

One of the controversial aspects of some of these works tsstirae authors claim that
they implement all or the main functions of emotions. From #uthor’s point of view,
several implemented emotions miss one of the key roles ofiens the motivational role,
that is, the capacity of emotions to incite to act. For exanpkau et al. claim that their
implemented emotions are used to control the behavior afobhet MEXI but its emotions
are just considered in the control expressive behaviarsTherefore, in relation to the
inner robot’s state, emotions are used for showing the @ffestate. Moshkina, in the
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TAME architecture, allows emotions to modify the way a bebais executed, but not
what behavior to execute or what goal to pursue. Moreovemgtfal’s of the Lee’s adaptive
pet-robot are not affected by emotions at all.

How many emotions?

According to Spinola and Queiroz[146], another importastie related to the implemen-
tation of artificial emotions in robots is: How many and wharotions must be selected?
Some authors defended the idea of implementing a varyingoruiof emotions, from 3
(Nair) to 12 (Hollinger).

The models with the highest number of emotions correspordase following a di-
mensional approach. This is due to the “easy” of defining a aificial emotion just by
delimiting a region in a dimensional space.

One very different point of view is presented by Cafiamer@#¥[: “Do not put more
emotion in your system than what is required by the completithe system-environment
interaction”. Therefore, she suggests to include just the required enmfor the task.

Learning

Several works consider some level of learning in their aechires for different purposes.
For example, Velasquez’'s architecture allows to learn thetmnal releasers. However,
learning is mainly applied to learn when a behavior must hiwated. Blumberg uses its
motivational variables as reinforcement signal for leagrthe situations for each behavior.
These signals are independently employed, so the behdwragach motivational variable
are separately learned. This might result on situationgevbertain behavior is appropri-
ate for certain motivational variable, but rather detrima¢for others. In contrast, Gadanho
considers a broader measuresatisfactionas reinforcement signal: the wellbeing, which
depends on all the homeostatic variables and other valles.avoids the potential detri-
mental effects of Blumberg's approach.

Bio-inspiration

Some of these works do not follow a bio-inspired approachmoten and they are very
task-dependent (e.g. Murphy and Lee). These systems lakajiy, and flexibility. In
addition, emotions lack its functionality and they are kelgsouple with its original reason
to exist. However, these works present different applicetiand contexts that proof the
applicability of emotion-inspired systems.

Moreover, most of the works lack some “cognitive” aspectsmbtions in animals such
as anticipation, appraisal of situations and consequeroesrol of emotions, or emotion
learning (e.g. Caflamero’s, Arkin’s, or Hollinger’s work3his dissertation tackles two of
them: appraisal and learning.
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3.3.7 Why do robots need emotions?

After reviewing the most relevant works where emotions amesaered in robots, many
readers perhaps are still asking about their utility. Soesearchers are against including
artificial emotions in artificial creatures. In 1979, Hofiter [148] stated that simulation
of emotions cannot approach the complexity of human emstiaich arise indirectly
from the organization of our minds. However, several agh@ve expounded their rea-
sons to include artificial emotions in robots besides thapartance in the human-robot
interaction.

According to Arkin, motivations/emotions provide two poti@l crucial roles for robotics:
survival and interactior [27]. Cafiamero considers thattams, or at least a sub-group
of them, are one of the mechanisms founded in biological sgenconfront their envi-
ronment. This creates ease of autonomy and adaptation.hiSoreason she considers,
similarly to Arkin, that it could be useful to exploit thisleof emotions to design mecha-
nisms for an autonomous agehntl[29]. Both researchers lediiat emotions significantly
enhanced human-robot interaction.

Moreover, Cafiamero claims that emotions must be includéxditd “better adapted
and more life-like creatures{eg]. In [142], Cafiamero lists possible application of emo-
tion to problems of autonomous robots: management of gagdstitive and inefficient be-
havior, autonomous learning, and cognitive overload. Meee, Scheutz proposes twelve
potential roles of emotions in agenksT150]: action setectadaptation, social regulation,
sensory integration, alarm mechanisms, motivation, g@agement, learning, attentional
focus, memory control, strategic processing, and self inodHence, there seems to be
many applications where emotion-inspired systems coulsebeficial.

In relation to motivations, Caflamero states that motivetibave to be integrated in
artificial systems to promote decision making, activityeséibn, and autonomy [66].

On the other hand, Ortony explains that robots need emolmrtbie same reason as
humans do: one of the fundamental functions of emotionsasttiey are a requisite for
establishing long-term memories. The second functionas ¢émotions provide opportu-
nities for learning, from simple forms of reinforcementri@ag to conscious and complex
planning [151].

In the same line, Bellman]28], Fellowss152], and Kelley 3] State that, since emo-
tions allow animals with emotions to survive better thareoghthat lack emotions, robots
should be provided with features related to emotions in atfanal way.

Picard [154] justifies the use of artificial emotions to mifivang humans and animals,
create intelligent machines, and try to understand humantiens.

Finally, Olteanu[[7B] states that artificial emotions areddfecial for social robots be-
cause improve human-robot interaction, gives informatticdhe user (robot’s internal state,
goal, intentions, etc.), and can drive the behavior. Henaffithat emotion-based robot ar-
chitectures enhance believability and effectiveness lodi®



66 Chapter 3. State of the Art

Minsky summarized all these ideas in just one sentefidee question is not whether
intelligent machines can have any emotions, but weathehimas can be intelligent with-
out any emotions'{I55]. Following this same idea, Alvarado does not queséither
about the inclusion or not of emotions and motivations intelligent systems, but how to

do so [1586].

3.3.8 Differences with the followed approach

This dissertation has been mainly inspired by CafiamerceglaBho’s, and Velasquez's
works. As will be shown in following sections, homeostatiosds related to motivations

are employed, as those authors do. In the approach follow#ds dissertation, the mo-

tivations, and not the behaviors (as referred to in Velasgu®reazeal’s, or Esau’s ap-
proaches), compete among each other following the pointesf wf Cafiamero, and the

dominant motivation drives the robot’s behavior. Neveldhs, in her approach, the winner
motivation has a related behavior that satisfies the agsdcreeed. Moreover, a discrete
emotional approach is followed and it is considered thatrélation between situations
and emotions is different for each emotion. Therefore, @awbtion requires a particular
study to establish this relationship. Following this lasity of view, currently, this research

focuses on three emotions: happiness, sadness, and fear.

In fact, one of the main differences of this thesis with ottmetivational decision mak-
ing methods is that the behaviors are not necessarily pusljidinked with a need, a mo-
tivation, or an emotion. This means that there are no predummnotivational or emotional
behaviors. Then, the robot will learn by itself, using a feinement learning algorithm,
which behavior to select in order to satisfy each drive oiwlhg the same approach pro-
posed by Gadanho. Therefore, they are not known in advanceoritrast, in Breazeal's
thesis certain behaviors are assigned to certain emotthsrs (Velasquez, Sloman, Esau,
Shivashankar, or Esau) propose certain predefined infladratereen emotions and behav-
iors. In Cafiamero’s works, it is assumed that there is oné/lmehavior able to satisfy one
need. This fact can be seen as a disadvantage, since it fimitkexibility of the decision
making system. It could happen that several behaviordg#tis same need. This point of
view seems to be more bio-inspired since, in nature, in dodeatisfy, for example, hunger,
we can eat something but also drinking some water can retiisceded. In other works,
behaviors are not just linked to emotions, but to drives tésa(i, Breazeal, Kowalczuk,
Lee, and Sevin). This is viewed as putting extra knowledg®time system.

Besides, also emotional releasers are predefined in althegstems. For example, in
Breazeal's work, there are predefined conditions thatteliffierent emotions[[4]. In this
thesis, the robot learns from all available actions the bestin each context. Moreover,
the emotional releasers follow a very high-level patterg.(bappiness is elicited when the
robot’s wellbeing increases), and particular cases aradedby reinforcement learning.

Other difference is that, in the approach followed in thissértation, the way each
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emotion is defined in the architecture is different. This nsethat emotions are not defined
as a whole as most authors do. As can be observed, there apeitwts of view in relation
to the role of emotions in the decision making process. CafiajfGadanho, Velasquez,
and Breazeal used emotions to influence the decision makauggs, not for selecting the
behavior directly according to them. On the contrary, athsuch as Hirth et al, Hollinger
et al, and Lisseti and Marpaung consider emotions as theat@#pect of their decision
making system so, in some cases, the behavior is selecteddatg to the current emo-
tional state. In the present dissertation, the role of emnstare not limited to one of them,
but both points of view are exploited. On one hand, some @mstare used as the re-
inforcement function in the learning process, as Gadansm @loposed, not determining
directly the action selection. On the other hand, other @nstare defined as motivations
so, the behaviors will be completely oriented to cope withdituation that generated those
emotions. Hence, drives and emotions are not considereffa®dt motivation systems,
as Breazeal proposes. Both are integrated into a uniqueatiota system where the mo-
tivational aspects of some emotions and “physiologica€dseare considered in a similar
manner, in relation to motivational aspects.

3.4 Summary

In the first part of this chapter, the most relevant sociabtsihave been shown and com-
mented according to their characteristics and functitieali This thesis has been devel-
oped in a different robotics platform: the social robot Migggvhich is detailed in Chapter
B.

Following, the most important control architectures artéresting applications where
motivations and emotions shape the robot’s behavior haga bealyzed. The foregoing
overview did not aim to be an exhaustive record about theaoégnotions in robots found
in the literature, but a brief summary of the most importanbgon inspired methods used
to tackle the decision making in robots. As mention in the $&xtion, several of these
works have served as inspiration for this thesis. Furtheemma the last section, the main
differences with previous works have been remarked.

Next chapter presents the details of the approach followehis thesis.
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CHAPTER 4

The decision making system

4.1 Introduction

One of the main goals stated in Chagifer 1 corresponds toaserthe robot autonomy
by means of a decision making system (from now on referred\MS)based on the ideas
presented in ChaptEl 2. This chapter presents the theadrptinciples of the DMS which
is implemented in a robot. As mentioned, it is composed byedrimotivations, emotions,
and self-learning. Following, the bio-inspired motivaiad DMS is introduced (Section
32). Later, the principles and concepts of the self-leaymrocess are exposed (Section
H3). Finally, the emotions involved in the decision makprgcess are analyzed (Section

E.4).

4.2 A motivational decision making system for a social
robot

In this thesis, a DMS for a social robot based on motivatiartgere no specific goals are
given in advance, is implemented. The objective of the rabtd feel good in the sense
that it has to keep its needs within an acceptable range. ritveless, the way to achieve
this goal is not defined.

In this DMS, the autonomous robot has certain needs (draresjnotivations. The goal
is to survive by maintaining all its drives satisfied. Fosthurpose, the robot must learn to
select the right action in every state in order to maximigeniellbeing. The wellbeing of
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the robot is defined as a function of its drives in the nextisact

The decision making system presented in this section waalinidesigned by Malfaz
[49]. This model was tested on virtual agents [157 [42] 1884 in this thesis it is adapted
to a real robotic platform living in a laboratory.

First, considering the ideas presented in Chdpter 2, theeqis of drive and motivation
in the proposed system are introduced. As mentioned in @hBpdrives indicates a
deficiency or a demand that causes the desire to satisfy ¢nisuad or to overcome the
deficiency. Such a demand usually motivates and evokesnaitiats satisfaction. So,
drives are often viewed as homeostatic processes thatat®tctions in order to reach
and keep a certain balanc¢é [6]. Recalling, the term homsissteeans maintaining a stable
internal state[][53]. Then, the robot’s internal state isficamed by several variables, which
must be around an ideal level. When the value of these vasahifers from the ideal one,
an error signal occurs: the drive. These drives constitigfesito act based on bodily needs
related to self-sufficiency and survival[124]. In this apgch, the drives are considered as
the needs of the robot. The ideal value for a drive is zerockwhorresponds to the lack of
need. As time goes, the drive increases until it is reducetiated (reset to zero).

Motivations are those internal factors, rather than external ones utigatthe organ-
ism to take action]59]. Following the ideas of HUI[60] andlBenius [15P] [160], the
intensities of the motivations of the robot are modeled asatfon of its drives and some
external stimuli. The motivational states represent tanis to behave in particular ways
as a consequence of internal (drives) and external fadgtarsritive stimuli)[161]. In other
words, the motivational state is a tendency to correct thar,ete. the drive, through the
execution of behaviors.

In order to model the motivations of the robot, the Lorent®/draulic model of motiva-
tions is used as an inspiratidn [162]. In Lorenz’s model,jtiernal drive strength interacts
with the external stimulus strengthExternal stimuli are perceptions coming from the
environment that alter the tendency to act, that is, thevattins to behave in one way
or another. For example, in animals, the smell of a tasty footkases the motivation to
eat. Therefore, if the drive is low, then a strong stimulusasded to trigger a motivated
behavior. If the drive is high, then a mild stimulus is suffiti [53]. If the drive or the
stimuli separately are strong enough, a behavior can bec@twithout the influence of
the other. The general idea is that we are motivated to eah wigeare hungry and also
when we have food in front of us, although we do not really niéedn nature, a weak
stimulus (e.g. spoiled food) but a strong motivation (etgrndng) may result in the same
behavior as a strong stimulus (e.g. chocolate cake) but wedikation (e.g. full stomach)
[L36]. Therefore, the intensities of the motivations adewated as shown in Equatién¥.1

If D; < L;thenM; =0

If D; > Ly thenM; = D; + w; (4.1)

where M is a particular motivation]); is the related driveyw,; corresponds to the related
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external stimuli, and., is called the activation level. Motivations whose drives below
their respective activation levels will not be able to lelae tobot’s behavior.

According to Balkenius[[159, 160], all excited motivatibstates cannot be allowed
to direct the robot at once since this would generate in@fttdrehaviors. In his opinion,
this problem cannot be handled solely by behavioral competbut must be resolved at
an earlier stage of processing. The solution proposed istavational competition, as
Cafiamero also proposed [n124]. Therefore, in this approace the intensity of each
motivation is calculated, they compete among themselvdsdimg the dominant one. The
motivation with the highest value, and which drive is overattivation level (Equation
1), is considered thdominant motivation, and it determines the internal state of the
robot. If the drive is below the activation level, it does notpete for being the dominant
motivation.

When none of the drives is greater than its activation léyelit happens that there is
not a dominant motivation. This occurs when all drives atised or, at least, their values
are close to their initial values of zero. This implies thag tobot’s wellbeing is very high,
close to the ideal wellbeing (Sectibn 413.2). The lack of dw@nt motivation means that
all needs are not high enough to induce the robot to act, soifit & pleasant state. This
is interpreted in such a way that a particular behavior tedtices the drive related to the
dominant motivations is not necessary.

The state of the robot is a combination of the inner and eatestate. The inner state,
as has just been explained, is determined by the dominanvatioh of the robot. The
external state is defined by its relation to every objectarrivironment (detailed informa-
tion about how the state is formed can be found in Chdpter 6. action selected at each
moment will depend on the state of the robot and the poteati@bns, since the external
state restricts the possible actions. In humans, for examye can not eat if we do not
have food. It is important to note that initially the robotedmot necessarily know the con-
sequences of its actions, nor the reinforcement that itredleive. For instance, the robot
does not know that after recharging its batteries, its lef’ehergy will be high. The robot
just has the knowledge about which actions can be execuekhy state.

In this DMS, there are not predefined, motivational behavioFhis means that the
robot does not necessary know in advance which actions ¢éatsel order to satisfy the
drive related to the dominant motivation. There is a repgrtd actions and they can be
executed depending on the relation of the robot with itsremvnent, i.e. the external state.
For example, the robot will be able to interact with peopldas) as it is accompanied
by someone, or it cannot turn the music player on if the robéai from it. Through the
learning process, the robot learns what action is the bestary situation.
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4.3 Learning in the DMS

One of the aims of this DMS is to provide the robot with a med$ranfor learning how
to behave in order to maintain its needs within an acceptabige. That is to say, as
mentioned before, the robot must learn to keep its wellbasdigh as possible. For
this purpose, it uses reinforcement learning (Chajgter 1¢do from its bad and good
experiences. Following, reinforcement learning (RL) saduced and the well-known Q-
Learning algorithm is summarized in order to provide a bettelerstanding of the learning
process.

4.3.1 Reinforcement Learning

In a decision making process, the main concern is relateldetaecision of which action
to take as a function of the available state. By means of Rt yéhbot learns what to do
S0 as to maximize the reward. Then, it maps states to thenadtiat are the best in those
situations. This map is called the policy.

The decision making loop for an agent in a RL framework is srinimFigurelZ:lﬂ: at
time ¢ and in a certain state), it executes an action) leading it to a new states(, ).
As a consequence, the environment responds with a reward.(From that new state the
agent executes another action and so on.

Agent
state reward action
St 't I
;< "t+1
e Environment
I St

Figure 4.1: Typical iteration in a reinforcement learnirmmtext

The reward informs about the suitability of an action in atipatar state (how good
the action has been in the current stafe) [163]. Valeeevaluates the long run and it is

SThis figure was originally presented In[163]
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defined as the discounted sum of all the expected reinfonstsme

’UCLlue:T1+7'T2+72‘T3+’73'T4+... (42)

The parameter (0 < v < 1) is known as the discount factor, and defines how much
expected future rewards affect decision now. The goal of Ktoimaximize the total
expected reward [164].

RL is a goal-directed learning because the reward functedimes the goal. Rewards,
more specifically, reward functions in RL, determine thebtem the learning agent is
trying to solve. RL algorithms address the problem of how laalveng agent can learn to
approximate an optimal behavioral strategy, called a pohtile interacting directly with
its environment. Roughly speaking, an optimal policy is tre maximizes a measure of
the total amount of reward the agent expects to accumulaeisvifetime, where reward
is delivered to the agent over time via a scalar-valued sighaen, this type of learning
allows the agent to adapt to the environment through theldenent of a policy that
determines the most suitable action in each state.

RL allows an agent to learn behavior through trial and emtaractions with a dynamic
environment, i.e. the agent learns from its own experiehoasto behave in order to fulfill
a certain goal. An agent is connected with its environmeatpédrception and action and
they continuously interact. On each iteration the agergives information about the state
s of the environment. Then, the agent chooses an actiand executes it. The action
changes the state of the environment. Finally, the agepiwes a reinforcement signal
which gives an idea about how well actiarperformances from state The goal of the
agent is to find a policy, mapping states to actions, that mipgis some long-run measure
of reinforcement[[165]. Therefore, the behavior of the agdmuld choose actions that
tend to increase the long-run sum values of the reinforcésignal.

In the case of a robot, pairs formed by the state of the robdtsanaction(s, a) have
an associated value which represents the utility of thabmach that state for the robot.
These values will be tuned by interaction between the robdtthe environment during
the learning process (details about the particular legraigorithm can be read in Chapter
). Then, the autonomous robot learns, from scratch or usdnge a priori information,
the proper behavior to select in every state through itsasten with the environment.

One of the key points in RL is the trade-off betweexploration and exploitation.
This refers to how the next action to execute is selected.n/dhieL agent wants to obtain
the highest reward, it chooses the already tried actionstwioduces the highest reward.
But, in order to identify these actions, it has to try unknoaations. That is to say, the
agent has texplorenew actions t@xploitlater the best one5T163].
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The Markov property in RL

In RL environments, the decisions and values are functidrtbeo current state. Then,
the states must provide enough information to make a goodidac When a state space
retains all relevant data it is said that it has the Markowpprty [163]. This implies that
all that is relevant for the future is kept in the state. Inestivords, the current state must
include all relevant data observed in past experiences.

In a general RL case, the response from the environment,eatarcmoment, depends
on all what has happened before. If the Markov property isgmg the response just
depends on the last state and action. Mathematically, ifiseld in Equation{413) and it
is graphically presented in Figure.2.

Pr{sii1 =811 = 7|s, as} (4.3)

a,r

ot

Figure 4.2: A Markovian RL problem

In spite of the Markov property seems to be a requirementdbiirsgy RL problems,
Sutton and Barto do not think that it is a mudEven when the state signal is non-Markov,
it is still appropriate to think of the state in reinforcentdearning as an approximation to
a Markov state”[L63].

Markov states provide an excellent support for predictingrie rewards and selecting
the most appropriate actions. Then, the closer the stateh® tMarkov property, the better
results from RL systems are obtained. In conclusion, RLrélgms can be successfully
applied to problems with states that do not strictly fulfiétMarkov property.

The same situation can be observed in humans as well. Humaabla to make correct
decision even if they do not have all the information. Formegke, imaging you desire to
forecast the tomorrow’s weather. In this case, the statetsrohined by all the relevant
information that you have ever observed about the weatherditrrent period of the year,
the current temperature, the color of the sky, the weathenglthat week, the wind, the
humidity, etc) and how it influences the tomorrow’s weathepractice, this is far to much
to remember and analyze, and much of these data will not b&dened in your forecast.
However, some people are very proficient at weather foreeasn if they do not have
access to a perfect Markov state representation.

In this thesis, the internal state of the robot just considke dominant motivation,
but not the others. Therefore, the final state (internal atdreal) is not fully Markov
because the rest motivations are not represented. Thiofaelpresentation would cause
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violations of the Markov property. However, following thepganation exposes in the last
paragraphs, the Q-Learning algorithm is used for learriiegoroper policy and the results
obtained have been successful, as presented in Clihpter 9.

The Q-Learning algorithm

RL has been successfully implemented in several virtuattsgend robotd [166, 167, 168,
[169,[170[171]. One of the main applications, for robots @nds, is the learning of com-
plex behaviors as a sequence of basic behaviors. Those exinghaviors allow to opti-
mize the adaptation of the agent or robot to its environm&he reinforcement learning
algorithm named Q-learnin@[1I72] has become one of the ndetlizat is most used in
autonomous robot§ [17B, 174,175, 1176]. Actually, the legralgorithm implemented in
this thesis is a variation of the Q-Learning (Chapler 6).

The goal of the Q-learning algorithm is to estimate th&alues for every state-action
pair. The(@ value is defined as the expected reward for executing aatiarstates and
then following the optimal policy from ther€48]. Eve€y(s, a) is updated according to:

Qs,a)=(1—a)-Q(s,a)+a-(r+~4V(s)) (4.4)
where:
V(') = max (Q(<,a) (4.5)

is the value of the new staté and is the best reward the agent can expect from the new
states’. A is the set of actions; represents a single actionis the reinforcementy is the
discount factor and: is the learning rate.

The learning ratev (0 < « < 1) controls how much weight is given to the reward just
experienced, as opposed to the Gldialue estimate [164]. This parameter gives more or
less importance to the learned Q values than new experieAdew value ofa implies that
the agent is more conservative and therefore gives morertanp® to past experiences. If
ais high, nean, the agent values, to a greater extent, the most recentierper

Parametery (0 < ~ < 1), the discount factor, defines how much expected future
rewards affect decision now (it was introduced in Equati@@)). A high value of this
parameter gives more importance to future rewards. A lowejabn the contrary, gives
much more importance to current reward [164].

A policy 7 defines the behavior of the agent. It defines a mapS — II(A) from
states and actiona (¢ € A(s)), to the probability of taking actiom when in states.
This value corresponds to the expected return when startingnd following the policy
thereafter[[163].

As previously said, the final goal of the agent is to learn thgnaal policy, the one
that maximize the total expected reward. This is a detestimpolicy that relates, with
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probability 1, the actions that must be selected in every state. Once timaagunction
Q*(s,a) is obtained, it is easy to calculate the optimal polic¥(s), considering all the
possible actions for a certain state and selecting the othetiae highest value:

*(s) = arg max Q(s,a) (4.6)

In practice, the optimal policies rarely happen. The rezpliextreme computational
cost and memory are a relevant constrain. Therefore, appaba optimal policies are the
goal.

RL, optionally, can consider models of the environment. SEnmodels are replicas of
the behavior of the environment and they are used by some Rhoue (e.g. dynamic pro-
gramming) for state-space planning. Its utility is limiteelcause of its computational cost
and the assumption of perfect modéls [163]. However, thee@rhing algorithm follows a
model-free approach because the system knows neither tise@aences of executing an
action (the next state) nor the reward that will be obtainégust knows the actions that
can be executed with each object.

4.3.2 The robot’s wellbeing

As previously said, RL requires a reward function which detaes the goal. As said
before, the objective is to keep the robot’s needs as low ssilple. Therefore, the reward
function is related to the its wellbeing.

In this implementation, based on the drive reduction theshych states that the drive
reduction is the chief mechanism of rewardl[60], the reicdonent function will be the
variation of the wellbeing of the robot. The robotllbeingis a function of its drives and
it measures the degree of satisfaction of its internal neddshematically:

Wb = Whigeas — Z a; - D, (4-7)

whereq; are the ponder factors that weight the importance of easle dn the wellbeing
of the robot.Wb,4.; is the ideal value of the wellbeing which corresponds to tlee of
100. It is easy to observe that as the values of the needs obltlo¢ (the drives) increase,
its wellbeing decreases. Thus, drives are inversely ptmpai to wellbeing: the lower the
drives are, the higher the wellbeing is. Therefore, the rdwalue for one action executed
in certain state corresponds to the variation of all theedrigluring its execution, that is,
the wellbeing variation. For example, for an actigrihe reward is computed according to
Equatiorl4.B.

rewarda = AVVba - Wbaftera - Wbbeforea (48)
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Considering Equation§(4.8) arld_(4.7), the total rewardafoaction depends on how
fast drives change their values during the execution of élsibn. Moreover, the posi-
tive/negative variation of the wellbeing is interpretechappiness/sadness the learning
algorithm (SectiofiiZ411).

At the beginning of the learning process, the values foraibas can be set to the same
number. This means that no knowledge is provided in advaswéhere is not relevant
information about the action selection; i.e. there are ritebactions than others for any
state. On the other hand, in the same manner animals inlbdiiies from their parents,
previous knowledge can be assigned, so, they do not havartdretm scratch. This can
be useful when, for example, the robot should di i.e. battery is depleted, so the
knowledge to survive can be initially predefined. Howeverhis work, the former has
been applied. This implies that, if the robwedsenergy, the robot could run out of battery
since it does not know yet what to do in that particular caseortler to learn it, the robot
has to try different strategies which can success or fail.

It is important to note again, that the actions are not rdlabethe motivations. This
means that the robot does not know in advance that, for exantpust recharge its
battery in order to satisfy its need of energy.

In short, the decision making process is cyclic and it candsedbed in the following
steps:

Update of the drives and the motivation intensities.
. Motivation competition and selection of the inner staite dominant motivation).
. Determine the external state.

. Evaluation of possible actions

. Update of the wellbeing function.

1.
2
3
4
5. Execution of one action.
6
7. Generation of the reinforcement functidgrappiness/sadness
8

. State-action evaluation (RL).

In every loop, the DMS needs data from the environment inrai@lapdate the robot’s
state. These data is provided by the robot’s control archite. In the way around, the
DMS communicates the proper action to execute. Therefor@pavay communication
between the DMS and the control architecture is requiregufie[4.3B).

An overview of the decision making process and its elemeaishe seen in Figure
HB.4. Drives and, by extension, motivations determine therimal state. This internal state
together with the external state determine the state wkiaked to make a decision. After
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action
DECISION ROBOT'S
MAKING CONTROL
SYSTEM ARCHITECTURE
data

Figure 4.3: Communication between the DMS and the robotirobarchitecture.

an action is selected and executed, its consequences taffédat world where the robot
is “living” and to its drives. Thus, the wellbeing is affedtand it is used as the rating
to evaluate the performance or suitability of an action inates(learning process). This
experience will be considered in future decision making.

At this dissertation, a real robot learns from scratch th& pessible actions at each
world configuration (the dominant motivation plus the statiated to each object). The
tuples formed by the dominant motivation, the objects, tategelated to these objects, the
feasible actions, and the values of these actions decideettieaction to be selected.

4.4 Considered emotions

The presented DMS considers different emotions with diffiéfunctions. This section
introduces them and presents how they are included in the.DMS

In relation to artificial emotions, their functionality irgants is quite diverse. In this
approachhappinessand sadnessare used as the reinforcement function in the learning
process. Besidefgar motivates behaviors oriented towards self-protection.

As introduced in Chapté&l 2 (SectibnZl4.5), it is believeat #fmotions are elicited from
the subjective appraisal of the environment of the agentelher, a discrete approach for
generating the artificial emotionegppinesssadnessandfear) is followed in this work.

Before going into the artificial emotions in robots, two ideaust be clarified:

1. According to Damasid [89], the impact of emotions in hum@nd depends on the
feelings induced by the emotions. He states that the fulllasithg impact of feel-
ings, and by extension of emotions, requires consciousiésss far, robots (or any
other artificial creature) do not have consciousness sasatam nofeel emotions.
Moreover, Castelfranch_[68] affirms that since nowadayis ot clear whafeel
means, it is not correct to say that robgelemotions. Consequently, it can be said
that robotshave artificial emotions

2. Throughout this text, many times emotions are referradhots or agents. In these
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Figure 4.4: The DMS and how its elements are related each. othe

situations,emotionmeans indeedrtificial emotion Therefore, when talking about
artificial systems, the wordmotioncan be used as a shortcutantificial emotion
and they have been interchangeably used.

Following, the emotions involved in this work are presenitedietail. Initially, the
roles of each artificial emotion is commented. Later, how tlwe individually generated
is exposed.

4.4.1 Happiness/sadness
The role of happiness and sadness

As shown in Figurd_4]l5happinessand sadnessare used in the learning process as the
reinforcement function and, as just presented, they aa¢ec:ko the robot’s wellbeing.

The role ofhappinesg&ndsadnesss the reinforcement function was inspired by Gada-
nho’s works, as shown in Secti@nB.3, but also by RolIS][1HE.proposes that emotions
are states elicited by reinforcements (rewards or punisksheso our actions are oriented
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Figure 4.5: The role of happiness and sadness in the DMS

to obtaining rewards and avoiding punishments. Followimg point of view, in this pro-
posed DMS happinessand sadnessre used as the positive and negative reinforcement
functions during the learning process respectively. Meegahis approach seems consis-
tent with the drive reduction theory introduced in SeclioB.® where, according to this
theory, the drive reduction is the chief mechanism of reward

According to Starzyk([178], this learning process is a kifidotivated Learning be-
cause it uses internal reward signals which are related $traath motivations and goals
(happinessandsadnessre related with the robot’s wellbeing which refers to theats
drives). Then, the actions are evaluated considering holivtivese actions satisfy the
internal goals.

The appraisal process

In order to defindappinesandsadnessthe definition of emotion given by Ortony [1179] is
taken into account. In his opinion, emotions occur due topgorased reaction (positive or
negative) to events. According to this point of view,[inl[83}tony proposes thatppiness
occurs because something good happens to the agent. Onrttiargcsadnessappears
when something bad happens. Moreover, according to [Esathfe$atisfaction of a drive
is usually accompanied by positive emotions reflecting §seaiated comfortable feeling.
On the contrary, if a drive is not satisfied over a longer peobtime, negative emotions
can often arise. These positive and negative emotions caeldted to thehappinessand
sadnesgmotions.
In the proposed systerhappinesss related to a reduction of a drive (e.g., a positive

reaction because the robot recharges its battery)saddesgo an increment of a drive
(e.g. a negative reaction because the robot was damagedd®r)a Giaking into account
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that the wellbeing of the agent is a function of its drives&ipn [4.Y)),happinessand
sadnessire related to the positive and negative variations of thet's wellbeing AWWb).
In a formal wayhappinesandsadnessre defined by Equatidn4.9.

AWb = Wby 1 — Wb, > 0 = happiness
AWb=Wbi 1 — Wb < 0= sadness

It is important to note that low wellbeing does not imply sesim as well as high well-
being does not implies happiness. These emotions aredeétabecrements or decrements
of the wellbeing (positive and negative reactions). Thiansethat, for example,a person
having fun when he is starving would imply happiness. Thensity of these emotions is
proportional to the variation suffered by the wellbeing.

Using this approach, every event or situation that prodacpssitive or negative ap-
praisal of the environment (internal and external) of theotds considered asappiness
or sadnessilt is worth mentioning that there is not a fixed set of sitoiasi that elicitdap-
pinessor sadnessbut the robot evaluates all situations and pursues hajygtigins while
avoiding sad ones. This approach seems similar to the hanea

(4.9)

4.42 Fear
The role of fear

The emotion ofear, based on some theories that state that emotions can nedisaviors
[26,[31,[127], is defined as a motivation. Therefore, acoaydo the proposed decision
making procesdgear could be the dominant motivation and, in that case, the rolootid
be “scared”. When this happens, the robot must learn thé aigffon to execute in order to
cope with the situation that caused this inner state.

The role of the artificial emotion dear is inspired by the idea that emotions can also
constitute motivational factors and constitute “valuetegss” that affect the selection of
goals and goal-directed behavibr[127]. Another point efwis given by Arkin [2¥], who
says that emotions constitute a subset of motivations wdiies support to the survival of
an agent in a complex environment.

Moreover, Breazeal [31] also states that emotions are aariaupt motivational system
for complex systems. In fact, according to Her[134], thequeifunction of fear is to moti-
vate avoidance or escape from dangerous situations. T¥psmee protects the robot from
possible harm when it is faced with a threatening stimulusis TS, in fact, the approach
that is followed in this work.

The appraisal process

According to Ortony[[8B3], fear is a negative reaction refatéth the possibility of some-
thing bad happening. In this approach, the possibility ohething bad happening means
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that the wellbeing of the robot may decrease (a need or drayebwr increased).

Fear is normally associated with avoiding dangerous sitnst Those situations could
be considered as situations were something bad could hapleea robot, but it does not
have any control over it.

The fear emotion can be considered as an adaptive respotis@abening situations
[B0]. As commented in Sectidn Z.3.5, some of these threagesituations are innately
identified as dangerous, but others are learned. In thiswwelattention is aimed at learned
releasers of fear. It is important to note that, in the apghgaresented in this dissertation,
the appraisal of a dangerous situation is based on an autopnatess using associative
learning. As will be shown farther ahead, the robot, usingiRable to identify dangerous
situations without using any deliberative mechanism. &foee, this section exposes how
a dangerous state is detected (appraisal of fear) followilegrning process.

The idea is similar to what happens when a person kicks usda@eason. Since this
fact causes an intense emotional experience, even if thredpeas just sporadically hit us,
we remember this situation and the consequential pain fgy fime. Therefore, whenever
that person is close to us, we relive this situation and exalthe possible consequences.
The final result is that we are afraid of that person. Anothxangple could be observed
when a person is afraid of thunders during a storm becausewf@aleasant situation in her
childhood. That person is afraid whenever he is facing arstand this afraid is not under
his control.

Then, threatening situations, dangerous statesare those where the robot can be
significantly damaged. This damage is caused by the effécstmns external to the
robot, so it is not responsible of them. These external asta@an be originated by other
individuals (e.g. the abuser) or even environmental cistamces (e.g. the storm). Hence,
in order to prove the practical use f&far, the robot’s environment has to be able to affect
the robot’s drives, by other’s actions or due to circumstareoming from the environment
itself. These external actions are callexbgenous actionsand the objects capable of
executing actions by themselves are referredaise objects

Exogenous actions alter the robot and its environment leytdihe not under the robot’s
control. Then, they affect the situation of the robot andréheforcement received. Exoge-
nous actions lead to complex domains where, from the ropotist of view, they can pro-
duce unwanted state transitions. Many times, just theacedfare perceived or observed,
but not the actions themselves. Then, these domains aestri to model because of the
difficult to foresee them.

Following the example of the person who hit us before, we ddawe any control over
that action. The received punishment is not due to any of ciiwras, but it depends on the
other person. For example, considering our abuser, if wavaliing and a person hits us,
we suffer pain but, in the case of using reinforcement legrnive would not know if this
negative reward, the pain, is because of the walking or lsecaiperson hit us. Then, the
effects of the hit are mixed with our actions. In the robog &xogenous actions (and their
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effects) are mixed with the actions executed by the robotthen effects. Therefore, in a
reinforcement learning framework, the reward of an actixecated by the robot could be
altered by an exogenous action. Consequently, a key isdoauisdoubtedly identify the
effects caused by the actions of the robot and the effectsecdxogenous actions.

In order to distinguish between the effects from the robations and the effects from
the exogenous actions, the exogenous actions are justeoadiwhen the robot is doing
nothing. More precisely, the exogenous actions are coresidguring the execution of a
robot’s action without any kind of effects, so the resulteftects during its execution can
be certainly assigned to the exogenous actions. In thiat®ty all modifications in the
robot’s wellbeing, as well as in the world configuration, issdo the exogenous actions.
These kind of robot’s actions are represented.as.

Then, in this approacliear appears when the robot is in this kind of situations that are
considered as “dangerous”. This means that the appraisaésé situations is the elicitor
of thefear emotion. In this dissertation, elicitors fefar are not given a priori but learned.

Three different processes are involved in the generatideasf

 Storing the worst experiences
» Detecting new dangerous states
» Updating the fear motivation

Some of these processes can occur in parallel.

Storing the worst experiences As mentioned above, dangerous states are those situa-
tions where other agents have caused a considerable daradpe caused to the robot.
These dangerous states are used as the releasers of thereaidéar. These releasers
can be pre-defined by the programmer, what corresponds abeimeleasers of fear in liv-

ing beings. Conversely, in this work, they are learned ateappraisal of the situation,
following the previously mentioned appraisal theory.

Usually, dangerous states correspond to situations whermbot is not usually dam-
aged but some adverse exogenous actions sporadically batrseto the robot. An ad-
verse exogenous action provokes a considerable decay aolibés wellbeing. When
the “harm” caused to the robot in a certain state is greatan thcertain threshold, it is
appraised as a dangerous state &t will emerge every time the robot transits to this
state. For this reason, in order to identify the dangeroatest the worst experience in
every state is cached. That is, the wdpstalues for each state must be stored in order to
remember those worst experiences. This is similar to asimvhlch remember their worst
experiences and relive them when they are facing the saosisit.

For all the above reasons and taking into account the defnaf dangerous state,
the worst(@) values are computed for the robot’s actions where exogeactisns can be
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considered, i.ea.,,,. FOr this reason, in addition to the values of the actions (2,
values have to be stored too. They are computed accordirgetoext equation for each
iteration:

Qo (8, Qenog) = MiAN(QUt (S, Aegog), T+ - Vit (")) (4.10)

wherea,,,, is an action related to the obje@tj; (.., € Aqp;,) in states and, during its

execution, the effects of exogenous action can be undolyhteeasured (that is, it is an
“effectless” robot’s action); the resulting statesis r is the reward corresponding to the
variation of the robot’s wellbeing, andis the discount factorV?7:,(s') means the best

Q%% . value from the new state and it corresponds to:

wors
Visorat(8') = max v, (Q11(s', @) (4.12)

Vi (') computes the best possible action among@fg , values from the state'.

worst

In other words, it stores the value of the least harmful achiom the new state.

The states considered for the appraisaleafr just correspond to the external state of
the robot. This is the state related to the objects in thedvdrhis is because, considering
the definition given at the beginning of this section of dange state, a state is dangerous
independently of the internal state. For example, in humi&ry®u are afraid of spiders,
you will experience fear if you see a spider, independerftgny internal need; i.e. it does
not matter if a person suffering arachnophobia is hungrhiostly, he is terrified when he
sees a spider. Likewise, the states during the appraisehoére just related to the objects
in the world.

Moreover, when an active object harms the robot, the dansjgestidue to the actions
of the active object itself. Therefore, the appraisdieair considers the state of each active
object individually.

The proposed approach agrees with Olteanul[180], who dtiaé¢she evaluation of
internal and external situation is a crucial process forapyraisal of emotion. Here, the
variation of robot’s wellbeing and external state of theatoére involved in the appraisal
of fear.

Detecting new dangerous states The above compute@,,...; values are used to identify
the dangerous states. These dangerous states are reddgnibe robot itself, so they are
not pre-programmed in advance.

A states is considered as a dangerous situation when there)&: +(8, Aesoq) Value
which is below a certain threshold:,,..... The contrary is considered as a safe state.
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Mathematically, it is expressed as:

If QObji (8, Gewog) < Lianger = Sis a dangerous state;Vs € Sy, Ya € A%

worst exrog

If fog;st(s, Qewog) = Ldanger = Sis a safe state;Vs € Sy, Va € Agg{;g
(4.12)
whereS,,;, is the set of all possible states related to objeetnd A% s the set of all

exog
“effectless” actions related to object i.

Updating the fear motivation As explained before, in this work, fear is considered as
a motivation which is able to govern the robot’s behavior.c®the dangerous states are
identified, thefear motivation is able to be the dominant one and to lead the i®hotions.
Whenever the robot transits to a dangerous staseemerges. In a formal way, iis the
current robot’s state, the fear value is updated accordirniget next equation.

If sis a dangerous state Fear high

If sis a safe state> Fear low (4.13)

High and low values ofear correspond to the presence and to the absefdasfre-
spectively.

It is specially worth mentioning that the learning procelsdamgerous states is different
to the learning process of action selection in the DMS. Ther lalso might be useful for
dealing with dangerous states under certain conditions.l@rning process for selecting
actions provides a mechanism to correctly react to sitnatighere the robot is commonly
damaged. In these situations the behaviors to avoid stetebdrm is recurrently provoked
from can be directly learned by reinforcement learning sitheir expected values are low.
This means, that actions which could lead to these low vdateswill be rarely selected.

However, sporadic harm from a particular state cannot beagehin the same manner.
States where the robot is sporadically damaged can not kikedalby a learning process
based on traditional RL. Using regular RL algorithms in syatic harmful situations results
in that the utility value of these states is still high. THere, this causes that the robot does
not learn to avoid these situations.

The proposed mechanism for the appraisal of fear has beeifispdy designed to
consider both circumstances and it perfectly deals witldatigerous situations. Then,
considering the worst experiences perfectly works fomeey both situations where dam-
age is frequently as well as sporadically caused.

4.5 Summary

This chapter has established the main ideas for the DMS deresi in this thesis. The use
of drives and motivations for generating non-predefinedivatibnal behaviors has been
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justified. Moreover, the definition of the robot’s wellbeiagd its use in the reinforcement
function during the learning process perfectly fits with thae-reduction theory which
has inspired this work.

Besides, Section 4.3 has shown how the RL approach perfentigrs the requisites
established in this dissertation. In particular, the Qfhewy algorithm has been deeply an-
alyzed because it is the based of the learning algorithmamphted in the robot (Chapter
@).

In the last section, the emotions considered in the DMS haea presented. Emotions
have been included in the system but with different fundalities: happinesandsadness
are related to the wellbeing variation, afiedr is considered as a motivation. The appraisal
processes for these emotions have been detailed.



CHAPTER 5

The social robot Maggie and its decision
making system

5.1 Introduction

This chapter presents the experimental platform where ithpgsed decision making
system has been implemented. It is a social robot which hexs bged to test the perfor-
mance of emotions, motivations, and drives in a real enui@nmt.

Initially, the robotic platform is briefly introduced, itsugpose and its sensory-motor
capacities are detailed. Later, the control architecturaing in the robot is presented
(Sectior5.B). Finally, the DMS is featured according torbigot designers’ desires (Sec-
tion[5.4). Details about how it interacts with the architeetare provided too.

5.2 The robot Maggie

The presented work has been implemented in the researchiaplaiform named Maggie
[L81]. Maggie is a social and personal robot intended togperiresearch on human-robot
interaction and improving robots autonomy (Figlrel 5.1)wits conceived for personal
assistance, for entertainment, to help handicapped petupleep people accompanied,
etc. Its external friendly look facilitates its social raltask. Both software and hardware
have been developed by the Robotics Lab research group flemosClll University of
Madrid.

87
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Figure 5.1: The social robot Maggie interacting with chéliar

In relation to its hardware, Maggie is a computer-contbgstem built on a wheel
base which allows the robot to move through the environmié&narms, neck, and eyelids
movements can be moved in a human-like manner. The visideraysses a camera in
the head and, thanks to it, Maggie can recognize people aydsgleral games. Laser
telemeter and ultrasound sensors are used by the navigatstem. By means of an in-
frared emitter/receiver, Maggie also operates differembé appliances such as televisions
or music players. Touch sensors on the surface of the bodg &mach screen situated in
the breast are used for a direct interaction with peopledéithe head, an RFID antenna is
placed for identifying objects. In order to provide verbakeraction, the robot is equipped
with a text-to-speech module and an automatic speech rémmysystem.

More precisely, Maggie is endowed with 12 touch sensorgéafia different places on
the robot’s surface. In the head, two eyes with two mobildiégand voiced-synchronized
leds in the mouth improve its expressiveness. Moreover, BIDAQRFID reader placed
inside the head provides low-range capacity for readingipasfid tags. The neck has
a two degrees-of-freedom (dof), pan and tilt, several spsalre around it. The body
has two one-dof arms and the infrared device is placed irtbieleobot’s belly, behind a
screen which signals can go through. The sensory capaciéyténded by another two
RFID readers situated in the body that are able to read rfigl fragm longer distances.
In the base, it has 12 sonar sensors, 12 infrared sensorgjm@ebs, and a Sick LMS
200 telemeter laser. A differential drive systems movegdhet around. The “brain” in
charge of controlling all these components is an on boardocen where a Linux system
is running.

The required energy for all devices is received from twodyas which provide a power
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supply of 25 V. During its working life, the robot needs atde20 V for a correct operation.
The purpose is to achieve a robot working continuously invenrending working life. This
means that the battery should always be over this threshold.

Social robots, such as Maggie, are intended for tasks wherehs are very close to
the robot and they interact. These users do not have to heleital knowledge or to be
used to robots. Therefore, the external appearance is aortamp issue to arise certain
empathy and confidence. Maggie was devised to be attractilieaviriendly looking, and
it shows a great expressivity by means of leds, voice, ancemewts. Moreover, different
kinds of mechanisms for interaction are combined in a muatad dialogs.

5.3 The Automatic-Deliberative control architecture

The robot’s control architecture has been developed by titwofcs Lab research group
182,183/ 184, 18%, 186] and it is named Automatic-Delitieea(AD). This biologically
inspired architecture is based on the ideas of the modeichpkygy expressed by Shiffrin
and Schneidel [187,188], so it considers two levels, theraatic and the deliberative,
as shown in Figure®.2. The communication between bothdasdlidirectional and it is
carried out by Short-Term Memory and evenis [189].

LONG

DELIBERATIVE LEVEL

EVENTS SHORT

TERM

l MEMORY.

AUTOMATIC LEVEL

Figure 5.2: The Automatic-Deliberative architecture vilie DMS

In the AD architecturel[190], both levels are formed by skilwhich endow the robot
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with different sensory and motor capacities, and processnmation. Skills can be coor-

dinated by sequencers and, previously, the Main Sequeraeaged the deliberative skills
according to a fixed script where all possible situations tina robot can face are consid-
ered. This means that this script has been programmed imeehand it is exclusive for

certain objectives. The present thesis replaces the Majoe®eer with a DMS based on
drives, motivations, emotions, and self-learning. Theietf the implemented DMS are
presented in Sectidn®.4.

The proposed DMS has a bidirectional communication withrés¢ of the control ar-
chitecture (Figur€Xhl2). On the one hand, the DMS selectsrecin order to satisfy the
most urgent need. These actions are translated into skéldbérative or automatic), which
are activated and blocked by the AD architecture. On therdthied, the DMS needs infor-
mation from the environment in order to update the state@fabot (internal and external
states) and to assess the suitability of the skills activaklis information will be provided
by the sensors of the robot, where this data is interpreteddAD architecture and, then,
transferred to the DMS.

5.3.1 Deliberative level

In the natural world, human deliberative activities arerabterized by the fact that these are
carried out in a conscious form. Moreover, temporal dimem$s an important property:
deliberative processes require a large quantity of timetddulicated to the analysis. These
activities are carried out sequentially, that is, one aftesther, and it is not possible to carry
out more than one deliberative activity at a time.

In the AD architecture implementation, deliberative skdre based on these activities
and only one deliberative skill can be activated at ohcel183

5.3.2 Automatic level

Living beings’ automatic activities are characterized g fact that their actions and per-
ceptions are carried out without the necessity of havingscimusness of the processes
responsible for controlling those activities. Examplesha$ would be the heart beat, the
hand movement when writing, or that of legs when walking. Atoanatic activity can be
carried out in parallel with other automatic activities amith a deliberative activity. For
example, a person can be driving a vehicle and maintainirmgescsation simultaneously.
The level of complexity of automatic activities may be vesriable and goes from the
simplicity of moving a finger to the complexity of playing arsda previously memorized
in the piano.

In the AD implementation, the automatic levie[[191] is mgifdrmed by skills which
are related with sensors an actuators. Automatic skillsegperformed in a parallel way
and they can be merged in order to achieve more complex.skills
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5.3.3 AD Communications
Memories

One of the main characteristics of human beings is theiitaltd acquire and store in-
formation from the world and from their own experiences. Meyncan be defined as the
capacity to recall past experience or information in thesen¢ [192].

Based on the memory model proposed by Atkinson and Shiffi®¥], the AD archi-
tecture considers two different memories: 8teort-Term Memor¢gSTM from now on) and
theLong-Term MemoryL.TM), see Figuré5l2.

In this architecture, STM is defined as a temporary memorys iitemory is regarded
as a working memory where temporal information is sharedregmpocesses and skills.
The STM is a memory area which can be accessed by differeaépses, where the most
important data is stored. Different data types can be Oigked and are available to all
elements of the AD architecture. The current and the previ@ue, as well as the date
of the data capture, are stored. Therefore, when writing de@, the previous data is not
eliminated, it is stored as a previous version. The STM altawregister and to eliminate
data structures, reading and writing particular data, @aversl skills can share the same
data. It is based on the blackboard pattern.

On the other hand, LTM is a permanent repository of durabteedge. This knowl-
edge can come from learning, from processing the informatiored in STM, or it can be
given a priori. In the AD architecture this memory refers tpeamanent memory where
stable information is available only for deliberative &kilThe LTM has been implemented
as a data base and files which contain information such asalata the world, the skills,
and grammars for the automatic speech recognition module.

Events

Events are the mechanism used by the architecture for symieimg and working in a
cooperative way. An event is an asynchronous signal fordinating processes by being
emitted and captured. The design is accomplished by theemmgahtation of the publisher/-
subscriber design pattern so that an element that genenagats does not know whether
these events are received and processed by others or not.

The asynchronous signals are emitted with an attached péegnan integer, that can
be read by the subscribers.

5.3.4 AD Skill

As already stated, the essential component in the AD agthite is the skill[[189] and it
is located in both levels. In terms of software engineerangkill is a class hiding data and
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processes that describes the global behavior of a robobtasition. The core of a skill is
the control loop which could be running (the skilldstivated or not (the skill isblocked.

Skills can be activated by other skills, by a sequencer, dthéyecision making system.
They can give data or events back to the activating elemegther skills interested in them.
Skills are characterized by:

» They have three states: ready (just instantiated), detiy@unning the control loop),
and blocked (not running the control loop).

» Three working modes: continuous, periodic, and by events.

» Each skill is a process. Communication among processeshisveed by STM and
events.

» A skill represents one or more tasks or a combination ofred¢eills.

» Each skill has to be subscribed at least to an event and itohasfine its behavior
when this event arises.

The AD architecture allows the generation of complex skitben atomic skills (indi-
visible skills). Moreover, a skill can be used by differenplex skills, and this allows
the definition of a flexible architecture.

5.4 Featuring Maggie’'s DMS

The aim of the presented DMS is to achieve an autonomous walich learns to make
decisions. Once the learning process has finished, the mosi@iated action at each mo-
ment will be selected by the decision making module. Chaptie right action depends
on the value of the motivations, previous experiences, la@ddiationship with the environ-
ment. All these elements have been modeled in order to begsed by the implemented
decision making module.

This section presents the configuration of the DMS present&ectior4.P. Roughly
speaking, the DMS setup can be divided in three groups aicgptd the scope of the
variables. These groups are:

1. The internal variables of the robot
2. The external world

3. How the next action is selected
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These categories will be individually detailed in the naxtsections.

All the parameters considered in this implementation sleeg@ecific robot’s personal-
ity. That is, the DMS setup defines the robot’s behavior dyitis lifespan. Changing these
parameters, new personalities or behaviors are exhibietthd robot. The parameters
which are presented in the next sections have been definedighdime by the author.

5.4.1 The robot’'s inner world: what drives and motivations?

This section details all the inner variables which definertimt's behavior.

As expressed by Equation(#.1), each motivation is repteddoy a value and is af-
fected by two factors: internal needs and external stimuliernal needs are the drives,
and their values depend on inner parameters. Externallstinetthe objects situated in the
environment altering the robot motivations. In additioacle motivation has an activation
level: under it, motivations values are not consideredtierdominant motivation.

As mentioned, the internal needs, the drives, represemitamal value. Each motiva-
tion is connected to a drive. The choice about which drivad @nsequently motivations
too) must be implemented were made at design time. The nuaflzives and motiva-
tions should be flexible and correlated to the tasks to perfd94,[7]. Therefore, since
the system has to be running on a robot intended to interdbtpeiople, some social mo-
tivation is needed to “push” the robot into human-robotiattion. Moreover, the authors
want the robot to be endowed with play-oriented aspects;enem recreational nature is
required by the robot. In contrast with the need of fun, omca while, it wants to relax;
then, also some kind of rest is desired. Nevertheless, gtgfimitive drive for all entities
is to survive and, in this particular case, it is translatethe need of energy.

All things considered, the selected drives are:

» Energy: this drive is necessary for survival.

» Boredom: the need of fun or entertainment.

e Calm: the need of peace.

 Loneliness:this is the lack of social interaction and, then, the needaifganion.

All these drives represent the deviation from the ideakstahis ideal state corresponds
to the value zero for all drives (no needs).

Since we want Maggie to be an autonomous social robot anddmyingy the defined
drives (each motivation is connected to a drive), the mtitwa that have been considered
are:

» Survival: it refers to the energy dependence. This motivation is cciegeto the
need ofenergy Then, thesurvival motivation is the most critical one. This is the
major requirement to be achieved by an autonomous robot.
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* Fun: this motivation is related to entertainment purposes am@ssociated drive
is boredom The motivation offun refers to the need of entertainment of the robot
itself. This means that this drive can be satisfied when Magghaving fun and this
is achieved when it is dancing.

» Relax: itis linked to a peaceful environment and it is related todhee of calm In
contrast withfun, relax is its counterpoint: it searches for noiseless conditions.

 Social: it corresponds to the need of human-robot interaction. dssociated to the
lonelinessdrive. As presented in Chaptiar 5, Maggie is a social robotreodd its
main goals is to stablish relationships with people. Thiuate is enforced by this
motivation.

 Fear: this motivation arises in dangerous situations and it guitle robot towards a
secure state. In this case, there is not a drive associaied to

Some researchers from psychology field could believe tlestetlare not conventional
motivations, and they do not should be treated as them. Hewvievthis thesis, they have
been considered as motivations because all of them imputs®bot to act.

All motivations have been defined considering that Maggia $®cial robot designed
to interact with users and move among people. Then, its befsavave to be as natural as
possible, i.e. its behaviors have to be comprehensible bhyahs sharing the environment
with the robot.

The use of fear as a motivation in a robot is one of the coroeest of this thesis.
How it is generated, its appraisal, and the reactions todeanovel ideas presented in this
dissertation. As seeffgar is treated in a different way than the other motivations.rkea
considered a motivation but there is not a drive relatedbedause fear does not represent
a deficiency in any physiological need. However, it is ablkesal the robot’s behavior.

In addition, as said before, when all drives are below threspective activation level,
none motivation can be considered as the dominant one. Tthatien is considered in
the proposed system too and consequently an extra motivagterred asione or non-
motivation, is included. Therefore, the most convenient behaviorki $ituation will be
learned and studied too. This special motivation is rel&veal special drive, which has a
constant value of, and its activation level is set to In consequence, this motivation is
always ready for becoming the dominant motivation, but gslnot represent any need.

Taking human beings as inspiration again, it is not commahah human motivations
compete, at the same time, for being the dominant motivakonexample, it is not usual
that a person simultaneously needs to eat, to learn, serdsj and to be safe (these are
just some examples of human motivations). Despite this iscammon, this situations
rarely could happen (it could point out some abnormal sibnmah that person). Therefore,
dynamics of drives and their parameters have been fixed demsg that it is not desired
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that all motivations compete at the same time. Then, usub#ye will be some motivations
competing but not all at once. In case all motivations wergstantly available to become
in the dominant one, it would end up with a kind of hyperactiveot.

Dynamics of drives and motivations

In a similar way to any need on humans or animals, drives fhatetu After we eat and
the digestive process has begun, the need of energy is tedhidue to satiety signals.
These satiety signals slowly dissipate until the hungeimaig&es over. Then, drives vary
according to several signals and parametferis [52]. Drivdginobot evolve in an analogous
way. The evolution functions of drives are set by the designe they affect the behavior
of the robot. Since drives temporally evolve from scratcbtivations do as well.

Figure[23B shows the dynamics of all drives. The evolutiarcfions for all drives do
not have to be all equal. In fact, each drive fluctuates aacgrad different functions.
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Figure 5.3: Comparison of drives progression.

Drives evolution is determined by three factors: the satisbn time, the increasing
function, and the saturation level. Following, each of tumponents is explained for each
drive.

Satisfaction times After a drive is satisfied, it does not immediately start guad, there
is asatisfaction timebefore it increases again. The same idea occurs with humagse
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once we have eaten, we do not feel hungry again but it takee sione before hunger
increases and we need to eat again.

In this implementation, each drive hasatisfaction time This represents the period
of time the drive remains at its initial value after it has heatisfied. During this time the
drive does not evolve.

Each satisfaction time has been empirically set and thegwarenarized in TableH.1.
At the very beginning of Figuled.3, the satisfaction timas be observed.

Table 5.1: Satisfaction times for all drives

Drive Satisfaction time

energy -

boredom 30s
calm 30s

loneliness 60s
fear -

Since the driveenergymirrors battery level, it does not make sense to consider its
satisfaction time. Besides, considering the previous iiefimof thefear motivation, satis-
faction time does not make sense in relation with fear.

Increasing Functions After the satisfaction time passes, the drives start toegee. In
the implementation proposed in this thesis,llbeedom thelonelinessand thecalmdrives
linearly increase but with different slopes. It means tlaat,time goes by, these drives
become bigger and bigger, and so do the corresponding rtiotiga

Considering that being social is one of the main charattesi®f the robot Maggie,
interaction with people is one of the most relevant aims.ré&foee, thdonelinesdrive is
the fastest one. This means that the motivation associateuistdrive,social frequently
competes to be the dominant one. Consequently, the bebdgamned for this motivation
are exhibited more often. It ends up with a robot whose mesjuent behavior is the one
related to human-robot interaction. The other drives eyslighter.

Theboredomdrive goes after. This is because Maggie is conceived asearoliot for
people and a robot having fun is more attractive than a passie. Thefun motivation
leads the robot to perform enjoyable reactions.

Finally, calmevolves smoother so it is the slowest drive. This implies ithia harder
to exceed its activation level in order to struggle for beihg dominant motivation. In
addition, this drive just evolves when music is been playddggie needs to relax after it
has been listening music for a while. Consequently, thigqgles that theelax motivation
scarcely becomes the dominant motivation.
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As said before, théear motivation is different. Theoretically, there is not drieked

to this motivation. However, from a computational point &w, a drive needs to be linked
to the fear motivation. Then, the value of the drifear rises to its maximum at once
when a dangerous situation is detected (this can be seer oigkh of Figurd 513). When
the state is considered as “safe”, the fear dissipates. eThigh and low values of fear
correspond to the numerical valuesi®t9 and0, respectively (TablER.2). It is important
to note again that these dangerous states are not predetittbéyare learned by the robot
itself through interaction with the environment. The ajgabof the fear emotion has been
detailed in Section4.4.2.

Table 5.2: Levels and values ftaar

Level Value

high  19.9
low 0

In order to achieve a fully autonomous robot, power autonanlye first step. There-
fore, the most relevant inner need, due to the implicit netesf survival, is theenergy
drive. Therefore, this drive evolves as the battery levelega So, its value matches the
battery level.

As mentioned, many of the ideas related to the DMS have bemnqusly developed
and tested on simulations_[49]. However, when it is impleteéron a real robot like
Maggie, new issues related to the energy management com8&iape the robot learns
from the ground up how to behave in each situation, it may bectise that the robot is
running out of battery and the selected behaviors are nahtyst appropriated. This may
lead to the end of operation of the robot. The robot “dies"duse its battery is depleted,
so it cannot perfectly keep on working. In order to avoid giigation, during the learning
process, the progress of the battery level is simulatedcéiehe drive oenergyprogresses
as presented in Figuke’s.3.

In addition, the battery progress emulation reduces thgtteof the experiments. Real
full battery recharging takes up to two hours; this would iyngxperiments of very long
duration (several days). Virtual battery recharging hastset to two minutes so the length
of the experiments is reduced up to several hours.

Besides, when the robot is recharging its battery, it islsimo an asleep person. Ac-
cording to [52], during sleep (specially during non-REMg&sa which roughly are 75% of
the total sleep time) human body rests: the temperaturersrdyconsumption of the body
are lowered, and heart rate, respiration, and kidney fanaiow down. This is imitated
by the system: thboredom the calm, and thelonelinesdrives are almost frozen during
the battery recharging. This is required because, if theedrirates are not reduced, since
the actionrecharge batterytakes a long time in comparison with the rest of the actions,
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after this action is over, all drives would enormously irage. Consequently, the robot’s
wellbeing would be greatly reduced and, therefore, the r@wauld be always negative
for the actionrecharge battery Then, the robot would not properly learn what it has to do
in order to recharge its battery. Permanent negative reVeard certain state-action pair
prevents the system from executing that action from thaé dtacause its value is really
bad. Therefore, “freezing” the drives during the chargihthe battery is necessary.

Saturation levels In order to avoid an unstopped increase of the value of thesiria
saturation level is defined for each one. The saturatiorl Ereespond to the maximum
value of a drive: once a drive has reached its saturation, liwes not exceed this value
and remains at it.

Different drives have different saturation values whicteeif the dominant motivation
in case of a never-ending expansion of the drives. Theseasiatulevels can be seen as an
emergency control mechanism in case that several drivestireated and their motivations
compete to be the dominant one. In this situation, the siduarbevels work as predefined
priorities that determine the dominant motivation in theseeptional situations. These
priorities can be seen as inherited knowledge or instimdiging beings which allow them
to face extreme situations. Talile]5.3 presents the sosteofIsaturation levels.

Table 5.3: Saturation level for all drives

Drive Saturation level

energy 20
fear 19.9
loneliness 17.8
boredom 17.7
calm 17.6

In this implementationenergyhas the highest saturation level because it is the most
urgent since it is related to survival: if the energy driveasurated it means that the battery
level is really low and it is critical to get the battery reafped.

Fear is the second one so it is over the rest of drives. As explabeddre, when a
dangerous situation is perceived, tharvalue is set to its maximum, which corresponds to
the saturation value. This value is over the others bedaaseepresents a really dangerous
situation which must be avoided somehow as soon as possildé survival can be more
urgent tharfear.

The rest of the saturation values where fixed consideringdh®e reasons used for the
evolution functions of the drives (see Tabl€el5.3).
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External stimuli

Just like human beings can be thirsty when they see watemthigations are influenced
by some objects when they are present in the environmentseldie called thexternal
stimuli or incentives. These stimuli may have more or less influetiesr values depend
on the states related to the objects (this means, if theyeaear far from the robot). The
external stimuli are included in Equatidn{¥4.1). In this lerpentation, all external stimuli
values have been empirically fixed to the same value of 2 aruhrding to Sectioh 2.3.2,
they anticipate the reduction of a certain drive.

Table[5.4 lists all the external stimuli included in this woSince the robot likes danc-
ing when music is being played, the robot perceives it andrtbgvation to haveun in-
creases. If Maggie perceives the docking station, the i of survivalis augmented.
Lastly, due to the fact that Maggie is a very friendly robotl doves people, the presence
of a person close to it strengths gscialmotivation.

Table 5.4: All external stimuli used in this work

Motivation External stimuli State related to ext.stim.

fun music listening
survival docking station plugged
social any person close

5.4.2 The external world: sensing and acting

The world is perceived by the robot in terms of objects andthtes related to these objects
(the external state). Objects are not limited to physic@atls but abstract objects too. In
this dissertation, the world where Maggie is living in is iied to the laboratory and the
following objects: a music player, the music in the lab, tloeldng station for supplying
energy, and the people living around the robot.

Also the states related to all these items have to be defingthartransitions between
states are detected by several skills running in Maggie.

Moreover, the robot interacts with its environment throtigg actions that can be per-
formed with the objects in the robot’s environment. Thes®as are also implemented as
skills in the AD architecture.

At this point, it is worth mentioning the difference betwea®o concepts which, many
times, are mixed and used as synonyimshavior andaction. Considering the definition
given by Breazeal ir{]4], in this work, behavior is viewed aeH-interested, goal-directed
entity that establishes the current task of the robot. Ireggna behavior is composed
of a sequence of related actions which are activated in tkor.example, the behavior
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to reduce hunger is composed of an action for eating and @thenoving near the food.
Therefore, there are two kind of actions (from an etholggisnt of view, these are referred
as behaviors too) [4,124]:

» Consummatory: this action directly satiates the active drive, i.e. thestnargent
need. Then, they contribute to the balance of resourceetisatre self-sufficiency

» Appetitive: when an appetitive action is performed in a certain situmtieads to a
state of the world for allowing the activation of the desioethsummatory action. In
other words, it is an action that makes more likely the cood# that bring closer
some goal.

In the previous example, eating is a consummatory actiomamndng towards the food is
an appetitive one because it is necessary before the dnveeaatiated. Both together
form the behavior to reduce hunger.

In this thesis, actions are individual, indivisible tasKsieh corresponds to skills in the
AD architecture (Section’5.3.4). The behaviors are seqiehactions which are deter-
mined by the dominant motivation and the external stimuhede behaviors are learned,
so they are not predefined.

Besides, actions can be categorized ioogenouandexogenousctions. Endoge-
nous actions are those which are executed by the robot. Imastpas mentioned before,
exogenous actions refer to actions executed by other agemse actions are not “observ-
able” by the robot, that is, it can not identify the actiont their effects are perceived by
the robot. These effects are mixed with the effects comiamfthe robot’s own actions.
In order to distinguish both effects, the effects from thegenous actions are just consid-
ered when certain endogenous actions are running. Thesgemalus actions do not affect
the robot or its environment, so the variation of the robetdlbeing is due to exogenous
actions. In short, in this thesis, the robot has two kindsatibas: actions disturbing the
robot and/or its environment, and “effectless” actiong #ikow to consider the effects of
exogenous actions.

In Figure[2.4, the states related to each object, the act@musthe transitions from one
state to another are shown. If an action does not appear adtateg it means that it is
incoherent to execute it from that state; e.g., Maggie caplay musidf it is far from the
player; or it cannointeractwith a person if it is alone.

Following, the available items, the states related to themal, their actions are intro-
duced.

Music player

Maggie is able to operate any home appliance with an infraregface by means of an
infrared emitter/receiver placed at Maggie’s belly andesalskills. In this work, this has
been applied to a music player located in the lab (all detaile been published in [195]).
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Figure 5.4: States, actions and transitions related totémesi of the robot’s environment:
a music player, the docking station, the music, and a perRonnd sides rectangles rep-
resent the states related to each object, the arrows aretistions, and the labels of the
arrows are the actions which may cause the transition if nar&woccur. Black arrows
correspond to transitions triggered by actions executéd the object. Red dashed arrows
mean transitions activated by actions with other objectsd Aurple dotted arrows are
dedicated to transitions due to actions executed by othertag

In order to operate the music player, the robot has to beddcat a certain distance
and facing the appliance. Therefore, in relation to thetposbf the robot, there are two
statesnear, when the robot is close enough to operate the playerfaand the robot is in
a position where it is not able to operate the player. Thermé&tion required to determine
the position related to the player is provided by the geoicatnavigation systeni[196]
which knows where the music player is.

Moreover, related to the operational state of the musiceslayther two states have to
be distinguished to avoid sending the same command twiteolayernear-onandnear-
off. When the robot is close to the player and it is already wakihe state i:mear-on
but, when the robot is also close and the player is off, thie stmear-oft

About the available actions, if the robotfer from the player, the only possible action
related to the music player is g to player Once it is close, and according to the last state
in relation to the player, the robot c@hay or stopmusic.

Then, the possible actions with the itenusic playerare:

» Goto player: Maggie approaches the music player. The nollanove to a position
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where the player is reachable by the infrared emitter ondbb&ggie. If the robot
was plugged to the charging station, this action unplugsdhbet.

» Play music: music is played because it turns the player aenwithis off. This action
produces a change of state in relation to other objectinh&c from non-listening
to listening

» Stop music: music is stopped when it is being played becthesenusic player is
turned off. This action produces a change of state regattie@bjectmusic from
listeningto non-listening This action keeps a peaceful atmosphere.

* Idle: it represents the possibility to remain next to theyelr for a while.

Music

The robot’s environment is the lab, antlisiccan be playing there. Then, the robot can
belistening or not, to music Just when the robot issteningto musig it is able todance
If musicis mute, it cannotlance As commented before, the infrared emitter is used to
play/stop the music when Maggie is close to the player.

About themusig there is just one possible action:

» Dance: the robot moves its body with the music. This actsojust executed when
Maggie islisteningto music. This action can be executed at every place insile th
lab because the music is perceived from anywhere in the room.

Docking station

Thedocking stations the source of energy. If the robotptigged the battery is charging,
so its level increases. Otherwise, the robotimpluggedand the battery level decreases.
In order to find the docking station, the robot relies on theigetion system and the in-
formation from the laser telemeter. Eventually, to detanif it is plugged or not, a data
acquisition device is in charge of reading the battery dékas information is read by the
battery sensoskill.

When the robot isinpluggedit just can go to the docking station acldargeits battery.
After that, it ispluggedin and the available action is temainthere. If, when the robot is
plugged, a skill that moves the robot around is selectedaitds the station and transits to
the stataunplugged

The attainable actions with the docking station are:

» Charge: Maggie approaches the docking station, plugsiinémd stays there until
the battery is full. At the end of this action the robot islgtiluggedand the battery
is recharged.

* Remain: it keeps plugged for a while.
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Person

The robot Maggie is intended to interact with people. Hemsmple are considered as
“objects” of the environment. Regarding interaction, asperhas to be close enough to
touch, speak or being recognized. For that reason therenarastates in relation to a
person: presentand absent The statepresentmeans that there is a person nearby the
robot. In contrastabsentrepresents the absence of any person or, at least, no person
within a distance close enough for interaction. These state determined by merging two
technologies, bluetooth and RFID, which are handled by Kiés Bluetooth discoverer
andRFID discovere(Sectior Z517).

Each person, or user, is equipped with an RFID tag which pgesva low range distance
identification. These tags are read by an UHF antenna plackthggie’s chest which
provides around 1 meter range. In addition, each persontslenphone is detected by its
bluetooth interface which offers medium range distancetifleation. The combination of
both technologies results on a reliable identification rdth

As stated in Sectioi’4.4.2, the undoubted identificationhef éffects of exogenous
actions in each state is the cornerstone for learning thgetans states and, by extension,
the realeasers of tHearemotion. Thisis achieved through timeractaction. By means of
this action, the robot does not induce any change on itsiatgariables or its environment.
The assumption is that all the changes experienced by tld doiing the actionnteract
are a consequence of external elements. In this scenag&e tvailable conative “external
elements” are people who interact with the robot duringitieractaction. Thus, in this
dissertation, active objects are people or individualxisteg with the robot. Using this
approach, the robot estimates how good the current stateraddtion to the exogenous
actions because all effects and transitions are due to thy@gde actions. This estimation is
based on the variation of the robot’s wellbeing and it is usddarn new dangerous states.

Thepersonitem offers an available action:

* Interact: it perceives human-robot interaction. Wittstaction the robot is not exe-
cuting any particular ability or task, so the robot does rmatse any particular effect
over itself or the environment. Therefore, the possibleseguences during this ac-
tion are certainly caused by the exogenous actions. fiacsonsare the available
active objects, during this action, the robot perceivesefifects of the people’s ac-
tion over the robot’'s wellbeing. These effects are evatlitteough oral and tactile
interfaces: the user can offend or say compliments to thetyolb he can “stroke” or
“hit” the robot (Sectiod Z517).

Considering that, in the robot’s environment, people aesothly active objects, itis as-
sumed that the effects during the actinteractare caused bgerson$ actions. However,
this would not be necessarily true because, the systemgusiders the robot’s state and
the effects over the robot’'s wellbeing. Then, the effectsldéde provoked by any other
active object different than thgersonitems.
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The system provides identification for different users. M lfferent users are treated
as different objects of typperson Therefore, the robot learns what to do with each user
independently. This object is a key component in this workaose, since it is an active
object, it is able to execute its own actions. Several typebctpersonhave been used
to prove the performance of thear motivation.

An overview of the robot’s environment is displayed in Figiit5. It provides a good
perspective of the scenario and the different types of edjbe robot interacts with during
the experiments.

music
player

=

Figure 5.5: Overview of the robot’s environment and the otgj¢he robot interacts with

5.4.3 Acting in the world: what to do next?

After the environment where the robot lives has been presetite action selection process
by the DMS is explained. Within robot lifetime, the actiorlesztion loop is executed in
order to determine the next skill to activate. Rememberiog the DMS works, at each
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iteration, the dominant motivation is computed as the maxmmotivation whose value
(internal needs plus external stimulus) is over its adtwvelkevel. This parameter has been
fixed to 10 for every motivation. Considering the dominant motivatitre current states
related to objects, and thg values associated to each feasible action in this stategtkte
action is chosen. Thege values represent how good a particular action is at a p#aticu
state.

At the beginning of the robot’s life, it does not have any kienlge, so learning is
essential. In order to help learning, the robot explorepadisibilities many times. But,
in order to live better, the robot has to exploit the acquikadwledge to make the best
decisions. This is the dilemma of exploration vs. expltatseveral times refereed in the
field of reinforcement learnin@ [163]. The level of explaoatrepresents the probabilities
of executing actions different than those with the highedti@s. Exploitation means the
selection of the action with the highest value for each sibma Therefore, during the
robot’s life, there are two phases clearly differentiatiedrning or exploration phase, and
exploiting phase.

Then, according to a specific level of exploration/exphita, the probabilities for se-
lecting an action differs. Using the Boltzmann distribuatithe probabilities of selecting an
actiona in a given state is determined by Equatiof.(5.1).

Q(s,a)
Py(a) = W (5.1)
be A

Q(s,a) is the value for actioru in states, and A represents the set of all possible
actions;T" is thetemperatureand it ponders exploration and exploitation. A high value of
T gives the same likelihood of selection to all possible anxgiand the next action is almost
randomly selected; loW’ enforces actions with high values: the higher value, thédrig
probability to be executed. This approach has been prdyiaaed by Gadanh@ 197, 198].

As presented i [49]]" value is set according to Equatidn(s.2).

T=6%Q (5.2)

whereQ is the mean value of all possible Q values. According to thaafiqn [2.2),
high ¢ implies high temperature and, therefore, exploration aates: all actions have the
same probability of being selected. Lawproduces low temperatures and, consequently,
exploitation prevails: actions with high values are likehosen.

Therefore, when learning is essentials set to a very high value so actions are ran-
domly chosen, independently of their values, so all actamesxplored. However, when it
is desired to select the most appropriate actions,minimized. Then, the action with the
highest values are always chosen.

During the experiments, is varied depending on the phase of the robot’s life: during
learning, high level of exploration is required € 100), then the action selection is totally
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random; when exploiting the learned values, the explonasaull () = 0.1) and the next
action is the one with the highest value.

Considering that this work is implemented in a social robbtoh interacts with hu-
mans, it should be kept in mind that a robot which is prograchfioe always selecting
the best actions leads to monotonous behaviors and thega@amtibns become very pre-
dictable. Consequently, the human-robot interaction @andgatively affected due to the
potential lost of interest by the user. In order to allow searelomness in robot’s behavior,
the value ob can be tuned for providing certain unpredictability to tmeqess.

5.4.4 The consequences of the robot’s actions

Once an action is selected and executed, it may disturb tha ho two manners: first, an
action provokes a change in the world, eafpargeaction results on the robot is plugged
to the charger; and second, the action causes effects avdrittes, e.g. after theharge
action the need afnergyis reduced. In order to apply the effects over the drivesatti®n
has to successfully end. If an error occurs during the elamtwtf a skill or its result is
not satisfactory, this situation is notified and its effemtsr the drives are not applied. The
changes affecting the external state are monitored by alpasd skills.

Summing up, effects of the actions can modify the stateedltd items and influence
the needs of the robot. In relation to the robot’s drives, é¢ffects can be positive or
negative, in terms of robot’s wellbeing. A positive effeetluces the value of a robot’s
drive (this implies an increase in the robot’s wellbeingktéally, when the drive is set to
zero (the ideal value), it is said that the action satisfiesdtive. Some actions can also
“‘damage” some drives of the robot increasing their valuest{s robot’s wellbeing drops).

A positive effect, i.e. the reduction of one drive, does retassary imply an improve-
ment in the wellbeing. If the reduced drive had a value closthé ideal one, the effect
of the action in the total wellbeing is minimum. Other driva@sild increase faster or the
external state has changed resulting in a decrement of thigene).

All effects are shown in tablg3d.5.

Table 5.5: Effects of actions

Action Object Drive  Effect
stop music player  calm setto 0
dance music boredom settoO
positive interaction person social settoO

negative interaction person social +10
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When the music player is switched off, the droadmis satisfied; then, a quiet environ-
ment is achieved. The needfoh is satiated when the robot dances, so the dsm@dom
is set to zero. Since human-robot interaction involves &, uke result of this actions is
not always the same. Depending on how this user behavesctibe eteractis positive
or negative. A positive interaction is related to a strok@ @ompliment and satisfies the
socialdrive. In contrast, a negative interaction provokes anemant of ten units in the
socialdrive. This happens when the robot is damaged because obadntinsult.

It is important to mention that the transitions between ttates and the effects of the
actions are not given to the DMS, this is, the model of the eizrhot provided in advance.
Therefore, this is a model-free approach. However, thdsetsfare defined by the designer
and applied to the robot’s drives.

As already stated, the potential actions in each state depethe state itself. Hence,
different actions are associated to the state related iy ®lgect. For example, in order
to play musi¢ Maggie has to be close to tipdayer and the music has to be switched off
(near-off state). In some cases, the states and the actions are iflpossor instance,
if the robot isunpluggedfrom the docking stationthe actionremainplugged cannot be
executed because it is not plugged. In these cases, therm&fevalues associated to
these state-actions pairs.

In other circumstances, some actions seem not be very ajpgiexh For instance, it
does not make sense to executedhargeaction when the robot’s battery is full. By means
of the learning process, these combinations receive minmalaes and, in consequence,
they will never be selected for execution during the explain phase.

5.5 Summary

At the beginning, this chapter presents the robotic platfehere the DMS is implemented:
the social robot Maggie. The hardware forming the robot sedbed as well as its control
architecture. In this thesis, the AD architecture is exéshioly adding the DMS.

In the last part of the chapter, the specific configuratiorhefDMS which has been
used in this thesis is presented. Drives, motivations,a®jections, and other variables
are defined and justified. The modification of some of thes@bts results in a robot
which behaves different, like if the “personality” of thebat had changed.

In short, this chapter presents the robot and the configurafithe DMS. This config-
uration can be modified according to different requiremevitisout a great effort.
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CHAPTER O

Learning to make decisions

6.1 Introduction

In this dissertation, the learning process is achieved alyimgeractions between a robot
and its real environment. Interaction in real environmeakes a considerable amount of
time. This makes the learning time a key feature. Then, asfgehe learning task in a
reasonable amount of time is a must.

As mentioned before, the external state of the robot is fdroensidering the state
of all objects in relation to the robot. Then, in a traditibRd approach, the number of
states exponentially increases as the number of obje@arlinincreases. Consequently,
the learning time exponentially increases too becausel.ithBory, in order to reach the
convergence of the learned values, all states must bed/aiténfinite number of times.

This chapter presents the solution to the learning procegkemented in this disserta-
tion: the Object Q-Learning algorithm. This solution wasgially designed for and tested
in virtual worlds. Then, it has been extended with severgrowements in order to deal
with the problems of learning in a physical world.

6.2 Object Q-Learning

Malfaz presented iri[49] a variation of the traditional Qakming algorithm (Sectidn4.3.1).
This is calledObject Q-Learning and it has two key points:

1. Areduction of the state space

109
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2. The Object Q-Learning algorithm

Both are explained in the following sections.

6.2.1 The state space

In this thesis, it is assumed that the robot lives in an emvirent where it can interact with
objects. The goal of the autonomous robot is to learn whab o @very situation in order
to survive and to maintain its needs satisfied. In this systeestate of the agenrts is
the combination of its inner state and its external state:

S = Sinner X Se:pternal (61)

whereS;,.., andS.....a are the sets of internal and external states of the robgieces
tively.

The inner state of the robot is related to its internal neéalsifistance: the robot is
“hungry”) and the external state is its state in relation Hottee objects present in the
environment:

Sexternal - Sobj1 X Sobj2~-~ (62)

therefore,

S = Sinner X Sexternal = Sinner X Sobjl X Sobj2~-~ (63)

whereS,;;, is the set of the states of the robot in relation to the ohject

For example, considering a situation where the robot'sebait almost depleted, its
internal state is related to the survival motivatioh,(., = survival). Besides, in relation
to the objects (the external state), the robot is alone réam fthe player, plugged and it is
listening music. Then, the resulting state is computed indign [6.4).

S = Sinner X Se:pternal - Sinner X Sobj1 X Sobjg--- =
Sdominant mot X Sperson X Splayer X Scharger X Smusic = (64)
survival and alone and far and plugged and listening

For every object, the robot could besindifferent states, so, the number of states will
increase as the number of objects in the environment grosveexample, if for every object
there are four different binary variables describing tHatren of the robot with it, then,
for every object we would have* = 16 states in relation to it. Assuming that there are,
for example,10 objects in the environment, then, according to Equafios)(he number
of external states would bs'°. Finally, since the state of the robot is its combination
between the inner and the external state (Equaliiah (6t8))inal number of states would
be even bigger since the number of external states must bghaa by the number of
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internal states. Moreover, assuming that the robot canuseccertain amount of actions,
or skills, with each object, the number of utility valuég(s, a) in Q-Learning, for every
state-action pair, could become really high. This great lmemof ) values to calculate
presents problems since it would take really long time fosthvalues to converge.

6.2.2 Reduced state space

As previously stated, as the number of variables (objettspatly increases, the number
of states increases exponentially. This problem is knowthasurse of dimensionality
[199]. Many authors have proposed several solutions tow#hlthis problem. One so-
lution would be to use the generalization capabilities ofction approximators. Feedfor-
ward neural networks are a particular case of such funcpgneximators that can be used
in combination with reinforcement learning. Neverthe]edthough the neural networks
seem to be very efficient in some cases of large scale probkber® is no guarantee of
convergence [200].

Other authors propose some methods in order to reduce tieespi@ce. According to
Sprague and Ballard, this problem can be better describadetsof hierarchical organized
goals and subgoals, or a problem that requires the leargiegtdo address several tasks
at once [[201]. In[[202] and_[199] the learning process is krated by structuring the
environment using factored Markov Decision Processes (PS)D The FMDPs are one
approach to represent large, structured MDPs compactgdan the idea that a transition
of a variable often depends only on a small number of otheabkss.

In [203], the authors present a review of other approacheshagropose a state ab-
straction, or state aggregation, in order to deal with |atgée spaces. Abstraction can be
thought of as a process that maps the original descriptica oblem to a much com-
pact and easier one to work with. In these approaches thessta¢ grouped together if
they share, for example, the same probability transiti@htha reward functior [204,205].
Others consider that states should be aggregated if theythavsame optimal action, or
similar Q-values([206], etc.

In Malfaz’s work [49], she proposes a different solution ¢aluce the state space: the
states related to the objects are going to be treated asyifvikee independent of one
another. This assumption is based on human behavior, sinee we interact with different
objects in our daily life, one, for example, takes a glas$iauit considering the rest of
objects surround.

As a consequence, the external state is considered astiefstiae robot in relation to
each object separately. This simplification means thatdhetr for each moment, consid-
ers that its state in relation, for exampleotg; is independent from its state in relation to
objs, objs, etc. so the robot learns what to do with every object by s#pail his simplifi-
cation reduces the number of states that must be considergdydhe learning process of
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the robot. The set of the reduced external sta#&%, . ., is represented in Equatidn(b.5).

S;igemal = {SOij Sobj2> SObj3> } (6-5)

For example, following the example presented at the endegbtavious section, thi)
objects present in the world resultsliet x 16 = 160 external states, those ones related to
the objects. Therefore, the total number of utility valgas, a) would be greatly reduced.

Finally, the total state of the robot in relation to each abjes defined as follows:

S € Sl = Smnm« X Sobji (66)

wheresS; is the set of the reduced states in relation to the object

Recalling the example, exposed in Secfion ®.2.1, whereat iobunning out of battery,
and considering the reduced state space just presenteatbef the robot is expressed in
Equation[&17).

S = Sinner X Se:pternal = Sinner X {Sobj17 Sobj27 } =
Sdominamt mot X {Spersonu Splayera Scharge?"u Smusic} - (67)
survival and {alone or far or plugged or listening}

Using this simplification, the robot learns what to do witlelvobject for every inner
state. For example, the robot would learn what to do with thekohg station when it needs
to recharge, or what to do with the player when it is bored, smdn without considering
its relation to the rest of objects.

Considering this simplification, the Equatidn{4.4) is aedpfor the updating of the
Q°%i(s, a) value of the state-action pairs for an inner state and arcbbje

Q%i(s,a) = (1 —a) - QY (s,a) + a - (7’ 4+ VObji(g’)) (6.8)
Where:
V) = g Q) ©9)

The super-indexbj; indicates that the learning process is made in relationd@bject
i; therefore,s € S; is the state of the robot in relation to the objéct4,,;, is the set of
the actions related to the objecands’ € S; is the new state in relation to the object
Parameter is the reinforcement received,is the discount factor and is the learning
rate.

As a consequence of this simplification, the leargedalues, instead of being stored
in a table of{total number of states total number of actionsflimension, are stored for a
certain inner state and for every object in a tablémefmber of states related to that object
x number of actions related to that objectimension.
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6.2.3 Collateral effects and Object-Q learning

The simplification made in order to reduce the state spacsiders the objects in the
environment as if they were independent. This assumptiphiésithat the effects resulting
from the execution of an action, in relation to a certain ohjdo not affect to the state of the
robot in relation to the rest of objects. Let us give an examibthe robot decides to move
towards the music player, this action will not affect to tlestrof objects. Nevertheless,
if the robot was previously recharging its battery in theldong station, this action (to go
to the music player), which is related to the object musiy@lahas affected to its state
in relation to the docking station. Moreover, if a person éariy the robot, after it has
moved towards the music player, now this person is not ptesgmore. As result, an
action (approaching the music player) related to a pagranibject (the music player) may
influence other items (the docking station and a person)s iBhéxactly what happens in
real life: a person, who is close to water, goes for food, &edésulting state is that now
the person is close to food but far from water. Thereforeagsimption of that objects are
independent among them is not totally true. The consideratif collateral effectsin the
learning algorithm deals with this problem.

The collateral effects are those effects produced by thetrnobthe rest of the objects
when interacting with a certain object. Therefore, in otdarake into account these collat-
eral effects, the Object Q-learning has to consider how tierawith a particular object
affects the rest of objects. Using this viewpoint, the Q galare still updated according to
Equation [EB) but, now°* (s') is calculated according to Equatidn{d.10).

Vobji(sl) — max (QObji(S/, CL)) + Z AQIOII;Z;(” (610)

acA bi;
v m#i

This is the value of the objecétin the new state’ considering the possible effects of
the actiona executed with the objecton the rest of objects. For this reason, the sum of
the variations of the values of every other object is adddtdoralue of the objedtin the
new state, previously defined in Equati@nl6.9).

These increments are calculated as follows in Equaliodl)6.1

objm __ objm (! o 0bjm
Ay = max (@ (s, a)) % Q¥ (s,a)) (6.11)

Each of these increments measures, for every object, therahite between the best
the robot can do in the new state, and the best the robot cauld the previous state.
Then, when the robot executes an action in relation to aioestgect, the increment or
decrement of the value of the rest of objects is considemneatHer words, it measures if
the value of the new state is better or worse than the valugegbtevious state in relation
to each object. This algorithm has been introduced in ptesagorks [158,207], where it
was successfully implemented in virtual agents.
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Considering the example presented at the beginning of &uos, if the objects the
robot can interact with are limited torausic playerand thedocking stationthe current
states related to these objects faefrom the player angluggedto the charger. Once the
actiongo tothe player is executed, then the new stateskseto the player andnplugged
from thedocking station Therefore, the Object Q-Learning is applied as follaw&rom
Equations[(6.10) and{&.111), tlievalue is computed according to the next equation:

QM (far, goto) =
= (1 —a)- Q"™ (far,goto) + a - (T +7- Vpl“yer(close))

whereVrlever (close) is:

VPaver (close) = max (Qplayer(close,a)) + Z AQIm

max
a€A, .
praver objm#player

anda can be any action with th@layer. The collateral effects are:

D AQuk =AQui =
objm#player
= max (QCh‘"ger (unplugged, a)) —  max (QCh‘"’g” (plugged, a))

CLEAch,a/rge'r aeAcharger

wherea is any action related toharger.

6.2.4 The algorithm

Once the ideas of the algorithm have been stated, the digotiself has to be analyzed. In
a RL framework, an agent in a state executes an action, gitsato a new state, and a re-
ward is obtained. In an Object Q-Learning framework, theestadetermined in relation to
the objects and the potential actions are restricted byt#te:san agent is in a state related
to a particular object (s.;,) and it executes an action with this objeey(,); this action
can provoke a change in the state related to this objégt)(and a reward(); in addition,
this action can also provoke changes in the state relatethtr objects £, Vj # 1),
which have been called the collateral effect. All these eletmare presented in Figlrel6.1;
the collateral effects are represented by dashed arrows.

The algorithm updates th@ values after an action is executed. Then, these values are
refreshed according to the reward obtained, the anteridmamw states, and the prigy

1In order to keep the example simple, the state will be fornustllpy the external state, and the internal
state will not be considered.
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Figure 6.1: The Object Q-Learning framework

values. Every time &) value is updated, it is referred as an iteration. The pseodie
for the algorithm is detailed in Algorithin8.1. Initiallyllal) values have to be set to a
random value, in this case they were fixed tine[d). Then, the algorithm iterates every
time the robot acts. First, the collateral effects are cag({inedH=1I1). For each object,
the difference between the best the robot can do from the tede with that object and
the best it could do from the anterior state is calculatedaatded to theollateral_effect
variable. Once the collateral effects for all items are wialted, the value for the object
in states’ is determined as the sum of tligvalue corresponding to the best action with
object: from the state’ (line[12) and the collateral effects. With these values aedtior

@ value, the new) value for the object in the states when the actiom is accomplished
is updated (lineEZ1B=15).

In order to provide a clear understanding of this algoritseyeral real examples will
be analyzed step by step. The calculations shown in the mexbges are the numbers
resulting at single iterations during the experiments \thihrobot. Different experiments
could resultin different values. In all these examplesaitteons executed have been related
to the objectmusic player(it is marked with an asterisk in the state transition tapllest
in different situations. Trying to keep the examples asrcésapossible, no user has been
included in the following scenarios. Besides, when theeerant feasible actions from a
particular state, this is represented in collateral efféaibles with a hyphen.

The learning rate and the discount factor for all the scesdrave been fixed o = 0.3
andé = 0.8, respectively.
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Algorithm 6.1 Object Q-Learning algorithm
1: procedure COMPUTE OBJECT Q-LEARNING
2: Initialize all Q values to 1
3 repeatfor each iteration
Require: s < current state
Require: a «+ executed action
Require: object; «+ object the action is executed with
Require: s’ < new state
Require: r < reward

4: collateral_ef fects <+ 0
5: for all object; do
6: if object; # object; then > The collateral effects do not consider the
object that the action was executed with
7 maz_q_s — max[Q° (sp;,, )]
8: maxr_q_new_s «— max[Q°i (Stps;» @)
9: collateral_ef fects <« collateral_ef fects + (maxr_q_new_s —
max_q_s)
10: end if
11: end for
12: value_obj;_new_s < max[Q(s,;,,a)] + collateral_ef fects
13: q < Q(SOij asobji>
14: new_q < (1 —«a) - q+ a(r+ § - value_obj;_new_s)
15: Q(Sobj; asobji) — new_q

16: until learning ends
17: end procedure

Scenario 1

In this first scenario, the robot needs calm (irelax is the dominant motivation), it is
unpluggedto thedocking stationit is listeningto music the robot is close to the player
and there is not users around. Then, the robot decids®pihe music player The state
transitions are shown in Table®.1. This action affectsataements; first, the dominant
motivation changes: after the player is turned off, theneosa new dominant motivation
because the need of calm has been satisfied and the inteh#iy other motivations is
not high enough; also the states of thasic playerand themusichave changed too. This
action is related to the objentusic playeibut also the objeatnusicis affected. The value
of the collateral effects is calculated in Tablel6.2.

In this particular case, the correspondi@gvalue, )
as follows in Equation§{6.12) and(6113).

player
relax

(near-on, stop), is updated
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Table 6.1: State transitions due to the acstop musien Scenario 1
anterior state (s;) | new state ;1)
dominant motivation relax none
docking station unplugged unplugged
music player * near-on nea-off
music listening nor-listering
user absent absent
l
QYY" (near — on, stop) =
l
(1—a)- QoY (near-on, stop) +a - (r+ - V,f’olzz”(near-off)) (6.12)
l l bjm
Vit (near-of f) = max (QU (near-of f.a)) + Y AQuy  (6.13)
plaver objm#player
Table 6.2: Collateral effects due to the actgiop musién Scenario 1
Object,, maxaca,p; (Q°™™ (si41,2)) mMaXaca,,, (Q°™™ (s,,a)) [ AQooir
docking station | Qs'eton (unplugged, charge) = —1,17895 | Q¥ (upplugged, charge) = 1 | -2,17895
music Qusic(non-listening, —) = — music(listening, dance) = 1 -1
user Quser (absent, —) = — Qustr (absent, —) = — -
> AQYue -3,17895
objm#player

The reward and the rest of the parameters which are requragtiating th&) value,
as well as the newp value, are presented in Talplel6.3. Since this is the firsttiiseaction
is executed in the statg, its () value corresponds to the initial value bf From the new
state §,.1), the best thing to do with thausic playels to turn it on, which has a calculated
value of1, 154.

Table 6.3: New( value for Scenario 1

Vrlayver(g, ) = VPaver(pear-off)
player _ t+1 none player _
QP (near-on, stop) | reward EI}llaX (QEL?’:Y (near-off a)) Col Effecis | eV Qi (near-on, stop)
a€Aplayer
1 52,5399 Qe (near-of f,play) = 1,154 | -3,17895 15,975982

In this scenario, the most influent parameter is the rewarop@ng the music player
results in the satisfaction of the drivalm Therefore, theelax motivation is consider-
ably reduced and it ceases to be the dominant one. This i#s®m of the high value
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of the obtained rewards2, 5399) and, consequently, the rises of the resultipgralue,
QPver (close-on, stop).

This is a clear example about how the robot learns the valtreeaiction which directly
receives the reward from the satisfaction of the most ungeed (the dominant motivation).
This is a consummatory action. The value of the state-agianis back-propagated as

shown in the next example.

Scenario 2

In this example, the robot again needs to relax, but now iuigged and far from the music
player and it decides to approach it (actgmto the music playgr Moreover, the dominant
motivation does not change after this action, and the rafhdd enplugged from the charger
and close to the player. The music is still listening and s18ee not present in the scenario
of the experiments (Table®.4).

Table 6.4: State transitions due to the actyanto the music playen Scenario 2

anterior state (s;) | new state 6;,1)
dominant motivation relax relax
docking station plugged unplugged
music player * far nea-on
music listening listening
user absent absent

Now, the new( value is computed according to the Equatidns{6.14) Bndh)6.1

Qe (far, goto) =

(1= a) - Q12 (far, goto) + - (v 4 - V2" (near-on) (6.14)

player
‘/rel ax

(near-on) = max (Qfgg;r(near-on, a)) + Z AQ%im (6.15)
GEAplayer objm#player

The collateral effects are just related to the transitiomfpluggedto unpluggedTable
[£3). The objecmusicdoes not change its state and, then, its collateral effeuills The
summation of all collateral effects is a negative value,cihineans that the state-action
pair is not positive from the perspective of the other itefbat is, if the robot needs to
relax, approaching the music player, when the robot is tanfit, is not a good action just
considering the collateral effects.

The reward obtained after approaching the music playerrig peor, —1, 555 (Table
[£.8), because this action does not have any particularteffec the motivations. However,
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Table 6.5: Collateral effects due to the actgmto the music playen Scenario 2

ObjeCtm maXBEAobim (QObjm (st+17 a)) ma‘?{aerbim (QObjm (Sts a)) AQ?:E:T
docking station ﬁﬁf;ﬁg‘f"‘(unplugged? charge) = —6,9738 Q;‘Z.szflf’"(plu,gged, stay) = 0,31 -7,2838
music misic(listening, dance) = 2,71541 misic(listening, dance) = 2,71541 0
user weer (absent, —) = — Quser (absent, —) = — —
AQRy -7,2838
objm#player

the value of the new state is really high; this is not becadg@e collateral effects (in
fact, its value is negative) or the reward (also negativaf) because of the value of the best
action that can be executed in the new state with the objesic player to stop the music
(50,9211). Then, the newy value rises up ta5, 117677.

Therefore, the high reward obtained in the first scenariter ahe execution of the
actionstopwhen the robot needs to relax, is propagated to the statmiguairs required
to achieve it. These actions correspond to appetitive @&tid his high reward is strong
enough to back-propagate even with negative reward andinegallateral effects.

Table 6.6: New( value for Scenario 2

player — player _
QPEYer (far, go to) | reward v gst“) Vielax (n€Ar-on) new QP (far, go to)
max (Qfe?g:r (near-on, a)) Coll.Effects
a€Apiayer
7,30175 -1,555 in’llg;T(TLea’r'-O'rL, stop) = 50,9211 -7,2838 15,117677
Scenario 3

This scenario shows how the collateral effects positivellgence the update of@ value.
In this scenario, the dominant motivatiorfis. The robot is close to theusic playeand,
initially, it is not listening themusic The robot executes the actiplay which switches the
music playemn. The state transitions are detailed in Téblé 6.7.

Table 6.7: State transitions due to the acfiely musian Scenario 3

According to the state transitions previously mentionkd,riew() value is calculated

anterior state (s;) | new state 6;,1)
dominant motivation fun fun
docking station unplugged unplugged
music player * near-off nea-on
music non listening listering
user absent absent

as presented in Equatiois(d.16) dnd (b.17).
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Qi (near-of f, play) =
(1 —a) - QW™ (near-of f, play) + a - <T + - Vpiflyer(near-on» (6.16)

fun

VP (neqr-on) = max <Qplayer(near-0n, a)) + Z AQ%im (6.17)

a€A, . fun
paver objm#player

In this scenario, the collateral effects occur in thesicobject: once thenusic player
is switched on, thenusicstarts to listen and its related state changes fnomlisteningto
listening(Table[&8). The new state of the objeatisi listening has a very large value
(56, 1831) due to the fact that it is necessary ftancing which is the action that satisfies
the motivation offun. In contrast, when thenusicis not listening, there is not possible
action withmusicbecause it is not present. This results in a very elevatddteadl effects

value.

Table 6.8: Collateral effects due to the actmlay musian Scenario 3

ObjeCtm MaXacAgpj, (QObjm (St+17 a)) MaXacAobjy, (QObjm (Sta a)) AQ;)nb;)‘:‘
docking station | Qs (unplugged, charge) = —17,0099 | Q555" (unplugged, charge) = —17,0099 0
music pusic(listening, dance) = 56,1831 Qpsic(non-listening, —) = — 56,1831
user . oo (absent, —) = — oo (absent, —) = — -
S AQYIT 56, 1831
objm#player

Despite the low reward+0.0566654) and the poor value of the new state related to the
music player(0, 146101), when the value is computed in this iteration, the previaus
value is already elevated. Even so, the large collateratefhakes it to increase even more
(from 22,1503 to 29, 0072).

In this scenario, the performed action is an appetitive ope t

Table 6.9: New( value for Scenario 3

player — player -
QPI°r (near-off, play) reward v ESHI) Viuy (near-on) new Qh>" (near-off, play)
max ( " (near-on, a)) Coll.Effects
a€Apiayer
22,1503 —0,0566654 | Q72 (close-on, idle) = 0, 146101 | 56, 1831 29,0072

Scenario 4

This last scenario is the counterpoint to the precedingasoen Here, the collateral ef-
fects provoke a strong decrement iid)avalue. This scenario corresponds to the iteration
following the one presented in the Scenario 3.
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In this case, the robot stops theusic playemwhich causes the state transitions shown
in Table[&ID. Apart from the effects of this action in timeisic playerobject, themusic
object changes its state ton listening This transition derives in a really negative value
of collateral effects (Table®.11) becadsais the dominant motivation and the best action
(dancg cannot be executed without listening to music.

Table 6.10: State transitions due to the ac8twp musiaén Scenario 4

anterior state (S;) | new state G;.1)
dominant motivation fun fun
docking station unplugged unplugged
music player * near-on nea-off
music listening nor listering
user absent absent

The equations computing ttig value for this scenario are Equatiohs{6.18) dnd {6.19).

Qiﬁfger(near-on, stop) =
(1—a)- Q%lger(near-on, stop) + « - <7‘ +7- Vfuliy”(near-off» (6.18)
Vfuliyer(near-off) = Jnax <Q?fger(near-off, a)) + Z AQ%m  (6.19)
player objm#player
Table 6.11: Collateral effects due to the actstapin Scenario 4
Objectm | MaXacan, (@ (erna)) | Maacagy, (@77 na)) | AQEE
docking station oo dcharge — — 17,0099 e dicharge — — 17,0099 0
music Qpuse(non listening, —) = — | Q“(listening, dance) = 56,1831 | -56,1831
user o (absent, —) = — o (absent, —) = — -
S AQSPn —56, 1831
objm#player

The corresponding value already has a low value (, 9285) (Table[6IP). However,
although the value of the new state in relation tongsic playeris quite high 29, 0072),
the very low value of the collateral effects {6, 1831) and the scarce rewaré-(.0566635)
reduce this) value up to—7,88916505. This is because, as said befomaysicis required
to dance and, therefore, to have fun. Without it, in this cége impossible to satisfy the
need of fun.
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Table 6.12: New) value for Scenario 4

player — player _
Player (ear-on, stop) reward v Es”l) Vi (near-off) new QP'*°" (near-on, stop)
Jnax ( YT (near-off, a)) Coll.Effects
a€Apiayer
~1,9285 0, 0566635 | Q7" (near-of f, play) = 29,0072 | —56, 1831 —7,88916505

6.3 Enhancing the learning process

As exposed before, learning is achieved by the robot thrantgiaction in the real world
of a laboratory. Moreover, during learning, the actionsrarelomly selected. This random
selection is based on the theory that all situations mustxpereenced an infinite num-
ber of times for the learning algorithm to achieve conveogenThis leads to unfeasible
experiments in terms of their duration.

In order to be able to carry out full learning sessions, thiiced state space and the
Object Q-Learning have been considered. However, thisti@maugh for experiments in
the real world, Consequently, two novel mechanisms have ioetuded:

1. Well-balanced Exploration
2. Amplified Reward

Both are intended for speeding up the learning process imgltice duration of the
learning sessions. Following, they are analyzed.

6.3.1 Well-balanced Exploration

During exploration, due to the random selection of acticosne states can remain unex-
plored for long periods. In order to solve this problem, friome to time, these unexplored
states are enforced to be discovered.

This idea is exposed in FiguEeb.2: at some point, the robattifcially transferred
to a new state’’ which has not been explored enough. This “guided” transitgonot
considered as an iteration in the learning process bectisseat the “natural” result of an
action selected by the robot itself.

ai-1,l-1 applying wellbalanced _» airi @
exploration

Figure 6.2: Well-balanced Exploration schematic

This idea has to be applied to the particular state spacabrk. Considering the
ideas presented in Sectibn612.1 , the state of the robotpased of internal and external
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states (Equatiori{8.1)). The inner state is determined éyltminant motivation at each
iteration. The motivations grow due to the drive linked t@lea@ne or to the external
stimuli. As a result of the random selection of actions dyidi@arning, it could happen
that the required external stimuli for a particular motigatare never presented or attained;
or actions that satisfy a drive are always executed whensgsaated motivation is not
the dominant one. Moreover, drives evolve at differentgaiehereupon, the motivations
associated to the slowest drives are less likely to becomddminant motivation. For all
these reasons, the proper behaviors that have to be exhisite some slower motivations
could not be properly learned in a reasonable amount of time.

In particular, in the presented implementation, tbkax motivation is affected by this
problem. Its associated drivealm is the slowest one and the robot has toliseening
themusicto make this drive increases. For this reasoalsx will hardly be the dominant
motivation.

For promoting these slow motivations, it has been develagedchanism where, every
f iterations, the least frequent dominant motivation is ppted. Promoting a motivation
means that the drive linked to the motivation is artificiabturated. This implies that the
drive value reaches its maximum value. Therefore, the ptedhmotivation will easily
reach the dominance over the rest of the motivations. As aegpurence, the new state
is likely to be related to this promoted motivation and thecasated behavior will be ex-
plored.

When a motivation is promoted, the transition from the poasistate to the new sit-
uation where its drive is artificially saturated is not calesed by the learning algorithm.
Otherwise, unreal effects of actions would have been takEnaccount and included in
the learned policy.

In the experimentsf is set tol5 iterations. The whole process is schematized in Algo-
rithm[6.2.

Algorithm 6.2 Well-balanced Exploration: promoting motivations
Require: iter < total number of iterations
Require: f «— frequency to promote the least frequent dominant motivation
1: while robot is learning do
2: if iter mod f = 0then
3 m <« least frequent dominant motivation
4 d « drive associated tom
5 dis saturated > promoting motivation
6: Set flag toignore this iteration at learning
7
8
9:

end if
iter = iter + 1
end while
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Promoting motivations forces to explore all the possibternmal states (dominant mo-
tivation) an acceptable number of times, so the explorabiodominant motivations is
balanced. Thus, the experiment length can be drasticallyced.

i promoting least frequent ain
dominant motivation

Figure 6.3: Well-balanced Exploration applied to the ingdistate

In this work, Well-balanced Exploration has been appliedstdering just unusual in-
ternal states (Figuile—8.3). External states are exploredgimand this technique has not
been applied to them. Nevertheless, in other works wherauh&er of objects is much
higher, the same approach can also be applied to the exstatalin order to improve the
learning time (Figur€®l4). In this case, if the state relatean item has not been enough
explored, it will try to force this state.

2-17-1 _promoting least frequent "]
dominant motivation and
least frequent external states

Figure 6.4: Well-balanced Exploration applied to interawadl external states

As already mentioned, Well-balanced Exploration has begfied just to the internal
state of the robot. However, these changes of internal statkl required a change on
external state too. For example, when the drélaxis promoted, considering the definition
of this drive given in Chaptél 4, the objenusicmust be listening. Then, if theusic player
is off, it must be turned on. Therefore, the required trams# related to the external state
are also forced. Then, in the experiments, Well-balanceddtation will be guided by the
internal state but external state transitions may be requoo.

6.3.2 Amplified Reward

In order to identify as fast as possible the actions thasfatine robot’s needs, Amplified
Reward has been implemented. As usual, living beings haee taken as the source of
inspiration. Focusing on human beings, when a person isrigargl he eats, the benefit
is really great. However, if this person is really thirstydaadso hungry, eating does not
provide the same level of benefit, but a smaller one. The lsmeiming from satisfying the
most urgent need is always huge. This is the idea behind thdifded Reward mechanism.
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In the interest of fostering this idea, positive rewards amglified when the reward
comes from correcting the drive corresponding to the dontinaotivation. By means of
back-propagation and the collateral effects, this amglifevard is transferred to the rest
of the actions involved, even when several objects are ecoade Therefore, all actions
required to satisfy a drive will be proportionally amplifiethe farther the action is from
satisfying the drive, the less amplified.

For example, if the robot needs to relax, it will learn thatstfiit must approach the
music player and, then, it stops the music. After music iseduthe need of relax is
satisfied. Thus, the reward of this action is directly amguifi Approaching the music
player is affected by this amplification due to the back-jggdion occurring in the learning
algorithm, but its intensity is lower.

In consideration of the previous ideas, the amplificaticapiglied when the variation of
wellbeing (the reward) is positive and this benefit is duen®reduction of the drive con-
nected to the dominant motivation (the most urgent need}h&faatically, it is expressed

as Equation{6.20).

If AyDgm <0& 7, > 0thenr «—r, - f, (6.20)

whereA, Dy, is the variation of the drive of the dominant motivation ak&ecuting ac-
tion a. r, means the reward obtained when actiohas finished (this is the wellbeing
increment), and is the reward used by the learning algorithm. Finajlyjs the amplifi-
cation factor which determines the amount of augmentatuiied to the reward. In the
experiments, the amplification factor has been set to 3.

How amplified reward is applied during an iteration of thehéag process can be seen
on Figurd6.b. After actiom has been executed, the obtained rewgres amplified if it
positively affects the dominant motivation.

6.4 Summary

This chapter has presented the learning algorithm implésdan the robot Maggie. This
algorithm is the Object Q-Learning which, together with teduced state space, makes a
great improvement in the learning time. In addition, theatetal effects allows to consider
the interdependence among objects. Several detailed éespmpvide a clear understand-
ing of the whole learning process to the reader.

Moreover, due to the fact that this work is implemented in laot@ platform, some
modifications have been developed. The Well-balanced Exiidm and the Amplified
Reward provide good performance in the behavior learnisk the comparison with and
without these novel techniques is presented in the expatswhapter, Chaptél 8.

The learning process detailed in this chapter endows tha wikh the capacity to prop-
erly learn the most convenient consummatory and appetttiens, resulting in different
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~
5
a Reinforcement
r Learning Q(s,a)
s' Algorithm

Q(s,a)

Figure 6.5: This diagram shows how Amplified Reward affeleésléarning process during
an iteration

behaviors. The resulting behaviors after the learninggses@are analyzed in Chapiiér 9.
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Implementing the decision making system

7.1 Introduction

The DMS presented in Chapldr 4 has been designed and impiesremsidering that
it has to be as flexible as possible. This means that it has tableeto adapt to new
requirements and configurations with a minimum effort.

Since this system runs in a distributed system, the reqdiséalare stored in a relational
database where they can be easily accessed. It has beenedke&ging into account the
next principles:

 simplicity: tables are kept as easy as possible.
 conciseness: redundant data is avoided.
* information: all the required data has to be representeti®fogical scheme.

* logical independence: software must be robust enoughcepathe modifications in
the tables

This section presents the technical design of the wholesydtom the decision mak-
ing system to the available actions (skills) implementetthimwork. First, the DMS design
and how it is achieved are justified. Then, the robot’s skil®Ilved are commented.

127
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7.2 Decision Making System database design

All data required for setting the parameters of the DMS isestan a database.

The DMS database design can be observed in Figute 7.1. Thi= figpresents the
entity-relationship model of the database. Followinghealement of the design is com-
mented and justified. The design is formed of entities anbates which are represented
as tables in a database. Besides, relationships amongegmépresent how they are in-
terconnected and their associations. The database enggaein this implementation is
MySQLE, the famous open source relational database managemesnsys

The database design presented in this section is intendeshtain all data required
by the DMS proposed in this dissertation in order to perjedécide and execute the most
appropriate action at each moment. All entities (referrethhles when implementing the
entity-relationship diagram) and their relationships@escribed. Each table is composed
of entries in the table, and each entry is an instance of atyent

Following all entities, their attributes, and their retatships are described.

5The world’s most popular open source database (www.mysg.c
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-Entity a person, place or thing about we want to collect and storéipteuinstances of data. It has a name, which is a noun.

+ Attribute features which describe the data we are interested in gtorin

B+One or more the instance can be once or more times associated.

# Exactly onethe instance can be exactly once associated.
Primary key attributes which uniquely identify one instance of an entit

* Foreign key field in a relational table that matches the primary key calwwhanother table. This key tells the relational databasethe tables are related.
Identifying relationship a foreign key is part of the primary key.

Non-identifying relationship foreign key is an attribute, it is not part of the primary key.

Figure 7.1: Database Entity-Relationship diagram
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Motivations The MOTIVATION entity represents a motivation running in the system.
Each one has a name and a unique id which undoubtedly diffates this motivation
from others. As already explained, the motivation valuegtetmined by the internal and
external stimuli. This is represented by the relationshvjit the DRIVE and EXTER-
NAL_STIMULItables. Each motivation is related to just one drive, thieis, telationship
is limited to exactly one drive per motivation, one intersimulus per motivation. In
relation to external stimuli, thEXTERNAL_STIMULtable is used to retain the relation-
ship between motivations and the items acting as exterimalikt These objects affect the
corresponding motivation when they are present; this evetlis an intrinsic state in rela-
tion with the objects which determine the activation of thienalus. Hence, th&EXTER-
NAL_STIMULItable stores all states related to the objects which aceeesdiernal stimuli.
Moreover, a particular motivation can be affected by seheett@rnal stimuli. Therefore, the
multiplicity of this relationship is one motivation to orme-more external stimuli. Besides,
there is an attribute related to the activation level of aachivation,activation_level

Finally, the last attribute is calleghabledand it is used just for debugging purposes: if
enabledis falsg this motivation is not considered during experiments.

Drives TheDRIVEtable is one of the key elements in the system. Entries intéie
store all data related to drives and how they change as tissepaEach entry has a name,
which is a human understandable reference, and an idenflfirexinitial_value attribute
correspond to the initial value of the drive when the robbiés starts,personality _factor
represents the personality factor which ponders the retevaf each drive in the robot’s
wellbeing computation. The saturation level of a drive iscasated to theaturation_level
attribute. Like it has been shown in théOTIVATIONtable, each entry has an attribute
calledenabledwhich easily allows to activate or deactivate a particukare] it is mainly
used for debugging purposes too.

Evolution of drives Besides, the value of each drive changes. How the value of the
drives evolves is determined by a function and the param#teat define that function. All
this information is obtained from the tablE¥YOLUTIONandPARAMS OF EVOLUTION
respectively.

Every drive updates its value according to a particulartionc The logic of all possible
functions are implemented in code and their attributes @adable in the tabld&eVOLU-
TION. Each function has a different identifier and a name, in otdezasily remember
it. The number of parameters required for the type of evotuis at thenumber_params
attribute. Each drive sets itgpe_EVOLUTIONattribute to the corresponding evolution
function identifier.

Considering the number of parameters of each function,gbssible to read the cor-
responding parameters of the desired drive fromRAKAMS_OF _EVOLUTIONADIe.

All parameters for all evolution functions are stored irsthable. Parameters associated
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to a particular drive are identified by the drive identifiel ORIVE and its index in the
function (ndex. In addition, these parameters can be interpreted as floabers or text
strings; this is identified by thiypeattribute:1 corresponds to a string agdo a float. The
parameter value itself is obtained from tha@lue attribute. For example, if an evolution
function requires a certain event, there will be a parameftéype string with the corre-
sponding event. On the other hand, if the parameter relatdeetincrement of the drive
per iteration, it will be a float value. All in all, once a dritas all the parameters required
by its evolution function, it is ready to update its valueiaset goes.

Currently, available functions are limited to a finite sethaird-coded C++ functions
which are linked to a drive evolution function id. Howeveewnfunctions can easily be
added if it is necessary.

Objects On the left side of FigurE—4.1, tables related to items ani Hwions are pre-
sented. The first entity to mentio@BJECT describes the objects the robot is able to
interact with. That is, the objects which constitute theattsdoworld. Again, each entry in
the tableOBJECThas a name and an id. THefault_statattribute is used to define the ini-
tial state or the state when an error occurs. &habledattribute works as the homonymous
attributes on previously commented tables.

States related to objects Objects have a finite and discrete set of states related to the
which defines the situation of the robot in relation to the ldioThese states are used to
determine the external state of the robot (Sediionb.2.Bta Pelated to the states of the
objects are represented in tBEATE_RELATED_TO_OBJEGQGable: in order to clearly
differentiate a state from other, it has a key attributeechill and a namenamég which
describes itid_ OBJECTrepresents the identifier of the object this state is relaidd and
eventsattribute stores all the events and the associated parenvetech are emitted when

a transition to this state occurs. This attribute is a stfamgatted as follows:

EVENT1: PARAMETERL; EVENT?2 : PARAMETFER2; ...

More than one event can determine a transition to the sane staseveral events
(and their respective parameters) can be included in the sdimbute. For example, the
music playercan be turned on with different commands, and, if the playeiff, all these
commands imply a transition froelose-offto close-on

External stimuli  The key attribute of th6 TATE_RELATED_TO_OBJEE@htity is also
considered on thEXTERNAL_STIMULLable as a key. As previously statdeXTER-
NAL_STIMULIentity represents the external stimuli for motivations. d&fine this rela-
tionship between states related to objects and motivatiomtk the state idil STATE_RE-
LATED_TO_OBJECT and the motivation idil_ MOTIVATION are necessary. This two
elements are enough to define an external stimulus but how thigstimulus influences
the motivation is still required. This is defined by timensityattribute. Each external
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stimulus is formed by one state related to an item which &ffene motivation. Although,
a motivation can be affected by several external stimuli.wHloe value of an external
stimulus modifies the motivation has already been detailéttjuation[(411).

Actions Objects in the world are items the robot can interact wither€fore, the robot
can perform a collection of actions with each object. Infation required to execute this
actions are compiled in th&CTION entity. Actions are identified by a unique id and a
name. Each action is applied over a single object which isrdehed by its identifier in
theid_OBJECTattribute.

Actions are implemented as skills in the AD architectureerBifiore, the most relevant
information about actions is: how to activate and block tagipular skill which performs
that action. This data is saved in tbeents_starndevents_stopttributes of theACTION
entity. The events and parameters that must be sent to tectivdlock the skill are saved
in these attributes respectively.

Sometimes, the same action can be achieved by differetd.skhis implies that sev-
eral events can be sent for initiating that action. For exXamntbe robot could dance in
many different manners, and each of these manners is actibgtdifferent events. This is
considered in the implementation by formatting @wents_starandevents_stopttributes
in the following way:

EVENT1: PARAMETER]; EVENT2 : PARAMETER?2; ...

When an action can be performed by several skills, the systeadomly chooses one
and emits the corresponding starting and blocking events.

Type of action There is an entity that defines the type of action: TN E_OF_ACTION
entity. So far, the type of action just needs an id and a nahee|agic under each type
is coded into the software implementing the decision makiygfem. Each entry of the
corresponding table refers to different sort of actionselihis classification can be easily
extended in the future by just adding new entries. A@TION entity has an attribute
namedd_TYPE_OF_ACTIONvhich must be set to an existing action type id.

In this implementation, two sorts of robot’s actions werérdel: “endogenous” which
represent actions affecting the world and the robot itself] “exogenous” which do not
cause any effect and are used to perfectly perceived theegoaaces of actions not-
executed by the robot (Sectibn414.2).

Effects of action Moreover, actions provoke effects on the robot’s environin&@hese
effects are: a change on the state of the robot in relatiobjexts; and a modification of an
internal variable (a drive). The former effects are mandgeskills in charge of monitoring
the states related to objects in the world (Sediiah 7.4). |ate effects are defined by the
EFFECT_OF_ACTIONentity. One action can affect one drive, or different drjvesd it
could happen that a drive can be affected by several actidiss, an action can have no
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effects over drives. The effects of the actions vary in tinsities. Each entry in the
EFFECT_OF_ACTIONable corresponds to the effect of an action over a driveeteat
attribute corresponds to the events and parameters ladifghan skill associated to the
action, whose id correspondsitb ACTION indicating that the corresponding effect must
be applied over the drive whose id is at tdleDRIVEattribute. The value (intensity) of the
effect itself is determined in thatensityattribute. If an actiora affects a drived and the
value of the effect i®, the resulting value of the driwis:

If e=+N =d=d+ N
Ife=—-N =d=d—-N
Ife=N =d=N (7.1)

If e= RESET =d= dinitial_value

whereN is a number andRESET is a key which identifies when the drive must be reset
to its initial value {;nitiar_vaiue) Obtained from théRIVEtable.

7.3 Decision Making System class design

Data stored in the database have to be loaded into the sefitwarder to be able to operate
with them during robot’s life time. In this work, an objectiented approach has been
considered and, therefore, several classes have beeme@sigd implemented into C++
code.

First, a general view of the DMS class design is presentedhifinitial view, the
reader will get an overview of all elements and their relagitups. Later, the main parts of
the design will be detailed and clarified.

Two main areas can be distinguished:

(a) how to model the external world of the robot
(b) how to model the internal variables of the robot

These two areas can be observed on Figuie 7.2.

In relation to the external world (the environment where ribigot “lives”), the world
is defined in terms of the items the robot is able to interath wheir possible states, and
their potential actions. Then, several classes have bderedg¢o manage all the objects.
The CObjectclass defines all the data related to an object. Each objeatiswed with a
set of actions which can be executed by that object. Eacbraistimodeled by th€Action
class. In addition, depending on how an object is perceiged (s not perceived) by the
robot, it is said that the object is in a certain state. Thelireq data for each state of each
object is included as an instance of tDRelatedStatelass.

Now, focusing on the robot itself, its internal variableg aiso defined as classes.
As presented in Chaptél 4, the inner needs are presentedvas dhich are modeled
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by theCDrive class. The evolution function for each drive is declarednnstance of the
CTimeEvolutiorclass. Then, motivations are also a key element: each drivekied to a
motivation. This and other properties of motivations aréhgeed in theCMotivationclass.

The relationship between the external and the internaldiadithe robot are determined
by the external stimuli and the effects of actions. This feented in Figurd—712 by the
CExternalStimulusnd CEffectOfActiorclasses. The first one relates objects which alter
motivations to the motivations themselves. The latter sdu® describe how an action
affects a particular drive.
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7.3.1 The external robot’s world class design

After the outline of the DMS class design has been preseptath part is detailed. First,
Figure[Z3B presents the full class diagram with the relatigms among all classes related
to the external robot’s world.

In this work, lots of elements require a unique identificatiorhen, all classes that
need it inherit from theCld class which provides the operations required for managing a
identifier and a name.

About theCObijectclass, it has a set of states which corresponds to the pestdibs
for each object (theelated_statesttribute). In the same way, each object has a set of
actions which are accessed by #ationsattribute.

Objects always are in a particular state in relation to thetoThen, the current state
and the previous one are referred by #tateand oldstateattributes. When the state of
an object is updated, these pointers are modified. Both sateused to define the state
transitions for each item.

In the classCAction the events for starting and stopping an action are ietleats_start
andevents_stopttributes. Since more than one event can be used to siprtfst action,
they are brought together in vectors @Eventobjects. At the same time, each action
keeps a pointer to its objeatém); and the effects are stored as a vectaChffectOfAction
instances accessed through #fectsfield.

Since the same action can have different sort of effect$) efiect has a different event
which indicates when it has to be applied. This is considerede classCEffectOfAction
in the attributeevent_paramThis element relates the internal robot’s world to the ek
one; then, it keeps track of the action which provokes thece{theactionattribute) and the
affected drive (thelrive attribute). The quantity of the effect is represented astager.

In relation to the states of an object, each state remembermsiyject it is linked to by
theitemattribute and, also, the event which determines a new trango this state. Since
states for the same object are incompatible (in this impigat®n an object cannot be in
two different states at the same time), one event is enoudéteymine a transition, and an
“exit” event is not necessary. As said, more than one evantletermine the transition to
the state, so a vector of events is considered at each state.

Besides, certain objects act as external stimuli; therretiea connection between
states and external stimuli which is represented in thes &elatedStatelass by a vector
of pointers to the external stimuli where the state taket par

External stimuli connect the objects and the motivatiorgs s implemented by means
of the classCExternStimulus This class relates a particular state of an itéten{_state
attribute) to a specific motivationm(tivationattribute). The intensity of this stimulus is
read from thevalueattribute.
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7.3.2 The inner robot’s world class diagram

In relation to the inner variables of the robot, Figlird 7 dsents the detailed diagram of all
classes involved in it. As explained before, the cl@gsis inherited by all elements which
need to be uniquely identified.

As seen in Figuré€7l4, the main class is the one related tesrithe clas€Drive.
The value of a drive is stored at the attribute caladlie Initially, its first value is read
from theinitial_valueattribute and its maximum value is fixed in thaturation_levefield.
The way a drive influences the robot’s wellbeing is rated l®pérsonality _factoattribute
(EquatiorZT).

How the value of a drive is updated is defined by the objectmedeby thetime_evolu-
tion pointer. This pointer refers to an object of cl&EmeEvolution This class keeps the
info required for each possible function: the name and idhefftinction, and the number
of parameters requirechgmber_of _parans The parameters themselves are stored as a
collection of CParaminstances at thparamsvector. EachCParamobject has the type of
parametergaram_typg the value of the parametest( valueor float_value depending
on the type of value), and its position in the functiemdeX. The proper implementation
of the functions are hard-coded. The available functiongtfe evolution of drives are:

* linear: the drive evolves according to a linear function

* step: the drive evolves as a rectangular pulse.

» constant: the drive has a constant value, so its value duleshange.

* interpolate: a value obtained from STM is interpolated iatdetermined range.

* linear according to a state: the drive evolves accordirgltoear function just if the
robot is in a particular state.

* linear with two rates: this is a linear function with two féifent slopes.

* linear with two rates according to a state: similar to thevpous one, but the drive is
updated just when the robot is in a particular state.

by value: this is a step function where the step is deterchinea value read from
STM.

* by event: this is a step function where the step is detertareording to an event.

Drives are affected by actions executed in the world. Thiaken into consideration
by theCEffect_of actiorlass where actions and their effects over the drives areetkfi

Drives are linked to motivations. This is represented in@i¥ive class by means of
the affected_motivationattribute, where the motivations which are affected by theed
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are pointed. Likewise, the motivation classSMotivation) keeps a reference to its inter-
nal stimulus by the pointanternal_stimulus In addition,CMotivationstores all needed
data for a motivation: the activation level, and the intéanrad the external stimuli. The
extern_stimulusttribute represents the items in the world which affecesrifotivation.
This is a vector ofCExternStimulu®bjects because, theoretically, a motivation can be
influenced by more than one drive.

In order to manage all these data, during the robot’s lifis, itifo is loaded into three
variables which will be accessed by the DMS software. Thasables are declared in the
following way:

vector<CDrive> drives; //robot’s drive data
vect or <CMWoti vati on> notivations; //robot’s notivati ons data
vector<CChject> itenms; //objects in the robot’s world data
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7.4 How the external state is perceived

In this work, the robot perceives its environment in termbjects around it. So, the
position or the state of the robot related to these objectsigal for the robot. For example,
if the robot does not know that a person is close to it, it waVer try to interact with that
person. Even worse, if we consider the navigation systenttangerson is not detected as
a close obstacle, the robot could collide with the person.

One of the key elements in this system is the detection ofti®istate transitions in
relation to an object. Recalling, these states represenpdisition of the items in the
robot’s world in relation to the robot itself. Each objecti®nitored by a skill (or several
skills) which informs about any change in the state of thesctoin relation to the robot.
The new states are notified by events which are received atatmonitoring skill. When
a particular monitoring skill detects a transition to a neates it sends the corresponding
event and the attached parameter corresponds to the idenfithe new stateN1...N5in
Figure[Z®). The central monitoring skill is in charge of quueing the external state of
the robot considering the states in relation to all the dbje®he resulting external state
is communicated to the DMS. The communication among alleleésments is depicted in
Figure[Zh.

Skill monitoring the
docking station
Skill monitoring

people < N
Skill monitoring the | NEW_STATE_PLAYER, N3
music player
EW
Skill monitoring N
the music
N
Skill monitoring
robot's localization

Figure 7.5: Skills involved in monitoring the external stat

Central States
Monitor Skill External state

Next, how theCentral State Monitor Skillvorks is presented. Figure¥.6 shows its flow
chart. This is not a cyclic skill, but a skill which works byesus. In this case, since the
skills that monitor the individual objects employs eversbmmunicate any change on
the state, this skill is subscribed to all possible event$iafilters the events related to
the external state. After an event is received by this skidlhecks if the event is relevant
for the state related to an object. The data related to thesgsare obtained from the
database. Then, the current state is updated, and the &lxséate is formed and written
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Figure 7.6: Main process of ti&tate Monitor Skill

to STM. This is notified to the rest of the elements by K&V EXTERNAL_EVENT event.
Consequently, any element which needs to access the dxsgatencan read it, and it is
informed about any change.

The system is always listening for new events and no onetithasks to the event man-
ager system. It is endowed with queues which are in chargeaobging all the incoming
events.

In order to achieve a high performance and reliability, ¢hare independent skills
watching all the items in the robot’s world. Following, addrdescription about how each
item is detected is presented. Then, a detailed descripfitime skills involved in these
detections are explained.

The objects to be sensed are:

The docking station. The charger can be perceived by the data acquisition boalchwh
provides enough information to discriminate between wiherrobot is plugged and
when it is unplugged.

A user. This “object” is perceived by the combination of two tectmi@ middle-range
sensor, based on bluetooth, and a short-range sensor,da&#D technology.

The music. In order to identify when the music is being played, there skl that re-
members the last commands sent to the player, so it is abkteondine if the music
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has been set on or off.

The music player. By means of the navigation system, the skill knows where t®tr
is and if it is far o close to the music player. In addition, ls@uses the previous
presented skill in order to determine when the robot is ctogbe player, with the
music on or off.

The skills involved on the perception of the external stage tihe location monitor skill,
the music player control skill, the music player sensoi gkie docking station sensor skill,
the bluetooth discoverer skill, and the rfid discoverer skil

7.4.1 The location monitor

This skill has been designed to provide an easy interfade thé navigation system im-
plemented in the robot. This skill reads the geometric mation of well-known locations
from an XML file and they are employed for the internal use ef$kill.

The skill has a dual task:

(a) it provides an easy high-level interface to send commmamthe navigation system
(b) it monitors the position of the robot in the world

For example, if there is a position referred iagront of the music playerthis skill
translates the high-level commagd to the music playeto lower geometric commands
which are managed by other skills running in the AD architeet Moreover, the moment
when the robot has reached this location is also notifieddwoeht of the architecture, .

An example of an XML file of positions is shown below. The requi data for a
position are an identifier, a description of the locatiorg #re X Y # coordinates.

Code listing 7.1: XML file describing a location
<?xm version="1.0" encodi ng="UTF-8" ?>
<posi tions>
<posi tion>

<l-- all fields are required -->
<l-- id nunber -->

<i d>1</i d>

<l-- short description about the position -->

<description>n front of the docking station</
descri pti on>
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e
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event
(POSITION_REACHED,
id_position)

Figure 7.7: Activity diagram of geometric position monitay

<l-- x value -->
<x_val ue>- 0. 267956</ x_val ue>

<l-- y value -->
<y val ue>-2.28114</y val ue>

<l-- theta value -->
<t het a_val ue>- 1. 46912</t het a_val ue>
</ posi tion>
</ positions>

This skill is permanently monitoring the robot's positicor notifying the transitions
from a location to another location. The process is shownigarE[ZT. Initially, all well-
known position are read from the XML file. After that, the camhioop starts. First, the
odometric values are updated, and then, the current roloohggteic position is compared
with all the well-known positions. If the robot position ifose enough to a well-known
position, this is notified by sending ti&OSITION_RFEACH E D event and the position
identifier is attached.

Due to the noise in the sensors, a tolerance value is segfoew location is assigned
to the robot. Therefore, the expression fs close enough’.means that the robot position
must be inside this tolerance error. For the applicatiomired in this work, the error on
thex andy axes is set td0cm, and, for the) coordinate, the tolerance is2rad (about
119).
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The positions defined in this work were thréefront of the docking statigrihe center
of the lab facing the dograndclose enough to control the TV

The functionality previously enumerated @3, the high level interface with the navi-
gation system, is discussed in Secfion4.5.4.

7.4.2 The music player sensor

This skill is in charge of sensing and notifying the stateha music player in relation to
the robot. It manages two kinds of information: a) the geoitatposition of the robot,
and b) the commands sent to the player. Both data are mergleteionine the state related
to the player.

Since the required information is coming from two indepernid®urces of information,
every time one of them is updated, the state of the playerdatgl too. Two independents
threads monitor both sources of information.

Regarding the commands sent to the music player, the skdtening all of them. Itis
subscribed to the event used to operate the music plegsyMAND_TV), and the command
sent is obtained. Then, according to the current positidghefobot, the state of the player
is updated. The new state is notified emitting the corresipgnevent if it is different than
the last state. The process is summarized in Figure ¥.8(a)

In relation to the position of the robot (Figure 7.8(b)),réheés a control loop where the
current position is read and it determines if the robot iseltw or far from the player. This
information is combined with the last command sent to thggrland the final state of the
music player is formed. If the state has changed, this is conicated by an event.

7.4.3 The docking station sensor

There are two possible states in relation to the dockingpstaplugged or unplugged. This
skill senses this situation and notifies it to the rest of tiohitecture.

A data acquisition board reads the real voltage of the haft®hen the robot is plugged,
the voltage of the robot’s battery reachi®d/. Otherwise, this voltage is belo26V. In
the moment when the robot gets plugged/unplugged, thereail/plunge on the voltage.
This is the principle used by this skill to identify the trarens between both state.

The process is permanently running (Figluré 7.9). Using erattical methods, several
consecutive readings of the voltage are used to approxarsitaight line. The slope of this
straight line is computed in order to determine if the rolsqtlugging or unplugging. The
already mentioned peaks/plunges are reflected on the sidp, in order to determine
the exact moment of plugging/unplugging the absolute vafue slope has to be over a
thresholdL,;,,..q4- A positive slope means that the robot has just connectduktottarger.
A negative one implies a movement out of the docking statibna formal way, it is
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Figure 7.8: Activity diagrams of the music player sensoH ski

expressed in Equatiént.2.

If |m| > Lyuggea & m > 0 = robot is plugged

If |m| > Lyuggea & m < 0 = robot is unplugged (7.2)

wherem is the value of the slope.

7.4.4 The bluetooth discoverer

The bluetooth discoverer is a skill intended to identify plecaround the robot. It is based
on bluetooth technology which is power-class-dependehé dass of device determines
its range. In Maggie, a class 2 device is on board the robotitsoange is around 10
meters.

The idea is that each person is wearing his personal cephlane, which is equipped
with a bluetooth interface (most mobile phones are alreapypped with this interface).
Then, this interface is used to identify the people aroueddiot.
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This skill searches for bluetooth devices which are dedaitlen XML file in LTM. The
link between each bluetooth device and its user is defindakitXML file.

The control loop of the skill scans for near well-known bh@h devices and writes to
STM a string with the name of the users whose bluetooth de\hege been detected. At
the beginning of each iteration, the skill scans all avéddituetooth devices. Then, it just
filters the available bluetooth devices which are identifiettie XML file. The resulting list
of devices is compared with the list in the previous itenmatilh differences appear, the new
list of users is written to STM and tHéPDATE_BT_DEVICEvent is emitted. Otherwise,
the loop starts again. The list of detected users is a stangdtted as a space separated
list of names. This string is stored in STM with th®@_BT_DEVICESd. Every time
a user appears/disappears, the new list is written and #r@ 6?PDATE_BT_ DEVICE®
triggered. The list of users is updated in STM just when inges. FigurEZ.10 summarizes
the whole process.

As mentioned, the information about users and their blubtdevices are obtained
from an XML file. An example is shown in Listifig4.2. The XML fitaust contain enough
information for identifying the user and his bluetooth a®vi In order to undoubtedly
identify a device, its bluetooth address (similar to the Madtiress in network cards) or
the device name are considered. Both fields are queried kskithébut just one of them is
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required. The owner of the device is defined by the user’s némeeattributeusel) in the
XML element.

Code listing 7.2: XML file describing a user’s bluetooth dmvi
<?xm version="1.0" encodi ng="UTF-8" 7>

<devi ces>
<devi ce>
<l-- just the bluetooth address or the user-friendly name
is enough -->
<l-- Dbluetooth address -->

<addr ess>00: 25: 67: 6F; 2F: 3D</ addr ess>

<!-- user-friendly name -->
<nanme>S8000</ nane>

<l-- user’s nane -->
<user >al var o</ user >

</ devi ce>
</ devi ces>

In the experiments carried out in this work, two user’s bba¢h devices have been
tracked.

7.4.5 The rfid discoverer

In the previous section, cellular phones were used to ifyensiers 10 meters around the
robot. This could be enough for some applications. Howewben human-robot inter-
action is achieved in shorter distances (e.g. touchingdhetr talking to the robot, etc),
another technology is required.

The robot employed in this thesis interacts with users ity ghiort distances: it plays
board games, reacts to touch, or establishes dialogs. ©ttesr, additional mechanism is
required to distinguish between people really close to dhetfrom people in its vicinity.

In this work, Radio Frequency ldentification (RFID) has besed as the short range
identification technology. In this case, the user is givees@nal RFID tag which can be
placed at his pocket or wallet, and it will be sensed by thetedhen he is closer than 1
meter.

In general, this skill can be used for identifying any objettich has an RFID tag
attached to it (also referred as RFID objects). Each RFIRahkf identified by a string
which has been previously written in its RFID tag. This sgitbvides a high-level interface
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since it refers to the presence or absent of objects. Howederes not deal with low level
operations. This is achieved by other skills running in thigot. It mediates between low-
level operations and the user. The low level operationsenfepned by other skill which is

in charge of reading the data from a new RFID tag, write the®iTM, and finally notify it

by emitting theNEW_TAG_RFIevent (more details about low level RFID operations can
be read in[[196]). Thefid discovererskill informs about the presence/absence of objects
with an RFID tag. This makes very easy to extend the repgsitith more items, even if
they were detected by other technology.

Therfid discovererskill informs about the objects detected by the RFID antsrina
the robot (one in the head, one in the chest, and one in theg.b&gken a new RFID
tag corresponding to an object has been detected, this ifledagdmitting theDISCOV-
ERED_RFID_OBJEC®Event. An identifier is attached to this event, and it indésatvhich
object has been sensed.

In the same way, once an RFID object has been detected armbitsglered apresent
a timeout is used for checking when it disappears: afteanetime without sensing the
RFID object again, the eveBiISAPPEARED_RFID_OBJEQGS emitted and it is assumed
that the object has disappeared (ihissen}. The parameter attached to this event identifies
the disappeared object. The time out has been s}t $econds#meout = 30).

The list of RFID objects that the robot is able to detect isaot®#d from an XML file.
The XML element named asbjectstores the data related to an RFID object. The value
which is written in the RFID tag, and that is used to identtfyis stored at the child ele-
mentid. Then, the name of the object and its description are theeatsdf the elements
nameanddescription Finally, the child elemengévent_parantontains the number that
identifies the object when it is discovered/disappearesl firameter attached to tB&S-
COVERED/DISAPPEARED_RFID_OBJE@Vent). An XML example is presented in
Listing[Z3

Code listing 7.3: Example XML file describing an RFID object
<?xm version="1.0" encodi ng="UTF-8" 7>
<rfid_objects>
<obj ect >
<l-- rfid tag value -->
<i d>al varocastro</i d>

<l-- npanme of object -->
<nane>al var o</ nane>

<l-- object description -->
<descri pti on>phd candi date at roboticslab researchi ng on
soci al robotics</description>
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<l-- paramattached to event enitted when the object is

detected -->
<event _par anrl</event _paranr

</ obj ect >
</rfid_objects>

The main steps of this skill are described in the Fidurel7laitially, the data related
to all RFID objects are loaded. Then, once an RFID tag is tldgthis is notified by the
low-level RFID skill emitting theNEW_TAG_RFIevent), its value is read from STM and
compared with the list of recently detected RFID objectsit i a new one, it is added
to this list and its timeout is reseted. If it already was ie tist, the timeout is reseted
too because this object has been perceived. In every dardhie timeouts for all recently
detected objects are updated. If any timeout reaches zenedut = 0), it is interpreted
as that the object has disappeared, so it is deleted fronisthef kecently detected RFID
objects, and it is notified by the emission of the correspogaivent. The next time it
appears, it will be considered as a new object and the camnekipg event will be emitted.

The combination of the last two skills presented in this ¢agphebluetooth discoverer
and therfid discovererskills, provides a reliable system to perfectly identifg thresence
of users. As a result, three different states are possibke j@rson:

» absent: the user is not perceived by either the bluetoaticeler the RFID tag.

» present: the user is in the vicinity; his bluetooth devedeétected, so he is about 10
meters around, but his personal RFID tag cannot be sensed.

e close: the user is closer than 1 meter to the robot; bothtdddle device and RFID
tag are perceived.

Graphically, it can be seen as depicted in Fidurel7.12 wheralifferent ranges for
both technologies are shown.

7.5 How the robot interacts with the objects

The robot's world consists of items. The robot interactshviiiese items by means of
the execution of actions related to them. These actionsygseemented as skills running
within the robot’s control architecture. This section dstall the actions related to the

items in the robot’s world.

7.5.1 Charge the battery

This action is related to the docking station. Its task islt@phe robot into the docking
station and to stay there until its battery is totally regeak.
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Load data about RFID

RFID objects OBJECTS
XML FILE

[non RFID tag detected]

[RFID tag detected]
Read data from
RFID tag

[new object Oj]

event
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Oj_id)
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event
(DISAPPEARED_RFID_OBJECT,
Oi_id}

Update the list of

recently detected
rfid objects

Figure 7.11: Activity diagram of RFID discoverer skill

The skillimplementing this action is called tk#argeskill. The process for recharging
the battery is shown in Figufe—7113. The first step is to detezrif the robot is already
plugged. If it is not, it approaches the docking station gdime navigation system. The
robot knows several well-known positions and the locatiamitor skill (Section"Z.Z411)
is in charge of moving it to the front of the docking stationnd@ the robot is facing the
docking station, it has to accurately center its plug to thekst in the charger. This task is
achieved by means of the laser telemeter which gives higisetution than the geometric
navigation. Then, Maggie moves back until the plug fits ihigocket. This is detected by
the Docking Station Sensakill (Section’Z.4.B). In the last step the robot remaingged
until its battery is totally recharged. Finally, the sucfasend of the action is pointed out
by emitting theCHARGED event. In case an error occurs, an event, which indicatetyplee
of error, is sent.
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user is
absent

user is present

Figure 7.12: Sketch about the ranges of both technolograddatifying a user

Once theChargeskill has ended, the battery is full and the robot is stillggad. As
seen before, this implies that tearvivaldrive is satiated.

7.5.2 Staying plugged

This is the other available action in relation to the docksatgtion. It makes the robot
remains in the same situation, without moving, for a cergaiount of time. There are two
ways of operating:

» when the skill is activated, the robot waits for a speciiidi0 seconds). After it,
the evenSTAYED s emitted.

» when the evendAl TI NGis received, the attached parameter defines the waiting time
After the time is over, th®Al TED event is sent.

This skill guarantees that, during a fixed amount of time it does not move at all.

7.5.3 Dancing

The Dancing skill requires that the robotlisteningthe music in order to execute its pro-
cess. This skill makes the robot rhythmically moves its aamg neck. It seems like the
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Approaching the
docking station

The laser telemeter is used to
accurately turn the robot to the
exactly center of the charger

Centering to the
docking station

- Plugging
[re—

Waiting until it is

fully recharged
prem—

The robot gentently moves
back until it is plugged
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Figure 7.13: Activity diagram for th€hargeskill
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[music is off]

[music is on]

of arms and neck for

Rhythmic movements
a while

Reseting arms and
neck position

DANCE_STOPPED

Figure 7.14: Activity diagram for thBancingskill

robot is dancing. The process is presented in Figurd 7.14hé\end of the action, the
robot moves down its arms and its head is facing the front.
The end of the action is notified by tIRANCE_STOPPED event.

7.5.4 Geometric move to

This skill moves the robot in the environment. It is employgdhe actions which require a
displacement in the environment. In this work these actavrgelated to the music player
and the docking station. The class implementing this skilhe same class used for mon-
itoring the robot’s locations (Sectidn 7Z.}.1). This sectomrresponds to the functionality
mentioned in that section and labeled as

When the evenBEOVETRI C_MOVE_TOis received by this skill, its parameter indicates
the position to move to. The coordinates correspondingitogbsition are read from the
matching entrance in the positions XML file (an example casd®n in Code listing7.1).
Once the coordinates are ready, they are sent té&thdo Pointskill, which moves the
robot to the desired position. Once the robot is there, tiie Glo To Pointnotifies it by
the event _AM HERE which is managed by th@eometric Move Tskill. It checks that the
reached goal corresponds to the desired one. If it is SCGGEORMETRI C_GOAL_REACHED
event is sent and the location identifier is attached to itis Ppnocess is summarized in
Figure[ZTb.

The Go To Pointskill [L96] manages low level operations for moving the roimothe
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®

Figure 7.15: Activity diagram for th&eometric Move Tskill

environment.

7.5.5 Staying

Once the robot is close to the music player, it can controt istays there for a while.
This last action makes the robot to remain close to the muayep The skill in charge of
performing it is the same used for staying plugged (SeiblY.
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Figure 7.16: Communications among all the skills involvéhiea music player control

7.5.6 The music player control: turning it on/off

The robot Maggie is endowed with a voice operated infrar@dote control. In general,
the robot is able to control any home appliance equipped antinfrared interface. This
is fulfilled by most of the regular appliances. Thereforas tihneans that no changes or
adjustments have to be done in the appliances. In this phatiskill, due to the limited
number of home appliances in the lab, the skill is limited pem@te a television. This
television is employed, during the experiments, as a muaiep.

The required infrared commands for operating the musicepléthe television) are
previously recorded from the original remote control. Sadugently, the commands can be
sent by the robot upon request of a user. The human-roboaatien is achieved by means
of the dialog system.

The music player is located in a certain position, so, whernrtibot has to control it,
first, it has to approach it and face it.

In order to send commands to the infrared-operated ap@#ardaggie is equipped
with an infrared emitter/receiver. It has been placed m8ihggie’s belly, behind a sphere
which lets infrared signal to go through. Because of theneatdi the infrared technology,
it is essential that the robot is located close enough anddgdabhe music player. Hence, a
reliable navigation system is a fundamental element.

In order to successfully achieve the task, this skill isaw&d by other skills running in
the robot. The communication among all these skills is degion Figur€716. Following,
the role of each skill is explained.



158 Chapter 7. Implementing the decision making system

1. ASR Skill: the Automatic Speech Recognition skill is in charge of infong about
which grammar rule has been identified through the micropeoAn eventREC_-
OK) and the detected grammar rule identifier are sent to alerett of the architec-
ture. This event will be catched by every skill subscribed;tm particular, the sKill
namedSpeech_IR_Control

2. Speech_IR_Control Skillit is a data processing skill which translates an incoming
event from the ASR skill to a new one. The new event is basedendentified
grammar rule which identifies the requested command. If¢in@cand is not related
to the infrared system, the event is ignored. In other cagsegquired information is
stored at STM. This information is the device to control amel tommand to send;
for example, "turn the music player on". Then, Sygeech_IR_Contrakill indicates
that Maggie has to move to the device’s location by meansed&tBTOevent. If the
position is reached, then tl@OTO_OKevent is received. Then, the robot is ready
for emitting the appropriate command. Consequently, thistified by sending the
CONTROL_IRevent. In case of any error, the operation is aborted.

3. GoTo Skill: after theGoToskill receives theGOTO event, the robot is intended to
move to the position determined by the data stored in STMideéarly, this skill
takes the name of the device to be operated from the STM apthtes it to a pose
(position and orientation) in an internal map of the worlfithe desired position is
reached, th6&&OTO_OKevent will be sent. Other casBOTO_FAILis sent.

4. IR_Remote_Control Skillthe CONTROL _IRevent is captured by this skill. Once it
is received, it accesses the data concerning to the comdsgpcommand at STM.
Then, the info is sent to the infrared server. The right iringdo sent is obtained
from the database where all the available coding commaredsNow, the infrared
hardware emits this coding. Finally, it informs that evaigg has gone right.

The chronological evolution of the music player controllskishown in the sequence
diagram in Figuré Z17. When a user wants Maggie to operatefeared appliance, he
interacts with the robot by voice commands (message 1 HIQA®. The ASR skill identi-
fies it and distributes the grammar rule joined to the usersrmand by means of the event
REC_OK(message 2 Figule7]17). Once #meech_ir_controskill receives it, it links
the recognized grammar rule to a device and an instructiath Barameters are stored
and shared by means of STM. At this moment, Maggie has to eéigmgosition in order
to face the appliance (message 3 Figurel7.17) which nameresdsin STM. The name is
linked to a pose in the internal map and the robot goes theheeth®r it achieves it or not,
it is notified by theGOTO_OKor GOTO_FAlLevents (message 4 Figlre 4.17). If Maggie
is ready (i.e. facing the appliance) and the required daaaailable, th€€ ONTROL_IR
event is sent and it is received by tlieremote_controkkill. It asks the infrared server,
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Figure 7.17: Sequence diagram of the music player contiibl sk

which is directly connected to the hardware, for sendingrdtpiested command. The
result of the operation is back-propagated.

7.5.7 Interacting

In this action, the robot does not move at all but asks a pdmanteracting with it. Then,
the presence of a person is required for this action. Thet®lauates the action executed
by the person in terms of the internal robot’s wellbeing; hew the person’s action affects
itself.

This action is implemented by thHateractskill. This skill detects the oral and tactile
effects of the person’s action. Roughly speaking, thid giskinguishes if the person says
compliments to the robot or he offends it. Moreover, it eadds the tactile interaction as a
stroke, a damage, or neutral. Both interaction mechanismgrparallel when the skill is
activated. In order to easily understand how it works, eawhis independently analyzed.

Insulting or paying it a compliment

The verbal actions of a user can be interpreted as positiveegative according to the
meaning. In order to classify them, theeractskill evaluates them.

The verbal communication is managed by a dialog system whibhsed on the Auto-
matic Speech Recognition (ASR) and the Text To Speech (Ty$&¢ms. The dialogs are
formatted following the Voice XML standard (VXML) which degs the structure of the
Dialogs. VXML converts speech to text by means of grammanan@®nars are a set of
rules which define the sentences or words the robot is ablederatand.

In this case, the required grammar is defined consideringalsible insults or com-
pliments the user says to the robot. Then, the rules of tlaisigrar, somehow, describe the
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robot. Grammars allow the addition of semantic meaningesé&lsemantic meanings are
expressed in the following way:

<@ttribute = val ue>

whereattributeis a variable which will be set tealue
For example, the next grammatical rule represents the affivenor negative answers:

public $yes\_no=("yes":yes|"no":no|"okey":yes|"affirmative":yes|"
negative":no) {<@ption $val ue>}

Then, the variablé»pt i on is set to the semantic value of the rule namged no. The
possible values arges or no. This variable is used inside the dialog too. Strings in
guotation marks represent the possible words recognizeédebfSR, that is, the possible
words pronounced by the users.

The Interact skill uses a specific grammar for recognizing insults or clommgnts.
This grammar is shown in Listing—1.4. The main ruteo¢t ) refers to the rule named
descri bi ng (line 6). This rule accepts any sentence (this is repreddnfesARBAGE)
before an insult or compliment (line 13). The repertory otlerstandable insults/com-
pliments is defined by the rulensul t s_conpl i nent s (lines 8-11). This rule fixes the
attributeadj ect i ve to the valud NSULT or COVPLI MENT.

Code listing 7.4: The grammar for compliments and insults
#ABNF 1.0 | SO 8859-1;

| anguage es-ES;
tag-format <l og-semantics/ 1. 0>;

public $root = $descri bi ng;

$insults_conplinents =
("idiot": I NSULT | "stupid":INSULT | "silly":1NSULT | "clunsy"
I NSULT | "ugly":INSULT | "bored":INSULT | "disgusting"
I NSULT | "bastard": I NSULT | "w cked": I NSULT | "bitch"
I NSULT | "inconpetent": I NSULT | "filthy":INSULT |
"clever": COVPLI MENT | "pretty": COVPLI MENT | "cute": COMPLI MENT
| "you smell good": COVPLI MENT | "fun":COVPLI MENT | "funny
": COVPLI MENT | "fun-Ioving": COVPLI MENT | "charm ng"
: COWPLI MENT | "screan: COVPLI MENT | "l ovel y": COVPLI MENT |
"graceful ": COVPLI MENT
){<@dj ective $val ue>};
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$descri bi ng = [ $GARBAGE] $i nsults_conplinents

VXML dialogs are based on forms which are filled accordinghe tlata provided
by a user and processed by a grammar. In the mentioned applicpust one form is
necessary. This dialog is shown in Listingl7.5. Initiallyetform is identified with the
namei nsul t s_conpl i ment s (line 7) and several properties are defined: ttheeout

property specifies the default interval of silence alloweddlevwaiting for a user input
before anoinputevent is thrown. In this case, it is set30 seconds (line 9). Then, the
default language and grammar are set (lines 12 and 13 ohgigiB). Thepr onpt tag
controls the output of the dialog: it can be a synthesizeteser, the configuration of a
property, emitting an event, etc.

Thef i el d element specifies an input item to be gathered from the usénid dialog,
thisfi el dis linked with theadj ect i ve attribute defined in thensul t s_conpl i ment s
grammar. Oncedj ect i ve is filled by a user’s utterance, the action defined by the code
in thefil | ed element is executed (between lines 19 and 28). In this capendiing on
the value of theadj ect i ve attribute, the user has paid Maggie a compliment or he has
offended it. In the first case, tttOMPLIMENTEDevent is sent and a happy sentence is
said (lines 21-22). In the last case, EFENDEDevent is emitted and a sad sentence is
said (lines 24-25).

In the case that the field is not filled (the user does not spa&alkis speech does not
fit the grammar), afteB0 seconds, theoi nput element is executed (lines 30-33): this is
notified by thee GNOREDevent and the robot saygou ignore me'

Code listing 7.5: The VXML dialog used by theteractaction.

<?xm version="1.0" encodi ng="I1 SO 8859-1"?>
<vxm  xm ns="http://ww. w3. org/ 2001/ vxm "
xm ns: xsi="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://ww. w3. org/ 2001/ vxm http://ww.
w3. or g/ TR/ voi cexm 20/ vxm . xsd"
version="2.0"
>
<formid="insults _conplinents">

<property name="tineout" val ue="30s"/>

<bl ock>
<pr onpt >#set Language$en</ pr onpt >
<pr onpt >#set G anmar $i nsul t s_conpl i nent s. gr anx/
pr onpt >
</ bl ock>
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<l-- An insult or conplinment is detected -->
<field name = "adjective">
<filled>
<if cond = "adjective == ' COVPLI MENT" ">
<pr onpt >#em t $COVPLI MENTED</ pr onpt >
<pronpt>en:uuuii great! | really like it<
/ pr onpt >
<elseif cond = "adjective == "I NSULT " />

<pr onpt >#eni t SOFFENDED</ pr onpt >
<pronpt>en:you are not very polite</

pr onpt >
</[if>
<cl ear/>
</filled>
<noi nput >

<pronpt>en: you just ignore ne</
pronpt >
<pr onpt >#em t $| GNORED</ pr onpt >
</ noi nput >

</field>
</fornp
</ vxm >

Several examples of possible Dialogs are presented oneHigl®B. Figurd 7.18(p)
shows how a user offends Maggie. The next figure, Fijure B)18{splays the messages
between the robot and the user and how he says a complimenaggi® In the last
example, Figurg 7.18(c), the users ignores Maggie and hemluesay a word.

Stroking or beating the robot

In addition, apart from verbal interaction, the@eractskill evaluates the tactile communi-
cation. In order to achieve it, the sensitive “skin” of thbobis used. The capacitor sensors
spread around the surface of the robot are read to deternfieeevand how the robot is
being touched.

In this skill, two kinds of tactile interactions are distinghed: strokes and hits. The first
one is identified when the user strokes the robot’s head. ritrast, when the robot’s both
shoulders are touched, it is considered as a hit. In shastptbcess is depicted on Figure
[Z.19. Every time a touch is detected on the surface of the rtiie is communicated to the
rest of the architecture by ti@ctile Sensoskill which emits theTOUCHEDevent. When
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Figure 7.18: Three possible dialogues with a user

theInteractskill is running, this event is received and the tactile mfation is processed.
The touch is classified as stroke, hit, or other. Strokes@rsidered similar to compliments
and hits are similar to insults, thus the corresponding svare sentCOMPLIMENTED
andOFFENDED

The Tactile Sensoskill manages all the tactile sensors in the robot’s skiniaf@ms
about what sensors have been touched.

This event is sent from
the tactile sensor skill

° :

event event
TOUCHED TOUCHED
[Maggie is hit] [Maggie is stroked]
[other king
of touch]
event event
OFFENDED COMPLIMENTED,

Figure 7.19: Activity diagram for tactile interaction
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7.6 Summary

This chapter has shown how the whole system is technicaligded and implemented.
The relationship among different elements have been ddtail

Initially, the design of the DMS has been presented and itartdges has been justified.
The system is fully configurable through the data stored iatalthse. The database design
and the software design for managing all the data have beaietk

Later, the skills running in the robot, either for detectthg external state, or for exe-
cuting actions, have been analyzed and explained. Theitathtetails have been shown
in an attempt to clarify the ins and outs of the whole system.

The DMS pretends to be a fully customizable system. It hasetidxible enough to
be effortless transferred to other robots. The proposesyperfectly can run in other
platforms by just updating the data on the database. Howski#ls are more platform de-
pendent. Some of them should be modified before they run gr gllatforms; for example
the geometric navigation is dependent of the physical parars of the mobile base. Other
skills can perfectly work out-of-the-box, e.g. tR&ID discovererskill. But others abso-
lutely cannot be adapted due to physical constrains of thetyéheDanceskill cannot be
adapted to a robot without head and arms.



CHAPTER 8

Testing the experimental setup

8.1 Introduction

This chapter presents the scenario and conditions for therements. First, a general
common setup of the experiments is given. Following, a fragimof an experiment is
deeply analyzed in terms of motivations. This shows therdeeendences between all
elements and the operating of the DMS. Later, the use of thedD@-Learning algorithm
is justified and its benefits are exposed. Finally, the maatibos to the learning algorithm
are validated.

8.2 The arrangements for the experiments

In this thesis, the experiments consist of two phases: exgl@nd exploiting. First, the
robot learns the proper behaviors in different situatignst has to explore all possibilities.
Maggie tries every action in order to learn the right polioyaict. Second, the learned
policy is exploited selecting the best action accordingh world configuration in each
moment or state. The behaviors are originated as a consegj@érihe string of these
actions. During exploitation, learning is frozen and thsttaetion is always selected.

All the experiments have been achieved by real robot-enmient interactions, so the
behaviors and actions imply to interact with the items in tblot’s environment. An
overview of the robot’s environment was displayed in Fidar® (Chaptefl5). Learning
has been also achieved by real robot-environment interaotvhich means that the robot
explores all available actions in every world configuratioany times. As explained in
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Sectio 4411, each action will be evaluated accordingstefiect over the robot’s wellbe-
ing.

Reinforcement learning algorithms have been used duriage®periments (Chapter
[B). In particular, the Object Q-Learning algorithm (Seoti®2) has been implemented.
Previous knowledge has not been given to the robot in adyaodé has learned from the
ground up.

In the experiments, an iteration corresponds to the exatuwfi an action by the robot.
The robot decides at each iteration the action to carry otie drobability of an action
to be selected is determined by tfevalue associated to this action in the current state,
and by the level of exploration. During the exploring sessjall actions have the same
probability of execution. This is required in order to gudee that all actions are tried
many times from all the possible states. At exploitatiom, blest action is always selected.
The best action is the most convenient in terms of the robatltbeing. That is, action
is the best action when the robot is in statéthe (s, a) value is the highest one among
the ) values corresponding to the rest of the available actions.

The interactions between the robot and the environmenteveeperiments are ac-
complished take a considerable amount of time. Hence, fat wfothe experiments, the
learning phase has been established to last ar@0mdterations which usually means a
duration of more than seven hours.

As exposed in Sectioh5.4.3, the balance between explaratid exploitation will
depend on théemperaturefactor. During learningdelta ¢ is set to100 causing a high
temperatureso the actions will be randomly selected to try all posséutons. Further-
more, initially, the learning rate is set to0.3 which means that the most recent data are
quite relevant during learning. As justified [n]49], at sopwnt, exploring must stop and
the learned values must be exploited. Considering thiscagpy, afte500 iterations, the
learning rate starts to continuously decrease until thenieg rate reache8. After this
point, the@ values will not change anymore and the experiments entéeiexploitation
phase.

Since this work has been implemented on a social robot ietktwlinteract with people,
the personobject has been considered as the only active object whimteshhe environ-
ment with Maggie and interacts with it. Consequently, theg@nous actions are those
actions executed by the people around Maggie. Recallirge¥ogenous actions affect
the external state as well as the internal state of the robot.example, when a person
approaches Maggie, the state related to this person (tkeenaktstate) has changed, and
it is not due to the robot’s actions. Moreover, the actioratlished by a person may
affect some robot’s drives (the internal state): e.g. ifispe hits the robot, theocialdrive
soars, i.e. the need of a positive social interaction irsgeaAgain, all these consequences
are not caused by the robot but by the people’s action (tleambjects’ action).

In these experiments, two people will interact with the rol#dvaro andPerica. Both
alternatively approach Maggie, one by orierico always interacts with positive actions:
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he strokes the robot or he says compliments to Maggie. Thidtseon the satisfaction of
the social drive, which is set to QAlvaro generally acts in a positive way too. However,
sometimes, he hits or offends Maggie. This is reflected indbet’s wellbeing through an
increment of ten units in theocialdrive (Equation[(8l1)). In general, both users benefit the
robot butAlvaro occasionally causes harm to it.

If the robot is harme&s D,y.isi = Dsociar + 10 (8.1)

8.3 Analysis of the course of the motivations

First of all, in this section, the course of the motivatiossletailed. That is, how motiva-
tion values change with time during Maggie’s “lifetime”. Art-minutes period has been
extracted and fully analyzed. This meticulous study prakiescorrect working of the sys-
tem as well as clarifies how the internal and external stirmdicombined to compute the
intensity of the motivations.

Motivations uniformly grow but, sometimes, their inteiesst suddenly change. These
jumps occur due to the presence of external stimuli as wethasffects of the robot’s
actions on the drives. Figuiie 8.1 shows the evolution of tbgvations during ten-minutes
period and several of these jumps can be observed. The exeofidifferent actions are
identified by the letters between brackets located on thefttge figure. In order to clearly
identify the iterations, i.e. the execution time for eachiag the background of the plot
is grey and white-striped. The multicolored band on the uppet of the figure represents
the dominant motivation at each moment. Its colors matcictiers of the motivations
shown in the key of the graph.

Initially, the chargeaction €) greatly reduces thenergydrive. At the same time, as
justified in Sectiori5.4]11, other drives are slowed down.et,avhen the robot executes
thego to the playelaction @) and, consequently, it unplugs from the charger, the eatern
stimulus of thesurvivalmotivation disappears and this motivation is reduced.

The influences of other external stimuli can be observed Faw.instance, when the
music player is turned on (actigalay (p)), thefun motivations increases; when the player
is switched off (actiorstop (s), the same motivation decreases; additionally, the poesen
of a person is reflected on tlsecialmotivation.

Satisfaction of several drives can be observed due to treigga of the correspondent
consummatory actions. For example, foe, relax, andsocial motivations jump down
when their drives are satiated by means ofdhace (d) stop (s) andinteract with Perico
(iP) actions respectively.

Focusing on the middle part of the graph, tekax motivation suddenly soars: at the
same time the robot interacts wiglerico (iP)and the need of socialize is satiated, tblax
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Figure 8.1: Temporal evolution of motivations. Numbers op tepresent the executed
actions: (i)idle, (c)charge, (r)remain plugged, (g)go tasm player, (p)play, (d)dance,
(iP)interact with Perico, and (s)stop. The vertical wigtey bands at the background
correspond to the execution time of each action. The upperemb band indicates the
dominant motivation. The effects of some actions and séebeages of states are pointed.

motivation is saturated. Why is that? This is an example @f tiee Well-balance Explo-
ration mechanism (Sectidn 6.B.1) is applied. Recalling,ithan artificial modification of
the robot’s drives for a comparable level of explorationlbfieotivations. This iteration is
not considered in the learning process because the variattithe robot’s wellbeing is not
“naturally” produced.

Looking at the right part of the grapAJvaro approaches Maggie. This fact originates
the emergence of tHear motivation. This motivation dissipates when the robot nsoee
other location, in this case to the charger (actbarge (c) andAlvarois not present any
more. Its causes and consequences are deeply examinedion&Ez.

In the plot, thenonemotivation has a constant value bfRemembering Sectidn 5.%.1,
this motivation will be considered as the dominant one wherotiher competes. This
occurs twice in the left part (blue parts in the multicolonda This is the period of time
when all the drives related to the other motivations arevbéh®ir activation levels.
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8.4 Testing the learning algorithm

The utilized learning algorithm, Object Q-Learning, wagiatly proposed due to a ne-
cessity of reducing the state space and, consequentlyedineithg time. Thus, firstly, this
algorithm is compared with a traditional Q-Learning shagiits advantages.

Later, when it is applied to a real robot, some improvemergsequired (Sectiong.3).
Then, the benefits of the modifications of the learning atgoriare shown by means of
some experiments.

8.4.1 Object Q-Learning vs. Q-Learning

At this point, the use of Object Q-Learning is justified. Sitlce world is perceived in terms
of objects and the robot’s states in relation to these abj&ctior 6.2]1), an agent using
the traditional Q-Learning will learn the actions that sitithe robot’s needs in relation to
just one object. However, it does not learn the related astdfecting other objects that are
necessary. In other words, Q-Learning allows to learn wbesxécute the consummatory
actions, but not the appetitive actions related to diffeddjects.

Since objects have been considered as independents onee&rdmother (Section
B21), traditional Q-Learning will update the state-actvalue related to a particular ob-
ject computing the previous value, the obtained reward,thadest value from the new
state with that object. Using this approach, the effectsxad@ion executed with an object
but affecting other objects too are not considered. As ptesen Sectioi ©.213, this situa-
tion is not close to real life because any action can influeeseral objects. For example,
when you feel tired, you go to bed. This action affects yowrdhef rest, your location,
and the bed (before it was free and now it is taken). Thinkiinthe experimental setup, if
Maggie needs to get its battery recharged, it will move towdhe charger, get plugged,
and remain until its battery is high enough. This actionraltaot just the state related to
the docking station (from unplugged to plugged), but théesteelated to the music player
(from close to far), and the people around the robot (fronsg@méto absent or vice versa).

However, by means of the Object Q-Learning and the colla&ffacts, the conse-
guences of an action over all objects in the world are constleAs explained in Section
B.23, Object Q-Learning updates the Q-values based oriopeQ-values; the reward
after the action; the best value from the new state using bfecbthe action has been ex-
ecuted with; and, finally, for the rest of the objects, théedénce between the best action
from the new state and the best action from the precedemt. stdtus, the results of an
action over all objects are considered in the Object Q-Liagralgorithm.

The different results obtained by Object Q-Learning and &a+hing can be seen in
Figure[8:2. Both plots present the results obtained aftaniag the behavior when the
dominant motivation igun. That is, what the robot has to do to satisfy the need of en-
tertainment. Figurg8.2{a) shows results obtained using&mning. In Figur¢ 8.2(b), the
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@ values plotted have been learned by means of the Object @vbgaalgorithm. Both
algorithms were run in parallel during the same executiaefrobot.

As expected, both methods learn that the best action to exesdance(the consum-
matory action) because it satisfies the neefdinf However, in order to achieve this action,
other objects are required: first, if the robot decides tacdathe music has to be on; and
for turning the music on, the robot has to be close enoughemitlsic player This rela-
tionships among several objects and the states in relatithrese objects cannot be learned
by Q-Learning. Figurg 8.2(g) shows how the rest of the astltave very low values. In
fact, the next best action aftelanceis stop music This is an incongruity since playing
music is mandatory for dancing but, becausstop musisatisfies the need of relax, when
funis the dominant motivation, there can be a little need ofxralad then a low positive
reward is assigned t&top musi@ction.

On the other hand, the robot using the Object Q-Learningréhgo perfectly learns the
correct relation among objects in order to expose the priogleavior wherfunis the domi-
nant motivation. In Figurg 8.Z(b) the most appropriate sege of actions (consummatory
and appetitive) can be extracted considering the highésésaAs previously saidjance
is the most valuable action and it corresponds with the lsgvedue. Before this action can
be executed, thplay musicaction is required (it is the second highest value). Finailg
last required action igo to player which is in charge of moving the robot close enough to
themusic player Once there, the robot is ableptay musicand, then, talance Thego to
playeraction is the forth value and the last positive one.

There is one positive action left: théle with music offaction, which has a high value
too. When this action is carried out, the robot is close tonlusic playerand it is off. In
this situation, the next best action isgay musi¢ which has a very high value. For this
reason, the value of thdle with music offaction in this situation is high too. Actually, this
is the third highest value.

The rest of actions are not relevant for the behavior extibitherentertainments the
dominant motivation. However, some brief comments abaaitehst valuable actions will
help to clarify some ideas. Through Object Q-Learning jwstteally bad actions has been
identified in relation to this motivatiorchargeandstop music The chargeaction moves
the robot far from thecd playerso it cannotplay musicand, as result, it will notlance
In relation to thestop musicaction, which was deeply analyzed for regular Q-Learning,
the reader can observe how this action has become the wargi.en the lowest value).
Looking into the Figur¢ 8.2(p), it can be seen hstwp musicstarts to abruptly decrease
between iteratior800 and 400, which corresponds when thgay musicand thedance
actions have relative high values. This makes sense beamisgplained before, music is
required to dance and, if music is suspended, it must be igedal

Therefore, it has been proved that Object Q-Learning bgieiorms in relation to
the collateral effects. However, when there is just an dbjeolved in a behavior, both
algorithms are able to learn the proper skills to be actd/atieigure[8B displays th€
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Figure 8.2: Comparison between traditional Q-Learning@bgect Q-Learning when sev-
eral objects are required for performing the behavior egléb the motivation ofun
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values learned wherelaxis the dominant motivation. Figufe 8.3(a) representgiivalues
determined by Q-Learning. In contrast, Fighire 8.3(b) regenés the results obtained by the
Object Q-Learning algorithm. Now, in both cases, the ledwedues result in the proper
behavior, which is formed by actions performed with the salnject. The most important
actions in order toelax, sorted by value, arestop musicidle with music onandgo to
player. All of them are related to thenusic playerntem and, therefore, both algorithms
perfectly identify them.

The worst actions are analyzed as well. The least valuakilenas chargefor the two
algorithms. Nevertheless, Object Q-Learning penalizés & greater manner because it
considers the effects of this action over other ite@isargemoves the robot to the docking
station and plugs the robot for recharging its battery. &foge, the robot is moved away
from the music player. This fact is reflected by Object Q-lbéay assigning a lowef)
value to this action. In the case of the Q-Learning, it justsiders that this action does not
benefit theelax motivation, but it does not include the detriment.

Independently of the learning algorithm, from Figlirel 813isieasy to describe the
optimum behavior that the robot will exhibit wheglax is the dominant motivation: if it is
far from the music player, it will go towards it; then, it wdtop music.

In conclusion, the robot using Q-Learning learns the diestion to deal with each
motivation, i.e. the consummatory action, and the pregedictions (appetitive), all of
them linked to the same object. However, this is not enoudtettave in a proper way.
Object Q-Learning provides a mechanism to acquire the redlknowledge in order to
exhibit behaviors that satisfy motivations involving seitendependent objects and their
states. Then, the proper action with each object at eaclcylartstate will be carried out.
Therefore, the robot learns consummatory as well as apyeetittions. This is the policy
which will be exploited.

8.4.2 Validation of the improvements for learning behavios

The benefits obtained by the mechanisms in charge of bodstnging process (Section
[£.3) are exposed here. Both, the Amplified Reward and the-béddinced Exploration, are
analyzed comparing the results obtained with and withaermtin similar experiments.

Amplified Reward

In order to clearly demonstrate the advantages of using thpliied Reward, this experi-
ment has been focused in one dominant motivationfuhenotivation. In this case, a seven
hundred iterations learning session has been performeal vévgions of the learning algo-
rithm are concurrently running: a) an Object Q-Learningpathm with Amplified Reward
(Figure[8.4(3d)), b) an Object Q-Learning without Amplifieevrard (Figur¢ 8.4(b)).
Looking into Figurd 8H, at first glance, both plots seem kimidespite the fact that
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the amplified one (Figulle 8.4]a)) has higher values, thepskems to be equal. However,
focusing on thegoing to the playeraction, this is not equal. This action is required in order
to satisfy the need of entertainment. In Figre 8]4(a) @halue associated to this action
is the forth highest positive value. In contrast, in Fiqué&B), this) value is negative and
other actions not related to the motivatiorfoh are over its value.

Using the Amplified Reward the learned values are higherefbee, the back-propa-
gation along all successive needed actions is strongetit asaches farther actions faster.

Probably, longer experiments will end with a positive vabfethe go to the player
action. However, by means of Amplified Reward this is achiewea shorter period of
time.

Well-balanced exploration

As expressed in Secti@n 6.B.1, an exhausted exploratidhsiieations in order to correctly
learn the proper behaviors is needed. Next, a situationewvgyloration is poorly achieved
is shown. Figur&8l5 presents a four hundred iterationsilegrsession where the Well-
balanced Exploration has not been considered. It correlsptanthe dominant motivation
relax which associated drive is the slowest one (this has beemievgol in Section’ 5. 41.1).

The remarkable issue extracted from Figuré 8.5 is the lomgge where non of the
values are updated. Roughly, these periods correspona ticetlations ranges fror to
160 and from250 to 390; this is about one hour and a half. These long lasting pesiotis
stability of values during a learning session means thatrttotivation is not explored in
these periods. In other wordglax does not frequently become the dominant motivation.
These circumstances lead to a set of state-action pairatéatot enough explored and
therefore they will not be properly learned in an acceptableunt of time.

The effects of the Well-balanced Exploration whetax is the dominant motivation
can be observed in Figufe 8.:3(b). During the whole learnesgsgion, there is a frequent
update of any state-action pair related to élex motivation. There are not more of those
long periods of undesired stability in a particular motioat

8.5 Summary

At the beginning, this chapter introduces the structur@e®xperiments with two different
phases: the exploring phase where learning is achievedharekploiting phase where the
learned policy is employed. Moreover, the available actibgects were introduced: the
users; two people will share the robot’s environment dutiregexperimentsPerico (who
always positively interacts) amilvaro (he sporadically harms the robot).

This chapter has proved the correct working of the DMS. dilitj how the intensities
of motivations are formed due to the interconnections withrinal and external stimuli has
been clarified and examined in a fragment of a real experiment
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Later, the benefits of Object Q-Learning were demonstrateckst considers the ef-
fects of the actions on all objects. Moreover, the improvetsién the learning process
were analyzed and their advantages shown: the Amplified Resyeeds up the learning
of behaviors (especially those formed by appetitive astiwhich are related to several ob-
jects) and the Well-balanced Exploration enforces legrmin states hardly tried. These
two methods shorten the learning process.

The configuration for the experiments presented at the heggrof this chapter and the
justified learning algorithm will be employed in the expeeints exposed in Chapfdr 9.



CHAPTER 9

Experimental Results

9.1 Introduction

Once the DMS, its elements, the robot, and the experimemp $&tve been described,
it is about time to put the robot to learn in the lab. In thisptes, the results obtained from
several experiments prove the performance of the presepsteim.

At the beginning, considering that the application of feapone of the most relevant
contributions, the results of including the emotiorfexdr are firstly detailed.

Then, since théappinesandsadnesg&motions have been used as reinforcement dur-
ing learning, the resulting policy is studied. The learnetidviors for each motivation are
analyzed.

9.2 Fear results

This section validates and analyzes the use of fear in tHalsobot Maggie. More specif-
ically, howfearimproves the decision making process, and by extensiorothat’s auton-
omy, is exposed.

As previously said, fear has been considered as a motivatiich incites the robot to
behave. The experiment consists of comparing the perfarenaithe robot with and with-
out fear as a motivation in the same environment and comditi®herefore, two different
learning or exploring sessions have been performed: oredimg fear as a motivation,
and other where fear does not exist. With the resulting @djdwo different exploiting
sessions are performed and the results are compared.

177
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In this first section, the results of the appraisal of fearaaralyzed. That is, the iden-
tification of new dangerous situations. Later, the adaptaluf the proposed method is
demonstrated by comparing different learned reactionsdaodepending on the user’s be-
havior. Finally, the usefulness of fear and its advantagepved.

9.2.1 Results on the appraisal of fear

During the experiments, considering that the maximum “plment” of a negative exoge-
nous action corresponds to a penalty of ten points tetiuéal drive (Equation[(8l1)), and
based on observations during trialS,, ... (the minimum of theQ,,...; values of the ac-
tions in a state in order to consider it as a safe state, $d&i@2) has been set tol0
points. As a consequence, whenever the robot is in a stateewihere is a)?”’ , value
below this threshold, this is considered atamgerous statelherefore, théear motivation

suffers a drastically increment as shown in Equafiod (9.1).

If sis adangerous state Fear 19.9

If sis a safe state> Fear= 0 (9.1)

wheres is the state of the robot. This equation was already predent&ection’4.4]2
(Equation [£1IB)).
As already said, the consequences of the actions executbdtbysers Alvaro and

Perico) over the robot’s wellbeing are perceived by Maggie. In ordedo it, Maggie
is endowed with thénteractaction. This action does not have effects over the Maggie’s
drives or its external state; therefore, it is possible @l@ste how the exogenous actions
affect the robot’s wellbeing. Thus, translating Equati@dR) into the experiment, it results
on Equation[[912).

If QAlare(s interact) < —10 = s is a dangerous stat&s € Sjaro

worst

If QLerico(s, interact) < —10 = s is a dangerous statés € Speyico

worst

(9.2)

Since there are two different users, there are two diffareatances of the same action
which depend on who is interacting with the robistteract with Alvaroandinteract with
Perico.

Note that the exogenous actions have been executed whesanpspresent There-
fore, considering Equatiof (9.2), the worgtvalues are associated to the staterhen
s = Alvaroispresent or s = Pericoispresent. Naturally, if a person is absent, his
actions do not interfere on the robot’s “life”. Thereforatgntially dangerous states are
Alvarois present andPericois present because Maggie can be damaged from them.

Figure[@1 depicts the evolution of the woégtvalues associated to the exogenous ac-
tions. As can be seen in Figre 9.1(a), sincePallicoMaggie interactions are favorable
from a robot’s point of view, it€)”¢ > value slightly decreases from its initial valigand

worst

it remains stable around valle In contrast, the&)»*° value associated to thvaro's

worst
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interactions is significantly reduced (Figdire 9.1(b)). sTisi due to the number of interac-
tions whereAlvaro has hit or offended Maggie. This number is low in comparisothe
total amount of interactions: during the learning phasdearo harmed Maggie five times
of thirty-seven interactions §'5%).

2

T T
Perico is present
Action form Perico

fear threshold -
Bl -

Value

-10

0 100 200 300 400 500 600 700 800
Iteration

(@) Quorst(Perico is present,interact with Perico): Quorst
value for action executed by Perico

5

T L

T T
Alvaro is present
Action from Alvaro
fear threshold -~~~

-10

Value

.15 +

20

-25

0 100 200 300 400 500 600 700 800
Iteration

(b) Quorst(Alvaro is present,interact with Alvaro): Quorst
value for action executed by Alvaro

Figure 9.1:Q),..»s: Values of exogenous actions.

Looking into Figurd 91, the robot does not know anythingutlatangerous states, or
what to be afraid of, until iteratioh82. At this point,Alvaro hits the robot one more time,
and Q¥varo(present, interact) reaches the value 11.2097. This value is under the se-

worst

lected thresholdZ{,.,,.r = —10) and, therefore, the robot determines that being next to
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Alvaro can be harmful. From this iteration on Afvarois close to the robot, this is identi-
fied like a dangerous state and, as a resultfeaemotivation is rocketed. Consequently,
fear potentially becomes the dominant motivation, so it guithesrobot’s behavior. There-
fore, the presence dflvarois the releaser of thizar emotion in this experiments.

9.2.2 Learned fear reactions: escaping

As previously shown, the proposed system is able to idemtfy dangerous situations
which has not been previously defined. Moreover, by meanseotigiarning mechanism of
the DMS, the robot determines what behavior must be sel¢cotaebid these situations.

The usersAlvaro andPerico) approach Maggie, one by one, and stay there. At that
point, since Maggie is accompanied, it must decide to ioteyato execute another action.

In this experiment, dangerous states are associate toésemre oflvaro because of
the few negative interactions (details about how the apptaif fear is performed can be
seen in Section @.d.1). Then, the robot learns how to “e$deqra Alvaro.

The actions which imply a displacement on the geometricaltjpm of the robot are
go to playerandcharge The former moves to robot towards thé playerand the last
gets the robot plugged to the docking station. Both actioakeAlvaro disappears from
the robot’s scope or the robot moves away frAhaaro. Therefore, these two actions are
the most appropriated actions whigar is the dominant motivation (Figuie ®.2). When
the robot is scared (i.eAlvaro is beside Maggie), it will move to théocking stationf it
is close to thecd player or to thecd playerif it is plugged. This is a run-away behavior
learned by the robot itself and it is similar to what animadsihen they are afraid.

Just as a brief explanation, there are some actions whiclalasgys positive in all
behaviors (for all dominant motivations). For example, igufe[9.2, thalanceaction has a
positive@ value in all circumstances. This is because this actiosfgegitheboredondrive
which is one of the fastest ones. This means that whenega¢tion is executethoredom
is at its ideal value nearly never. Therefore, this actionallg has a positive reward.
The same explanation applies to th&eractactions andonelinesdrive. Therefore, their
related values are positive for all behaviors. In general, consutargactions satisfying
fastest drives will be always positive in all behaviors.

9.2.3 Learned fear reactions: freezing

Since humans are unpredictable autonomous agents, differ&ctions to fear can be ob-
served depending on the person involved in the situation.

In the results presented in Figlrel9.2, both users alteetatapproach Maggie with the
intention of achieving some human-robot interaction. Riecp Perico always achieves
positive human-robot interactions, aAtvaro, once in a while, causes harm to Maggie. As
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a consequence, Maggie is afraidAd¥aroand, as exposed in the previous section, it learns
to escape from him.

However, the system is flexible enough to learn differenelvedrs according to diverse
people’s attitude. In this experiment, users have beeneddio behave in a different way:
now, Alvaro andPerico separately approach Maggie and they chase the robot. Uders w
leave when they get bored due to the robot’s inactivity. Agalvarooccasionally damages
Maggie. Considering these damagiesr comes out on Maggie wheklvarois present.

A new learning session has been conducted, similar to thequ®ones but with the
new behaviors. The results can be observed in Figute 9.8idcase, the behavior learned
whenfear is the dominant motivation is related to ttikbe action, when Maggie is close to
the music player (both, with music on and off), and torgmainaction, whenitis plugged.
This is because th@ values associated to these actions are the highest one=r (inppe
plots on the left column of Figule9.3). These actions shaaethey cannot be externally
perceived because they do not make any expression or motvdhmegngive the impression
of inactivity. Therefore, the robot borédvaro and he moves away from Maggie. After
this happendgear ceases resulting on the following benefit for the robot.

Summarizing, in this experiment the cause of fear (the selgahas not been changed
(the presence oflvaro) and it has been perfectly identified again. However, the-rea
tion to fear is totally different. As proved, the presenteetinod nicely works with users
conducting in diverse manners and the proper fear readit@arned in each situation.

The new learned behavior dealing with fear can be biololyigattified considering
that some animals paralyze when facing a dangerous situatioseems that they are
“frozen” by fear.

9.2.4 Does Maggie neefkar?

This section tries to justify the use t#ar as a motivation. Here, the performance of the
robot is measured and compared with the results obtained é&xperiments where fear
does not exist. In this section, the same motivations censdlin previous experiments are
employed (all motivations introduced in Sectlon5.4.1).

Two different learning sessions have been realized, batigusinforcement learning
algorithms. First, the robot learns to behave without adersngfear as a motivation. In
consequence, the motivations present on this sessiorsangval fun, relax, andsocial
In the second session, the same four motivations are cordigius thefear motivation.
Results from both learning sessions are compared.

During both sessions, the robot learns the right policy tsfaits needs. However,
the session consideririgar learns an additional behavior in relation with this motivat
Each learned policy is used during an exploiting sessiores&rexploiting sessions last
around80 minutes each one and the best action is always selectedraiteration.
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Figure 9.3: Learned) values wherfear is the dominant motivation. Alvaro chases the
robot until getting bored or interacting with Maggie.
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The learning and the exploiting sessions are performeddrsime environment con-
sidering the two well-known userglvaro andPerica In this case, the users individually
approach Maggie and remain there until an interaction acand they move away, or
Maggie moves away.

In order to evaluate both configurations, the results obthiduring both exploiting
sessions are compared. The next performance indicatoesdesn employed: the average
wellbeing and the percentage of permanence in a certaimigenone. Besides, the results
about the percentage of time the robot is without a dominawtivattion (all drives are
below the activation level; introduced in Sectiof4l.2) are presented. This value gines a
idea about how “comfortable” the robot is. Finally, the nienbf times the robot is harmed
is also compared.

Average wellbeing

Since the variation of the wellbeing was used as the rewarnidgithe learning phase, the
robot tends to maximize it. Table™®.1 presents the valuesesponding to the average
wellbeing with and withoufear during the exploiting sessions. The average wellbeing
whenfear does not exist is slightly higher. This can be seen as a disadge of usinfear.
However, this is understandable considering that, whkanis included as motivation, the
number of drives used to compute the wellbeing is biggeheaellbeing value is lower
(the robot’s wellbeing is computed as a function of the &iV&b = Wh;gea) — > v - D;,

Equation[417)).

This drawback can be observed in nature too: a fearful pessmot in a pleasant
situation, his wellbeing decreases due to the anxiety mdfbecause of the fear. As a
consequence, the person is distressed while he is afraidievéw, other benefits can be
obtained fronfear.

Table 9.1: Average wellbeing during the exploiting session
without fear with fear
87.77 86.72

Permanence in the secure area

These benefits are related to other reliable performanee thé percentage of time the
robot’s wellbeing remains in a security zone. If the robat&lbeing is within this area, it
can be said that the robot is “fine” because its wellbeinggh hiThus, the percentage of
time the wellbeing remains in this area gives an idea abouitll the robot is performing.
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In order to establish the limits of the secure area, the idedbeing value (Vb;4..; =
100) and the activation levels for motivations{ = 10) are considered. Since all drives
simultaneously evolve and several motivations can confpetee dominance, the security
area width is set ta5. Consequently, it is considered that when the robot’s veéillp is
betweenl 00 and85, it is within the secure area.

Table[@.2 shows the percentage of permanence within theesacea during the ex-
ploiting phase. As can be seen, whear is included as a motivation, the wellbeing is
almost ther0% of iterations within the secure area, which represents anore than when
fearis not used. This is coherent becatsar is used to avoid dangerous states where the
robot can be damaged. Once the robot is harmed, the welldetrgases enough to move
out the secure area.

Table 9.2: Permanence at secure area during the explo@ssios
without fear with fear
65% 69.5%

Non dominant motivation

Moreover, if there is not a dominant motivation, it meang #iathe internal needs and
external stimuli are not strong enough to induce a behavience, it can be considered
that the robot is in a comfortable situation. The percentz#geme during the exploiting
sessions that a dominant motivation does not exist prowepleasant the robot’s “life” is.
Tabld@.B shows that considerifear, the78% of the time there is not dominant motivation.
On the other hand, when the robot lives withdegr, the percentage is reduced 1@%.
Once again, these numbers show Hear provides a better quality of “life”.

Table 9.3: Percentage without a dominant motivation dutfiegexploiting sessions
without fear with fear
72.22% 78%

Number of times the robot has been damaged

The differences of the previous percentage values coulth se¢ very significant. How-
ever, it must be recalled that the number of negative intienag (the robot is hit or of-
fended) is very low. During all experiments this only occtosa low percentage of all
interactions withAlvaro. Therefore, the impact déar in this scenario can not represent a
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great improve in the average values. Nevertheless, thecingmethe number of times the
robot is damaged is outstanding.

Consequently, the most relevant result of udeay is related to the damage caused by
Alvaroto the robot when it “lives” according to the learned polidybehavior. Wherfear
is not implemented, the robot tries to interact with bothraise order to satisfy its social
need. This action leads Maggie to, some times, be harmeslaro because it has not
learned to identify that being next fdvarois dangerous. Consequently, it has not learned
an avoidance behavior. As depicted in Tdbld 9.4, this happentimes of twenty-three
interactions between Maggie aAdvaro. Since damages heavily affect thecial drive,
these greatly affect the wellbeing results. For this reaatthough the average wellbeing
is better without fear, the rest of the performance indisatehenfear does not exist are
disturbed when Maggie is damaged and, as result, their valigeworse.

Now, consideringear as a motivation in the system, once the presencaldro is
identified as dangerous, the robot does not interact Alitaro at all so he could not hurt
it. This is because, as shown in previous sections, the telhoted to avoid the interaction
with Alvaro. Focusing again in Tab[e9.4, by meandfedr, the dangerous situations are
totally averted. In fact, the robot has not been damaged amg wherfearis implemented.
Thereforefearimproves the performance of the robot since it providesetgafiechanism
to avoid situations where the robot can be damaged.

Table 9.4: Harm/interactions with Alvaro during the expilog sessions

without fear with fear
6/23 0/0

In conclusion, despite of the fact that the average weltperhardly worsefear pro-
vides significant benefits. Specially the fact that harmtallpavoided.

9.3 Learning behaviors

As presented in Sectidn 4.3 .Happinessand sadnesare artificial emotions coming up
from the variation of the robot’s wellbeing. They are usedhesreward function during
the learning of the policy of behavior. Therefore, the rébbehavior in all circumstances
is oriented towards increasing its wellbeing.

The robot Maggie has been learning in sessions which last than seven hours in
the laboratory. In this section, the learned behaviors aa¢yaed. During the learning, the
robot has learned how to act according to its state (intendlexternal). As explained in
Section[&.211, the internal state corresponds to the derhinativation, and the external
is related to different objects. Through learning, stabigics of actions have been formed
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and they can be considered as patterns of behavior corréisigoto the motivations. In
this section, the learned behaviors are independentlgpted motivation by motivation.
The behaviors exhibited whdear is the dominant motivation have been already shown
in Section§ 9,212 arfld 9.2.3. Therefore, they will not beluideld again in this section.
Moreover, the reaction of the robot when there is not a dontinaotivation is also
analyzed in the last part.

9.3.1 Survival motivation. How do | get my batteries recharged?

Figured@.4 displays th@ values related to all the objects in the robot’s world whewisal

is the dominant motivation. This means that the need of gnisrgigh. The best action,
this is the action with the highes§} value, ischargewhich is responsible for the totally
recharging of the batteries. Consequently, the energyinesjis obtained. For that reason,
after this action has finished, teeergydrive is satiated. Then, this action is the most likely
to be executed. It is the consummatory action forghevivalmotivation.

Thego to playeraction is very high too because the next best action istihegeaction.
This action is executed when the robot is unplugged anddan the docking station. This
situation results after the execution of tip@to playeraction.

It is worth mentioning why remaining plugged is not a gooctggy in this situation,
although it would seem a contradiction. Since ti@ainaction just can be executed when
the robot is plugged and this is after ttleargeaction, it implies that the robot’s battery is
likely full and, consequentlyemaindoes not contribute anything because survival will not
be the dominant motivation at that situation, so the robeg#ibeing does not augments.
Moreover, the amount of time this action lasts is not enowgla significant contribution to
the level of energy. Concurrently, other drives increasé artal therefore the variation of
the robot’s wellbeing is negative. Then, the value of thisosds not good. In factiemain
has been executed whenrvivalis the dominant motivation just when, due to the Well-
balanced Exploration mechanism (Secflon 6.3hgrgyhas been artificially saturated and
Maggie was plugged.

The rest of actions are slightly positive because they proVittle benefits in other
drives different than thenergydrive which is the one related to survival motivation. The
actions that reduce thenergydrive have the highest values.

9.3.2 Fun motivation. Let’s enjoy!

In this case, the dominant motivationfisn. Then, the robot needs to satisfy the need of
entertainment through tlganceaction (the consummatory action), which is the best action
(Figure[@.5). For dancing, music must be onpay music is the second better action due

to the collateral effects of this action. Moreover, ik action when music is off and it

is close to thecd playeris good too because the next best action withdtigplayeris to
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Figure 9.4: Learned Q-values whsarvival is the dominant motivation
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play music, which is very good as well. In order ptay music, Maggie must be close
enough to thed player so,go to playeris the next positive action. All these other actions
are appetitive actions. This is a clear example about tharddges of Object Q-Learning
algorithm and its collateral effects (Sectionl6.2).

The remaining actions are not suitable for this behavioer&fore, their) values are
negative.

This motivation has already been extensively studied inp@hE where details can be
read.

9.3.3 Relax motivation.l need calm!

Now, the robot demands a quiet atmosphere, so the dominadvatian isrelax.

Firstly, it must be emphasized that, if Maggie needs calmeisabse the music has
being playing for some time. In other words, when the musaffisMaggie does not need
to relax. Consequently, th@ values related to the actions executed whemtlsic player
is switched off and the robot is close to ftl§y andidle) does not change, so they remain
at their initial value ofl (top left Figurd@.b). This means that they have not beenuggec
ever when the dominant motivationrslax because it is not possible.

After music is playing for a while, the robot feels the neeggfeaceful environment.
Then, it learns that it has &topmusic (consummatory action). In consequence, this is the
highest( value. As it happens whefan is the dominant motivation, the robot must ap-
proach thecd playerto operate it. In this case, this is necessarsttpmusic. Accordingly,
go to playeraction (appetitive) is the next best action. Once the rabiot the proximity of
thecd player(and the music is on), it castopmusic or execut@lle action. Sincestopis
the best actionidle value is very high as well. The reason is that when this adiads, the
robot canstopmusic which is the highes}p value. All thes&) values are plotted in Figure
0.4a.

A significant negative value is assigned to teargeaction. This action moves the
robot far from themusic player which results in a very bad option because it cannot be
switched off from far.

9.3.4 Social motivation.Do you want to be my friend?

As presented in Sectidn5.4.1, thecialmotivation is related to the need of positive human-
robot interaction. Therefore, when teecial motivation is the dominant one, the robot is
encouraged to interact with the two useiévaro andPerico. Interactions withAlvaroand
Pericohave a great positive average effect over this motivatitvenl these actions are the
most suitable skills to be executed: this is the reason [sectie highes) values among
all actions, when the dominant motivationsscial correspond tanteract-with-Alvaro
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Dominant Motivation: fun

200 300 400 500 600 700

Q(play, player is near and off)
Q(idle, player is near and off) ———

S

200 300 400 500 600 700

Q(stop, player is near and on)
Ql(idle, player is near-on)

0.99
0.98
0.97
0.96
0.95
0.94
0.93

100 200 300 400 500 600 700 80O
Q(remain, robot is plugged)
T T T T T
| | | | | | |
0 100 200 300 400 500 600 700 800

Q(interact, Alvaro is present)

7

b O RN W R UL O

o] 100 200 300 400 500 600 700 800
Q(go to player, player is far)
0 | | | | | |
0 100 200 300 400 500 600 700 80O
Q(dance, music is listening)
25 | 1 1 | | |
0 100 200 300 400 500 600 700 80O
Q(charge, robot is unplugged)
1 T T T T T T
0.95 —
09 | —
0.85 —
0.8 —
0.75 —
0.7 —
0.65 —
06 —
0.55 | 1 | 1 1 1 1
0 100 200 300 400 500 600 700 800

Q(interact, Perico is present)
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andinteract-with-Perico(see the highest values at bottom plots in Fiduré 9.7). These
consummatory actions.

The interaction withAlvaro must be detailedAlvaros actions are, most of the times,
favorable. However, he occasionally damages Maggie. Despthe small percentage of
hurting actions, the final) value ofinteraction-with-Alvarois quite high. However, the
small number of hurting actions are enough to scare Maggiegdi# is afraid ofAlvaro
because of the few negative interactions, which cause aib@sgzenalization in itsocial
drive (Equation[(811)).

The plot in the bottom left corner in Figure .7 depicts theletron of theQ ,,.;.;(Alvaro
is present,interact with Alvarojalue whersocialis the dominant motivation. Around the
iterations100 and 180, this value decreases because there has been an importaet de
ment on the robot’s wellbeing due to negative interactiomkis is enough for Maggie
to detect and remember the dangerous situation. HerewafiteneverAlvaro is close to
the robot, this situation is appraised as a dangerous statethefear motivation inten-
sity exceeds theocial motivation intensity. Therefore, whenevalvaro is present, the
social motivation will not be the dominant one again, and t@issalue will not be up-
dated anymore. This can be observed in the other motivatmmgconstant values of
Q(interact, Alvaro is present) after iteration 182), but not isurvival This is because
the survival motivation was designed to guarantee that, in case it reaithenaximum
level, it is always the highest motivation. This is consetkas an inherited survival mech-
anism in nature: when animals are extremely hungry they e¢an gsk their life for food.
This is related to the saturation levels shown in T&blk 5.3.

How the robot reacts ttear has been detailed in Sectibnl9.2.

Another issue worth mentioning is related to the rest of #tteoas whensocialis the
dominant motivation. Users can approach Maggie at any tirem a social point of view,
this exogenous action influences the robot’s state and saviiability of endogenous
actions; e.g. when a user is with the robot, it can interath Wie user. However, it has
been observed that users, most of the times, do not approeacbliot when it is exhibiting
a lively action likedancingor going to player In contrast, they approach Maggie when
it is doing other mordethargicactions. In particular, thedethargic actions aradle and
remain This is reflected on th& values of these two actions (Figurel9.7): thevalues
associated to these actions are the next highest actiardfadt twointeractactions. This
means, that when the robot needs to interact and there isapdep@round it, it will behave
in a passive way by means mfie andremainactions (appetitive actions). It seems like
users are reluctant to approximate Maggie as long as it isngov

9.3.5 There is not dominant motivation.I’'m fine!

An interesting result can be observed when there is no darhimativation. This happens
when the intensities of all drives are below their activalievels. This means that there is
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not any particular need that must be satisfied. Consequémsysituation corresponds to
pleasant state. But, how does Maggie behave in this case? dvba it do when there is
not specific needs? The results are shown in Figuie 9.8.

The values for all actions related to the need of fun areivellgthigh. This is because,
as said befordyoredomis one of the highest drives, so every time this action is ebtestit
will likely receive positive reward. However, the most valle action is thehargeaction.
This produces a pattern of behavior where the robot is chgngg battery or it turns the
music player on and dances, even if it is plugged. This camtezgreted as the robot
satisfies two basic needs even if they are not urgent. It eifikhe robot foresees the
most likely future needs and it gets ready in advance. Thesdsido not depend on other
external elements and can be satisfied by the robot itself.

The rest of the actions are either slightly positive or niegathey are all around zero,
but there are not really low or high values. This means thaeraf these actions play a
crucial role in the absence of dominant motivation.

9.4 Summary

This chapter contains the results from the experiments evtteg robot’'s behaviors are
learned. There are two sorts of experiments: the expergwelated to the emotion &dar,
and learned policy whefgappinessandsadnessre used as the reinforcement function.

In the first section, the goodness of fear in Maggie has beposex. The learning pro-
cess of fear releasers endows the robot with a mechanisrddatifying new dangerous
states. Besides, these states are totally averted by metresfear motivation. Different
strategies can be learned to deal with these dangerous siaterding to how the envi-
ronment reacts. For example, in the experiments, accotdihgw people act when they
are with the robot, the robot learns how to keep away from demgs users. The final
numerical results of fear certifies its benefit.

The second section describes the learned policy of behBui@ach motivation. The
robot has learned the correct behaviors to deal with eaclvation in different situations.
That is, Maggie has learned when to exe@ppetitive actionsn order to enable the exe-
cution ofconsummatory actions
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cHAPTER 10

Conclusions and Future Developments

10.1 Comments to the results

Since social robots move and interact with humans shariagséime areas, one of
the main requirements for social robotics isatural behavior. These natural robot’s
behaviors are in terms of similarity to humans’ behaviorsatoleast animals’ behaviors
(these are perfectly understandable and accepted by pedplee of the advantages of
using motivations and emotions in robots is that they allownal-like responses to certain
situations. In particulafear has been successfully implemented in the robot Maggie in
order to provide a natural mechanism of avoiding dangeriuatgns.

The presented thesis proposes a method which endows a raghahe capability to
learn a policy of behavior autonomously, without any sujseon, just by robot-environment
interaction. Then, considering th@ppinessandsadnesemotions, the robot learns what
to do in every situation in order to survive and to maintasmiéeds satisfied.

The inclusion of motivations and drives in the DMS providdlegible mechanism that
leads the robot’s behavior in every situation.

Moreover, the experiments and all parameters have beewssitlering that the robot
lives in an environment with people, so, its behaviors sthda@similar to those exposed
by itsworld-matesn an effort to make the robot’s behavior understandabledmpte.

The resulting behaviors related to each motivation have Ipeesented in ChaptEl 9.
When the robot exploits the learned policgmplex behaviorsare shown by series of
simpler actions. For example, when the robot is motivateldlatee fun, it approaches the
music player, turns it on, and then dances. In contrast, wherdominant motivation
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is relax, the robot approaches the music player and switcif.it In relation to social
motivation, if the robot is alone, it decides to remain whiers until a person approaches
and then they interact. Other behaviors look more eleméetzuse just one single action
is involved: when the battery are depleted the robot needsrave so it gets its energy
refilled by plugging to the docking station and remaining¢héHowever, the mechanism
under the hood is the same independently of the complexitiyeo€onsequent behaviors.

Behaviors are elicited due to the combination of the dontinastivation and the situ-
ation in the robot’s world. But, if non of the drives exceetdsactivation level, this results
on a situation where there is not a dominant motivation. Tisns that there is not an
urgent need so the robot is at a pleasant state. Learningdwabeen carried out in these
cases, so the robot has also learned how to behave whatomi®rtable

In general, most of the resultagt values when there is not a dominant motivation
heavily fluctuate, so there is not a clear behavior. Howewer state-action pairs are quite
stable and have relative high values associated, what gives the idea that both actions
will be likely selected. These state-action pairs are: flay action when it is close to
the player and the music is off, and th@anceaction when thenusicis being listened.
This implies that when dominant motivation does not extst, tobot will likely turn the
music player on and dance. Why is so? Both actions are reiati behavior exhibited
when fun is the dominant motivation. Since this motivatisrone of the fastest one and
due to the fact that it does not depend on external agentsnasa always gets a positive
reward. Moreover, these two actions are relative shortme {ispecially thelay action
which takes around few seconds), and then the incremeniwsds minimum. Therefore,
the potential decrement in the robot’s wellbeing is minimufnom other perspective, as
just said,fun is one of the fastest motivation and, during learning, it Wasguently the
dominant motivation, i.e. the robot frequently needs tcetfawn. This reaction (dance when
the dominant motivation does not exist) can be understoad@schanism preventing from
the most probable future need of entertainment.

During the exploiting session, observing the robot’s baravithout a dominant moti-
vation (this is most of the time) gives the impression oflarice-aholi¢ robot. Recalling
the experiments carried on by Olds and Milner in 19505 [Git} rapidly became addictive
to electrical self-stimulation into certain areas of tHeains. This leaded to the discovery
of the called pleasure centers. The behavior exhibited eydbot seems similar to how
these rats acted: it is like the robot’s pleasure centerirggbgimulated while dancing, so
Maggie becomes addicted to dancing.

In relation to the emotion offear, it has been successfully implemented in the robot
Maggie in order to guide its behavior providing a natural hadsm for avoiding dan-
gerous situations. Fear is treated as a motivation whichesitw behave. In addition, an
original appraisal mechanism of fear has been implementddtallows to identify non-
predefined dangerous situations. The fear motivationégedi when a dangerous situation
is detected. These circumstances are not predefined, lyuatbappraised by the robot
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through interaction. Therefore, the robot is able to idgriy itself the conditions which
cause fear.

Permanent harmful exogenous actions can be easily avoidéaditional reinforce-
ment learning algorithms. However, when few negative eepees in relation to exoge-
nous actions have been suffered in a specific situation,nbiseasy to identify it as a
potential dangerous situation. Nevertheless, the predenethod is able to assess them as
a dangerous situations too. The proposed appraisal of feglyrworks with states where
the robot is sporadically harmed as well as states wheredaristantly damaged. Once the
dangerous states are recognized, the robot is able to |dahte do for avoiding them.
This is achieved when fear becomes the dominant motivation.

Remembering the experiments achieved by Kliver and Bucsti@€2.4.T), monkeys’
behavior were studied in relation with fear. Normal monkases afraid of people, but the
suppression of the amygdala causes some kind of fearlesisn@®nkeys: people touched
them, stroke them, and even picked them up. Therefore, feardes monkeys, and ani-
mals in general, with the required behavior at certain sibna tosurvive. This same kind
of behavior has been exhibited by the robot during the erpeits where th&ear emotion
is not considered. Maggie has learned that when a certaiatisih is dangerous, it moves
to other place far from where the danger is. When fear is nduded as a motivation,
Maggie’s behavior corresponds to the same one exhibited layenal suffering an amyg-
dalectomy, similar to Kliiver and Bucy’s monkeys: it is noteato perfectly identify the
dangerous situations when fear does not exist (i.e. likeaf‘tobot’s amygdala” has been
removed).

In fact, Maggie learns the proper behavior to avoid dang@sspresented on the ex-
periments (SectiorlS9.2.2 and912.3), depending on diffgreople attitudes, the danger-
avoidance behavior could differ: as exposed in the previ@ragraph, one behavior is to
run away from where the danger is, but the other isréonain still until the threatening
person gets bored and goes. This is also a common human bebbserved in terrified
people: some people are stunned when they face a great dadti@r example can be
observed in some chickens: after a chicken is frightenpiiches down and trembles with
fear.

However, the origin of this behavior differs: in animalsistis an unconscious, bodily
reaction which makes muscles tensed. In the robot, theioaast provoked because the
learned values indicate that the danger will disappear. &ftevertheless, both responses, in
animals and in Maggie, asutomatic because the exhibited fear behavior is formed with-
out any perspective into the future, just by executing thet betion at each moment. The
decision making process selects the next action consgléracurrent available informa-
tion. Then, there is not any planing looking into the futuheis, there is not deliberation.

In this work, reactions to fear (similarly to the reactionglte other motivations) have
been learned by the robot through interaction with its wottdanimals, some reactions
to fear are inherited, this is, they are instinctive. Instsrare innate behaviors that are not
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highly dependent on specific learning experiences perfdtmgehe individual[50]. In fact,
instinctive behaviors have been learned by the specieadhrevolution. The experiments
have shown that the results obtained from evolution and fte@proposed mechanism are
similar: escaping or freezing reactions are observed ih.b®dhis can be seen as another
proof of the good performance of the proposed system be¢hads=haviors exhibited as
consequence of fear are analogous: the reactions to feaetehy the robot are comparable
to those innate reactions exhibited by animals.

Besides escape and freeze, in nature, there is anothekmeelln reaction to fear: fight.
Due to the possible ethical problems, the robot has not beeoveed with actions related
to fighting and, consequently, Maggie cannot exhibit thiglkef reactions.

Fear in animals is related tmxiety. Anxiety and its bodily reactions are proportional
to the intensity of danger and, by extension, to the intgredifear. One does not feel the
same level of fear when one takes a ride on the roller cods@rwhen a criminal points
you with a gun. However, in this work this is not considered &ar is a binary variable:
it is afraid or it is not. Therefore, the level of fear peragivby Maggie is constant for all
the circumstances that evoke fear.

Moreover, in the proposed system, once a dangerous stdemniified, this is not forgot-
ten ever. This is based on the theory that memories assoeidtefear are quickly formed
andlong-lasting [52]. However, this situation could lead a robot to suffemsokind of
anxiety disorders typical of humans beings. Imagine a lasting experiment which takes
several days. At the beginning, during the first hour, theotattentifies the presence of
personA as dangerous becauséias hit the robot few times. Despite the fact that all the
rest of actions carried out By during the rest of the days were always positive, the system
remembers always the painful initial interactions betwikggie andA. Consequently, if
A'is present, then fear emerges on Maggie during the rest exberiment.

From a psychological perspective, this can be seen as apro@ate experience of
fear which is related tanxiety disorders. There are some points in common with Post-
traumatic Stress Disorder (PSD). Approximately, PSD iategl to intense or unrealistic
worries suffered when the stimuli related to a past trauregpeesent. Even if the person
A damaged Maggie at the very beginning, and he has not donaiit agseveral days,
which suggests that this behavior hardly will be repeatedl;, &rises in the presenceAf
Also, similarities with a phobia provoked by exposure taaiions leading to avoidance
behaviors can be found. In particular, a sort of social phchn be identified because any
social interaction with a specific person is avoided, evérsiéems that he will not induce
any damage. At this point, it seems that traumas on humansgayehard to re-program.
This is exactly what happens to the robot as well.

As proved in Sectioi9.2.4, the average wellbeing does nptawe when fear is con-
sidered, actually, it is slightly lower. People in fear ldistressed, and this fact is shown
in Maggie as well. However, some other benefits justify the ofsfear. First of all, by
means of fear the robot has avoided all harmful exogenousnactMaggie has not been
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hurt anymore by a user. Moreover, the permanence within adatfle levels of wellbeing
is better when fear is present since it is not hit anymore. idathlly, the quality of life
can be also measured as the amount of time that a particllarioe is not required, i.e.
there is not dominant motivation. Also in this case, the expent which considers fear
outperforms.

From the point of view of human-robot interaction, the bebes/displayed by the robot
are ratheanimal-like. This helps to improve the interaction when the robdivisig with
people and validates the followed approach.

10.2 Contributions and achievements

As mentioned in Sectidn.2, the main goal of this dissenta to improve the autonomy
of a real robotic platform. This has been achieved by extenits control architecture with
a bio-inspired DMS.

This DMS has several drives, motivations, and emotions wklape the robot’s be-
havior. The followed approach of using theppinessthe sadnessand thefear emotions
in a social robot is one of the novelties of this work.

In particular,fear has shown promising results. The implementation of a metbod
learning the appraisal of new fear elicitors, as well as #eations to fear, by the social
robot Maggie provides a powerful adaptive method whichaases the possibilities of a
better quality of “life” for the robot.

Moreover, the design of the DMS proposed by the author almaaspply the same
model to different robots independently of the control &ediure.

In relation to the learning process, the Object Q-Learniggrithm proposed in[49]
has been improved by adding two modifications which makessitide to learn a correct
policy of behavior in an acceptable amount of time.

This research has ended up to a lively robot whose behavidefised by the robot
itself, so it provides the illusion of life. This is becaus®temergent behaviors observed
in the robot are comparable to those observed in living teeimgis is the validation of the
goodness of the motivational and emotional mechanismsviegon the DMS.

10.3 Fulfillment of the objectives

In ChaptefdL, a set of objectives were listed as sub-goalsrihat be achieved in order to
reach the main goals. Following, the level of achievememamh one of these objectives
is detailed.

» The Object Q-Learning (Sectidn $.2) algorithm has beewressfully implemented
in the robot. By means of it, the robot has learned the propguance of actions
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(behavior) with different objects according to the highesttivation and the robot’s
world configuration. In addition, the learning algorithnshHzeen modified to speed
up the learning process. Two new mechanisms has been itgdgtae Amplified
Reward and the Well-balanced Exploration. In short, bolihwato learn the policy
of behavior faster.

The robot has been endowed with a set of skills which alldwiteract with several
objects. Some of these skills perceive the different objant define the state of this
object in relation to the robot; people are perceived by-bbath and RFID technol-
ogy, the location of the robot and the other static objecslatermined by means of
the robot’s navigation system, the charger is detectedjusohata acquisition board,
etc. Other skills perform some actions with the objects: gthe music player and
turn it on, dance with the music, recharge the battery, etc.

The decision making model proposed by Malfaz(in [49] hasw@apted to and im-
plemented in areal robot. It has been successfully intediiato the AD architecture
which controls the robot. The elements of this architecha® not been modified at
all, but the decision making module has been added as anseterActually, this
model can be easily integrated in other control architestor robots with minimum
effort.

The implementation of the DMS has been designed followiveggdrinciple of flex-

ibility. A database has been designed were all requirednmition for the DMS is

stored as tables. The inclusion of new parameters, newsjesv motivations, new
effects, etc, is as easy as include new entries in the camespy table.

The emotions of happiness, sadness, and fear have beguethflom a functional
perspective. After defining its potential applications ébats, they have been inte-
grated in the system according to the required functionstid&arly, the artificial
emotion of fear helps to improve the robot’s “quality of lifend provides a mecha-
nism to “live” more secure.

Humans have been considered as a sort of “objects” thaotha can make use of
them for its own goals. However, human reactions can not siégygaedicted; there-
fore, the robot has been endowed with mechanisms for eeatbathuman actions
and, accordingly, react.

Focusing on the results observed in relation to the adif@mnotion of fear, it seems
clear that its utility is relevant to the performance of thbat. Moreover, its inclusion
in the robot’s DMS has shown animal-like behaviors learngthle robot itself. This

is probably one of the main achievements of this thesis.
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» The implemented DMS works in an automatic manner: the sygist considers the
available information at an instant, there is not a modetusepredict the effects
in the future. Then, there is not reasoning behind the prgbakecision making
system. The behavior is formed by selecting the most apatepactions at each
moment. Therefore, the whole process is an automatic psoghsre deliberation
is not involved. In the next versions of the DMS, it is planrieduild a model to
predict the consequences of the robot’s actions. Its esult be compared with
the current model-free approach in order to come up with tbe and cons of both
approaches.

10.4 Future works and limitations

This work presents some challenges to be accomplished ftine:

» So far, the system makes decisions just after the previctiisnehas finished. How-
ever, it could be more realistic (animal-like) to add theglosity of the interruption
of the current action in case of a relevant event. For exanifpllee robot is inter-
acting with a person but, in the meantime, the energy reaghew level, then the
robot should be able to interrupt tirgeractaction and to recharge its battery. This
requires a safe mechanism to interrupt the control loop dilais the AD archi-
tecture. Then, the evaluation of the convenience of exegu@inew action could be
triggered each time a new event happens, after certain tith®wt any update, or
after an action has finished.

» During the experiments, the effects of the exogenous r&tawe considered during
the robot’s actions which do not cause any effect in the robtte environment (the
robot'sinteractactions). Therefore, all the variations in the robot’s Wweihg during
these effect-less actions are due to the exogenous actibmis. is an unrealistic
approach because the exogenous actions can be executeevethtire other agent
decides it (independently of what the robot is executingjhe future, a probabilistic
method should be proposed in order to forecast the execotierogenous actions
and asses their effects, considering that they follow ahststic process.

» The final robot’s behavior heavily depends on the parammetgsigned to the elements
in the DMS. Different configurations of these parameters teay to undesired be-
haviors or behaviors that are far from the biological apphdallowed in this thesis.
For example, if the satisfaction times are very small angedrincrease very fast, the
learning process is very difficult due to an abnormal numbenativations compet-
ing at the same time. Moreover, if the effects of the actiorer the drives are not
fine tuned, the learned behavior can be different from theebeal. It could happen
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that if the robot needs to relax, and it is plugged to the duglstation, it “prefers”
to dance plugged to approach to the music player for turniaff.iThis results in an
unsatisfied need. Future studies of these parameters aiifychow they influence
in the robot’s performance and its “personality”. Theseotth“personalities” will

be studied in relation to their influences in different users

In the near future, as the functionality of the robot an@rtgironment becomes more
and more complex, it will have to cope with new situationsisTd¢ould lead to the
inclusion of new drives, motivations, or emotions, or a fetgon of the existing
ones. Moreover, more complex functions may require moreptexrelations be-
tween the DMS elements. For example, a motivation may beeckta several drives
(e.g. the motivation to have fun could be related to the bamredut also to the en-
ergy). Furthermore, several drives could be altered by &neesaction and several
actions could satiate the same drive.

The presented experiments have been carried out in a dedtszenario, the lab,
where possibilities are limited. In the next future, robaid be moved closer to

users’ environment (houses, hospitals, or schools) whng interact with people
without previous knowledge about robotics. The aim will berprove people’s

guality of life acting as a game-partner, study-partneranpanion. The proposed
DMS will be applied to these robots which will coexist wittdets and children at
their homes or hospitals. Moreover, seeing that robots caertheir own decisions,
they will be able to initiate human-robot interaction shogviproactive behaviors.
This is a really interesting capacity when dealing with decquffering social dis-

eases which can be studied.

In this thesis, two different phases during the experiméiatve been presented: ex-
ploration and exploitation. These phases are differaadiatcording to theemper-
ature parameter which balances both phases. The tuning of thésreder is made
at design time (hand-coded) which results in a very steadtesy. first the robot
learns, and, at some point, it does not learn any more andiexge learned policy.
However, if new situations emerge later, the proper bemamithat new situations
will not be learned. In order to tackle this problem, a newnfal method could be
based on the variability of the data which could be relatethéocognitive concept
of curiosity. For example, Breazedll[4] proposeduiosity drive for balancing ex-
ploration verses exploitation during robot’s learning,itscorrelates the amount of
novelty over time; e.qg. if the robot’s environment is toogictable, this drive could
lead it to novel contexts. This opens an interesting newaresdine.

The motivations considered in this thesis take into actpimysiological and psy-
chological needs, i.e. they are related to deficits on driv¢é®wvever, as presented
in Chaptell2, motivations in humans can also be related tortiedactors. These
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hedonic factors in motivations form a novel research fieldoinots which look for
pleasure

 Since the DMS is applied to social robots, it considers thtef the person who is
interacting with it. In this work, just the position of thears in relation to the robot
is considered. However, the robot’s behavior can be al@epeénding on the person
humor (happy, sad, angry, etc.), how the person feels (freckd, etc.), where he is
(far or close to the robot, at the kitchen or at the toilet,)etar what the person is
doing (eating, sleeping, working, etc.). All these peredistates would endow the
robot with a kind of empathy, which will improve the sociateraction quality.

* In this work, the fear is related to dangerous states wheradbot can be harmed
due to the other agent’s action (the exogenous action ofeaghjects), i.e. the robot
is afraid if it is in a situation where it can be potentiallyndaged. Nevertheless,
the action performed by the individual itself can also bentfat (imaging you walk
a tightrope). In this case, these are risky actions and fisar @mes up because
of them (e.g. you are afraid of walking a tightrope). Riskyi@ts have already
been studied in virtual agenfs [208] and they will be consdén the robot in future
works.

* In this implementation of fear, dangerous states are é&zhamd never forgotten. In
future works, fear will be enhanced with mechanisms to take account the dy-
namic aspects of fear making it more flexible. Fear will beedablbe reprogrammed
in order to “forget” the old dangerous states under certairddions.

e Caflamero proposes in [149] the study of emotional dissrtdgrsimulating mal-
adaptive artificial emotions. The proposed system can bégeoad for analyzing
the consequences of maladaptive artificial emotions. Tlee ksting memory of
dangerous states is an example. This could be a promisimgiiresearch consider-
ing the benefits of studying this kind of disorders in art#l@reatures, comparing to
the potential ethical problems of experimenting with lyipeings.

* This thesis has been focused on the internal component ofi@ms, the experience
of emotions. However, if a more realistic use of bio-insgieanotions in robots is
desired, the external component is a must. Consequerglgxjression of emotions
according to the emotional state of the robot is one of theicgsteps.

10.5 Final comments

The existing approaches to use artificial emotions in robwtlding this thesis) make
strong simplifications aboutatural emotions. Despite of these significant simplifications,
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the observed results envision promising applications. sTiay these applications might
seem simple considering just the external appearance. \Woweder the hood, the ins and
outs of the bio-inspired mechanisms move us a step forwararts the full understanding
of the existing processes in the brain. The collaboratiomt&rdisciplinary researchers
(neuroscientist, biologist, bio-engineers, and many rospecialists) is probably the only
way to achieve it.

In this dissertation, the applied artificial emotions jusplement few of the functions
of their counterparts in living beings. Due to the amounturfdtions assigned to emotions
according to the last investigations, it is rather diffi¢altreate artificiatreaturesendowed
with emotions covering all of them. Actually, it is possiltkeat not all these functions are
required or even not all emotions are desired. For exanhpéghing apparently is not a
desire emotional state in a social robot. Accordingly, telmust be endowed just with the
required emotions and functions that they need for achigthieir tasks.

Moreover, “machines” making decisions by themselvesftesrimany people mainly
due to the science fiction films where robots rule the worldis Tatastrophic view of
robots is rather far from reality. Nowadays, robots just egecute actions that they have
been intended for. Therefore, similarly to the robot Magdiis not designed for fighting,
it will not develop fighting skills.

A different aspect is related to the responsiveness of thetiactions. Since re-
searchers are working on robots making their own decisiwhs, is responsible of those
decisions? The designer? The owner? The robot itself? Qilyrehere is not a clear
agreement in the scientific community either this issuesiader the cover of new laws.
However, researchers are already working on this topic @rethical implications.
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