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Abstract

Robotics is an emergent field which is currently in vogue. In the near future, many
researchers anticipate the spread of robots coexisting with humans in the real world. This
requires a considerable level of autonomy in robots. Moreover, in order to provide a proper
interaction between robots and humans without technical knowledge, these robots must be-
have according to the social and cultural norms. This results in social robots with cognitive
capabilities inspired by biological organisms such as humans or animals.

The work presented in this dissertation tries to extend the autonomy of a social robot
by implementing a biologically inspired decision making system which allows the robot to
make its own decisions. Considering this kind of decision making system, the robot will
not be considered as a slave any more, but as a partner.

The decision making system is based on drives, motivations,emotions, and self-learning.
According to psychological theories, drives are deficits ofinternal variables or needs (e.g.
energy) and the urge to correct these deficits are the motivations (e.g. survival). Following
a homeostatic approach, the goal of the robot is to satisfy its drives maintaining its necessi-
ties within an acceptable range, i.e. to keep the robot’s wellbeing as high as possible. The
learning process provides the robot with the proper behaviors to cope with each motivation
in order to achieve the goal.

In this dissertation, emotions are individually treated following a functional approach.
This means that, considering some of the different functions of emotions in animals or
humans, each artificial emotion plays a different role. Happiness and sadness are employed
during learning as the reward or punishment respectively, so they evaluate the performance
of the robot. On the other hand, fear plays a motivational role, that is, it is considered as
a motivation which impels the robot to avoid dangerous situations. The benefits of these
emotions in a real robot are detailed and empirically tested.
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The robot decides its future actions based on what it has learned from previous expe-
riences. Although the current context of this robot is limited to a laboratory, the social
robot cohabits with humans in a potentially non-deterministic environment. The robot is
endowed with a repertory of actions but, initially, it does not know what action to execute
either when to do it. Actually, it has to learn the policy of behavior, i.e. what action to
execute in different world configuration, that is, in every state, in order to satisfy the drive
related to the highest motivation. Since the robot will be learning in a real environment in-
teracting with several objects, it is desired to achieve thepolicy of behavior in an acceptable
range of time.

The learning process is performed using a variation of the well-known Q-Learning
algorithm, the Object Q-Learning. By using this algorithm,the robot learns the value of
every state-action pair through its interaction with the environment. This means, it learns
the value that every action has in every possible state; the higher the value, the better the
action is in that state. At the beginning of the learning process these values, called theQ

values, can all be set to the same value, or some of them can be fixed to another value.
In the first case, this implies that the robot will learn from scratch; in the second case, the
robot has some kind of previous information about the actionselection. These values are
updated during the learning process.

The emotion of fear is particularly studied. The generationprocess of this emotion (the
appraisal) and the reactions to fear are really useful to endow the robot with an adaptive
reliable mechanism of “survival”. This dissertation presents a social robot which benefits
from a particular learning process of new releasers of fear,i.e. the capacity to identify new
dangerous situations. In addition, by means of the decisionmaking system, the robot learns
different reactions to prevent danger according to different unpredictable events. In fact,
these reactions to fear are quite similar to the fear reactions observed in nature.

Another challenge is to design a solution for the decision making system in such a way
that it is flexible enough to easily change the configuration or even apply it to different
robots.

Considering the bio-inspiration of this work, this research (and other related works) was
born as a try to better understand the brain processes. It is the author’s hope that it sheds
some light in the study of mental processes, in particular those which may lead to mental
or cognitive disorders.
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Resumen

La robótica es un área emergente que actualmente se encuentra en boga. Muchos cien-
tíficos pronostican que, en un futuro próximo, los robot cohabitarán con las personas en el
mundo real. Para que esto llegue a suceder, se necesita que los robots tengan un nivel de
autonomía considerable. Además, para que exista una interacción entre robots y personas
sin conocimientos técnicos, estos robots deben comportarse de acuerdo a las normas socia-
les y culturales. Esto nos lleva a robots sociales con capacidades cognitivas inspiradas en
organismos biológicos, como los humanos o los animales.

El trabajo que se presenta en esta tesis pretende aumentar laautonomía de un robot
social mediante la implementación de un sistema de toma de decisiones bioinspirado que
permita a un robot tomar sus propias decisiones. Desde este punto de vista, el robot no se
considerará más como un esclavo, sino como un compañero.

El sistema de toma de decisiones está basado en necesidades (drives), motivaciones,
emociones y auto-aprendizaje. De acuerdo a diversas teorías psicológicas, las necesidades
son carencias o déficits de variables internas (por ejemplo,la energía) y el impulso para
corregir estas necesidades son las motivaciones (como por ejemplo la supervivencia). Con-
siderando un enfoque homeostático, el objetivo del robot essatisfacer sus carencias man-
teniéndolas en un nivel aceptable. Esto quiere decir que el bienestar del robot debe ser lo
más alto posible. El proceso de aprendizaje permite al robotdesarrollar el comportamiento
necesario según las distintas motivaciones para lograr su objetivo.

En esta tesis, las emociones son consideradas de forma individual desde un punto de
vista funcional. Esto significa que, considerando las diferentes funciones de las emociones
en animales y humanos, cada una de las emociones artificialesjuega un papel diferente.
Por un lado, la felicidad y la tristeza se usan durante el aprendizaje como refuerzo o cas-
tigo respectivamente y, por tanto, evaluan el comportamiento del robot. Por otro lado, el
miedo juega un papel motivacional, es decir, es consideradocomo una motivación la cual
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“empuja” el robot a evitar las situaciones peligrosas. Los detalles y las ventajas de estas
emociones en un robot real se muestran empíricamente a lo largo de este libro.

El robot decide sus acciones futuras en base a lo que ha aprendido en experiencias
pasadas. A pesar de que el contexto actual del robot está limitado a un laboratorio, el robot
social cohabita con personas en un entorno potencialmente no-determinístico. El robot está
equipado con un repertorio de acciones pero, inicialmente,no sabe qué acción ejecutar ni
cuando hacerlo. De echo, tiene que aprender la política de comportamiento, esto es, qué
acción ejecutar en diferentes configuraciones del mundo (encada estado) para satisfacer
la necesidad relacionada con la motivación más alta. Puestoque el robot aprende en un
entorno real interaccionando con distintos objetos, es necesario que este aprendizaje se
realice en un tiempo aceptable.

El algoritmo de aprendizaje que se utiliza es una variación del conocido Q-Learning, el
Object Q-Learning. Mediante este algoritmo el robot aprende el valor de cada par estado-
acción a través de interacción con el entorno. Esto significa, que aprende el valor de cada
acción in cada posible estado. Cuanto más alto sea el valor, mejor es la acción en ese es-
tado. Al inicio del proceso de aprendizaje, estos valores, llamados valoresQ, pueden tener
todos el mismo valor o pueden pueden tener asignados distintos valores. En el primer caso,
el robot no dispone de conocimientos previos; en el segundo,el robot dispone de cierta in-
formación sobre la acción a elegir. Estos valores serán actualizados durante el aprendizaje.

La emoción de miedo es especialmente estudiada en esta tesis. La forma de generarse
esta emoción (elappraisal) y las reacciones al miedo resultan realmente útiles a la hora de
dotar al robot con un mecanismo de supervivencia adaptable yfiable. Esta tesis presenta un
robot social que utiliza un proceso particular para el aprendizaje de nuevos “liberadores”
del miedo, es decir, dispone de la capacidad de identificar nuevas situaciones peligrosas.
Además, mediante el sistema de toma de decisiones, el robot aprende diferente reacciones
para protegerse ante posibles daños causados por diversos eventos impredecibles. De echo,
estas reacciones al miedo son bastante similares a las reacciones al miedo que se pueden
observar en la naturaleza.

Otro reto importante es el diseño de la solución: el sistema de toma de decisiones tiene
que diseñarse de forma que sea suficientemente flexible para permitir cambiar fácilmente
la configuración o incluso para aplicarse a distintos robots.

Teniendo en cuenta el enfoque bioinspirado de este trabajo,esta investigación (y mu-
chos otros trabajos relacionados) surge como un intento de entender un poco más lo que
sucede en el cerebro. El autor espera que esta tesis pueda ayudar en el estudio de los proce-
sos mentales, en particular aquellos que pueden llevar a desórdenes mentales o cognitivos.
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CHAPTER 1

Introduction

1.1 Motivation

The current society is aging. According to the data obtainedfrom the Spanish National
Statistics Institute, the Spanish population is getting older and this tendency will remain, at
least, for the next forty years. As shown in Figure 1.11 , the Spanish population pyramid
is expected to get wider in upper levels over the years. This corresponds to a constrictive
pyramid, which means lower percentages of young people and,in general, an elder popula-
tion. This is often a typical pattern of a developed country.It results in an increment of the
percentage of the dependency ratio (everyone out of workingage). In fact, it is expected
that in 2049 the dependency ratio reaches the89, 6%, from the current47, 8%. These data
correspond to Spain, however a similar tendency can be observed in most of the developed
countries.

The consequences of the aging of the population are that muchmore people will de-
mand different services and, probably, the available laborforce and the economic resources
will not be enough for providing the required services. In this context, robots are a promis-
ing tool for increasing the labor capacity of a society, and their cost will be reduced once
they are mass produced. The development of new robots, whichwill be able to perform
tasks in the same manner (or at least close) as humans do, can be a solution to many services
where, nowadays, humans cannot be replaced. Among other tasks, robots are already car-
rying out several works traditionally achieved by humans: performing as museum guides
[9], handling explosives [10], delivering medicines in hospitals [11], assisting elders in

1This plot has been obtained from the web of the National Statistical Institute of Spain [8]
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Figure 1.1: Simulated future evolution of Spain pyramid population

daily shopping [12], facilitating daily tasks to handicapped people [13], or transporting in
industrial productions [14].

Most of these tasks implies that people directly interact with the robot. Apparently,
human-robot interactions will spread fast. Bill Gates titled a paper at Scientific American
magazine as “A robot in every house” (Jan. 2007). This is justthe forecast of a relevant per-
son, but this idea has been going round and round for years. The increase of robots foresees
a widespread use of robots living with humans. It is expectedthat in a near future, personal
robots will be endowed with enough autonomy to work and live in an individual’s home.
For these reasons, social robots (those robots interactingwith humans in natural ways) need
to be able to decide their own actions (autonomy), to make deliberative plans (reasoning),
and to have an emotional behavior in order to facilitate the human-robot interaction.

The expansion of social robots will bring people without anyknowledge about robots
trying to interact with them in a natural way, i.e. in the samemanner they do with animals
or other humans. Therefore, these robots must be endowed with the required abilities to
provide a proper human-robot interaction and life-like appearance. In order to achieve
these capabilities, robots must be endowed with capacitiesinspired by humans, or at least
by animals. Thus, it is desired to equip robots withcognitivecapacities which provide
enoughautonomyto develop their tasks. Accordingly, cognitive and physical human-robot
interaction are nowadays among the most studied aspects of the robotics [15].
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1.1.1 Cognitive robotics

During the last few years, the interest in robots which are integrated in our everyday envi-
ronment, personal robots, has increased [16]. Human-robotinteraction is one of the main
characteristics of these robots. Therefore, many efforts have been put into human-robot in-
teraction. In order to facilitate it, the robotic research is now centered on cognitive robotics
which addresses the emerging field of autonomous systems with artificial reasoning skills.

In the Nineties, the term “cognitive robotics” was first introduced by Ray Reiter and his
colleagues, who have a research group in this topic at the University of Toronto. According
to them, cognitive robotics is concerned with endowing robotic or software agents with
higher level cognitive functions that involve reasoning about goals, perception, actions,
mental states of other agents, collaborative task execution, etc. In 1997, Brooks defined
cognitive robotics[17] as the field aimed to give the robot cognitive abilities that make the
robot forms and develops knowledge and skills independently and gradually through cog-
nitive processes. The idea is to extend the robots’ abilities in order to implement some of
the high level cognitive functions. Some examples of high level cognitive functions already
implemented in robots are surprise [18], developmental learning [19], and deception [20].

Moreover, at the beginning of the Sixties, the artificial intelligence precursor Herbert
Simon was convinced that including emotions in the cognitive model to approximate the
human mind was necessary [21]. Later, near the mid Nineties,Antonio Damasio published
Descartes’s Error[22]. His studies proved that damage to the brain’s emotional system
caused the patient to make poor judgments despite intact logical reasoning skills. As a
consequence, the positive role of human emotions in cognition started to gain prominence
among a group of researchers from the scientific community. Later, other studies showed
that emotions have influence on many cognitive mechanisms, such as memory, attention,
perception, and reasoning [23, 24, 25, 26]. Besides, emotions play a very important role in
survival, social interaction and learning of new behaviors[27, 28, 29].

Therefore, in recent years, the role of emotional mechanisms in natural and artificial
cognitive architectures, in particular in cognitive robotics, has become very popular. Ac-
cording to Ziemke [30], in relation to the main question: do robots need emotions? many
researchers have answered positively, mainly consideringthe two aspects of emotion: the
external (social) one and the internal (individual) one. Itseems to be obvious that in human-
robot social interaction, expression of emotions helps to make interaction more natural [31].
On the other hand, the internal aspects of emotion, i.e. its role in the behavioral organiza-
tion of an individual cognitive agent, are essential for theautonomy issue. This is the main
concern of this dissertation.

1.1.2 Autonomy

Autonomy is a term widely used in literature and its meaning ranges from very different
levels. Is it possible to achieve a full autonomous robot? Isit desirable? Absolutely
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autonomous robots are impossible to build. Robots are designed for achieving duties and
this implies some kind of interaction with the world. Even human beings do not have
this level of autonomy, they depend on others and their environment. In particular,social
robotsare intended for interacting with humans and assisting themin several tasks. It is
desired that such tasks are accomplished by them without surveillance and this idea implies
a certain level of autonomy.

As a result of the previous ideas, several levels of autonomyin robots can be found. A
brief classification, from low to high autonomy, is listed below.

1. Teleoperated robots: they just execute actions commanded by an operator. Deci-
sions are made just by the operator, so the robot is externally controlled by a human.
For example, a bomb disposal robot is remotely controlled bythe police.

2. Robots with a minimal autonomy: still there is an operator commanding the robot
but it can make low level decisions, generally related to security, e.g. avoiding ob-
stacles or interrupting its working cycle when a person is detected nearby the robot.
For instance, in some surgical robots, the surgeon teleoperates the movements but
the robot filters the motions proposed by the surgeon to keep only those which are
compatible with the surgical plan.

3. Slaverobots: the robot receives high level commands such asgo to a pointor per-
form certain task. The robot behaves as a “slave”. The robot’s goal is decided by
a human. Space robots are clear examples of this kind. They receive high level
commands, such assample the surface, from the earth base and perform the task
according to the circumstances.

4. Repetitiverobots: these robots are endowed with predefined behaviors. It doesnot
receive orders from people but its actions are fixed and known. Traditionally, these
robots are employed to repetitive tasks. For example, industrial robots in car manu-
facturing have very specific tasks assigned and they do not change.

5. Script-basedrobots: several scripts are in charge of define the robot’s behavior. Each
script is a fix sequence of actions and the decision of which script to use depends on
internal and external events. For example, a guide-robot ina museum has different
behaviors which are predefined and they depend on the people around the robot, the
level of energy, the exhibition, etc.

6. Self-goal-directedrobots: there is an internal state related to physical parameters
(e.g. battery level) as well as other more “cognitive” and “abstract” aspects, such as
happiness. The internal state is related to the purpose of the robot which is able to
determine its own goals. This thesis is framed in this level.



1.1. Motivation 5

Figure 1.2 depicts robots from all these levels placed according to their autonomy and
the importance of humans in their control. As shown, the higher level of autonomy, the less
important the role of the human is. This could clearly rises legal risks in case of malfunction
of the robot: who is responsible for that? [32].

Figure 1.2: Levels of autonomy in robots in relation to the level of human control

Bellman [28] states that autonomy implies a decision makingprocess and this requires
some knowledge about the current state of the agent and environment, including its objec-
tives. In consequence, the level of autonomy relates to the amount of decisional mecha-
nisms they are endowed with [33]. Moreover, several authorssuch as Arkin [34], Gadanho
[24], Bellman [28], or Cañamero[29], in general, state thatan autonomous agent must be
self-sustained, which implies a decision making system. According to Hardy-Vallée [35],
making choices is a reasoning process and rational decisions are made taking into account
the probability and the outcomes of each action.

Moreover, some definitions of robots classify them as a special kind of agents and,
being an agent entails making choices [35]. Consequently, robots have to be endowed
with some kind of decision making mechanism. An autonomous robot acts on the basis
of its own decisions [36] in order to fulfill its goals. Thus, it must know what action to
execute in every situation. In the case that this robot does not have this knowledge, it must
learn this relation between situations and actions. According to Mataric [37], learning
has been denominated as one of the distinctive marks of the intelligence and introducing
adaptation and learning skills in artificial systems is one of the greatest challenges of the
artificial intelligence. Moreover, Gadanho [24] states that learning is an important skill for
an autonomous agent, since it gives the agent the plasticityneeded for being independent.
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As in other scientific fields, researchers try to imitate animals’ mind and last investiga-
tions emulate animals’ decision making. Accordingly, emotional and motivational models
are suggested and some of them are oriented to maintain its internal equilibrium (home-
ostasis). As exposed in [38], humans’ decision-making is not affected only by the possible
outcomes, but also emotions play a main role. In view of it, several authors propose deci-
sion making systems based on motivations, drives, and emotions [39, 40, 41, 42, 43]. In
fact, in recent years, several authors have argued that a truly biologically inspired and truly
cognitive robotics would need to take into account homeostatic/emotional dynamics, i.e.,
the interplay between constitutive and interactive aspects of autonomy; for example, the
need to keep essential system-internal variables within certain viability ranges [44]. In this
work, this approach is followed, and the decision making system is based on drives, moti-
vations, and emotions. This approach corresponds to the highest level of autonomy listed
above.

This bio-inspired approach provides a mechanism to test anddevelop theories for un-
derstanding the underlying structures of the animal behaviors. Since even nowadays allse-
cretsof the brain are still an ongoing problem, robots are an idealplatform for researching
on different theories about minds, brains, or other areas, particularly when experimenting
with living beings could be an ethical problem. Therefore, cognitive approaches in the
development of robots can help to shed light on the ins and outs of the brain.

These ideas are not accepted by all researches. Bryson, on the contrary, defends that
robots should be servants that people own [45]. She affirms that robots should be built,
marketed and considered legally as slaves, not companion peers. This idea restricts the
highest levels of autonomy to robots.

1.1.3 Learning

As said before, learning is a cognitive ability that provides the plasticity for adapting to
new situations. Then, this is a key element for autonomy, mainly when dealing with high
non-deterministic environments, like the real world.

Lorenz defined learning as the adaptive changes of behavior and this is, in fact, the
reason why it exists in animals and humans [46]. Living beings react to sensory input
coming from their environment. Some of these living beings change their reactions as time
goes by: given the same input (sensorial perception), the reaction may be totally different.
They are able to learn and update their reactions. Learning algorithms try to imitate this
ability and to explain how and why the reactions change over time.

Most of the robots existing in unstructured environments require to be as autonomous
as possible. This autonomy is related to the selection of actions during the robot’slive.
The robot self-governs its behavior through the policy thatdetermines the next action to be
executed at each moment. This policy can be acquired by two different manners:

1. The policy is assigned and the robot just follows this pre-designed policy.
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2. The robot learns the best policy according to certain requisites.

In the first case, the policy is defined by others and it is imposed to the robot. In
order to obtain an optimal policy, all situations and possibilities should be considered in
the policy. However, in unpredictable environments, like real scenarios where the robots
and people coexist, this is a tedious task. Sometimes it cannot be tackled. In this situations,
the available decisions of the robot are pre-programmed andlimited.

Learning does not restrict the possible decisions but provides a flexible mechanism to
adapt the robot’s behavior to new or unforeseeable events. Then, learning perfectly fits the
needs of the exploration of uncharted “worlds”, or situations.

Artificial Intelligence has explored many ways of learning since its beginning. Learning
algorithms can be classified in three different main paradigms according to the kind of
teaching signal, or feedback, received by the learner [47] (Figure 1.3). The first one is
known assupervised learningwhere examples (input-output pairs) are provided by a well-
informed external supervisor (Figure 1.3(a)); the problemis to obtain the function which
links the provided inputs with the desired outputs (input-output mapping). For example,
children at school learn the alphabet and they are told each time what sound correspond to
what letter, so they can compare their responses to the correct one.

In contrast,unsupervised learningdoes not receive any feedback at all, so there is
no way to evaluate a potential output (Figure 1.3(b)). It is based on the similarities and
differences among inputs. Its goal is to fully categorize the input data. Typical unsupervised
tasks are clustering where input data is classified. For example, our visual system is able
to distinguish that humans are very different from elephants, which are very different from
buildings; but these objects do not have to be labeled beforethey are clustered, even it is
not necessary that our brain knows what a person, an elephant, and a house are in order to
discriminate them.

The last kind of learning paradigm is the one calledreinforcement learning (RL from
now on). In this case, the teaching signal informs about the appropriateness of the response
by means of the reward or reinforcement signal (Figure 1.3(c)). It looks for a state-action
mapping which maximizes the reward. Unlike the supervised paradigm, the correct output
is never presented in reinforcement learning. The reinforcement signal just informs about
whether the output is correct or incorrect and how good or badit is.

In relation to learning in robotics, Mataric in [37] states that learning is particularly
difficult in robots. This is because interacting and feelingin the physical world requires
to deal with the uncertainty due to the partial and changing information of the conditions
of the environment. Nevertheless, learning is an active area in robotics and RL is one
of the learning methods that has been most successfully implemented in robots. In fact,
according to some authors, RL seems to be the natural selection for learning policies of
mobile robot control. Instead of designing a low-level control policy, a description of the
tasks at high-level can be designed through a reinforcementfunction. Frequently, for robot
tasks, rewards corresponds to physical events in the environment. For instance, for the
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Figure 1.3: Diagram of the main learning paradigms

obstacle avoidance task, the robot can obtain a positive reinforcement if it gets its goal, and
negative if it crashes into some obstacle [48]. However, thereward can be oriented to more
abstract events. This thesis presents an example of the latter.

1.2 The problem

Taking everything in mind, society is demanding robots withenough autonomy and cogni-
tive abilities tolive with humans attending and assisting them. These robots mustbe able
to decide its actions according to external circumstances as well as internal ones.

In this thesis, the problem to face is how to extend the autonomy of a social robot in
such a way that it can decide its own behaviors. Therefore, the robot is not considered
a slave any more, but a partner which is able to make its own decisions. Human-robot
interactions are accomplished in a peer to peer manner.

Since the robot is intended for human-robot interaction, ithas to behave in a certain
manner that it does not cause rejection of its human counterparts.

According to the kind of robots considered in this thesis (social robots), the problem
is tackled from a bio-inspired perspective. Therefore, concepts and ideas coming from
biological fields are included in an attempt to obtain biomimetic solutions.

1.3 Objectives

This thesis is the continuation of a previous line of investigation of the same research group,
the RoboticsLab. María Malfaz, in her thesis, designed a model of decision making system
based on drives, motivations, emotions, and self-learningtested on agents living in a virtual
world [49].

Therefore, the main goal of this thesis is the extension of the robot’s control ar-
chitecture with a decision making system where drives, motivations, emotions, and
self-learning are the essential elements. By means of this decision making system, the
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role of several emotions in robots is studied. The previous model has been adapted
and applied to a real robotic platform.

In order to achieve the final goal, other sub-goals come up:

• The robot has to be able to learn by itself from scratch the right behavior in each
situation. Then, there is not a supervisor providing input-output pairs to the robot,
so supervised learning is not an option. Furthermore, learning must be achieved
in a reasonable amount of time and interacting with the real world. Consequently,
reinforcement learning perfectly fulfills all the requisites previously presented.

• The robot will have to interact with objects in its environment. Then, it has to be
endowed with enough mechanisms to properly perceive them and act over them.
Objects have to be modeled considering their potential states and available capacities.

• To adapt the decision making model proposed in [49] to a realphysical robot. The
decision making module has to be incorporated into the current robot’s control archi-
tecture with minimum modifications to the rest of the elements. Actually, these other
elements will be utilized without altering them.

• The decision making system has to be designed in such a way that it is flexible
enough to be applied to heterogeneous robots. Therefore, the system must be de-
signed as flexible as possible so, it is easy to adapt to new robots and to extend to
new requirements and configurations with minimum effort.

• The selection about what drives, motivations, and emotions are considered depends
on the purpose the robot is intended for. Besides, the parameters of each one of these
elements determines the final behavior of the robot. Then, these details are chief
variables that must be carefully assigned.

• Each artificial emotion has to be independently analyzed for defining its right func-
tion. Later, these emotional functions are applied to the robot. In particular, the fear
emotion in animals provides a reliable adaptive mechanism to deal with dangerous
situations which threaten the survival. This function of fear will be applied to a robot.

• Human-beings will be considered as other “object” the robot can interact with. Their
relationship has to be carefully studied. Moreover, since humans cannot be con-
trolled, the effects of their actions must be managed.

• Finally, it must be analyzed if the inclusion of emotion-based functionalities result on
a better performance of the robot or, in contrast, the benefitis not relevant or, even,
unfavorable.
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1.4 Overview of the contents

This thesis starts with an introduction to several biological concepts which will be referred
in the rest of the book. Then, a review of other related works is presented. Some of these
works have inspired the decision making system introduced right after. Following, the
robotic platform, the integration of the decision making system, and its configuration used
for the experiments are presented. After, the used learningmechanism is largely exposed.
Next, the technical design of the adopted solution is detailed. And last, the experiments and
their results are detailed. This thesis ends with several conclusions, comments, and future
works.

These contents are explained in chapters which cover the following topics.

Chapter 2. This chapter settles the basic concepts that inspired the rest of the text. Several
concepts, such as drives, external stimuli, or emotions, are introduced and their role
in living beings is explained. Moreover, how humans make decisions is commented.
In the last part, special attention is given to the emotions and their roles in humans
and animals.

Chapter 3. A review of the most relevant works is presented in this chapter. First, the most
important social robots, according to different purposes,are listed. Then, the review
is centered on social robots which are controlled by architectures where motivations
and emotions are essential components. The works that have inspired this dissertation
are particularly detailed. At the end, a comparative analysis considering the main
characteristics is presented.

Chapter 4. In this chapter the decision making system proposed by Malfaz, and followed
in this thesis, is presented. This chapter shows how bio-inspired concepts are trans-
lated to “synthetic life”: what a drive is, how a motivation is computed, and what
the wellbeing is. Moreover, how the reinforcement learningfits in the decision mak-
ing process is commented. Probably the most well-known reinforcement learning
algorithm, Q-Learning, is detailed since a variation of it is implemented in the robot.
Finally, the role of the three implemented artificial emotions (happiness, sadness, and
fear) and their generation processes are explained.

Chapter 5. In this chapter the robot Maggie is presented. This is the robotic platform
where the ideas of this thesis are implemented. First, a general description of its
hardware is presented. Then, its control architecture is described. Last, the particular
implementation of the decision making system is featured. That is, customizing the
drives and the motivations, defining how the robot interactswith several items, and
the consequences of its actions.
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Chapter 6. This chapter explains the learning process implemented in the robot. Initially,
the frame of the problem is introduced and the use of the Object Q-Learning algo-
rithm is justified. Two modification specially designed to solve problems that appear
when it is executed in real environments have been added. In order to clarify the
ideas of the algorithm, several iterations of the learning process in different scenarios
are evaluated.

Chapter 7. This chapter presents the technical design of the decision making system. A
data base has been designed to provide an easy and expandablemechanism for adding
new elements or easily modify the existing ones. All the elements of the decision
making system have been modeled following an object oriented approach. Its design
is shown here. Besides, the skills implemented for interacting with the objects are
explained too.

Chapter 8. In this chapter, several tests prove the correct setup of thewhole system. Ini-
tially, general arrangements for the experiments are stated. After, the correct operat-
ing of the decision making system is carefully checked. It shows how the theoretical
concepts are properly working in the robot. Then, the learning algorithm and several
improvements are justified. The results are compared with other traditional learning
algorithm.

Chapter 9. Here, several experiments show the performance of the wholesystem in this
chapter. These tests are performed by the robot Maggie in a real environment. First,
the use offear in a robot is carefully evaluated from several perspectives: how fear
is appraised, how to react to fear, and the convenience, or not, of it. And second, the
policy of behaviors learned by the robot are studied. These behaviors are the result
of thehappinessandsadnessemotions as the reward signal.

Chapter 10. In this last chapter, the results are commented and the conclusions of this
thesis are compiled. Moreover, the main contributions are presented and several
future works are listed. Finally, some author’s personal comments are included.
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CHAPTER 2

Biological foundations

2.1 Introduction

The decision making system proposed in this dissertation has been inspired by mech-
anisms observed in nature. All animals are endowed with systems which are in charge of
selecting the behaviors or actions to execute at each instant according to specific reasons.

In this chapter, a general view of some of these biological mechanisms as well as the
reasons to behave in a particular way are exposed and explained. Moreover, similarities
with the implemented system are highlighted.

In animals, behavior is considered as a manner of acting due to certain circumstances
in order to achieve certain goals. The brain is responsible for all kind of behaviors arrange-
ment, from seeking for food to falling in love. Certain brainneurons (electrically excitable
cells) communicate with hundreds of thousands of cells around the whole body to orches-
trate their functions and, as a consequence, behaviors arise. Then, behaviors can involve
many organs (the heart, the liver, lungs, kidneys, etc.), and without them all behaviors
would fail.

2.2 The origin of behavior

2.2.1 Innate vs learned

When animals make decisions, these can be innate or learned.Innate decisions are inher-
ited and are species dependent. Some authors [50] consider them as instincts which are

13
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fundamental for the development of the individual. For instance, a baby animal already
knows that it has to suckle from its mother. On the other hand,learned decisions consider
the past experiences. As a result, when a decision has been learned, the behavior is guided
by past experiences [51].

Then, decisions result from a “combination” of both, innateand learned, and they exist
side-be-side.

2.2.2 Unconscious involuntary vs conscious voluntary

Veldhuis affirms that, such as in other high cognitive processes, decision making has a dual-
processing perspective: conscious and unconscious [51]. Therefore, there are two levels of
decision making which, somehow, are related:

• System 1: unconscious, fast, automatic, and high capacitydecision (e.g. intuitive
decisions). Prior knowledge is used to form a response. In this level, decision are
involuntary.

• System 2: the highly conscious, slow, and deliberative decision (e.g. reflective deci-
sions). It could happen that this system does not do anything(it does not have any
effect), so the unconscious responses keep on working, or itinhibits the unconscious
responses for developing a more conscious strategic thinking. This kind of responses
are voluntary.

According to Veldhuis, in general, decision are made unconsciously but, when a novel
event happens, the deliberative, conscious system takes over. This assumption implies that
any deficit in the System 1 greatly affects our decision making capacity. Without the un-
conscious decision making system, all information has to beprocessed by the deliberative
system. Due to its low capacity and slow processes, it results on very slow decision making
and potentially loss of information.

Automatic processes are also referred as reactive processes by some researchers. Both
terms, without distinction, can be used but author prefers the automatic term.

2.2.3 Homeostasis

Animals have to carefully control some internal conditions. For example, mammals live
under tight conditions of body temperature and blood pressure, volume and composition.
These variables must keep their values in a narrow range. Thehypothalamus adjusts these
levels in response to changes coming from the external environment. This regulatory pro-
cess is calledhomeostasis: the maintenance of the body’s internal environment withina
narrow physiological range [52].

Homeostasis was discovered by Claude Bernard in the middleXIX century when he
observed that the body variations had as an objective to givethe stability back to the body.
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According to the homeostatic approach, the human behavior is oriented to the maintenance
of the internal equilibrium [53].

An example of this tendency towards internal stability can be easily observed on tem-
perature regulation. Cells properly work at37°C and variations of more than a few degrees
are catastrophic. Precise cells belonging to the whole bodyperceive modifications on body
temperature and response to this situation. On a extremely cold situation (e.g. you are
naked on the North Pole), the brain sends commands to generate heat in the muscles (you
shiver), to increase tissue metabolism, and to keep blood asfar as possible of external cold
surfaces of our skin in order to maintain internal warm (you turn blue). In contrast, if you
are in a sauna, the brain activates cooling mechanisms: blood is moved to the external tis-
sues where heat is radiated away (you turn red) and the skin iscooled by evaporation (you
sweat).

In order to maintain the homeostatic balance, the whole bodyresponds with voluntary
and involuntary behaviors. All behaviors are orchestratedby the brain which reaches organs
by means of the nervous system. The combination of the nervous system and the somatic
motor system originates different behaviors.

Involuntary behaviors

The behaviors which are not intentional, i.e. they are not voluntary, are based on the Veld-
huis’ System 1 and they depend on the nervous system. Three ofits components are char-
acterized by their great influence on the whole body: the secretory hypothalamus, the auto-
nomic nervous system, and the diffuse modulatory systems. They differ on the areas they
affect (from the brain to all over the body), the duration of their effects (from minutes to
hours), and how they exert their influence.

The secretoryhypothalamusis a structure of the brain and a component of the nervous
system. It secrets chemical elements straight into the bloodstream and they alter activities
on both body and brain parts. Figure 2.12 presents the hypothalamus in the brain and
how it is connected to the pituitary gland (where the hypothalamus exercises its influence).
Despite of its insignificant mass (less than 1% of brain’s mass), the hypothalamus’ influence
over the rest of the body is enormous.

Hypothalamus integrates bodily and emotional responses inaccordance with the needs
of the brain. Lesions in this part can result on disruptions of widely dispersed bodily
function. Furthermore, the hypothalamus intervenes on common reflex where neural inputs
and neural outputs are involved. Then, it is seen as the head ganglion of the autonomous
nervous system which unconsciously controls internal organs. Experiments where certain
areas of the hypothalamus are excited result on variations on heart rate, blood pressure,
erection of hairs, and so forth.

2This figure appears in [52]
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(a) The hypothalamus and its influence over the Pos-
terior Pituitary

(b) The hypothalamus and its influence over the An-
terior Pituitary

Figure 2.1: The Hypothalamus and the Pituitary gland

Some cells of the hypothalamus, theneurosecretory neuros, extend their axons to the
pituitary (it is located just below the brain, Figure 2.1). The pituitary acts as the “speaker”
the hypothalamus uses to communicate with the body. Neurosecretory neurons release
substances (neurohormones) into capillaries running throw the pituitary (Figure 2.1(a)) or
stimulate/inhibit the secretion of pituitary hormones (Figure 2.1(b)). These released hor-
mones into the bloodstream reach organs whose functions arealtered. The above reactions
mentioned in the example of the homeostatic temperature regulation are provoked due to
the activity of the hypothalamus.

The hormones secretion can be stimulated or inhibited due toseveral reasons. For
example, theoxytocinhormone stimulates the ejection of milk from the mammary glands.
A suckling baby stimulates the secretion of this hormone, even the cry or sight of a baby
does. Sensory stimulus (somatic, auditory or visual) trigger the oxytocin release. This can
be seen asexternal stimuli affecting the bodily reactions. Additionally, letdown of milk
can be suppressed due to anxiety or other circumstances.

Another component of the nervous system responsible of involuntary behaviors is the
Autonomic Nervous System(ANS), which commands the rest of the tissues and organs
in the body. The ANS controls the physiological systems which are autonomous from the
voluntary control [54]. For example, the smooth muscle system of digestion and blood
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flow. Therefore, ANS is constituted by a network of neurons covering the whole body
which automatically acts, i.e. without voluntary control.The influence of the ANS over
the whole body can be observed in Figure 2.23. It is anatomically separated from the
voluntary motor system.

Figure 2.2: The sympathetic (A) and parasympathetic (B) divisions of the Autonomic Ner-
vous System

The last component to mention is theDiffuse Modulatory System. It is entirely part
of the Central Nervous System and it comprises several cell groups which extend their
spatial reach to the entire brain and prolong their actions.These groups perform regulation
functions that modulate the activity of a huge amount of neurons (each neuron may contact
other 100000 neurons). Regulated neurons become more or less excitable, more or less

3This figure has been modified from its original version obtained from
http://pharmacology-notes-free.blogspot.com

http://pharmacology-notes-free.blogspot.com
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synchronously active, and so on. It is believed that they regulate the level ofarousal and
mood. Since this is a cutting-edge research field, the exact functions of this system on
behavior are not absolutely clear and some ideas may be fuzzy[52].

Voluntary behaviors

Thus far, it has been mentioned how the brain influences on involuntary reactions. Nev-
ertheless, the brain also generates intentional reactions. These are exhibited through the
Somatic Motor System (SMS). The SMS is formed by the skeletalmuscles and the nervous
system that controls them. Its task is to innervate and command skeletal muscle fibers un-
der voluntary control. Figure 2.34 shows how the SMS is able to command a human arm:
the muscles, which are activated by the signals coming from the CNS through axons, are
in charge of moving the skeletal and, then, the behavior is generated.

Figure 2.3: Part of the Somatic Motor System involved in the movement of a human arm

4This figure appears in [52]
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All the organs and tissues are highly coordinated by neuronsin the brain. Both systems,
SMS and ANS, have upper motor neurons in the brain that send commands to lower motor
neurons which, actually, act over the target structures.

In short, each of these elements has different specific functions but, generally speaking,
it can be said that they all maintain brain homeostasis: theyregulate different processes
within a certain physiological range [52].

2.3 Motivated behavior

The key question at this point is why behavior occurs. As previously presented, behaviors
involve motor responses and these can be unconscious reflexes (e.g. secretion of gastric
juices before you eat) or self-conscious movements (e.g. approaching the fridge because
you are starving). Intentional movements are originated (motivated) to satisfy some sort of
need [52]. The motivation to satisfy a need can be abstract (to be happy) or totally real (to
drink water because you are thirsty after running a marathon). These needs are due to a
deviation in an homeostatic variable and they are referred as drives.

2.3.1 The Hull’s drive-reduction theory

Clark Hull postulated in 1943 his drive-reduction theory [55]. This is one of the oldest the-
ories about drives. Hull suggested that privation induces an aversion state in the organism,
which is termed drive. According to his theory, the drives increase the general excitation
level of an animal and they are considered as properties of deficit states which motivate
behavior.

He stated that all the behaviors happen as the result of physiological needs, the drives.
According to his theory, the reduction of drives is the primary force behind motivation [56].
He based his theory around the concept of homeostasis, i.e. the body tends to maintain cer-
tain internal balance and actively works for it. Behavior isone of the resources the body has
for achieving it. Considering this approach, Hull postulated that all motivations come up
due to biological needs, which Hull referred as drives (thirsty, hunger, warmth,etc.). Thus,
a drive produces an unpleasant state that has to be reduced bymeans of the corresponding
behavior (e.g. drink when we are thirsty or close the windowswhen we are cold).

This reduction of drives serves as a reinforcement for that behavior. In the future, when
the same need arises, the reinforced behavior will be more likely repeated. In other words,
when a stimulus and a response provoke a reduction in the need, the probability that the
same stimulus causes the same response increases [57].

However, many years later the Hull’s theory started to fall out of fashion due to many
criticisms [58]. First, Hull’s theory does not consider secondary reinforces. Primary re-
inforcers satisfy survival needs such as food, shelter, or safety. Secondary reinforcers are
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those that can be used to obtained primary reinforces. Some examples could be money,
praises, or grades in school. Moreover, this drive-reduction theory does not explain the
behaviors that are not related with biological needs and therefore do not reduce drives.Why
do people eat when they are not hungry? Why do people sky dive?This theory does not
answer these questions.

2.3.2 Motivations

Later, other researchers started to tackle the not explained questions in the Hull’s drive-
reduction theory. In [50], motivation is presented as an inferred internal state postulated to
explain variability on behavioral responses. Motivational states represent urges or impulses
that impel animals into action. Initially, motivations were linked to bodily needs such as en-
ergy or temperature regulation (classical homeostatic drives). But other non-physiological
needs are well-accepted as motivations too, e.g. curiosityor sex. However, all these needs
are referred as drives because they involve arousal and satiation. The concept ofdrive is
postulated in order to explain why observable stimuli in external environment are not suffi-
cient to predict behaviors. For example, sometimes food canstimulate feeding, but others,
it results on indifference or even rejection. E.g. when you walk a street and see chocolate,
it can provoke the “need” to eat chocolate. In contrast, after a big meal, the perception of
more food activates a denial reaction.

Many drive theories between 1930 and 1970 posited that drivereduction is the chief
mechanism of reward. If motivation is due to drive, then, thereduction of deficit signals
should satisfy this drive and essentially could be the goal of the entire motivation [53]. In
other words, the motivational state is a tendency to correctthe error (the drive) through the
execution of behaviors.

The motivations can be seen as a driving force on behaviors. However, just motivation
does not guarantee a behavior but it modulates the behavior and affects its probability to
happen. Beside, several motivations may interfere each other, for example the need of food
versus the need of sleeping.

The word motivation derives from the Latin wordmotusand indicates the dynamic root
of the behavior, that means those internal, more than external, factors that urge to action
[59]. Sometimes, motivational states can be explained as a compendium of internal and
external stimuli. Hence,motivation can be presented as a complex reflex under the control
of multiple stimuli, some of them internal [50]. Hull [60] also proposed the idea that
motivation is determined by two factors. The first factor is the drive. The second one is the
incentive, that is, the presence of anexternal stimulus that predicts the future reduction of
the need. For example, the presence of food constitutes an incentive for a hungry animal.

The already presented hypothalamus is involved on the homeostasis process and mo-
tivated behavior. Recalling, homeostasis refers to the processes that maintain the internal
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variables of the body (temperature, fluid balance, energy balance, ...) within a narrow phys-
iological range. The hypothalamic regulation of homeostasis starts when a regulated pa-
rameter has gone out of the desired range. Sensory neurons watch the parameter and com-
municate with hypothalamic neurons which detect the deviations from the optimal range.
Then, these neurons orchestrate an integrated response to bring the variable back to the
normal values. Generally speaking, this responses have three components [52]:

• Humoral response: the release of pituitary hormones are stimulated/inhibited by hy-
pothalamus neurons.

• Visceromotor response: hypothalamic neurons act over theANS and the correspond-
ing tissues and organs accurately respond.

• Somatic motor response: hypothalamic neurons, acting on the somatic motor system,
provoke a somatic motor behavior.

Bodily
parameters

Hypothalamic
Neurons

Humoral
responses

Visceral
responses

Somatic
responses

Sensori
Neurons

Figure 2.4: Hypothalamus responses to homeostatic body control

The following example will clarify the ideas previously introduced. When a person is
cold, dehydrated, and depleted of energy, the proper responses automatically come through.
This person shivers, his blood is moved away from the body surface, urine production is
inhibited, body fat reserves are mobilized, and so on. However, the most effective and
fastest way to correct the disruptions is to look for a warm place, to drink water and to
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eat. These aremotivated behaviorsgenerated by the SMS and incited to occur by the
hypothalamus [52].

Hypothalamus and related structures received informationfrom the internal environ-
ment and they directly act over the internal environment (ifyou are cold, your body temper-
ature is directly kept constant by peripheral vasoconstriction). Other hypothalamic neurons
are in charge of operating indirectly over the internal environment, by means of the SMS
acting in the external environment (if you are cold, you can turn the heat on). Both indirect
and direct homeostasis can work in parallel.

Besides, Veldhuis’s systems (Section 2.1) can be observed in the previous example;
vasoconstriction is a unconscious and involuntary reaction which can be placed at System
1; turning the heat on corresponds to the System 2 where conscious, voluntary actions are
made.

The intensity of a motivation depends on several factors. Considering hunger the moti-
vation to eat, it depends on how much you ate the last time, what kind of food, and how long
it has been since then. Moreover, the motivation to keep on eating counts on how much and
what kind of food has already been ingested. After we eat and the digestive process has
begun, the need of energy is inhibited due to satiety signals. These satiety signals slowly
dissipate until the need to eat again takes over. This interrelationship can be observed in
Figure 2.5 [52]: just after eating, satiety signal soars; then, it slowly vanishes until the next
ingestion of food when it rises again. In general terms, drives, in the sense of needs or
deficiencies, lead the regulatory process of motivations. Drives vary according to several
signals and parameters. However, the presence of incentives, external stimuli, can alter the
course of motivations and/or drives.

Figure 2.5: Feeding behavior and satiety signal
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Cognitive aspects of motivations

After understanding the physiological aspects of the motivation of behaviors (especially
those that are basic to survival), it seems that humans are ruled by hormones which se-
cretion is activated by neurons all over the body. However, researchers clarify that one of
the main advantages of human evolution is our capacity to exert cognitive control over our
more primitive instincts.

Motivational behaviors are not only attached to physiological needs. For example, cu-
riosity does not appear to be commanded by any physiologicalshortage. Particularly in
humans, learned behaviors and pleasant feelings can prevail against bodily signals. This is
the case when a person feels the need of going to the toilet buthe is attending an important
meeting and he cannot leave the room.

In psychological terms, according to [52], there are two points of view about motivated
behaviors:

Hedonic People exhibit a behavior because theylike it, it feels good so people do it ( e.g.
the smell, taste, and sight of food, and the act of eating itself are pleasant). Pleasure
serves as an hedonic reward.

Drive reduction Peopleneedto behave in such a certain way in order to satisfy a drive
(e.g. animals eat because they are hungry andwant food).

Both approaches seem to be complementary (we drink what we like) but, apparently,
“liking” and “wanting” are controlled by different circuits in the brain [52].

Other researchers [50] identify three factors as motivatedbehaviors regulators: ecologi-
cal requirements of the organism, anticipatory mechanisms, and hedonic factors (pleasure).

Ecological constraints Behavior patterns have been shaped by evolutionary selection. Eco-
logical context is analyzed by cost-benefit functions. Feeding behavior includes the
cost of searching and procuring food, and the benefits of the energy obtained from
the nutrient intake.

Anticipatory mechanisms Clock mechanisms activate physiological behavioral responses
before the need or the deficit in the tissues occurs. Therefore homeostasis often an-
ticipates deficits.

Hedonic factors Pleasure is an undoubtedly factor in the control of motivated behavior
of animals. Frequently, humans give up some need in order to obtain pleasure by
satisfying others. For example, people go on a diet because they want to look more
attractive. It gives the idea that pleasure mechanisms are concerned with reward and
reinforcement on learned behavior.



24 Chapter 2. Biological foundations

The ecological constrains and the anticipatory mechanisms[50], and the drive reduction
[52], somehow, all are related to physiological needs. The hedonic factor in motivated
behavior is clearly identified in both approaches.

Since pleasure is an evident element on motivated behavior,researchers have studied
how it is evoked. Olds [61] discovered pleasure areas on animal’s brain. Later, Deutsch
and Howard [62] found that stimuli of pleasure areas on the brain originate reinforcement
independently of the drive state of the animal. In contrast,regular stimuli just function as
reward in particular states (food is considered as reward just in hungry animals). Successive
studies have shown that pleasure areas in the brain are involved on initiating some complex
behaviors such as feeding and drinking. Apparently hypothalamus is one of the areas that
produces reward and several transmitters seem to take part.

2.4 Emotions

Thus far, emotions have not been mentioned. However, emotions play a key role in the
behavior exhibited by people and animals. Emotions are essential in our daily live. They
make us going high and low in all our experiences. Emotions are not easy to study and just
their behavioral manifestation can be certainly observed.Besides, emotions are not exclu-
sive from humans [63], it is proved that animals also are endowed with emotional states
[7]. Actually, Charles Darwin (1809-1882) studied emotions in humans and animals just
by observation of the emotional expressions during his trips to exotic places. His evolu-
tionary theories suggested that emotions have evolved due to their efficacy for adaptation
and for communicating the behavioral intention, and, also,their role in social interaction
[64]. Currently, it is widely accepted that humans and mammals share some emotional
brain regions [54].

2.4.1 The role of emotions

Emotions are versatile mechanisms which are involved in many functions. According to
Rumbell [65], emotions influence the attention, alter the likelihood of behavioral responses,
activate associative memories, arrange rapid responses, influence learning, aid social be-
havior, and improve communication.

In this thesis, the attention is directed to the influence of emotions on the decision
making process and the learning process. Cañamero states that emotions and motivations
play a main role in autonomy and adaptation in biological systems [66].

According to the popular belief,emotionalreactions are undesired and not appropriated.
In contrast, rational reaction are more appreciated. However, both reactions are required
and have different functions. Reason and emotions separately can make wrong decisions.
A reasonable action can be rated as inadequate (to kill a person in order to save many),
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as well as a decision made considering excessive reasonablearguments (rejection to travel
because of the afraid of flying). Therefore, people require acorrect balance between reason
and emotions in order to make right decisions. This process is shaped along the individual’s
life [67]. According to Gordillo [67], the right decision is“the most beneficial one for the
individual”.

Emotions influence decision making in two ways: expected emotions and immediate
emotions. When an individual makes a decision, he likely expects certain outcome which
can be related to an emotion (the expected emotion). Usuallypositive emotional results
are preferred to negative ones. Besides, the emotional state when the individual makes a
decision (the immediate emotion) influences this decision.In general, happy people over-
estimate their decisions and depressed people underestimate the outcomes. Considering
this, emotions can lead to wrong decisions. Many other aspects influence decision making:
gender, development, culture, etc.

As said, an individual can seek for a particular emotion through its actions. Emotions
therefore can work as important reinforcements for certainbehaviors or actions [4]. For
this reason, emotions play an important role in learning. Then, a behavior can be pursued,
among other reasons, in order to experience the emotions associated with the outcome of
that behavior [68].

According to Castelfranchi [68], emotions activate goals and plans that are functional
for re-establishing or preserving the well-being, considering the events that produce them.
Consequently, emotions have a conative component, that is atendency towards action.
This is referred as themotivational component of emotions. It is worth mentioning that
emotions cannot be reduced to motivations, or vice verse. Emotions have more functions
than the motivational and, on the other hand, there are motivations which are not related
to emotions. In short, to feel or not to feel an emotion can, byitself, become a goal to the
individual [69].

LeDoux claims that emotional behaviors represents different functions for solving prob-
lems and with different brain mechanism. Therefore, he proposes to study emotions as
independent functional units [63].

2.4.2 What is an emotion?

Although emotionis a word commonly used, there is not a clear definition of whatan
emotion is. For example, Ortony defines emotions as“valence reactions to events, agents,
or objects, with their particular nature being determined by the way in which the eliciting
situation is construed”[70]. Moreover, for Frijda, emotions are“responses to events that
are important to the individual, and these responses followcertain general rules or laws”
[71]. He strengths the conative role of emotions affirming that emotions are“motivational
states that underlie emotional behaviors"[72]. In a definition given by Castelfranchi, he
adds a cognitive component to emotions, so he states that human emotions are complex and
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rich mental states, not simple reactive mechanisms [68]. Rosis remarks the adaptive role of
emotions:“Emotions are biologically adaptive mechanisms that result from evaluation of
one’s own relationship with the environment”[69]. Despite the wide variety of definitions,
it seems that all of them, in one way or another, consider thatemotion involves certain
conditionsthat elicit emotions and, as a result, some reaction is provoked. Further on in
this chapter, these two aspects are covered.

In an effort to not use definitions literally, in this thesis,emotions follow a more practi-
cal approach. Then, emotions have a dual nature: one is the external expression of emotions
and the other is the internal experience of emotions. Both must be differentiated. When a
stimuli causes the emergence of an emotional response, its effect is twofold: first, it pro-
vokes non-conscious internal reactions, so the internal state is altered and the organism
is ready to fight, fly, sex or other adaptive behaviors; second, the behavior is modulated
by cerebral structures during interaction with the external environment [50]. The external
environment is richer on stimuli than the internal one, so itis much complex.

The behavioral signs of emotion are controlled by the somatic motor system, the au-
tonomous nervous system, and the secretory hypothalamus. The hypothalamus also or-
chestrates the internal responses. The clue is how sensory input or internal signals lead to
a particular emotion.

Hypothalamus can be interpreted as a coordinating center that integrates various in-
puts to ensure a well-organized, coherent, and appropriated set of autonomic and somatic
responses. These responses were observed as similar to emotional behavior, then, it is sug-
gested that the hypothalamus manages the emotional expression. Moreover, it seems that
hypothalamus articulates motor and endocrine responses which produce emotional behav-
ior [50].

2.4.3 Theories about emotions

About emotions, there are still not a unique theory about them. One of the first well-
formed theories is the James-Lange Theory (1884). It statesthat emotions are experienced
as a consequence of physiological changes in the body. The sensory system reacts to the
changes evoked by the brain, and it is this sensation that constitute the emotion. That is,
the physiological changes are the emotion. Therefore, if the changes are removed, so the
emotion does [52].

In 1927, the Cannon-Bard Theory proposed that emotional experience can be indepen-
dent of emotional expression. That is to say, emotions can beexperienced even if physio-
logical changes cannot be sensed. This theory states that the thalamus plays a special role
on emotions which are produced when signals reach the thalamus [52].

An example will clarify the differences between both theories. According to James and
Lange, when you see a rattlesnake you express fear (you shiver, your heart rate speeds up,
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and so on), and, as a consequence, you are terrified (you experience fear). In Cannon’s the-
ory, first, your thalamus is properly activated to experience fear and then the physiological
signs of fear occur.

Several works after these theories have demonstrated that both theories have strengths
and weaknesses. For example, perhaps some emotions depend on behavioral manifesta-
tions: such as smiling (expression of happiness) in order tofeel happy; and experiencing
other does not: hope does not have to be linked to any expression. About James-Lange
theory, even if emotion is closely related to physiologicalstates, emotions can be felt in the
absence of evidence physiological signs. E.g. a person suffering a high-level paralysis can
experience happiness. But some strong emotions are close related to physiological states
and it is not clear what causes what [52].

2.4.4 Emotion systems

Currently, it seems that different emotions involve different brain circuits, despite of same
brain areas could be common. In fact, Dalgleish [73] explains how other theorists, inspired
by the prototypical work of Darwin, have proposed that a small set of discrete emotions are
underpinned by relatively separable neural system in the brain [74, 75]. Then, as Kandel et
all states in [50], distinct emotions are located at different parts of the brain. Then, when
stimulating these areas in human’s and experimental animals’ brains, different emotions
elicits.

These emotional theories do not mention about the possibility of experience several
emotions concurrently. Actually, Rosis [69] states that several emotions can be experienced
by the same individual at the same time, but with different intensity each one due to many
circumstances (the kind of goal, the novelty, etc.).

Therefore, as reported by Bear et all [52], the definition of an emotion system is con-
troversial. Due to the broad spectrum of emotions, it is no clear that only one system
is controlling emotions, rather than several systems. Moreover, some elements involved in
emotion also take part on other functions; then, there is notone-to-one relationship between
structure and function. This fact reflects that researchersare just beginning to understand
how emotions are experienced and expressed. Therefore, some questions are still pending.

Then, as already mentioned, instead of thinking of one emotion system, some authors
convey the impression that several separated emotional systems exist, each one relates to
an emotion and considers its stimuli and reactions.

However, from a physiological point of view, there seems to be several common brain
parts that support the emotional life [54]. This is referredas thelimbic system (Figure
2.6) and its elements are hypothetically responsible for the sensation and expression of
emotions. The concept oflimbic systemis controversial because there is not an universal
agreement about its components. Even some scientists defend the suppression of the term
[50].
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Figure 2.6: The Limbic System

The limbic system is mainly composed of the cortex (the outerlayer of the brain), the
hypothalamus, and the amygdala. Thecortex is the main actor in the experience of emo-
tions and thehypothalamus rules the expression of emotions. Both structures influence
each other so they are bidirectionally communicated. This bidirectional link makes James-
Lange and Cannon-Board theories compatible. Then, this limbic system enables animals
to express and experience emotions.

Theamygdala is other element of the limbic system which plays an important role on
emotions. It conveys high cognitive information to the hypothalamic structures. The amyg-
dala receives inputs from cortical structures and the thalamus. LeDoux [76] suggested that
this direct thalamic input mediates on short-latency primitive emotional responses and pre-
pare the amygdala for the reception of more sophisticated information from higher centers,
such as the prefrontal cortex. The output of the amygdala is connected to cortical structures
and results in a conscious emotional experience. More details about the amygdala are pre-
sented in Section 2.4.7 in relation to the fear emotion (it seems that the amygdala is closely
linked to this emotion).

One of the most famous studies about the influence of the amygdala and cortical struc-
tures on emotions dates from 19th century. On 1848 Phineas Gage suffered a terrible
industrial accident: an iron rod was sent into Phineas’ headdue to an unfortunately explo-
sion. The rod destroyed much of his brain’s left frontal lobeand a considerable portion
of his skull. Miraculously, just one month after the accident, Phineas was walking again
and returned to his job. He looked like before the accident but something has changed:
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his personality was totally altered. Before the accident, Phineas was considered as an effi-
cient, capable, well-balanced mind, shrewd, smart business, and persistent man. After the
accident he was described as a fitful, irreverent, blasphemous, impatient, obstinate, capri-
cious and vacillating. Despite of the lack of psychologicaltest, it appears that Phineas’
personality was dramatically changed far more than his intelligence.

In 1994, Hanna and Damasio [77] made new studies on Gage’s skull using modern
technics. Figure 2.7 shows the trajectory of the rod into Phineas’ head. The iron rod
severely damaged the cerebral cortex in both hemispheres, particularly the frontal lobes.
As result of the damages, Phineas became to act as an irritable kid suffering of strong
emotions. The significant increase on emotional behavior proposes that cerebral cortex
plays a key role in regulating emotions.

Figure 2.7: Reconstruction of Phineas’ skull and the iron rod

2.4.5 The Appraisal Theory

Especially interesting is the study of the processes involved in the generation of emotions.
The mechanism in charge of evaluating the current internal and external situations in terms
of affective state or emotion are referred as appraisal [78]. Appraisal theories seek for
explanations of these evaluations that lead to evoke one emotion over another.

The termappraisal was coined in 1960 by Magda Arnold [79] who stated that the
appraisal starts the emotional responses. The appraisal theory is the claim that emotions are
elicited by evaluations of situations [80]. According to this theory, it is the interpretations
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of situations, rather than the situations themselves, thatcause emotions. Consequently,
emotions are differentiated by appraisals, i.e. each emotion is elicited by a unique pattern
of appraisal.

Most of the researches link the appraisal of certain event orsituation to the motivation of
the individual [81]. Thus, the emotion resulting from an appraisal depends of the relevance
of the event to a motivation [82]. For instance, a bear can elicit fear if we are picnicking;
however the same bear can result on excitement or happiness if we are hunting.

Because appraisals intervene between situations and emotions, different individuals
who appraise the same situation in significantly different ways will experience different
emotions; and even a given individual who appraises the samesituation in significantly dif-
ferent ways at different times will experience different emotions. A good example would
be a football match, the same situation, the result of the game, will produce different emo-
tions depending on your team [83]. Another example can be observed on a student doing
an exam: if he has studied hard all the semester, he feels confident and relaxed; in contrast,
if he has not studied enough, he experiences fear and gets nervous.

At some point, this theory could seem controversial. A polemic example could be the
dead of a person: a priori, the passing of a person can be clearly tagged as a sad event.
However, sometimes, this is not true. Considering the relatives of people murdered by a
psychopath, sometimes, they experience happiness or relief when the psycho is dead. The
different outcomes of the appraisal result from the individual conditions considered during
the personal appraisal process.

Moreover, Scherer [82] affirms that appraisals are part of a circular process where they
are “cause of emotions, components of emotions, and consequence of emotions”. There-
fore, it seems that appraisals are more complex than simple linear relations between ap-
praisals and emotions.

Following this theory, a situation cannot be tagged with an emotional value in advance,
it is the interpretation each person makes of that situationwhich gives that individual eval-
uation.

In order to understand the appraisal mechanisms of emotions, that is, how they emerge
in our brain, it is proposed that, as LeDoux in [63], since emotions are produced by different
brain networks, they must be studied one by one.

The appraisal of emotional events (the releasers) can be classified considering how they
are acquired or its origin. Some releasers are innate or inherited. For instance, the pres-
ence of a cat is evaluated as dangerous by mice, and this “knowledge” has been inherited.
Consequently, cats are the releasers of fear in mice. This implies that they are more species
specific than those acquired during life by experience.

Other emotional releasers are learned. For example, cats donot like to visit the vet-
erinarian because they usually hurt them. As a result, they associate the presence of the
veterinarian with a harmful situation. Then, the perception of the veterinarian becomes a
releaser of fear in cats.
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As seen in Section 2.1, dual-process theories distinguish between reacting (fast and
intuitive) and reasoning (slow and controlled) as a basis for human decision-making. This
dual-approach is observed also in relation to the generation of emotions. Based on how
the appraisal is performed, both approaches, automatic anddeliberative, are considered.
Castelfranchi [68] proposes to distinguish two kinds of “evaluation”: cognitive evaluation
(or just evaluation) and appraisal.

• Appraisal: a non-rational appraisal based on associative learning and memory, but
it is not based on justifiable reasons. It is automatic, implicit, and intuitive orienta-
tion towards what is good and bad for the organism. Then, appraisal is an automatic
association of an affective internal state (emotion) to theappraised stimulus or rep-
resentation. This involves System 1.

• Evaluation: a reason-based evaluation that can be discussed, explained, and argu-
mented. It is a the cognitive judgments relative to what is good or bad for someone
(and why). It is related to System 2.

In fact, LeDoux relates this unconscious appraisal to emotion, and conscious evaluation
to feelings[63]. On the other hand, Sloman [84] and Bechara [85] differentiate between
primary emotions which have a reactive or automatic basis and secondary emotions that
require a deliberative process to initiate them.

Taking again the fear emotion as an example, this dualistic approach is easily observed.
In some cases, fear is automatically elicited (mice are afraid of cats), but in others fear
emerges due to a reasoning process (e.g.due to the actual economic circumstances, I
am afraid of loosing my job). Moreover, this deliberative process affecting fear works as
feedback to the intensity of fear (e.g.if I loose my job, I will not get money, and then I will
not be able to feed my family, and finally we will all die).

These two classifications of the generation of emotions and the related examples about
fear are exposed in Table 2.1. Each cell contains an example considering how the pro-
cess has been acquired and how it is performed. Yellow cells correspond with the kind of
fear implemented in this thesis. Red cells are those combinations which are impossible:
something innate has been inherited so it is a species feature; in contrast, deliberation is a
particular process of each individual; in consequence, deliberative-innate processes are not
possible.

2.4.6 Emotional reactions

Often, the emotional behavior is considered as a consequence of emotions, rather than a part
of them, because other factors than emotions contribute to their generation [82]. However,
without getting into the details of this discussion, each emotion alters the behavior and
causes an emotional reaction.
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Table 2.1: Examples of different generations of fear
How is it acquired?

Innate Learned

How is it
performed?

Appraisal
(automatic)

Mice experience fear
when they perceive the
presence of a cat

Cats have fear when
they perceive the pres-
ence of the veterinarian

Evaluation
(deliberative)

The global economic
crisis

These reactions can be classified in a similar approach to theappraisal: considering
how these emotional reactions were acquired (innate vs learned) and how the reactions are
performed (automatic vs deliberative).

In order to clarify these ideas, several examples are presented in Table 2.2. This table
presents examples of different reactions to fear based on the examples of appraisal afore-
mentioned in Table 2.1. Both tables follow the same arrangement.

Mice inherently know that, when they experience fear in front of a cat, they must escape
from the cat. However, cats have learned, through several experiences, that they must run
away when a veterinarian is present. These two examples are automatically executed, so
these reactions are not the result of a deliberative process. However, when a person is
frighten because of the uncertain stability of his job, thisperson performs a reasoning
process (e.g.if I don’t want to loose my job, I have to increase my production, so I have to
work more hours) where all possibilities are considered and, as a result, itdecides to work
harder.

Table 2.2: Examples of different reactions to fear
How is it acquired?

Innate Learned

How is it
performed?

Automatic Mice escape from cats
Cats run away when
they see the veterinar-
ian

Deliberative
I must work harder in
order to keep my job
position

Analogously to the appraisal, innate-deliberative reactions are not possible (red cells):
innate reactions have a species component and deliberativereactions are the result of an
individual cognitive process.

Automatic processes, both for appraisal as well as for reactions, can be observed in
animals. These are required for survival purposes. Innate fears are considered by some
researches as instincts which provide a key survival mechanism. Actually, animals without
these instincts should have difficulties to reach adulthood. However, deliberative processes
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are specific of humans beings and this is one of our main characteristics.

2.4.7 Fear, anxiety and the amygdala

Fear is an emotion particularly studied in this dissertation (mainly the automatic aspects of
fear). Therefore, this section presents a deep analysis of fear.

In animals, fear is associated to anxiety as a response of threatening situations [50].
Whenever an individual is afraid, he becomes anxious. Its symptoms are: arousal, restless-
ness, overreaction, dry mouth, desire to escape, avoidancebehavior, sweat, heart-racing,
high blood pressure, etc. About the utility of fear, it contributes to behave in a proper
way when a difficult situation is being faced. However, it also can be detrimental as it is
presented at the end of this section.

LeDoux [21] states that the function of the emotion of fear isto detect danger and to
produce reactions which increase the probabilities of survival in a dangerous situation. In
other words, it is a defense mechanism. Therefore, the appraisal mechanism of fear is
related to the evaluation of situations as dangerous. Then,the fear emotion is involved with
natural enemy avoidance behaviors and areas where previously suffered fear experience
[86]. Accordingly to Darwin’s theory of evolution [64], fear has evolved as a mechanism
that enhanced chances of survival.

Most of the previous listed symptoms of fear are physiological reactions provoked by
fear. They are orchestrated by the hypothalamus even beforea behavioral reaction appears.
Anxiety reactions are controlled by the ANS and they virtually affect all parts in the body.
Moreover, the level of anxiety and the intensity of bodily responses are proportional to the
amount of perceived danger [52]: the more danger, the more anxiety, and, then, the more
fear.

From a neurological perspective, it has to be explained how the incoming information
into the brain causes behavioral and physiological reactions related to fear and anxiety.
Several studies propose that theamygdalaof cerebral limbic system processes fear emotion
and plays a key role for survival of animals [86].

The amygdala is a structure placed at the pole of the temporallobe just below the cortex
(Figure 2.8). The amygdala is one of the most important brainregions for emotions, with a
key role in processing social signals of emotions (particularly involving fear), in emotional
conditioning and in the consolidation of emotional memories [73].

Information from all of the sensory systems feeds into the amygdala where the infor-
mation is integrated. It is connected to the hypothalamus. The amygdala alters the ANS
through the hypothalamus and evokes behavioral reactions via the SMS [52].

It is assumed that amygdala is the brain structure in charge of fear regulation and re-
sponses: projections from the amygdala to the brainstem contribute to the expression of
fear, and the experience of fear, and other cognitive aspects of emotional processing, in-
volve projections from the amygdala to the cortex [87].
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Figure 2.8: The amygdala in the brain

As exposed in [87], animals exhibit fear responses when return to a situation where
they previously experienced fear. For example, an animal, that has experienced fear in a
chamber due to footshocks, experiences fear when it returnsto the same chamber and the
footshocks are not present. This is calledcontextual fear conditioning and it depends on
the amygdala [73].

According to [73], the study of fear conditioning has shown two afferent routes involv-
ing the amygdala (Figure 2.9): the first route (thalamo-amygdala) processes crude sensory
aspects of incoming stimuli and directly transfers this information to the amygdala, allow-
ing an early conditioned fear response if any of these crude sensory elements are signals
of threat. This enables automatic (or reactive), unconscious emotion activation before we
have time to think about our responses [54], that is, withoutcognition. The second route
(thalamo-cortico-amygdala) implies a more complex analysis of the incoming stimulus and
results on a slower, conscious, conditioned emotions response. In this case, a cognitive or
deliberative process could be involved. This longer pathway is more influenced by so-
cial and personal decision making processes and thus can reflect culture-specific emotional
responses [54].

Experiments have found that temporal lobotomy (suppression of the area of the brain
where the amygdala is located) in animals results in fearless behaviors. Considering ex-
periments achieved by Klüver and Bucy [88], monkeys’ behavior were studied in relation
with fear. Normal wild monkeys, which has been captured, areafraid of people: when a
person tries to approach a monkey in a cage, it escapes running to other corner and remain
there. In contrast, monkeys with bilateral temporal lobectomies experienced some kind of



2.4. Emotions 35

Thalamus

Cortex

Amygdala
automatic pathway

cognitive pathway

emotional
stimulus

emotional
response

Figure 2.9: Fear pathways involving the amygdala

fearlessness: people approached them, touched them, and even stroke them, and picked
them up. Amygdalectomies in rats and lynxes reflect the similar results and fearless behav-
iors. Damage to the amygdala also affects to fear in humans [87, 89]. Thus, fear provides
animals with the escaping behaviors required at certain situations to survive (humans can
be dangerous for monkeys). Then, fear is an adaptive response to dangerous situations.

Destruction of the amygdala affects to all emotions as well as showing a reduction on
emotionality: expression and experience emotions are considerable flatten when amygdala
is removed. In contrast, intelligence appear to be normal. These symptoms are also shown
on humans with temporal lobe lesions.

As stated, the amygdala is also involved in the modulation ofmemory consolidation.
By means of painful experiences, animals learn to avoid various behaviors because they are
afraid of been hurt. Those hurting experiences are quickly and long-lasting memorized [52]
due to the emotional content given by the amygdala. Therefore, amygdala and emotions
are involved in the consolidation of long-term emotional memories too. Moreover, the
amygdala has been associated with the modulation of other cognitive processes, such as
visual perception [73].

Previously, the usefulness of fear has already been mentioned. In contrast, fear can be
disadvantageous if anxiety is excessive, persistent, or ifthreatening situations are not well
recognized. Inadequate anxiety might result in anxiety disorders typical from humans.
From a psychological perspective, these anxiety disorderscan be seen as an inappropriate
experience and expression of fear.

Following, few anxiety disorders are briefly commented to give an idea about the in-
correct use of fear. For example, General Anxiety Disorder corresponds to a long-lasting,
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unrealistic or excessive worry [50]. Approximately, Post-traumatic Stress Disorder is re-
lated to intense or unrealistic worried suffered when stimuli related to a past trauma are
present. Also, phobia is an intensive anxiety due to an exposure to situations leading to
avoidance behaviors. In particular, a social phobia causesthe avoidance of any social in-
teraction.

2.5 Summary

This chapter has introduced the general concepts involved in the generation of behaviors
in animals. Several concepts, such as homeostasis, drives,motivations, external stimuli,
and emotions, will be re-used in the following sections to design and implement a decision
making system of a robot. These concepts have been biologically and psychology justified
in this chapter.

As a general idea, animals exhibit specific behaviors due to the processes occurred in
the brain. Physiological needs (food, warm, drink,...) andnon physiological needs (curios-
ity, sex, happiness,...) will guide the behavior through various responses. The observed
behaviors are based on the need to satisfy a drive or on the hedonic reward.

In this dissertation, the robot has certain needs (drives),that need to be satisfied, and
motivations. Following the homeostatic approach, the decision making system will be
oriented to maintain those needs within an acceptable range. These needs will not be just
limited to physical ones (as it is stated in the classical point of view of the homeostasis),
but psychological and social necessities too. Throughout this thesis,driveandneedwill be
used as synonyms and they are totally interchangeable.

Emotions influence several aspects of our daily life, e.g. the decision making or the
learning. The eliciting of emotions (the appraisal) and theemotional reactions can be in-
herited or learned, and they can be automatically or deliberatively performed. In this work,
artificial emotions exploits their learning and automatic aspects. Artificial motions are in-
volved in the decision making process and the learning process.

In particular, the emotion of fear is carefully studied. Fear provides animals with a
self-defense mechanism which helps them to avoid dangeroussituations. This mechanism
has inspired the implementation of fear in a robot and animal-like behaviors based in this
emotion have been observed in the robot.
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State of the Art

3.1 Introduction

This chapter presents the current state of the art related tothe main theme of this thesis.
Since this work covers several fields, they are reviewed and the most relevant works are
commented here.

This dissertation introduces a decision making system applied to a social robot where
motivations and emotions play a key role. Therefore, initially, the most famous social
robots are presented. Then, the attention is centered on control architectures where moti-
vations and emotions work as an adaptive mechanism shaping the robot’s behavior. After,
the most relevant works are compared considering several aspects and the differences with
the work developed in this dissertation are established.

3.2 Social Robots

Before talking about social robots, the questionWhat is a robot?must be answered. Many
researchers can answer this question with different definitions but this the author of this
thesis likes the definition given by Maja J. Matarić in [36]:

A robot is an autonomous system which exists in the physical world, can sense
its environment, and can act on it to achieve some goals.

According to this definition, in the late Forties, Grey Walter built the first robots that
were named as tortoises (Figure 3.1). They were three-wheeled robots with light sensors
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and bumpers connected to the drive wheels. With these simplemechanisms, Walter’s tor-
toises shown biomimetic behaviors such us find the light, back away from the light, or head
towards the light [36].

Figure 3.1: Gray Walter’s tortoise

From Grey Walter’s tortoises, robots have largely evolved and their capacities have
been extended. Recently robots are moving from factories and specialized environments
to homes. Even for the general public, robots seem to be something relatively common.
For instance, many science fiction films have deal with robots(Metropolis, Blade Runner,
Star Wars, AI, I, Robot, Wall-E, etc). Even though these fiction-robots are rather far from
real robots, all of them are easily understood by people watching them. Therefore, they are
endowed with some kind of social ability.

Considering the definition given by Bartneck and Forlizzi [90], “a social robot is an
autonomous or semi-autonomous robot that interacts and communicates with humans by
following the behavioral norms expected by the people with whom the robot is intended
to interact”. This definition is the first one that emphasizes the human-robot interaction
and communication. Following these ideas, many robots are claimed to be social. In this
section, some of the most remarkable social robots are reviewed according to the different
purposes they were designed for: research, entertainment,therapeutic, or assistance. This
review does not pretend to be an exhaustive survey but an overview of the most important
social robots.
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3.2.1 Social robots for research

There are many research centers where human-robot interaction is one of the main in-
vestigation areas. Two of the most relevant centers, the IRCand the MIT, are analyzed
considering their social robots. These centers have been working in this field many years
and different robotic platforms have been developed and tested. Following, a brief review
about their famous social robots is presented

◮ Intelligent Robotics and Communication Laboratories (IRC), from Advanced Telecom-
munications Research Institute International (ATR) in Japan, is a research group with a long
tradition of social robots.Robovie(Figure 3.2) is a humanlike appearance robot which is
designed for communication with humans [91, 92]. In order toachieve it, it is endowed
with the same kind of sensors humans have: vision, a sense of touch, audition,etc. It is 120
centimeters high and its weight is around 40 kg. Many sensorsand actuators are spread
over the entire robot. It is worth mentioning the omnidirectional vision sensor on top of
the head which provides a 360 degree visual field. Apparently, the robot’s behaviors are
totally predefined by the developer by coupling modules. Different evolutions of this robot
are shown in Figure 3.2.

In 2009,Robovie-mR2 (Figure 3.2(g)) was presented [93]. It is the Robovies’ little
brother (it is 30 centimeters high). Its creators state thatit is a communication robot which
is connected to the world through an iPod Touch placed at its tummy. It communicates by
means of gestures made by its arrangement of degrees of freedom: four in each arm, three
in its neck, two in each eye, one in each eyelid, and one for itswaist.

◮ Massachusetts Institute of Technology (MIT) has “produced” several relevant social
robots (Figure 3.3). To the best of the author’s knowledge, the first social robot isKismet
(late 1990s) developed by Cynthia Breazeal. The robot is an expressive anthropomorphic
robot head that engages people in natural and expressive face-to-face interaction (Figure
3.3(a)). It perceives a variety of natural social cues from visual and auditory channels, and
delivers social signals to the human caregiver through gazedirection, facial expression,
body posture, and vocal babbles. Kismet is endowed with a motivational system which has
drives, motivations, and emotions (it is analyzed in the next section).

In 2004, Breazeal presentedLeonardo (Figure 3.3(b)). It quickly and effectively learns
from natural human interactions using gestures and dialogues, and then cooperate o per-
formed a learned task jointly with a person [94].

The last robot from MIT,Nexi (Figure 3.3(c)), is a small mobile humanoid robot (the
size of a 3 year old child)) that possesses a novel combination of mobility, moderate dex-
terity, and human-centric communication and interaction abilities. This kind of robots are
referred as ”MDS” for Mobile-Dexterous-Social. The purpose of this platform is to support
research and education goals in human-robot interaction, teaming, and social learning [95].
This robot detects the emotions of humans and acts accordingly.



40 Chapter 3. State of the Art

(a) Robovie (b) Robovie-R (c) Robovie-R2 (d) Robovie-IIS

(e) Robovie-IIF (f) Robovie-IV (g) Robovie mini-R2

Figure 3.2: Several version of robot Robovie from ATR-IRC

3.2.2 Social robots for entertainment

In late Nineties, Sony (Japan) presented the first commercial robot-dog calledAibo (1999)
(Figure 3.4(a)). Aibo is a well-known pet-style robot whichwas designed to maintain a
lifelike appearance [96]. According to its specifications,it is able to express emotions
through LEDs placed at its head, recognizes speech and faces, it has a wide repertory of
predefined actions, and learns from the user’s preferences and the environment.

Other robot developed by Sony isQrio (2004), the biped humanoid robot (Figure
3.4(b)). It is also a small size robot (58 cm and 7 kg) intendedfor entertaining people by in-
teracting with them through movements and speech [97]. It understands many spoken com-
mands, says thousands words, and even learns new ones. Flashing colored lights around its
eyes are used to express emotions. Its most important quality is its motion-control system
that maintains its balance as it walks, runs, hops and dances. Sony had created the world’s
first running humanoid robot [98]. Initially, Qrio was planned to be marketed too, as Aibo;
however, it was ever a prototype, and was not launched commercially. After many years
and different generations, in 2006, Sony stopped both robots developments.
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(a) Kismet (b) Leonardo (c) Nexi

Figure 3.3: Social robots from MIT

(a) Aibo (b) Qrio

Figure 3.4: Social robots developed by Sony

3.2.3 Therapeutic social robots

Many social robots have been applied to therapeutic purposes; some of them are shown
in Figure 3.5. Omron Corporation (Japan) developedNeCoRo(2001) (Figure 3.5(a)): a
robotic cat that can be perceived as human companions and used as diagnostic and ther-
apeutic tools in psychological and clinical practice [99].Its real-life-looking creates a
playful, natural communication with humans by mimicking a real cat’s reactions. Its feel-
ings are generated according to recognition feedback, which is dependent on configurations
based on psychological concepts, leading to cognitive decisions and actions determined by
these feelings. Desires to sleep or be cuddled are generatedaccording to physiological
rhythms. Via a learning function, personality traits, suchas selfishness and the need for
attention, will change in response to the owner [100].

Other famous therapeutic robot,Paro (Figure 3.5(b)), was first exhibited to the public
in 2001. This is an advanced interactive baby harp seal robotdeveloped by the National
Institute of Advanced Industrial Science and Technology (Japan). They tried to apply it
in treatments similar to animal therapy, a special type of therapy that helps to heal peo-
ple through contact with animals. Many successful experiments have been achieved with
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patients in environments such as hospitals and residenciesfor elderly [101, 102, 103].
Robota (Figure 3.5(c))was developed by Billard as a mini-humanoiddoll-shaped robot

[104]. Its main goal is to investigate the use of toy robots for normal children and for chil-
dren with disabilities. Soon after, Robins et al.[105] presented the first results of long-term
experiments applying this robot to autism children. Some ofthese researchers stayed in this
research line and they developedKaspar (2005) (Figure 3.5(d)). It is a friendly robot which
helps children with autism to understand to read emotions and to engage with the people
around them [106]. It has simplified human-like features anda minimally-expressive de-
sign that invite children with autism to explore the robot. Several body gestures allow
social interaction and collaborative games. Kaspar is remote-controlled by the therapists
or even the children themselves. Some encouraging results have shown how some of the
children learn about social communication skills in repeated, long-term interactions with
Kaspar [107].

Other robots have also been applied to children with developmental disorders.Keepon
(2004, National Institute of Information and Communications Technology, Japan) is a small
creature-like robot designed for simple, natural, nonverbal interaction with children suffer-
ing autism (Figure 3.5(e)) [108]. Its design is effective ineliciting a motivation to share
mental states. It uses simple bodily movements (rocking, bobbing up and down, and vibrat-
ing) to express pleasure, excitement, and fear. Moreover, it has been observed an important
role of rhythm in establishing engagement between people and robots [109, 110]. In this
case, this robot is also used for entertainment purposes [111].

3.2.4 Social robots for assistance

Other robotic platforms support people in different duties, such as manipulating objects,
performing daily tasks, or increasing the capacity of people with special necessities. These
social robots work as assistants and some of them can be observed in Figure 3.6.

Phillips Corporation developed its social robot:iCat (2005). This is a desktop user-
interface robot (Figure 3.6(a)) with mechanically rendered facial expressions [112]. It is
able to recognize users, build profiles of them, and handle user requests. These profiles are
used to personalize domestic functions performed by the robot, such as lighting and music
conditions.

The Japanese company NEC also developed its research prototype communication
robot calledPaPeRo(first version on 2001) which is intended to live with people and
serving as companion, in particular to children and elderlies (Figure 3.6(b)). It is endowed
with autonomous behaviors (walking about, self-recharging,etc.), can play games and can
be remotely operated. A visual friendly development environment can be used for creating
new actions or functions.

Olivia (Figure 3.6(c)) is a receptionist robot created in the A*Star Social Robotics lab,
Singapore. Using its 17 degrees of freedom, Olivia is a social robot designed mainly for
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(a) NeCoRo (b) Paro

(c) Robota (d) Kaspar (e) Keepon

Figure 3.5: Therapeutic social robots

human-robot interactions and communication using speech,vision, and gestures [113].

The Spanish company AISoy Robotics is marketing the robotAiSoy1 (Figure 3.6(d))
which has its own personality. It is used for entertainment and educational purposes. It
expresses emotions by means of its face, voice, and lights [114].

In Fraunhor IPS, Germany, researchers have been working formore than ten years on a
mobile service robot that performs supporting tasks in homeenvironments. The last version
of their robot, calledCare-O-Bot 3 (Figure 3.6(e)) was presented in [115] (2008). Also,
it is meant to be applied in an eldercare facility in order to support the personnel in their
daily tasks.

Finally, Figure 3.6(f) showsTelenoid, an android with a minimal human appearance
for transferring different people’s presence to distant places regardless of their personal
features [116]. Its covering skin is made of high quality silicon so that it feels as pleasant
and soft as human skin when touched. The remote person operates the android by an
intuitive tele-operation system. The operator’s face directions, mouth movements, and
facial expressions are sent to the Telenoid. Also the operator’s voice is outputted from a
loud speaker embedded inside the Telenoid.
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(a) iCat (b) PaPeRo (c) Olivia

(d) AiSoy1 (e) Care-O-Bot 3 (f) Telenoid

Figure 3.6: Assistant social robots

3.3 Control Architectures based on motivations and emo-
tions

Traditionally, decision making systems in robots depend onthe control architecture and
its characteristics, and vice-versa. In this dissertation, the control architecture running in
the robot Maggie (Chapter 5) is extended by the addition of a decision making system
with emotions and motivations. Then, since emotions and motivations are one of the main
issues in this work, the main control architectures workingin real robots with emotions and
motivations are studied.

Recently, some authors have implemented cognitive-related concepts in their control
architectures, such as motivations, emotions, learning, etc. In this section, a review of these
works is presented and a special interest is put on those thathave inspired this research.

Several architectures for robots use motivations and emotions. Redko affirms that mo-
tivations ensure fine adaptation of agents to external environment variations [117]. Most
of the robotic studies regarding emotions employ them mainly for expressing the affective
state when the robots interact with humans. For example, Hirth et al. [118] have de-
veloped the UKL Emotion-based Control Architecture who claim to implement five emo-
tional functions (regulative, selective, expressive, motivational, and rating). However, after
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a deep reading and analyzing the experiments presented, apparently due to different under-
standings of these emotional functions, just few of them arecovered and, essentially, the
expressive one. In contrast, fewer works have studied how emotions influence other cog-
nitive states, such as motivations or decision making [119]. Matsuda [120] considers that
emotions should be incorporated into decision making of robots in order to endow them
with sociability.

In spite of the interest focused towards works implemented on real platforms, few rel-
evant works implemented just in virtual agents (at least in afirst stage) have also been
included in this compilation. This compilation is chronologically sorted for a more com-
prehensive reading.

3.3.1 The Cathexis architecture (Velásquez, 1997)

To the best of the author’s knowledge, one of the first works that considers emotions as
an integral part of the decision making process was developed by Velásquez [121, 1, 122,
123]. He shows how drives, emotions, and behaviors can be integrated into a robust agent
architecture namedCathexis. This architecture models some of the aspects of emotions
as fundamental components within the process of decision making. It has a distributed
model for the generation of emotions and their influence in the behavior of autonomous
agents. The Cathexis architecture is formed by three main modules: the Drive System,
the Emotion Generation System, and the Behavior System (Figure 3.7). In this model, the
emotional system is the main motivation of the agent.

Figure 3.7: General view of the Cathexis architecture by Velásquez [1]

Drives represent needs that motivate the agent into action,so they work as internal
stimuli. Each drive uses releasers to identify special conditions which either increase or
decrease the value of the associated drive. A releaser regulates a variable within a certain
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range. When the variable is not inside this range, an error signal is produced and fed to the
appropriate drive. Therefore, several error signals can becombined into the same drive [1].

In this work several basic emotions are modelled. Each one isnot a single affective
state but a family of related affective states (e.g. fear, fright, terror, panic, etc.) which
shares certain characteristics (antecedents, expression, reactions, etc.). These characteris-
tics distinguish one emotion family from other. For simplicity, an emotion family is just
referred as emotion.

Emotions can be elicited by internal (e.g. drivers, sensorimotor processes) and external
(events in the environment) stimuli which are constantly monitored by emotional releasers.
Emotional releasers constantly check fo the appropriate conditions that would elicit the
emotion they correspond to. Velásquez takes into account the existence of cognitive and
non-cognitive releasers, which are classified as neural, sensorimotor, motivational, and cog-
nitive. At first, these emotional releasers were pre-wired [121, 123]. In later works [1], the
system learns them through emotional experiences associating the emotions with different
stimuli. These new emotion-stimuli pairs will influence in future selection of actions when
the same stimuli is present again.

Each emotion has an activation threshold (over it, the emotion influences other emo-
tions and the behavior system) and a saturation threshold (maximum arousal for an emo-
tion). Despite of the discrete approach to emotions, each emotion has an intensity value
which is affected by its previous level, the emotional elicitors, and the interaction with
other emotions (inhibitories and excitatories). Moreover, each emotion has a particular
decay function which controls the duration of the emotion once it has become active. Emo-
tions also interact with drives, and vice versa. For instance, thehungerdrive might increase
thedistressor angeremotions, or high levels ofsadnessmight decreasehunger[122].

All emotion processes run in parallel and constantly updatetheir intensities. Actually,
more than one emotion may be active at the same time. Once an emotion is active, it can
excite or inhibit other emotions (e.g.fear inhibits happiness). The co-occurrence of two
or more basic emotions at a time results on secondary emotions, such asgrief is a mix of
sadness, anger, fear, and evensurprise[123].

In this architecture, emotions are differentiated from mood and temperament. Mood is
explained as low tonic levels of arousal within emotions. Temperaments are associated to
different activation and saturation thresholds for the emotions (e.g. a fearful individual has
low level activation for the emotion of fear).

The behavior System selects the most appropriate behavior according to the emotional
state at some point in time. It is also a distributed system composed of several self-
interested behaviors (e.g. “approach human” or “play”) competing for the control. Each
behavior, when become active, has an expressive component and influences the motiva-
tional system, i.e. it affects the levels of drives, the emotions, moods. and other behaviors.
behaviors can also mutually inhibit or excite each other (“wag the tail” might inhibit “run-
ning”). The competition for the control is based on the values of each behavior which are
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determined every cycle by thebehavior releasers, such as emotions, moods, drives, pain,
and external stimuli. Initially, the selection of behaviorworked in a winner-take-all man-
ner [123], but later a more elaborated combinatorial mechanism was proposed [1]; in this
work, the active, non-conflicting behaviors (e.g. “walk” and “cry”) can issue commands
simultaneously. In short, the selection loop initially reads the internal variables and the
environment which are used to update the motivation (both emotions and drives). Then,
considering the motivations and the external stimuli, the behaviors’ values are computed.
With these values, the resulting behavior is obtained.

Velásquez created models for six different emotions (anger, fear, distress/sadness, en-
joyment/happiness, disgust, andsurprise) that were used in synthetic agents as well as in a
pet robot.

3.3.2 Cañamero’s approach (1997)

The work developed by Lola Cañamero is other of the first researches done in this area
[124, 40, 29]. In Cañamero’s works, the original idea was that the behaviors of an au-
tonomous agent are directed by motivational states and its basic emotions. The motivations,
according to Cañamero, can be viewed as homeostatic processes that maintain a physiolog-
ical variable controlled within a certain range. When the value of this variable is not equal
to its ideal value, the drive emerges. Hence, the motivational state constitute urges to action
based on internal bodily needs related to self-sufficiency and survival, e.g. the motivation
of cold is related to the driveincrease temperature. The intensity of the motivation is a
function of its related drive and a certain external stimulus, also referred as environmental
stimuli or incentive cues [125]. Once the highest motivation is obtained, the intensity of
every behavior linked to this motivation is calculated and the one with the highest intensity
is executed. For some behaviors, the intensity determines the strength of the motor actions
or the duration of the behavior. Therefore, the motivation with the highest value organizes
the behavior of the agent in order to satisfy its drive.

The implemented artificial emotions (anger, boredom, fear, happiness, interest, and
sadness) follow a discrete approach and work as monitoring mechanisms to cope with
important situations related to survival. Emotions are activated as a result of the interactions
of the robot with the world, depending on different events. For example,angerbecomes
active when the goal of the agent is not finished, orboredomis activated when the agent
is enroll in a repetitive activity. Emotions in this approach work as second-order modifiers
or amplifiers of motivations. More precisely, emotions influence, proportionally to their
intensities, the decision making process by releasing “hormones” in two ways. First, they
can modify the intensity of the current motivation and, as a consequence, the intensity
of the related behaviors. In fact, in extreme cases, they canavoid the execution of the
behavior. Second, they can modify the reading of the sensorsthat monitors the variables
affected by emotions. Therefore, they can alter the perception of the state of the body, as
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well as the external world. Moreover, the hormonal release can affect the way behaviors are
executed. For example, the sad emotion provokes that behaviors are executed slower. Then,
emotions are characterized by a triggering event, an intensity, an activation threshold, a list
of hormones which are released when it is activated, a list ofphysiological manifestations,
and a list of physiological variables it can affect. In this work, several emotions can be
simultaneously activated, all of which contribute to the behavior by releasing hormones or
adopt a winner-take-all strategy [126].

The action selection loop starts by computing the effects ofthe emotional state and
the motivations are assessed. Then, the highest motivationand the behaviors that can best
contribute to its satisfaction (those whose effects alleviate the drive) are selected. If none
is found, other behaviors that contribute to it to a lesser extent are selected. Finally, when
a behavior is executed, it has an associated intensity (the urge) and both the world and the
body state change.

Later, Avila-García and Cañamero applied a “hormone-like”mechanism to adapt the
actions selection process to dynamic and changing environmental circumstances [127, 2].
Such mechanism modulates the perception of external stimuli in order to adapt the same
architecture to new environmental circumstances where therobot competes with others for
the same resources. Moreover, this modulation also acts over a drive making the action
selection process more sensitive to it. Figure 3.8 shows howthe hormones influence moti-
vations and behaviors.

Figure 3.8: Hormone-like modulation for the action selection process proposed by Avila-
García and Cañamero [2]
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3.3.3 The ALEC architecture (Gadanho, 1998)

Another relevant work is the one presented by Gadanho [128, 24, 129]. In this work, the
research is focused on how artificial emotions can improve the behavior of an autonomous
robot. In her approach, the robot adapts to its environment using an adaptive controller
adjusted by using reinforcement learning. Emotions are used to influence perception, as
Cañamero does, and to provide a reinforcement function. In these works, emotions (hap-
piness, sadness, fear, and anger) are determined by internal feelings (hunger, pain, restless-
ness, temperature, eating, smell, warmth, and proximity),and the relations between each
emotions and the feelings are predefined.

In later works, Gadanho presented the ALEC (Asynchronous Learning by Emotion and
Cognition) architecture where decision making is approached from two perspectives: emo-
tive and cognitive [130, 3]. Then, the ALEC architecture (Figure 3.9) is mainly composed
by the emotion and the cognitive systems. In this architecture, emotions take the form of
evaluations or predictions of the internal state and the goals are explicitly associated to a
set of homeostatic variables [131]. These homeostatic variables allow to learn the util-
ity of each behavior and make decisions considering that. Inaddition, a cognitive system
provides an alternative decision making process which can correct the emotion system’s
decision.

Figure 3.9: The Asynchronous Learning by Emotions and Cognition architecture [3]

The emotion system is composed in turn by other two subsystems: the goal system and
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the adaptive system. The goal system evaluates the behaviors selected and notifies when a
behavior should be interrupted. In other words, it determines the reinforcement and when
behavior switching should occur. The performance of a behavior is measured in terms of
the state of the homeostatic variables which must be maintained within a certain range. In
order to reflect the hedonic state of the agent, a wellbeing value is created which mainly
depends on the value of the homeostatic variables, their states, their transitions, and their
predictions. This wellbeing value is used as the reinforcement function.

The adaptive system is in charge of the learning process. It implements the Q-Learning
algorithm, so it learns the utility value for each action. These values are stored by neural
networks which are fed with the homeostatic variables and other sensory data. As a result,
the agent will try to maximize the reinforcement received byselecting among all available
actions.

Finally, the cognitive system is based on a set of rules extracted from the agent-environment
interaction which represent particular successful behavior selections. These rules can be
updated, deleted, or even merged. When one of these rules fitsthe current state, the sug-
gested behavior is promoted by adding a constant value to therespective Q-value.

As said before, following Tomkins’ idea that the human decision making process con-
sists on maximizing the positive emotions and minimizing the negative ones, emotions in
ALEC architecture are related to pleasant/unpleasant feelings working as reinforcement.
The wellbeing value plays this role and it also can be seen as an emotional feeling of the
overall state of the agent. Moreover, the learning process results on associating behavior-
state pairs expecting long-term wellbeing value which indicates thegoodnessof the avail-
able options, similar to the somatic markers proposed by Damasio[132]. The performance
is measured in terms of the state of these homeostatic variables which must be maintained
within a certain range.

3.3.4 Breazeal’s model (2000)

Probably, one of the most influential works in this area is theCynthia Breazeal’s thesis [4].
She continued Velásquez’s work and, as far as the author knows, she presented the first
social robot, Kismet (Figure 3.3(a)), endowed with a motivational system with emotions
and drives. Later, the system was also implemented in the robot Leonardo (Figure 3.3(b)).
She proposes a rather complex net of intertwined systems (Figure 3.10): the Emotion Sys-
tem where the robot’s affective state is determined, the drives that correspond to theinnate
needs, the Behavior System which is in charge of the arbitration of the available behaviors,
and other modules which are directly connected with the hardware.

Breazeal thinks on emotions and drives as two related motivational systems. Drives are
involved in the homeostatic regulation processes that maintain critical parameters within a
bounded range. Emotions are models of basic emotions which have particular functions.
They arise under particular circumstances, and motivate the robot to react in an adaptive
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Figure 3.10: An overview of the net of systems in Breazeal’s thesis [4]

manner. Each emotion has a corresponding expression which is exhibited when the emotion
arises. Breazeal centers her study on the communicative role of emotions and how they
improve the human-robot relationships. The role of the emotional system is to influence the
cognitive system to promote appropriate and flexible decision making, and to communicate
the robot internal states [133, 134, 135].

Kismet’s drives influence the behavior selection by passingactivation to some behaviors
over others. Besides, drives also pass activation energy toemotions influencing the robot’s
affective state too. The main characteristic of drives is their temporally cyclic behavior,
i.e. a drive will tend to increase in intensity unless it is satiated. Moreover, drives have
an homeostatic nature: their intensities should be within abounded range, the homeostatic
regime. The changes in a drive’s intensity reflects an ongoing robot’s need and the urgency
to satiate it. Kismet’s drives are maintained within the homeostatic regime in a never ending
process which involves the satiatory stimuli. When drives are in the homeostatic regime,
they spread activation energy to positive emotions. In contrast, when drives are out of the
homeostatic regime, negative emotions are enforced.

The Emotion System determines the active emotion in a particular context. Each emo-
tion is elicited under certain, defined conditions and provokes a specific behavior to serve a
particular function. Thus, an emotional reaction of Kismetconsists of some environmental
factors (releasers) and their affective appraisal, a characteristic expression, and a behavioral
response.
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The emotional releasers are evaluated with respect to: drives, the current affective state,
the active behavior, and relevant stimuli; with all, their activation level is determined. Re-
leasers with activation level above certain threshold are affective appraised. Inspired by the
Somatic Markers of Damasio [132], each releaser is tagged with three values: the arousalA

(how arousing it is), the valenceV (how favorable it is, pleasant/unpleasant), and the stance
S (how approachable it is) markers. Then, each emotion has an elicitor that filters all the
incoming [A, V, S] tuples from the somatic markers and, with those that passes its filter,
computes the average[A, V, S]. These average values are used to calculate the activation
level for the elicitor which is passed to the arbitration phase. In this phase, just emotion elic-
itors with activation level over a threshold level compite in winner-tale-all manner. Since
the activation level of an elicitor informs about its relevance to the current situation, the,
the highest one determines the active emotion. This emotioncan evoke the corresponding
behavioral response and/or affective expression.

Kismet’s observable behavior is not just determined by the active emotion, but drives,
perceptions, and others are involved too. However, the active emotion spreads activation
energy to specific behavior process. If this activation is strong enough, the active emotion
decides the robot’s behavior.

Kismet’s Behavior System is organized into a layered hierarchies of behavior groups
(Figure 3.11). Each group contains behaviors that compete for activation with one another
(the behavior’s relevance is determined by perceptual factors and internal factors). The
highest level is responsible for maintaining the homeostatic functions. Here, the influence
of the robot’s drives is very strong and this motivates the robot to come into contact with
the satiatory stimulus of the most urgent need. When a behavior in a group requires more
specific tasks these are embraced in a child behavior group representing different strategies
for achieving the parent’s goal.

As said, an emotion can take control of the robot’s behavior by sending sufficient ac-
tivation energy to its affiliated behavior such that this wins the competition among other
behaviors and becomes active. Recalling, each emotion is mapped to a distinct behav-
ioral response. In this model, the active behavior also influences the affective state, and
vice versa. For example, the succeed in achieving the goal ofbehavior is an antecedent
condition for elicitinghappiness.

3.3.5 Other works

Blumberg’s approach (1996)

Blumberg presented an architecture for autonomous virtualcreatures, or agents, that com-
bines learning with action selection [136]. These virtual creatures are endowed with mo-
tivational internal variables used to model internal state, such as level of hunger or thirsty
(similar to drives in other works). In this system, the agentlearns the existing behaviors



3.3. Control Architectures based on motivations and emotions 53

Figure 3.11: Kismet’s behavior hierarchy [4]

leading to the fulfillment of some previously-unassociatedmotivational goal when it is per-
formed in a novel context. Then, the Behavior System coordinates the available high-level
behaviors in a potentially unpredictable environment.

Blumberg affirms that, in nature, most of the learning focuses on the discovery either
of situations in which a consummatory behavior should become active (it satisfies its asso-
ciated motivational variable), or of behaviors that bring them closer to attaining some goal
(i.e. appetitive behaviors). Thus, it can be said that the internal variables that these consum-
matory behaviors satisfy lead most of the learning in animals. For that reason, Blumberg
adopted this perspective and the motivational internal variables lead the discovery of new
strategies for their satisfaction. Based on this approach,the variation in the value of the
motivational internal variables due to the activity of behaviors is used as the reinforcement
signal for the learning process.

In the Blumberg’s approach, there is no centralized learning. In contrast, each motiva-
tional internal variables serves as independent reinforcement signal. This means that the
behaviors for each motivational internal variable are separately learned.

Waiter-task robots (Murphy, 2002)

A curious application of emotional control in robots is the work presented by Murphy
[137]. In this paper, a team of two heterogeneous robots collaboratively perform a “waiter”
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task. A robot is the waiter (it serves items to an audience) and the other is the refiller (it
brings a tray of refills upon request). The controller for both robots is implemented in a
script-like manner. Both receive as inputs the task progress and the refiller has an extra
input: commands from the waiter. Besides, both have a Behavior State Generator (BSG)
achieving the action selection, and a Emotional State Generator (ESG) which determines
the current emotion. The emotion can be sent to the BSG, affecting the action selection,
or to the sensory-motor level, affecting how behaviors are performed. The authors have
defined four emotions (happy, confident, concerned, and frustrated) based on high task-
dependent variables (time til empty(tte) andtime to refill (ttr)). For example, the waiter
robot’s emotional state ishappywhen the time to be refilled is greater than the time it
should take to be refilled if the refiller is moving at expectedspeed. That is,tte > ttr.
Each emotion has a preprogrammed corresponding action tendency. E.g. if the emotion
is concerned, the waiter sends the “hurry” request to the refiller, and therefiller attempts
to move at her maximum speed. Therefore, the emotion’s influence is performed at two
different levels: the waiter’s emotion alters the action selection, and the refiller’s emotion
affects the sensory-motor level.

Color shirt-based emotional system (Hollinger, 2006)

In the work presented by Hollinger et al. [138], a continuousmultidimensional emotion
space is used to determine the affective state of a social robot in large crowds. While mov-
ing around, the robot uses a state machine to determine whichactions it should perform.
When a face is detected, the emotional state, in combinationwith the person’s color shirt,
determines the reaction the robot executes. This reaction is composed of brief movements,
saying a sentence, or playing a sound.

The affective space to determine artificial emotions is based on the Mehrabian PAD
scale, where the axes represent pleasure, arousal, and dominance. So, in this work, twelve
emotions are mapped into this three-dimensional space. In this approach, the emotional
releasers are related to different color shirts, and each color has a certain coordinate in the
PAD scale. The (P,A,D) values for each emotion define the sentence to say, the sounds
to play, and the parameters of the controller (maximum and minimum speed, minimum
distances, amplitude and duration for wiggling, and other constants). The system was
tested on a crowded environment and, during the experiments, people interacted longer
when the robot exhibited sad or happy behaviors than when it was angry.

Lisseti’s approach (2007)

Finally, another approach is the one presented by Lisseti and Marpaung in [139], where
the behavior of the robot is selected according to its current emotional state. They generate
this emotional state based on the data received from the input sensors of the robot. In fact,
each emotion is related to certain external events, e.g., the parameter of theSademotion
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is increased if the door is closed or the robot does not recognize someone. Once the emo-
tional state is determined, the robot will execute the proper action tendency, i.e., the robot
identifies the most appropriate (or a set of) actions to be taken from that emotional state.

In this work, each emotion has several properties: thevalencedescribes the pleasan-
t/unpleasant dimension of an affective state, theintensityrepresents the importance and
urgency of the affective state,focality indicates if the emotion is related to an event or an
object, theagencyindicates who is responsible for that emotion (the agent itself of other),
modifiabilityrefers to the duration and time perspective,action tendencyidentifies the most
appropriate action to be taken from an emotional state, andcausal chainidentifies the cau-
sation of a stimulus related to an emotion (e.g. happy was caused because something good
happened to me)

The resulting emotion is used for determining the facial expression. After, theBe-
havior State Generatorexecutes the corresponding behavior according to the inputfrom
the sensors and theaction tendencyof the emotion. For example,avoid_left_walland
avoid_right_wallbehaviors can be activated when the robot issurprised, whoseaction
tendencyis avoid.

Full-configurable user-oriented emotional robot (Lee, 2008)

Lee et al. [140] follow a different approach to the use of emotions for shaping robots’
behavior. They follow a user-oriented approach in developing an interactive framework
for configuring the robot’s behavior, i.e. the user can customize the behavior of his own
pet-robot. Authors propose a behavior-based control with afull-configurable emotion sub-
system for behavior coordination.

The emotion system models basic emotions (happy, angry, fear, bored, shock, and sad)
to coordinate the behavior controllers the user has pre-chosen for his pet. Each emotion is
independently quantified based on a set of events predefined by the user. For example, a
user can define that the appearance of a stranger implies the fear emotion to be incremented
in one unit. Moreover, another set of homeostatic variablesare defined to describe the
robot’s body state (e.g. hungry). These variables have to bemaintained in a specific range.
These ranges, as well as the events which modify the homeostatic variables, can be defined
by the user too.

In order to select the appropriate behavior at any time, a feed-forward neural network
maps emotion values and body states into the desire behavior. This neural network can be
trained by the user in order to obtain the desire pet’s behavior.

The TAME architecture (Moshkina, 2011)

Moshkina [5] presented cognitive and psychological modelsof human Traits, Attitudes,
Moods and Emotions for their application to robots. These models were integrated into an
architecture called TAME which is intended to influence the perception of a user regarding



56 Chapter 3. State of the Art

the robot’s internal state and the human-robot interactionitself. All these affective elements
strongly influence each other and intertwine in order to showlife-like appearance in robots.
A conceptual view of TAME is exposed in Figure 3.12.

Figure 3.12: Conceptual view of the TAME architecture [5]

Personality traits and affective attitudes represent a propensity to behave in a certain
way. Personality traits are not essentially affective, butthey influence on other affective
phenomena. They are permanent values that identify the patterns of behaviors and affects
that characterize individuals. Traits are defined a priory by a human

Attitudes are“general and enduring positive or negative feelings”about objects, peo-
ple, or issues. Attitudes are object-specific and they do notdirectly alter the behavior, but
rather through the emotions they invoke. They justify the use of attitudes because robots
sharing attitudes with human companions easier and better engage in interaction.

Affective state is formed by moods and emotions. Mood is low-activation, slowly-
varying diffuse affective state; it is as a slow smooth undulation. Moods represent a con-
tinuous affective state, cyclically changing and subtle inexpression. So, they only produce
small effects on the currently active behavior. Expressingmood can alert to changes in the
environment or in the robot itself. The level of mood is computed as a weighted summation
of external and internal variables. Considering an examplefrom the paper, positive mood
is more susceptible to energy consumption, and negative mood to darkness.
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Emotions are high-intensity short-duration peaks of affective state and provide fast and
flexible responses to relevant stimuli from the environment. In this paper, emotions’ func-
tions are mainly communicative and expressive. The selected emotions implemented were
fear, anger, disgust, sadnessand joy, because of their universal, well-defined facial ex-
pressions. Emotions are endowed with a set of properties which define their intensities:
activation, saturation, response decay, and linearity. Moreover, they are highly dependent
on traits and moods.

Emotions alter the robot’s behavior, from example“subtle slowing to avoid disgustful
object” or “drastic flight in response to extreme fear”. Experiments presented show how
the robot expresses the corresponding emotion or how emotions modify the current behav-
ior (for instance, slowing down the walking speed), but theydo not decide the goal or the
behavior to execute.

Behavioral arbitration or the changes to the behavioral parameters are performed on
the robot controller side, providing high portability and scalability. Actually, affect can be
implemented in continuous or discrete manner. In the humanoid Nao, a discrete approach
with a number of affective expressions has been implemented. The appropriate expression
is selected according to the actual values of TAME variables. These variables influence
the robot’s behaviors by altering certain parameters or selecting a predefined affective ex-
pression. Then, as said before, emotions are mainly employed to show the robot’s internal
state, and they are not involved in the decision making process, which is achieved in the
robot’s side considering the TAME variables.

The emotional robot head MEXI (Esau, 2011)

Esau and Kleinjohann [6] present a“fully emotional competence”robot head called MEXI,
which is intended for interaction with people by communication. It recognizes human
emotions from speech and facial expressions and it is able toadequately react to them. In
addition, MEXI is endowed with drives and artificial emotions which are used to manage
the control of reactive behaviors, and the corresponding robot’s internal state is shown
by facial expressions and utterances. The presented control architecture is a model-free
approach, so there is not an explicit world model and goal representation.

MEXI is endowed with a set of three drives,communication, playing, andexploration,
for achieving pro-active behavior. For example, when thecommunicationdrive is very high,
MEXI looks for people in the environment. When a person is perceived, thecommunication
drive is satisfied by following their face with its view and itimplies the emotionhappiness,
which is expressed by the smiling behavior. MEXI’s basic behaviors are classified into
expressive behaviorswhen they depend on its emotions state generating the corresponding
expression (facial, speech, and prosody), andcoping behaviorswhen they depend on the
drive state (talk, playing, following faces, etc).

For each drive, a range is defined and when the drive is inside,it is in homeostasis, i.e.
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it is balanced. The course of a drive changes over time, the drives internally increase and
decrease in a cyclical manner, even in the absence of external stimulation. By default, with-
out external stimuli, the drives follow a sine wave. The default course of a drive is altered
according to the acceleration factor, which determines theinfluence of stimuli. Stimuli
are perceptions and robot’s own behaviors influencing specific drives. They may accel-
erate or decelerate the drive’s increase or decrease. Thecoping behaviorssatisfy drives.
This course of drives is not very accurate in relation to animals, e.g. hunger in animals
always increases until it is satisfied due to the ingestion offood. According to Esau and
Kleinjohann’s model, hunger would increase and decrease without any ingestion, just over
time.

In relation to emotions,happiness, anger, sadness, and fear have been implemented
in MEXI. It strives forhappinessand avoids the others. As drives, emotions develop over
time. For each emotion, there is a threshold that defines whenthe robot has to show the
emotion. Stimuli influence emotions too by an acceleration factor related to emotions. This
acceleration factor is affected by the current perceptionsand drive state. In this work, drives
are linked to emotions and, hence, the variation of a drive concerning a certain emotion,
can influence its increase and decrease.

In order to show emotional competence, MEXI selects behaviors according to the emo-
tions of the human counterpart. Moreover, it also maintainsand regulates MEXI’s emo-
tional state in such a way that its drives are kept in the homeostatic area, and positive
emotions are reinforced while negative ones are avoided.

Figure 3.13: Control of the Behavior System by the Emotion Engine in the robot MEXI [6]

Behaviors are weighted according to external perceptions,the emotional state, and the
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drives. When the strength of an emotion reaches certain threshold, the gain value for cer-
tain predefinedexpressive behaviorsis set to the maximum value. In relation tocoping
behaviors, their gain values depend on the drives: if a drive increases/decreases, the gain
for the correspondingcoping behavioris increased/decreased by a certain amount per time.
Then, the relation between drives andcoping behaviorsare predetermined by the robot’s
designer.

Once behaviors have been weighted, they are ranked. Considering that the available
behaviors are also classified ascompetitiveor cooperative, if the behavior with the highest
value is competitive, this is the resulting behavior. Otherwise, the first behavior is cooper-
ative and then allcooperative behaviorsare proportionally combined to produce the final
one.

A multi-agent approach to emotions (Nair, 2011)

In other paper, Nair et al. [141] present a multi-agent approach for using emotions in
robots. In this work, dedicatedemotion agentswork concurrently. Multiple software agents
interact with one another to produce a set of emergent emotions based on the external
perceptions the robot perceives. These agents stimulate orsuppress other suchemotion
generating agentsfor certain time to finally result on anemotional control juicethat can
eventually alter the robot’s behavior.

An interesting point is that adrenaline is used as inspiration for the rate at which the sen-
sors are sampled. Higher negative emotion generation causes this rate to increase making
the system more aware of its environment. Higher positive emotions intensities cause this
rate to slow down. This metaphor for adrenaline is determined by the robot’s mood which
is generated by fuzzifying the emotion intensities. If the mood goes down, the system starts
to sample at faster rate as an attempt to ameliorate its condition. The higher the mood, the
lesser is the sample rate.

The emotion intensities are determined by the emotion resource, a time-to-live and
decay for stimulations and suppressions. The concept of emotion resource relates to the
affective capacity of a system to generate the associated emotion intensity. This is similar
to the intensity of happiness of a poor man who finds a 100C bill and subsequently finds
more such bills within a short time: the emotion intensity does not actually double or tre-
ble. The emotion resource diminishes with every generationof the emotion intensity, it
has a maximum limit of emotion generating capability, and itdoes not eventually lose its
secreting capability. After certain time the resource is depleted, theemotion agentcharges,
thus augments, the emotion resource. Also external sourcesaugment resources: rewards
augment the resource of positive emotions, and penalties equally perform for negative emo-
tions (reward and penalty are based on the task the robot performs). This is referred as the
replenishing capability ofemotion agents. The conversion of an emotion resource into
emotion intensity is proportional to the intensity of the stimulations received and also to
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the resource currently available. Moreover, the emotions decay over a period of time.
The system is implemented in a Lego NXT robot where three emotions control its mo-

tion along a path:happy, fear, andanger. Each of them are determined by the inputs com-
ing from relevant, specific sensors: the robot becomes happywhen it senses an increasing
light intensity gradient, fear is sensed when something comes very close, and angry when
the sound level exceeds a threshold. Rewards and penalties are simulated. The speed of
the robot is modulated based on the mood, so it is proportional to the sampling rate. In the
experiments shown, the robot moves along a straight path. Itmoves away faster from areas
with obstacles, sounds, and darkness. The dynamic samplingrate inspired on the effects of
adrenaline drives the robot out of situations which increase the negative emotions. Such a
mood thus serves as theemotional control juiceto moderate the behavior of the robot.

The use of separate agents for emotion generating allows to run them in different lo-
cations, or easily add/remove concrete emotion generatingagents (scalability). The elabo-
rated dynamics of emotions contribute in making the transitions from one emotion type to
the other more biological equivalent. However, the generation of emotions is very steady
and predefined. This makes the experiments rather simple, and simple results.

Fuzzyfied emotions (Kowalczuk, 2011)

Kowalczuk and Czubenko [7] propose to utilize models of psychology of living creatures
for adapting autonomous robots to the environment. They aremore concerned about the
interaction of the robot and its environment, where humans can be part of it too, instead of
focusing on human-robot interaction as others do. In their paper, robots are endowed with
a set of needs and these are influenced by several emotions. Then, emotions are used for
modeling the sense of fulfillment of needs.

Using fuzzy methods, each need results in three possible states labeled as satisfaction,
pre-alarm, and alarm. Emotions (referred asclassical emotionin the text) are some states
of mind, which modify the system of needs and reactions. Theclassical emotionis reduced
to a single variable, and decomposed into seven fuzzy sets, representing each one a single
fuzzy emotion (Figure 3.14). These fuzzy emotions are labeled asfear, anger, sadness,
indifference, happiness, curiosityand joy just for differentiating them. Also emotions are
modulated by “impressions” related to external objects (this is referred as “sub-emotions”
by the authors). Besides, the concept of mood is also appliedin this work. In this case, its
value is formed by theclassical emotionand moderates the fuzzy membership parameters
of the needs.

The decision on the reaction is made by a combined criterion composed by the max-
imum satisfaction level of the needs and a minimum distress level (related to the alarm
and pre-alarm thresholds). The influence of reactions on theneeds are predefined. Using
a fuzzy-neural network, each reaction is computed by performing a simulated estimation
of the effects of its application. Then, the best reaction isexecuted with the expectation
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Figure 3.14: Fuzzy model ofclassical emotions[7]

that the satisfaction of needs will be improved. The reaction, the context of the current
emotions, and the amendments on particular needs are storedto improve the estimation of
the effects of any reaction and, thus, to optimize the decision.

This system has been tested on simulation and a simplified version, based solely on
needs, has been implemented on a laboratory mobile platformin a easy environment. Au-
thors state that the robot acts like a baby satisfying the robot needs.

Arkin’s moral emotion of guilt (2012)

An interesting application of emotions in military robots is presented in [142]. Arkin pro-
poses a moral decision making for lethal military robots based on ethical issues. Moral
emotions are used to modify the robot’s behavior based on theresults of its actions. Fo-
cusing on ethical behaviors in autonomous agents, Arkin considers the moral emotions
proposed by Haidt [143] and, particularly,guilt is implemented in his system. In this case,
guilt follows the definition given in [143]: guilt is “caused by the violation of moral rules
and imperatives, particularly if those violations caused harm or suffering to others”. In
Arkin’s work, guilt is originated when the military robot’sactions cause undesired effects
and it is used to alter the future robot’s behavior by preventing the same actions to occur.

Guilt is implemented as a variable which will increase according to the feedback pro-
vided by external operators and self-monitoring processes. When this variable exceeds a
certain threshold, the robot can not perform any lethal action because it is not considered as
ethical and there is no option for permission-to-fire. Once this happens, the robot can stay
in the battle field but just for non-lethal operations (surveillance, reconnaissance,etc.). This
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non-lethality state remains active in the robot until an “after-action review” or an operator
override the restriction and explicitly takes the responsibility.

In order to modify the robot’s behavior, the weapon system ofthe robot has been clas-
sified according to the different destruction potential, each one with a different guilt thresh-
old. Once guilt value exceeds one of these thresholds, the weapons corresponding to the
associated class are deactivated. The higher destructive aweapon class is, the lower thresh-
old is assigned. When guilt reaches its maximum, all weaponsare deactivated and the robot
cannot engage targets any more until “after-action review”. This use of guilt recognizes the
bad behaviors and provides the opportunity to reconsider specific actions and their results
for the future. Hence, guilt can alter the robot’s behavior for an autonomous agent.

3.3.6 Comparative analysis

After this overview, it seems that there are several elements present in most of the works.
The majority of the authors considers some kind of internal variables representing needs.
Furthermore, external perceptions directly influence the decision making process itself, or
indirectly through altering other elements such as motivations, emotions, or perception.
In addition, emotions influence, in one way or another, the behavior selection and behav-
iors alter the internal state of the robot. Then, these ideaswill be kept in this thesis too.
However, the above commented works differ in many aspects. Next, the most relevant
differences are mentioned.

The homeostatic approach

Drives, needs, or internal stimuli, are all synonyms of the same concept related to home-
ostasis in living beings. This implies a temporally cyclic course of these drives, but the
homeostatic approaches are significantly different. In this thesis, drives have an ideal value
of zero, and any deviation from it represents the need and urgency to satiate it. The bounded
range in Breazeal’s drives does not exist in the model considered in this thesis, but there
are activation levels for motivations that play a similar role but at a higher level. Velásquez
suggests releasers for drives that check certain conditions for increasing or decreasing their
values.

The influence of behaviors

Despite of almost all authors suggest the influence of behaviors to drives (specially as satia-
tory stimuli), Breazeal proposes also that behaviors influence over emotions too. However,
in this thesis, the focus is put on how emotions help to shape the decisions made by the
robot, so the flip side is not covered.
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Behavior arbitration

Just few of the authors provide a mechanism to execute several behaviors concurrently
(Velásquez and Esau), in contrast with the others who propose a winner-take-all manner
where one behavior is exclusively executed according to themost relevant emotion or mo-
tivation. The present dissertation follows the last approach.

Different models of emotions

Two main categories of models for emotions have been observed: continuous (or dimen-
sional) and discrete.

Many researchers think that the relation between situations and emotions is mediated
by a set of intermediate variables. These variables act as dimensions of an affective space
and each emotion is associated to a different zone of the affective space [31, 144, 7]. These
dimensional theories represent emotions as points in a continuous dimensional space.

On the other hand, other authors, such as Velásquez or Cañamero, consider emotions
as discrete categories. This approach is more focused on looking for the adaptive function
for each emotion and, regardless of its implementation, include them into a model [145].
These represent a functional approach, also referred as rational theories [78].

In the discrete emotional approach, dimensions of emotional intensity can be still em-
ployed, but these are applied within each emotional category (e.g. Moshkina, Esau, or
Lisseti). However, as Lazarus says [145], the dimensional theories underestimate the im-
portance of distinctions among emotions because they look for the minimum number of
dimensions for emotion differentiation. Moreover, the dimensional models miss interest-
ing features of emotions when several emotions fall extremely close on the affective space
[65]. These emotions occupy a small space and may be indistinguishable in the affective
space, but easily distinguishable with characteristic features.

Besides the above mentioned models of emotions, Olteanu [78] considers another group
of theories: anatomic theories, which try to recreate the neural links and processes that
underlie organism’s emotions. However, to the best of the author’s knowledge, this has not
been implemented in robots yet.

The role of emotions

One of the controversial aspects of some of these works is that some authors claim that
they implement all or the main functions of emotions. From the author’s point of view,
several implemented emotions miss one of the key roles of emotions: the motivational role,
that is, the capacity of emotions to incite to act. For example, Esau et al. claim that their
implemented emotions are used to control the behavior of therobot MEXI but its emotions
are just considered in the control ofexpressive behaviors. Therefore, in relation to the
inner robot’s state, emotions are used for showing the affective state. Moshkina, in the
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TAME architecture, allows emotions to modify the way a behavior is executed, but not
what behavior to execute or what goal to pursue. Moreover, the goal’s of the Lee’s adaptive
pet-robot are not affected by emotions at all.

How many emotions?

According to Spinola and Queiroz [146], another important issue related to the implemen-
tation of artificial emotions in robots is: How many and whichemotions must be selected?
Some authors defended the idea of implementing a varying number of emotions, from 3
(Nair) to 12 (Hollinger).

The models with the highest number of emotions correspond tothose following a di-
mensional approach. This is due to the “easy” of defining a newartificial emotion just by
delimiting a region in a dimensional space.

One very different point of view is presented by Cañamero in [147]: “Do not put more
emotion in your system than what is required by the complexity of the system-environment
interaction”. Therefore, she suggests to include just the required emotions for the task.

Learning

Several works consider some level of learning in their architectures for different purposes.
For example, Velásquez’s architecture allows to learn the emotional releasers. However,
learning is mainly applied to learn when a behavior must be activated. Blumberg uses its
motivational variables as reinforcement signal for learning the situations for each behavior.
These signals are independently employed, so the behaviorsfor each motivational variable
are separately learned. This might result on situations where certain behavior is appropri-
ate for certain motivational variable, but rather detrimental for others. In contrast, Gadanho
considers a broader measure ofsatisfactionas reinforcement signal: the wellbeing, which
depends on all the homeostatic variables and other values. This avoids the potential detri-
mental effects of Blumberg’s approach.

Bio-inspiration

Some of these works do not follow a bio-inspired approach to emotion and they are very
task-dependent (e.g. Murphy and Lee). These systems lack generality, and flexibility. In
addition, emotions lack its functionality and they are loosely couple with its original reason
to exist. However, these works present different applications and contexts that proof the
applicability of emotion-inspired systems.

Moreover, most of the works lack some “cognitive” aspects ofemotions in animals such
as anticipation, appraisal of situations and consequences, control of emotions, or emotion
learning (e.g. Cañamero’s, Arkin’s, or Hollinger’s works). This dissertation tackles two of
them: appraisal and learning.
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3.3.7 Why do robots need emotions?

After reviewing the most relevant works where emotions are considered in robots, many
readers perhaps are still asking about their utility. Some researchers are against including
artificial emotions in artificial creatures. In 1979, Hofstadter [148] stated that simulation
of emotions cannot approach the complexity of human emotions, which arise indirectly
from the organization of our minds. However, several authors have expounded their rea-
sons to include artificial emotions in robots besides their importance in the human-robot
interaction.

According to Arkin, motivations/emotions provide two potential crucial roles for robotics:
survival and interaction [27]. Cañamero considers that emotions, or at least a sub-group
of them, are one of the mechanisms founded in biological agents to confront their envi-
ronment. This creates ease of autonomy and adaptation. For this reason she considers,
similarly to Arkin, that it could be useful to exploit this role of emotions to design mecha-
nisms for an autonomous agent [29]. Both researchers believe that emotions significantly
enhanced human-robot interaction.

Moreover, Cañamero claims that emotions must be included tobuild “better adapted
and more life-like creatures”[66]. In [149], Cañamero lists possible application of emo-
tion to problems of autonomous robots: management of goals,repetitive and inefficient be-
havior, autonomous learning, and cognitive overload. Moreover, Scheutz proposes twelve
potential roles of emotions in agents [150]: action selection, adaptation, social regulation,
sensory integration, alarm mechanisms, motivation, goal management, learning, attentional
focus, memory control, strategic processing, and self model. Hence, there seems to be
many applications where emotion-inspired systems could bebeneficial.

In relation to motivations, Cañamero states that motivations have to be integrated in
artificial systems to promote decision making, activity selection, and autonomy [66].

On the other hand, Ortony explains that robots need emotionsfor the same reason as
humans do: one of the fundamental functions of emotions is that they are a requisite for
establishing long-term memories. The second function is that emotions provide opportu-
nities for learning, from simple forms of reinforcement learning to conscious and complex
planning [151].

In the same line, Bellman [28], Fellows [152], and Kelley [153] state that, since emo-
tions allow animals with emotions to survive better than others that lack emotions, robots
should be provided with features related to emotions in a functional way.

Picard [154] justifies the use of artificial emotions to mimicliving humans and animals,
create intelligent machines, and try to understand human emotions.

Finally, Olteanu [78] states that artificial emotions are beneficial for social robots be-
cause improve human-robot interaction, gives informationto the user (robot’s internal state,
goal, intentions, etc.), and can drive the behavior. He affirms that emotion-based robot ar-
chitectures enhance believability and effectiveness of robots.
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Minsky summarized all these ideas in just one sentence:“The question is not whether
intelligent machines can have any emotions, but weather machines can be intelligent with-
out any emotions”[155]. Following this same idea, Alvarado does not questioneither
about the inclusion or not of emotions and motivations into intelligent systems, but how to
do so [156].

3.3.8 Differences with the followed approach

This dissertation has been mainly inspired by Cañamero’s, Gadanho’s, and Velásquez’s
works. As will be shown in following sections, homeostatic drives related to motivations
are employed, as those authors do. In the approach followed in this dissertation, the mo-
tivations, and not the behaviors (as referred to in Velásquez’s, Breazeal’s, or Esau’s ap-
proaches), compete among each other following the point of view of Cañamero, and the
dominant motivation drives the robot’s behavior. Nevertheless, in her approach, the winner
motivation has a related behavior that satisfies the associated need. Moreover, a discrete
emotional approach is followed and it is considered that therelation between situations
and emotions is different for each emotion. Therefore, eachemotion requires a particular
study to establish this relationship. Following this last point of view, currently, this research
focuses on three emotions: happiness, sadness, and fear.

In fact, one of the main differences of this thesis with othermotivational decision mak-
ing methods is that the behaviors are not necessarily previously linked with a need, a mo-
tivation, or an emotion. This means that there are no pre-wired motivational or emotional
behaviors. Then, the robot will learn by itself, using a reinforcement learning algorithm,
which behavior to select in order to satisfy each drive, following the same approach pro-
posed by Gadanho. Therefore, they are not known in advance. In contrast, in Breazeal’s
thesis certain behaviors are assigned to certain emotions.Others (Velásquez, Sloman, Esau,
Shivashankar, or Esau) propose certain predefined influences between emotions and behav-
iors. In Cañamero’s works, it is assumed that there is only one behavior able to satisfy one
need. This fact can be seen as a disadvantage, since it limitsthe flexibility of the decision
making system. It could happen that several behaviors satisfy the same need. This point of
view seems to be more bio-inspired since, in nature, in orderto satisfy, for example, hunger,
we can eat something but also drinking some water can reduce this need. In other works,
behaviors are not just linked to emotions, but to drives too (Esau, Breazeal, Kowalczuk,
Lee, and Sevin). This is viewed as putting extra knowledge into the system.

Besides, also emotional releasers are predefined in almost all systems. For example, in
Breazeal’s work, there are predefined conditions that elicit different emotions [4]. In this
thesis, the robot learns from all available actions the bestone in each context. Moreover,
the emotional releasers follow a very high-level pattern (e.g. happiness is elicited when the
robot’s wellbeing increases), and particular cases are learned by reinforcement learning.

Other difference is that, in the approach followed in this dissertation, the way each
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emotion is defined in the architecture is different. This means that emotions are not defined
as a whole as most authors do. As can be observed, there are twopoints of view in relation
to the role of emotions in the decision making process. Cañamero, Gadanho, Velásquez,
and Breazeal used emotions to influence the decision making process, not for selecting the
behavior directly according to them. On the contrary, others, such as Hirth et al, Hollinger
et al, and Lisseti and Marpaung consider emotions as the central aspect of their decision
making system so, in some cases, the behavior is selected according to the current emo-
tional state. In the present dissertation, the role of emotions are not limited to one of them,
but both points of view are exploited. On one hand, some emotions are used as the re-
inforcement function in the learning process, as Gadanho also proposed, not determining
directly the action selection. On the other hand, other emotions are defined as motivations
so, the behaviors will be completely oriented to cope with the situation that generated those
emotions. Hence, drives and emotions are not considered as different motivation systems,
as Breazeal proposes. Both are integrated into a unique motivation system where the mo-
tivational aspects of some emotions and “physiological” needs are considered in a similar
manner, in relation to motivational aspects.

3.4 Summary

In the first part of this chapter, the most relevant social robots have been shown and com-
mented according to their characteristics and functionalities. This thesis has been devel-
oped in a different robotics platform: the social robot Maggie, which is detailed in Chapter
5.

Following, the most important control architectures and interesting applications where
motivations and emotions shape the robot’s behavior have been analyzed. The foregoing
overview did not aim to be an exhaustive record about the roleof emotions in robots found
in the literature, but a brief summary of the most important emotion inspired methods used
to tackle the decision making in robots. As mention in the last section, several of these
works have served as inspiration for this thesis. Furthermore, in the last section, the main
differences with previous works have been remarked.

Next chapter presents the details of the approach followed in this thesis.
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CHAPTER 4

The decision making system

4.1 Introduction

One of the main goals stated in Chapter 1 corresponds to increase the robot autonomy
by means of a decision making system (from now on referred as DMS) based on the ideas
presented in Chapter 2. This chapter presents the theoretical principles of the DMS which
is implemented in a robot. As mentioned, it is composed by drives, motivations, emotions,
and self-learning. Following, the bio-inspired motivational DMS is introduced (Section
4.2). Later, the principles and concepts of the self-learning process are exposed (Section
4.3). Finally, the emotions involved in the decision makingprocess are analyzed (Section
4.4).

4.2 A motivational decision making system for a social
robot

In this thesis, a DMS for a social robot based on motivations,where no specific goals are
given in advance, is implemented. The objective of the robotis to feel good, in the sense
that it has to keep its needs within an acceptable range. Nevertheless, the way to achieve
this goal is not defined.

In this DMS, the autonomous robot has certain needs (drives)and motivations. The goal
is to survive by maintaining all its drives satisfied. For this purpose, the robot must learn to
select the right action in every state in order to maximize its wellbeing. The wellbeing of
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the robot is defined as a function of its drives in the next section.
The decision making system presented in this section was initially designed by Malfaz

[49]. This model was tested on virtual agents [157, 42, 158],and in this thesis it is adapted
to a real robotic platform living in a laboratory.

First, considering the ideas presented in Chapter 2, the concepts of drive and motivation
in the proposed system are introduced. As mentioned in Chapter 2, drives indicates a
deficiency or a demand that causes the desire to satisfy this demand or to overcome the
deficiency. Such a demand usually motivates and evokes action for its satisfaction. So,
drives are often viewed as homeostatic processes that motivate actions in order to reach
and keep a certain balance [6]. Recalling, the term homeostasis means maintaining a stable
internal state [53]. Then, the robot’s internal state is configured by several variables, which
must be around an ideal level. When the value of these variables differs from the ideal one,
an error signal occurs: the drive. These drives constitute urges to act based on bodily needs
related to self-sufficiency and survival [124]. In this approach, the drives are considered as
the needs of the robot. The ideal value for a drive is zero, which corresponds to the lack of
need. As time goes, the drive increases until it is reduce or satiated (reset to zero).

Motivations are those internal factors, rather than external ones, thaturge the organ-
ism to take action [59]. Following the ideas of Hull [60] and Balkenius [159] [160], the
intensities of the motivations of the robot are modeled as a function of its drives and some
external stimuli. The motivational states represent tendencies to behave in particular ways
as a consequence of internal (drives) and external factors (incentive stimuli) [161]. In other
words, the motivational state is a tendency to correct the error, i.e. the drive, through the
execution of behaviors.

In order to model the motivations of the robot, the Lorentz’shydraulic model of motiva-
tions is used as an inspiration [162]. In Lorenz’s model, theinternal drive strength interacts
with the external stimulus strength.External stimuli are perceptions coming from the
environment that alter the tendency to act, that is, the motivations to behave in one way
or another. For example, in animals, the smell of a tasty foodincreases the motivation to
eat. Therefore, if the drive is low, then a strong stimulus isneeded to trigger a motivated
behavior. If the drive is high, then a mild stimulus is sufficient [53]. If the drive or the
stimuli separately are strong enough, a behavior can be induced without the influence of
the other. The general idea is that we are motivated to eat when we are hungry and also
when we have food in front of us, although we do not really needit. In nature, a weak
stimulus (e.g. spoiled food) but a strong motivation (e.g. starving) may result in the same
behavior as a strong stimulus (e.g. chocolate cake) but weakmotivation (e.g. full stomach)
[136]. Therefore, the intensities of the motivations are calculated as shown in Equation 4.1

If Di < Ld thenMi = 0
If Di ≥ Ld thenMi = Di + wi

(4.1)

whereMi is a particular motivation,Di is the related drive,wi corresponds to the related
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external stimuli, andLd is called the activation level. Motivations whose drives are below
their respective activation levels will not be able to lead the robot’s behavior.

According to Balkenius [159, 160], all excited motivational states cannot be allowed
to direct the robot at once since this would generate incoherent behaviors. In his opinion,
this problem cannot be handled solely by behavioral competition but must be resolved at
an earlier stage of processing. The solution proposed is a motivational competition, as
Cañamero also proposed in [124]. Therefore, in this approach, once the intensity of each
motivation is calculated, they compete among themselves for being the dominant one. The
motivation with the highest value, and which drive is over its activation level (Equation
4.1), is considered thedominant motivation, and it determines the internal state of the
robot. If the drive is below the activation level, it does notcompete for being the dominant
motivation.

When none of the drives is greater than its activation levelLd, it happens that there is
not a dominant motivation. This occurs when all drives are satisfied or, at least, their values
are close to their initial values of zero. This implies that the robot’s wellbeing is very high,
close to the ideal wellbeing (Section 4.3.2). The lack of dominant motivation means that
all needs are not high enough to induce the robot to act, so it is in a pleasant state. This
is interpreted in such a way that a particular behavior that reduces the drive related to the
dominant motivations is not necessary.

The state of the robot is a combination of the inner and external state. The inner state,
as has just been explained, is determined by the dominant motivation of the robot. The
external state is defined by its relation to every object in its environment (detailed informa-
tion about how the state is formed can be found in Chapter 6). The action selected at each
moment will depend on the state of the robot and the potentialactions, since the external
state restricts the possible actions. In humans, for example, we can not eat if we do not
have food. It is important to note that initially the robot does not necessarily know the con-
sequences of its actions, nor the reinforcement that it willreceive. For instance, the robot
does not know that after recharging its batteries, its levelof energy will be high. The robot
just has the knowledge about which actions can be executed inevery state.

In this DMS, there are not predefined, motivational behaviors. This means that the
robot does not necessary know in advance which actions to select in order to satisfy the
drive related to the dominant motivation. There is a repertory of actions and they can be
executed depending on the relation of the robot with its environment, i.e. the external state.
For example, the robot will be able to interact with people aslong as it is accompanied
by someone, or it cannot turn the music player on if the robot is far from it. Through the
learning process, the robot learns what action is the best inevery situation.
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4.3 Learning in the DMS

One of the aims of this DMS is to provide the robot with a mechanism for learning how
to behave in order to maintain its needs within an acceptablerange. That is to say, as
mentioned before, the robot must learn to keep its wellbeingas high as possible. For
this purpose, it uses reinforcement learning (Chapter 1) tolearn from its bad and good
experiences. Following, reinforcement learning (RL) is introduced and the well-known Q-
Learning algorithm is summarized in order to provide a better understanding of the learning
process.

4.3.1 Reinforcement Learning

In a decision making process, the main concern is related to the decision of which action
to take as a function of the available state. By means of RL, the robot learns what to do
so as to maximize the reward. Then, it maps states to the actions that are the best in those
situations. This map is called the policy.

The decision making loop for an agent in a RL framework is shown in Figure 4.15: at
time t and in a certain state (st), it executes an action (at) leading it to a new state (st+1).
As a consequence, the environment responds with a reward (rt+1). From that new state the
agent executes another action and so on.

Agent

Environment

action

a
t

r
t+1

s
t+1

reward

r
t

state

s
t

Figure 4.1: Typical iteration in a reinforcement learning context

The reward informs about the suitability of an action in a particular state (how good
the action has been in the current state) [163]. Thevalueevaluates the long run and it is

5This figure was originally presented in [163]
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defined as the discounted sum of all the expected reinforcements:

value = r1 + γ · r2 + γ2 · r3 + γ3 · r4 + ... (4.2)

The parameterγ (0 < γ < 1) is known as the discount factor, and defines how much
expected future rewards affect decision now. The goal of RL is to maximize the total
expected reward [164].

RL is a goal-directed learning because the reward function defines the goal. Rewards,
more specifically, reward functions in RL, determine the problem the learning agent is
trying to solve. RL algorithms address the problem of how a behaving agent can learn to
approximate an optimal behavioral strategy, called a policy, while interacting directly with
its environment. Roughly speaking, an optimal policy is onethat maximizes a measure of
the total amount of reward the agent expects to accumulate over its lifetime, where reward
is delivered to the agent over time via a scalar-valued signal. Then, this type of learning
allows the agent to adapt to the environment through the development of a policy that
determines the most suitable action in each state.

RL allows an agent to learn behavior through trial and error interactions with a dynamic
environment, i.e. the agent learns from its own experienceshow to behave in order to fulfill
a certain goal. An agent is connected with its environment via perception and action and
they continuously interact. On each iteration the agent receives information about the state
s of the environment. Then, the agent chooses an actiona and executes it. The action
changes the state of the environment. Finally, the agent receives a reinforcement signalr

which gives an idea about how well actiona performances from states. The goal of the
agent is to find a policy, mapping states to actions, that maximizes some long-run measure
of reinforcement [165]. Therefore, the behavior of the agent should choose actions that
tend to increase the long-run sum values of the reinforcement signal.

In the case of a robot, pairs formed by the state of the robot and an action(s, a) have
an associated value which represents the utility of that action in that state for the robot.
These values will be tuned by interaction between the robot and the environment during
the learning process (details about the particular learning algorithm can be read in Chapter
6). Then, the autonomous robot learns, from scratch or usingsome a priori information,
the proper behavior to select in every state through its interaction with the environment.

One of the key points in RL is the trade-off betweenexploration andexploitation.
This refers to how the next action to execute is selected. When a RL agent wants to obtain
the highest reward, it chooses the already tried actions which produces the highest reward.
But, in order to identify these actions, it has to try unknownactions. That is to say, the
agent has toexplorenew actions toexploit later the best ones [163].
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The Markov property in RL

In RL environments, the decisions and values are functions of the current state. Then,
the states must provide enough information to make a good decision. When a state space
retains all relevant data it is said that it has the Markov property [163]. This implies that
all that is relevant for the future is kept in the state. In other words, the current state must
include all relevant data observed in past experiences.

In a general RL case, the response from the environment, at a certain moment, depends
on all what has happened before. If the Markov property is present, the response just
depends on the last state and action. Mathematically, it is defined in Equation (4.3) and it
is graphically presented in Figure 4.2.

Pr{st+1 = s′, rt+1 = r|st, at} (4.3)
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Figure 4.2: A Markovian RL problem

In spite of the Markov property seems to be a requirement for solving RL problems,
Sutton and Barto do not think that it is a must:“Even when the state signal is non-Markov,
it is still appropriate to think of the state in reinforcement learning as an approximation to
a Markov state”[163].

Markov states provide an excellent support for predicting future rewards and selecting
the most appropriate actions. Then, the closer the state is to the Markov property, the better
results from RL systems are obtained. In conclusion, RL algorithms can be successfully
applied to problems with states that do not strictly fulfill the Markov property.

The same situation can be observed in humans as well. Humans are able to make correct
decision even if they do not have all the information. For example, imaging you desire to
forecast the tomorrow’s weather. In this case, the state is determined by all the relevant
information that you have ever observed about the weather (the current period of the year,
the current temperature, the color of the sky, the weather during that week, the wind, the
humidity, etc) and how it influences the tomorrow’s weather.In practice, this is far to much
to remember and analyze, and much of these data will not be considered in your forecast.
However, some people are very proficient at weather forecast, even if they do not have
access to a perfect Markov state representation.

In this thesis, the internal state of the robot just considers the dominant motivation,
but not the others. Therefore, the final state (internal and external) is not fully Markov
because the rest motivations are not represented. This lackof representation would cause



4.3. Learning in the DMS 75

violations of the Markov property. However, following the explanation exposes in the last
paragraphs, the Q-Learning algorithm is used for learning the proper policy and the results
obtained have been successful, as presented in Chapter 9.

The Q-Learning algorithm

RL has been successfully implemented in several virtual agents and robots [166, 167, 168,
169, 170, 171]. One of the main applications, for robots or agents, is the learning of com-
plex behaviors as a sequence of basic behaviors. Those complex behaviors allow to opti-
mize the adaptation of the agent or robot to its environment.The reinforcement learning
algorithm named Q-learning [172] has become one of the methods that is most used in
autonomous robots [173, 174, 175, 176]. Actually, the learning algorithm implemented in
this thesis is a variation of the Q-Learning (Chapter 6).

The goal of the Q-learning algorithm is to estimate theQ values for every state-action
pair. TheQ value is defined as the expected reward for executing actiona in states and
then following the optimal policy from there [48]. EveryQ(s, a) is updated according to:

Q(s, a) = (1− α) ·Q(s, a) + α · (r + γV (s′)) (4.4)

where:

V (s′) = max
a∈A

(Q(s′, a)) (4.5)

is the value of the new states′ and is the best reward the agent can expect from the new
states′. A is the set of actions,a represents a single action,r is the reinforcement,γ is the
discount factor andα is the learning rate.

The learning rateα (0 < α < 1) controls how much weight is given to the reward just
experienced, as opposed to the oldQ value estimate [164]. This parameter gives more or
less importance to the learned Q values than new experiences. A low value ofα implies that
the agent is more conservative and therefore gives more importance to past experiences. If
α is high, near1, the agent values, to a greater extent, the most recent experience.

Parameterγ (0 < γ < 1), the discount factor, defines how much expected future
rewards affect decision now (it was introduced in Equation (4.2)). A high value of this
parameter gives more importance to future rewards. A low value, on the contrary, gives
much more importance to current reward [164].

A policy π defines the behavior of the agent. It defines a mapπ : S −→ Π(A) from
states and actiona (a ∈ A(s)), to the probability of taking actiona when in states.
This value corresponds to the expected return when startingin s and following the policy
thereafter [163].

As previously said, the final goal of the agent is to learn the optimal policy, the one
that maximize the total expected reward. This is a deterministic policy that relates, with
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probability1, the actions that must be selected in every state. Once the optimal function
Q∗(s, a) is obtained, it is easy to calculate the optimal policy,π∗(s), considering all the
possible actions for a certain state and selecting the one with the highest value:

π∗(s) = arg max
a

Q(s, a) (4.6)

In practice, the optimal policies rarely happen. The required extreme computational
cost and memory are a relevant constrain. Therefore, approximate optimal policies are the
goal.

RL, optionally, can consider models of the environment. These models are replicas of
the behavior of the environment and they are used by some RL methods (e.g. dynamic pro-
gramming) for state-space planning. Its utility is limitedbecause of its computational cost
and the assumption of perfect models [163]. However, the Q-Learning algorithm follows a
model-free approach because the system knows neither the consequences of executing an
action (the next state) nor the reward that will be obtained.It just knows the actions that
can be executed with each object.

4.3.2 The robot’s wellbeing

As previously said, RL requires a reward function which determines the goal. As said
before, the objective is to keep the robot’s needs as low as possible. Therefore, the reward
function is related to the its wellbeing.

In this implementation, based on the drive reduction theory, which states that the drive
reduction is the chief mechanism of reward [60], the reinforcement function will be the
variation of the wellbeing of the robot. The robot’swellbeing is a function of its drives and
it measures the degree of satisfaction of its internal needs. Mathematically:

Wb = Wbideal −
∑

i

αi ·Di, (4.7)

whereαi are the ponder factors that weight the importance of each drive on the wellbeing
of the robot.Wbideal is the ideal value of the wellbeing which corresponds to the value of
100. It is easy to observe that as the values of the needs of therobot (the drives) increase,
its wellbeing decreases. Thus, drives are inversely proportional to wellbeing: the lower the
drives are, the higher the wellbeing is. Therefore, the reward value for one action executed
in certain state corresponds to the variation of all the drives during its execution, that is,
the wellbeing variation. For example, for an actiona, the reward is computed according to
Equation 4.8.

rewarda = ∆Wba = Wbafter a −Wbbefore a (4.8)
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Considering Equations (4.8) and (4.7), the total reward foran action depends on how
fast drives change their values during the execution of thataction. Moreover, the posi-
tive/negative variation of the wellbeing is interpreted ashappiness/sadnessin the learning
algorithm (Section 4.4.1).

At the beginning of the learning process, the values for all actions can be set to the same
number. This means that no knowledge is provided in advance,so there is not relevant
information about the action selection; i.e. there are no better actions than others for any
state. On the other hand, in the same manner animals inherit abilities from their parents,
previous knowledge can be assigned, so, they do not have to start from scratch. This can
be useful when, for example, the robot should notdie, i.e. battery is depleted, so the
knowledge to survive can be initially predefined. However, in this work, the former has
been applied. This implies that, if the robotneedsenergy, the robot could run out of battery
since it does not know yet what to do in that particular case. In order to learn it, the robot
has to try different strategies which can success or fail.

It is important to note again, that the actions are not related to the motivations. This
means that the robot does not know in advance that, for example, it must recharge its
battery in order to satisfy its need of energy.

In short, the decision making process is cyclic and it can be described in the following
steps:

1. Update of the drives and the motivation intensities.

2. Motivation competition and selection of the inner state (the dominant motivation).

3. Determine the external state.

4. Evaluation of possible actions

5. Execution of one action.

6. Update of the wellbeing function.

7. Generation of the reinforcement function (happiness/sadness).

8. State-action evaluation (RL).

In every loop, the DMS needs data from the environment in order to update the robot’s
state. These data is provided by the robot’s control architecture. In the way around, the
DMS communicates the proper action to execute. Therefore, atwo-way communication
between the DMS and the control architecture is required (Figure 4.3).

An overview of the decision making process and its elements can be seen in Figure
4.4. Drives and, by extension, motivations determine the internal state. This internal state
together with the external state determine the state which is used to make a decision. After
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Figure 4.3: Communication between the DMS and the robot’s control architecture.

an action is selected and executed, its consequences affectto the world where the robot
is “living” and to its drives. Thus, the wellbeing is affected and it is used as the rating
to evaluate the performance or suitability of an action in a state (learning process). This
experience will be considered in future decision making.

At this dissertation, a real robot learns from scratch the best possible actions at each
world configuration (the dominant motivation plus the staterelated to each object). The
tuples formed by the dominant motivation, the objects, the state related to these objects, the
feasible actions, and the values of these actions decide thenext action to be selected.

4.4 Considered emotions

The presented DMS considers different emotions with different functions. This section
introduces them and presents how they are included in the DMS.

In relation to artificial emotions, their functionality in agents is quite diverse. In this
approachhappinessand sadnessare used as the reinforcement function in the learning
process. Besides,fear motivates behaviors oriented towards self-protection.

As introduced in Chapter 2 (Section 2.4.5), it is believed that emotions are elicited from
the subjective appraisal of the environment of the agent. Moreover, a discrete approach for
generating the artificial emotions (happiness, sadness, andfear) is followed in this work.

Before going into the artificial emotions in robots, two ideas must be clarified:

1. According to Damasio [89], the impact of emotions in humanmind depends on the
feelings induced by the emotions. He states that the full andlasting impact of feel-
ings, and by extension of emotions, requires consciousness. Thus far, robots (or any
other artificial creature) do not have consciousness so robots can notfeelemotions.
Moreover, Castelfranchi [68] affirms that since nowadays itis not clear whatfeel
means, it is not correct to say that robotsfeelemotions. Consequently, it can be said
that robotshave artificial emotions.

2. Throughout this text, many times emotions are referred torobots or agents. In these
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Figure 4.4: The DMS and how its elements are related each other.

situations,emotionmeans indeedartificial emotion. Therefore, when talking about
artificial systems, the wordemotioncan be used as a shortcut ofartificial emotion,
and they have been interchangeably used.

Following, the emotions involved in this work are presentedin detail. Initially, the
roles of each artificial emotion is commented. Later, how they are individually generated
is exposed.

4.4.1 Happiness/sadness

The role of happiness and sadness

As shown in Figure 4.5,happinessand sadnessare used in the learning process as the
reinforcement function and, as just presented, they are related to the robot’s wellbeing.

The role ofhappinessandsadnessas the reinforcement function was inspired by Gada-
nho’s works, as shown in Section 3.3, but also by Rolls [177].He proposes that emotions
are states elicited by reinforcements (rewards or punishments), so our actions are oriented
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Figure 4.5: The role of happiness and sadness in the DMS

to obtaining rewards and avoiding punishments. Following this point of view, in this pro-
posed DMS,happinessandsadnessare used as the positive and negative reinforcement
functions during the learning process respectively. Moreover, this approach seems consis-
tent with the drive reduction theory introduced in Section 2.3.1 where, according to this
theory, the drive reduction is the chief mechanism of reward.

According to Starzyk [178], this learning process is a kind of Motivated Learning be-
cause it uses internal reward signals which are related to abstract motivations and goals
(happinessandsadnessare related with the robot’s wellbeing which refers to the robot’s
drives). Then, the actions are evaluated considering how well these actions satisfy the
internal goals.

The appraisal process

In order to definehappinessandsadness, the definition of emotion given by Ortony [179] is
taken into account. In his opinion, emotions occur due to an appraised reaction (positive or
negative) to events. According to this point of view, in [83], Ortony proposes thathappiness
occurs because something good happens to the agent. On the contrary, sadnessappears
when something bad happens. Moreover, according to Esau [6], the satisfaction of a drive
is usually accompanied by positive emotions reflecting the associated comfortable feeling.
On the contrary, if a drive is not satisfied over a longer period of time, negative emotions
can often arise. These positive and negative emotions can berelated to thehappinessand
sadnessemotions.

In the proposed system,happinessis related to a reduction of a drive (e.g., a positive
reaction because the robot recharges its battery) andsadnessto an increment of a drive
(e.g. a negative reaction because the robot was damaged by a user). Taking into account
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that the wellbeing of the agent is a function of its drives (Equation (4.7)),happinessand
sadnessare related to the positive and negative variations of the robot’s wellbeing (∆Wb).
In a formal way,happinessandsadnessare defined by Equation 4.9.

∆Wb = Wbt+1 −Wbt > 0⇒ happiness

∆Wb = Wbt+1 −Wbt < 0⇒ sadness
(4.9)

It is important to note that low wellbeing does not imply sadness as well as high well-
being does not implies happiness. These emotions are related to increments or decrements
of the wellbeing (positive and negative reactions). This means that, for example,a person
having fun when he is starving would imply happiness. The intensity of these emotions is
proportional to the variation suffered by the wellbeing.

Using this approach, every event or situation that producesa positive or negative ap-
praisal of the environment (internal and external) of the robot is considered ashappiness
or sadness. It is worth mentioning that there is not a fixed set of situations that elicitshap-
pinessor sadness, but the robot evaluates all situations and pursues happy situations while
avoiding sad ones. This approach seems similar to the natural one.

4.4.2 Fear

The role of fear

The emotion offear, based on some theories that state that emotions can motivate behaviors
[26, 31, 127], is defined as a motivation. Therefore, according to the proposed decision
making process,fear could be the dominant motivation and, in that case, the robotwould
be “scared”. When this happens, the robot must learn the right action to execute in order to
cope with the situation that caused this inner state.

The role of the artificial emotion offear is inspired by the idea that emotions can also
constitute motivational factors and constitute “value systems” that affect the selection of
goals and goal-directed behavior [127]. Another point of view is given by Arkin [27], who
says that emotions constitute a subset of motivations whichgives support to the survival of
an agent in a complex environment.

Moreover, Breazeal [31] also states that emotions are an important motivational system
for complex systems. In fact, according to her [134], the unique function of fear is to moti-
vate avoidance or escape from dangerous situations. This response protects the robot from
possible harm when it is faced with a threatening stimulus. This is, in fact, the approach
that is followed in this work.

The appraisal process

According to Ortony [83], fear is a negative reaction related with the possibility of some-
thing bad happening. In this approach, the possibility of something bad happening means
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that the wellbeing of the robot may decrease (a need or drive may be increased).
Fear is normally associated with avoiding dangerous situations. Those situations could

be considered as situations were something bad could happento the robot, but it does not
have any control over it.

The fear emotion can be considered as an adaptive response tothreatening situations
[50]. As commented in Section 2.4.5, some of these threatening situations are innately
identified as dangerous, but others are learned. In this work, the attention is aimed at learned
releasers of fear. It is important to note that, in the approach presented in this dissertation,
the appraisal of a dangerous situation is based on an automatic process using associative
learning. As will be shown farther ahead, the robot, using RL, is able to identify dangerous
situations without using any deliberative mechanism. Therefore, this section exposes how
a dangerous state is detected (appraisal of fear) followinga learning process.

The idea is similar to what happens when a person kicks us for no reason. Since this
fact causes an intense emotional experience, even if that person has just sporadically hit us,
we remember this situation and the consequential pain for long time. Therefore, whenever
that person is close to us, we relive this situation and evaluate the possible consequences.
The final result is that we are afraid of that person. Another example could be observed
when a person is afraid of thunders during a storm because of an unpleasant situation in her
childhood. That person is afraid whenever he is facing a storm, and this afraid is not under
his control.

Then, threatening situations, ordangerous states, are those where the robot can be
significantly damaged. This damage is caused by the effects of actions external to the
robot, so it is not responsible of them. These external actions can be originated by other
individuals (e.g. the abuser) or even environmental circumstances (e.g. the storm). Hence,
in order to prove the practical use offear, the robot’s environment has to be able to affect
the robot’s drives, by other’s actions or due to circumstances coming from the environment
itself. These external actions are calledexogenous actions, and the objects capable of
executing actions by themselves are referred asactive objects.

Exogenous actions alter the robot and its environment but they are not under the robot’s
control. Then, they affect the situation of the robot and thereinforcement received. Exoge-
nous actions lead to complex domains where, from the robot’spoint of view, they can pro-
duce unwanted state transitions. Many times, just their effects are perceived or observed,
but not the actions themselves. Then, these domains are quite hard to model because of the
difficult to foresee them.

Following the example of the person who hit us before, we do not have any control over
that action. The received punishment is not due to any of our actions, but it depends on the
other person. For example, considering our abuser, if we arewalking and a person hits us,
we suffer pain but, in the case of using reinforcement learning, we would not know if this
negative reward, the pain, is because of the walking or because a person hit us. Then, the
effects of the hit are mixed with our actions. In the robot, the exogenous actions (and their
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effects) are mixed with the actions executed by the robot andtheir effects. Therefore, in a
reinforcement learning framework, the reward of an action executed by the robot could be
altered by an exogenous action. Consequently, a key issue isto undoubtedly identify the
effects caused by the actions of the robot and the effects of the exogenous actions.

In order to distinguish between the effects from the robot’sactions and the effects from
the exogenous actions, the exogenous actions are just considered when the robot is doing
nothing. More precisely, the exogenous actions are considered during the execution of a
robot’s action without any kind of effects, so the resultingeffects during its execution can
be certainly assigned to the exogenous actions. In this situation, all modifications in the
robot’s wellbeing, as well as in the world configuration, is due to the exogenous actions.
These kind of robot’s actions are represented asaexog.

Then, in this approach,fear appears when the robot is in this kind of situations that are
considered as “dangerous”. This means that the appraisal ofthese situations is the elicitor
of thefear emotion. In this dissertation, elicitors offear are not given a priori but learned.

Three different processes are involved in the generation offear:

• Storing the worst experiences

• Detecting new dangerous states

• Updating the fear motivation

Some of these processes can occur in parallel.

Storing the worst experiences As mentioned above, dangerous states are those situa-
tions where other agents have caused a considerable damage can be caused to the robot.
These dangerous states are used as the releasers of the emotion of fear. These releasers
can be pre-defined by the programmer, what corresponds to innate releasers of fear in liv-
ing beings. Conversely, in this work, they are learned afteran appraisal of the situation,
following the previously mentioned appraisal theory.

Usually, dangerous states correspond to situations where the robot is not usually dam-
aged but some adverse exogenous actions sporadically causeharm to the robot. An ad-
verse exogenous action provokes a considerable decay on therobot’s wellbeing. When
the “harm” caused to the robot in a certain state is greater than a certain threshold, it is
appraised as a dangerous state andfear will emerge every time the robot transits to this
state. For this reason, in order to identify the dangerous states, the worst experience in
every state is cached. That is, the worstQ values for each state must be stored in order to
remember those worst experiences. This is similar to animals which remember their worst
experiences and relive them when they are facing the same situation.

For all the above reasons and taking into account the definition of dangerous state,
the worstQ values are computed for the robot’s actions where exogenousactions can be
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considered, i.e.aexog. For this reason, in addition to the values of the actions, the Qworst

values have to be stored too. They are computed according to the next equation for each
iteration:

Q
obji

worst(s, aexog) = min(Qobji

worst(s, aexog), r + γ · V obji

worst(s
′)) (4.10)

whereaexog is an action related to the objectobji (aexog ∈ Aobji
) in states and, during its

execution, the effects of exogenous action can be undoubtedly measured (that is, it is an
“effectless” robot’s action); the resulting state iss′, r is the reward corresponding to the
variation of the robot’s wellbeing, andγ is the discount factor.V obji

worst(s
′) means the best

Q
obji

worst value from the new state and it corresponds to:

V
obji

worst(s
′) = max

a∈A
obji
exog

(Qobji

worst(s
′, a)) (4.11)

V
obji

worst(s
′) computes the best possible action among theQ

obji

worst values from the states′.
In other words, it stores the value of the least harmful action from the new state.

The states considered for the appraisal offear just correspond to the external state of
the robot. This is the state related to the objects in the world. This is because, considering
the definition given at the beginning of this section of dangerous state, a state is dangerous
independently of the internal state. For example, in humans, if you are afraid of spiders,
you will experience fear if you see a spider, independently of any internal need; i.e. it does
not matter if a person suffering arachnophobia is hungry or thirsty, he is terrified when he
sees a spider. Likewise, the states during the appraisal offear are just related to the objects
in the world.

Moreover, when an active object harms the robot, the damage is just due to the actions
of the active object itself. Therefore, the appraisal offear considers the state of each active
object individually.

The proposed approach agrees with Olteanu [180], who statesthat the evaluation of
internal and external situation is a crucial process for theappraisal of emotion. Here, the
variation of robot’s wellbeing and external state of the robot are involved in the appraisal
of fear.

Detecting new dangerous states The above computedQworst values are used to identify
the dangerous states. These dangerous states are recognized by the robot itself, so they are
not pre-programmed in advance.

A states is considered as a dangerous situation when there is aQ
obji

worst(s, aexog) value
which is below a certain threshold:Ldanger. The contrary is considered as a safe state.
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Mathematically, it is expressed as:

If Q
obji

worst(s, aexog) < Ldanger ⇒ s is a dangerous state; ∀s ∈ Sobji
, ∀a ∈ Aobji

exog

If Q
obji

worst(s, aexog) ≥ Ldanger ⇒ s is a safe state; ∀s ∈ Sobji
, ∀a ∈ Aobji

exog

(4.12)
whereSobji

is the set of all possible states related to objecti, andAobji
exog is the set of all

“effectless” actions related to object i.

Updating the fear motivation As explained before, in this work, fear is considered as
a motivation which is able to govern the robot’s behavior. Once the dangerous states are
identified, thefearmotivation is able to be the dominant one and to lead the robot’s actions.
Whenever the robot transits to a dangerous state,fear emerges. In a formal way, ifs is the
current robot’s state, the fear value is updated according to the next equation.

If s is a dangerous state⇒ Fear= high

If s is a safe state⇒ Fear= low
(4.13)

High and low values offear correspond to the presence and to the absent offear re-
spectively.

It is specially worth mentioning that the learning process of dangerous states is different
to the learning process of action selection in the DMS. The later also might be useful for
dealing with dangerous states under certain conditions. The learning process for selecting
actions provides a mechanism to correctly react to situations where the robot is commonly
damaged. In these situations the behaviors to avoid states that harm is recurrently provoked
from can be directly learned by reinforcement learning since their expected values are low.
This means, that actions which could lead to these low value states will be rarely selected.

However, sporadic harm from a particular state cannot be managed in the same manner.
States where the robot is sporadically damaged can not be tackled by a learning process
based on traditional RL. Using regular RL algorithms in sporadic harmful situations results
in that the utility value of these states is still high. Therefore, this causes that the robot does
not learn to avoid these situations.

The proposed mechanism for the appraisal of fear has been specifically designed to
consider both circumstances and it perfectly deals with alldangerous situations. Then,
considering the worst experiences perfectly works for learning both situations where dam-
age is frequently as well as sporadically caused.

4.5 Summary

This chapter has established the main ideas for the DMS considered in this thesis. The use
of drives and motivations for generating non-predefined motivational behaviors has been
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justified. Moreover, the definition of the robot’s wellbeingand its use in the reinforcement
function during the learning process perfectly fits with thedrive-reduction theory which
has inspired this work.

Besides, Section 4.3 has shown how the RL approach perfectlycovers the requisites
established in this dissertation. In particular, the Q-Learning algorithm has been deeply an-
alyzed because it is the based of the learning algorithm implemented in the robot (Chapter
6).

In the last section, the emotions considered in the DMS have been presented. Emotions
have been included in the system but with different functionalities:happinessandsadness
are related to the wellbeing variation, andfear is considered as a motivation. The appraisal
processes for these emotions have been detailed.



CHAPTER 5

The social robot Maggie and its decision
making system

5.1 Introduction

This chapter presents the experimental platform where the proposed decision making
system has been implemented. It is a social robot which has been used to test the perfor-
mance of emotions, motivations, and drives in a real environment.

Initially, the robotic platform is briefly introduced, its purpose and its sensory-motor
capacities are detailed. Later, the control architecture running in the robot is presented
(Section 5.3). Finally, the DMS is featured according to therobot designers’ desires (Sec-
tion 5.4). Details about how it interacts with the architecture are provided too.

5.2 The robot Maggie

The presented work has been implemented in the research robotic platform named Maggie
[181]. Maggie is a social and personal robot intended to perform research on human-robot
interaction and improving robots autonomy (Figure 5.1). Itwas conceived for personal
assistance, for entertainment, to help handicapped people, to keep people accompanied,
etc. Its external friendly look facilitates its social robot task. Both software and hardware
have been developed by the Robotics Lab research group from Carlos III University of
Madrid.

87
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Figure 5.1: The social robot Maggie interacting with children

In relation to its hardware, Maggie is a computer-controlled system built on a wheel
base which allows the robot to move through the environment.Its arms, neck, and eyelids
movements can be moved in a human-like manner. The vision system uses a camera in
the head and, thanks to it, Maggie can recognize people and play several games. Laser
telemeter and ultrasound sensors are used by the navigationsystem. By means of an in-
frared emitter/receiver, Maggie also operates different home appliances such as televisions
or music players. Touch sensors on the surface of the body anda touch screen situated in
the breast are used for a direct interaction with people. Inside the head, an RFID antenna is
placed for identifying objects. In order to provide verbal interaction, the robot is equipped
with a text-to-speech module and an automatic speech recognition system.

More precisely, Maggie is endowed with 12 touch sensors located in different places on
the robot’s surface. In the head, two eyes with two mobile eyelids and voiced-synchronized
leds in the mouth improve its expressiveness. Moreover, an OBID RFID reader placed
inside the head provides low-range capacity for reading passive rfid tags. The neck has
a two degrees-of-freedom (dof), pan and tilt, several speakers are around it. The body
has two one-dof arms and the infrared device is placed insidethe robot’s belly, behind a
screen which signals can go through. The sensory capacity isextended by another two
RFID readers situated in the body that are able to read rfid tags from longer distances.
In the base, it has 12 sonar sensors, 12 infrared sensors, 12 bumpers, and a Sick LMS
200 telemeter laser. A differential drive systems moves therobot around. The “brain” in
charge of controlling all these components is an on board computer where a Linux system
is running.

The required energy for all devices is received from two batteries which provide a power
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supply of 25 V. During its working life, the robot needs at least 20 V for a correct operation.
The purpose is to achieve a robot working continuously in a never-ending working life. This
means that the battery should always be over this threshold.

Social robots, such as Maggie, are intended for tasks where humans are very close to
the robot and they interact. These users do not have to have technical knowledge or to be
used to robots. Therefore, the external appearance is an important issue to arise certain
empathy and confidence. Maggie was devised to be attractive with a friendly looking, and
it shows a great expressivity by means of leds, voice, and movements. Moreover, different
kinds of mechanisms for interaction are combined in a multimodal dialogs.

5.3 The Automatic-Deliberative control architecture

The robot’s control architecture has been developed by the Robotics Lab research group
[182, 183, 184, 185, 186] and it is named Automatic-Deliberative (AD). This biologically
inspired architecture is based on the ideas of the modern psychology expressed by Shiffrin
and Schneider [187, 188], so it considers two levels, the automatic and the deliberative,
as shown in Figure 5.2. The communication between both levels is bidirectional and it is
carried out by Short-Term Memory and events [189].

Figure 5.2: The Automatic-Deliberative architecture withthe DMS

In the AD architecture [190], both levels are formed by skills, which endow the robot



90 Chapter 5. The social robot Maggie and its decision makingsystem

with different sensory and motor capacities, and process information. Skills can be coor-
dinated by sequencers and, previously, the Main Sequencer managed the deliberative skills
according to a fixed script where all possible situations that the robot can face are consid-
ered. This means that this script has been programmed in advance and it is exclusive for
certain objectives. The present thesis replaces the Main Sequencer with a DMS based on
drives, motivations, emotions, and self-learning. The details of the implemented DMS are
presented in Section 5.4.

The proposed DMS has a bidirectional communication with therest of the control ar-
chitecture (Figure 5.2). On the one hand, the DMS selects actions in order to satisfy the
most urgent need. These actions are translated into skills (deliberative or automatic), which
are activated and blocked by the AD architecture. On the other hand, the DMS needs infor-
mation from the environment in order to update the state of the robot (internal and external
states) and to assess the suitability of the skills activated. This information will be provided
by the sensors of the robot, where this data is interpreted bythe AD architecture and, then,
transferred to the DMS.

5.3.1 Deliberative level

In the natural world, human deliberative activities are characterized by the fact that these are
carried out in a conscious form. Moreover, temporal dimension is an important property:
deliberative processes require a large quantity of time to be dedicated to the analysis. These
activities are carried out sequentially, that is, one afteranother, and it is not possible to carry
out more than one deliberative activity at a time.

In the AD architecture implementation, deliberative skills are based on these activities
and only one deliberative skill can be activated at once [183].

5.3.2 Automatic level

Living beings’ automatic activities are characterized by the fact that their actions and per-
ceptions are carried out without the necessity of having consciousness of the processes
responsible for controlling those activities. Examples ofthis would be the heart beat, the
hand movement when writing, or that of legs when walking. An automatic activity can be
carried out in parallel with other automatic activities andwith a deliberative activity. For
example, a person can be driving a vehicle and maintaining a conversation simultaneously.
The level of complexity of automatic activities may be very variable and goes from the
simplicity of moving a finger to the complexity of playing a sonata previously memorized
in the piano.

In the AD implementation, the automatic level [191] is mainly formed by skills which
are related with sensors an actuators. Automatic skills canbe performed in a parallel way
and they can be merged in order to achieve more complex skills.
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5.3.3 AD Communications

Memories

One of the main characteristics of human beings is their ability to acquire and store in-
formation from the world and from their own experiences. Memory can be defined as the
capacity to recall past experience or information in the present [192].

Based on the memory model proposed by Atkinson and Shiffrin [193], the AD archi-
tecture considers two different memories: theShort-Term Memory(STM from now on) and
theLong-Term Memory(LTM), see Figure 5.2.

In this architecture, STM is defined as a temporary memory. This memory is regarded
as a working memory where temporal information is shared among processes and skills.
The STM is a memory area which can be accessed by different processes, where the most
important data is stored. Different data types can be distributed and are available to all
elements of the AD architecture. The current and the previous value, as well as the date
of the data capture, are stored. Therefore, when writing newdata, the previous data is not
eliminated, it is stored as a previous version. The STM allows to register and to eliminate
data structures, reading and writing particular data, and several skills can share the same
data. It is based on the blackboard pattern.

On the other hand, LTM is a permanent repository of durable knowledge. This knowl-
edge can come from learning, from processing the information stored in STM, or it can be
given a priori. In the AD architecture this memory refers to apermanent memory where
stable information is available only for deliberative skills. The LTM has been implemented
as a data base and files which contain information such as dataabout the world, the skills,
and grammars for the automatic speech recognition module.

Events

Events are the mechanism used by the architecture for synchronizing and working in a
cooperative way. An event is an asynchronous signal for coordinating processes by being
emitted and captured. The design is accomplished by the implementation of the publisher/-
subscriber design pattern so that an element that generatesevents does not know whether
these events are received and processed by others or not.

The asynchronous signals are emitted with an attached parameter, an integer, that can
be read by the subscribers.

5.3.4 AD Skill

As already stated, the essential component in the AD architecture is the skill [189] and it
is located in both levels. In terms of software engineering,a skill is a class hiding data and
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processes that describes the global behavior of a robot taskor action. The core of a skill is
the control loop which could be running (the skill isactivated) or not (the skill isblocked).

Skills can be activated by other skills, by a sequencer, or bythe decision making system.
They can give data or events back to the activating element orother skills interested in them.
Skills are characterized by:

• They have three states: ready (just instantiated), activated (running the control loop),
and blocked (not running the control loop).

• Three working modes: continuous, periodic, and by events.

• Each skill is a process. Communication among processes is achieved by STM and
events.

• A skill represents one or more tasks or a combination of several skills.

• Each skill has to be subscribed at least to an event and it hasto define its behavior
when this event arises.

The AD architecture allows the generation of complex skillsfrom atomic skills (indi-
visible skills). Moreover, a skill can be used by different complex skills, and this allows
the definition of a flexible architecture.

5.4 Featuring Maggie’s DMS

The aim of the presented DMS is to achieve an autonomous robotwhich learns to make
decisions. Once the learning process has finished, the most appropriated action at each mo-
ment will be selected by the decision making module. Choosing the right action depends
on the value of the motivations, previous experiences, and the relationship with the environ-
ment. All these elements have been modeled in order to be processed by the implemented
decision making module.

This section presents the configuration of the DMS presentedin Section 4.2. Roughly
speaking, the DMS setup can be divided in three groups according to the scope of the
variables. These groups are:

1. The internal variables of the robot

2. The external world

3. How the next action is selected
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These categories will be individually detailed in the next subsections.
All the parameters considered in this implementation shapea specific robot’s personal-

ity. That is, the DMS setup defines the robot’s behavior during its lifespan. Changing these
parameters, new personalities or behaviors are exhibited by the robot. The parameters
which are presented in the next sections have been defined at design time by the author.

5.4.1 The robot’s inner world: what drives and motivations?

This section details all the inner variables which define therobot’s behavior.
As expressed by Equation (4.1), each motivation is represented by a value and is af-

fected by two factors: internal needs and external stimuli.Internal needs are the drives,
and their values depend on inner parameters. External stimuli are the objects situated in the
environment altering the robot motivations. In addition, each motivation has an activation
level: under it, motivations values are not considered for the dominant motivation.

As mentioned, the internal needs, the drives, represent an internal value. Each motiva-
tion is connected to a drive. The choice about which drives (and consequently motivations
too) must be implemented were made at design time. The numberof drives and motiva-
tions should be flexible and correlated to the tasks to perform [194, 7]. Therefore, since
the system has to be running on a robot intended to interact with people, some social mo-
tivation is needed to “push” the robot into human-robot interaction. Moreover, the authors
want the robot to be endowed with play-oriented aspects, hence, a recreational nature is
required by the robot. In contrast with the need of fun, once in a while, it wants to relax;
then, also some kind of rest is desired. Nevertheless, the first primitive drive for all entities
is to survive and, in this particular case, it is translated to the need of energy.

All things considered, the selected drives are:

• Energy: this drive is necessary for survival.

• Boredom: the need of fun or entertainment.

• Calm: the need of peace.

• Loneliness: this is the lack of social interaction and, then, the need of companion.

All these drives represent the deviation from the ideal state. This ideal state corresponds
to the value zero for all drives (no needs).

Since we want Maggie to be an autonomous social robot and considering the defined
drives (each motivation is connected to a drive), the motivations that have been considered
are:

• Survival: it refers to the energy dependence. This motivation is connected to the
need ofenergy. Then, thesurvival motivation is the most critical one. This is the
major requirement to be achieved by an autonomous robot.
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• Fun: this motivation is related to entertainment purposes and its associated drive
is boredom. The motivation offun refers to the need of entertainment of the robot
itself. This means that this drive can be satisfied when Maggie is having fun and this
is achieved when it is dancing.

• Relax: it is linked to a peaceful environment and it is related to thedrive ofcalm. In
contrast withfun, relax is its counterpoint: it searches for noiseless conditions.

• Social: it corresponds to the need of human-robot interaction. It isassociated to the
lonelinessdrive. As presented in Chapter 5, Maggie is a social robot so one of its
main goals is to stablish relationships with people. This attitude is enforced by this
motivation.

• Fear: this motivation arises in dangerous situations and it guides the robot towards a
secure state. In this case, there is not a drive associated toit.

Some researchers from psychology field could believe that these are not conventional
motivations, and they do not should be treated as them. However, in this thesis, they have
been considered as motivations because all of them impulse the robot to act.

All motivations have been defined considering that Maggie isa social robot designed
to interact with users and move among people. Then, its behaviors have to be as natural as
possible, i.e. its behaviors have to be comprehensible by humans sharing the environment
with the robot.

The use of fear as a motivation in a robot is one of the cornerstones of this thesis.
How it is generated, its appraisal, and the reactions to fearare novel ideas presented in this
dissertation. As seen,fear is treated in a different way than the other motivations. Fear is
considered a motivation but there is not a drive related to itbecause fear does not represent
a deficiency in any physiological need. However, it is able tolead the robot’s behavior.

In addition, as said before, when all drives are below their respective activation level,
none motivation can be considered as the dominant one. This situation is considered in
the proposed system too and consequently an extra motivation, referred asnone or non-
motivation, is included. Therefore, the most convenient behavior for this situation will be
learned and studied too. This special motivation is relatedto a special drive, which has a
constant value of1, and its activation level is set to0. In consequence, this motivation is
always ready for becoming the dominant motivation, but it does not represent any need.

Taking human beings as inspiration again, it is not common that all human motivations
compete, at the same time, for being the dominant motivation. For example, it is not usual
that a person simultaneously needs to eat, to learn, sex, friends, and to be safe (these are
just some examples of human motivations). Despite this is not common, this situations
rarely could happen (it could point out some abnormal situation in that person). Therefore,
dynamics of drives and their parameters have been fixed considering that it is not desired
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that all motivations compete at the same time. Then, usually, there will be some motivations
competing but not all at once. In case all motivations were constantly available to become
in the dominant one, it would end up with a kind of hyperactiverobot.

Dynamics of drives and motivations

In a similar way to any need on humans or animals, drives fluctuate. After we eat and
the digestive process has begun, the need of energy is inhibited due to satiety signals.
These satiety signals slowly dissipate until the hunger again takes over. Then, drives vary
according to several signals and parameters [52]. Drives inthe robot evolve in an analogous
way. The evolution functions of drives are set by the designer and they affect the behavior
of the robot. Since drives temporally evolve from scratch, motivations do as well.

Figure 5.3 shows the dynamics of all drives. The evolution functions for all drives do
not have to be all equal. In fact, each drive fluctuates according to different functions.
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Figure 5.3: Comparison of drives progression.

Drives evolution is determined by three factors: the satisfaction time, the increasing
function, and the saturation level. Following, each of thiscomponents is explained for each
drive.

Satisfaction times After a drive is satisfied, it does not immediately start evolving, there
is asatisfaction timebefore it increases again. The same idea occurs with human beings:
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once we have eaten, we do not feel hungry again but it takes some time before hunger
increases and we need to eat again.

In this implementation, each drive has asatisfaction time. This represents the period
of time the drive remains at its initial value after it has been satisfied. During this time the
drive does not evolve.

Each satisfaction time has been empirically set and they aresummarized in Table 5.1.
At the very beginning of Figure 5.3, the satisfaction times can be observed.

Table 5.1: Satisfaction times for all drives

Drive Satisfaction time

energy -

boredom 30s

calm 30s

loneliness 60s

fear -

Since the driveenergymirrors battery level, it does not make sense to consider its
satisfaction time. Besides, considering the previous definition of thefear motivation, satis-
faction time does not make sense in relation with fear.

Increasing Functions After the satisfaction time passes, the drives start to increase. In
the implementation proposed in this thesis, theboredom, theloneliness, and thecalmdrives
linearly increase but with different slopes. It means that,as time goes by, these drives
become bigger and bigger, and so do the corresponding motivations.

Considering that being social is one of the main characteristics of the robot Maggie,
interaction with people is one of the most relevant aims. Therefore, thelonelinessdrive is
the fastest one. This means that the motivation associated to this drive,social, frequently
competes to be the dominant one. Consequently, the behaviors learned for this motivation
are exhibited more often. It ends up with a robot whose most frequent behavior is the one
related to human-robot interaction. The other drives evolve slighter.

Theboredomdrive goes after. This is because Maggie is conceived as a nice robot for
people and a robot having fun is more attractive than a passive one. Thefun motivation
leads the robot to perform enjoyable reactions.

Finally, calmevolves smoother so it is the slowest drive. This implies that it is harder
to exceed its activation level in order to struggle for beingthe dominant motivation. In
addition, this drive just evolves when music is been played:Maggie needs to relax after it
has been listening music for a while. Consequently, this provokes that therelaxmotivation
scarcely becomes the dominant motivation.
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As said before, thefear motivation is different. Theoretically, there is not drivelinked
to this motivation. However, from a computational point of view, a drive needs to be linked
to the fear motivation. Then, the value of the drivefear rises to its maximum at once
when a dangerous situation is detected (this can be seen on the right of Figure 5.3). When
the state is considered as “safe”, the fear dissipates. These high and low values of fear
correspond to the numerical values of19.9 and0, respectively (Table 5.2). It is important
to note again that these dangerous states are not predefined but they are learned by the robot
itself through interaction with the environment. The appraisal of the fear emotion has been
detailed in Section 4.4.2.

Table 5.2: Levels and values forfear

Level Value

high 19.9

low 0

In order to achieve a fully autonomous robot, power autonomyis the first step. There-
fore, the most relevant inner need, due to the implicit necessity of survival, is theenergy
drive. Therefore, this drive evolves as the battery level varies. So, its value matches the
battery level.

As mentioned, many of the ideas related to the DMS have been previously developed
and tested on simulations [49]. However, when it is implemented on a real robot like
Maggie, new issues related to the energy management come up.Since the robot learns
from the ground up how to behave in each situation, it may be the case that the robot is
running out of battery and the selected behaviors are not themost appropriated. This may
lead to the end of operation of the robot. The robot “dies” because its battery is depleted,
so it cannot perfectly keep on working. In order to avoid thissituation, during the learning
process, the progress of the battery level is simulated. Hence, the drive ofenergyprogresses
as presented in Figure 5.3.

In addition, the battery progress emulation reduces the length of the experiments. Real
full battery recharging takes up to two hours; this would imply experiments of very long
duration (several days). Virtual battery recharging has been set to two minutes so the length
of the experiments is reduced up to several hours.

Besides, when the robot is recharging its battery, it is similar to an asleep person. Ac-
cording to [52], during sleep (specially during non-REM stages which roughly are 75% of
the total sleep time) human body rests: the temperature and energy consumption of the body
are lowered, and heart rate, respiration, and kidney function slow down. This is imitated
by the system: theboredom, thecalm, and thelonelinessdrives are almost frozen during
the battery recharging. This is required because, if the drives’ rates are not reduced, since
the actionrecharge batterytakes a long time in comparison with the rest of the actions,
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after this action is over, all drives would enormously increase. Consequently, the robot’s
wellbeing would be greatly reduced and, therefore, the reward would be always negative
for the actionrecharge battery. Then, the robot would not properly learn what it has to do
in order to recharge its battery. Permanent negative rewardfor a certain state-action pair
prevents the system from executing that action from that state because its value is really
bad. Therefore, “freezing” the drives during the charging of the battery is necessary.

Saturation levels In order to avoid an unstopped increase of the value of the drives, a
saturation level is defined for each one. The saturation level correspond to the maximum
value of a drive: once a drive has reached its saturation level, it does not exceed this value
and remains at it.

Different drives have different saturation values which affect the dominant motivation
in case of a never-ending expansion of the drives. These saturation levels can be seen as an
emergency control mechanism in case that several drives aresaturated and their motivations
compete to be the dominant one. In this situation, the saturation levels work as predefined
priorities that determine the dominant motivation in thoseexceptional situations. These
priorities can be seen as inherited knowledge or instincts in living beings which allow them
to face extreme situations. Table 5.3 presents the sorted list of saturation levels.

Table 5.3: Saturation level for all drives

Drive Saturation level

energy 20

fear 19.9

loneliness 17.8

boredom 17.7

calm 17.6

In this implementation,energyhas the highest saturation level because it is the most
urgent since it is related to survival: if the energy drive issaturated it means that the battery
level is really low and it is critical to get the battery recharged.

Fear is the second one so it is over the rest of drives. As explainedbefore, when a
dangerous situation is perceived, thefearvalue is set to its maximum, which corresponds to
the saturation value. This value is over the others becausefear represents a really dangerous
situation which must be avoided somehow as soon as possible.Just survival can be more
urgent thanfear.

The rest of the saturation values where fixed considering thesame reasons used for the
evolution functions of the drives (see Table 5.3).
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External stimuli

Just like human beings can be thirsty when they see water, themotivations are influenced
by some objects when they are present in the environment. These are called theexternal
stimuli or incentives. These stimuli may have more or less influence:their values depend
on the states related to the objects (this means, if they are near or far from the robot). The
external stimuli are included in Equation (4.1). In this implementation, all external stimuli
values have been empirically fixed to the same value of 2 and, according to Section 2.3.2,
they anticipate the reduction of a certain drive.

Table 5.4 lists all the external stimuli included in this work. Since the robot likes danc-
ing when music is being played, the robot perceives it and themotivation to havefun in-
creases. If Maggie perceives the docking station, the motivation ofsurvival is augmented.
Lastly, due to the fact that Maggie is a very friendly robot and loves people, the presence
of a person close to it strengths itssocialmotivation.

Table 5.4: All external stimuli used in this work

Motivation External stimuli State related to ext.stim.

fun music listening

survival docking station plugged

social any person close

5.4.2 The external world: sensing and acting

The world is perceived by the robot in terms of objects and thestates related to these objects
(the external state). Objects are not limited to physical objects but abstract objects too. In
this dissertation, the world where Maggie is living in is limited to the laboratory and the
following objects: a music player, the music in the lab, the docking station for supplying
energy, and the people living around the robot.

Also the states related to all these items have to be defined and the transitions between
states are detected by several skills running in Maggie.

Moreover, the robot interacts with its environment throughthe actions that can be per-
formed with the objects in the robot’s environment. These actions are also implemented as
skills in the AD architecture.

At this point, it is worth mentioning the difference betweentwo concepts which, many
times, are mixed and used as synonyms:behavior andaction. Considering the definition
given by Breazeal in [4], in this work, behavior is viewed as aself-interested, goal-directed
entity that establishes the current task of the robot. In general, a behavior is composed
of a sequence of related actions which are activated in turn.For example, the behavior
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to reduce hunger is composed of an action for eating and otherfor moving near the food.
Therefore, there are two kind of actions (from an ethologistpoint of view, these are referred
as behaviors too) [4, 124]:

• Consummatory: this action directly satiates the active drive, i.e. the most urgent
need. Then, they contribute to the balance of resources thatensure self-sufficiency

• Appetitive: when an appetitive action is performed in a certain situation, leads to a
state of the world for allowing the activation of the desiredconsummatory action. In
other words, it is an action that makes more likely the conditions that bring closer
some goal.

In the previous example, eating is a consummatory action andmoving towards the food is
an appetitive one because it is necessary before the drive can be satiated. Both together
form the behavior to reduce hunger.

In this thesis, actions are individual, indivisible tasks which corresponds to skills in the
AD architecture (Section 5.3.4). The behaviors are sequence of actions which are deter-
mined by the dominant motivation and the external stimuli. These behaviors are learned,
so they are not predefined.

Besides, actions can be categorized intoendogenousandexogenousactions. Endoge-
nous actions are those which are executed by the robot. In contrast, as mentioned before,
exogenous actions refer to actions executed by other agents. These actions are not “observ-
able” by the robot, that is, it can not identify the action, but their effects are perceived by
the robot. These effects are mixed with the effects coming from the robot’s own actions.
In order to distinguish both effects, the effects from the exogenous actions are just consid-
ered when certain endogenous actions are running. These endogenous actions do not affect
the robot or its environment, so the variation of the robot’swellbeing is due to exogenous
actions. In short, in this thesis, the robot has two kinds of actions: actions disturbing the
robot and/or its environment, and “effectless” actions that allow to consider the effects of
exogenous actions.

In Figure 5.4, the states related to each object, the actions, and the transitions from one
state to another are shown. If an action does not appear at onestate, it means that it is
incoherent to execute it from that state; e.g., Maggie cannot play musicif it is far from the
player; or it cannotinteractwith a person if it is alone.

Following, the available items, the states related to them,and their actions are intro-
duced.

Music player

Maggie is able to operate any home appliance with an infraredinterface by means of an
infrared emitter/receiver placed at Maggie’s belly and several skills. In this work, this has
been applied to a music player located in the lab (all detailshave been published in [195]).
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Figure 5.4: States, actions and transitions related to the items of the robot’s environment:
a music player, the docking station, the music, and a person.Round sides rectangles rep-
resent the states related to each object, the arrows are the transitions, and the labels of the
arrows are the actions which may cause the transition if no errors occur. Black arrows
correspond to transitions triggered by actions executed with the object. Red dashed arrows
mean transitions activated by actions with other objects. And purple dotted arrows are
dedicated to transitions due to actions executed by other agents

In order to operate the music player, the robot has to be located at a certain distance
and facing the appliance. Therefore, in relation to the position of the robot, there are two
states:near, when the robot is close enough to operate the player, andfar, if the robot is in
a position where it is not able to operate the player. The information required to determine
the position related to the player is provided by the geometrical navigation system [196]
which knows where the music player is.

Moreover, related to the operational state of the music player, other two states have to
be distinguished to avoid sending the same command twice to the player:near-onandnear-
off. When the robot is close to the player and it is already working, the state isnear-on;
but, when the robot is also close and the player is off, the state isnear-off.

About the available actions, if the robot isfar from the player, the only possible action
related to the music player is togo to player. Once it is close, and according to the last state
in relation to the player, the robot canplayor stopmusic.

Then, the possible actions with the itemmusic playerare:

• Go to player: Maggie approaches the music player. The robotwill move to a position
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where the player is reachable by the infrared emitter on board Maggie. If the robot
was plugged to the charging station, this action unplugs therobot.

• Play music: music is played because it turns the player on when it is off. This action
produces a change of state in relation to other object, themusic, from non-listening
to listening.

• Stop music: music is stopped when it is being played becausethe music player is
turned off. This action produces a change of state regardingthe objectmusic, from
listeningto non-listening. This action keeps a peaceful atmosphere.

• Idle: it represents the possibility to remain next to the player for a while.

Music

The robot’s environment is the lab, andmusiccan be playing there. Then, the robot can
be listening, or not, to music. Just when the robot islisteningto music, it is able todance.
If musicis mute, it cannotdance. As commented before, the infrared emitter is used to
play/stop the music when Maggie is close to the player.

About themusic, there is just one possible action:

• Dance: the robot moves its body with the music. This action is just executed when
Maggie islisteningto music. This action can be executed at every place inside the
lab because the music is perceived from anywhere in the room.

Docking station

Thedocking stationis the source of energy. If the robot isplugged, the battery is charging,
so its level increases. Otherwise, the robot isunpluggedand the battery level decreases.
In order to find the docking station, the robot relies on the navigation system and the in-
formation from the laser telemeter. Eventually, to determine if it is plugged or not, a data
acquisition device is in charge of reading the battery data.This information is read by the
battery sensorskill.

When the robot isunplugged, it just can go to the docking station andchargeits battery.
After that, it ispluggedin and the available action is toremainthere. If, when the robot is
plugged, a skill that moves the robot around is selected, it leaves the station and transits to
the stateunplugged.

The attainable actions with the docking station are:

• Charge: Maggie approaches the docking station, plugs intoit, and stays there until
the battery is full. At the end of this action the robot is still pluggedand the battery
is recharged.

• Remain: it keeps plugged for a while.
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Person

The robot Maggie is intended to interact with people. Hence,people are considered as
“objects” of the environment. Regarding interaction, a person has to be close enough to
touch, speak or being recognized. For that reason there are two states in relation to a
person: presentand absent. The statepresentmeans that there is a person nearby the
robot. In contrast,absentrepresents the absence of any person or, at least, no person
within a distance close enough for interaction. These states are determined by merging two
technologies, bluetooth and RFID, which are handled by the skills Bluetooth discoverer
andRFID discoverer(Section 7.5.7).

Each person, or user, is equipped with an RFID tag which provides a low range distance
identification. These tags are read by an UHF antenna placed at Maggie’s chest which
provides around 1 meter range. In addition, each person’s mobile phone is detected by its
bluetooth interface which offers medium range distance identification. The combination of
both technologies results on a reliable identification method.

As stated in Section 4.4.2, the undoubted identification of the effects of exogenous
actions in each state is the cornerstone for learning the dangerous states and, by extension,
the realeasers of thefearemotion. This is achieved through theinteractaction. By means of
this action, the robot does not induce any change on its internal variables or its environment.
The assumption is that all the changes experienced by the robot during the actioninteract
are a consequence of external elements. In this scenario, these available conative “external
elements” are people who interact with the robot during theinteractaction. Thus, in this
dissertation, active objects are people or individuals coexisting with the robot. Using this
approach, the robot estimates how good the current state is in relation to the exogenous
actions because all effects and transitions are due to the people’s actions. This estimation is
based on the variation of the robot’s wellbeing and it is usedto learn new dangerous states.

Thepersonitem offers an available action:

• Interact: it perceives human-robot interaction. With this action the robot is not exe-
cuting any particular ability or task, so the robot does not cause any particular effect
over itself or the environment. Therefore, the possible consequences during this ac-
tion are certainly caused by the exogenous actions. Sincepersonsare the available
active objects, during this action, the robot perceives theeffects of the people’s ac-
tion over the robot’s wellbeing. These effects are evaluated through oral and tactile
interfaces: the user can offend or say compliments to the robot, or he can “stroke” or
“hit” the robot (Section 7.5.7).

Considering that, in the robot’s environment, people are the only active objects, it is as-
sumed that the effects during the actioninteractare caused bypersons’s actions. However,
this would not be necessarily true because, the system just considers the robot’s state and
the effects over the robot’s wellbeing. Then, the effects could be provoked by any other
active object different than thepersonitems.
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The system provides identification for different users. Then, different users are treated
as different objects of typeperson. Therefore, the robot learns what to do with each user
independently. This object is a key component in this work because, since it is an active
object, it is able to execute its own actions. Several types of objectpersonhave been used
to prove the performance of thefear motivation.

An overview of the robot’s environment is displayed in Figure 5.5. It provides a good
perspective of the scenario and the different types of objects the robot interacts with during
the experiments.

Figure 5.5: Overview of the robot’s environment and the objects the robot interacts with

5.4.3 Acting in the world: what to do next?

After the environment where the robot lives has been presented, the action selection process
by the DMS is explained. Within robot lifetime, the action selection loop is executed in
order to determine the next skill to activate. Remembering how the DMS works, at each
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iteration, the dominant motivation is computed as the maximum motivation whose value
(internal needs plus external stimulus) is over its activation level. This parameter has been
fixed to10 for every motivation. Considering the dominant motivation, the current states
related to objects, and theQ values associated to each feasible action in this state, thenext
action is chosen. TheseQ values represent how good a particular action is at a particular
state.

At the beginning of the robot’s life, it does not have any knowledge, so learning is
essential. In order to help learning, the robot explores allpossibilities many times. But,
in order to live better, the robot has to exploit the acquiredknowledge to make the best
decisions. This is the dilemma of exploration vs. exploitation, several times refereed in the
field of reinforcement learning [163]. The level of exploration represents the probabilities
of executing actions different than those with the highest values. Exploitation means the
selection of the action with the highest value for each situation. Therefore, during the
robot’s life, there are two phases clearly differentiated:learning or exploration phase, and
exploiting phase.

Then, according to a specific level of exploration/exploitation, the probabilities for se-
lecting an action differs. Using the Boltzmann distribution, the probabilities of selecting an
actiona in a given states is determined by Equation (5.1).

Ps(a) =
e

Q(s,a)
T

∑

bǫA

e
Q(s,b)

T

(5.1)

Q(s, a) is the value for actiona in states, andA represents the set of all possible
actions;T is thetemperatureand it ponders exploration and exploitation. A high value of
T gives the same likelihood of selection to all possible actions and the next action is almost
randomly selected; lowT enforces actions with high values: the higher value, the higher
probability to be executed. This approach has been previously used by Gadanho [197, 198].
As presented in [49],T value is set according to Equation (5.2).

T = δ ∗ Q̄ (5.2)

whereQ̄ is the mean value of all possible Q values. According to the Equation (5.2),
highδ implies high temperature and, therefore, exploration dominates: all actions have the
same probability of being selected. Lowδ produces low temperatures and, consequently,
exploitation prevails: actions with high values are likelychosen.

Therefore, when learning is essential,δ is set to a very high value so actions are ran-
domly chosen, independently of their values, so all actionsare explored. However, when it
is desired to select the most appropriate actions,δ is minimized. Then, the action with the
highest values are always chosen.

During the experiments,δ is varied depending on the phase of the robot’s life: during
learning, high level of exploration is required (δ = 100), then the action selection is totally
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random; when exploiting the learned values, the exploration is null (δ = 0.1) and the next
action is the one with the highest value.

Considering that this work is implemented in a social robot which interacts with hu-
mans, it should be kept in mind that a robot which is programmed for always selecting
the best actions leads to monotonous behaviors and the robot’s actions become very pre-
dictable. Consequently, the human-robot interaction can be negatively affected due to the
potential lost of interest by the user. In order to allow somerandomness in robot’s behavior,
the value ofδ can be tuned for providing certain unpredictability to the process.

5.4.4 The consequences of the robot’s actions

Once an action is selected and executed, it may disturb the robot in two manners: first, an
action provokes a change in the world, e.g.chargeaction results on the robot is plugged
to the charger; and second, the action causes effects over the drives, e.g. after thecharge
action the need ofenergyis reduced. In order to apply the effects over the drives, theaction
has to successfully end. If an error occurs during the execution of a skill or its result is
not satisfactory, this situation is notified and its effectsover the drives are not applied. The
changes affecting the external state are monitored by specialized skills.

Summing up, effects of the actions can modify the state related to items and influence
the needs of the robot. In relation to the robot’s drives, theeffects can be positive or
negative, in terms of robot’s wellbeing. A positive effect reduces the value of a robot’s
drive (this implies an increase in the robot’s wellbeing). Actually, when the drive is set to
zero (the ideal value), it is said that the action satisfies the drive. Some actions can also
“damage” some drives of the robot increasing their values (so the robot’s wellbeing drops).

A positive effect, i.e. the reduction of one drive, does not necessary imply an improve-
ment in the wellbeing. If the reduced drive had a value close to the ideal one, the effect
of the action in the total wellbeing is minimum. Other drivescould increase faster or the
external state has changed resulting in a decrement of the wellbeing.

All effects are shown in table 5.5.

Table 5.5: Effects of actions

Action Object Drive Effect

stop music player calm set to 0

dance music boredom set to 0

positive interaction person social set to 0

negative interaction person social +10
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When the music player is switched off, the drivecalmis satisfied; then, a quiet environ-
ment is achieved. The need offun is satiated when the robot dances, so the driveboredom
is set to zero. Since human-robot interaction involves a user, the result of this actions is
not always the same. Depending on how this user behaves, the action interact is positive
or negative. A positive interaction is related to a stroke ora compliment and satisfies the
socialdrive. In contrast, a negative interaction provokes an increment of ten units in the
socialdrive. This happens when the robot is damaged because of a hitor an insult.

It is important to mention that the transitions between two states and the effects of the
actions are not given to the DMS, this is, the model of the world is not provided in advance.
Therefore, this is a model-free approach. However, these effects are defined by the designer
and applied to the robot’s drives.

As already stated, the potential actions in each state depend on the state itself. Hence,
different actions are associated to the state related to every object. For example, in order
to play music, Maggie has to be close to theplayer and the music has to be switched off
(near-off state). In some cases, the states and the actions are impossible. For instance,
if the robot isunpluggedfrom thedocking station, the actionremainplugged cannot be
executed because it is not plugged. In these cases, there arenot Q values associated to
these state-actions pairs.

In other circumstances, some actions seem not be very appropriated. For instance, it
does not make sense to execute thechargeaction when the robot’s battery is full. By means
of the learning process, these combinations receive minimal values and, in consequence,
they will never be selected for execution during the exploitation phase.

5.5 Summary

At the beginning, this chapter presents the robotic platform where the DMS is implemented:
the social robot Maggie. The hardware forming the robot is described as well as its control
architecture. In this thesis, the AD architecture is extended by adding the DMS.

In the last part of the chapter, the specific configuration of the DMS which has been
used in this thesis is presented. Drives, motivations, objects, actions, and other variables
are defined and justified. The modification of some of these variables results in a robot
which behaves different, like if the “personality” of the robot had changed.

In short, this chapter presents the robot and the configuration of the DMS. This config-
uration can be modified according to different requirementswithout a great effort.
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CHAPTER 6

Learning to make decisions

6.1 Introduction

In this dissertation, the learning process is achieved by real interactions between a robot
and its real environment. Interaction in real environmentstakes a considerable amount of
time. This makes the learning time a key feature. Then, achieving the learning task in a
reasonable amount of time is a must.

As mentioned before, the external state of the robot is formed considering the state
of all objects in relation to the robot. Then, in a traditional RL approach, the number of
states exponentially increases as the number of objects linearly increases. Consequently,
the learning time exponentially increases too because, in RL theory, in order to reach the
convergence of the learned values, all states must be visited an infinite number of times.

This chapter presents the solution to the learning process implemented in this disserta-
tion: the Object Q-Learning algorithm. This solution was initially designed for and tested
in virtual worlds. Then, it has been extended with several improvements in order to deal
with the problems of learning in a physical world.

6.2 Object Q-Learning

Malfaz presented in [49] a variation of the traditional Q-Learning algorithm (Section 4.3.1).
This is calledObject Q-Learning and it has two key points:

1. A reduction of the state space

109
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2. The Object Q-Learning algorithm

Both are explained in the following sections.

6.2.1 The state space

In this thesis, it is assumed that the robot lives in an environment where it can interact with
objects. The goal of the autonomous robot is to learn what to do in every situation in order
to survive and to maintain its needs satisfied. In this system, the state of the agentsǫS is
the combination of its inner state and its external state:

S = Sinner × Sexternal (6.1)

whereSinner andSexternal are the sets of internal and external states of the robot, respec-
tively.

The inner state of the robot is related to its internal needs (for instance: the robot is
“hungry”) and the external state is its state in relation to all the objects present in the
environment:

Sexternal = Sobj1 × Sobj2 ... (6.2)

therefore,

S = Sinner × Sexternal = Sinner × Sobj1 × Sobj2... (6.3)

whereSobji
is the set of the states of the robot in relation to the objecti.

For example, considering a situation where the robot’s battery is almost depleted, its
internal state is related to the survival motivation (Sinner = survival). Besides, in relation
to the objects (the external state), the robot is alone, far from the player, plugged and it is
listening music. Then, the resulting state is computed in Equation (6.4).

S = Sinner × Sexternal = Sinner × Sobj1 × Sobj2 ... =
Sdominant mot × Sperson × Splayer × Scharger × Smusic =
survival and alone and far and plugged and listening

(6.4)

For every object, the robot could be inn different states, so, the number of states will
increase as the number of objects in the environment grows. For example, if for every object
there are four different binary variables describing the relation of the robot with it, then,
for every object we would have:24 = 16 states in relation to it. Assuming that there are,
for example,10 objects in the environment, then, according to Equation (6.2), the number
of external states would be1610. Finally, since the state of the robot is its combination
between the inner and the external state (Equation (6.3)), the final number of states would
be even bigger since the number of external states must be multiplied by the number of
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internal states. Moreover, assuming that the robot can execute a certain amount of actions,
or skills, with each object, the number of utility values,Q(s, a) in Q-Learning, for every
state-action pair, could become really high. This great number of Q values to calculate
presents problems since it would take really long time for those values to converge.

6.2.2 Reduced state space

As previously stated, as the number of variables (objects) linearly increases, the number
of states increases exponentially. This problem is known asthe curse of dimensionality
[199]. Many authors have proposed several solutions to dealwith this problem. One so-
lution would be to use the generalization capabilities of function approximators. Feedfor-
ward neural networks are a particular case of such function approximators that can be used
in combination with reinforcement learning. Nevertheless, although the neural networks
seem to be very efficient in some cases of large scale problems, there is no guarantee of
convergence [200].

Other authors propose some methods in order to reduce the state space. According to
Sprague and Ballard, this problem can be better described asa set of hierarchical organized
goals and subgoals, or a problem that requires the learning agent to address several tasks
at once [201]. In [202] and [199] the learning process is accelerated by structuring the
environment using factored Markov Decision Processes (FMDPs). The FMDPs are one
approach to represent large, structured MDPs compactly, based on the idea that a transition
of a variable often depends only on a small number of other variables.

In [203], the authors present a review of other approaches which propose a state ab-
straction, or state aggregation, in order to deal with largestate spaces. Abstraction can be
thought of as a process that maps the original description ofa problem to a much com-
pact and easier one to work with. In these approaches the states are grouped together if
they share, for example, the same probability transition and the reward function [204, 205].
Others consider that states should be aggregated if they have the same optimal action, or
similar Q-values [206], etc.

In Malfaz’s work [49], she proposes a different solution to reduce the state space: the
states related to the objects are going to be treated as if they were independent of one
another. This assumption is based on human behavior, since when we interact with different
objects in our daily life, one, for example, takes a glass without considering the rest of
objects surround.

As a consequence, the external state is considered as the state of the robot in relation to
each object separately. This simplification means that the robot, for each moment, consid-
ers that its state in relation, for example, toobj1 is independent from its state in relation to
obj2, obj3, etc. so the robot learns what to do with every object by separate. This simplifi-
cation reduces the number of states that must be considered during the learning process of
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the robot. The set of the reduced external states,Sred
external, is represented in Equation (6.5).

Sred
external = {Sobj1 , Sobj2, Sobj3 , ...} (6.5)

For example, following the example presented at the end of the previous section, the10
objects present in the world results in10 × 16 = 160 external states, those ones related to
the objects. Therefore, the total number of utility valuesQ(s, a) would be greatly reduced.

Finally, the total state of the robot in relation to each object i is defined as follows:

s ǫ Si = Sinner × Sobji
(6.6)

whereSi is the set of the reduced states in relation to the objecti.
Recalling the example, exposed in Section 6.2.1, where a robot is running out of battery,

and considering the reduced state space just presented, thestate of the robot is expressed in
Equation (6.7).

S = Sinner × Sexternal = Sinner × {Sobj1, Sobj2, ...} =
Sdominant mot × {Sperson, Splayer, Scharger, Smusic} =
survival and {alone or far or plugged or listening}

(6.7)

Using this simplification, the robot learns what to do with every object for every inner
state. For example, the robot would learn what to do with the docking station when it needs
to recharge, or what to do with the player when it is bored, andso on without considering
its relation to the rest of objects.

Considering this simplification, the Equation (4.4) is adapted for the updating of the
Qobji(s, a) value of the state-action pairs for an inner state and an object i:

Qobji(s, a) = (1− α) ·Qobji(s, a) + α ·
(

r + γ · V obji(s′)
)

(6.8)

Where:

V obji(s′) = max
a∈Aobji

(

Qobji(s′, a)
)

(6.9)

The super-indexobji indicates that the learning process is made in relation to the object
i; therefore,s ∈ Si is the state of the robot in relation to the objecti, Aobji

is the set of
the actions related to the objecti ands′ ∈ Si is the new state in relation to the objecti.
Parameterr is the reinforcement received,γ is the discount factor andα is the learning
rate.

As a consequence of this simplification, the learnedQ values, instead of being stored
in a table of{total number of states× total number of actions}dimension, are stored for a
certain inner state and for every object in a table of{number of states related to that object
× number of actions related to that object}dimension.
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6.2.3 Collateral effects and Object-Q learning

The simplification made in order to reduce the state space considers the objects in the
environment as if they were independent. This assumption implies that the effects resulting
from the execution of an action, in relation to a certain object, do not affect to the state of the
robot in relation to the rest of objects. Let us give an example: if the robot decides to move
towards the music player, this action will not affect to the rest of objects. Nevertheless,
if the robot was previously recharging its battery in the docking station, this action (to go
to the music player), which is related to the object music player, has affected to its state
in relation to the docking station. Moreover, if a person is nearby the robot, after it has
moved towards the music player, now this person is not present anymore. As result, an
action (approaching the music player) related to a particular object (the music player) may
influence other items (the docking station and a person). This is exactly what happens in
real life: a person, who is close to water, goes for food, and the resulting state is that now
the person is close to food but far from water. Therefore, theassumption of that objects are
independent among them is not totally true. The consideration of collateral effectsin the
learning algorithm deals with this problem.

The collateral effects are those effects produced by the robot in the rest of the objects
when interacting with a certain object. Therefore, in orderto take into account these collat-
eral effects, the Object Q-learning has to consider how the action with a particular object
affects the rest of objects. Using this viewpoint, the Q values are still updated according to
Equation (6.8) but, now,V obji(s′) is calculated according to Equation (6.10).

V obji(s′) = max
a∈Aobji

(

Qobji(s′, a)
)

+
∑

m6=i

∆Qobjm

max (6.10)

This is the value of the objecti in the new states′ considering the possible effects of
the actiona executed with the objecti on the rest of objects. For this reason, the sum of
the variations of the values of every other object is added tothe value of the objecti in the
new state, previously defined in Equation (6.9).

These increments are calculated as follows in Equation (6.11).

∆Qobjm

max = max
a∈Aobjm

(

Qobjm (s′, a)
)

− max
a∈Aobjm

(

Qobjm (s, a)
)

(6.11)

Each of these increments measures, for every object, the difference between the best
the robot can do in the new state, and the best the robot could do in the previous state.
Then, when the robot executes an action in relation to a certain object, the increment or
decrement of the value of the rest of objects is considered. In other words, it measures if
the value of the new state is better or worse than the value of the previous state in relation
to each object. This algorithm has been introduced in previous works [158, 207], where it
was successfully implemented in virtual agents.
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Considering the example presented at the beginning of this section, if the objects the
robot can interact with are limited to amusic playerand thedocking station, the current
states related to these objects arefar from the player andpluggedto the charger. Once the
actiongo tothe player is executed, then the new states arecloseto the player andunplugged
from thedocking station. Therefore, the Object Q-Learning is applied as follows1. From
Equations (6.10) and (6.11), theQ value is computed according to the next equation:

Qplayer(far, go to) =

= (1− α) ·Qplayer(far, go to) + α ·
(

r + γ · V player(close)
)

whereV player(close) is:

V player(close) = max
a∈Aplayer

(

Qplayer(close, a)
)

+
∑

objm 6=player

∆Qobjm

max

anda can be any action with theplayer. The collateral effects are:

∑

objm 6=player

∆Qobjm

max = ∆Qcharger
max =

= max
a∈Acharger

(

Qcharger (unplugged, a)
)

− max
a∈Acharger

(

Qcharger (plugged, a)
)

wherea is any action related tocharger.

6.2.4 The algorithm

Once the ideas of the algorithm have been stated, the algorithm itself has to be analyzed. In
a RL framework, an agent in a state executes an action, it transits to a new state, and a re-
ward is obtained. In an Object Q-Learning framework, the state is determined in relation to
the objects and the potential actions are restricted by the state: an agent is in a state related
to a particular objecti (sobji

) and it executes an action with this object (aobji
); this action

can provoke a change in the state related to this object (s′obji
) and a reward (r); in addition,

this action can also provoke changes in the state related to other objects (sobjj
, ∀j 6= i),

which have been called the collateral effect. All these elements are presented in Figure 6.1;
the collateral effects are represented by dashed arrows.

The algorithm updates theQ values after an action is executed. Then, these values are
refreshed according to the reward obtained, the anterior and new states, and the priorQ

1In order to keep the example simple, the state will be formed just by the external state, and the internal
state will not be considered.
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sobji
s obji

aobji
,r

sobjn
s′objn

Figure 6.1: The Object Q-Learning framework

values. Every time aQ value is updated, it is referred as an iteration. The pseudo-code
for the algorithm is detailed in Algorithm 6.1. Initially, all Q values have to be set to a
random value, in this case they were fixed to1 (line 2). Then, the algorithm iterates every
time the robot acts. First, the collateral effects are computed (lines 4-11). For each object,
the difference between the best the robot can do from the new state with that object and
the best it could do from the anterior state is calculated andadded to thecollateral_effect
variable. Once the collateral effects for all items are calculated, the value for the objecti

in states′ is determined as the sum of theQ value corresponding to the best action with
objecti from the states′ (line 12) and the collateral effects. With these values and the prior
Q value, the newQ value for the objecti in the states when the actiona is accomplished
is updated (lines 13-15).

In order to provide a clear understanding of this algorithm,several real examples will
be analyzed step by step. The calculations shown in the next examples are the numbers
resulting at single iterations during the experiments withthe robot. Different experiments
could result in different values. In all these examples, theactions executed have been related
to the objectmusic player(it is marked with an asterisk in the state transition tables), but
in different situations. Trying to keep the examples as clear as possible, no user has been
included in the following scenarios. Besides, when there are not feasible actions from a
particular state, this is represented in collateral effects tables with a hyphen.

The learning rate and the discount factor for all the scenarios have been fixed toα = 0.3
andδ = 0.8, respectively.
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Algorithm 6.1 Object Q-Learning algorithm
1: procedure COMPUTE OBJECT Q-LEARNING

2: Initialize all Q values to 1
3: repeat for each iteration

Require: s← current state
Require: a← executed action
Require: objecti ← object the action is executed with
Require: s′ ← new state
Require: r ← reward

4: collateral_effects← 0
5: for all objectj do
6: if objectj 6= objecti then ⊲ The collateral effects do not consider the

object that the action was executed with
7: max_q_s← max[Qobjj (sobjj

, a)]
8: max_q_new_s← max[Qobjj (s′objj

, a)]

9: collateral_effects ← collateral_effects + (max_q_new_s −
max_q_s)

10: end if
11: end for
12: value_obji_new_s← max[Q(s′obji

, a)] + collateral_effects

13: q ← Q(sobji
, asobji

)
14: new_q ← (1− α) · q + α(r + δ · value_obji_new_s)
15: Q(sobji

, asobji
)← new_q

16: until learning ends
17: end procedure

Scenario 1

In this first scenario, the robot needs calm (i.e.relax is the dominant motivation), it is
unpluggedto thedocking station, it is listeningto music, the robot is close to the player
and there is not users around. Then, the robot decides tostopthemusic player. The state
transitions are shown in Table 6.1. This action affects three elements; first, the dominant
motivation changes: after the player is turned off, there isnot a new dominant motivation
because the need of calm has been satisfied and the intensity of the other motivations is
not high enough; also the states of themusic playerand themusichave changed too. This
action is related to the objectmusic playerbut also the objectmusicis affected. The value
of the collateral effects is calculated in Table 6.2.

In this particular case, the correspondingQ value,Qplayer
relax (near-on, stop), is updated

as follows in Equations (6.12) and (6.13).



6.2. Object Q-Learning 117

Table 6.1: State transitions due to the actionstop musicin Scenario 1
anterior state (st) new state (st+1)

dominant motivation relax none
docking station unplugged unplugged
music player * near-on near-off

music listening non-listening
user absent absent

Q
player
relax (near − on, stop) =

(1− α) ·Qplayer
relax (near-on, stop) + α ·

(

r + γ · V player
none (near-off)

)

(6.12)

V player
none (near-off) = max

a∈Aplayer

(

Qplayer
none (near-off, a)

)

+
∑

objm 6=player

∆Qobjm

max (6.13)

Table 6.2: Collateral effects due to the actionstop musicin Scenario 1
Objectm maxa∈Aobjm

(

Qobjm (st+1, a)
)

maxa∈Aobjm

(

Qobjm (st, a)
)

∆Qobjm
max

docking station Qstation
none (unplugged, charge) = −1, 17895 Qstation

relax (unplugged, charge) = 1 -2,17895
music Qmusic

none (non-listening,−) = − Qmusic
relax (listening, dance) = 1 -1

user Quser
none(absent,−) = − Quser

relax(absent,−) = − −
∑

objm 6=player

∆Qobjm
max -3,17895

The reward and the rest of the parameters which are required for updating theQ value,
as well as the newQ value, are presented in Table 6.3. Since this is the first timethis action
is executed in the statest, its Q value corresponds to the initial value of1. From the new
state (st+1), the best thing to do with themusic playeris to turn it on, which has a calculated
value of1, 154.

Table 6.3: NewQ value for Scenario 1

Q
player

relax (near-on, stop) reward
Vplayer(st+1) = Vplayer

none (near-off)
new Q

player

relax (near-on, stop)
max

a∈Aplayer

(

Qplayer
none (near-off , a)

)

Coll.Effects

1 52,5399 Qplayer
none (near-off, play) = 1, 154 -3,17895 15,975982

In this scenario, the most influent parameter is the reward. Stopping the music player
results in the satisfaction of the drivecalm. Therefore, therelax motivation is consider-
ably reduced and it ceases to be the dominant one. This is the reason of the high value
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of the obtained reward (52, 5399) and, consequently, the rises of the resultingQ value,
Q

player
relax (close-on, stop).

This is a clear example about how the robot learns the value ofthe action which directly
receives the reward from the satisfaction of the most urgentneed (the dominant motivation).
This is a consummatory action. The value of the state-actionpair is back-propagated as
shown in the next example.

Scenario 2

In this example, the robot again needs to relax, but now it is plugged and far from the music
player and it decides to approach it (actiongo to the music player). Moreover, the dominant
motivation does not change after this action, and the robot ends unplugged from the charger
and close to the player. The music is still listening and users are not present in the scenario
of the experiments (Table 6.4).

Table 6.4: State transitions due to the actiongo to the music playerin Scenario 2
anterior state (st) new state (st+1)

dominant motivation relax relax
docking station plugged unplugged
music player * far near-on

music listening listening
user absent absent

Now, the newQ value is computed according to the Equations (6.14) and (6.15).

Q
player
relax (far, go to) =

(1− α) ·Qplayer
relax (far, go to) + α ·

(

r + γ · V player
relax (near-on)

)

(6.14)

V
player
relax (near-on) = max

a∈Aplayer

(

Q
player
relax (near-on, a)

)

+
∑

objm 6=player

∆Qobjm

max (6.15)

The collateral effects are just related to the transition frompluggedto unplugged(Table
6.5). The objectmusicdoes not change its state and, then, its collateral effect isnull. The
summation of all collateral effects is a negative value, which means that the state-action
pair is not positive from the perspective of the other items.That is, if the robot needs to
relax, approaching the music player, when the robot is far from it, is not a good action just
considering the collateral effects.

The reward obtained after approaching the music player is very poor,−1, 555 (Table
6.6), because this action does not have any particular effect over the motivations. However,
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Table 6.5: Collateral effects due to the actiongo to the music playerin Scenario 2
Objectm maxa∈Aobjm

(

Qobjm (st+1, a)
)

maxa∈Aobjm

(

Qobjm (st, a)
)

∆Qobjm
max

docking station Qstation
relax (unplugged, charge) = −6, 9738 Qstation

relax (plugged, stay) = 0, 31 -7,2838
music Qmusic

relax (listening, dance) = 2, 71541 Qmusic
relax (listening, dance) = 2, 71541 0

user Quser
relax(absent,−) = − Quser

relax(absent,−) = − −
∑

objm 6=player

∆Qobjm
max -7,2838

the value of the new state is really high; this is not because of the collateral effects (in
fact, its value is negative) or the reward (also negative), but because of the value of the best
action that can be executed in the new state with the objectmusic player: to stop the music
(50, 9211). Then, the newQ value rises up to15, 117677.

Therefore, the high reward obtained in the first scenario, after the execution of the
actionstopwhen the robot needs to relax, is propagated to the state-action pairs required
to achieve it. These actions correspond to appetitive actions. This high reward is strong
enough to back-propagate even with negative reward and negative collateral effects.

Table 6.6: NewQ value for Scenario 2

Q
player

relax (far, go to) reward
Vplayer(st+1) = V

player

relax (near-on)
new Q

player

relax (far, go to)
max

a∈Aplayer

(

Q
player

relax (near-on, a)
)

Coll.Effects

7,30175 -1,555 Q
player
relax (near-on, stop) = 50, 9211 -7,2838 15,117677

Scenario 3

This scenario shows how the collateral effects positively influence the update of aQ value.
In this scenario, the dominant motivation isfun. The robot is close to themusic playerand,
initially, it is not listening themusic. The robot executes the actionplaywhich switches the
music playeron. The state transitions are detailed in Table 6.7.

Table 6.7: State transitions due to the actionplay musicin Scenario 3
anterior state (st) new state (st+1)

dominant motivation fun fun
docking station unplugged unplugged
music player * near-off near-on

music non listening listening
user absent absent

According to the state transitions previously mentioned, the newQ value is calculated
as presented in Equations (6.16) and (6.17).
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Q
player
fun (near-off, play) =

(1− α) ·Qplayer
fun (near-off, play) + α ·

(

r + γ · V player
fun (near-on)

)

(6.16)

V
player
fun (near-on) = max

a∈Aplayer

(

Q
player
fun (near-on, a)

)

+
∑

objm 6=player

∆Qobjm

max (6.17)

In this scenario, the collateral effects occur in themusicobject: once themusic player
is switched on, themusicstarts to listen and its related state changes fromnon listeningto
listening(Table 6.8). The new state of the objectmusic, listening, has a very large value
(56, 1831) due to the fact that it is necessary fordancing, which is the action that satisfies
the motivation offun. In contrast, when themusicis not listening, there is not possible
action withmusicbecause it is not present. This results in a very elevated collateral effects
value.

Table 6.8: Collateral effects due to the actionplay musicin Scenario 3
Objectm maxa∈Aobjm

(

Qobjm (st+1, a)
)

maxa∈Aobjm

(

Qobjm (st, a)
)

∆Qobjm
max

docking station Qstation
fun (unplugged, charge) = −17, 0099 Qstation

fun (unplugged, charge) = −17, 0099 0
music Qmusic

fun (listening, dance) = 56, 1831 Qmusic
fun (non-listening,−) = − 56,1831

user Quser
fun (absent,−) = − Quser

fun (absent,−) = − −
∑

objm 6=player

∆Qobjm
max 56, 1831

Despite the low reward (−0.0566654) and the poor value of the new state related to the
music player(0, 146101), when theQ value is computed in this iteration, the previousQ

value is already elevated. Even so, the large collateral effect makes it to increase even more
(from 22, 1503 to 29, 0072).

In this scenario, the performed action is an appetitive one too.

Table 6.9: NewQ value for Scenario 3

Q
player

fun (near-off ,play) reward
Vplayer(st+1) = V

player

fun (near-on)
newQ

player

fun (near-off ,play)
max

a∈Aplayer

(

Q
player

fun (near-on, a)
)

Coll.Effects

22, 1503 −0, 0566654 Q
player
fun (close-on, idle) = 0, 146101 56, 1831 29, 0072

Scenario 4

This last scenario is the counterpoint to the preceding scenario. Here, the collateral ef-
fects provoke a strong decrement in aQ value. This scenario corresponds to the iteration
following the one presented in the Scenario 3.
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In this case, the robot stops themusic playerwhich causes the state transitions shown
in Table 6.10. Apart from the effects of this action in themusic playerobject, themusic
object changes its state tonon listening. This transition derives in a really negative value
of collateral effects (Table 6.11) becausefun is the dominant motivation and the best action
(dance) cannot be executed without listening to music.

Table 6.10: State transitions due to the actionstop musicin Scenario 4
anterior state (St) new state (St+1)

dominant motivation fun fun
docking station unplugged unplugged
music player * near-on near-off

music listening nonlistening
user absent absent

The equations computing theQ value for this scenario are Equations (6.18) and (6.19).

Q
player
fun (near-on, stop) =

(1− α) ·Qplayer
fun (near-on, stop) + α ·

(

r + γ · V player
fun (near-off)

)

(6.18)

V
player
fun (near-off) = max

a∈Aplayer

(

Q
player
fun (near-off, a)

)

+
∑

objm 6=player

∆Qobjm

max (6.19)

Table 6.11: Collateral effects due to the actionstopin Scenario 4
Objectm maxa∈Aobjm

(

Qobjm (st+1, a)
)

maxa∈Aobjm

(

Qobjm (st, a)
)

∆Qobjm
max

docking station Qstation
unplugged,charge = −17, 0099 Qstation

unplugged,charge = −17, 0099 0
music Qmusic

fun (non listening,−) = − Qmusic
fun (listening, dance) = 56, 1831 -56,1831

user Quser
fun (absent,−) = − Quser

fun (absent,−) = − −
∑

objm 6=player

∆Qobjm
max −56, 1831

The correspondingQ value already has a low value (−1, 9285) (Table 6.12). However,
although the value of the new state in relation to themusic playeris quite high (29, 0072),
the very low value of the collateral effects (−56, 1831) and the scarce reward (−0.0566635)
reduce thisQ value up to−7, 88916505. This is because, as said before,musicis required
to dance and, therefore, to have fun. Without it, in this case, it is impossible to satisfy the
need of fun.
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Table 6.12: NewQ value for Scenario 4

Q
player

fun (near-on, stop) reward
Vplayer(st+1) = V

player

fun (near-off)
new Q

player

fun (near-on, stop)
max

a∈Aplayer

(

Q
player

fun (near-off , a)
)

Coll.Effects

−1, 9285 −0, 0566635 Q
player
fun (near-off, play) = 29, 0072 −56, 1831 −7, 88916505

6.3 Enhancing the learning process

As exposed before, learning is achieved by the robot throughinteraction in the real world
of a laboratory. Moreover, during learning, the actions arerandomly selected. This random
selection is based on the theory that all situations must be experienced an infinite num-
ber of times for the learning algorithm to achieve convergence. This leads to unfeasible
experiments in terms of their duration.

In order to be able to carry out full learning sessions, the reduced state space and the
Object Q-Learning have been considered. However, this is not enough for experiments in
the real world, Consequently, two novel mechanisms have been included:

1. Well-balanced Exploration

2. Amplified Reward

Both are intended for speeding up the learning process reducing the duration of the
learning sessions. Following, they are analyzed.

6.3.1 Well-balanced Exploration

During exploration, due to the random selection of actions,some states can remain unex-
plored for long periods. In order to solve this problem, fromtime to time, these unexplored
states are enforced to be discovered.

This idea is exposed in Figure 6.2: at some point, the robot isartificially transferred
to a new states′ which has not been explored enough. This “guided” transition is not
considered as an iteration in the learning process because it is not the “natural” result of an
action selected by the robot itself.

Si-1 Si S'i Si+1
ai-1,ri-1 ai,riapplying wellbalanced

exploration

Figure 6.2: Well-balanced Exploration schematic

This idea has to be applied to the particular state space of this work. Considering the
ideas presented in Section 6.2.1 , the state of the robot is composed of internal and external
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states (Equation (6.1)). The inner state is determined by the dominant motivation at each
iteration. The motivations grow due to the drive linked to each one or to the external
stimuli. As a result of the random selection of actions during learning, it could happen
that the required external stimuli for a particular motivation are never presented or attained;
or actions that satisfy a drive are always executed when its associated motivation is not
the dominant one. Moreover, drives evolve at different rates. Thereupon, the motivations
associated to the slowest drives are less likely to become the dominant motivation. For all
these reasons, the proper behaviors that have to be exhibited with some slower motivations
could not be properly learned in a reasonable amount of time.

In particular, in the presented implementation, therelax motivation is affected by this
problem. Its associated drive,calm, is the slowest one and the robot has to belistening
themusicto make this drive increases. For this reasons,relax will hardly be the dominant
motivation.

For promoting these slow motivations, it has been developeda mechanism where, every
f iterations, the least frequent dominant motivation is promoted. Promoting a motivation
means that the drive linked to the motivation is artificiallysaturated. This implies that the
drive value reaches its maximum value. Therefore, the promoted motivation will easily
reach the dominance over the rest of the motivations. As a consequence, the new state
is likely to be related to this promoted motivation and the associated behavior will be ex-
plored.

When a motivation is promoted, the transition from the previous state to the new sit-
uation where its drive is artificially saturated is not considered by the learning algorithm.
Otherwise, unreal effects of actions would have been taken into account and included in
the learned policy.

In the experiments,f is set to15 iterations. The whole process is schematized in Algo-
rithm 6.2.

Algorithm 6.2 Well-balanced Exploration: promoting motivations
Require: iter ← total number of iterations

Require: f ← frequency to promote the least frequent dominant motivation

1: while robot is learning do
2: if iter mod f = 0 then
3: m ← least frequent dominant motivation

4: d ← drive associated to m

5: d is saturated ⊲ promoting motivation
6: Set flag to ignore this iteration at learning

7: end if
8: iter = iter + 1
9: end while
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Promoting motivations forces to explore all the possible internal states (dominant mo-
tivation) an acceptable number of times, so the explorationof dominant motivations is
balanced. Thus, the experiment length can be drastically reduced.
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Figure 6.3: Well-balanced Exploration applied to the internal state

In this work, Well-balanced Exploration has been applied considering just unusual in-
ternal states (Figure 6.3). External states are explored enough and this technique has not
been applied to them. Nevertheless, in other works where thenumber of objects is much
higher, the same approach can also be applied to the externalstate in order to improve the
learning time (Figure 6.4). In this case, if the state related to an item has not been enough
explored, it will try to force this state.
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Figure 6.4: Well-balanced Exploration applied to internaland external states

As already mentioned, Well-balanced Exploration has been applied just to the internal
state of the robot. However, these changes of internal statecould required a change on
external state too. For example, when the driverelax is promoted, considering the definition
of this drive given in Chapter 4, the objectmusicmust be listening. Then, if themusic player
is off, it must be turned on. Therefore, the required transitions related to the external state
are also forced. Then, in the experiments, Well-balanced Exploration will be guided by the
internal state but external state transitions may be required too.

6.3.2 Amplified Reward

In order to identify as fast as possible the actions that satisfy the robot’s needs, Amplified
Reward has been implemented. As usual, living beings have been taken as the source of
inspiration. Focusing on human beings, when a person is hungry and he eats, the benefit
is really great. However, if this person is really thirsty and also hungry, eating does not
provide the same level of benefit, but a smaller one. The benefits coming from satisfying the
most urgent need is always huge. This is the idea behind the Amplified Reward mechanism.



6.4. Summary 125

In the interest of fostering this idea, positive rewards areamplified when the reward
comes from correcting the drive corresponding to the dominant motivation. By means of
back-propagation and the collateral effects, this amplified reward is transferred to the rest
of the actions involved, even when several objects are concerned. Therefore, all actions
required to satisfy a drive will be proportionally amplified: the farther the action is from
satisfying the drive, the less amplified.

For example, if the robot needs to relax, it will learn that, first, it must approach the
music player and, then, it stops the music. After music is muted, the need of relax is
satisfied. Thus, the reward of this action is directly amplified. Approaching the music
player is affected by this amplification due to the back-propagation occurring in the learning
algorithm, but its intensity is lower.

In consideration of the previous ideas, the amplification isapplied when the variation of
wellbeing (the reward) is positive and this benefit is due to the reduction of the drive con-
nected to the dominant motivation (the most urgent need). Mathematically, it is expressed
as Equation (6.20).

If ∆aDdm < 0 & ra > 0 thenr ← ra · fa (6.20)

where∆aDdm is the variation of the drive of the dominant motivation after executing ac-
tion a. ra means the reward obtained when actiona has finished (this is the wellbeing
increment), andr is the reward used by the learning algorithm. Finally,fa is the amplifi-
cation factor which determines the amount of augmentation applied to the reward. In the
experiments, the amplification factor has been set to 3.

How amplified reward is applied during an iteration of the learning process can be seen
on Figure 6.5. After actiona has been executed, the obtained rewardra is amplified if it
positively affects the dominant motivation.

6.4 Summary

This chapter has presented the learning algorithm implemented in the robot Maggie. This
algorithm is the Object Q-Learning which, together with thereduced state space, makes a
great improvement in the learning time. In addition, the collateral effects allows to consider
the interdependence among objects. Several detailed examples provide a clear understand-
ing of the whole learning process to the reader.

Moreover, due to the fact that this work is implemented in a robotic platform, some
modifications have been developed. The Well-balanced Exploration and the Amplified
Reward provide good performance in the behavior learning task. The comparison with and
without these novel techniques is presented in the experiments chapter, Chapter 8.

The learning process detailed in this chapter endows the robot with the capacity to prop-
erly learn the most convenient consummatory and appetitiveactions, resulting in different
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Figure 6.5: This diagram shows how Amplified Reward affects the learning process during
an iteration

behaviors. The resulting behaviors after the learning process are analyzed in Chapter 9.



CHAPTER 7

Implementing the decision making system

7.1 Introduction

The DMS presented in Chapter 4 has been designed and implemented considering that
it has to be as flexible as possible. This means that it has to beable to adapt to new
requirements and configurations with a minimum effort.

Since this system runs in a distributed system, the requireddata are stored in a relational
database where they can be easily accessed. It has been designed taking into account the
next principles:

• simplicity: tables are kept as easy as possible.

• conciseness: redundant data is avoided.

• information: all the required data has to be represented onthe logical scheme.

• logical independence: software must be robust enough to accept the modifications in
the tables

This section presents the technical design of the whole system, from the decision mak-
ing system to the available actions (skills) implemented inthis work. First, the DMS design
and how it is achieved are justified. Then, the robot’s skillsinvolved are commented.

127
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7.2 Decision Making System database design

All data required for setting the parameters of the DMS is stored in a database.
The DMS database design can be observed in Figure 7.1. This figure represents the

entity-relationship model of the database. Following, each element of the design is com-
mented and justified. The design is formed of entities and attributes which are represented
as tables in a database. Besides, relationships among entities represent how they are in-
terconnected and their associations. The database engine used in this implementation is
MySQL 6, the famous open source relational database management system.

The database design presented in this section is intended tocontain all data required
by the DMS proposed in this dissertation in order to perfectly decide and execute the most
appropriate action at each moment. All entities (referred as tables when implementing the
entity-relationship diagram) and their relationships aredescribed. Each table is composed
of entries in the table, and each entry is an instance of an entity.

Following all entities, their attributes, and their relationships are described.

6The world’s most popular open source database (www.mysql.com)
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Entity a person, place or thing about we want to collect and store multiple instances of data. It has a name, which is a noun.

Attribute features which describe the data we are interested in storing.

One or more the instance can be once or more times associated.

Exactly onethe instance can be exactly once associated.

Primary key attributes which uniquely identify one instance of an entity.

Foreign key field in a relational table that matches the primary key column of another table. This key tells the relational database how the tables are related.

Identifying relationship a foreign key is part of the primary key.

Non-identifying relationship foreign key is an attribute, it is not part of the primary key.

Figure 7.1: Database Entity-Relationship diagram
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Motivations The MOTIVATION entity represents a motivation running in the system.
Each one has a name and a unique id which undoubtedly differentiates this motivation
from others. As already explained, the motivation value is determined by the internal and
external stimuli. This is represented by the relationshipswith the DRIVE and EXTER-
NAL_STIMULItables. Each motivation is related to just one drive, then, this relationship
is limited to exactly one drive per motivation, one internalstimulus per motivation. In
relation to external stimuli, theEXTERNAL_STIMULItable is used to retain the relation-
ship between motivations and the items acting as external stimuli. These objects affect the
corresponding motivation when they are present; this is, there is an intrinsic state in rela-
tion with the objects which determine the activation of the stimulus. Hence, theEXTER-
NAL_STIMULItable stores all states related to the objects which act as the external stimuli.
Moreover, a particular motivation can be affected by several external stimuli. Therefore, the
multiplicity of this relationship is one motivation to one-or-more external stimuli. Besides,
there is an attribute related to the activation level of eachmotivation,activation_level.

Finally, the last attribute is calledenabledand it is used just for debugging purposes: if
enabledis false, this motivation is not considered during experiments.

Drives The DRIVE table is one of the key elements in the system. Entries in thistable
store all data related to drives and how they change as time passes. Each entry has a name,
which is a human understandable reference, and an identifier. The initial_valueattribute
correspond to the initial value of the drive when the robot’slife starts,personality_factor
represents the personality factor which ponders the relevance of each drive in the robot’s
wellbeing computation. The saturation level of a drive is associated to thesaturation_level
attribute. Like it has been shown in theMOTIVATION table, each entry has an attribute
calledenabledwhich easily allows to activate or deactivate a particular drive; it is mainly
used for debugging purposes too.

Evolution of drives Besides, the value of each drive changes. How the value of the
drives evolves is determined by a function and the parameters that define that function. All
this information is obtained from the tablesEVOLUTIONandPARAMS_OF_EVOLUTION
respectively.

Every drive updates its value according to a particular function. The logic of all possible
functions are implemented in code and their attributes are available in the tableEVOLU-
TION. Each function has a different identifier and a name, in orderto easily remember
it. The number of parameters required for the type of evolution is at thenumber_params
attribute. Each drive sets itstype_EVOLUTIONattribute to the corresponding evolution
function identifier.

Considering the number of parameters of each function, it ispossible to read the cor-
responding parameters of the desired drive from thePARAMS_OF_EVOLUTIONtable.
All parameters for all evolution functions are stored in this table. Parameters associated



7.2. Decision Making System database design 131

to a particular drive are identified by the drive identifier (id_DRIVE) and its index in the
function (index). In addition, these parameters can be interpreted as float numbers or text
strings; this is identified by thetypeattribute:1 corresponds to a string and2 to a float. The
parameter value itself is obtained from thevalueattribute. For example, if an evolution
function requires a certain event, there will be a parameterof type string with the corre-
sponding event. On the other hand, if the parameter relates to the increment of the drive
per iteration, it will be a float value. All in all, once a drivehas all the parameters required
by its evolution function, it is ready to update its value as time goes.

Currently, available functions are limited to a finite set ofhard-coded C++ functions
which are linked to a drive evolution function id. However, new functions can easily be
added if it is necessary.

Objects On the left side of Figure 7.1, tables related to items and their actions are pre-
sented. The first entity to mention,OBJECT, describes the objects the robot is able to
interact with. That is, the objects which constitute the robot’s world. Again, each entry in
the tableOBJECThas a name and an id. Thedefault_stateattribute is used to define the ini-
tial state or the state when an error occurs. Theenabledattribute works as the homonymous
attributes on previously commented tables.

States related to objects Objects have a finite and discrete set of states related to them
which defines the situation of the robot in relation to the world. These states are used to
determine the external state of the robot (Section 6.2.1). Data related to the states of the
objects are represented in theSTATE_RELATED_TO_OBJECTtable: in order to clearly
differentiate a state from other, it has a key attribute called id and a name (name) which
describes it;id_OBJECTrepresents the identifier of the object this state is relatedwith; and
eventsattribute stores all the events and the associated parameters which are emitted when
a transition to this state occurs. This attribute is a stringformatted as follows:

EV ENT1 : PARAMETER1; EV ENT2 : PARAMETER2; ...
More than one event can determine a transition to the same state so several events

(and their respective parameters) can be included in the same attribute. For example, the
music playercan be turned on with different commands, and, if the player is off, all these
commands imply a transition fromclose-offto close-on.

External stimuli The key attribute of theSTATE_RELATED_TO_OBJECTentity is also
considered on theEXTERNAL_STIMULItable as a key. As previously stated,EXTER-
NAL_STIMULIentity represents the external stimuli for motivations. Todefine this rela-
tionship between states related to objects and motivations, both the state id (id_STATE_RE-
LATED_TO_OBJECT) and the motivation id (id_MOTIVATION) are necessary. This two
elements are enough to define an external stimulus but how much this stimulus influences
the motivation is still required. This is defined by theintensityattribute. Each external
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stimulus is formed by one state related to an item which affects one motivation. Although,
a motivation can be affected by several external stimuli. How the value of an external
stimulus modifies the motivation has already been detailed in Equation (4.1).

Actions Objects in the world are items the robot can interact with. Therefore, the robot
can perform a collection of actions with each object. Information required to execute this
actions are compiled in theACTION entity. Actions are identified by a unique id and a
name. Each action is applied over a single object which is determined by its identifier in
the id_OBJECTattribute.

Actions are implemented as skills in the AD architecture. Therefore, the most relevant
information about actions is: how to activate and block the particular skill which performs
that action. This data is saved in theevents_startandevents_stopattributes of theACTION
entity. The events and parameters that must be sent to activate or block the skill are saved
in these attributes respectively.

Sometimes, the same action can be achieved by different skills. This implies that sev-
eral events can be sent for initiating that action. For example, the robot could dance in
many different manners, and each of these manners is activated by different events. This is
considered in the implementation by formatting theevents_startandevents_stopattributes
in the following way:

EV ENT1 : PARAMETER1; EV ENT2 : PARAMETER2; ...
When an action can be performed by several skills, the systemrandomly chooses one

and emits the corresponding starting and blocking events.

Type of action There is an entity that defines the type of action: theTYPE_OF_ACTION
entity. So far, the type of action just needs an id and a name; the logic under each type
is coded into the software implementing the decision makingsystem. Each entry of the
corresponding table refers to different sort of actions. Then, this classification can be easily
extended in the future by just adding new entries. TheACTION entity has an attribute
namedid_TYPE_OF_ACTIONwhich must be set to an existing action type id.

In this implementation, two sorts of robot’s actions were defined: “endogenous” which
represent actions affecting the world and the robot itself,and “exogenous” which do not
cause any effect and are used to perfectly perceived the consequences of actions not-
executed by the robot (Section 4.4.2).

Effects of action Moreover, actions provoke effects on the robot’s environment. These
effects are: a change on the state of the robot in relation to objects; and a modification of an
internal variable (a drive). The former effects are managedby skills in charge of monitoring
the states related to objects in the world (Section 7.4). Thelater effects are defined by the
EFFECT_OF_ACTIONentity. One action can affect one drive, or different drives, and it
could happen that a drive can be affected by several actions.Also, an action can have no
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effects over drives. The effects of the actions vary in theirintensities. Each entry in the
EFFECT_OF_ACTIONtable corresponds to the effect of an action over a drive: theevent
attribute corresponds to the events and parameters launched by an skill associated to the
action, whose id corresponds toid_ACTION, indicating that the corresponding effect must
be applied over the drive whose id is at theid_DRIVEattribute. The value (intensity) of the
effect itself is determined in theintensityattribute. If an actiona affects a drived and the
value of the effect ise, the resulting value of the drived is:

If e = +N ⇒ d = d + N

If e = −N ⇒ d = d−N

If e = N ⇒ d = N

If e = RESET ⇒ d = dinitial_value

(7.1)

whereN is a number andRESET is a key which identifies when the drive must be reset
to its initial value (dinitial_value) obtained from theDRIVE table.

7.3 Decision Making System class design

Data stored in the database have to be loaded into the software in order to be able to operate
with them during robot’s life time. In this work, an object-oriented approach has been
considered and, therefore, several classes have been designed and implemented into C++
code.

First, a general view of the DMS class design is presented. Inthis initial view, the
reader will get an overview of all elements and their relationships. Later, the main parts of
the design will be detailed and clarified.

Two main areas can be distinguished:

(a) how to model the external world of the robot

(b) how to model the internal variables of the robot

These two areas can be observed on Figure 7.2.
In relation to the external world (the environment where therobot “lives”), the world

is defined in terms of the items the robot is able to interact with, their possible states, and
their potential actions. Then, several classes have been defined to manage all the objects.
TheCObjectclass defines all the data related to an object. Each object isendowed with a
set of actions which can be executed by that object. Each action is modeled by theCAction
class. In addition, depending on how an object is perceived (or it is not perceived) by the
robot, it is said that the object is in a certain state. The required data for each state of each
object is included as an instance of theCRelatedStateclass.

Now, focusing on the robot itself, its internal variables are also defined as classes.
As presented in Chapter 4, the inner needs are presented as drives which are modeled
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by theCDriveclass. The evolution function for each drive is declared in an instance of the
CTimeEvolutionclass. Then, motivations are also a key element: each drive is linked to a
motivation. This and other properties of motivations are gathered in theCMotivationclass.

The relationship between the external and the internal world of the robot are determined
by the external stimuli and the effects of actions. This is reflected in Figure 7.2 by the
CExternalStimulusandCEffectOfActionclasses. The first one relates objects which alter
motivations to the motivations themselves. The latter is used to describe how an action
affects a particular drive.
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Figure 7.2: General view of the main classes which define the robot’s world (external and internal)
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7.3.1 The external robot’s world class design

After the outline of the DMS class design has been presented,each part is detailed. First,
Figure 7.3 presents the full class diagram with the relationships among all classes related
to the external robot’s world.

In this work, lots of elements require a unique identification. Then, all classes that
need it inherit from theCId class which provides the operations required for managing an
identifier and a name.

About theCObjectclass, it has a set of states which corresponds to the possible states
for each object (therelated_statesattribute). In the same way, each object has a set of
actions which are accessed by theactionsattribute.

Objects always are in a particular state in relation to the robot. Then, the current state
and the previous one are referred by thestateandoldstateattributes. When the state of
an object is updated, these pointers are modified. Both values are used to define the state
transitions for each item.

In the classCAction, the events for starting and stopping an action are in theevents_start
andevents_stopattributes. Since more than one event can be used to start/stop the action,
they are brought together in vectors ofCEventobjects. At the same time, each action
keeps a pointer to its object (item); and the effects are stored as a vector ofCEffectOfAction
instances accessed through theeffectsfield.

Since the same action can have different sort of effects, each effect has a different event
which indicates when it has to be applied. This is consideredin the classCEffectOfAction
in the attributeevent_param. This element relates the internal robot’s world to the external
one; then, it keeps track of the action which provokes the effect (theactionattribute) and the
affected drive (thedriveattribute). The quantity of the effect is represented as an integer.

In relation to the states of an object, each state remembers the object it is linked to by
the itemattribute and, also, the event which determines a new transition to this state. Since
states for the same object are incompatible (in this implementation an object cannot be in
two different states at the same time), one event is enough todetermine a transition, and an
“exit” event is not necessary. As said, more than one event can determine the transition to
the state, so a vector of events is considered at each state.

Besides, certain objects act as external stimuli; then, there is a connection between
states and external stimuli which is represented in the classCRelatedStateclass by a vector
of pointers to the external stimuli where the state takes part.

External stimuli connect the objects and the motivations. This is implemented by means
of the classCExternStimulus. This class relates a particular state of an item (item_state
attribute) to a specific motivation (motivationattribute). The intensity of this stimulus is
read from thevalueattribute.
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Figure 7.3: Detailed UML class diagram with all classes involved in the external robot’s world
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7.3.2 The inner robot’s world class diagram

In relation to the inner variables of the robot, Figure 7.4 presents the detailed diagram of all
classes involved in it. As explained before, the classCid is inherited by all elements which
need to be uniquely identified.

As seen in Figure 7.4, the main class is the one related to drives: the classCDrive.
The value of a drive is stored at the attribute calledvalue. Initially, its first value is read
from theinitial_valueattribute and its maximum value is fixed in thesaturation_levelfield.
The way a drive influences the robot’s wellbeing is rated by thepersonality_factorattribute
(Equation 4.7).

How the value of a drive is updated is defined by the object referred by thetime_evolu-
tion pointer. This pointer refers to an object of classCTimeEvolution. This class keeps the
info required for each possible function: the name and id of the function, and the number
of parameters required (number_of_params). The parameters themselves are stored as a
collection ofCParaminstances at theparamsvector. EachCParamobject has the type of
parameter (param_type), the value of the parameter (str_valueor float_value, depending
on the type of value), and its position in the function (index). The proper implementation
of the functions are hard-coded. The available functions for the evolution of drives are:

• linear: the drive evolves according to a linear function

• step: the drive evolves as a rectangular pulse.

• constant: the drive has a constant value, so its value does not change.

• interpolate: a value obtained from STM is interpolated into a determined range.

• linear according to a state: the drive evolves according toa linear function just if the
robot is in a particular state.

• linear with two rates: this is a linear function with two different slopes.

• linear with two rates according to a state: similar to the previous one, but the drive is
updated just when the robot is in a particular state.

• by value: this is a step function where the step is determined by a value read from
STM.

• by event: this is a step function where the step is determined according to an event.

Drives are affected by actions executed in the world. This istaken into consideration
by theCEffect_of_actionclass where actions and their effects over the drives are defined.

Drives are linked to motivations. This is represented in theCDrive class by means of
the affected_motivationsattribute, where the motivations which are affected by the drive
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are pointed. Likewise, the motivation class (CMotivation) keeps a reference to its inter-
nal stimulus by the pointerinternal_stimulus. In addition,CMotivationstores all needed
data for a motivation: the activation level, and the internal and the external stimuli. The
extern_stimulusattribute represents the items in the world which affects the motivation.
This is a vector ofCExternStimulusobjects because, theoretically, a motivation can be
influenced by more than one drive.

In order to manage all these data, during the robot’s life, this info is loaded into three
variables which will be accessed by the DMS software. These variables are declared in the
following way:

1 vector<CDrive> drives; //robot’s drive data
2 vector<CMotivation> motivations; //robot’s motivations data
3 vector<CObject> items; //objects in the robot’s world data
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Figure 7.4: Detailed class diagram with all classes involved in the internal robot’s world
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7.4 How the external state is perceived

In this work, the robot perceives its environment in terms ofobjects around it. So, the
position or the state of the robot related to these objects iscrucial for the robot. For example,
if the robot does not know that a person is close to it, it will never try to interact with that
person. Even worse, if we consider the navigation system andthe person is not detected as
a close obstacle, the robot could collide with the person.

One of the key elements in this system is the detection of robot’s state transitions in
relation to an object. Recalling, these states represent the position of the items in the
robot’s world in relation to the robot itself. Each object ismonitored by a skill (or several
skills) which informs about any change in the state of the object in relation to the robot.
The new states are notified by events which are received at a central monitoring skill. When
a particular monitoring skill detects a transition to a new state, it sends the corresponding
event and the attached parameter corresponds to the identifier of the new state (N1...N5 in
Figure 7.5). The central monitoring skill is in charge of composing the external state of
the robot considering the states in relation to all the objects. The resulting external state
is communicated to the DMS. The communication among all these elements is depicted in
Figure 7.5.

Skill monitoring the 
docking station

Skill monitoring 
people

Skill monitoring the 
music player

Skill monitoring 
the music

Skill monitoring 
robot's localization

Central States 
Monitor Skill

Decision Making 
System

NEW
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NEW_STATE_PLAYER, N3
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NE
W
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Figure 7.5: Skills involved in monitoring the external state

Next, how theCentral State Monitor Skillworks is presented. Figure 7.6 shows its flow
chart. This is not a cyclic skill, but a skill which works by events. In this case, since the
skills that monitor the individual objects employs events to communicate any change on
the state, this skill is subscribed to all possible events and it filters the events related to
the external state. After an event is received by this skill,it checks if the event is relevant
for the state related to an object. The data related to these events are obtained from the
database. Then, the current state is updated, and the external state is formed and written
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Figure 7.6: Main process of theState Monitor Skill

to STM. This is notified to the rest of the elements by theNEW_EXTERNAL_EVENT event.
Consequently, any element which needs to access the external state can read it, and it is
informed about any change.

The system is always listening for new events and no one is lost thanks to the event man-
ager system. It is endowed with queues which are in charge of managing all the incoming
events.

In order to achieve a high performance and reliability, there are independent skills
watching all the items in the robot’s world. Following, a brief description about how each
item is detected is presented. Then, a detailed descriptionof the skills involved in these
detections are explained.

The objects to be sensed are:

The docking station. The charger can be perceived by the data acquisition board which
provides enough information to discriminate between when the robot is plugged and
when it is unplugged.

A user. This “object” is perceived by the combination of two technics: a middle-range
sensor, based on bluetooth, and a short-range sensor, basedon RFID technology.

The music. In order to identify when the music is being played, there is askill that re-
members the last commands sent to the player, so it is able to determine if the music
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has been set on or off.

The music player. By means of the navigation system, the skill knows where the robot
is and if it is far o close to the music player. In addition, it also uses the previous
presented skill in order to determine when the robot is closeto the player, with the
music on or off.

The skills involved on the perception of the external state are: the location monitor skill,
the music player control skill, the music player sensor skill, the docking station sensor skill,
the bluetooth discoverer skill, and the rfid discoverer skill.

7.4.1 The location monitor

This skill has been designed to provide an easy interface with the navigation system im-
plemented in the robot. This skill reads the geometric information of well-known locations
from an XML file and they are employed for the internal use of the skill.

The skill has a dual task:

(a) it provides an easy high-level interface to send commands to the navigation system

(b) it monitors the position of the robot in the world

For example, if there is a position referred asin front of the music player, this skill
translates the high-level commandgo to the music playerto lower geometric commands
which are managed by other skills running in the AD architecture. Moreover, the moment
when the robot has reached this location is also notified to the rest of the architecture, .

An example of an XML file of positions is shown below. The required data for a
position are an identifier, a description of the location, and theXY θ coordinates.

Code listing 7.1: XML file describing a location
1 <?xml version="1.0" encoding="UTF-8" ?>
2 <positions>
3 <position>
4 <!-- all fields are required -->
5

6 <!-- id number -->
7 <id>1</id>
8

9 <!-- short description about the position -->
10 <description>in front of the docking station</

description>
11
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Figure 7.7: Activity diagram of geometric position monitoring

12 <!-- x value -->
13 <x_value>-0.267956</x_value>
14

15 <!-- y value -->
16 <y_value>-2.28114</y_value>
17

18 <!-- theta value -->
19 <theta_value>-1.46912</theta_value>
20 </position>
21 </positions>

This skill is permanently monitoring the robot’s position for notifying the transitions
from a location to another location. The process is shown on Figure 7.7. Initially, all well-
known position are read from the XML file. After that, the control loop starts. First, the
odometric values are updated, and then, the current robot geometric position is compared
with all the well-known positions. If the robot position is close enough to a well-known
position, this is notified by sending thePOSITION_REACHED event and the position
identifier is attached.

Due to the noise in the sensors, a tolerance value is set before a new location is assigned
to the robot. Therefore, the expression “... is close enough...” means that the robot position
must be inside this tolerance error. For the application required in this work, the error on
thex andy axes is set to10cm, and, for theθ coordinate, the tolerance is0.2rad (about
11º).
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The positions defined in this work were three:in front of the docking station, the center
of the lab facing the door, andclose enough to control the TV.

The functionality previously enumerated as(a), the high level interface with the navi-
gation system, is discussed in Section 7.5.4.

7.4.2 The music player sensor

This skill is in charge of sensing and notifying the state of the music player in relation to
the robot. It manages two kinds of information: a) the geometrical position of the robot,
and b) the commands sent to the player. Both data are merged todetermine the state related
to the player.

Since the required information is coming from two independent sources of information,
every time one of them is updated, the state of the player is updated too. Two independents
threads monitor both sources of information.

Regarding the commands sent to the music player, the skill islistening all of them. It is
subscribed to the event used to operate the music player (COMMAND_TV), and the command
sent is obtained. Then, according to the current position ofthe robot, the state of the player
is updated. The new state is notified emitting the corresponding event if it is different than
the last state. The process is summarized in Figure 7.8(a)

In relation to the position of the robot (Figure 7.8(b)), there is a control loop where the
current position is read and it determines if the robot is close to or far from the player. This
information is combined with the last command sent to the player and the final state of the
music player is formed. If the state has changed, this is communicated by an event.

7.4.3 The docking station sensor

There are two possible states in relation to the docking station: plugged or unplugged. This
skill senses this situation and notifies it to the rest of the architecture.

A data acquisition board reads the real voltage of the battery. When the robot is plugged,
the voltage of the robot’s battery reaches27V . Otherwise, this voltage is below26V . In
the moment when the robot gets plugged/unplugged, there is peak/plunge on the voltage.
This is the principle used by this skill to identify the transitions between both state.

The process is permanently running (Figure 7.9). Using mathematical methods, several
consecutive readings of the voltage are used to approximatea straight line. The slope of this
straight line is computed in order to determine if the robot is plugging or unplugging. The
already mentioned peaks/plunges are reflected on the slope.Then, in order to determine
the exact moment of plugging/unplugging the absolute valueof the slope has to be over a
thresholdLplugged. A positive slope means that the robot has just connected to the charger.
A negative one implies a movement out of the docking station.In a formal way, it is
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Figure 7.8: Activity diagrams of the music player sensor skill

expressed in Equation 7.2.

If |m| > Lplugged & m > 0⇒ robot is plugged
If |m| > Lplugged & m < 0⇒ robot is unplugged

(7.2)

wherem is the value of the slope.

7.4.4 The bluetooth discoverer

The bluetooth discoverer is a skill intended to identify people around the robot. It is based
on bluetooth technology which is power-class-dependent. The class of device determines
its range. In Maggie, a class 2 device is on board the robot, so, its range is around 10
meters.

The idea is that each person is wearing his personal cellularphone, which is equipped
with a bluetooth interface (most mobile phones are already equipped with this interface).
Then, this interface is used to identify the people around the robot.
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Figure 7.9: Activity diagram of the docking station sensor skill
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Figure 7.10: Activity diagram of the bluetooth discoverer skill

This skill searches for bluetooth devices which are detailed in an XML file in LTM. The
link between each bluetooth device and its user is defined in the XML file.

The control loop of the skill scans for near well-known bluetooth devices and writes to
STM a string with the name of the users whose bluetooth devices have been detected. At
the beginning of each iteration, the skill scans all available bluetooth devices. Then, it just
filters the available bluetooth devices which are identifiedin the XML file. The resulting list
of devices is compared with the list in the previous iteration. If differences appear, the new
list of users is written to STM and theUPDATE_BT_DEVICEevent is emitted. Otherwise,
the loop starts again. The list of detected users is a string formatted as a space separated
list of names. This string is stored in STM with theID_BT_DEVICESid. Every time
a user appears/disappears, the new list is written and the eventUPDATE_BT_DEVICESis
triggered. The list of users is updated in STM just when it changes. Figure 7.10 summarizes
the whole process.

As mentioned, the information about users and their bluetooth devices are obtained
from an XML file. An example is shown in Listing 7.2. The XML filemust contain enough
information for identifying the user and his bluetooth device. In order to undoubtedly
identify a device, its bluetooth address (similar to the MACaddress in network cards) or
the device name are considered. Both fields are queried by theskill, but just one of them is
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required. The owner of the device is defined by the user’s name(the attributeuser) in the
XML element.

Code listing 7.2: XML file describing a user’s bluetooth device

1 <?xml version="1.0" encoding="UTF-8" ?>
2 <devices>
3 <device>
4 <!-- just the bluetooth address or the user-friendly name

is enough -->
5

6 <!-- bluetooth address -->
7 <address>00:25:67:6F:2F:3D</address>
8

9 <!-- user-friendly name -->
10 <name>S8000</name>
11

12 <!-- user’s name -->
13 <user>alvaro</user>
14

15 </device>
16 </devices>

In the experiments carried out in this work, two user’s bluetooth devices have been
tracked.

7.4.5 The rfid discoverer

In the previous section, cellular phones were used to identify users 10 meters around the
robot. This could be enough for some applications. However,when human-robot inter-
action is achieved in shorter distances (e.g. touching the robot, talking to the robot, etc),
another technology is required.

The robot employed in this thesis interacts with users in very short distances: it plays
board games, reacts to touch, or establishes dialogs. Then,other additional mechanism is
required to distinguish between people really close to the robot from people in its vicinity.

In this work, Radio Frequency Identification (RFID) has beenused as the short range
identification technology. In this case, the user is given a personal RFID tag which can be
placed at his pocket or wallet, and it will be sensed by the robot when he is closer than 1
meter.

In general, this skill can be used for identifying any objectwhich has an RFID tag
attached to it (also referred as RFID objects). Each RFID object is identified by a string
which has been previously written in its RFID tag. This skillprovides a high-level interface
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since it refers to the presence or absent of objects. However, it does not deal with low level
operations. This is achieved by other skills running in the robot. It mediates between low-
level operations and the user. The low level operations are performed by other skill which is
in charge of reading the data from a new RFID tag, write them toSTM, and finally notify it
by emitting theNEW_TAG_RFIDevent (more details about low level RFID operations can
be read in [196]). Therfid discovererskill informs about the presence/absence of objects
with an RFID tag. This makes very easy to extend the repository with more items, even if
they were detected by other technology.

The rfid discovererskill informs about the objects detected by the RFID antennas in
the robot (one in the head, one in the chest, and one in the base). When a new RFID
tag corresponding to an object has been detected, this is notified emitting theDISCOV-
ERED_RFID_OBJECTevent. An identifier is attached to this event, and it indicates which
object has been sensed.

In the same way, once an RFID object has been detected and it isconsidered aspresent,
a timeout is used for checking when it disappears: after certain time without sensing the
RFID object again, the eventDISAPPEARED_RFID_OBJECTis emitted and it is assumed
that the object has disappeared (it isabsent). The parameter attached to this event identifies
the disappeared object. The time out has been set to30 seconds (timeout = 30).

The list of RFID objects that the robot is able to detect is obtained from an XML file.
The XML element named asobjectstores the data related to an RFID object. The value
which is written in the RFID tag, and that is used to identify it, is stored at the child ele-
mentid. Then, the name of the object and its description are the contents of the elements
nameanddescription. Finally, the child elementevent_paramcontains the number that
identifies the object when it is discovered/disappeared (the parameter attached to theDIS-
COVERED/DISAPPEARED_RFID_OBJECTevent). An XML example is presented in
Listing 7.3

Code listing 7.3: Example XML file describing an RFID object
1 <?xml version="1.0" encoding="UTF-8" ?>
2 <rfid_objects>
3 <object>
4 <!-- rfid tag value -->
5 <id>alvarocastro</id>
6

7 <!-- name of object -->
8 <name>alvaro</name>
9

10 <!-- object description -->
11 <description>phd candidate at roboticslab researching on

social robotics</description>
12
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13 <!-- param attached to event emitted when the object is
detected -->

14 <event_param>1</event_param>
15 </object>
16 </rfid_objects>

The main steps of this skill are described in the Figure 7.11.Initially, the data related
to all RFID objects are loaded. Then, once an RFID tag is detected (this is notified by the
low-level RFID skill emitting theNEW_TAG_RFIDevent), its value is read from STM and
compared with the list of recently detected RFID objects. Ifit is a new one, it is added
to this list and its timeout is reseted. If it already was in the list, the timeout is reseted
too because this object has been perceived. In every iteration, the timeouts for all recently
detected objects are updated. If any timeout reaches zero (timeout = 0), it is interpreted
as that the object has disappeared, so it is deleted from the list of recently detected RFID
objects, and it is notified by the emission of the corresponding event. The next time it
appears, it will be considered as a new object and the corresponding event will be emitted.

The combination of the last two skills presented in this chapter, thebluetooth discoverer
and therfid discovererskills, provides a reliable system to perfectly identify the presence
of users. As a result, three different states are possible for a person:

• absent: the user is not perceived by either the bluetooth device or the RFID tag.

• present: the user is in the vicinity; his bluetooth device is detected, so he is about 10
meters around, but his personal RFID tag cannot be sensed.

• close: the user is closer than 1 meter to the robot; both bluetooth device and RFID
tag are perceived.

Graphically, it can be seen as depicted in Figure 7.12 where the different ranges for
both technologies are shown.

7.5 How the robot interacts with the objects

The robot’s world consists of items. The robot interacts with these items by means of
the execution of actions related to them. These actions are implemented as skills running
within the robot’s control architecture. This section details all the actions related to the
items in the robot’s world.

7.5.1 Charge the battery

This action is related to the docking station. Its task is to plug the robot into the docking
station and to stay there until its battery is totally recharged.
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Figure 7.11: Activity diagram of RFID discoverer skill

The skill implementing this action is called theChargeskill. The process for recharging
the battery is shown in Figure 7.13. The first step is to determine if the robot is already
plugged. If it is not, it approaches the docking station using the navigation system. The
robot knows several well-known positions and the location monitor skill (Section 7.4.1)
is in charge of moving it to the front of the docking station. Once the robot is facing the
docking station, it has to accurately center its plug to the socket in the charger. This task is
achieved by means of the laser telemeter which gives higher resolution than the geometric
navigation. Then, Maggie moves back until the plug fits into the socket. This is detected by
theDocking Station Sensorskill (Section 7.4.3). In the last step the robot remains plugged
until its battery is totally recharged. Finally, the successful end of the action is pointed out
by emitting theCHARGED event. In case an error occurs, an event, which indicates thetype
of error, is sent.
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Figure 7.12: Sketch about the ranges of both technologies for identifying a user

Once theChargeskill has ended, the battery is full and the robot is still plugged. As
seen before, this implies that thesurvivaldrive is satiated.

7.5.2 Staying plugged

This is the other available action in relation to the dockingstation. It makes the robot
remains in the same situation, without moving, for a certainamount of time. There are two
ways of operating:

• when the skill is activated, the robot waits for a specific time (30 seconds). After it,
the eventSTAYED is emitted.

• when the eventWAITING is received, the attached parameter defines the waiting time.
After the time is over, theWAITED event is sent.

This skill guarantees that, during a fixed amount of time, therobot does not move at all.

7.5.3 Dancing

The Dancing skill requires that the robot islisteningthe music in order to execute its pro-
cess. This skill makes the robot rhythmically moves its amrsand neck. It seems like the
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robot is dancing. The process is presented in Figure 7.14. Atthe end of the action, the
robot moves down its arms and its head is facing the front.

The end of the action is notified by theDANCE_STOPPED event.

7.5.4 Geometric move to

This skill moves the robot in the environment. It is employedby the actions which require a
displacement in the environment. In this work these actionsare related to the music player
and the docking station. The class implementing this skill is the same class used for mon-
itoring the robot’s locations (Section 7.4.1). This section corresponds to the functionality
mentioned in that section and labeled as(a).

When the eventGEOMETRIC_MOVE_TO is received by this skill, its parameter indicates
the position to move to. The coordinates corresponding to this position are read from the
matching entrance in the positions XML file (an example can beseen in Code listing 7.1).
Once the coordinates are ready, they are sent to theGo To Pointskill, which moves the
robot to the desired position. Once the robot is there, the skill Go To Pointnotifies it by
the eventI_AM_HEREwhich is managed by theGeometric Move Toskill. It checks that the
reached goal corresponds to the desired one. If it is so, theGEOMETRIC_GOAL_REACHED

event is sent and the location identifier is attached to it. This process is summarized in
Figure 7.15.

TheGo To Pointskill [196] manages low level operations for moving the robot in the
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environment.

7.5.5 Staying

Once the robot is close to the music player, it can control it or stays there for a while.
This last action makes the robot to remain close to the music player. The skill in charge of
performing it is the same used for staying plugged (Section 7.5.2).
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7.5.6 The music player control: turning it on/off

The robot Maggie is endowed with a voice operated infrared remote control. In general,
the robot is able to control any home appliance equipped withan infrared interface. This
is fulfilled by most of the regular appliances. Therefore, this means that no changes or
adjustments have to be done in the appliances. In this particular skill, due to the limited
number of home appliances in the lab, the skill is limited to operate a television. This
television is employed, during the experiments, as a music player.

The required infrared commands for operating the music player (the television) are
previously recorded from the original remote control. Subsequently, the commands can be
sent by the robot upon request of a user. The human-robot interaction is achieved by means
of the dialog system.

The music player is located in a certain position, so, when the robot has to control it,
first, it has to approach it and face it.

In order to send commands to the infrared-operated appliances, Maggie is equipped
with an infrared emitter/receiver. It has been placed inside Maggie’s belly, behind a sphere
which lets infrared signal to go through. Because of the nature of the infrared technology,
it is essential that the robot is located close enough and facing the music player. Hence, a
reliable navigation system is a fundamental element.

In order to successfully achieve the task, this skill is sustained by other skills running in
the robot. The communication among all these skills is depicted on Figure 7.16. Following,
the role of each skill is explained.
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1. ASR Skill: the Automatic Speech Recognition skill is in charge of informing about
which grammar rule has been identified through the microphones. An event (REC_-
OK) and the detected grammar rule identifier are sent to alert the rest of the architec-
ture. This event will be catched by every skill subscribed toit; in particular, the skill
namedSpeech_IR_Control.

2. Speech_IR_Control Skill: it is a data processing skill which translates an incoming
event from the ASR skill to a new one. The new event is based on the identified
grammar rule which identifies the requested command. If the command is not related
to the infrared system, the event is ignored. In other case, the required information is
stored at STM. This information is the device to control and the command to send;
for example, "turn the music player on". Then, theSpeech_IR_Controlskill indicates
that Maggie has to move to the device’s location by means of theGOTOevent. If the
position is reached, then theGOTO_OKevent is received. Then, the robot is ready
for emitting the appropriate command. Consequently, this is notified by sending the
CONTROL_IRevent. In case of any error, the operation is aborted.

3. GoTo Skill: after theGoToskill receives theGOTOevent, the robot is intended to
move to the position determined by the data stored in STM. Particularly, this skill
takes the name of the device to be operated from the STM and it relates it to a pose
(position and orientation) in an internal map of the world. If the desired position is
reached, theGOTO_OKevent will be sent. Other case,GOTO_FAILis sent.

4. IR_Remote_Control Skill: theCONTROL_IRevent is captured by this skill. Once it
is received, it accesses the data concerning to the corresponding command at STM.
Then, the info is sent to the infrared server. The right ir coding to sent is obtained
from the database where all the available coding commands are. Now, the infrared
hardware emits this coding. Finally, it informs that everything has gone right.

The chronological evolution of the music player control skill is shown in the sequence
diagram in Figure 7.17. When a user wants Maggie to operate aninfrared appliance, he
interacts with the robot by voice commands (message 1 Figure7.17). The ASR skill identi-
fies it and distributes the grammar rule joined to the user’s command by means of the event
REC_OK(message 2 Figure 7.17). Once thespeech_ir_controlskill receives it, it links
the recognized grammar rule to a device and an instruction. Both parameters are stored
and shared by means of STM. At this moment, Maggie has to change its position in order
to face the appliance (message 3 Figure 7.17) which name is stored in STM. The name is
linked to a pose in the internal map and the robot goes there. Whether it achieves it or not,
it is notified by theGOTO_OKor GOTO_FAILevents (message 4 Figure 7.17). If Maggie
is ready (i.e. facing the appliance) and the required data are available, theCONTROL_IR
event is sent and it is received by their_remote_controlskill. It asks the infrared server,
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Figure 7.17: Sequence diagram of the music player control skill

which is directly connected to the hardware, for sending therequested command. The
result of the operation is back-propagated.

7.5.7 Interacting

In this action, the robot does not move at all but asks a personfor interacting with it. Then,
the presence of a person is required for this action. The robot evaluates the action executed
by the person in terms of the internal robot’s wellbeing; i.e. how the person’s action affects
itself.

This action is implemented by theInteractskill. This skill detects the oral and tactile
effects of the person’s action. Roughly speaking, this skill distinguishes if the person says
compliments to the robot or he offends it. Moreover, it evaluates the tactile interaction as a
stroke, a damage, or neutral. Both interaction mechanisms run in parallel when the skill is
activated. In order to easily understand how it works, each one is independently analyzed.

Insulting or paying it a compliment

The verbal actions of a user can be interpreted as positive ornegative according to the
meaning. In order to classify them, theInteractskill evaluates them.

The verbal communication is managed by a dialog system whichis based on the Auto-
matic Speech Recognition (ASR) and the Text To Speech (TTS) systems. The dialogs are
formatted following the Voice XML standard (VXML) which defines the structure of the
Dialogs. VXML converts speech to text by means of grammars. Grammars are a set of
rules which define the sentences or words the robot is able to understand.

In this case, the required grammar is defined considering thepossible insults or com-
pliments the user says to the robot. Then, the rules of this grammar, somehow, describe the
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robot. Grammars allow the addition of semantic meanings. These semantic meanings are
expressed in the following way:

1 <@attribute = value>

whereattributeis a variable which will be set tovalue.
For example, the next grammatical rule represents the affirmative or negative answers:

1 public $yes\_no=("yes":yes|"no":no|"okey":yes|"affirmative":yes|"
negative":no) {<@option $value>}

Then, the variable@option is set to the semantic value of the rule namedyes_no. The
possible values areyes or no. This variable is used inside the dialog too. Strings in
quotation marks represent the possible words recognized bythe ASR, that is, the possible
words pronounced by the users.

The Interact skill uses a specific grammar for recognizing insults or compliments.
This grammar is shown in Listing 7.4. The main rule (root) refers to the rule named
describing (line 6). This rule accepts any sentence (this is represented by GARBAGE)
before an insult or compliment (line 13). The repertory of understandable insults/com-
pliments is defined by the ruleinsults_compliments (lines 8-11). This rule fixes the
attributeadjective to the valueINSULT or COMPLIMENT.

Code listing 7.4: The grammar for compliments and insults
1 #ABNF 1.0 ISO-8859-1;
2

3 language es-ES;
4 tag-format <loq-semantics/1.0>;
5

6 public $root = $describing;
7

8 $insults_compliments =
9 ("idiot":INSULT | "stupid":INSULT | "silly":INSULT | "clumsy"

:INSULT | "ugly":INSULT | "bored":INSULT | "disgusting"
:INSULT | "bastard":INSULT | "wicked":INSULT | "bitch"
:INSULT | "incompetent":INSULT | "filthy":INSULT |

10 "clever":COMPLIMENT | "pretty":COMPLIMENT | "cute":COMPLIMENT
| "you smell good":COMPLIMENT | "fun":COMPLIMENT | "funny

":COMPLIMENT | "fun-loving":COMPLIMENT | "charming"
:COMPLIMENT | "scream":COMPLIMENT | "lovely":COMPLIMENT |
"graceful":COMPLIMENT

11 ){<@adjective $value>};
12
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13 $describing = [$GARBAGE] $insults_compliments;

VXML dialogs are based on forms which are filled according to the data provided
by a user and processed by a grammar. In the mentioned application, just one form is
necessary. This dialog is shown in Listing 7.5. Initially, the form is identified with the
nameinsults_compliments (line 7) and several properties are defined: thetimeout

property specifies the default interval of silence allowed while waiting for a user input
before anoinputevent is thrown. In this case, it is set to30 seconds (line 9). Then, the
default language and grammar are set (lines 12 and 13 of Listing 7.5). Theprompt tag
controls the output of the dialog: it can be a synthesized sentence, the configuration of a
property, emitting an event, etc.

Thefield element specifies an input item to be gathered from the user. In this dialog,
thisfield is linked with theadjectiveattribute defined in theinsults_compliments
grammar. Onceadjective is filled by a user’s utterance, the action defined by the code
in thefilled element is executed (between lines 19 and 28). In this case, depending on
the value of theadjective attribute, the user has paid Maggie a compliment or he has
offended it. In the first case, theCOMPLIMENTEDevent is sent and a happy sentence is
said (lines 21-22). In the last case, theOFFENDEDevent is emitted and a sad sentence is
said (lines 24-25).

In the case that the field is not filled (the user does not speak,or his speech does not
fit the grammar), after30 seconds, thenoinput element is executed (lines 30-33): this is
notified by theIGNOREDevent and the robot says"you ignore me".

Code listing 7.5: The VXML dialog used by theInteractaction.

1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <vxml xmlns="http://www.w3.org/2001/vxml"
3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
4 xsi:schemaLocation="http://www.w3.org/2001/vxml http://www.

w3.org/TR/voicexml20/vxml.xsd"
5 version="2.0"
6 >
7 <form id="insults_compliments">
8

9 <property name="timeout" value="30s"/>
10

11 <block>
12 <prompt>#setLanguage$en</prompt>
13 <prompt>#setGrammar$insults_compliments.gram</

prompt>
14 </block>
15



162 Chapter 7. Implementing the decision making system

16 <!-- An insult or compliment is detected -->
17 <field name = "adjective">
18

19 <filled>
20 <if cond = "adjective == ’COMPLIMENT’">
21 <prompt>#emit$COMPLIMENTED</prompt>
22 <prompt>en:uuuii great! I really like it<

/prompt>
23 <elseif cond = "adjective == ’INSULT’" />
24 <prompt>#emit$OFFENDED</prompt>
25 <prompt>en:you are not very polite</

prompt>
26 </if>
27 <clear/>
28 </filled>
29

30 <noinput>
31 <prompt>en: you just ignore me</

prompt>
32 <prompt>#emit$IGNORED</prompt>
33 </noinput>
34

35 </field>
36 </form>
37 </vxml>

Several examples of possible Dialogs are presented on Figure 7.18. Figure 7.18(a)
shows how a user offends Maggie. The next figure, Figure 7.18(b), displays the messages
between the robot and the user and how he says a compliment to Maggie. In the last
example, Figure 7.18(c), the users ignores Maggie and he does not say a word.

Stroking or beating the robot

In addition, apart from verbal interaction, theInteractskill evaluates the tactile communi-
cation. In order to achieve it, the sensitive “skin” of the robot is used. The capacitor sensors
spread around the surface of the robot are read to determine where and how the robot is
being touched.

In this skill, two kinds of tactile interactions are distinguished: strokes and hits. The first
one is identified when the user strokes the robot’s head. In contrast, when the robot’s both
shoulders are touched, it is considered as a hit. In short, this process is depicted on Figure
7.19. Every time a touch is detected on the surface of the robot, this is communicated to the
rest of the architecture by theTactile Sensorskill which emits theTOUCHEDevent. When
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(a) (b) (c)

Figure 7.18: Three possible dialogues with a user

the Interactskill is running, this event is received and the tactile information is processed.
The touch is classified as stroke, hit, or other. Strokes are considered similar to compliments
and hits are similar to insults, thus the corresponding events are sent:COMPLIMENTED
andOFFENDED.

TheTactile Sensorskill manages all the tactile sensors in the robot’s skin andinforms
about what sensors have been touched.

       event
TOUCHED

      event
TOUCHED

       event
  OFFENDED

[other king
of touch]

[Maggie is hit]

       event
  COMPLIMENTED

[Maggie is stroked]

This event is sent from 
the tactile sensor skill

Figure 7.19: Activity diagram for tactile interaction
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7.6 Summary

This chapter has shown how the whole system is technically designed and implemented.
The relationship among different elements have been detailed.

Initially, the design of the DMS has been presented and its advantages has been justified.
The system is fully configurable through the data stored in a database. The database design
and the software design for managing all the data have been detailed.

Later, the skills running in the robot, either for detectingthe external state, or for exe-
cuting actions, have been analyzed and explained. The technical details have been shown
in an attempt to clarify the ins and outs of the whole system.

The DMS pretends to be a fully customizable system. It has to be flexible enough to
be effortless transferred to other robots. The proposed system perfectly can run in other
platforms by just updating the data on the database. However, skills are more platform de-
pendent. Some of them should be modified before they run in other platforms; for example
the geometric navigation is dependent of the physical parameters of the mobile base. Other
skills can perfectly work out-of-the-box, e.g. theRFID discovererskill. But others abso-
lutely cannot be adapted due to physical constrains of the robot; theDanceskill cannot be
adapted to a robot without head and arms.



CHAPTER 8

Testing the experimental setup

8.1 Introduction

This chapter presents the scenario and conditions for the experiments. First, a general
common setup of the experiments is given. Following, a fragment of an experiment is
deeply analyzed in terms of motivations. This shows the interdependences between all
elements and the operating of the DMS. Later, the use of the Object Q-Learning algorithm
is justified and its benefits are exposed. Finally, the modifications to the learning algorithm
are validated.

8.2 The arrangements for the experiments

In this thesis, the experiments consist of two phases: exploring and exploiting. First, the
robot learns the proper behaviors in different situations,so it has to explore all possibilities.
Maggie tries every action in order to learn the right policy to act. Second, the learned
policy is exploited selecting the best action according to the world configuration in each
moment or state. The behaviors are originated as a consequence of the string of these
actions. During exploitation, learning is frozen and the best action is always selected.

All the experiments have been achieved by real robot-environment interactions, so the
behaviors and actions imply to interact with the items in therobot’s environment. An
overview of the robot’s environment was displayed in Figure5.5 (Chapter 5). Learning
has been also achieved by real robot-environment interaction, which means that the robot
explores all available actions in every world configurationmany times. As explained in
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Section 4.4.1, each action will be evaluated according to its effect over the robot’s wellbe-
ing.

Reinforcement learning algorithms have been used during the experiments (Chapter
6). In particular, the Object Q-Learning algorithm (Section 6.2) has been implemented.
Previous knowledge has not been given to the robot in advance, so it has learned from the
ground up.

In the experiments, an iteration corresponds to the execution of an action by the robot.
The robot decides at each iteration the action to carry out. The probability of an action
to be selected is determined by theQ value associated to this action in the current state,
and by the level of exploration. During the exploring sessions, all actions have the same
probability of execution. This is required in order to guarantee that all actions are tried
many times from all the possible states. At exploitation, the best action is always selected.
The best action is the most convenient in terms of the robot’swellbeing. That is, actiona
is the best action when the robot is in states if the Q(s, a) value is the highest one among
theQ values corresponding to the rest of the available actions.

The interactions between the robot and the environment where experiments are ac-
complished take a considerable amount of time. Hence, for most of the experiments, the
learning phase has been established to last around700 iterations which usually means a
duration of more than seven hours.

As exposed in Section 5.4.3, the balance between exploration and exploitation will
depend on thetemperaturefactor. During learning,delta δ is set to100 causing a high
temperature, so the actions will be randomly selected to try all possibleactions. Further-
more, initially, the learning rateα is set to0.3 which means that the most recent data are
quite relevant during learning. As justified in [49], at somepoint, exploring must stop and
the learned values must be exploited. Considering this approach, after500 iterations, the
learning rate starts to continuously decrease until the learning rate reaches0. After this
point, theQ values will not change anymore and the experiments enter in the exploitation
phase.

Since this work has been implemented on a social robot intended to interact with people,
thepersonobject has been considered as the only active object which shares the environ-
ment with Maggie and interacts with it. Consequently, the exogenous actions are those
actions executed by the people around Maggie. Recalling, the exogenous actions affect
the external state as well as the internal state of the robot.For example, when a person
approaches Maggie, the state related to this person (the external state) has changed, and
it is not due to the robot’s actions. Moreover, the actions accomplished by a person may
affect some robot’s drives (the internal state): e.g. if a person hits the robot, thesocialdrive
soars, i.e. the need of a positive social interaction increases. Again, all these consequences
are not caused by the robot but by the people’s action (the active objects’ action).

In these experiments, two people will interact with the robot: Alvaro andPerico. Both
alternatively approach Maggie, one by one.Pericoalways interacts with positive actions:
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he strokes the robot or he says compliments to Maggie. This results on the satisfaction of
the social drive, which is set to 0.Alvaro generally acts in a positive way too. However,
sometimes, he hits or offends Maggie. This is reflected in therobot’s wellbeing through an
increment of ten units in thesocialdrive (Equation (8.1)). In general, both users benefit the
robot butAlvarooccasionally causes harm to it.

If the robot is harmed⇒ Dsocial = Dsocial + 10 (8.1)

8.3 Analysis of the course of the motivations

First of all, in this section, the course of the motivations is detailed. That is, how motiva-
tion values change with time during Maggie’s “lifetime”. A ten-minutes period has been
extracted and fully analyzed. This meticulous study provesthe correct working of the sys-
tem as well as clarifies how the internal and external stimuliare combined to compute the
intensity of the motivations.

Motivations uniformly grow but, sometimes, their intensities suddenly change. These
jumps occur due to the presence of external stimuli as well asthe effects of the robot’s
actions on the drives. Figure 8.1 shows the evolution of the motivations during ten-minutes
period and several of these jumps can be observed. The execution of different actions are
identified by the letters between brackets located on the topof the figure. In order to clearly
identify the iterations, i.e. the execution time for each action, the background of the plot
is grey and white-striped. The multicolored band on the upper part of the figure represents
the dominant motivation at each moment. Its colors match thecolors of the motivations
shown in the key of the graph.

Initially, the chargeaction (c) greatly reduces theenergydrive. At the same time, as
justified in Section 5.4.1, other drives are slowed down. Later, when the robot executes
thego to the playeraction (g) and, consequently, it unplugs from the charger, the external
stimulus of thesurvivalmotivation disappears and this motivation is reduced.

The influences of other external stimuli can be observed too.For instance, when the
music player is turned on (actionplay (p)), thefun motivations increases; when the player
is switched off (actionstop (s)), the same motivation decreases; additionally, the presence
of a person is reflected on thesocialmotivation.

Satisfaction of several drives can be observed due to the execution of the correspondent
consummatory actions. For example, thefun, relax, andsocial motivations jump down
when their drives are satiated by means of thedance (d), stop (s), andinteract with Perico
(iP) actions respectively.

Focusing on the middle part of the graph, therelax motivation suddenly soars: at the
same time the robot interacts withPerico (iP)and the need of socialize is satiated, therelax



168 Chapter 8. Testing the experimental setup

Figure 8.1: Temporal evolution of motivations. Numbers on top represent the executed
actions: (i)idle, (c)charge, (r)remain plugged, (g)go to music player, (p)play, (d)dance,
(iP)interact with Perico, and (s)stop. The vertical white-grey bands at the background
correspond to the execution time of each action. The upper colored band indicates the
dominant motivation. The effects of some actions and several changes of states are pointed.

motivation is saturated. Why is that? This is an example of how the Well-balance Explo-
ration mechanism (Section 6.3.1) is applied. Recalling, this is an artificial modification of
the robot’s drives for a comparable level of exploration of all motivations. This iteration is
not considered in the learning process because the variation of the robot’s wellbeing is not
“naturally” produced.

Looking at the right part of the graph,Alvaro approaches Maggie. This fact originates
the emergence of thefear motivation. This motivation dissipates when the robot moves to
other location, in this case to the charger (actioncharge (c)) andAlvaro is not present any
more. Its causes and consequences are deeply examined in Section 9.2.

In the plot, thenonemotivation has a constant value of1. Remembering Section 5.4.1,
this motivation will be considered as the dominant one when no other competes. This
occurs twice in the left part (blue parts in the multicolor band). This is the period of time
when all the drives related to the other motivations are below their activation levels.
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8.4 Testing the learning algorithm

The utilized learning algorithm, Object Q-Learning, was initially proposed due to a ne-
cessity of reducing the state space and, consequently, the learning time. Thus, firstly, this
algorithm is compared with a traditional Q-Learning showing its advantages.

Later, when it is applied to a real robot, some improvements are required (Section 6.3).
Then, the benefits of the modifications of the learning algorithm are shown by means of
some experiments.

8.4.1 Object Q-Learning vs. Q-Learning

At this point, the use of Object Q-Learning is justified. Since the world is perceived in terms
of objects and the robot’s states in relation to these objects (Section 6.2.1), an agent using
the traditional Q-Learning will learn the actions that satisfy the robot’s needs in relation to
just one object. However, it does not learn the related actions affecting other objects that are
necessary. In other words, Q-Learning allows to learn when to execute the consummatory
actions, but not the appetitive actions related to different objects.

Since objects have been considered as independents one fromeach other (Section
6.2.1), traditional Q-Learning will update the state-action value related to a particular ob-
ject computing the previous value, the obtained reward, andthe best value from the new
state with that object. Using this approach, the effects of an action executed with an object
but affecting other objects too are not considered. As presented in Section 6.2.3, this situa-
tion is not close to real life because any action can influenceseveral objects. For example,
when you feel tired, you go to bed. This action affects your need of rest, your location,
and the bed (before it was free and now it is taken). Thinking of the experimental setup, if
Maggie needs to get its battery recharged, it will move towards the charger, get plugged,
and remain until its battery is high enough. This action alters, not just the state related to
the docking station (from unplugged to plugged), but the states related to the music player
(from close to far), and the people around the robot (from present to absent or vice versa).

However, by means of the Object Q-Learning and the collateral effects, the conse-
quences of an action over all objects in the world are considered. As explained in Section
6.2.3, Object Q-Learning updates the Q-values based on previous Q-values; the reward
after the action; the best value from the new state using the object the action has been ex-
ecuted with; and, finally, for the rest of the objects, the difference between the best action
from the new state and the best action from the precedent state. Thus, the results of an
action over all objects are considered in the Object Q-Learning algorithm.

The different results obtained by Object Q-Learning and Q-Learning can be seen in
Figure 8.2. Both plots present the results obtained after learning the behavior when the
dominant motivation isfun. That is, what the robot has to do to satisfy the need of en-
tertainment. Figure 8.2(a) shows results obtained using Q-Learning. In Figure 8.2(b), the
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Q values plotted have been learned by means of the Object Q-Learning algorithm. Both
algorithms were run in parallel during the same execution ofthe robot.

As expected, both methods learn that the best action to execute isdance(the consum-
matory action) because it satisfies the need offun. However, in order to achieve this action,
other objects are required: first, if the robot decides to dance, the music has to be on; and
for turning the music on, the robot has to be close enough to the music player. This rela-
tionships among several objects and the states in relation to these objects cannot be learned
by Q-Learning. Figure 8.2(a) shows how the rest of the actions have very low values. In
fact, the next best action afterdanceis stop music. This is an incongruity since playing
music is mandatory for dancing but, because ofstop musicsatisfies the need of relax, when
fun is the dominant motivation, there can be a little need of relax and then a low positive
reward is assigned tostop musicaction.

On the other hand, the robot using the Object Q-Learning algorithm perfectly learns the
correct relation among objects in order to expose the properbehavior whenfun is the domi-
nant motivation. In Figure 8.2(b) the most appropriate sequence of actions (consummatory
and appetitive) can be extracted considering the highest values. As previously said,dance
is the most valuable action and it corresponds with the highest value. Before this action can
be executed, theplay musicaction is required (it is the second highest value). Finally, the
last required action isgo to player, which is in charge of moving the robot close enough to
themusic player. Once there, the robot is able toplay musicand, then, todance. Thego to
playeraction is the forth value and the last positive one.

There is one positive action left: theidle with music offaction, which has a high value
too. When this action is carried out, the robot is close to themusic playerand it is off. In
this situation, the next best action is toplay music, which has a very high value. For this
reason, the value of theidle with music offaction in this situation is high too. Actually, this
is the third highest value.

The rest of actions are not relevant for the behavior exhibited whenentertainmentis the
dominant motivation. However, some brief comments about the least valuable actions will
help to clarify some ideas. Through Object Q-Learning just two really bad actions has been
identified in relation to this motivation:chargeandstop music. Thechargeaction moves
the robot far from thecd playerso it cannotplay musicand, as result, it will notdance.
In relation to thestop musicaction, which was deeply analyzed for regular Q-Learning,
the reader can observe how this action has become the worst one (i.e. the lowest value).
Looking into the Figure 8.2(b), it can be seen howstop musicstarts to abruptly decrease
between iteration300 and 400, which corresponds when theplay musicand thedance
actions have relative high values. This makes sense because, as explained before, music is
required to dance and, if music is suspended, it must be penalized.

Therefore, it has been proved that Object Q-Learning betterperforms in relation to
the collateral effects. However, when there is just an object involved in a behavior, both
algorithms are able to learn the proper skills to be activated. Figure 8.3 displays theQ
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(a) Learned values for the motivation offunusing Q-Learning algorithm

(b) Learned values for the motivation offunusing Object Q-Learning algorithm

Figure 8.2: Comparison between traditional Q-Learning andObject Q-Learning when sev-
eral objects are required for performing the behavior related to the motivation offun
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values learned whenrelax is the dominant motivation. Figure 8.3(a) represents theQ values
determined by Q-Learning. In contrast, Figure 8.3(b) represents the results obtained by the
Object Q-Learning algorithm. Now, in both cases, the learned values result in the proper
behavior, which is formed by actions performed with the sameobject. The most important
actions in order torelax, sorted by value, are:stop music, idle with music on, andgo to
player. All of them are related to themusic playeritem and, therefore, both algorithms
perfectly identify them.

The worst actions are analyzed as well. The least valuable action is chargefor the two
algorithms. Nevertheless, Object Q-Learning penalizes itin a greater manner because it
considers the effects of this action over other items.Chargemoves the robot to the docking
station and plugs the robot for recharging its battery. Therefore, the robot is moved away
from the music player. This fact is reflected by Object Q-Learning assigning a lowerQ
value to this action. In the case of the Q-Learning, it just considers that this action does not
benefit therelaxmotivation, but it does not include the detriment.

Independently of the learning algorithm, from Figure 8.3, it is easy to describe the
optimum behavior that the robot will exhibit whenrelax is the dominant motivation: if it is
far from the music player, it will go towards it; then, it willstop music.

In conclusion, the robot using Q-Learning learns the directaction to deal with each
motivation, i.e. the consummatory action, and the preceding actions (appetitive), all of
them linked to the same object. However, this is not enough tobehave in a proper way.
Object Q-Learning provides a mechanism to acquire the required knowledge in order to
exhibit behaviors that satisfy motivations involving several independent objects and their
states. Then, the proper action with each object at each particular state will be carried out.
Therefore, the robot learns consummatory as well as appetitive actions. This is the policy
which will be exploited.

8.4.2 Validation of the improvements for learning behaviors

The benefits obtained by the mechanisms in charge of boostinglearning process (Section
6.3) are exposed here. Both, the Amplified Reward and the Well-balanced Exploration, are
analyzed comparing the results obtained with and without them in similar experiments.

Amplified Reward

In order to clearly demonstrate the advantages of using the Amplified Reward, this experi-
ment has been focused in one dominant motivation: thefunmotivation. In this case, a seven
hundred iterations learning session has been performed. Two versions of the learning algo-
rithm are concurrently running: a) an Object Q-Learning algorithm with Amplified Reward
(Figure 8.4(a)), b) an Object Q-Learning without Amplified Reward (Figure 8.4(b)).

Looking into Figure 8.4, at first glance, both plots seem similar: despite the fact that
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(a) Learned values for therelax motivation using Q-Learning algorithm

(b) Learned values for therelaxmotivation using Object Q-Learning algorithm

Figure 8.3: Comparison between traditional Q-Learning andObject Q-Learning when just
one object is involved for performing the behavior related to the motivation ofrelax
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the amplified one (Figure 8.4(a)) has higher values, the policy seems to be equal. However,
focusing on thegoing to the playeraction, this is not equal. This action is required in order
to satisfy the need of entertainment. In Figure 8.4(a), theQ value associated to this action
is the forth highest positive value. In contrast, in Figure 8.4(b), thisQ value is negative and
other actions not related to the motivation offunare over its value.

Using the Amplified Reward the learned values are higher, therefore, the back-propa-
gation along all successive needed actions is stronger and it reaches farther actions faster.

Probably, longer experiments will end with a positive valueof the go to the player
action. However, by means of Amplified Reward this is achieved in a shorter period of
time.

Well-balanced exploration

As expressed in Section 6.3.1, an exhausted exploration of all situations in order to correctly
learn the proper behaviors is needed. Next, a situation where exploration is poorly achieved
is shown. Figure 8.5 presents a four hundred iterations learning session where the Well-
balanced Exploration has not been considered. It corresponds to the dominant motivation
relaxwhich associated drive is the slowest one (this has been explained in Section 5.4.1).

The remarkable issue extracted from Figure 8.5 is the long periods where non of the
values are updated. Roughly, these periods correspond to the iterations ranges from0 to
160 and from250 to 390; this is about one hour and a half. These long lasting periodswith
stability of values during a learning session means that this motivation is not explored in
these periods. In other words,relax does not frequently become the dominant motivation.
These circumstances lead to a set of state-action pairs thatare not enough explored and
therefore they will not be properly learned in an acceptableamount of time.

The effects of the Well-balanced Exploration whenrelax is the dominant motivation
can be observed in Figure 8.3(b). During the whole learning session, there is a frequent
update of any state-action pair related to therelax motivation. There are not more of those
long periods of undesired stability in a particular motivation.

8.5 Summary

At the beginning, this chapter introduces the structure of the experiments with two different
phases: the exploring phase where learning is achieved, andthe exploiting phase where the
learned policy is employed. Moreover, the available activeobjects were introduced: the
users; two people will share the robot’s environment duringthe experiments:Perico(who
always positively interacts) andAlvaro (he sporadically harms the robot).

This chapter has proved the correct working of the DMS. Initially, how the intensities
of motivations are formed due to the interconnections with internal and external stimuli has
been clarified and examined in a fragment of a real experiment.
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(a) Learning with the Amplified Reward

(b) Learning without the Amplified Reward

Figure 8.4: Effects of Amplified Reward on the learning process when the dominant moti-
vation isfun



176 Chapter 8. Testing the experimental setup

Figure 8.5: LearnedQ values when dominant motivation isrelax and Well-balanced Ex-
ploration is not included

Later, the benefits of Object Q-Learning were demonstrated since it considers the ef-
fects of the actions on all objects. Moreover, the improvements in the learning process
were analyzed and their advantages shown: the Amplified Reward speeds up the learning
of behaviors (especially those formed by appetitive actions which are related to several ob-
jects) and the Well-balanced Exploration enforces learning on states hardly tried. These
two methods shorten the learning process.

The configuration for the experiments presented at the beginning of this chapter and the
justified learning algorithm will be employed in the experiments exposed in Chapter 9.



CHAPTER 9

Experimental Results

9.1 Introduction

Once the DMS, its elements, the robot, and the experiment setup have been described,
it is about time to put the robot to learn in the lab. In this chapter, the results obtained from
several experiments prove the performance of the presentedsystem.

At the beginning, considering that the application of fear is one of the most relevant
contributions, the results of including the emotion offear are firstly detailed.

Then, since thehappinessandsadnessemotions have been used as reinforcement dur-
ing learning, the resulting policy is studied. The learned behaviors for each motivation are
analyzed.

9.2 Fear results

This section validates and analyzes the use of fear in the social robot Maggie. More specif-
ically, how fear improves the decision making process, and by extension the robot’s auton-
omy, is exposed.

As previously said, fear has been considered as a motivationwhich incites the robot to
behave. The experiment consists of comparing the performance of the robot with and with-
out fear as a motivation in the same environment and conditions. Therefore, two different
learning or exploring sessions have been performed: one including fear as a motivation,
and other where fear does not exist. With the resulting policies, two different exploiting
sessions are performed and the results are compared.

177
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In this first section, the results of the appraisal of fear areanalyzed. That is, the iden-
tification of new dangerous situations. Later, the adaptability of the proposed method is
demonstrated by comparing different learned reactions to fear depending on the user’s be-
havior. Finally, the usefulness of fear and its advantages are proved.

9.2.1 Results on the appraisal of fear

During the experiments, considering that the maximum “punishment” of a negative exoge-
nous action corresponds to a penalty of ten points to thesocialdrive (Equation (8.1)), and
based on observations during trials,Ldanger (the minimum of theQworst values of the ac-
tions in a state in order to consider it as a safe state, Section 4.4.2) has been set to−10
points. As a consequence, whenever the robot is in a state where there is aQobji

worst value
below this threshold, this is considered as adangerous state. Therefore, thefearmotivation
suffers a drastically increment as shown in Equation (9.1).

If s is a dangerous state⇒ Fear= 19.9
If s is a safe state⇒ Fear= 0

(9.1)

wheres is the state of the robot. This equation was already presented in Section 4.4.2
(Equation (4.13)).

As already said, the consequences of the actions executed byboth users (Alvaro and
Perico) over the robot’s wellbeing are perceived by Maggie. In order to do it, Maggie
is endowed with theInteract action. This action does not have effects over the Maggie’s
drives or its external state; therefore, it is possible to evaluate how the exogenous actions
affect the robot’s wellbeing. Thus, translating Equation (4.12) into the experiment, it results
on Equation (9.2).

If QAlvaro
worst (s, interact) < −10⇒ s is a dangerous state; ∀s ∈ SAlvaro

If QPerico
worst (s, interact) < −10⇒ s is a dangerous state; ∀s ∈ SPerico

(9.2)

Since there are two different users, there are two differentinstances of the same action
which depend on who is interacting with the robot:interact with Alvaroandinteract with
Perico.

Note that the exogenous actions have been executed when a person ispresent. There-
fore, considering Equation (9.2), the worstQ values are associated to the states when
s = Alvaro is present or s = Perico is present. Naturally, if a person is absent, his
actions do not interfere on the robot’s “life”. Therefore, potentially dangerous states are
Alvaro is present andPerico is present because Maggie can be damaged from them.

Figure 9.1 depicts the evolution of the worstQ values associated to the exogenous ac-
tions. As can be seen in Figure 9.1(a), since allPerico-Maggie interactions are favorable
from a robot’s point of view, itsQPerico

worst value slightly decreases from its initial value1, and
it remains stable around value0. In contrast, theQAlvaro

worst value associated to theAlvaro’s



9.2. Fear results 179

interactions is significantly reduced (Figure 9.1(b)). This is due to the number of interac-
tions whereAlvaro has hit or offended Maggie. This number is low in comparison to the
total amount of interactions: during the learning phase,Alvaro harmed Maggie five times
of thirty-seven interactions (13′5%).
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Figure 9.1:Qworst values of exogenous actions.

Looking into Figure 9.1, the robot does not know anything about dangerous states, or
what to be afraid of, until iteration182. At this point,Alvarohits the robot one more time,
andQalvaro

worst (present, interact) reaches the value−11.2097. This value is under the se-
lected threshold (Ldanger = −10) and, therefore, the robot determines that being next to
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Alvarocan be harmful. From this iteration on, ifAlvaro is close to the robot, this is identi-
fied like a dangerous state and, as a result, thefear motivation is rocketed. Consequently,
fearpotentially becomes the dominant motivation, so it guides the robot’s behavior. There-
fore, the presence ofAlvaro is the releaser of thefear emotion in this experiments.

9.2.2 Learned fear reactions: escaping

As previously shown, the proposed system is able to identifynew dangerous situations
which has not been previously defined. Moreover, by means of the learning mechanism of
the DMS, the robot determines what behavior must be selectedto avoid these situations.

The users (Alvaro andPerico) approach Maggie, one by one, and stay there. At that
point, since Maggie is accompanied, it must decide to interact or to execute another action.

In this experiment, dangerous states are associate to the presence ofAlvaro because of
the few negative interactions (details about how the appraisal of fear is performed can be
seen in Section 9.2.1). Then, the robot learns how to “escape” from Alvaro.

The actions which imply a displacement on the geometrical position of the robot are
go to playerandcharge. The former moves to robot towards thecd playerand the last
gets the robot plugged to the docking station. Both actions makeAlvaro disappears from
the robot’s scope or the robot moves away fromAlvaro. Therefore, these two actions are
the most appropriated actions whenfear is the dominant motivation (Figure 9.2). When
the robot is scared (i.e.Alvaro is beside Maggie), it will move to thedocking stationif it
is close to thecd player, or to thecd playerif it is plugged. This is a run-away behavior
learned by the robot itself and it is similar to what animals do when they are afraid.

Just as a brief explanation, there are some actions which arealways positive in all
behaviors (for all dominant motivations). For example, in Figure 9.2, thedanceaction has a
positiveQ value in all circumstances. This is because this action satisfies theboredomdrive
which is one of the fastest ones. This means that whenever this action is executed,boredom
is at its ideal value nearly never. Therefore, this action usually has a positive reward.
The same explanation applies to theinteractactions andlonelinessdrive. Therefore, their
relatedQ values are positive for all behaviors. In general, consummatory actions satisfying
fastest drives will be always positive in all behaviors.

9.2.3 Learned fear reactions: freezing

Since humans are unpredictable autonomous agents, different reactions to fear can be ob-
served depending on the person involved in the situation.

In the results presented in Figure 9.2, both users alternatively approach Maggie with the
intention of achieving some human-robot interaction. Recalling, Perico always achieves
positive human-robot interactions, andAlvaro, once in a while, causes harm to Maggie. As



9.2. Fear results 181

Figure 9.2: Learned Q-values whenfear is the dominant motivation.
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a consequence, Maggie is afraid ofAlvaroand, as exposed in the previous section, it learns
to escape from him.

However, the system is flexible enough to learn different behaviors according to diverse
people’s attitude. In this experiment, users have been trained to behave in a different way:
now, Alvaro andPericoseparately approach Maggie and they chase the robot. Users will
leave when they get bored due to the robot’s inactivity. Again,Alvarooccasionally damages
Maggie. Considering these damages,fear comes out on Maggie whenAlvaro is present.

A new learning session has been conducted, similar to the previous ones but with the
new behaviors. The results can be observed in Figure 9.3. In this case, the behavior learned
whenfear is the dominant motivation is related to theidle action, when Maggie is close to
the music player (both, with music on and off), and to theremainaction, when it is plugged.
This is because theQ values associated to these actions are the highest ones (upper three
plots on the left column of Figure 9.3). These actions share that they cannot be externally
perceived because they do not make any expression or movement, they give the impression
of inactivity. Therefore, the robot boresAlvaro and he moves away from Maggie. After
this happens,fear ceases resulting on the following benefit for the robot.

Summarizing, in this experiment the cause of fear (the releaser) has not been changed
(the presence ofAlvaro) and it has been perfectly identified again. However, the reac-
tion to fear is totally different. As proved, the presented method nicely works with users
conducting in diverse manners and the proper fear reaction is learned in each situation.

The new learned behavior dealing with fear can be biologically justified considering
that some animals paralyze when facing a dangerous situation. It seems that they are
“frozen” by fear.

9.2.4 Does Maggie needfear?

This section tries to justify the use offear as a motivation. Here, the performance of the
robot is measured and compared with the results obtained from experiments where fear
does not exist. In this section, the same motivations considered in previous experiments are
employed (all motivations introduced in Section 5.4.1).

Two different learning sessions have been realized, both using reinforcement learning
algorithms. First, the robot learns to behave without consideringfear as a motivation. In
consequence, the motivations present on this session are:survival, fun, relax, andsocial.
In the second session, the same four motivations are considered plus thefear motivation.
Results from both learning sessions are compared.

During both sessions, the robot learns the right policy to satisfy its needs. However,
the session consideringfear learns an additional behavior in relation with this motivation.
Each learned policy is used during an exploiting session. These exploiting sessions last
around80 minutes each one and the best action is always selected at each iteration.
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Figure 9.3: LearnedQ values whenfear is the dominant motivation. Alvaro chases the
robot until getting bored or interacting with Maggie.
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The learning and the exploiting sessions are performed in the same environment con-
sidering the two well-known users:Alvaro andPerico. In this case, the users individually
approach Maggie and remain there until an interaction occurs and they move away, or
Maggie moves away.

In order to evaluate both configurations, the results obtained during both exploiting
sessions are compared. The next performance indicators have been employed: the average
wellbeing and the percentage of permanence in a certain security zone. Besides, the results
about the percentage of time the robot is without a dominant motivation (all drives are
below the activation levelLd introduced in Section 4.2) are presented. This value gives an
idea about how “comfortable” the robot is. Finally, the number of times the robot is harmed
is also compared.

Average wellbeing

Since the variation of the wellbeing was used as the reward during the learning phase, the
robot tends to maximize it. Table 9.1 presents the values corresponding to the average
wellbeing with and withoutfear during the exploiting sessions. The average wellbeing
whenfeardoes not exist is slightly higher. This can be seen as a disadvantage of usingfear.
However, this is understandable considering that, whenfear is included as motivation, the
number of drives used to compute the wellbeing is bigger, so the wellbeing value is lower
(the robot’s wellbeing is computed as a function of the drives: Wb = Wbideal −

∑

i

αi ·Di,

Equation (4.7)).
This drawback can be observed in nature too: a fearful personis not in a pleasant

situation, his wellbeing decreases due to the anxiety suffered because of the fear. As a
consequence, the person is distressed while he is afraid. However, other benefits can be
obtained fromfear.

Table 9.1: Average wellbeing during the exploiting sessions

without fear with fear

87.77 86.72

Permanence in the secure area

These benefits are related to other reliable performance rate: the percentage of time the
robot’s wellbeing remains in a security zone. If the robot’swellbeing is within this area, it
can be said that the robot is “fine” because its wellbeing is high. Thus, the percentage of
time the wellbeing remains in this area gives an idea about how well the robot is performing.
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In order to establish the limits of the secure area, the idealwellbeing value (Wbideal =
100) and the activation levels for motivations (Ld = 10) are considered. Since all drives
simultaneously evolve and several motivations can competefor the dominance, the security
area width is set to15. Consequently, it is considered that when the robot’s wellbeing is
between100 and85, it is within the secure area.

Table 9.2 shows the percentage of permanence within the secure area during the ex-
ploiting phase. As can be seen, whenfear is included as a motivation, the wellbeing is
almost the70% of iterations within the secure area, which represents a5% more than when
fear is not used. This is coherent becausefear is used to avoid dangerous states where the
robot can be damaged. Once the robot is harmed, the wellbeingdecreases enough to move
out the secure area.

Table 9.2: Permanence at secure area during the exploiting sessions

without fear with fear

65% 69.5%

Non dominant motivation

Moreover, if there is not a dominant motivation, it means that all the internal needs and
external stimuli are not strong enough to induce a behavior.Hence, it can be considered
that the robot is in a comfortable situation. The percentageof time during the exploiting
sessions that a dominant motivation does not exist proves how pleasant the robot’s “life” is.
Table 9.3 shows that consideringfear, the78% of the time there is not dominant motivation.
On the other hand, when the robot lives withoutfear, the percentage is reduced to72%.
Once again, these numbers show howfear provides a better quality of “life”.

Table 9.3: Percentage without a dominant motivation duringthe exploiting sessions

without fear with fear

72.22% 78%

Number of times the robot has been damaged

The differences of the previous percentage values could seem not very significant. How-
ever, it must be recalled that the number of negative interactions (the robot is hit or of-
fended) is very low. During all experiments this only occursfor a low percentage of all
interactions withAlvaro. Therefore, the impact offear in this scenario can not represent a
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great improve in the average values. Nevertheless, the impact on the number of times the
robot is damaged is outstanding.

Consequently, the most relevant result of usingfear is related to the damage caused by
Alvaro to the robot when it “lives” according to the learned policy of behavior. Whenfear
is not implemented, the robot tries to interact with both users in order to satisfy its social
need. This action leads Maggie to, some times, be harmed byAlvaro because it has not
learned to identify that being next toAlvaro is dangerous. Consequently, it has not learned
an avoidance behavior. As depicted in Table 9.4, this happens six times of twenty-three
interactions between Maggie andAlvaro. Since damages heavily affect thesocial drive,
these greatly affect the wellbeing results. For this reason, although the average wellbeing
is better without fear, the rest of the performance indicators whenfear does not exist are
disturbed when Maggie is damaged and, as result, their values are worse.

Now, consideringfear as a motivation in the system, once the presence ofAlvaro is
identified as dangerous, the robot does not interact withAlvaro at all so he could not hurt
it. This is because, as shown in previous sections, the robotlearned to avoid the interaction
with Alvaro. Focusing again in Table 9.4, by means offear, the dangerous situations are
totally averted. In fact, the robot has not been damaged any more whenfear is implemented.
Therefore,fear improves the performance of the robot since it provides a safety mechanism
to avoid situations where the robot can be damaged.

Table 9.4: Harm/interactions with Alvaro during the exploiting sessions

without fear with fear

6/23 0/0

In conclusion, despite of the fact that the average wellbeing is hardly worse,fear pro-
vides significant benefits. Specially the fact that harm is totally avoided.

9.3 Learning behaviors

As presented in Section 4.4.1,Happinessandsadnessare artificial emotions coming up
from the variation of the robot’s wellbeing. They are used asthe reward function during
the learning of the policy of behavior. Therefore, the robot’s behavior in all circumstances
is oriented towards increasing its wellbeing.

The robot Maggie has been learning in sessions which last more than seven hours in
the laboratory. In this section, the learned behaviors are analyzed. During the learning, the
robot has learned how to act according to its state (internaland external). As explained in
Section 6.2.1, the internal state corresponds to the dominant motivation, and the external
is related to different objects. Through learning, stable chains of actions have been formed



9.3. Learning behaviors 187

and they can be considered as patterns of behavior corresponding to the motivations. In
this section, the learned behaviors are independently presented motivation by motivation.

The behaviors exhibited whenfear is the dominant motivation have been already shown
in Sections 9.2.2 and 9.2.3. Therefore, they will not be included again in this section.

Moreover, the reaction of the robot when there is not a dominant motivation is also
analyzed in the last part.

9.3.1 Survival motivation. How do I get my batteries recharged?

Figure 9.4 displays theQ values related to all the objects in the robot’s world when survival
is the dominant motivation. This means that the need of energy is high. The best action,
this is the action with the highestQ value, ischargewhich is responsible for the totally
recharging of the batteries. Consequently, the energy required is obtained. For that reason,
after this action has finished, theenergydrive is satiated. Then, this action is the most likely
to be executed. It is the consummatory action for thesurvivalmotivation.

Thego to playeraction is very high too because the next best action is thechargeaction.
This action is executed when the robot is unplugged and far from the docking station. This
situation results after the execution of thego to playeraction.

It is worth mentioning why remaining plugged is not a good strategy in this situation,
although it would seem a contradiction. Since theremainaction just can be executed when
the robot is plugged and this is after thechargeaction, it implies that the robot’s battery is
likely full and, consequently,remaindoes not contribute anything because survival will not
be the dominant motivation at that situation, so the robot’swellbeing does not augments.
Moreover, the amount of time this action lasts is not enough for a significant contribution to
the level of energy. Concurrently, other drives increase a bit and therefore the variation of
the robot’s wellbeing is negative. Then, the value of this action is not good. In fact,remain
has been executed whensurvival is the dominant motivation just when, due to the Well-
balanced Exploration mechanism (Section 6.3.1),energyhas been artificially saturated and
Maggie was plugged.

The rest of actions are slightly positive because they provide little benefits in other
drives different than theenergydrive which is the one related to survival motivation. The
actions that reduce theenergydrive have the highest values.

9.3.2 Fun motivation.Let’s enjoy!

In this case, the dominant motivation isfun. Then, the robot needs to satisfy the need of
entertainment through thedanceaction (the consummatory action), which is the best action
(Figure 9.5). For dancing, music must be on, soplaymusic is the second better action due
to the collateral effects of this action. Moreover, theidle action when music is off and it
is close to thecd playeris good too because the next best action with thecd playeris to



188 Chapter 9. Experimental Results

Figure 9.4: Learned Q-values whensurvival is the dominant motivation
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play music, which is very good as well. In order toplay music, Maggie must be close
enough to thecd player, so,go to playeris the next positive action. All these other actions
are appetitive actions. This is a clear example about the advantages of Object Q-Learning
algorithm and its collateral effects (Section 6.2).

The remaining actions are not suitable for this behavior. Therefore, theirQ values are
negative.

This motivation has already been extensively studied in Chapter 8 where details can be
read.

9.3.3 Relax motivation.I need calm!

Now, the robot demands a quiet atmosphere, so the dominant motivation isrelax.
Firstly, it must be emphasized that, if Maggie needs calm is because the music has

being playing for some time. In other words, when the music isoff, Maggie does not need
to relax. Consequently, theQ values related to the actions executed when themusic player
is switched off and the robot is close to it (play andidle) does not change, so they remain
at their initial value of1 (top left Figure 9.6). This means that they have not been executed
ever when the dominant motivation isrelaxbecause it is not possible.

After music is playing for a while, the robot feels the need ofa peaceful environment.
Then, it learns that it has tostopmusic (consummatory action). In consequence, this is the
highestQ value. As it happens whenfun is the dominant motivation, the robot must ap-
proach thecd playerto operate it. In this case, this is necessary tostopmusic. Accordingly,
go to playeraction (appetitive) is the next best action. Once the robot is in the proximity of
thecd player(and the music is on), it canstopmusic or executeidle action. Sincestopis
the best action,idle value is very high as well. The reason is that when this actionends, the
robot canstopmusic which is the highestQ value. All theseQ values are plotted in Figure
9.6.

A significant negative value is assigned to thechargeaction. This action moves the
robot far from themusic player, which results in a very bad option because it cannot be
switched off from far.

9.3.4 Social motivation.Do you want to be my friend?

As presented in Section 5.4.1, thesocialmotivation is related to the need of positive human-
robot interaction. Therefore, when thesocialmotivation is the dominant one, the robot is
encouraged to interact with the two users:AlvaroandPerico. Interactions withAlvaroand
Pericohave a great positive average effect over this motivation. Then, these actions are the
most suitable skills to be executed: this is the reason because the highestQ values among
all actions, when the dominant motivation issocial, correspond tointeract-with-Alvaro
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Figure 9.5: Learned Q-values whenfun is the dominant motivation
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Figure 9.6: Learned Q-values whenrelax is the dominant motivation
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and interact-with-Perico(see the highest values at bottom plots in Figure 9.7). Theseare
consummatory actions.

The interaction withAlvaro must be detailed.Alvaro’s actions are, most of the times,
favorable. However, he occasionally damages Maggie. Despite of the small percentage of
hurting actions, the finalQ value of interaction-with-Alvarois quite high. However, the
small number of hurting actions are enough to scare Maggie. Maggie is afraid ofAlvaro
because of the few negative interactions, which cause a 10 points penalization in itssocial
drive (Equation (8.1)).

The plot in the bottom left corner in Figure 9.7 depicts the evolution of theQsocial(Alvaro
is present,interact with Alvaro)value whensocial is the dominant motivation. Around the
iterations100 and180, this value decreases because there has been an important decre-
ment on the robot’s wellbeing due to negative interactions.This is enough for Maggie
to detect and remember the dangerous situation. Hereafter,wheneverAlvaro is close to
the robot, this situation is appraised as a dangerous state,and thefear motivation inten-
sity exceeds thesocial motivation intensity. Therefore, wheneverAlvaro is present, the
social motivation will not be the dominant one again, and thisQ value will not be up-
dated anymore. This can be observed in the other motivationstoo (constant values of
Q(interact, Alvaro is present) after iteration 182), but not insurvival. This is because
the survival motivation was designed to guarantee that, in case it reaches its maximum
level, it is always the highest motivation. This is considered as an inherited survival mech-
anism in nature: when animals are extremely hungry they can even risk their life for food.
This is related to the saturation levels shown in Table 5.3.

How the robot reacts tofear has been detailed in Section 9.2.
Another issue worth mentioning is related to the rest of the actions whensocial is the

dominant motivation. Users can approach Maggie at any time.From a social point of view,
this exogenous action influences the robot’s state and so theavailability of endogenous
actions; e.g. when a user is with the robot, it can interact with the user. However, it has
been observed that users, most of the times, do not approach the robot when it is exhibiting
a lively action likedancingor going to player. In contrast, they approach Maggie when
it is doing other morelethargicactions. In particular, theselethargicactions areidle and
remain. This is reflected on theQ values of these two actions (Figure 9.7): theQ values
associated to these actions are the next highest actions after the twointeractactions. This
means, that when the robot needs to interact and there is no people around it, it will behave
in a passive way by means ofidle and remainactions (appetitive actions). It seems like
users are reluctant to approximate Maggie as long as it is moving.

9.3.5 There is not dominant motivation.I’m fine!

An interesting result can be observed when there is no dominant motivation. This happens
when the intensities of all drives are below their activation levels. This means that there is
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Figure 9.7: Learned Q-values whensocial is the dominant motivation
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not any particular need that must be satisfied. Consequently, this situation corresponds to
pleasant state. But, how does Maggie behave in this case? What does it do when there is
not specific needs? The results are shown in Figure 9.8.

The values for all actions related to the need of fun are relatively high. This is because,
as said before,boredomis one of the highest drives, so every time this action is executed it
will likely receive positive reward. However, the most valuable action is thechargeaction.
This produces a pattern of behavior where the robot is charging its battery or it turns the
music player on and dances, even if it is plugged. This can be interpreted as the robot
satisfies two basic needs even if they are not urgent. It is like if the robot foresees the
most likely future needs and it gets ready in advance. These needs do not depend on other
external elements and can be satisfied by the robot itself.

The rest of the actions are either slightly positive or negative, they are all around zero,
but there are not really low or high values. This means that none of these actions play a
crucial role in the absence of dominant motivation.

9.4 Summary

This chapter contains the results from the experiments where the robot’s behaviors are
learned. There are two sorts of experiments: the experiments related to the emotion offear,
and learned policy wherehappinessandsadnessare used as the reinforcement function.

In the first section, the goodness of fear in Maggie has been exposed. The learning pro-
cess of fear releasers endows the robot with a mechanism for identifying new dangerous
states. Besides, these states are totally averted by means of the fear motivation. Different
strategies can be learned to deal with these dangerous states according to how the envi-
ronment reacts. For example, in the experiments, accordingto how people act when they
are with the robot, the robot learns how to keep away from dangerous users. The final
numerical results of fear certifies its benefit.

The second section describes the learned policy of behaviorfor each motivation. The
robot has learned the correct behaviors to deal with each motivation in different situations.
That is, Maggie has learned when to executeappetitive actionsin order to enable the exe-
cution ofconsummatory actions.
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Figure 9.8: Learned Q-values when there is not a dominant motivation.
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CHAPTER 10

Conclusions and Future Developments

10.1 Comments to the results

Since social robots move and interact with humans sharing the same areas, one of
the main requirements for social robotics is anatural behavior. These natural robot’s
behaviors are in terms of similarity to humans’ behaviors, or at least animals’ behaviors
(these are perfectly understandable and accepted by people). One of the advantages of
using motivations and emotions in robots is that they allow animal-like responses to certain
situations. In particular,fear has been successfully implemented in the robot Maggie in
order to provide a natural mechanism of avoiding dangerous situations.

The presented thesis proposes a method which endows a robot with the capability to
learn a policy of behavior autonomously, without any supervision, just by robot-environment
interaction. Then, considering thehappinessandsadnessemotions, the robot learns what
to do in every situation in order to survive and to maintain its needs satisfied.

The inclusion of motivations and drives in the DMS provides aflexible mechanism that
leads the robot’s behavior in every situation.

Moreover, the experiments and all parameters have been set considering that the robot
lives in an environment with people, so, its behaviors should besimilar to those exposed
by itsworld-matesin an effort to make the robot’s behavior understandable by people.

The resulting behaviors related to each motivation have been presented in Chapter 9.
When the robot exploits the learned policy,complex behaviorsare shown by series of
simpler actions. For example, when the robot is motivated tohave fun, it approaches the
music player, turns it on, and then dances. In contrast, whenthe dominant motivation

197
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is relax, the robot approaches the music player and switch itoff. In relation to social
motivation, if the robot is alone, it decides to remain whereit is until a person approaches
and then they interact. Other behaviors look more elementalbecause just one single action
is involved: when the battery are depleted the robot needs tosurvive so it gets its energy
refilled by plugging to the docking station and remaining there. However, the mechanism
under the hood is the same independently of the complexity ofthe consequent behaviors.

Behaviors are elicited due to the combination of the dominant motivation and the situ-
ation in the robot’s world. But, if non of the drives exceeds its activation level, this results
on a situation where there is not a dominant motivation. Thismeans that there is not an
urgent need so the robot is at a pleasant state. Learning has also been carried out in these
cases, so the robot has also learned how to behave when it iscomfortable.

In general, most of the resultantQ values when there is not a dominant motivation
heavily fluctuate, so there is not a clear behavior. However,two state-action pairs are quite
stable and have relative highQ values associated, what gives the idea that both actions
will be likely selected. These state-action pairs are: theplay action when it is close to
the player and the music is off, and thedanceaction when themusic is being listened.
This implies that when dominant motivation does not exist, the robot will likely turn the
music player on and dance. Why is so? Both actions are relatedto the behavior exhibited
when fun is the dominant motivation. Since this motivation is one of the fastest one and
due to the fact that it does not depend on external agents, it almost always gets a positive
reward. Moreover, these two actions are relative short on time (specially theplay action
which takes around few seconds), and then the increment on drives is minimum. Therefore,
the potential decrement in the robot’s wellbeing is minimum. From other perspective, as
just said,fun is one of the fastest motivation and, during learning, it wasfrequently the
dominant motivation, i.e. the robot frequently needs to have fun. This reaction (dance when
the dominant motivation does not exist) can be understood asa mechanism preventing from
the most probable future need of entertainment.

During the exploiting session, observing the robot’s behavior without a dominant moti-
vation (this is most of the time) gives the impression of a “dance-aholic” robot. Recalling
the experiments carried on by Olds and Milner in 1950s [61], rats rapidly became addictive
to electrical self-stimulation into certain areas of theirbrains. This leaded to the discovery
of the called pleasure centers. The behavior exhibited by the robot seems similar to how
these rats acted: it is like the robot’s pleasure center is being stimulated while dancing, so
Maggie becomes addicted to dancing.

In relation to the emotion offear, it has been successfully implemented in the robot
Maggie in order to guide its behavior providing a natural mechanism for avoiding dan-
gerous situations. Fear is treated as a motivation which moves to behave. In addition, an
original appraisal mechanism of fear has been implemented and it allows to identify non-
predefined dangerous situations. The fear motivation is elicited when a dangerous situation
is detected. These circumstances are not predefined, but they areappraisedby the robot



10.1. Comments to the results 199

through interaction. Therefore, the robot is able to identify by itself the conditions which
cause fear.

Permanent harmful exogenous actions can be easily avoided by traditional reinforce-
ment learning algorithms. However, when few negative experiences in relation to exoge-
nous actions have been suffered in a specific situation, it isnot easy to identify it as a
potential dangerous situation. Nevertheless, the presented method is able to assess them as
a dangerous situations too. The proposed appraisal of fear nicely works with states where
the robot is sporadically harmed as well as states where it isconstantly damaged. Once the
dangerous states are recognized, the robot is able to learn what to do for avoiding them.
This is achieved when fear becomes the dominant motivation.

Remembering the experiments achieved by Klüver and Bucy (Section 2.4.7), monkeys’
behavior were studied in relation with fear. Normal monkeysare afraid of people, but the
suppression of the amygdala causes some kind of fearlessness in monkeys: people touched
them, stroke them, and even picked them up. Therefore, fear provides monkeys, and ani-
mals in general, with the required behavior at certain situations tosurvive. This same kind
of behavior has been exhibited by the robot during the experiments where thefear emotion
is not considered. Maggie has learned that when a certain situation is dangerous, it moves
to other place far from where the danger is. When fear is not included as a motivation,
Maggie’s behavior corresponds to the same one exhibited by an animal suffering an amyg-
dalectomy, similar to Klüver and Bucy’s monkeys: it is not able to perfectly identify the
dangerous situations when fear does not exist (i.e. like if the “robot’s amygdala” has been
removed).

In fact, Maggie learns the proper behavior to avoid dangers.As presented on the ex-
periments (Sections 9.2.2 and 9.2.3), depending on different people attitudes, the danger-
avoidance behavior could differ: as exposed in the previousparagraph, one behavior is to
run away from where the danger is, but the other is toremain still until the threatening
person gets bored and goes. This is also a common human behavior observed in terrified
people: some people are stunned when they face a great danger. Other example can be
observed in some chickens: after a chicken is frighten, it crouches down and trembles with
fear.

However, the origin of this behavior differs: in animals, this is an unconscious, bodily
reaction which makes muscles tensed. In the robot, the reaction is provoked because the
learned values indicate that the danger will disappear after. Nevertheless, both responses, in
animals and in Maggie, areautomatic because the exhibited fear behavior is formed with-
out any perspective into the future, just by executing the best action at each moment. The
decision making process selects the next action considering the current available informa-
tion. Then, there is not any planing looking into the future,thus, there is not deliberation.

In this work, reactions to fear (similarly to the reactions to the other motivations) have
been learned by the robot through interaction with its world. In animals, some reactions
to fear are inherited, this is, they are instinctive. Instincts are innate behaviors that are not
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highly dependent on specific learning experiences performed by the individual [50]. In fact,
instinctive behaviors have been learned by the species through evolution. The experiments
have shown that the results obtained from evolution and fromthe proposed mechanism are
similar: escaping or freezing reactions are observed in both. This can be seen as another
proof of the good performance of the proposed system becausethe behaviors exhibited as
consequence of fear are analogous: the reactions to fear learned by the robot are comparable
to those innate reactions exhibited by animals.

Besides escape and freeze, in nature, there is another well-known reaction to fear: fight.
Due to the possible ethical problems, the robot has not been endowed with actions related
to fighting and, consequently, Maggie cannot exhibit this kind of reactions.

Fear in animals is related toanxiety. Anxiety and its bodily reactions are proportional
to the intensity of danger and, by extension, to the intensity of fear. One does not feel the
same level of fear when one takes a ride on the roller coaster than when a criminal points
you with a gun. However, in this work this is not considered, and fear is a binary variable:
it is afraid or it is not. Therefore, the level of fear perceived by Maggie is constant for all
the circumstances that evoke fear.

Moreover, in the proposed system, once a dangerous state is identified, this is not forgot-
ten ever. This is based on the theory that memories associated with fear are quickly formed
and long-lasting [52]. However, this situation could lead a robot to suffer some kind of
anxiety disorders typical of humans beings. Imagine a long-lasting experiment which takes
several days. At the beginning, during the first hour, the robot identifies the presence of
personA as dangerous becauseA has hit the robot few times. Despite the fact that all the
rest of actions carried out byA during the rest of the days were always positive, the system
remembers always the painful initial interactions betweenMaggie andA. Consequently, if
A is present, then fear emerges on Maggie during the rest of theexperiment.

From a psychological perspective, this can be seen as an inappropriate experience of
fear which is related toanxiety disorders. There are some points in common with Post-
traumatic Stress Disorder (PSD). Approximately, PSD is related to intense or unrealistic
worries suffered when the stimuli related to a past trauma are present. Even if the person
A damaged Maggie at the very beginning, and he has not done it again in several days,
which suggests that this behavior hardly will be repeated, fear arises in the presence ofA.
Also, similarities with a phobia provoked by exposure to situations leading to avoidance
behaviors can be found. In particular, a sort of social phobia can be identified because any
social interaction with a specific person is avoided, even ifit seems that he will not induce
any damage. At this point, it seems that traumas on humans arevery hard to re-program.
This is exactly what happens to the robot as well.

As proved in Section 9.2.4, the average wellbeing does not improve when fear is con-
sidered, actually, it is slightly lower. People in fear livedistressed, and this fact is shown
in Maggie as well. However, some other benefits justify the use of fear. First of all, by
means of fear the robot has avoided all harmful exogenous actions: Maggie has not been
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hurt anymore by a user. Moreover, the permanence within comfortable levels of wellbeing
is better when fear is present since it is not hit anymore. Additionally, the quality of life
can be also measured as the amount of time that a particular behavior is not required, i.e.
there is not dominant motivation. Also in this case, the experiment which considers fear
outperforms.

From the point of view of human-robot interaction, the behaviors displayed by the robot
are ratheranimal-like. This helps to improve the interaction when the robot isliving with
people and validates the followed approach.

10.2 Contributions and achievements

As mentioned in Section 1.2, the main goal of this dissertation is to improve the autonomy
of a real robotic platform. This has been achieved by extending its control architecture with
a bio-inspired DMS.

This DMS has several drives, motivations, and emotions which shape the robot’s be-
havior. The followed approach of using thehappiness, thesadness, and thefear emotions
in a social robot is one of the novelties of this work.

In particular,fear has shown promising results. The implementation of a methodfor
learning the appraisal of new fear elicitors, as well as the reactions to fear, by the social
robot Maggie provides a powerful adaptive method which increases the possibilities of a
better quality of “life” for the robot.

Moreover, the design of the DMS proposed by the author allowsto apply the same
model to different robots independently of the control architecture.

In relation to the learning process, the Object Q-Learning algorithm proposed in [49]
has been improved by adding two modifications which make it possible to learn a correct
policy of behavior in an acceptable amount of time.

This research has ended up to a lively robot whose behavior isdefined by the robot
itself, so it provides the illusion of life. This is because the emergent behaviors observed
in the robot are comparable to those observed in living beings. This is the validation of the
goodness of the motivational and emotional mechanisms involved in the DMS.

10.3 Fulfillment of the objectives

In Chapter 1, a set of objectives were listed as sub-goals that must be achieved in order to
reach the main goals. Following, the level of achievement ofeach one of these objectives
is detailed.

• The Object Q-Learning (Section 6.2) algorithm has been successfully implemented
in the robot. By means of it, the robot has learned the proper sequence of actions
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(behavior) with different objects according to the highestmotivation and the robot’s
world configuration. In addition, the learning algorithm has been modified to speed
up the learning process. Two new mechanisms has been integrated: the Amplified
Reward and the Well-balanced Exploration. In short, both allow to learn the policy
of behavior faster.

• The robot has been endowed with a set of skills which allow itto interact with several
objects. Some of these skills perceive the different objects and define the state of this
object in relation to the robot; people are perceived by blue-tooth and RFID technol-
ogy, the location of the robot and the other static objects are determined by means of
the robot’s navigation system, the charger is detected using a data acquisition board,
etc. Other skills perform some actions with the objects: go to the music player and
turn it on, dance with the music, recharge the battery, etc.

• The decision making model proposed by Malfaz in [49] has been adapted to and im-
plemented in a real robot. It has been successfully integrated into the AD architecture
which controls the robot. The elements of this architecturehas not been modified at
all, but the decision making module has been added as an extension. Actually, this
model can be easily integrated in other control architectures or robots with minimum
effort.

• The implementation of the DMS has been designed following the principle of flex-
ibility. A database has been designed were all required information for the DMS is
stored as tables. The inclusion of new parameters, new drives, new motivations, new
effects, etc, is as easy as include new entries in the corresponding table.

• The emotions of happiness, sadness, and fear have been analyzed from a functional
perspective. After defining its potential applications to robots, they have been inte-
grated in the system according to the required functions. Particularly, the artificial
emotion of fear helps to improve the robot’s “quality of life" and provides a mecha-
nism to “live” more secure.

• Humans have been considered as a sort of “objects” that the robot can make use of
them for its own goals. However, human reactions can not be easily predicted; there-
fore, the robot has been endowed with mechanisms for evaluate the human actions
and, accordingly, react.

• Focusing on the results observed in relation to the artificial emotion of fear, it seems
clear that its utility is relevant to the performance of the robot. Moreover, its inclusion
in the robot’s DMS has shown animal-like behaviors learned by the robot itself. This
is probably one of the main achievements of this thesis.
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• The implemented DMS works in an automatic manner: the system just considers the
available information at an instant, there is not a model used to predict the effects
in the future. Then, there is not reasoning behind the proposed decision making
system. The behavior is formed by selecting the most appropriate actions at each
moment. Therefore, the whole process is an automatic process where deliberation
is not involved. In the next versions of the DMS, it is plannedto build a model to
predict the consequences of the robot’s actions. Its results will be compared with
the current model-free approach in order to come up with the pros and cons of both
approaches.

10.4 Future works and limitations

This work presents some challenges to be accomplished in thefuture:

• So far, the system makes decisions just after the previous action has finished. How-
ever, it could be more realistic (animal-like) to add the possibility of the interruption
of the current action in case of a relevant event. For example, if the robot is inter-
acting with a person but, in the meantime, the energy reachesa low level, then the
robot should be able to interrupt theinteractaction and to recharge its battery. This
requires a safe mechanism to interrupt the control loop of a skill in the AD archi-
tecture. Then, the evaluation of the convenience of executing a new action could be
triggered each time a new event happens, after certain time without any update, or
after an action has finished.

• During the experiments, the effects of the exogenous actions are considered during
the robot’s actions which do not cause any effect in the robotor the environment (the
robot’sinteractactions). Therefore, all the variations in the robot’s wellbeing during
these effect-less actions are due to the exogenous actions.This is an unrealistic
approach because the exogenous actions can be executed whenever the other agent
decides it (independently of what the robot is executing). In the future, a probabilistic
method should be proposed in order to forecast the executionof exogenous actions
and asses their effects, considering that they follow a stochastic process.

• The final robot’s behavior heavily depends on the parameters assigned to the elements
in the DMS. Different configurations of these parameters maylead to undesired be-
haviors or behaviors that are far from the biological approach followed in this thesis.
For example, if the satisfaction times are very small and drives increase very fast, the
learning process is very difficult due to an abnormal number of motivations compet-
ing at the same time. Moreover, if the effects of the actions over the drives are not
fine tuned, the learned behavior can be different from the expected. It could happen



204 Chapter 10. Conclusions and Future Developments

that if the robot needs to relax, and it is plugged to the docking station, it “prefers”
to dance plugged to approach to the music player for turning it off. This results in an
unsatisfied need. Future studies of these parameters will clarify how they influence
in the robot’s performance and its “personality”. These robot’s “personalities” will
be studied in relation to their influences in different users.

• In the near future, as the functionality of the robot and itsenvironment becomes more
and more complex, it will have to cope with new situations. This could lead to the
inclusion of new drives, motivations, or emotions, or a redefinition of the existing
ones. Moreover, more complex functions may require more complex relations be-
tween the DMS elements. For example, a motivation may be related to several drives
(e.g. the motivation to have fun could be related to the boredom but also to the en-
ergy). Furthermore, several drives could be altered by the same action and several
actions could satiate the same drive.

• The presented experiments have been carried out in a controlled scenario, the lab,
where possibilities are limited. In the next future, robotswill be moved closer to
users’ environment (houses, hospitals, or schools) where they interact with people
without previous knowledge about robotics. The aim will be to improve people’s
quality of life acting as a game-partner, study-partner or companion. The proposed
DMS will be applied to these robots which will coexist with elders and children at
their homes or hospitals. Moreover, seeing that robots can make their own decisions,
they will be able to initiate human-robot interaction showing proactive behaviors.
This is a really interesting capacity when dealing with people suffering social dis-
eases which can be studied.

• In this thesis, two different phases during the experiments have been presented: ex-
ploration and exploitation. These phases are differentiated according to thetemper-
atureparameter which balances both phases. The tuning of this parameter is made
at design time (hand-coded) which results in a very steady system: first the robot
learns, and, at some point, it does not learn any more and exploits the learned policy.
However, if new situations emerge later, the proper behavior in that new situations
will not be learned. In order to tackle this problem, a new formal method could be
based on the variability of the data which could be related tothe cognitive concept
of curiosity. For example, Breazeal [4] proposed acuriositydrive for balancing ex-
ploration verses exploitation during robot’s learning, soit correlates the amount of
novelty over time; e.g. if the robot’s environment is too predictable, this drive could
lead it to novel contexts. This opens an interesting new research line.

• The motivations considered in this thesis take into account physiological and psy-
chological needs, i.e. they are related to deficits on drives. However, as presented
in Chapter 2, motivations in humans can also be related to hedonic factors. These
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hedonic factors in motivations form a novel research field inrobots which look for
pleasure.

• Since the DMS is applied to social robots, it considers the state of the person who is
interacting with it. In this work, just the position of the users in relation to the robot
is considered. However, the robot’s behavior can be altereddepending on the person
humor (happy, sad, angry, etc.), how the person feels (tired, bored, etc.), where he is
(far or close to the robot, at the kitchen or at the toilet, etc.), or what the person is
doing (eating, sleeping, working, etc.). All these perceived states would endow the
robot with a kind of empathy, which will improve the social interaction quality.

• In this work, the fear is related to dangerous states where the robot can be harmed
due to the other agent’s action (the exogenous action of active objects), i.e. the robot
is afraid if it is in a situation where it can be potentially damaged. Nevertheless,
the action performed by the individual itself can also be harmful (imaging you walk
a tightrope). In this case, these are risky actions and fear also comes up because
of them (e.g. you are afraid of walking a tightrope). Risky actions have already
been studied in virtual agents [208] and they will be considered in the robot in future
works.

• In this implementation of fear, dangerous states are learned and never forgotten. In
future works, fear will be enhanced with mechanisms to take into account the dy-
namic aspects of fear making it more flexible. Fear will be able to be reprogrammed
in order to “forget” the old dangerous states under certain conditions.

• Cañamero proposes in [149] the study of emotional disorders by simulating mal-
adaptive artificial emotions. The proposed system can be configured for analyzing
the consequences of maladaptive artificial emotions. The ever lasting memory of
dangerous states is an example. This could be a promising line of research consider-
ing the benefits of studying this kind of disorders in artificial creatures, comparing to
the potential ethical problems of experimenting with living beings.

• This thesis has been focused on the internal component of emotions, the experience
of emotions. However, if a more realistic use of bio-inspired emotions in robots is
desired, the external component is a must. Consequently, the expression of emotions
according to the emotional state of the robot is one of the coming steps.

10.5 Final comments

The existing approaches to use artificial emotions in robot (including this thesis) make
strong simplifications aboutnaturalemotions. Despite of these significant simplifications,
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the observed results envision promising applications. Thus far, these applications might
seem simple considering just the external appearance. However, under the hood, the ins and
outs of the bio-inspired mechanisms move us a step forward towards the full understanding
of the existing processes in the brain. The collaboration ofinterdisciplinary researchers
(neuroscientist, biologist, bio-engineers, and many other specialists) is probably the only
way to achieve it.

In this dissertation, the applied artificial emotions just implement few of the functions
of their counterparts in living beings. Due to the amount of functions assigned to emotions
according to the last investigations, it is rather difficultto create artificialcreaturesendowed
with emotions covering all of them. Actually, it is possiblethat not all these functions are
required or even not all emotions are desired. For example,loathing apparently is not a
desire emotional state in a social robot. Accordingly, robots must be endowed just with the
required emotions and functions that they need for achieving their tasks.

Moreover, “machines” making decisions by themselves terrifies many people mainly
due to the science fiction films where robots rule the world. This catastrophic view of
robots is rather far from reality. Nowadays, robots just canexecute actions that they have
been intended for. Therefore, similarly to the robot Maggie, if it is not designed for fighting,
it will not develop fighting skills.

A different aspect is related to the responsiveness of the robot’s actions. Since re-
searchers are working on robots making their own decisions,who is responsible of those
decisions? The designer? The owner? The robot itself? Currently, there is not a clear
agreement in the scientific community either this issues areunder the cover of new laws.
However, researchers are already working on this topic and its ethical implications.



Bibliography

[1] J. D. Velásquez, “When Robots Weep : Emotional Memories and Decision-Making,”
in Artificial Intelligence, pp. 70–75, JOHN WILEY & SONS LTD, 1998.

[2] O. Avila-García and L. Cañamero, “Hormonal modulation of perception in
motivation-based action selection architectures,” inProceedings of the Symposium
on Agents that Want and Like: Motivational and Emotional Roots of Cognition and
Action, pp. 9–16, SSAISB, 2005.

[3] S. C. Gadanho, “Learning Behavior-Selection by Emotions and Cognition in a Multi-
Goal Robot Task,”Journal of Machine Learning Research, vol. 4, no. 3, pp. 385–
412, 2003.

[4] C. L. Breazeal,Sociable machines: Expressive social exchange between humans and
robots. PhD thesis, Massachusetts Institute of Technology, 2000.

[5] L. Moshkina, S. Park, R. C. Arkin, J. K. Lee, and H. Jung, “TAME: Time-
Varying Affective Response for Humanoid Robots,”International Journal of Social
Robotics, vol. 3, pp. 207–221, Feb. 2011.

[6] N. Esau and L. Kleinjohann, “Emotional Robot Competenceand Its Use in Robot
Behavior Control,” inEmotional Ingineering(S. Fukuda, ed.), ch. Emotional,
pp. 119–142, Springer London, 1st ed., 2011.

[7] Z. Kowalczuk and M. Czubenko, “Intelligent decision-making system for au-
tonomous robots,”International Journal of Applied Mathematics and ComputerSci-
ence, vol. 21, pp. 671–684, Dec. 2011.

207



208 Bibliography

[8] M. A. Martínez Vidal and S. Muriel de la Riva, “INE-Spain strategy on population
estimates and projections facing the challenge.” 2010.

[9] W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz,
W. Steiner, and S. Thrun, “Experiences with an interactive museum tour-guide
robot,” Artificial Intelligence, vol. 114, no. 1-2, pp. 3–55, 1999.

[10] F. Littmann and J. Riviere, “A remote-operated system for interventions on explo-
sives,” inProceedings of the ANS Seventh Topical Meeting on Robotics and Remote
Systems, vol. 2, pp. 1038–42, 1997.

[11] S. Tetsudo, N. Hisato, N. Daisuke, U. Hiroyuki, and K. Yukihiko, “Autonomous
mobile robot system for delivery in hospital,”MEW Technical Report, vol. 53, no. 2,
pp. 62–67, 2005.

[12] T. Kanda, M. Shiomi, Z. Miyashita, H. Ishiguro, and N. Hagita, “A Communication
Robot in a Shopping Mall,” 2010.

[13] A. Casals, R. Merchan, E. Portell, X. Cuf, and J. Contijoch, “Capdi: a robotized
kitchen for the disabled and elderly,” inProceedings of the Assistive Technology an
the Threshold of the New Millennium. AAATE 99, (Dusseldorf, Germany), pp. 346–
351, 1999.

[14] K. Schilling, M. Mellado, J. Garbajosa, and R. Mayerhofer, “Design of flexible au-
tonomous transport robots for industrial production,” inProceedings of the IEEE
International Symposium on Industrial Electronics, vol. 3, p. ISIE ’97, 1997.

[15] A. Bicchi, A. Fagiolini, and L. Pallottino, “Toward a Society of Robots Behaviors,
Misbehaviors, and Security,”IEEE Robotics and Automation Magazine, vol. 17,
no. 4, pp. 26–36, 2010.

[16] N. Kubota, Y. Nojima, N. Baba, F. Kojima, and T. Fukuda, “Evolving pet robot with
emotional model,” Proceedings of the 2000 Congress on Evolutionary computation,
2000.

[17] R. A. Brooks, “From earwigs to humans,”Robotics and Autonomous Systems,
vol. 20, no. 2-4, pp. 291–304, 1997.

[18] W. Maier and E. Steinbach, “A probabilistic appearancerepresentation and its appli-
cation to surprise detection in cognitive robots,”Autonomous Mental Development,
IEEE Transactions on, vol. 2, pp. 267 –281, December 2010.

[19] Y. Zhang and J. Weng, “Spatio-temporal multimodal developmental learning,”
Autonomous Mental Development, IEEE Transactions on, vol. 2, pp. 149 –166,
September 2010.



Bibliography 209

[20] R. C. Arkin, “Robots that Need to Mislead: Biologically-inspired Machine Decep-
tion,” IEEE Intelligent Systems, 2012.

[21] J. LeDoux,El cerebro emocional. Ariel/Planeta, 1996.

[22] A. Damasio,Descartes’ Error - Emotion, reason and human brain. Picador, London,
1994.

[23] S. C. Lewis,Computational Models of Emotion and Affect. PhD thesis, University
of Hull, 2004.

[24] S. Gadanho,Reinforcement Learning in Autonomous Robots: An EmpiricalInvesti-
gation of the Role of Emotions. PhD thesis, University of Edinburgh, 1999.

[25] R. W. Picard,Los ordenadores emocionales. Ed. Ariel S.A., 1998.

[26] E. Rolls,Emotion Explained. Oxford University Press, 2005.

[27] R. C. Arkin, Who needs emotions? The brain meets the robots, ch. Moving up the
food chain: Motivation and Emotion in behavior-based robots. Oxford University
Press, 2004.

[28] K. L. Bellman,Emotions in Humans and Artifacts, ch. Emotions: Meaningful map-
pings between the individual and its world. MIT Press, 2003.

[29] L. Cañamero,Emotions in Humans and Artifacts, ch. Designing emotions for activ-
ity selection in autonomous agents. MIT Press, 2003.

[30] T. Ziemke and R. Lowe, “On the role of emotion in embodiedcognitive architec-
tures: From organisms to robots,”Cognitive Computation, vol. 1, no. 1, pp. 104–117,
2009.

[31] C. Breazeal,Designing Sociable Robots. The MIT Press, 2002.

[32] S. M. Veres, L. Molnar, N. Lincoln, and C. Morice, “Autonomous vehicle control
systems – a review of decision making,”Control Engineering, vol. 225, no. I2,
pp. 155–195, 2011.

[33] J. Gancet and S. Lacroix, “Embedding heterogeneous levels of decisional autonomy
in multi-robot systems,”Distributed Autonomous Robotic Systems, vol. 6, pp. 263—
-272, 2007.

[34] R. C. Arkin, “Homeostatic control for a mobile robot: Dynamic replanning in haz-
ardous environments,” inSPIE Conference on Mobile Robots, Cambrige, MAA,
1988.



210 Bibliography

[35] B. Hardy-Vallée, “Decision-making in robotics and psychology: A distributed ac-
count,”New Ideas in Psychology, pp. 1–14, octubre 2009.

[36] M. J. Mataríc, The Robotics Primer. The MIT Press, Sept. 2007.

[37] M. Mataric, “Behavior-based robotics as a tool for synthesis of artificial behavior
and analysis of natural behavior,”Trends in Cognitive Science, vol. 2(3), pp. 82–87,
1998.

[38] A. Bechara, H. Damasio, and A. R. Damasio, “Emotion, decision making and the
orbitofrontal cortex.,”Cerebral cortex New York NY 1991, vol. 10, no. 3, pp. 295–
307, 2000.

[39] J. Velsquez, “When robots weep: Emotional memories anddecision making,” in
Proceedings of AAAI-98, 1998.

[40] L. Cañamero, “Designing emotions for activity selection,” tech. rep., Dept. of Com-
puter Science Technical Report DAIMI PB 545, University of Aarhus, Denmark,
2000.

[41] S. Gadanho, “Learning behavior-selection by emotionsand cognition in a multi-goal
robot task,”The Journal of Machine Learning Research. MIT Press Cambridge, MA,
USA, no. 4, pp. 385–412, 2003.

[42] M. Malfaz and M. Salichs, “The use of emotions in an autonomous agent’s decision
making process.,” inNinth International Conference on Epigenetic Robotics: Mod-
eling Cognitive Development in Robotic Systems (EpiRob09). Venice. Italy, 2009.

[43] F. Michaud, F. Ferland, D. Létourneau, M.-A. Legault, and M. Lauria, “Toward
autonomous, compliant, omnidirectional humanoid robots for natural interaction in
real-life settings,”Paladyn, vol. 1, pp. 57–65, marzo 2010.

[44] T. Ziemke, “On the role of emotion in biological and robotic autonomy,”Biosystems,
vol. 91, no. 2, pp. 401–408, 2008.

[45] J. J. Bryson, “Robots should be slaves,” inClose Engagements with Artificial Com-
panions Key social psychological ethical and design issues(Yorick Wilks, ed.),
pp. 1–12, John Benjamins, 2010.

[46] K. Lorenz,Behind the Mirror. 1977.

[47] K. Doya, “What are the computations of the cerebellum, the basal ganglia and the
cerebral cortex?,”Neural networks, vol. 12, no. 7-8, pp. 961–974, 1999.



Bibliography 211

[48] W. D. Smart and L. P. Kaelbling, “Effective reinforcement learning for mobile
robots,” in International Conference on Robotics and Automation (ICRA2002),
2002.

[49] M. Malfaz, Decision Making System for Autonomous Social Agents Based on Emo-
tions and Self-learning.PhD thesis, Carlos III University of Madrid, 2007.

[50] E. Kandel, J. Schwartz, and T. Jessell,Principles of Neural Science. Elsevier, 1991.

[51] A. Veldhuis,Reviewing Decision Making: from awareness to social decision mak-
ing. Master thesis, University Utrech, 2011.

[52] M. Bear, B. Connors, and M. Paradiso,Neuroscience: Exploring the brain. Lippin-
cott Williams & Wilkins, 2001.

[53] K. C. Berridge, “Motivation concepts in behav-ioural neuroscience,”Physiology and
Behaviour, no. 81, pp. 179–209, 2004.

[54] B. Baars and N. Gage, “Cognition, brain, and consciousness: Introduction to cogni-
tive neuroscience,” 2010.

[55] C. L. Hull, Principles of Behavior: An Introduction to Behavior Theory, vol. 25 of
The Century psychology series. Appleton-Century, 1943.

[56] K. Cherry, “Drive-Reduction Theory. Hull’s Drive-Reduction Theory of Motiva-
tion.”

[57] C. Hull, “The conflicting psychologies of learning—a way out.,” Psychological Re-
view, 1935.

[58] D. P. Schultz and S. E. Schultz,A history of modern psychology. Thom-
son/Wadsworth, 2005.

[59] J. Santa-Cruz, J. M. Tobal, A. C. Vindel, and E. G. Fernndez, “Introduccin a la
psicologa.” Facultad de Psicologa. Universidad Complutense de Madrid, 1989.

[60] C. L. Hull, Principles of Behavior. New York: Appleton Century Crofts, 1943.

[61] J. Olds and P. Milner, “Positive reinforcement produced by electrical stimulation of
septal area and other regions of rat brain.,”Journal of Comparative and Physiolog-
ical Psychology; Journal of Comparative and PhysiologicalPsychology, vol. 47,
no. 6, p. 419, 1954.

[62] J. Deutsch and C. Howarth, “Some tests of a theory of intracranial self-stimulation.,”
Psychological Review, vol. 70, no. 5, p. 444, 1963.



212 Bibliography

[63] J. LeDoux, “The emotional brain,”New York, vol. 94, no. 4, pp. 1–29, 1996.

[64] C. Darwin, The Expression of the Emotions in Man and Animals, vol. 232. John
Murray, 1872.

[65] T. Rumbell, J. Barnden, S. Denham, and T. Wennekers, “Emotions in autonomous
agents: comparative analysis of mechanisms and functions,” Autonomous Agents
and MultiAgent Systems, vol. 25, no. 1, pp. 1–45, 2011.

[66] D. Cañamero, “A Hormonal Model of Emotions for BehaviorControl,” 1997.

[67] F. Gordillo, J. Arana, L. Mestas, and J. Salvador, “Entre la razón y el corazón: La
importancia de la emoción en la toma de decisiones,”Ciencia Cognitiva: Revista
Electrónica de Divulgación, vol. 5, no. 1, pp. 25–27, 2011.

[68] C. Castelfranchi, “Affective appraisal versus cognitive evaluation in social emotions
and interactions,”Affective interactions, pp. 76–106, 2000.

[69] F. D. Rosis, C. Castelfranchi, P. Goldie, and V. Carofiglio, “Cognitive Evaluations
And Intuitive Appraisals: Can Emotion Models Handle Them Both?,” in Humaine
Handbook, vol. 32, pp. 845–863, Springer, 2005.

[70] A. Ortony, “On making believable emotional agents believable,” inEmotions in hu-
mans and artifacts(R. Trappl, P. Petta, and S. Payr, eds.), Emotions in Human and
Artifacts, ch. 6, pp. 189–212, MIT Press, 2003.

[71] N. H. Frijda, “The laws of emotion,”ACADEMY OF MANAGEMENT REVIEW,
vol. 32, no. 3, pp. 995–998, 2007.

[72] N. H. Frijda, “The Empirical Status of the Laws of Emotion,” Cognition & Emotion,
vol. 6, pp. 467–477, Nov. 1992.

[73] T. Dalgleish, “The emotional brain,”Nature Reviews Neuroscience, 2004.

[74] P. Ekman, “An argument for basic emotions,”Cognition and Emotion, vol. 6(3/4),
pp. 169–200, 1992.

[75] A. R. Damasio, T. J. Grabowski, A. Bechara, H. Damasio, L. L. B. Ponto, J. Parvizi,
and R. D. Hichwa, “Subcortical and cortical brain activity during the feeling of self-
generated emotions,”Nature Neuroscience, vol. 3, no. 10, pp. 1049–1056, 2000.

[76] J. E. Ledoux, “Cognitive-emotional interactions in the brain,”Cognition & Emotion,
vol. 3, no. 4, pp. 267–289, 1989.



Bibliography 213

[77] H. Damasio, T. Grabowski, R. Frank, A. Galaburda, and A.Damasio, “The return
of Phineas Gage: clues about the brain from the skull of a famous patient,”Science,
vol. 264, pp. 1102–1105, May 1994.

[78] A. Olteanu, I. Simion, A. Purc̆areanu, and N. Bîzdoacă, “Robotic Architecture for
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