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This paper studies the equi1ibrating process of several implementation 
mechanisms using naive adaptive dynamics. We show that the dynamics converge 
and are stable, for the canonical mechanism of implementation in Nash equi­
librium. In this way we cast sorne doubt on the criticism of "complexity" commonly 
used against this mechanism. For a mechanism that implements using the iterated 
de!etion of dominated strategies, the dynamics converge but are les s stable. Journal 
of Economic Literature Classification Numbers: C72, 070, 078. © 1999 Academic Press 
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l. INTRODUCTION 

The theory of implementation tries to address the problem of designing 
game forms (which in this literature are called mechanisms) whose equi­
libria satisfy certain socially desirable properties but which do not 
necessitate vast amounts of knowledge by the authorities to put them in 
place. Instead, these social arrangements should basically self police them­
selves, and the designer should only make sure that the rules of the game 
are respected by the players. 
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In the past few years there have been impressive advances in the theory 
of implementation. As Sjostrom [25 J points out, "With enough ingen uity 
the planner can implement 'anything." This "ingenuity" often involves the 
construction of complicated games and the choice of the solution concept. 
As is often the case in economics, very little attention has been paid to the 
issue of how equilibrium is reached, and whether it is stable. This situation 
is worrisome given the importance of the issues at hand and the fact that 
the theory makes normative recommendations. It would not be sensible to 
apply these social engineering recipes without first thinking about whether 
real people will achieve the desired outcomes. 

Sorne exceptions are the papers of Muench and Walker [20J and De 
Trenqualye [27 J who study the conditions for local stability of the Groves 
and Ledyard [11 J mechanism. Walker [30 J proposes a stable mechanism 
yielding nearly Walrasian allocations in large economies. Jordan [15 J 
shows that for any mechanism which implements the Walrasian corre­
spondence in Nash equilibria with agents that are uninformed about other 
agents characteristics and any dynamic adjustment process there is an 
environment for which the equilibria are unstable with respect to the 
dynamics. Vega-Redondo [29J proposes a mechanism for which a best­
response dynamic adjustment process is globally convergent to the Lindahl 
equilibrium outcome in an economy which has one private good, one 
public good and a linear production technology for the public good. De 
Trenqualye [28 J proposes a mechanism that is locally stable for the 
implementation of Lindahl equilibria in an economy with multiple private 
goods, one public good, a linear production technology for the public good 
and quasi-linear preferences. Cabrales and Pon ti [5 J study the convergen ce 
and stability properties of Sjostrom 's [25 J mechanism 1 under fictitious 
play and when one assumes that the dynamics are monotonic in the sense 
of Samuelson and Zhang [23 J. 2 

This paper studies first (a slight variation of) the canonical mechanism 
for implementation in Nash equilibria (see Maskin [17J, Repullo [22J). 
We show that it has good dynamic properties when the assumption of 
monotonicity is replaced by strict monotonicity, the possible preference 
profiles and out comes of the social choice rule are finite (although out­
comes that are not part of the social choice rule can be infinite), and sorne 
punishments are possible. The dynamics are such that agents play the game 
repeatedly and once in a while they get a chance to replace the strategies 

1 Sj6str6m's [25] mechanism and the one that Jackson. Palfrey and Srivastava [14] study 
for separable environments are very similar and most of our results would generalize easily for 
that mechanism as well. 

2 A member of the class of monotonic dynamics is the replicator dynamics of evolutionary . 
game theory, (Taylor and Jonker [26] l. 

2



ADAPTIVE DYNAMICS AND IMPLEMENTATION 161 

they currently use. When they do it, they put positive probability on 
strategies that are best responses to the current strategy profile of the other 
players' and probability zero on strategies that give lower payoff than the 
one they are currentIy using. 3 Under these assumptions the dynamics con­
verge to the set of Nash equilibria (so the social choice correspondence is 
implemented) and once the dynamics converge to an equilibrium, they stay 
there. 

According to Jackson [13] "A nagging criticism of the theory is that the 
mechanisms used in the general constructive proofs have 'unnatural' 
features." Moore [18] also complains that the mechanisms for Nash 
implementation are "highly complex-often employing sorne unconvincing 
device such as an integer game." Gur result shows that even unsophis­
ticated agents using very simple adjustment rules can reach the set of 
equilibria of the mechanism. Therefore the criticism is misplaced if by 
"complex" we mean that the outcome that is de si red by the planner will 
not be achieved by boundedly rational agents. Gn the other hand, it may 
be that the critics are right. If "complexity" is associated with the issue of 
the speed of convergence (which we do not explore) it may be that the 
canonical mechanism is slower than others. 

The structure of the general constructive mechanism is as follows. The 
agents have to announce a state of the world, an outcome and an integer. 
If all agents agree on a state and an outcome, the outcome is implemented. 
If one agent disagrees and pro poses an alternative, there is a test that 
the alternative has to pass. If it passes the test, the alternative outcome 
is implemented, otherwise it is not. A condition called monotonicity 
(Maskin [17]) en sures that an alternative will be proposed if and only if 
there is agreement on a lie. The mechanism also specifies what happens 
when more than one agent disagrees. In these cases, the mechanism gives 
the agent who proposed the largest integer her favorite outcome given the 
state of the world she announces. No situation with more than one dis­
sident can be an equilibrium (if the best outcomes for the different agents 
are different). The reason is that in that case there is always one "lo ser" and 
the "lo ser" could "win" by announcing a high enough integer.4 This 
exploitation of the non-existence of an equilibrium is one of the things that 
appears more worrisome to the critics about the use of integer game 
constructions. 

The intuition for why there is convergence with the canonical mechanism 
is simple. If in one period all the agents make a coincident announcement 

3 They may (although it is not necessary) give weight to strategies that are not a best 
response but do better than the one currently used. 

40ne can show that there is no equilibrium, even in mixed strategies, that gives positive 
weight to strategy profiles where the integers are used to determine a winner. 
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that is false, sorne agent has an incentive to change the announcement to 
the truth by monotonicity. At that point any agent can invoke the integer 
game and, by choosing a large enough integer, win it. When the integer 
game is invoked, announcing the truth cannot hurt any player, provided it 
is accompanied by a high integer, since it only determines the preference 
pro file with respect to which her most preferred outcome is chosen (if she 
wins the integer game l. lf everybody (simultaneously 1 announces the true 
outcome, the designer's desired outcome is achieved and from that point 
on, the strengthened version of monotonicity ensures that no player desires 
to deviate. 

We also examine a mechanism that implements the social choice rule 
in the iterated deletion of dominated strategies. We show that although 
convergence to the equilibria of these games can be achieved, they are not 
stable when agents choose improving strategies which are not necessarily 
best responses. The problem is that drift between strategies that have the 
same payoff as the equilibrium payoff can destabilize the equilibrium 
outcome. This result is far from being merely a theoretical curiosity. As 
Binmore and Samuelson [3 J point out, "the experimental evidence is now 
strong that one cannot rely on predictions that depend on deleting weakly 
dominated strategies." The mechanism we study, which is the one proposed 
by Abreu and Matsushima [2 J, implements the social choice rule in 
iteratively weakly undominated strategies. Besides being a good example of 
the literature on implementation with solution concepts different from 
Nash equilibrium, it has an additional interest beca use it allows us to 
discuss the mechanism of Abreu and Matsushima [1 J. This mechanism 
virtually implements the social choice rule (that is, it implements with 
arbitrarily high probability) in strategies that survive the iterative deletion 
of strictly dominated strategies. This would seem to be a good mechanism 
from a dynamic perspective, given that iteratively strictly dominated 
strategies are asymptotically eliminated for most adaptive dynamics (see 
Nachbar [21J, Samuelson and Zhang [23J or Cabrales and Sobel [6J). 
The problem is that if the mechanism implements with very high probability 
the social choice rule, then it will do so in iteratively strictly 8-undominated 
strategies, for 8 very small. This implies that as the mechanism becomes 
more effective in doing its job, it becomes closer to the one in Abreu and 
Matsushima [2 J and thus it becomes open to the sort of instability 
problems which that mechanism has. We think that this trade-off between 
close implementability and stability needs to be pointed out and we 
formalize it. 

Section 2 describes the model and the dynamics we use. Section 3 studies 
the problem of Nash implementation with adaptive dynamics. Section 4 
studies the dynamics of the mechanisms of Abreu and Matsushima [2 J and 
Abreu and Matsushima [1]. An appendix gathers the proofs. 
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2. THE MODEL AND THE DYNAMICS 

There is a set 1 = 1, ... , n of agents, and the preferences of agent i E 1 are 
represented with a (Von Neumann-Morgenstern) utility function 
Vi: A x cJ>¡ ..... R, where A is a set of alternatives and cJ>¡ specifies a finite set 
of possible utility functions. An element eP ¡ of cJ> ¡ is meant to represent the 
preferences of agent i over A. A preference profile is a vector eP = (ePI' ... , ePn)' 
where ePi E cJ>¡. The set of possible preference profiles, denoted by r, is a 
subset of cJ> = X ¡EN cJ>¡. Sin ce we are concerned with environments with 
complete information, the preference profiles will be common knowledge 
among the agents. 

A social choice rule is a (possibly multi-valued) mapping F: r ..... A, 
where re cJ> is the set of possible preference profiles. A mechanism is a pair 
(M, g), where M = MI X ... x M n and g: M ..... A. M¡ is the message space 
of agent i and g is the outcome function. A mechanism and a preference 
profile define a game. 

Let M _¡= MI X ... X M¡_I x M¡+I ... x Mn- Given a mechanism (M, g) 
and a preference profile eP, we will say that m¡ is a best response for player 
i, to m_¡ EM _¡ if v¡(g(m¡, m_J, ePi) ~ v¡{g(m;, m_¡), ePJ for all m; E M¡. 
A message profile m is a Nash equilibrium (NE) if m¡ is a best response to 
m _ ¡ for all i E N. Let N E( eP ) = {g( m) I m is a NE at eP}. 

We say that a mechanism (M, g) implements a social choice rule Fin 
N ash equilibrium if for all eP E r, F( eP ) = N E( eP ). 

We will as sume now that the implementation game is played repeatedly 
by the agents and that they can use the information obtained in previous 
periods to modify their behavior in subsequent rounds of play. The under­
lying set-up that one can keep in mind is that of a population of agents 
who play repeatedly implementation games for the provision of public 
goods in different groups of a society over time. An agent lives in an apart­
ment building where the owners have to decide whether to purchase an 
e!evator and of what quality, or whether to paint the external surface of the 
building and in what color. The agent is also the member of a sports club 
where members have to decide on the leve! of upkeep of the tennis courts 
and the putting green. She is al so working in an office where workers 
decide on the regulation of the temperature in the (shared) working space. 
Besides, many of these decisions have to be taken repeatedly. If they were 
all taken using the same implementation mechanism, there would be ample 
opportunities for learning and adjusting play between repetitions. 5 

5 To be completely consistent with this story, we would need to have (among other things) 
a population with several individuals playing the role of each agent i, and some kind of 
matching process. This modification is conceptually easy to do and the results still follow, but 
it in vol ves substantial notational complication and we omit it for expositional simplicity. 
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To keep the problem tractable we will make sorne assumptions about the 
way in which the play and the updating takes place. 

We will say that message mi E Mi improves upon message m; given the 
message profile m if 

Let 8> O. We say that mi is an 8U-improvement upon m; if 

We as sume that agents play the game repeatedly (maintaining the role 
i and preference index epi)' Each individual starts by playing sorne arbitrary 
(pure) strategy and before each repetition of the game they have an oppor­
tunity to change their (pure) strategy with sorne probability. The dynamics 
will be fully described when one identifies the transition probabilities 
between strategies. Instead of fully describing the process we enumerate a 
set of assumptions that are sufficient for the results of the papero 

(YO) The transition probabilities depend exclusively on the present 
message profile. 

(YI) All individuals are given the chance to update their strategies 
with independent probabilities in the interval (O, 1). 

(Y2) Ifthe individual is given the chance to update her strategy, any 
best response to the present message profile is adopted with positive prob­
ability. If there are several messages which are best responses to the current 
one and they announce the same pair ep, a (as we wilI see, this means that 
they only differ in the integer that the mechanism requires mentioning), 
one of these messages is chosen with a probability bounded away from 
zero. 

(Y3) A strategy which does not improve upon the strategy curren tI y 
in use is adopted with zero probability. 

Sorne alternatives to assumption (Y2) will be used in Section 4 

(Y4) Ifthe individual is given the chance to update her strategy, any 
strategy that improves upon the strategy currently in use, given the present 
message profile, is adopted with positive probability. 

(Y5) If the individual is given the chance to update her strategy, any 
strategy that is 8U-improvement upon the strategy currently in use, given 
the present message pro file, is adopted with positive probability. 

These assumptions permit us to obtain c1ear-cut results in a relatively sim­
ple fashion. Assumption (YO) simplifies the analysis by making the strategy 
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profile of a certain period the state variable of the system, but it is not 
essential for the results. It would suffice if the system had a finite memory, 
for example. 

Assumptions (YI) and (Y2) are designed to exploit a special charac­
teristic of the mechanisms. For many strategy profiles the agents have lots 
of alternative strategies that yield the same payoff, and sorne of them are 
both a best response to the prevalent strategy profile, and lead to 
implementation of the social choice rule. If assumptions (Y 1) and (Y2) are 
satisfied there wiU be convergence to an equilibrium from those states. It 
turns out that those states are also easily accessible from other states. 
Notice that assumption (Y2) does not demand that aU agents choose best 
responses all the time, but only that they find them with sorne probability. 

Assumption (Y2) does not say anything about the probabilities of 
strategies that are not best responses. In particular, it does not specify what 
happens with improving strategies that are not best responses. This implies 
that (Y2) is a less restrictive assumption than (Y4), so any proposition that 
is true with (Y2) as an assumption will also be true with (Y4). Specifically, 
Proposition I is true with (Y2) replaced by (Y4). We discuss in Section 4 
why assumption (Y 4) rather than (Y2) is used in the context of implemen­
tation in iteratively undominated strategies. 

Both assumptions (Y 4) and (Y2) remain silent as to the relative sizes of 
the probabilities of transitions to best-responses versus improving strategies 
that are not best responses. All that is needed in the propositions is that 
there is enough drift away from strategies that are not strict best responses, 
and no flow out of strategies that are strict best responses. The latter is 
achieved with assumption (Y3), which makes the equilibria of the canoni­
cal mechanism absorbing states. One could even relax (Y3) by adding 
small probabilities of mutations in all directions, which would make the 
process ergodic, and then look at the stationary distribution. The Jimit of 
that distribution as mutations go to zero would put weight only on the 
socially desired outcomes for the canonical mechanism. It is unclear how 
this would affect the results in Section 4. 

The statement in assumption (Y2) about best response messages that 
share the same a, rjJ announcements is used, as we explain in Section 3, 
to account for the fact that the strategy spaces are infinite but for 
Proposition 1 sorne transition probabilities have to be bounded away from 
zero. 

Assumption (Y5) modifies (Y4) in a way that will be suitable to discuss 
virtual implementation. 

Properties (YO) to (Y 4) make our dynamics similar to the ones in Kim and 
Sobel [16]. The difference here is that they require individual (sequential) 
adjustments and we as sume that there is positive probability of simul­
taneous adjustments. Assumption (Y2) corresponds to their assumption 
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(BR), (Y4) corresponds to their assumption (R) and Assumption (Y3) to 
their assumption (NL). Our dynamics are aIso closely related to the ones 
in Hurkens [12] and Gilboa and Matsui [9]. 

3. NASH IMPLEMENTA nON 

In the first subsection we describe the mechanism and the second will 
show that the dynamics described in Section 2 converge and are stable for 
that mechanism. 

3.1. The Canonical Mechanism (Almost) 

We say that F is monotonic if for all a, ep, ep', with a E F( ep) and a rf: F( ep') 
there is an i and a' such that v¡{a, ep) ~ v¡(a', ep') and v¡(a', ep') > v¡{a, ep'). 

Monotonicity is a necessary and almost sufficient condition for Nash 
implementation. We use somewhat stronger assumptions, 

(NI) For all a, ep, ep', with aEF(ep) and arf:F(ep') there is an i and a' 
such that v¡{ a, ep) > v¡( a', ep) and v¡{ a', ep') > v¡( a, ep'). 

(N2) For all i, ep and a E F( ep) there is a' E A such that v¡( a, ep) > 
v¡(a', ep). 

(N3) The set r is finite. So are the sets F( ep) for all ep E r 

We denote by i( ep, ep') one (arbitrarily chosen) of the agents that satisfy 
the condition of assumption (NI), and by a' (ep, 1>') one (arbitrarily chosen) 
of the outcomes such that v¡(</J,'j/)(a,ep»v¡(</J.</J,)(a'(ep,ep'),ep) and v¡(</J.</J') 
(a' (ep, ep'), cjJ') > V ¡(</J, </J')( a, ep'). This agent i( ep, ep') is often called the test agent 
and a'(ep, ep') the test outcome in the implementation literature. Let us also 
denote by a; (a, ep) one of the outcomes a' in assumption (N2). 

Under our dynamics, all best-responding messages are chosen with 
positive probability. If the Nash equilibrium of the mechanism were such 
that sorne agent had more than one best response, it could be easily 
destabilized. To avoid this we will use two assumptions; (NI), which 
demands that the test outcome be a strict improvement over the "status 
quo" and (N2) by which it is always possible to punish a dissident who has 
no reason to dissent (she is not a test agent), Assumption (N3) is used to 
guarantee convergence to the desired outcome in finite time. 

Assumption (N2) does not seem very restrictive, since it will be sufficient 
for example that agents have strictly monotonic preferences over a private 
good over which fines can be levied, or that there is an outcome which is 
bad for all agents. Assumption (NI) is a slight strengthening of Maskin­
monotonicity and would be satisfied if preferences were strictIy convex, for 
example. Assumption (N3) limits the set of allowable preference profiles 
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and the social choice rules to be finite valued, but the set of possible out­
comes A might still be infinite, so the Euclidean spaces for outcomes that 
are common in economics are not excluded. This stillleaves a nontrivial set 
of social choice rules like the Walrasian or Lindahl correspondences which 
can be implemented under reasonable subsets of preferences. 

We will use a slight variation of the canonical mechanism for implemen­
tation in Nash equilibria, as described, for example in Repullo [22]. 

Let A F = {aEA: 3rjJ with aEF(rjJ) or 3rjJ, rjJ' with a=a'(rjJ, rjJ')}. 
Let Mi = A F X r x N, so that each individual announees an outcome, a 

preference profile, and a positive integer; and M = M¡ x ... x M n , and let 
members of Mi and M be denoted mi and m respectively. Let the first com­
ponent of mi' that is, the outcome announced by agent i be m: and the 
second component, the preference profile announced by agent i, be m;. Let 
i(m) be the individual who has the lowest index among those who 
announee the highest integer in the message profile m. 

Let bi(rjJ) be su eh that vi(b¡{rjJ), rjJ) ~ v¡{a, rjJ) for all a E A. 
To define g, let's divide M into the following regions, 

D¡ = {m I 3rjJ E r, a E F( rjJ) such that for all i, mi = (a, rjJ, ni), 

for sorne ni E N} 

Dz = {m I mi = (a, rjJ, n¡) Vi #- i( rjJ, rjJ'), and mi(<p, <p') = (a'( rjJ, rjJ'), rjJ', ni(<p, <P'))} 

D~ = {m I mi = (a, rjJ, ni) Vi #- j, and m ¡f D¡ u Dz} 

D 4 = {m Im¡fD¡ uDz uD~ ... uD~} 

r 
if mED¡ 

() a' (rjJ, rjJ') if mEDz 
g m = , 

if mED~ aj(a,rjJ) 

bi(m/m~m)) if mED4 

This mechanism can be described in the following way. If everybody agrees 
on an outcome and a state, then that outcome is implemented. If all agents 
but one announce the same outcome, and the dissident is the test agent and 
she announces the test outcome, then the test outcome is implemented. If 
there is one dissident but she is not the test agent (or she is the test agent 
but does not announee the test outcome), then the dissident is punished. lf 
more than one person disagrees, then the outcome is the favorite one 
(under the preferenee profile she announces) for the agent who announces 
the largest integer. 

There are a couple of small differenees between this mechanism and the 
one in Repullo [22]. One is that we punish deviations from the equilibrium 
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by agents other than the test agent, (and even punish announcements 
by the test agent which are not part of the test pair). As we discussed 
aboye, this is done to avoid having multiple best responses in equi­
librium. The other difference is that we ask that the "allowable" dissident, 
the test agent, and the test outcome must be designated beforehand, and 
the outcomes that can be announced must be either test-outcomes or out­
comes of the social choice rule for sorne preference profile. We do this so 
that we can allow a possibly infinite set of outcomes A, while maintaining 
a relatively small state space. This is important because the agents in 
this model are not very sophisticated and they find their way to equi­
librium by tri al and error. The smaller the state space, the fas ter will 
convergence be. 

Unlike Repullo [22] and other papers in the literature on Nash 
implementation we do not make the assumption of absence of veto power. 
This assumption says that for all a E A, ep E r, if Uj ( a, ep) ): Uj ( a', ep) for all 
a' E A and for all j =1= í, then a E F( ep). Without this assumption we can have, 
for example, the situation that an outcome a, which is the best in all 
players' utility functions for sorne preference profile ep, is not selected by the 
social choice rule, (that is, a i F( ep )). U nder these conditions, we would 
have a Nash equilibrium with outcome a, when the true preference profile 
is ep. A message profile in D 4 would deliver such an equilibrium, since no 
agent would have an incentive to change a strategy that is already deliver­
ing the best possible outcome. The assumption of absence of veto power is 
not needed in our case since such kind of Nash equilibria would not be 
stable under our dynamics. We will show in Proposition l that from 
message profiles in D4 the dynamics eventually drift into DI (for the true 
ep), and by definition a i F( ep ). 

3.2. The Dynamícs oI Nash Implementatíon 

The main result in this section is that the dynamics defined in Section 2 
for the game induced by the mechanism in subsection 3.1 are such that the 
strategy pro file will almost surely lead to one of the outcomes that the 
designer wants to implemento and that outcome is then implemented 
forever. In addition, if none of the outcomes that the planner wants to 
implement are already being implemented, all outcomes in the social choice 
rule are implemented with positive probability. 

Assumption (Y2) requires that when there are several best responses 
which announce the same pair ep, a, that is, they announce different 
integers, one of these messages is chosen with a probability bounded away 
from zero. It is then necessary that the sets of allowable pairs ep, a are finite. 
This is true by assumption (N3), the fact that the announced a must belong 
to A F and we single out one and only one test agent and test outcome for 
every pair ep, ep'. Without this assumption it would be possible that agents 

10
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would spend infinite amounts of time cycling around the integer game. 
Because of this modification, whenever we say in the proof of the proposi­
tions that something happens with positive probability it means actually 
with probability that is bounded away from zero. 

Define the set Sa = {m 13rjJ, a E F( rjJ), such that Vi; mi = (a, rjJ, ni)}' The set 
Sa is the set of message profiles in DI where the outcome is a. 

PROPOSITION l. Let the true preference profile be rjJ. Given dynamics that 
satisfy properties (YO), (Yl), (Y2), (Y3), and given a social choice function 
tha! satisjies (NI), (N2), (N3); 

(a) I{m(O) is a such that m(O)r/;Safor any aErjJ, thenfor all aErjJ; 
PUor some t', m(t) ESa' Vt ~ t') > O. 

(b) P(UaEF(q,) {Jor some t', m(t) ESa' Vt ~ t'} ) = l. 

Proof See the Appendix. 

The intuition for the stability part of the result is that if all agents agree 
on an outcome a and also announce the true rjJ (so that the message pro file 
is in DI), the test agent does not want to change the strategy and announce 
the test outcome by NI (modified monotonicity), and any other change by 
any agent would only lead to an outcome in D~, which the agent who 
changed would not like by N2. 

The convergence result starts by showing that the message profile will go 
with positive probability to D4 (where the integer game is played) if the 
initial state is not one where the social choice rule is implemented. For 
example, if all agents agree on an outcome and announce a false rjJ, the test 
agent would like to change her announcement to the test outcome by NI, 
and after that change, any pI ayer can announce the true preferences (which 
puts the message profile in D 4 ) and obtain her favorite outcome by 
announcing a high enough integer. For similar reasons, if the initial state 
is in Dz or D~, any player can announce something that puts the message 
profile in D4 and obtain her favorite outcome. 

Once the message profile is in D4 , announcing the true rjJ and sorne 
a E F( rjJ) is a best response if a high enough integer is also announced. 6 If 
all agents announce it simultaneously the message pro file will be in DI' and 
the stability argument guarantees that the message profile becomes fixed at 
that point. 

Notice that a similar argument would work for modulo games. This is 
important because one could reasonably argue that a practical problem 

6 If there are only 2 dissidents it rnay not be a best response for thern to teH the truth, but 
then there is positive probability that sorne other player also becornes a dissident, which is a 
best response, and at that point it is a best response for aH agents to announce rp and a E F( l' j. 
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with the canonical mechanism is that in real life the designer would have 
trouble with an infinite strategy space (time constraints could preclude 
describing arbitrarily high integers). But modulo games are not subject to 
that criticism and have the same dynamic properties. 

We have assumed that the state of the world (the preference pro file ) 
remains unchanged while people learn. It is interesting to consider what 
would happen if the state of the world changed with positive probability 
while the agents were learning. In that case, a result analogous to Proposi­
tion 1 could be obtained by making the learning process operate on 
strategies as functions of the state into the messages. While the dynamics 
for the mechanism would still converge and be stable, this alternative 
assumption of a changing state of the world would make an important dif­
ference for a couple of reasons. First of all, the increase in dimensionality 
of the space in which the dynamics move would probably make con­
vergence slower. But a state that changes is also important because it 
makes apparent the difference between implementation with complete and 
incomplete information. In order to use a strategy where the message sent 
varies with the state of the world (which is likely to be the best response 
eventually), the agent needs to know the state. When the state does not 
change over time, the pI ayer only needs to know the payoffs of the different 
message profiles (which she can learn by trial and error), 7 so the distinction 
between implementation with complete and incomplete information 
becomes blurred. 

Another important issue is that the planner may be able to use the infor­
mation that the agents are not fully rational in the design of the 
mechanism. We have already done this in part, sin ce we have modified 
Repullo's [22] mechanism to make the socially desirable equilibria stable. 
But the planner may also be interested in accelerating the convergen ce to 
equilibrium. Addressing this issue properly would require a more formal 
treatment of the speed of adjustment. This, in turn, would require more 
specific assumptions about the dynamics, and it is likely to be more 
dependent on the particular environment than the questions of convergence 
and stability. Nevertheless, we now make sorne conjectures about how the 
planner may be able to modify the mechanism to accelerate convergence to 
equilibrium using the agents' bounded rationality. Notice, however, that 
while these changes may accelerate convergence, the outcomes on the way 
to equilibrium may be quite bad for sorne agents. To properly evaluate 
this tradeoff, it would be necessary to postulate preference rankings for 
the planner, something that is typical1y avoided in the implementation 
literature. 

7 We owe this observation to Tilman Borgers. 
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If the probability of a change in strategy were related to the difference in 
payoffs, the planner could accelerate convergence by making payoff dif­
ferences between sorne outcomes of the mechanism as large as possible. F or 
example, if there is more than one possible test outcome, a( cjJ, cjJ') should be 
chosen to give the maximum utility possible for the test agent from the out­
come of the consensus announcement so that she deviates soon (and sends 
play from DI to D 2 ). If possible, the test outcome should also be such that 
agents other than the test agent are punished (maybe by having them pay 
a penalty). This punishment would give them in turn more incentives to 
deviate from a strategy profile in D2 and move play to D4' Another thing 
that may del ay convergence is the fact that in D4 announcing the true state 
cjJ (and a high integer) so as to obtain b ¡( cjJ) is a best response, but so may 
be announcing sorne other cjJ' (for example because b ¡ (cjJ ) = b ¡( cjJ')). If that 
is the case, and if there are outcomes c ¡( cjJ) for all i, cjJ with the property that 
v¡(c¡(cjJ), cjJ) > v¡(c¡(cjJ'), cjJ) for all cjJ, cjJ' (that is, every i prefers the C¡ outcome 
corresponding to the "true" state of Nature), and v¡( c;( cjJ), cjJ) > v¡( cj ( cjJ), cjJ) 
(that is, every í prefers "her own" outcome to somebody elses'), then one 
could amend the mechanism to use c¡(m)(m~m)) in D4 and the convergence 
and stability results would be maintained, but convergence may be fas ter. 

4. UNDOMINATED AND VIRTUAL IMPLEMENTATlON 

4.l. Implementatíon ín Iteratively Undominated Strategíes 

So far, we have only considered implementation in Nash equilibrium. 
What about other equilibrium concepts? Since the seminal work of Moore 
and Repullo [19], there has been considerable interest in implementation 
with equilibrium concepts that are more refined than Nash equilibrium. 8 

The main advantage of these mechanisms is that the conditions for 
implementation are weaker. In particular, monotonicity is no longer 
required. This is important since in economic environments implementing 
a single-valued social choice rule and requiring monotonicity is equivalent 
to truthful implementation in dominant strategies (see Dasgupta, Hammond, 
and Maskin [8]). 9 

8 Although the iterative elimination of weakly dominated strategies is not a refinement 
of the notion of Nash equilibrium (there are many games lar which the iterative deletion of 
dominated strategies leaves a set that is larger than the set of Nash equilibria l for the game 
forms that we study the set of iteratively undominated strategies is a strict subset of the set 
of Nash equilibria. 

9 This is true only with the domain of preferences is very large. In economies with a unique 
WalrasianjLindahl equilibrium the WalrasianjLindahl correspondence is Nash-implementable 
(see Corchón [7], p. 68 l. 
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By comparison, implementation in undominated strategies requires 
basically no restrictions. Abreu and Matsushima [2 J show that "any social 
choice function is exactly implementable in iteratively weakly undominated 
strategies," and Sj6str6m [25 J "in economic environments any social 
choice rule can be implemented in undominated Nash equilibria." An addi­
tional advantage of sorne of these mechanisms (notably those of Abreu and 
Matsushima [2 J and Sj6str6m [25 J) is that "integer games" or "modulo 
games" are not used. 

The purpose of this section is to show that these advances should be 
viewed with sorne suspicion if we believe that equilibrium is the outcome 
of a learning process, since the adaptive dynamic process leads to undesired 
outcomes even asymptotically. 

To focus the discussion we will concentrate on the mechanism proposed 
by Abreu and Matsushima (henceforth AM) [2J, but the results can be 
extended to other mechanisms that have been proposed in the literature. 

We will begin by introducing sorne notation and describing the 
mechanism. 

The first thing to notice is that AM [2 J only consider single-valued 
social choice rules. Another important assumption is that there is a private 
good that can be used to levy (small) fines. Thus the utility function will 
be Vi: A x R X <Pi ..... R. We will use (as AM [2 J do) for simplicity the quasi 
linear utility function vi(a, T, ~¡} = u¡{a, ~¡} + Ti. Since the fines that the 
mechanism in AM [2 J imposes are arbitrarily small, quasi-linearity is 
used without loss of generality. Besides the outcome function g(M) the 
mechanism specifies a transfer rule, T= (T,.)¡EN: M ..... R n

. The message 
space in AM [2 J is, 

where K may have to be quite large to make the fines very small. For 
expositional simplicity we will allow the fines to be large in which case it 
is enough to have K = 1. The arguments also go through (but notation and 
proofs are more cumbersome) when we have K large and small fines. Let 
then, in our case 

M¡=<P¡X<P¡+1 xF=M;-1 xM~ xM:, 

M=Ml xMz ... xMn , 

Mh=M7 xM~ ... xM~; 

and let mi' m, and mh be generic elements of M¡, M and M h. 
By the lemma in AM [1 J we have that there exists a functionJ¡: <Pi ..... A, 

such that for every ~i E <Pi' 

forall ~; E<PJ{~i}. 
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For any message profile m, the outcome function is, 

where we define p: MI ---> A by 

if m: = rjJ for at least (n - 1) agents 
otherwise, where b is an arbitrary element of A 
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and if we let B be a small positive number to be specified later, and mo = 

(m~, m~, ... , m~_I)' we define e: MO x MI ---> R by 

if m: =f. mo for sorne i E I 

otherwise 

The outcome function g is a lottery with the following characteristics. With 
a probability determined by the function e( . ) (which is nonzero when sorne 
agent's oneth announcement differs from mO) the favorite outcome of 
agent i, given her mil announcement, is selected with probability l/no 
With probability l - e( .) an outcome given by the function p(mO, mI) is 
chosen. This function says that if all but one of the m: announcements 
coincide on rjJ, then F( rjJ) is implemented, otherwise an arbitrary outcome 
b is implemented. 

To finish the description of the mechanism the penalty function has to be 
specified. Let y, (, 11 be small positive numbers to be specified later. Three 
possible penalties are specified for each player i. 

1. y if his zeroth announcement differs from player (i + l)'s 
minusoneth announcement 

2. (if his oneth announcement differs from mO. 

3. 11 if his oneth announcement is the only one to differ from the 
other players' oneth announcements. 

We will now give names to the fines 

{
-11 

f1¡{m
l

) = O 

if mi~\ =f.m~ 
otherwise 

if m: =f.ñ1o 
otherwise 

if for sorne rjJ, m: =f. rjJ, but m) = rjJ for all j E I/ {i}, 
otherwise 
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The total fine is thus T¡(m)=r(mi}l,mn+d¡(mo,ml)+,u¡(ml). 
To finish with the description of the implementation game we need to 

define the constants 8, IJ, ~ and y. To do this, define first, 

Fix 8 (small) and choose IJ, ~ and y to satisfy 

AMI 

IJ > 8 max E¡(rfJJ 
¡,<f> 

~ > max D¡(rfJ¡) + IJ 
¡,<f> 

}' >8 max E¡(rfJ,) + ~ 
¡,<f> 

With these three inequalities AM [2] show the following lemmas,lo 

LEMMA 2. Under AMI, for al! m with m¡-I = rfJ¡ and al! i, ir we lel 
m¡=(rfJ¡, rfJ¡+I' m:¡, 

LEMMA 3. Under AMI,jor al! m with m¡-I =rfJ¡ and m~=rfJ¡+1 ifwe lel 
m~ = rfJ then, 

Lemma 1 says that announcing the true preference index at mil and 
keeping the rest of the strategy constant is weakly dominant. Lemma 2 says 
that if the true preference index is announced at mil then announcing the 
true preference profile at m? and keeping the rest of the strategy constant, 
is strictly dominant. Lemma 3 says that if the true preference index is 

10 Notice that in our case ~ and J' need not be arbitrarily smal!. If K were larger than 1, the 
second inequality would be ~ > (l/K) Di(rPi) + IJ and ( and )' could be very small, if K were 
sut1iciently large. 
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announced at m: 1 and m~, then announcing the true preference profile at 
m: is strictly dominant. 

We now show that if the lemmas are true, the dynamics will go with 
positive probability to a state where the social choice rule is implemented. 

PROPOSITION 2. Let the true pre[erence profile be ep. Given dynamics that 
satisfy properties (YO), (Yl), (Y2), if Lemmas 1,2 and 3 are satisfied, 

P(for sorne t, m(t) E SF(r!») > O. 

Proof See the Appendix. 

The intuition of the result is simple. Lemma 1 shows that in a best 
response one has to tell the truth at m¡-I from any initial position. 
Lemma 2 shows that in a best response one must tell the truth at m~ once 
the truth is announced at m¡-I and then telling the truth at level m: is part 
of a best response by Lemma 3. Given this, assumptions (Y2) and (Yl) 
guarantees that these strategy switches take place. 

This shows that the mechanism of AM [2] will lead to implementation 
of the social choice rule. Unfortunately, it is also possible to diverge from 
the equilibrium in which the social choice rule is implemented. 

PROPOSITION 3. Let the true pre[erence profile be ep. Given dynamics that 
satúfy properties (YO), (Yl), (Y3), (Y4), if m(t) E SF(r!» , then P(for some 
t';;:" t, m(t') E SF(;j)) > O for any ~. 

Proof See the Appendix. 

The intuition for this proposition is that starting from a message profile 
where the true preferences are announced at all levels, switching to 
announcing a false preference index at m¡-I does not hurt agent i (it's a 
best-response to the current strategy profile). But if i changes the announ­
cement of m¡-I, then for agent i - 1 switching to a false preference index 
(but consistent with m¡-I) at m~_1 is improving. And given the previous 
steps, switching to the new mO at level mJ is improving for all agents. 

Notice that a difference between Proposition 1 (and 2) and 3 is that the 
latter uses assumption (Y4), while the former uses (Y2). From the proof of 
Proposition 3 one can see that the first change away from implementing 
the social choice rule (announcing a false preference index at m ¡-I) is a best 
response. After that, agent i - 1 changes m~_1 to best respond to the new 
m: l

, but then the probability e(mO, mi) = [; > O, which makes optimal 
announcing the true preferences at level m¡-I. Agent i, however, does not 
modify its announcement of m¡-I on the way to the new equilibrium, so her 
changes are improving, but not best responses. Assumption (Y4) guarantees 
that this can happen, and therefore that other (not socially desirable) 
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equi1ibria are reached. In the absence of (Y2) the first deviation by i and 
then the deviation by i - 1 are possib1e, but from then on it is not clear 
how far from the desired equilibrium the process can go, without further 
assumptions. 

Notice that even with (Y2) the i - 1 agent has to paya y fine as a result 
of the deviation by i. In principie the y cou1d be very small, but then the 
8 would al so be very small (see AM 1). In that case, the use of (Y 4) would 
be more acceptab1e, because the improving strategies that are not best 
responses used on the way to the new equilibrium differ from the best 
responses by an amount that is of the order of magnitud e of 8. This choice 
between a large penalty that has to be paid with high probabi1ity and a 
higher likelihood of ending up in the "wrong" outcome will appear again 
in subsection 4.2. 

An implication of Proposition 3 is that while (our version of) the canoni­
cal mechanism is robust in the presence of agents who use improving 
strategies, the mechanism in AM [2J is not. We have concentrated on 
sufficient conditions for divergence from the desired equilibrium because 
our purpose was to highlight the relatively higher robustness of the Nash 
mechanism, but it is not hard to think of sufficient conditions to guarantee 
that the process converges and is stable at the "right" equilibrium. Suppose 
we have an initial condition where m ~ i= mo for sorne i E 1, that agents only 
change strategies if there is a strict improvement, and that they always 
choose a best response to the past message profije with probabi1ity one. 
Then, the dynamics would converge and be stable at the socially desired 
outcomeY 
4.2. Virtual Implementation 

The idea behind virtual implementation is that to obtain implementability 
results under weaker sufficient conditions on the domain of preferences one 
can relax the notion of implementation (instead of strengthening the equi­
librium concept). After all, the p1anner may well be satisfied as long as the 
social choice rule is imp1emented with a high probability. AM [1 J show 
that if the p1anner only requires that the social choice rule is implemented 
with arbitrarily high probability, basically any social choice rule can be 
implemented, even with such a simple solution concept as iterative strictly 
undominated strategies. 

This result would appear very congenial with the spirit of this paper. 
Since the solution concept is iterative strictly undominated strategies, both 
convergence and stability would be expected not only under the dynamics 
of this paper, but in a variety of evolutionary and learning models (see 

11 Cabrales and Ponti [5] also find that a positive or a negative result on the stability 
of a mechanism that implements in iterative undominated strategies depends on the "degree 
of best responsiveness" of the dynamics and the initial conditions. 
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Nachbar [21], Samuelson and Zhang [23] or Cabrales and Sobel [6]). 
There is a problem, however, if the planner wants to implement a social 
choice rule which is s-close to the original social choice rule. In that case 
sorne of the dominated strategies which have to be eliminated for the pro­
cess to converge are only s-strictly dominated. In fact, we will show that if 
the agents can switch between strategies whose utilities are s-close, then the 
same instability problem of the mechanism of the previous subsection is 
reproduced here. This assumption is not unreasonable given the idea 
behind virtual implementation that the planner does not care too much if 
the social choice rule is not implemented, as long as the function that is 
actually implemented is e-close to the original social choice rule. 

Following AM [1], we say that social choice rules x and y are s-close 
if for all preference profiles, x and y map to lotteries that are e-close. 
A social choice rule x is virtual!y implementable in iterative strictly 
undominated strategies if for all s> 0, there exists a social choice rule y 
which is s-close to x and which is exactly implementable in iterative strictly 
undominated strategies. 

To make the presentation a little simpler, we will not use the same 
mechanism that AM [1] use but a modification based on AM [2]. As 
before, we use the quasi linear utility function v¡{a, T, if¡¡) = u¡(a, if¡¡) + T¡. 
Besides the outcome function g(M) the mechanism specifies a tran.sfer rule, 
T= (T¡)¡EN: M --+ Rn. The message space will again be, 

Let m¡=(m¡-I,m~,m~), and ml=(m:' ... ,m!). The only change in the 
mechanism is that for any message profile m, the outcome function is now, 

where we define p: MI --+ A as in the previous subsection and e is a small 
positive number as in the definition of virtual implementation. The penalty 
functions are also as specified in the previous subsection. 

Note that with the modification made in the mechanism, Lemma I is 
now true with a strict inequality. 

LEMMA 4. Under AMI. Let any mi' and m¡=(if¡¡, m7, mJ), then for 
al! m_¡, 
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Proo! Trivial from the proof of Lemma 1, and the definition of the 
mechanism. I 

Lemma 4, plus Lemmas 2 and 3 imply that the implementation solution 
concept is the iterative deletion of strictly undominated strategies. Note 
also that the function exactly implemented now is e-close to F. Since e can 
be made arbitrarily small, this mechanism virtually implements F. Let's 
denote the social choice rule that is actually implemented for each value 
of e, Fe' 

PROPOSITION 4. Let the true preference profile be rP. Given dynamics that 
satisfy properties (YO), (Yl), (Y2), and (Y3),for al! m(O) there exists t' such 
that P(for all t~t',m(t)ESF,(rjJ»)=1. 

Proo! A straightforward modification of the proof of Proposition 2 
shows that with Probability 1 there exists t' such that s(t') E SF,(rjJ) and the 
message m¡=(rP¡, rP¡+l' rP) is sent by all players. Lemmas 4,2 and 3 show 
that for all m¡ .¡, mI' 

so by Assumption Y3 P(for all t ~ t', s(t) E SF,(rjJ») = 1. I 

The mechanism proposed guarantees convergence and stability to a 
message profile that implements the social choice rule with arbitrarily high 
probability, under assumptions (YO), (Yl), (Y2) and (Y3). 

The problem arises if assumption (Y2) is replaced by (Y5), with 
U=max¡,rjJ,rjJ' u¡(f(r/J'), rP).12 We can then show, 

PROPOSITION 5. Let the true preference proji'le be rP. For al! e ~ O, given 
dynamics that satisfy properties (Yl), (Y3), (Y5) ifm(t) E SF(rjJ) , then P (for 
some t' ~ t, m(t') E SF(;¡;») > O for any ~. 

Proo! If s(t) E SF(rjJ) , then if agent n changes m;:l to sorne rP~ '¡'rPn, 
her payoff does not change by more than eU by the definition of the 
mechanism. Thus, Yl and Y5, and the definition of e-improvement guaran­
tees that this happens with positive probability. The rest of the proof 
retraces the steps of Proposition 3 closely. I 

This result implies that the agents have to care about the outcomes of 
the implementation process orders of magnitude more than the planner to 
avoid the instability of the mechanism. While this may be justified under 
certain circumstances, it is by no means clear that it will always be so. 

12 U is well defined because rp is a finite set. 
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Notice also that in the Nash mechanism we proposed earlier the 
equilibria are strict, so as long as [; is smaJl, the equilibria are stable even 
if assumption Y5 holds. 

This note of caution about virtual implementation is different from the 
one in Glazer and Rosenthal [10]. They think unlikely that agents wiJl do 
many rounds of deletion of strictly dominated strategies, especiaJly in 
circumstances where sorne alternatives to the social choice outcome are 
focal (like when an alternative outcome Pareto-dominates the social choice 
outcome)Y We, on the other hand, are worried that even if agents reach 
the social choice outcome, the near indifference between that outcome and 
sorne alternatives wiJl destabilize it. 

5. CONCLUSIONS 

The main message of this paper is that thinking explicitly about the equi­
librating process in the implementation problem can be a fruitful 
experience. We hope that these results encourage more work into the 
implementation problem using dynamic tools. An important question that 
should be answered is how sensitive are our conclusions to the dynamics 
postulated. Also, we have not examined the question about the speed of 
adjustment; reaching the sociaJly desirable outcome may be irrelevant if it 
takes a very long time (and the outcomes achieved on the way are 
undesirable). These considerations suggest the need for additional theoreti­
cal work, but no real progress can be made unless more empirical and 
experimental investigation is done in this field. 

6. APPENDIX 

Proo{ o{ Proposition 1. The proof wiJl proceed through two lemmas. 
First we will show that a message profile which does not implement any 
social choice function outcome can lead to aJl pro file s whose outcomes are 
outcomes of the social choice rule, and then we wiJl show that a message 
in Sa, where everybody announces the true preference profile cannot exit 
that set. 

LEMMA 5. Let the true preference projile be cp and let m(t') ~ UaEF(q,) Sao 

Then,for al! a E F( (n PUar some t> t', m( t) E S a) > o. 

Proo! The proof will proceed by dividing the possible initial states into 
a series of subsets. 

13 The experimental evidence in Sertan and Yava~ [24J supports this view. 
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Claim 1. For a given ep, if m(t'HSa' for any aEF(ep) and m(t')ED¡, 
then P(for sorne t> ti, m(t) E D4) > O. 

Since m(t' ) E D¡ and m(t' ) <t Sa all agents rnust be announcing a 
preference profile epi =1= ep. By assurnption (NI) and the definition of the 
rnechanisrn, it is a best response for agent i( ep, epi) to announce (ep, a' (ep, epi)). 
Then with positive probability, by assurnptions (Yl) and (Y2), agent 
i( ep, epi) will have a chance to update and will choose to announce ep. After 
agent i( ep, epi) changes her announcernent, any agent i =1= i( ep, epi) announcing 
state ep will rnove the rnessage profile to a state in D4' If at the sarne time 
she announces a high enough integer so that i = i( m), then it will be a best 
response to do so. Therefore this will happen with positive probability 
by (Y2). 

Claim 2. Let m(t')ED2 • Then P(for sorne t>t', m(t)ED4»0. 

lf m( ti) is in D 2 , and the consensus is a, epi, there is sorne epI! such that 
the dissident is i( epi, epl!). Any agent j other than i( epi, epI!) can rnove the 
rnessage profile to D4 by announcing the true preference profile ep and a (if 
ep = rP") or a( epi, epl!), (if epI! =1= ep). In either case there will be three different 
rnessages, so the rnessage profile will be in D4' lf j also chooses an integer 
high enough, she can obtain bj ( ep), which is a best response to the current 
strategy. Assurnptions (Yl) and (Y2) guarantee that this happens with 
positive probability. 

Claim 3. Let m(t')ED~. Then P(for sorne t>t' , m(t)ED4»0. 

If m(t' ) is in D~, m¡{t' ) = (a', epi, ni) for all i =1= j. Any agent other than j 
can rnove the rnessage profile to D 4 by announcing a different outcorne 
than a', and by choosing an integer high enough, and the true preference 
profile ep (which rnay or rnay not be equal to rP'), she can obtain bj ( ep), 
which is a best response to m( ti). Assurnptions (Y 1) and (Y2) guarantee 
that this happens with positive probability. 

Claim 4. Let the true preference profile be ep and a E F( ep ). Let 
m(t) E D4' Then P(for sorne ti> t, m(t' ) = (a, ep, n;)) > O. 

lf m(t) E D4 , we can study two cases. In the first case no agent can rnove 
the rnessage profile outside of D 4 by changing the announcernent to 
(a, ep, .). In that case it is a best response for all agents to choose (a, ep, n;) 
if ni is sufficiently high. Assurnptions (YI) and (Y2) guarantee that this 
happens with positive probability. 

In the second case sorne agent can rnove the rnessage pro file outside of 
D4 by changing the announcernent to (a, ep, . ). This happens if all but two 
agents are announcing (a, ep, . ). In that case it is a best response for one of 
the agents j who announce (a, ep, .) to change to (a', ep, nj ), for a' =1= a as 
long as nj is large enough. It is also a best response for the rest of the 
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agents to maintain their announcements about outcome and preference 
profile as long as they announce a high enough integer. Assumptions (YI) 
and (Y2) guarantee that this change by j to a' and the other agents not 
changing happens with positive probability. But once this has occurred no 
single agent can move the message pro file outside of D 4 by changing the 
announcement to (a, eP, .) so we are in the previous case. 

LEMMA 6. Let the true preference profile be eP and let m(t) E Sa for 
aEF(ePl and m:(t) =eP,for al! i. Then m(t') ESafor all t' > t. 

Prooj: If m(t) ESa' all message profiles are in DI and the outcome is a. 
The only replacements that can change something will lead to a profile in 
D 2 or D~. Since m;(t)=r/J for all i, assumptions (NI) and (N2) guarantee 
that these replacements do not mean an improvement for any agent, since 
a test agent announcing a test outcome for another profile eP' will obtain 
v¡ (a( eP, eP'), eP) < v ¡( a', eP) by (N2) and any other deviating announcement 
(a', eP') obtains v ¡( a; (a, eP l, eP) < v ¡( a, eP) by (N3). Since deviating messages 
produce strict 10sses, assumption (Y3) guarantees that they will not be 
sent. I 

Lemma S establishes part (a) of Proposition l. With the addition of 
Lemma 6 we have that from any message pro file there is a 10wer bound 
8> O on the probability of reaching UaEF(q,) Sa and staying there forever in 
a number of steps smaller than sorne fixed and finite k. So the probability 
ofnot reaching UaEF(q,) Sa in kn steps is bounded aboye by (l-8)kn. Since 
limn ~ 00 (1 - 8 )kn = O, part (b) follows. I 

Proof of Proposition 2. Let an arbitrary m(O) 1= SF(q,)' Then with 
positive probability the players will change their messages so that 
m¡-I(t-I) = ePi for all i and sorne t- I > O. That is, the minusoneth announ­
cement of all players wiJl be their true preferences. This happens because by 
Lemma I announcing the agent's own type truthfully in the minusoneth 
position is weakly dominant so assumptions Yl and Y2 guarantee this will 
happen with positive probability. Similarly Lemma 2 and assumption YI 
and Y2 guarantee that with positive probability there is a tO > t- I such that 
m¡-I(t0) = ePi' m°(t°) = eP¡+ 1 for all i and Lemma 3 and assumption Yl and 
Y2 guarantee that there is a time period, ti> tO such that m¡-I(t 1

) = ePi; 
m7(tl) = eP¡+ 1 and mJ(tl) = eP for all i. I 

ProofofProposition 3. Ifm(t)ESF(q,), then ifagent n changes m;;1 to 
sorne eP~ =1= ePn, her payoff does not change by the definition of the 
mechanism. Yl and Y 4 guarantee that this happens with positive probabil­
ity. Let (f be such that (fn = eP~ and (f¡ = ePi for all i =1= n. Through a series of 
claims we show that with positive probability the population message 
pro file goes to S F(;¡;) that is, F( (f) is implemented. 
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Claim 1. Tf m- 1 = 4J, m~ = <p¡+ 1 for all i El and m~ = <P for aU ¡El, then 

- l'n_l(g(m), T(m), <Pn-l) > O 

where mn- 1 =(ln-l' 4Jn, 4J) 

e -
= -11 + - I f( <P J + (1 - e) F( <P ) - ( - y + F( (p )) > O 

n iEI 

where the equality fo11ows from the definition of the mechanism and the 
inequality fo11ows from AML 

Claim L If m-1=(fo, m7=4Ji+l for aU iEl and m} E {4J,<P} (with at 
least 1I1~_1 =4J) and m: =<P for a11 iEI, then 

v¡(g(tn¡, m_¡), T(m¡, m_J, q)¡} - v¡{g(m), T(m), q).) > O 

where ¡ii¡ = (4J¡, 4Ji' 11) 
If m: = 4J only for i = n - 1, then for i =f- n - 1, 

e - (e - ) = - I f( q, ¡) + ( 1 - e) b - - (" + - I f( cf¡ i) + ( 1 - e) F( <P ) > O 
n ¡El n ¡El 

If m: = 4J for more than I but less than n - 2 individuals, then for i with 
m:=cf¡, 

e - (e _ ) 
= - I f( cf¡,) + ( 1 - e) h - - (" + - I f( cf¡ ¡) + (1 - e) b > O 

n iEI n iEI 

If m: = 4J for n - 2 individuals, then for i with m: = <P 

v¡(g(mi, nL¡), T(m i, m_¡), <Pi) - vi(g(m), T(m), (p.) 

=~ If(4J¡}+(I-e)F(4J)-(-(+~ If(4JJ+(l-e)h»O 
n iEI n ¡El 
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If m: = ¡¡; for n - 1 individuals, then for i with m: = ~ 

v/g(m¡, m_J, T(m¡, m_J, ~¡} - v¡(g(m), T(m), ~J 

=F(¡¡;)-(-~-'7+~ L f(¡¡;J+(l-e)F(~))>O 
n ¡El 
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where the equalities follow from the definition of the mechanism and the 
inequalities follow from AM 1. 

The claims show that S F«(¡j) is attained with positive probability because 
they show a series of changes in the messages, all of which are improving. 
Thus assumptions Y 1 and Y 4 guarantee that the sequence will take place 
with positive probability. 

We have shown that there is positive probability of a transition between 
SF(<!» and SF«(¡j) where ¡¡; differs from ~ only in ~~ =I=~w But if the m(t)E 
SF«(¡j) , it is costless for individual n-l to change m;;~l =~~-l =I=~n-l' By 
applying analogs of Claims 1 through 4 we can then show that with 
positive probability there is a time t' such that m(t') E SF(~)' where (¡j = 

(~l, ... , ~~-l, ~~). If we iterate this argument, the result follows. I 
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