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EXPLORING EQUILIBRIUM RELATIONSHIPS IN 
ECONOME~CSTHROUGHSTATICMODE~: 

SOME MONTE CARLO EVIDENCE* 

Anindya Banerjee, Juan J. Dolado, David F. Hendry, Gregor W. Smith 

INTRODUCTION 

This paper investigates the properties of estimators of claimed long-run 
relationships between integrated processes based on static models. The 
relationships involved are asserted to have the long-run or equilibrium 
property that deviations from them are bounded (in a statistical sense). 
This assertion is tested, and the associated coefficients are estimated, by 
fitting static regressions. Our concern is to assess the relevance for 
econometric practice of recent asymptotic theory in this area. 

This task is a topical one. Hypothesized long-run relationships such 
as the quantity theory and the Fisher effect are familiar in macro-
economics. Lucas (1980), Whiteman (1984), Summers (1983, 1984), 
McCallum ( 1984) and others have debated the usefulness of estimating 
these relationships using static models. The theory of cointegration 
developed by Granger and Engle ( 1985) shows how tests for the 
existence of equilibrium relationships can be constructed using these 
models. Our interest is primarily in their suggestion that static ordinary 
least squares regressions in some cases also may be used to parameterize 
such relationships. Thus we mainly consider a simple data generation 
process (we shall use the abbreviation DGP), discussed by Granger and 
Engle, in which the null hypothesis is that two time series are cointe-
grated. Using Monte Carlo simulation and asymptotic approximations 
we find that the biases in static estimates of the equilibria built into 
such DGPs may be large and may decline slowly as the sample size 
increases. As a by-product of the Monte Carlo experiments we examine 
the perfonnanceof several tests for cointegration. We use the asymptotic 
distributional theory developed by Anderson ( l9S9), Evans and Savin 
( 1981, 1984), White ( 1959) and Phillips ( l985a) to simplify the task of 
interpreting the results. In addition, one of PhiUips•s fmdings is that the 
limiting distributions of various statistics used in regression analysis are 
analytically non-normal when there is a unit root, a result which was 
known through Monte Carlo experiments (see White ( 1958), Dickey 
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and Fuller (1979) and' Evans and Savin). This fmding also helps reinter-
pret some studies of the consumption function. 

The paper is organized as follows. In Section I we begin by setting 
out the theory to which these findings relate, regarding cointegration 
theory as a link between the methods of econometricians and of time-
series analysts. ln Section U the simpJe DGP proposed by Granger and 
Engle is examined. Simulation evidence of the bias in static estimates 
of the cointegrating vector is summarized in a response surface. Section 
Ill offers similar evidence for data generated by an error correction 
mechanism (denoted ECM). Here we also study various tests for cointe-
gration. Section IV briefly discusses the applicability of the approach to 
tests of the random-walk model of aggregate consumption. In general 
we ftnd that drawing inference about parameters from static models 
may be hazardous, a result which we elaborate in a brief concluding 
section. The appendix considers some asymptotic distribution theory in 
the presence of unit roots which helps to interpret the Monte Carlo 
results. 

I. SPURIOUS REGRESSION, DYNAMIC ECONOMETRICS, 
AND COINTEGRATION THEORY 

It is a well-known empirical fact that many macroeconomic time series 
are typically non-stationary, as indicated by the high serial correlation 
between successive observations particularly when the sampling interval 
is small. Observing that changes in the series are small compared to the 
levels confirms this fact. At the same time, though, casual observation 
tells us that some of these variables tend to trend together. Most of the 
traditional statistical tests that are used in inference have been developed 
for stationary, ergodic stochastic processes and the absence of a formal 
statistical procedure for testing whether the existence of similar trends 
implies a bounded linear relationship in the levels of several series has 
induced two different approaches to modelling economic time series. 

On the one hand some econometricians have traditionally disregarded 
this issue and run static models in levels. This practice has been criti-
cised by time-series analysts as being inconsistent with most data and 
giving rise to spurious inferences (see Yule (1926), Granger and New-
bold (1974), Granger (1981)). The simple idea behind this criticism is 
that if no bounded combination of the levels exists then the error term 
in the regression must be non--stationary under the null hypothesis 
so that known distributional results do not apply. Given that Yule 
had proved that the R 2 of the regression in unrelated, non--stationary 
series tends to unity nothing could be learned by examining that statis-
tic in this environment. Granger and Newbold pointed out that the 
interest should therefore centre on the Durbin-Watson statistic which 
would tend to zero since the residuals also would be non--stationary. They 
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suggestea tne rule J(".? aw to aetme ana <llscrumnate agamst spunous 
regressions. The poSsibility of introducing dynamics through auto-
matic residual serial correlation procedures turned out to provide no 
escape; the usual /-ratios still reject the null too often, thus again 
suggesting that non-normal distribution theory might be relevant to 
series containing a unit root. 

On the other hand, in the light of the likely spurious inferences dis-
cussed above, time-series analysts trained in the Box-Jenldns approach 
advocated differencing and prewhitening the series prior to estimating 
muJtivariate models. By being extremely faithful to the properties of 
data their models could be used to describe only relationships between 
changes in variables. This approach disregards the potentially important, 
long-run relationships among the levels of the series to which the 
hypotheses of economic theory are usually taken to apply. 

ECM models provide a way of combining the advantages of these two 
approaches. In this type of model the dynamics both of short-run 
(changes) and long-run (levels) adjustment processes are modelled 
simultaneously. In particular, the idea of incorporating the dynamic 
adjustment to steady-state targets in the form of error correction (i.e. 
a parsimonious parameterisation of the bounded, linear combination of 
the levels of the variables) suggested by Sargan (1964) and developed 
by Dav.idson et al. ( 1978) seems to have introduced a useful approach 
to modelling dynamics, with successful empirical applications. One 
complication in this approach must be noted. Take a simple, canonical 
ECM model containing an error correction term along with the regres-
sand and remaining regressors in stationary changes. If no bounded, 
linear combination exists among the levels one would expect the 
coefficient of the error correction term to converge rapidly to zero. 
However, under this null hypothesis the ordinary /-ratio for that 
coefficient is no longer valid, as Theorem 4 in the appendix shows. As 
shown below, at the 5 per cent level, the power of the usual t-ratio is 
satisfactory in Monte Carlo experiments but this finding seems to be 
peculiar to that critical value, the only one for which the asymptotic 
normal distribution and the true distribution give similar results. For 
any other significance level inference based on the usual t-ratio would 
have been wrong. Therefore, it is essential either to correctly calibrate 
the !-test on the ECM, or to check for the existence of a bounded 
relationship before estimating the dynamics in an ECM model. 

Granger (1983) in the theory of cointegration established a unified 
framework for the analysis of ECMs and of time series in which the 
variables stochastically trend together. Granger and Weiss ( 1983) and 
Granger and Engle (1985) developed the theory further. We summarize 
it below. 

Consider a vector time series {x,} t = 1, ... , T of observations on 
economic variables. An element z, =X;, often can be descrjbed by an 



ARIMA model of the fonn: 
a.(L)A/'z,:::; r + {3(L)E, (l) 

where { e,} is (empirically) wltite noise with a fihite {though rarely 
homoskedastic) variance a11 , Ai = (1- Il), L n z, = Zt-no T is the constant 
'drift', k;,.O and a(L), (3(L) are finite-order polynomials in L with 
roots outside the unit circle and no roots in common. Granger has 
called such a variable integrated of order k, denoted by /(k), so that 
differencing k times is required to produce a series with finite variance. 
Generally, k is zero, one or two. If a sample from a time series has a 
reasonably large value of T (e.g. 80 or more) and k ~ l, then the 
observed variance of {z,} will be extremely large relative to the variance 
of A"z,, which (as mentioned above) is a well-known phenomenon in 
economics: for example, Working (1934) argued for the random walk 
process being a useful benchmark for empirical economic time series 
comparisons. 

Consider now two series {xlt}, {xlt} which are respectively /(k;) and 
/(k1). If k; =/:= k1 ~ 1 then no linear combination of xu and xu can have 
finite variance since (xi, ± Xxu) is at least /( I/<;· - k11). Thus, VA., xu and 
Xtt differ by a 'disturbance' with unbounded variability so that no 
relationship can be said to exist between them. Of course, if k; = 2, 
k1 = 1 (say), then A 1x1, and xu may be related, but XJt and x1, cannot 
be. Granger defines1 two series to be cointegnited if they are both 
/ (d), d ~ l and there exists a linear combination of the series which 
is /(0). If such a linear combination exists, in the bivariate case it must 
be unique (up to a scale factor) since adding or subtracting any 
proportion of either xlt or xlt to the error will make it l(d). Conversely , 
the existence of cointegrating vectors (i.e. vectors of real numbers 
linking cointegrated series) must be rare since the same relationship 
is required between x;, and xu for prolonged periods. 

In fact, interesting parallels exist between the concept of cointegrating 
vectors and (static) equilibrium relationships. If it is asserted in an 
economic theory that x1 = A.xu then ( l :-X) should be a cointegrating 
vector. For stationary series this is not a very dramatic insight but if, 
historically, {Xt,} and {xtt} are both /(d), d ~ l then the theory is 
meaningful only if {x;, - Xxu} has bounded variability . This is a 
powerful restriction and has testable implications as shown by Granger 
and Engle ( 1985) and discussed below. 

An important implication of the above is that A xn is asymptotically 
negligible relative to x1, when x1, is /(d), d ~ I. Thus, say a complex 
dynamic relationship links the /( 1) series { x1,} and {x1,} (s ~ t) but 
these are cointegrated. Granger and Engle provide in a general theorem 
the various representations of cointegrated processes. Consider the 

' Actually,ltis def"Jnition is more general, but the special case lllff"aces for our exposition. 
4 



simple static regression of x1r on xlf (or vice versa) with no drift factors 
(r = 0 in (1)): 

(2) 
Now v, contains all the omitted dynamics, but these can be repara-
meterized purely in terms of Ax1r-i• Axtt-m, and (Xtr-r- A.xu_,) 
which are all /(0) if cointegrability holds. Thus 'A is consistently esti-
mated by the regression in (2) despite the complete omission of the 
dynamics. In fact: 

~ = (~x1,2)- 1 ~x;,xlt 

='A+ (~x1/ )-1 (~xltv,) (3) 

Since {v, } is /(0) under cointegrability but {xlt} is J(l), if (2) holds 
(with r1 = 0) 

whereas 
1 T ~xlrvr is Op (1) (4) 

Thus X- A.= Op(T-1) and hence X converges to X at a rate of Op(T-1) 
and not at the usual rate of Op(T- 112). T11us, convergence is very rapl~ , 
although the conventional least squares formula for estimating var ('A) 
is invalid due to the autocorrelation in {v,}. The logic generalizes, with 
more complicated algebra (and even faster convergence), for r; * 0, and 
a constant in (2) . Stock (1984) gives this super-consistency result and 
shows that the bias in X will be of order OP (r- 1). Phillips and Durlauf 
( 1985) provide similar results in a more general framework. 

We condude that if variables are l(d) , d;;;. I and are cointegrated it 
should be rather easy to establish the value of A and hence to numeri-
cally parameterize equilibrium economic theories. Indeed, the derived 
long-run solutions from dynamic models for !( 1) variates should essen-
tially coincide with the estimates obtained from the initial static 
regressions; this provides a check on the validity of the dynamic 
modelling. Of course, if (xit _,-X.xu_,) is used as the error correction 
term then no cross check: is possible, but modelling might be easier. 

One caveat must be noted. The equilibrium may relate /(1) and /(0) 
variables if a cointegrating vector exists for a subset of the observables: 
e.g. if x,., is f(O) but via o_xm, (say) int1uences (xit- Xxu) (which is also 
1(0)) then li cannot be consistently estimated from the prior static 
regression - all of the conventional econometric problems reappear 
for 1(0) variables. However this is not the case, for example, when the 
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equilibrium inter-relates 1(2) variables which cointegrate to /( 1) with 
other J( I) variables. 

To test an equilibrium assertion, Granger and Engle propose testing 
the null that { v,} has a unit root against the alternative that it has a 
root less than unity. Recent results by Fuller ( 1976), Dickey and Fuller 
(1979, 1981 ), Evans and Savin (198 1, I 984), Sargan and Bhargava 
(1983), and Bhargava (1983) can be used. The first five papers consider 
the t-ratio of a levels term in a regression in which the remaining 
variables are in changes. The last two papers consider using the Durbin-
Watson statistic, having derived its distribution on the null of a unit 
root, and provide tables for critical values. Strictly these are relevant 
to A known (or xlt non-stochastic) and various technicalities remain to 
be resolved. ln the simulations which follow we use the lower bounds 
for the Durbin-Watson statistic provided by Sargan and Bhargava, con-
firming that nominal and actual sizes coincide by means of preliminary 
simulations. Our preference for this statistic (as opposed to the t-test) 
stems from the invariance of its distribution to nuisance parameters 
such as a constant. 

The idea of cointegration tends to make the ECM model generic in 
the sense that the validity of a static equilibrium implies the validity of 
this dynamic representation. In theory the error correction term can be 
parameterized through a simple, auxiliary, static regression. The extent 
to which the bias in this frrst stage may be important and whether it 
can be summarized by the other main statistic of the static model -
the long-neglected R 2 - are discussed below. 

U. THE GRANGER.f:NGLE DATA GENERATION PROCESS 

A first set of experiments involves the data generation process used by 
Granger and Engle (1985).2 This DGP is 

x, + Yt = v, v,( 1 - p1 L) = Eu 
y, + 2x, = u, Ur0 - PzL) = E2r 

(5) 

(6) 

where elt and Ezr are independent, pseudo-normal variates. The reduced 
form consists of the following two equations: 

2£u Eu 
y,= -

1-p1L 1 -p2L 
{7) 

' All limulatioas were conducted using NAIVE whk:h is part of the A UTOREG h'btary. The 
stochaatic proceaes begin at zoro and no obaervationa ue d~ed. 
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E'lr Eu x= -
' 1 - p,_L J - PtL 

(8) 

Our interest is in the ordinary least squares (OLS) regression of y, on 
x,. From (7) and (8) the OLS-estimate ~ of~. the potentially cointe-
grating coefficient, in this static model has plim as follows: 

plim(>..) =- 1- -----:-------:-
1 + al(I- P1)2 

qll(l - Pz)2 

(9) 

Consider three cases of the DGP given by (5) and (6} above. In Case A, 
IPI I < 1, IP2 1 < I so that both x and y are /(0) variables. In Case B, 
PI = 1, Pz = 1 so that both variables are /(1 ) and are not cointegrated. 
In Case C, PI = I, IP:zl < I so that the variables are still/(1) but are now 
cointegrated. In this last case, the parameters of the model are identi-
fied and the cointegrating coefficient has plim(X) =A =- 2. 3 

For Case B, we conducted experiments with N = 200 and T = 99, 
varying a1/a2 , the noise-signal ratio widely. The null hypothesis that 
there is a unit root in the residuals of the static model holds. Using the 
Sargan-Bhargava critical values variation of the noise-signal ratio had 
no effect on the size of the test, which in all cases fell within the 
relevant binomial confidence interval. 

For Case C, the null hypothesis of a unit root in the error dynamics 
in (6) is false; the two series are cointegrated. Here we are interested in 
exploring the usefulness of the estimate of the cointegrating parameter. 
In this case we simulated with 200 replications in the parameter space 
sxTxp2 where s: o1/u2 = (16 8 4 2 1 ~), T = (33 66 99 ISO 199), 
and P2 = (0.6 0.8 0.9) giving rise to 90 experiments. The range of the 
noise--signal ratio is very large here; obviously it will be difficult to dis-
tinguish between Ou 2 and av 2 if a 1 and T are small .and Oz and P?. are 
large; for large values of s OLS essentially picks up equation (5) instead 
of (6). 

This problem accounts for our interest in the DGP used by Granger 
and Engle. Asymptotic theory holds that the static model can be used 
to parameterize the long-run relationship and that the bias in the 
estimate of A from this model should be Op (T-1 ). How relevant is this 
result to practice? In the present DGP if T is small and ~ and s are 
large, then the two equations will be difficult to distinguish. Thus 
there is a fmite-sample problem which is illustrated in the Monte Carlo 
study. For example if T = 33, s = 2, and P:z = 0.9 the average bias is 
0.589. If we double the sample size to 66 the bias is 0.468; clearly it 
does not decline at the theoretical rate. This outcome seems at odds 

>In {9) u p 1 -+ 1, plirn(i,) =- 2 and as p 1 - 1, plirn(i) =- 1. 
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with the theory. To resolve this puzzle we undertake analysis (in the 
appendix) and Monte Carlo study across a wide range of parameter 
values. 

We calculate the bias in the estimate of A from the static regression 
along with its estimated standard error. Also, we continue to apply 
the Sargan-Bhargava test to reject the nun of non<ointegration (which 
is indeed false in Case C). The test is biased at high values of the noise-
signal ratio. Except at such values the power is non-increasing in p,. as 
one would expect. Figure l presents some of the same experimental 
results, projected in two dimensions. The sample size for the least 
squares estimation is on the horizontal axis, the bias is on the vertical 
axis, and the curves are drawn for noise-signal ratios declining down the 
page from 2.0-0.5. For each ratio and sample size the bias is given by 
the solid curve for p,z = 0.9, by the dashed curve for Pz = 0.8, and by 
the dotted curve for p2 = 0.6. The wide, solid line is 10/T which is 
included for comparison with the asymptotic-theoretical rate of decline. 
The diagram shows that the bias is higher the higher Pz. The significance 
of this characteristic can be tested by means of response surfaces, which 
we discuss below. 

First, we note the slow rate at which the bias vanishes in Figure l. 
This suggests limited value for the static model as a source of pre-tests 
since often when cointegration obtains we do not find it and often 
when we find it our estimate of A. is very inaccurate . The apparent 
conflict between the simulation results in the figure and Stock's asymp-
totic result leads us to examine the asymptotic theory of the least-
squares regression estimator where the regression relates random 
walks. In Theorem I of the appendix we find the limiting distribution 
of the bias and of (I - R 2 ) and use this theory to construct a response 
surface. 4 In approximating the conditional expectation E (X - X Is, T, p2 ) 
our main interest lies in exploring the rate at which this bias vanishes.5 

We stress that although this data generation process may not be very 
interesting economically it is a simple one in which to test the rate at 
which the bias declines; moreover the properties of tests can be com-
pared with those found by Granger and Engle. 

The experimental results in Figure 1 can be summarized in a response 
surface (see Hendry (1984)) which approximates the conditional 
expectation of the bias in a simple expression. Our response surface also 
survives a number of misspecification tests; hence we have some warrant 
in using it for inference. For example, we can reproduce the asymptotic 
result that there is no constant term in the response surface so that the 
bias is Op(T-l). We can also make inexpensive predictions of experi-
mental outcomes elsewhere in the parameter space. 

• We aiJo calculate a NagaNype expansioo for the estimator. This gives rise to the same 
rnt term in the response surface 8$ the analysis in the appendix. 

• See Rotbenbera (1984) on the interpretation of moments of approxbutions. 

8 



0.589 
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0.421 ' , 
0.379 '~ 
0.337 ',,_ . "- , 
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----·----~----- -~ 

Fig. 1. Plot of bias versus T 

The response surface estimated with the data ;is as follows: 

HE>.- 1.) = 3.99·Hl - R 2 ) + 3.04 ·s2.Hl - 1'22 ) ·(I- R 2 ) 2 

(0.062) (0 .6) (1 0) 

SE = 0.926 n = 90 R 2 = 0.98 dw = 2.00 
z1(2,86) = 0.283 z2 (9 , 79) = 0.299 z3 (3) = 12.2 z4(2) = 1.6 

Heteroskedasticity-consistent standard errors are given in parentheses. 
The functional form is suggested by the analysis of the appendix. The 
bias and regressors have been standardized by the Monte Carlo-esti-
mated standard deviation of ~. denoted t .as a heteroskedasticity 
transform. Consequently the equation standard error should be approxi-
mately unity if the response surface captures the salient features of the 
underlying conditional expectation. 

The stability of ( I 0) can be examined by splitting the sample into 
halves with P2 = 0.6 in one half, P2 = 0.9 in the other, and the data 
generated with P2 = 0.8 divided between the two. An ANOV A test 
gives z1 where z1 "' F (2,86) under the null A Chow test using 
randomly selected nine observations gives z2 .• In addition, White's 
(1980) heteroskedasticity test gives z3 while the Jarque-Bera test for 
non-normality in residuals gives z4 • The test z3 suggests that the hetero-
skedasticity transform has not been completely successful. 

The response surface in (10) represents the experimental results 
fairly weU. lt also is important to emphasize its consistency with the 
asymptotic theory of the appendix. The first term follows from the 
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application of Theorem 2 in (A4) in the Appendix with (I - R~) being 
an indicator of the extent of the bias. According to (A4) its coefficient 
has an expected value of four given the values assigned to the parameters 
in the DGP. The second term, which is O(r-2}, follows from the form 
of the variance of the corresponding O(T- 1) term in (A4). Both terms 
contribute to the explanation of large biases whereas the second is 
important in explaining why the bias does not decline at O(T-1): note 
that (1 - R 2 ) (which is of O(T- J)) plays a pivotal role in determining 
the magnitude of the biases in this DGP. Tills can be seen most easily 
from the summary ( *) below of ( 1 0). 

(*) (EX-A)=4 ·(1 -R 2 ){1 +0.75·(1 -pl)(t-R 2)} 

As a final exercise with the Granger-Engle DGP we set eu = p3e1,_1 + ~ 
where e,- IN(O, al) and then let p3 -+ 1. This allows us to examine the 
test for cointegration and the static estimates of relationships between 
1(2) variables. Some results are given in the table below. 

This table can be compared with Figure l . Estimates of A from the 
static model are obviously vastly more reliable for /(2) than for /( l) 
variables, but the test for a unit root still lacks power and again the rate 
of convergence to zero of the bias is less than the theoretical rate. 

Thus we can conclude this section with a general warning that the 
biases in estimates of equilibrium relationships found from static· 
models may be large and may decline slowly. However, since (I - R 2 ) 

provides a rough index of the bias in this simple DGP it clearly offers 
guidance as to the potential unreliability of estimates from static 
models. Nevertheless, we stress that in multivariate models a high R 2 

does not imply that each element in the cointegrating vector is estimated 
with negligible bias (see the applications by Hall and Jenkinson else-
where in this issue). Finally, the power of the DW test to reject the 
null of non·cointegration against alternatives close to the unit circle 
is low. Consequently, we should not be over hasty in discarding claims 

Bias 

0.00109 
0.00002 
0.00002 
0.00053 
0.00004 

TABLE 1 
O:>integration Tests with 1{2) data 

Pl = 0.9 s = 1 P3 = 0 .99 

ESE T 

0.00147 33 
0.00074 66 
0.00074 99 
0.00026 150 
0.00023 199 

Rejection 
frequency 

0.11 
0.19 
0.43 
0.37 
0.39 
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to long-run relationships on this basis alone. Indeed, we must consider 
the alternative route to modelling the long-run relationship using 
error correction models and we devote the next section to this aim. 

Ul . AN ERROR CO.RREcnON MECHANISM 

We next examine a more general DGP. We contrast inferences drawn 
in the strategy of estimating static models with those based on dynamic 
modelling. Thus a second set of experiments was conducted with the 
following data generation process: 

_ax, = €1t 

fly,= o:1 flx,- a 2 ( Y - x),_ 1 + e:u 

(1 1) 

(12) 

Again the errors are mutually and serially uncorrelated pseudo-normal 
variates. Here fly and llx are always /(0) and they are cointegrated if 
al =I= 0. 

Simulations were conducted with 200 replications at sample sizes 
of 66, 1 SO , and 199. ln alJ cases x, is /(1) and for a 2 non-zero the endo-
genous series x, and Yr are cointegrated. In the simulations T, a 1 , a 2 , 
and s = o1/a2 were varied as shown in the 72 experiments listed in the 
tables below. Note that the values adopted for a 1 and a 2 give two 
strongly differing tag distributions in the response of y to x. With 
o:1 = 0.5 and ~ = 0.1 the mean lag is five periods and the median lag is 
zero while in the opposite case the values are 1.8 and 0.9 respectively. 

For each DGP we estimated the following models: 

(A) Yr == a·x, + Vu 
(B) ~Yt = b·t:.x,- c· (y- x),_1 + d·x,_1 +Vu 

(C) fly,= e· ~x, - f• (y-X)r-1 + Var 

In comparing the three models we are particularly interested in 
inferences about cointegration based on the DW statistic in model A 
and on the t-testsof the error correction coefficients c and {respectively 
in models B and C. We also are interested in the biases in estimates of 
the cointegrating vector. In B the test H: c = 0 is a test for cointegra-
tion despite the presence of the unrestricted tenn x,_1 . The modeller 
knows that both {x} and {y} are /(l) series; hence model B makes no 
sense with c = 0 and d-:# 0. Table 3 shows the powers of the three 
tests. Table 2 shows the biases in the static model and the unrestricted 
ECM model under the null of no cointegration (a2 = 0) and under the 
alternative. Model C is excluded from the comparison since it is correctly 
specified under the null. We are particularly interested in the fiTSt 
case given the .results of Section 2. 
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TABLE2 
Test Rejection Frequencies in ECMs 

s 3/1 1/3 

T 66 150 199 66 150 199 

(a) a:,= 0 Q:l = 0.1 
A 0.050 0.050 0.050 0.050 0.050 0.050 
B 0.155 0.195 0.215 0.180 0.195 0.135 
c 0.055 0.060 0.055 0.050 0.070 0.055 

(b) Q:~ = 0 Q:l = 0.5 
A 0.050 0.050 0.050 o.oso 0.050 0.050 
B 0 .205 0.180 0.195 0.160 0.175 0.135 
c 0.050 0.065 0 .045 0.060 0.035 0.060 

(c) Q'2 = 0.1 a:,= 0.5 
A 0.110 0.405 0.435 0.165 0.535 0.575 
B 0.820 0.980 1.000 0.560 0.825 1.000 
c 0.925 1.000 1.000 0.455 0.960 0.995 

(d) a2 = 0.5 a 1 = 0.1 
A 1.000 1.000 1.000 1.000 1.000 1.000 
B 1.000 1.000 1.000 1.000 1.000 1.000 
c 1.000 1.000 1.000 1.000 1.000 1.000 

Note: (a) and (lb) refer to the sizes of the tests. The size of the DW test has been set to 0.05 by 
interpolation of the relevant Sargan- Bhargava critical values. (c) and (d) refer to the powers 
of the tests. 

TABLE3 
Biases in the Long-Run Coefficient 

s J/1 1/J 

T 66 150 199 66 ].5(! 199 

(a.) Q.l = 0 "'• =0.1 
A 0.0800 0.0850 0.0930 -0.1399 0.0590 0.0299 
B 0.1305 0.1013 0.1024 -0.1585 0.0841 0.0650 

(b) a.,= 0 o: , = o.s 
A 0.4956 0.4897 0.4913 0.2562 0.4713 0.4775 
B 0.4384 0.5089 0.5005 0.3022 0 .5603 0.6918 

(C) a,= 0. 1 a, =0.5 
A -0.0953 -0.0490 -0.0352 -O.U07 -0.0409 -0.0301 
8 -0.0002 -o.0003 ~.0002 ~-0124 -o.0050 ---0.0040 

(d) o:, = 0.5 o:, =0.1 
A -0.1842 -0.1001 ~.0821 -{).1848 -0.1060 ~.1164 
B -0.0346 -0.0076 -0.006.5 -{).0222 -0.0271 -0.0304 

Note: The biases were computed as (i - >.) ill model A aud (1 + d/c - A) in model B where 
X = 0 for case (a) aDd (b) and unJty for cues (c) and (d). 
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The implications of these experiments can be summarized as follows.6 

First, when the two series are cointegrated the biases in the estimates 
of the cointegrating parameter are larger in the static than in the 
dynamic model. Again, the bias in the static model never vanishes as 
rapidly as r-1• However, the usual practice in dynamic modelling of 
adding and testing the presence of an extra term in levels using a con-
ventional t-test as in Case B, is invali<l if the series are cointegrated with 
the true cointegrating parameter contained in the error correction term. 
Obviously, under the null hypothesis of cointegration, every term in 
Case B is 1(0) except the level term, hence the ordinary t-ratio does not 
apply. We shall have the case of a variable whose coefficient tends to 
zero at O(T-1) but Us a t-test with a non-degenerate distribution 
different from the ordinary one. The t-tests in the dynamic models are 
more powerful than the Durbin-Watson test in the static models; this is 
especiaUy so when the mean lag is large, otherwise it is difficult to get 
any power comparison as the shorter mean Jag case shows. 

Second, when the two series are not cointegrated the t-test in the 
unrestricted model has a larger size than the 5 per cent level used to 
set the critical values of the test. However, it is remarkable to see that 
in the restricted model the (-test luls about the correct siz.e at the 5 per 
cent level, although the results in E. vans and Savin (1981) suggest this 
is not true of other levels. Hence, when testing for differencing as a 
restriction, as opposed to a filter, it seems appropriate to test the 
significance of error correction terms at a 5 per cent level. Overall, 
the Durbin-Watson test in the static model usually rejects less often 
than in both dynamic models, hence the unrestricted version of the 
dynamic model may sometimes misleadingly suggest that cointegration 
holds.7 Note also that under the null of no cointegration the biases are 
large and quite similar in magnitude to the value of a 1 emphasizing the 
fact that we might need larger critical values than the ordinarY ones to 
test the null hypothesis H0 : c = d = 0 in Model B. 

Finally , we note that the use of the leading term in the response sur-
face for the static regression, which may be derived from the results in 
Theorem 2 in the appendix, again gives a quite accurate summary of the 
simulation results. This is true even when only three sample sizes are 
used for each experiment. For example, taking the case a 1 = 0.1; ~ = 
0.5; s = ! , the coefficient of (1 - R:z) according to the formula is -o.07 
while that obtained from averaging across the three sample sizes is 
-o.158. Similarly in the case a 1 = 0.5, a 2 = 0.1, s = 3.0, the values are 
1.32 and 1.63 respectively. 

• We draw tbese iDfereaces after cakulatins lbillomial confidence intervals for tbe rejection 
frequencies. 

' Molhw 0 986) f'mdt that the power of the DW teat can be very low Uftler the null of no 
cointegBtion when the ICries are sencnled by o.tA(I,l) proceues. 
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IV. TESTS OF THE LC/Pl HYPOTitESIS IN THE PRESENCE OF RANDOM WALKS 

We devote this section to pointing out briefly some implications of the 
existence of integrated processes for testing Hall's ( 1978) hypothesis 
about the life-cycle/permanent-income theory of consumption. He 
demonstrated that if consumers are assumed to measure permanent 
income using rational expectations of future income rather than a dis-
tributed lag of past income, then a consequence of life-cycle theory 
(under various well-known assumptions) is that consumption will 
follow a random walk. The standard test of the model is to regress the 
first difference of consumption on lagged information (e.g. Jagged 
income) and test the null hypothesis of a zero coefficient for that 
variable. However, Mankiw and Shapiro (1985a,b) in two recent papers 
have argued that if income follows a random walk, as it seems to in the 
US, then the standard testing procedure is invalid since it is greatly 
biased towards rejecting 'too ofte.n' the null hypothesis. They also offer 
Monte Carlo evidence to substantiate their claims. 

In order to understand the DGP that will be analysed below, it is 
helpful to explain a rather simple version of the LC/PI theory of con-
sumption by means of the following example. 

Consider the simple consumption function, 

c; =( I - l))i;; 0 < 1) ~ l (13) 

where c:' is consumption, and if is permanent income. Permanent 
income is measured using forward-rational expectations as, 

y,P =I ok ·E Yt+k = (1- 6r1Yr 
0 

if Ai, = e,. Assume also that Ac, = Ac:' + u,. 
Then, lagging ( 13 ), and subtracting, we obtain 

c, = c,_1 + (e, + u,) (14) 

and hence consumption itself follows a random walk whose disturbance 
is correlated with that of the income process (in fact if u, = 0, the 
correlation is one). 

With two slight modifications, i.e. Ck'1 = 0 and corr(eue21) = p :# 0, 
the bivariate process generating consumption and income corresponds 
to that analysed in Theorems 3 and 4 in the appendix where now, 
following the notation there, the following regression is performed . 

.Ay, = 'YXr- 1 + 11t (15) 

For this regression, after transforming the system, ea,= po2o1-
1e1, + 

11, where a., 1 = a2
2( I - p2), we can show that 
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and 

1 f W(t)1 dt 
0 

Thus we simply confirm that the t-statistic does not have the usual 
distribution and , therefore, inference based on the usual tables is 
invalid . Also, R 2 ~ 0 and DW .... 2. Note that even if p equals one and 
the normal-distribution term disappears, the t-ratio follows a non-
degenerate distribution which differs from the usual standardized 
normal (which approximates the !-distribution in large samples). 
Another feature of interest is the dependence of the obtained distri-
bution on p and its independence of the variances of the error terms, 
both results in agreement with the Monte Carlo results reported by 
Mankiw and Shapiro who compute the corresponding critical values. 
The intuition behind all this is very similar to that discussed in Theorem 
4 in the appendix. Even if there is correlation between the disturbances 
of the random walk, the null hypothesis of no cointegration stands and 
hence the estimate of 'Y tends to zero quite rapidly to make equation 
(15) consistent. 

Even if income and consumption were cointegrated as in the DGP 
examined in Section 3, the coefficient and the t-ratio in a regression 
like (15) would have the same order of magnitude as before, although 
with a different non-degenerate distribution, emphasizing again that 
only under the null can the error term in ( 15) be treated as stationary. 
In fact by taking £,_1 in the second equation of that DGP, and sub-
stituting from the first equation, we can get an expression similar 
to (14). This points out the close or exact observational equivalence 
of consumption models generated by both types of DGPs when only 
income conveys relevant information about the future, a point already 
acknowledged by Hall (1981) in his comment on Davidson and Hendry 
(1981) who propose the DGP in Theorem 2 as realistic. 

However there is an issue which merits further research. Until now 
we have been dealing solely with the case of driftless correlated ran-
dom walks and no constant or trend in (15). Some ongoing research 
(see Banerjee et al. (1986)) shows that in this case the t-ratio is centred 
around a value less than one, so that by using the standard critical 
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values one may be under-rejecting instead of over-rejecting as claimed 
by Manltiw and Shapiro. Since the whole issue depends on the use of 
raw or detrcnded data and the presence of constant terms, it may be 
corijectured that their results apply only to certain cases and are there-
fore not robust to the presence of nuisance parameters in the testilli 
regression. 

V. CONCLUSIONS 

Monte Carlo methods could be used to study a number of further 
issues in the exploration of equilibrium relationships through static 
models. Data generation processes with drift and trend and with 
multiple (in the multivariate case) or time-varying cointegrating vectors 
would be of interest. In this paper we have begun to assess what can be 
learned from static models about bivariate relationships. We have found 
that tests for a unit root in the residuals often lead to the erroneous 
conclusion that the regression is spurious. Even where a relationship is 
found to exist the estimated cointegrating coefficient may have sub-
stantial bias. A high Rz in the static model can serve as an index of the 
value of the estimate, but estimates from dynamic models are more 
valuable still. 

We conclude that care should be exercised in trying to parameterize 
long-run relationships using static regressions. This warning has some 
force precisely because we have examined the bivariate case, the case in 
which inference should be easiest. In the multivariate case a high Rz in 
the static model does not imply that the estimated coefficient on each 
variable is close to its true value.8 For example, R 2 may be high in the 
r~egression of money on prices, real income, and an interest rate but low 
in a regression of velocity on the interest rate; it is not invariant to 
transformations of the model. 

Nuffield College, Oxford 
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APPENDIX 

Some Asymptotic Theory Results for Non-Stationary Processes 
In order to sharpen understanding of some of the Monte Carlo results 
derived in Sections 2 and 3 of this study, we will use some results 
recently provided by Phillips ( 1985a, 1985b, 1985c). These results deal 
with the proper asymptotic theory for the least-squares regression 
estimator and its associated statistics in the case where regression 
relates independent or correlated random walks. As is well known, the 
limiting distribution theory that is usually applied in econometric~ 
for stationary time series is no longer valid for non-stationary cases. The 
distribution theory for the latter belongs to a general class of functional 
limit theory on metric spaces rather than the central limit theorems in 
Euclidean spaces conventionally used in econometrics. In order to 
duplicate the properties of the DGPs used in the Monte Carlo studies, 
we will develop all the theoretical results for the special case in which 
the innovations are n.i.d. (0, o2) . Nevertheless, these results hold with 
much weaker conditions on th·e innovation processes.9 The proofs of 
the theorems below are available from the authors. 

Let us suppose that { x,} is a stochastic process generated by a ran-
dom walk , 

x1 = x,_1 + e, (AI) 
where e,- n.i.d. (O,o2 ). From (AI) we have the alternative representa· 
tion for x, in tenns of the partial sums S, = ~:= 1 €; of the innovation 
sequence { e,} and the initial condition x0 : 

x, = S, + x0 (AI') 

We may define .SO = 0 and set the initial condition to a constant with 
probability one . The distributional results of this section will use the 
following standardized sums. 

Xr(t) = (T- 1'2·o- l)•Stnl = (rl'2·o-l)·St- J; 

(j- 1)/T <:. t < i/T, (j = I ... T) (A2) 
Xr(l) = (r1'2.o-1)·Sr (A2') 

where [b I denotes the integer part of b. X:r(t) is a random element in 
the function space D[O, I I i.e. in the space of all real-valued functions 
on [0, 1) which are right-continuous at each point of [0, 1 I and have 

• They aDow for a wider class of weakly dependent he~y distributed proceaea 
(see e.g. Jemmae 2.1 and 2.2 in Phillipa (198Sa). These results cover a large class of a and p 
mixing pl'Occae$ as dofmod in White (1984 ), in particular applying to many stationary finite 
order ARMA procesaes with moderate degrees of het0l01bdasticity, exteodift« tbe notion of 
1(1) pro~ in the Graqer-Engle' telll!e to a wider c:lua, i.e. that class of proce~MS that after 
Out 4ifferencing becomes 'evolutionary' in the-mentioned before. 
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fmite left limits. Under the conditions mentioned above, X:r(t) can be 
shown to converge weakly to a limit process known as the Wiener 
process which is denoted by W(t). Symbolically, 

X:r(t) -+- W(t) as T-+- oo (A3) 

where W(t) lies in C[O.l], the space of real-valued, continuous func-
tions on (0, 1]. W(t) is N(O, t) for fixed t and has independent incre-
ments. Moreover, an extension of the Stutsky theorem in conventional 
asymptotic theory also applies in this framework in the sense that if 
g( ·) is any continuous function on C[O, 1 ], then X:r(t)-+- W(t) implies 
that 

Consider the following pairs of random walks, 

x,=S,+x0 ;y,=P,+y0 ; e1,- n.i.d(O,a?) (i = l ,2);E(euEz.r) = 0 V t,s 

S1 and P, denote respective partial sums of E1r and eu. 
The following lemma (see Phillips, 1985b) will be used extensively. 

Lemma: If the sequences {y,} and {x,} are generated by the indepen-
dent random walks defined as above, then as T-+ oo, 

1 

(a) r-2 ~ y,l-+ o2l. f V(t)2 dt 
0 

2 

(b) r-2 ~ x,2 -+ o1
2 • J W(t)2 dt 

0 

I 

(c) r-2 f XtYt ..... a,o,. J V(t)W(t) dt 

0 

T 
(d) r-1 ~>r-t €u_. (ol/2)·( VO }2

- I) 
1 

T 
(e) r-• L x,_. Elt .... (u.2/2)·(W(l)2 - 1) 

1 

T 
(f) r-• LYtElt ..... N(O, u,2 ol/2) 

1 
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T 
(g) r-• LXr€2r .... N(O, Oa2o,_l/2) 

1 

where V(t) and W(f) are independent Wiener processes on C[O, 1]. 
We have stated the basic distributional results and will proceed to 

develop applications related to the DGPs analysed in the Monte Carlo 
study. 

Theorem 1: If the stochastic processes {y,} and {x,} are generated by 
the following .DGP: 

Defme 

Yr + (k, = u,; u, = u,_1 + Eu 

y, + ax, = v,; v, = pv,_1 + Eu 

t 
S, = [ e11 ; s = o1/U. , ... 

and y, is regressed on x, giving the least squares regression 

Yr = tx, + ft, 
then as T-+ oo, 

(a) T(i' + a) .... (13-a) [N(O, !sl(l - pz)) - (1/sz(l - p2 ))] =Ea 
1 f W(t)2 dt 

0 

1 
Es(l - pl)t '2 [J ]a12 (c) t· -+ 1 W(t)2 dt ., (13- a) 

0 

(d) DW-+ 2(1 - p) 

where W(t) is a Wiener process on C{O, I). 
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Theorem l relates to the DGP developed by Granger and Engle 
( 1985 ). This DGP is the object of the Monte Carlo study in the section 
2. Further, (a) shows that the equilibrium regression is in fact the 
second equation of the DGP as expected and that any bias in i' for a 
converges to zero at order T-1 thereby reproducing Stock's (1984) 
results. The intuition behind Stock•s analysis was discussed in Section 
1. The same rate of convergence obtains for ( 1 - R 2 ) while the t-ratio 
and the DW are of order one. Note however that the /-ratio does not 
converge in probability to a constant. 

The results (a) and (b) above can be used to construct a response 
surface for the behaviour of the bias in the equilibrium regression with 
the Granger-EngJe DGP. In other words, from the limiting distribution, 
(a) and (b) can be used to construct the leading terms in the response 
surface of the bias by substituting for the unknown functionals of the 
Wiener process by a known statistic of the static regression. The obvious 
candidate for such a statistic is (1 - R 2 ) since it has the same order of 
convergence as the bias. More importantly, the role of this statistic in 
the bivariate equilibrium regression as an indicator of the bias is clearly 
revealed. Further implications of this observation are discussed in the 
text. 

Substituting (b) into (a) we obtain, 

The in tuition behind this result is quite clear. The coefficient obtained 
by regressing x, on y, in the equilibrium regression converges to a:- 1 and 
since the R 2 is just the product of the slopes, the closer it is to unity, 
the smaller will be the bias. 

Theorem 2 : Suppose now that the stochastic process generating {y1 } 

and {x,} is, 

where 

(eu.e2,)' ""'n.i.d(O,il) 

where the f2 matrix is unchanged from the previous DGP. Defme S, and 
s as above. 

y, is regressed on x, and the regression coefficient is denoted again 
by ;-. Then as T-+ oo, 
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2 1 

(a) T("i- 1)--. ~21 (!(~1 - 1) (W(l )2 +I)+ N (o, ~ )/ J WUY~dt=~2 
0 

1 

(b) T(l- R 2 )-+ ((~1 -1)2 + s-2 )(1- (l -~2 )2)- 1/J W(t)2 dt 
0 

1 

(c) t.y-+ ~2((1 -(I - ~2)2))1'2((~, - 1)2 + s-2)-1 '2(f W(t)2 dtr2 

0 

(d) DW -+2~ 

Theorem 2 relates to the DGP developed in the Mon te Carlo experi-
ments in Section 3. We investigate and compare the powers of the DW 
statistic in the equilibrium regression and the t-ratio test of the error 
correction term in a restricted specification of the ECM model under 
the null hypothesis of cointegration. In particular, we deal with the 
equilibrium regression results under the assumption of cointegration. 
Since the ECM just represents a different parameterization of the 
bivariate representation analysed in Theorem 1 (for another example) 
the results turn out to be the same with both the bias and ( 1 - R 2 ) 

again converging to zero at the rate of r- 1 and so on. Also from the 
relationship between the bias and (l - R 2 ) we can identify the leading 
term in the response surface for the second Monte Carlo study, i.e. 

The distribution results under the alternative of stationarity both for 
the restricted and the unrestricted ECM specifications could be easily 
derived from the conventional asymptotic theory for /(0) processes and 
therefore will not be quoted here although we shall be interested in the 
power of the test statistics. 

Theorem 3 : If the stochastic processes are generated by the DGP 
analysed in Theorem 2 with a 2 = 0 and Yt regressed on Xr giving the 
least squares regression of Yr on x,, then as T-+ oo, 

1 1 (a) i'-+ a 1 + s-'[J V(t)W(t) dt] [J W(t)2 dt] = h 
0 0 
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I I 1 

(b) R~ _. [ E32 • f W(t)2 dt] [v + Ea2 f W(t)2 dtr 
0 0 

1 ' 

(c) T- 112ty _. [ ~l f W(t)2 dtJ
12

/v 
0 

(d) T·DW _. [(a1 - ~3)2 + s-2 ]/v 

where 
1 1 1 

v = (a1
2 - E3

2 ) J W(t)2 dt + s-2 J V(t)2 dt + 2a1s-• J V(t)W(t) dt 
0 0 0 

and V(t) and W(t) are independent Wiener processes on C [ 0, 1 ]. 

Theorem 4: If the stochastic processes {Yr} and {xr} are generated by 
the DGP analysed in Theorem 2 with a 2 = 0 and the following regres-
sion is performed 

then as T-+ 010, 

(a) T"b-. [~2 {v(l)2 - t} + ;l {W(1)2 - l } - (a1 - l)N ( o, ~2)] 
I I 

x [ (a1 - I yz J W(t)2 dt + s-2 J V(t)2 dt 
0 0 

1 -J 

+ 2s- 1(a1 - l) J V(t)W(t) dt] = ~4 
0 

1 1 

(b) t.y _. ~4 [ (a1 - 1)2s2 J W(t)2 dt + J V(t)2 dt 
0 0 

I 

+ 2(a1 - l)s J V(t)W(t) dt J. 
0 

Theorems 2~ 3, and 4 are valuable in analysing the Monte Carlo results 
in Section 3 of the paper. We have analysed theoretically the properties 
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of the bias and DW statistic in the static regression and the t-ratio test 
of the error correction term under the null hypothesis of (a) no cointe-
gration and (b) cointegration. The corresponding simulation results are 
presented in Section 3. · 

Theorem 3 reproduces, but for a slightly different DGP, the results 
obtained by Phillips (1985b) in the spurious regression case. In the first 
place (a) and (b) show that the least squares coefficient and the R'l 
have non-degenerate limiting distributions while the distribution of the 
corresponding t-ratio diverges according to (c). This result is in total 
agreement with the Monte Carlo results reported by Granger and 
Newbold (1974). In (d) it is shown that the DW statistic converges to 
zero again reproducing a typical feature of spurious regressions with 
data generated by random walks. The limiting distribution of T· DW 
may be used to construct an asymptotic critical value as suggested by 
Sargan and Bhargava ( 1983) and Granger and Engle. 

By means of Theorem 4, we analyse the case in which an ECM is 
estimated . The results are, as expected, quite different from the 
equilibrium regression case. First, the coefficient of the error correction 
term goes to zero as T-+ oo while in the previous case the slope did not 
converge to a constant. The intuition is again quite important in order 
to explain this different behaviour, i.e. in Theorem 1 the null hypothe-
sis 'Y = 0 meant that 11 could not be stationary, while in Theorem 4, the 
nuU -y2 = 0 implies stationarity of the residuals and so its estimate 
should converge quickly to zero, as it indeed does. Nevertheless the 
corresponding r-ratio has a non-degenerate distribution different from 
the standardized normal distribution that is used in conventional 
asymptotic theory. The corresponding critical values may be constructed 
by simulation as is done by Dickey and Fuller ( 1979) and Granger and 
Engle. This observation has interesting implications for testing models 
like Hall's (1978) random-walk-consumption model as in Section 4. 
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