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Abstract

We suggest a new mechanism to detect stochastic seasonality of multivariate macroeconomic
variables, by using an extension of the score-driven first-order multivariate t-distribution model. We
name the new model as the quasi-vector autoregressive (QVAR) model. QVAR is a nonlinear
extension of Gaussian VARMA (VAR moving average). The location of dependent variables for QVAR
is updated by the score function, thus QVAR is robust to extreme observations. For QVAR, we present
the econometric formulation, computation of the impulse response function (IRF), maximum likelihood
(ML) estimation, and conditions of the asymptotic properties of ML that include invertibility. We use
quarterly macroeconomic data for the period of 1987:Q1 to 2013:Q2 inclusive, which include extreme
observations from three /(0) variables: percentage change in crude oil real price, United States (US)
inflation rate, and US real gross domestic product (GDP) growth. The sample size of these data is
relatively small, which occurs frequently in macroeconomic analyses. The statistical performance of
QVAR is superior to that of VARMA and VAR. Annual seasonality effects are identified for QVAR,
whereas those effects are not identified for VARMA and VAR. Our results suggest that QVAR may be
used as a practical tool for seasonality detection in small macroeconomic datasets.
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I. Introduction
Macroeconomic time series analysis frequently involves stochastic seasonality components in
practical applications. The successful detection of those components is useful, for example, for a
first-step deseasonalization of macroeconomic data, in order to effectively measure the interac-
tion effects among the deseasonalized macroeconomic variables in a second-step. The detection
of seasonality is also useful in those cases, when the effectiveness of a previous seasonality ad-
justment is verified ex-post. In this paper, we suggest a new mechanism of seasonality detection
for multivariate macroeconomic time series, by extending the dynamic conditional score (DCS)
model for the multivariate ¢ distribution (Harvey, 2013). We name the extended model as the
quasi-vector autoregressive (QVAR) model, and we present that the new seasonality detection
mechanism is very useful for a small macroeconomic dataset from the United States (US).
DCS models are observation-driven time series models (Cox, 1981). An example of a DCS
model is Beta-t--EGARCH (exponential generalized autoregressive conditional heteroscedastic-
ity) (Harvey and Chakravarty, 2008), which is an outlier-robust alternative to GARCH (Engle,
1982; Bollerslev, 1986). We refer to the recent Beta-t-EGARCH applications of Blazsek and
Villatoro (2015), Blazsek and Mendoza (2016), and Blazsek and Monteros (2017). Another
example of a DCS model is QAR (Harvey, 2013), which is a nonlinear and outlier-robust al-
ternative to AR moving average (ARMA) (Box and Jenkins, 1970). The QVAR model of this
paper is a nonlinear and outlier-robust alternative to VARMA (Tiao and Tsay, 1989). We also
refer to the following recent DCS models: Blazsek and Escribano (2016a) suggest a DCS count
panel data model, which is an alternative to the dynamic count panel data models of Blundell,
Griffith and Windmeijer (2002), Wooldridge (2005), and Blazsek and Escribano (2010, 2016b).
Ayala, Blazsek and Escribano (2017) suggest DCS-EGARCH (exponential GARCH) models
with score-driven shape parameters, which are extensions of the DCS-EGARCH models with
constant shape (see, for example, Harvey, 2013). Blazsek and Ho (2017) and Blazsek, Ho and
Liu (2018) suggest new Markov regime-switching DCS-EGARCH models. The works of Ayala

and Blazsek (2018a, 2018b) suggest new DCS copula models for financial portfolios.



QVAR with lag-order p is a score-driven nonlinear multivariate dynamic location model, in
which the conditional score vector of the log-likelihood (LL) with respect to location (hereinafter,
score function) updates the dependent variables. QVAR(p) is an extension of the DCS model
for the multivariate ¢-distribution (Harvey, 2013) that is QVAR(1) under our notation. QVAR,
compared to multivariate Gaussian time series models, is robust to extreme values in the noise.
For QVAR, we present the details of the econometric formulation, computation of the impulse
response function (IRF), and the maximum likelihood (ML) estimation and related conditions
of consistency and asymptotic normality that include the condition of invertibility.

We estimate QVAR by using quarterly macroeconomic time-series data for the period of
1987:Q1 to 2013:Q2 inclusive, from the following I(0) variables: (i) quarterly percentage change
in non-seasonally adjusted crude oil real price; (ii) quarterly seasonally adjusted US inflation
rate; (iii) quarterly seasonally adjusted US real gross domestic product (GDP) growth. The
use of these variables is motivated by several works from the body of literature, which study
the question of how oil price shocks affect US real GDP growth and US inflation rate (e.g.
Blanchard, 2002; Barsky and Kilian, 2004; Kilian, 2008; Kilian and Liitkepohl, 2017). The
dataset of the present paper includes extreme observations (for example, those related to the
1990 oil price shock caused by the Iraqi invasion of Kuwait and also those related to the 2008
financial crisis), motivating the use of the outlier-robust QVAR(p) model. The sample size of
these data is relatively small, which is frequently the case in macroeconomic data analyses.
We show that the application of the nonlinear QVAR(p) model to this small dataset, is more
effective in identifying stochastic seasonality effects in the data series than the application of
classic linear multivariate time series models.

We compare the statistical performance of QVAR(p) with that of two linear benchmarks:
(i) Gaussian QVAR(p) is a limiting special case of QVAR(p) with multivariate ¢ distribution,
when the degrees of freedom parameter goes to infinity. Gaussian QVAR(p) is a Gaussian
VARMA (p,p) model with restricted vector MA (VMA) parameters. (ii) Gaussian VARMA (p,q)

is a popular model in practical applications and it is also an extension of Gaussian VARMA (p,p).



In relation to Gaussian VARMA (p,q), we also consider the Gaussian VAR(p) model.

We find that the statistical performance of QVAR(p) is superior to that of Gaussian QVAR(p)
and Gaussian VARMA (p,q). A relevant finding of this paper is that the nonlinear QVAR(2) with
multivariate ¢ distribution is effectively estimated by using the ML method, while for its limiting
special case, the Gaussian QVAR(2) model, the ML estimator does not converge to an optimal
solution. This result is due to the fact the QVAR(2) with multivariate ¢ distribution that is
updated by the score function is robust to extreme values in the irregular component, while its
Gaussian benchmark is sensitive to outliers. With respect to the identification of stochastic sea-
sonality effects, we find that QVAR(1) does not identify the aforementioned effects, motivating
the extension of that model to QVAR(p) with higher lag-orders. We find that the seasonal-
ity detection mechanism is effective for QVAR(2): (i) Annual stochastic seasonality effects are
identified for the non-seasonally adjusted percentage change in crude oil real price times series.
(ii) Seasonality is not detected for the seasonally adjusted US inflation rate time series, thus
the seasonality detection mechanism suggests that seasonality adjustment was successful at the
data source. (iii) Annual stochastic seasonality effects are detected for the seasonally adjusted
US real GDP growth time series, suggesting that the seasonality adjustment was not effective
at the data source. With respect to the linear Gaussian alternatives, seasonality effects are not
detected for any of the QVAR(p) and Gaussian VARMA (p,q) specifications of this paper.

The focus of this paper is seasonality detection, by using QVAR(p), for multivariate macroe-
conomic time series data. Nevertheless, QVAR(p) can also be applied to the detection of different
forms of nonlinearity in time series, other than seasonality. For example, QVAR(p) can be ap-
plied to (i) the detection of regime-switching time series dynamics, (ii) the highlighting of the
presence of extreme observations in a dataset, or (iii) the identification of different forms of
heteroscedasticity. The QVAR(p) model of this paper identifies stochastic seasonality and it
also verifies whether seasonality adjustment was successful at the data source. These results
may motivate the consideration of QVAR(p) in future macroeconomic analyses, which use small

datasets with extreme observations that are frequent properties of macroeconomic data.



The remainder of this paper is organized as follows. Section II presents the nonlinear
QVAR(p) model. Section III presents the benchmark linear Gaussian QVAR(p) and Gaussian
VARMA (p,q) models. Section IV describes the macroeconomic data. Section V summarizes the
empirical results. Section VI concludes.

I1. Score-driven nonlinear multivariate dynamic location model: QVAR(p)
Reduced-form and structural-form representations

The reduced-form representation of QVAR(p) for y, (K x 1) is

Yi = C+ [ + Vg, (1)

py = Lot + .o+ Ppprp—p + Viup_q, (2)

where ¢ (K x 1), ®1,...,®, (cach K x K) and ¥; (K x K) are time-constant parameters. The
conditional mean of the dependent variables is given by E(y¢|v1,...,%—-1) = ¢ + i, because
the updating term u;_; (K X 1) with zero unconditional mean is a function of y,...,y;—1 and
E(v;) = 0gx1. For the first p observations, we initialize y; by using py = F(p) = Ogx1-

With respect to the updating terms, v; (K x 1) is the reduced-form error term and wu,
(K x 1) is a scaled score function vector. v; is multivariate i.i.d. with v; ~ tx (0,3, v), where
Y = Q Q'Y is positive definite and v > 2 denotes the degrees of freedom parameter (thus,

the variance of v, is finite). The log of the conditional density of y; is

In f(yelyr, ... ge—1) = InT (VZK) —InT (g) - gln(wy) (3)

v

1 K 51
_§1n|2|—y_; ln(l—l—vt “t).

The partial derivative of the log of the conditional density with respect to p; is

alnf(yt‘ylw'wyt—l)_V+K271>< 1+U£2_1Ut _lvt:V+K _
3,ut v

Y x 4
y y Uy, ()



The latter equality defines the scaled score function u; by using the reduced-form error term. In
the definition of ug, vy is multiplied by [1+ (vjX, ') /v] ™! = v/ (v +vjX 1v,) € (0,1). Therefore,
the scaled score function is always bounded by the reduced-form error term: |u;| < |vz|. The

scaled score function u, is multivariate i1.i.d. with mean zero and covariance matrix

Var(u;) = E

oln f(yely, -+, Y1) " alnf(yt|y1,...,yt_1)} _ v+ K -1 5)
Ot ou, u+K+2

Related to the structural-form representation of QVAR(p), for the reduced-form error term

vy ~ g (0,%, v) we have E(v;) = 0 and Var(v;) = X x v/(v — 2). We factorize Var(v;) as

y y 1/2 ) 1 y 1/2
— — - —1y\/
Var(vt)—ZxV_2—<y_2) x Q7H(Q )x(y_2> , (6)

and we introduce the multivariate 1.i.d. structural-form error term ¢; as

y 1/2
z&:( ) 0 x e, (7)

v—2

where FE(¢;) = 0, Var(e;) = I and ¢ ~ tg|[0, [k X (v — 2)/v,v]|. By substituting equation (7)

into equation (1), we obtain the structural-form representation of QVAR(p):

y -1/2 y -1/2 U —1/2 U —1/2
(V — 2) Qyt = (m) Qc + (m) Q[Lt + (m) Qvt = (8)
—1/2 —1/2
14 14
= (1/—2) Qc+<y_2> Quy + €.

Furthermore, by substituting equation (7) into u; from equation (4), we obtain

€t

we= [ = 20T < o
t

(9)

which is the representation of the scaled score function u; according to the structural-form error

term €; (we use the latter equation to obtain the IRF formulas in the next three subsections).



First-order representation

The first-order representation of the reduced-form QVAR(p) model of equations (1) and (2) is

Y, =C+ M +V, (10)

Mt == (DMt—l —|— \IJUt_l, (11)

where
Yt c Hht Ut
Yt—1 ¢ -1 Vi1
}/t C - Mt = ‘/t =
L Y77 () L (o) R Lot L ey
o, @ o, @,
I  Ogxk Orxk
Q= Oxxx Ix Oxxx
Orxk Okxx Ik Ogrxk
- - (KpxKp)
U, Ogxk Orxk Uy
v Orxxrx Orxk OrxK U, — Up_q
- Ui Oxexsc - (KpxKp) - Htmptl - (Kpx1)

Infinite vector moving average representation

From equations (10) and (11), the reduced-form nonlinear VMA (c0) representation of y; is

(12)

Y =c+ <Z J@jJ’qllut_l_j> + vy,

J=0



> : A Sul P
Yyr=c+ ZJ‘P]J/\Iﬁ(l-i- i tl]) Vi1

i V + vy. (13)
7=0

where J = (Ix,0xxr, + ,0xxr) (K X Kp). By using equation (7), the related structural-form

nonlinear VMA (00) representation of y; is given by:

S 1/2
- J 0 [(v — 2) ]2 W v Qe (14
Y =c+ {Z 1[(v = 2)v] T —— +| >3 ¢ (14)

=0

We use C) to denote the maximum modulus of all eigenvalues of ®. C; < 1 implies that the
different series in equations (12) to (14) are convergent.
Impulse response function

From equation (14), we obtain IRF; = 0y, ;/0¢; for j = 0,1,..., 00 that is given by

U 1/2
IRF, = ( ) Q1 (15)

v—2
IRF;, = JOIJU,[(v — 2)v]"?Q7'D, 1, for j=1,...,00, (16)
where
dig -+ diky
00—
v—2+¢€e;
D, = - = = (17)
3@
drc1,t drK.t
V—2+e,’56t—26%t —2€14€2¢4 —2e11€K¢
(v—2+¢€ler)? (v—2+¢€ler)? (v—2+¢€ler)?
—Qearery v—2+€)er—2€2,
_ (v—2+¢€ler)? (v—2+¢€ler)?
—2€pi€lt V—2+e£et—2e§<t
(v—2+¢€ler)? (v—2+¢€ler)?
As IRF, for j =1,2,...,00 depends on ¢, we evaluate its unconditional mean

IRF; = E(IRF,) = JO®/ J'U,[(v — 2)v]'?Q ' E(D,_,_;) for j=1,2,...

, 00.

(18)



If all elements of D, are covariance stationary, then E(D;_;_;) can be estimated by using the
sample average (see, for example, Hamilton, 1994). We test the covariance stationarity of D; by
using the augmented Dickey—Fuller (1979) (ADF) unit root test with constant. It is important
to note, however, that an alternative to the use of the time-invariant E(IRFj;) is the period-by-
period estimation of IRFj;. In those applications, IRF;; is averaged, for example, for pre- and
post-recession periods and the resulting different IRF estimates are compared.

Maximum likelihood estimation

We estimate the parameters of QVAR (¢, ®1,...,®,, U1, Q! and v), by using the ML method.

The ML estimator of parameters is given by

T
Oumi, = argmngL(yl, .. yr; ©) = arg mgx;hl flyas - ye-1;9), (19)

where O denotes the vector of parameters. We use the numerically estimated inverse information
matrix for the ML standard errors (Creal, Koopman and Lucas, 2013; Harvey, 2013), and we
also use results from Harvey (2013, Chapters 2.3, 2.4 and 3.3) for the conditions of consistency
and asymptotic normality of the ML estimator. Related to the asymptotic properties of the
ML estimator, we also study the invertibility of QVAR(p) (see, for example, Blasques, Gorgi,
Koopman and Wintenberger, 2018).

First, Condition 1 is C'; < 1, which ensures that pu; is covariance stationary. Second,
Condition 2 is that the scaled score function u; (K x 1) and its derivative du;/Jp; (K x K) have
finite second moments and covariance that are dynamic and do not depend on p,. For this con-
dition, we refer to the specific elements u;; and Ouy, /Oy, where 5, k,l =1, ..., K. Condition 2
holds if E[u?;i(f)ukvt/ﬁulyt)i] < oo, where i = 0,1,2 and j,k,l =1,..., K. We test Condition 2
by using the ADF test with constant for each u3,"(Qugs/Op,)'. Third, for Condition 3, we

consider the representative element ¥;; from the matrix ¥. From equation (11), we have

oM, _ (I)@Mt,l n \anH

L. _ 2
ov,, o, ou,, Vil (20)



forallt =1,...,T, where the element (7, j) of the matrix W;; (Kp x Kp) is one and the rest of

the elements of W;; are zero. We use the chain rule to express

U1 OUp1 OMyy
oV, OM|_, 0¥y’

(21)

and we substitute the latter equation into equation (20) to get the first-order AR representation

oM,

_ ((D . aUH) oM, oM,

oMl ) v, + WUy = XtaTU + Wi;Uiq, (22)
where X; (Kp x Kp) is defined by the last equality. Condition 3 is that all eigenvalues of F(X})
are within the unit circle. We denote the maximum modulus of all eigenvalues of F(X;) by using
C3. If each element of X, is covariance stationary, then F(X;) can be estimated by using the
sample average. We test covariance stationarity of X; by using the ADF test. Condition 3 is
a necessary condition of consistency and asymptotic normality of ML. Fourth, the information

matrix of QVAR(p) depends on the following term, expressed by using equation (22) for the

specific elements (7, j) and (k,[):

oM, OM, OM,; 1 OM]{_, _, oM,y __, , oM{_, _, , ,
= X X+ Xo——W, U1+ U, Wiy————X, + W,; U, U;,_ | W,,.

P T T P e T e o M TN A e M
(23)

We write this equation according to a first-order dynamic representation, as follows:
OM, OM! OM,_ OM;_,

= (X;®X 24
vee (axpij 0y, )~ Ke@ Xovee Hp =g (24)

OM;_,
8\Ilkl

OM,;_
+vec (Xt aqjijlmljUtl) + vec (Ut’_lVsz

Xt/) + vec (WijUt,1U£_1Wél) s
where ® is the Kronecker product and vec(z) indicates that the columns of the matrix are being
stacked one upon the other. Condition 4 is that all eigenvalues of F(X; ® X;) are within the

unit circle. We denote the maximum modulus of all eigenvalues of F(X; ® X;) by using Cy. If

each element of X; ® X, is covariance stationary, then E(X; ® X;) can be estimated by using

10



the sample average. We test covariance stationarity of X; ® X; by using the ADF test with
constant. Condition 4 is a sufficient condition of consistency and asymptotic normality of ML.
For the computation of X; = &+ W (0U,_,/0M,_,), we need the formula for Ou,/Op; (K x K).

As aforementioned, the scaled score function is given by

v\ 7! vy, — ¢ — 1)
= (1 t — 25
o ( " v > " vt (ye —c— ) Sy — e — )’ (25)

and the formula of du;/0u} can be obtained by using standard matrix calculus.

In addition to the previous conditions, we also study the invertibility of QVAR, which is
a condition of the consistency and asymptotic normality of ML. Invertibility is studied in the
recent literature on DCS models (see for example: Blasques, Gorgi, Koopman and Wintenberger,

2018). From equations (10) and (11) we express:
Yi=C—-2C+ QY1 — PV + VU1 + Vi (26)

We substitute the scaled score function vector U;_; into the previous equation and obtain:

V,=C—®C+ dy,1 + (¥, — P,y + V, (27)
where ~ _
Vi Orxrx - Ogxk
Okxx Orxx - Orkxk
Orxre - o Opxi
B - (KpxKp)
and

/ -1
V12 Vg

)_1 — U, x Y (29)

U, =V, x (1 .
1 ! (+ v+ Xy

14

QVAR(p) isa VARMA(1,1) model with the VMA(1) parameter W;—®. If the maximum modulus

of eigenvalues of W, — @ is lower than one for all ¢, then QVAR will be invertible.
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III. Benchmark linear multivariate time series models

First benchmark: Gaussian QVAR(p)

From the nonlinear QVAR(p) model that uses the multivariate ¢ distribution for the reduced-
form error term v;, we obtain linear multivariate time series models with multivariate normal
distribution for v;. If v — oo, then in the limiting case v; ~ tx(0,%,v) —4 Nk(0,%) and
uy = v[1+ (v}2 v) /v] ™' —, v;. The multivariate model obtained for ¥ — oo, named Gaussian

QVAR(p), is considered as the first benchmark model. For the limiting case, QVAR(p) is

p=c—Pic—...— Qe+ Py + ...+ Oy v+ Vv — Prvp — .o — Dy, (30)

which is a Gaussian VARMA (p,p) specification with VMA coefficients Uy — &1, =P, ..., —D,,.

For the Gaussian QVAR(1) case (Harvey, 2013), we have the reduced-form representation:

yy=c— Prc+ Pry1 + v + (Vg — Py, (31)

which is a Gaussian VARMA (1,1) model with VMA coefficient ¥; — ®;. Under the restriction

U, = &y, we obtain the reduced-form representation of the classic Gaussian VAR(1) model:

yr = c— Qe+ Py + vy (32)

For the lag-orders p > 1, it is not possible to obtain the Gaussian VAR(p) model by using
parameter restrictions from the Gaussian QVAR(p) model; see equation (30).

For Gaussian QVAR(p), which is a special case of the classic Gaussian VARMA (p,q) model,
we refer to the work of Liitkepohl (2005), with respect to the structural-form and VMA(co)
representations of y;, the IRF, and the ML estimation and related conditions of covariance
stationarity and invertibility. It is noteworthy that even if the v; ~ N (0,%) assumption does
not hold for Gaussian QVAR(p), the ML estimator still provides consistent parameter estimates

due to the quasi-ML (QML) results of Gouriéroux, Monfort and Trognon (1984).
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Second benchmark: Gaussian VARMA (p,q)

The Gaussian VARMA (p,p) specification of equation (30) is a special case of the classic linear
Gaussian VARMA (p,q) model that is frequently used by practitioners for the analysis of macroe-
conomic data. Gaussian VAR(p), which to our knowledge is even more popular for practical use,
is a special case of Gaussian VARMA (p,q). Motivated by these points, we consider Gaussian
VARMA ((p,q) as the second benchmark model, and present estimation results for both Gaussian
VARMA((p,q) and Gaussian VAR(p). The reduced-form representation of VARMA (p, q) is

Yo = iy + v = [y + O e, (33)

where v, ~ Ng(0, X) is the multivariate i.i.d. reduced-form error term. We factorize the positive
definite covariance matrix as Var(v;) = X = Q7 1(Q!). The multivariate i.i.d. structural-form
error term ¢, = Qu; ~ Nk(0, I). Furthermore, fi; is the conditional mean of y|(y1,...,y1)

that is specified as

E(yt|y1a s 7yt—l) = Iat = 6 + (I)lyt—l +---+ (I)pyt—p + i’lvt—l + ...+ qqut—qy (34)

where ¢ (K x 1), ®y,...,®, (each K x K) and T, .., U, (each K x K) are constant parameters.
For the classic Gaussian VARMA (p,q) we use tilde notation for several parameters to indicate the
difference of parameters with respect to Gaussian QVAR(p). Under the restriction \i/j = OrxK
for j =1,...,q, we obtain the classic Gaussian VAR(p) model. For the first p observations, we

initialize fi; by using the unconditional mean ji, = E(y,) = J(Ix, — ®)"'C, where

(I)l ¢2 tet (I)p—l (I>p - 3 -
¢
Ik Ogxx - oo Ogrxk
~ OK><1
Q=1 Orgxrx Ix Oxxx C =
OK><1 Kox1
_OK><K oo Ogxx Ik OKxK_ - - (Kpx1)

(Kpx Kp)
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and J = [Ix,O0xxk, -, 0xxk] (K x Kp).

For Gaussian VARMA (p,q), we refer to the work of Liitkepohl (2005), with respect to the
structural-form and VMA (oo) representations of y;, the IRF, and the ML estimation and related
conditions of covariance stationarity and invertibility. We refer to the QML asymptotic results
as noted earlier, for the case when v; ~ Nk(0, ) is used for VARMA(p,q).

VI. Data

We use macroeconomic data from the book of Kilian and Liitkepohl (2017) (the data are down-
loaded from: http://www-personal.umich.edu/~Ikilian/figure9_1_chol.zip; original data sources:
Federal Reserve Economic Data, Federal Reserve Bank of St. Louis; Economagic). This dataset
includes the following variables: (i) non-seasonally adjusted monthly West Texas Intermediate
(WTT) spot price of crude oil for the period of December 1972 to June 2013, inclusive; (ii) sea-
sonally adjusted quarterly US GDP deflator for the period of 1959:Q1 to 2013:QQ2, inclusive; (iii)
seasonally adjusted quarterly US real GDP level for the period of 1959:Q1 to 2013:QQ2, inclusive.
We highlight the facts that the crude oil price series is non-seasonally adjusted and the US GDP
deflator and US real GDP level series are both seasonally adjusted. The stochastic seasonality
detection mechanism of the present paper is able to detect the seasonality of crude oil price, and
the same mechanism is also able to evaluate whether the seasonality adjustments for US GDP
deflator and US real GDP level were effective at the data source.

We define: (i) percentage change in the crude oil real price 34, as the quarterly first difference
of log real price of crude oil; (ii) US inflation rate yy, as the quarterly first difference of log
US GDP deflator; (iii) US real GDP growth ys;, as the quarterly first difference of log US real
GDP level. All variables are measured in percentage points. We define y; = (y14, ya¢, y3¢)’, hence,
K = 3 for all models. We use data for the period of 1987:Q1 to 2013:Q2 inclusive (see Figure 1),
motivated by the work of Kilian and Liitkepohl (2017). All results of this paper are according to
the variable ordering (yis, yor, y3:). Nevertheless, we also perform robustness analyses by using
different variable orderings (see Blazsek and Escribano, 2017). The results of this paper are

supported with respect to alternative orders of variables.
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In Panel A of Table 1, we present the start and end dates of the dataset, and sample size (T),
minimum, maximum, mean, standard deviation, skewness and excess kurtosis for each variable.
In the same table, we also present ADF test results and partial autocorrelation function (PACF)
estimates (see, for example, Hamilton, 1994) up to 20 lags. The ADF test for three alternative
test specifications suggests that all dependent variables are 1(0). The PACF estimates indicate
that all variables are I(0) and significant serial correlation for several lags for all variables.

In Panel B of Table 1, we report descriptive statistics of deterministic annual seasonality
effects for the percentage change in crude oil real price, US inflation rate and US real GDP growth
time series. For each variable y;;, we estimate the linear regression model y; = 0; i Dq1+ +
0i.2Dq2+ +0i.03Dqst 4 0i.qaDqat +Mit, where Dqi ¢, Do+, D3y and Dqa, are dummy variables
indicating each quarter of the year, and n; is the error term. We use heteroscedasticity and
autocorrelation consistent (HAC) standard errors (Newey and West, 1987) for the ordinary least
squares (OLS) estimation of this model. We test the significance of parameter differences for each
linear regression. The corresponding p-values, reported in Panel B of Table 1, indicate significant
deterministic seasonality effects for the variables y;; and y3;. These preliminary results suggest
that the deterministic seasonality effects are significant for the percentage change in crude oil
real price, that the seasonal adjustment of US inflation rate was successful at the data source,
and that the seasonal adjustment of US real GDP growth was ineffective at the data source. We
do not include seasonality dummies in QVAR, VAR and VARMA, motivated by the design of the
seasonality detection mechanism of this work. The stochastic seasonality detection mechanism
of this paper can detect seasonality effects in a more general way than the linear regression
model with quarterly dummies and constant parameters.

The relatively small sample size of data (7' = 106) used in this paper is a frequent property
of macroeconomic time series data. In the next section, we present the consequences of the
limited sample size for the effective estimation of QVAR(p) and that of the benchmark Gaussian
QVAR(p) and Gaussian VARMA (p,q) models.

[APPROXIMATE LOCATION OF TABLE 1 AND FIGURE 1]
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V. Empirical results

Identification of structural forms

The QVAR, VAR and VARMA models of this paper are recursively identified structural mod-
els. This identification method is supported by the argument that oil price shocks may act as
domestic supply shocks for the US economy (Kilian and Liitkepohl, 2017).

In this subsection, we present the identification of the most general QVAR model of this
paper: QVAR(2). The identification of the structural-form representation is identical for all
other models of this paper. Let K = 3 and P = 2 in equations (1) and (2), then the reduced-
form QVAR(2) is

Y1t C1 (1)1,11 ‘131,12 @1,13 H1e—1
Yor | = | ca | T | Prar Proo Pios fog—1 | T (35)
Y3t C3 D31 Przr Pigas H3t—1

@2,11 (132,12 (I)2,13 H1t—2 ‘1’1,11 \1’1,12 ‘1’1,13 Uy,t—1 V1t

+ (132,21 @2,22 (1)2,23 H2,t—2 + ‘1’1,21 ‘1’1,22 \1’1,23 U2,t—1 + | vy
Dy31 D30 Poss 3,4—2 Wizt Viga VYigss U341 U3¢

Let Var(vy) = [v/(v —2)] x £ = [v/(v — 2)] x Q@7 H(Q™!) where

QFf 0 0
Q= O Oy 0 (36)
O Qg Qg

is a lower-triangular matrix. Then,

—1
st

y 1/2 y 1/2
Ut_»(u——Q) Q%t__(u——2) Qo' ers + Qo €t (37)

~1 1 ~1
Qap €1r + Q35 €20 + 33763
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For QVAR, VARMA and VAR, the decomposition ¥ = Q~1(Q~!)" is a Cholesky decomposition.
As Y is positive definite for all cases, the Cholesky decomposition is unique if the diagonal of
Q! includes positive elements (i.e. Q' >0, Q55 > 0 and Q35 > 0).

Estimation for a small dataset with extreme observations

For QVAR(p) with multivariate ¢ distribution, the ML procedure does not converge to an opti-
mum for the dataset of this paper, due to the small number of observations for each variable.
We use the ¥y = W, ;; X I restriction, where W, 1; € IR. This implies that ¥, is diagonal with
Uy 1y = Uy 99 = Uy 33 (Harvey, 2013, p. 211, notes that the effective specification of matrix W
is related to the specific application of the multivariate DCS model). Under that restriction,
we identify all elements of ¢, ®, Q~! and v. Due to the small sample size, the ML procedure
does not converge to an optimum for the QVAR(p) specification with p > 2. Therefore, for
QVAR(p) with multivariate ¢ distribution, we report results for QVAR(1) and QVAR(2) with
scalar Wq. In future works that use a greater sample size for the dataset, the full ¥; matrix can
be estimated and QVAR(p) with p > 2 can be used for data analysis.

For Gaussian QVAR(p) and Gaussian VARMA (p,q) the ML procedure does not converge
to an optimum, due to the small number of observations. We use scalar VMA parameters for
all Gaussian multivariate specifications. For Gaussian QVAR(p) we denote the scalar VMA
parameter by ¥, 11, and for Gaussian VARMA (p,q) we denote the scalar VMA parameters by
\ifj,n with 5 = 1,...,¢. Under those restrictions, we identify all elements of ¢, ® and Q~!. The
ML estimation procedure converges for the following Gaussian models: Gaussian QVAR(1),
Gaussian VARMA(1,1), Gaussian VARMA(2,1), Gaussian VAR(1) and Gaussian VAR(2).

A relevant result of the present paper is that QVAR(2) with multivariate ¢ distribution is
successfully estimated, while Gaussian QVAR(2) (i.e. the special case of QVAR(2) with mul-
tivariate ¢ distribution) and Gaussian VARMA(2,2) are not estimated effectively. This is due
to the fact that QVAR(2) is robust to extreme observations while the Gaussian multivariate
models are sensitive to those observations. This result shows the advantage of QVAR(2) for

practical application, with respect to the Gaussian models. In addition, the ML procedure does
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not converge to an optimum for the Gaussian QVAR(p) and Gaussian VARMA (p,q) specifica-
tions with p > 2 and ¢ > 2. Therefore, we report results for the Gaussian QVAR(1), Gaussian
VARMA(1,1), Gaussian VARMA(2,1), Gaussian VAR(1) and Gaussian VAR(2) models.
First-order multivariate models

We present the parameter estimates and model diagnostics for QVAR(1), Gaussian QVAR(1),
Gaussian VARMA(1,1) and Gaussian VAR(1) in Table 2. We present the IRFs for those models
in Figures 2 to 5, respectively. We present the invertibility of QVAR(1) in Figure 6(a).

For all models, we find that conditions of consistency and asymptotic normality of ML are
supported by the Cy, Cy, C3 and C, metrics (Table 2). With respect to QVAR(1), the null
hypothesis of the ADF test with constant is always rejected for conditions Cs, C3, Cy and
matrix D; (Table 2). In Figure 6(a), we present the evolution of the maximum modulus of
eigenvalues of U, — ® for QVAR(1), with the related 420 interval, for the period of 1987:Q1 to
2013:Q2, inclusive. Those results suggest that QVAR(1) is invertible. We compare the statistical
performance of the first-order models, by using the following likelihood-based metrics: LL and
Akaike information criterion (AIC). Both metrics suggest that the statistical performance of
QVAR(1) is superior to the other first-order alternatives of this paper (Table 2).

We find that some elements of ®; and Q! are significantly different from zero for all models
(Table 2). To check the robustness of our results, we also estimate a restricted version of all
models, for which each non-significant parameter in ®; and 27! is restricted to the value zero (see
Blazsek and Escribano, 2017). All results reported in this work are robust to those restrictions.
This suggests significant dynamic and contemporaneous interaction effects, respectively, among
the percentage change in crude oil real price, US inflation rate and US real GDP growth. We
study the dynamic interaction effects by using the IRFs in Figures 2 to 5, for which we report
the mean IRF estimates up to 20 leads. We do not report the IRF confidence intervals in those
figures, due to the small number of observations in the dataset and due to the fact that the main
focus of the present paper is seasonality detection based on the mean IRF estimates. A common

finding for all first-order models is that the stochastic seasonality effects are not identified
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in any of the IRF figures. These results show that the score-driven first-order multivariate ¢
distribution model, also named QVAR(1) model, does not identify the seasonality effects for
the small macroeconomic dataset of this paper. This motivates the application of higher-order
QVAR(p) specifications, which are presented in the following subsection.

[APPROXIMATE LOCATION OF TABLE 2 AND FIGURES 2 TO 6]
Second-order multivariate models
We present the parameter estimates and model diagnostics for QVAR(2), Gaussian VARMA(2,1)
and Gaussian VAR(2) in Table 3. We present the IRFs for those models in Figures 7 to 9,
respectively. We present the invertibility of QVAR(2) in Figure 6(b).

All conditions of consistency and asymptotic normality of ML are supported by the Cy, Cs,
C5 and Cy metrics (Table 3). With respect to QVAR(2), the null hypothesis of the ADF test with
constant is always rejected for conditions Cy, C3, Cy and matrix D, (Table 3). In Figure 6(b),
we present the evolution of the maximum modulus of eigenvalues of U, — ® for QVAR(2), with
the related 20 interval, for the period of 1987:QQ1 to 2013:Q2, inclusive. Those results suggest
that QVAR(2) is invertible. The LL and AIC metrics suggest that the statistical performance
of QVAR(2) is superior to the other second-order alternatives of this paper (Table 3).

We find that some elements of ®;, ®, and Q! are significantly different from zero for all
models (Table 3), suggesting significant dynamic and contemporaneous interaction effects among
the percentage change in crude oil real price, US inflation rate and US real GDP growth. To
check the robustness of our results, we also estimate a restricted version of all models, for which
each non-significant parameter in ®;, ®, and Q7! is restricted to the value zero (see Blazsek and
Escribano, 2017). All results reported in this work are robust to those restrictions. We study
the dynamic interaction effects by using the IRF's in Figures 7 to 9. In those figures, we report
the mean IRF estimates up to 20 leads (as aforementioned, we do not report IRF confidence
intervals due to the small number of observations). According to the IRF estimates, clear annual
stochastic seasonality effects are observed for QVAR(2) for several years (Figure 7), while the

same effects are not found for the Gaussian VARMA(2,1) and Gaussian VAR(2) specifications
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(Figures 8 and 9, respectively).

We obtain the following conclusions from the diagonal panels of Figure 7. For the non-
seasonally adjusted percentage change in crude oil real price time series, the seasonality detection
mechanism for QVAR(2) suggests that the percentage change in crude oil real price time series
includes a significant annual stochastic seasonality component. For the seasonally adjusted
US inflation rate time series, the seasonality detection mechanism of QVAR(2) suggests that
seasonality correction was effective at the data source. For the seasonally adjusted US real
GDP time series, the seasonality detection mechanism for QVAR(2) suggests that seasonality
correction was not effective at the data source, because the seasonally adjusted US real GDP
growth time series includes a significant annual stochastic seasonality component.

Our results for QVAR(2) with multivariate ¢ distribution may motivate the use of the new
score-driven nonlinear multivariate QVAR(p) model, in order to identify stochastic seasonality
effects in small macroeconomic datasets with extreme observations and to verify the effectiveness
of different deseasonalization methods for macroeconomic variables.

[APPROXIMATE LOCATION OF TABLE 3 AND FIGURES 7 TO 9]

VI. Conclusions

In this paper, we have introduced a new mechanism of seasonality detection for multivariate
macroeconomic time series, by extending the DCS model for the multivariate ¢ distribution. We
have named the extended model QVAR(p). We have used a relatively small macroeconomic
dataset that includes extreme observations for the period of 1987:Q1 to 2013:QQ2, inclusive.
The variables considered have been quarterly percentage change in non-seasonally adjusted
crude oil real price, quarterly seasonally adjusted US inflation rate, and quarterly seasonally
adjusted US real GDP growth. We have found that the statistical performance of QVAR(p) is
superior to that of the linear Gaussian multivariate alternatives. Stochastic seasonality effects
have not been detected by the linear Gaussian QVAR(p), Gaussian VARMA (p,q) and Gaussian
VAR(p), whereas those effects have been detected by the nonlinear QVAR(p) with multivariate

t distribution. Our results have indicated that, for those cases when the seasonality adjustment
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is not correct or the data series includes a significant seasonality component, the VAR and
VARMA specifications of this paper are unable to detect seasonality effects, while QVAR is
able to detect seasonality effects, even for small macroeconomic datasets that are frequent in

practical applications.
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TABLE 2

Parameter estimates and model diagnostics for first-order multivariate time series models

A. Parameters QVAR(1) Gaussian QVAR(1) A. Parameters Gaussian VARMA(1,1) Gaussian VAR(1)
c1 2.7357(1.7330) 1.5209(2.0607) &1 0.4544(3.2069) 2.2474(7.1518)
c2 0.5628***(0.0688) 0.5592***(0.0600) ¢ 0.0037(0.0241) 0.1359**(0.0640)
c3 0.6944***(0.0831)  0.6647***(0.0984) &3 0.1913**(0.0879)  0.4377**(0.2137)
By 11 0.4059(0.2914) —0.2759(0.2245) 113 0.4148"** (0.1526) ~0.0483(0.1323)
®1 10 —17.4749(11.5521)  —10.7715(15.4631) @1 12 —1.5651(5.0321)  —5.0643(11.3223)
By 13 ~10.9163(6.8459) —8.0130(7.9166)  ®1.13 1.7358(1.8527) 2.7481(3.5702)
By 01 0.0083*(0.0045)  0.0147***(0.0050) @121 0.0017(0.0012) —0.0001(0.0018)
D1 290 1.1893***(0.1546) 1.0510***(0.1675)  P1,22 0.9241***(0.0387) 0.6615***(0.0923)
®1 23 0.2019**(0.0866) 0.1268(0.0841) @1 o3 0.0535***(0.0185)  0.0776**(0.0367)
®1 31 —0.0038(0.0092) —0.0069(0.0135) @131 —0.0030(0.0028) —0.0012(0.0031)
®1 32 —0.3238(0.3283)  —0.3548%(0.2150)  ®1 32 —0.1899(0.1417) —0.1380(0.3169)
®1 33 0.6674***(0.1809)  0.7500***(0.1080)  ®1.33 0.8847%*%(0.0702)  0.4428***(0.1133)
Uy 0.3871***(0.1018)  0.2486***(0.0522) Wy 13 —0.5969*** (0.0752) NA
o) 12.8009***(1.3657)  17.8343°%*(1.2332) Q! 17.1544*** (1.1348)  17.4057***(1.2077)
0y} 0.0087(0.0167) 0.0199(0.0163) Q5! 0.0121(0.0247) 0.0078(0.0229)
9521 0.1354***(0.0130) 0.1595***(0.0107) Q;zl 0.1568***(0.0113) 0.1743***(0.0102)
a5 0.0828(0.0528)  0.1354***(0.0520) Q5! 0.1342**(0.0568)  0.1359**(0.0671)
a5 0.0099(0.0597) 0.0030(0.0472) Q) —0.0125(0.0638) ~0.0218(0.0585)
9531 0.4347***(0.0394) 0.5217***(0.0352) 9531 0.5242***(0.0431) 0.5390***(0.0433)
v 5.2255%** (1.3534) NA v NA NA
B. Diagnostics QVAR(1) Gaussian QVAR(1) B. Diagnostics Gaussian VARMA(1,1) Gaussian VAR(1)
Cy 0.8660 0.8468 (4 0.9029 0.6017
Ca NA 0.2486 C2 0.5969 NA
Cs ADF All stationary NA C2 ADF NA NA
Cs 0.8230 NA Cs NA NA
C3 ADF All stationary NA C3 ADF NA NA
Cy 0.6791 NA Cy NA NA
Cy4y ADF All stationary NA C4 ADF NA NA
D; ADF All stationary NA D; ADF NA NA
LL —4.5353 —4.6514 LL —4.6000 —4.7484
AIC 9.4479 9.6612 AIC 9.5586 9.8365

Note: Quasi-vector autoregressive (QVAR); VAR moving average (VARMA); not available (NA); augmented Dickey—Fuller (ADF);
log-likelihood (LL); Akaike information criterion (AIC). For all models, |C1| < 1 indicates covariance stationarity. For QVAR(1),
Co2 ADF indicates that u; and its derivative Qus/Ous have finite second moments and covariance that are dynamic and do not
depend on p¢. For all Gaussian models, |C2| < 1 indicates invertibility. For QVAR(1), |C3| < 1 and |C4| < 1 indicate necessary and
sufficient conditions for the asymptotic properties of the ML estimator, respectively. For QVAR(1), D; ADF indicates that all time
series formed by the elements of D; are covariance stationary. Bold likelihood-based metrics indicate superior model performance.

Standard errors are reported in parentheses. *, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively.
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TABLE 3

Parameter estimates and model diagnostics for second-order multivariate time series models

A. Parameters QVAR(2) A. Parameters Gaussian VARMA(2,1) Gaussian VAR(2)
a 3.6927(2.9517) & ~0.3198(3.6659) —0.6156(6.3289)
c2 0.5982***(0.0836)  ¢é2 0.0086(0.0321) 0.0719(0.0626)
c3 0.6997** (0.0635) &3 0.2031%(0.1137)  0.4321**(0.2091)
By 11 0.0434(0.4088) @1 11 0.4535"*(0.1885) ~0.0551(0.1381)
®1 10 —14.0767(17.4553) @1 12 —2.4832(16.8823)  —11.6530(14.6404)
®1 13 —14.9229(10.5581) @1 13 2.8715(4.9101) 2.8974(4.1635)
By 01 0.0093*(0.0057) &1 21 0.0006(0.0018) 0.0003(0.0018)
D122 1.6014%5*(0.1649) @1 29 0.8223***(0.2101)  0.4208***(0.1187)
B 93 0.2874***(0.1111)  ®1.93 0.0776*(0.0453) 0.0698(0.0447)
®1 31 —0.0058(0.0156) @131 —0.0018(0.0029) —0.0012(0.0028)
®1 32 0.6641(0.8137) &1 32 —0.1016(0.4782) —0.2377(0.4349)
®1 33 0.8487**(0.2772) 133 0.8758%**(0.1683)  0.3270***(0.1212)
B911 0.5330(0.3849) 911 ~0.2073*(0.1205)  —0.2819**(0.1287)
By 19 18.0614(14.6695) P2 12 2.2500(16.3773)  10.0400(12.6349)
By 13 10.0051(10.7389) @2 13 —0.7693(5.6546) 1.8566(5.0159)
D301 0.0003(0.0063) P2 21 0.0025(0.0016) 0.0023*(0.0014)
D3 020 —0.6958%**(0.1458) P2 22 0.0909(0.1742) 0.3371***(0.0998)
@03 —0.0595(0.1270)  ®3.23 ~0.0242(0.0411) 0.0195(0.0399)
By 51 —0.0492°%(0.0224) P 31 —0.0036(0.0041) ~0.0029(0.0052)
D 30 —0.3714(1.0000)  ®339 —0.0704(0.4839) ~0.0640(0.4330)
D333 —1.2614*%*(0.4601) P 33 —0.0134(0.1463)  0.2882**(0.1291)
a1 0.4251°%(0.1046) ¥y 14 —0.5495%**(0.1424) NA
o) 12.2978***(1.3441) Q' 16.7792°**(1.3796)  16.6400***(1.5254)
0y 0.0034(0.0163) ;" 0.0184(0.0301) 0.0134(0.0314)
Q) 0.1157%*(0.0109) €3, 0.1506***(0.0114)  0.1582*** (0.0096)
Q3! 0.1033**(0.0501) Q3! 0.1237*(0.0644)  0.1326**(0.0617)
o3} 0.0084(0.0549) Q3! —0.0065(0.0818) —0.0236(0.0738)
Q5 0.3825%**(0.0378) Qg 0.5222%*%(0.0450)  0.5176***(0.0470)
v 3.6079%**(0.9566) v NA NA
B. Diagnostics QVAR(2) B. Diagnostics Gaussian VARMA(2,1) Gaussian VAR(2)
C1 0.8932 (1 0.8874 0.7779
Ca NA (s 0.5495 NA
Cy ADF All stationary Co ADF NA NA
Cs3 0.9010 C3 NA NA
C3 ADF All stationary Cs ADF NA NA
Cy 0.8137 Cu NA NA
C4 ADF All stationary Cy4 ADF NA NA
Dy ADF All stationary Dy ADF NA NA
LL —4.4445 LL —4.5342 —4.5664
AIC 9.4362 AIC 9.5968 9.6422

Note: Quasi-vector autoregressive (QVAR); VAR moving average (VARMA); not available (NA); augmented Dickey—Fuller (ADF);
log-likelihood (LL); Akaike information criterion (AIC). For all models, |C1| < 1 indicates covariance stationarity. For QVAR(1),
C2 ADF indicates that u; and its derivative du¢/dus have finite second moments and covariance that are dynamic and do not
depend on p¢. For all Gaussian models, |C2| < 1 indicates invertibility. For QVAR(1), |C3| < 1 and |C4| < 1 indicate necessary and
sufficient conditions for the asymptotic properties of the ML estimator, respectively. For QVAR(1), D; ADF indicates that all time
series formed by the elements of D; are covariance stationary. Bold likelihood-based metrics indicate superior model performance.

Standard errors are reported in parentheses. *, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively.
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Figure 1. Dataset for the period of 1987:Q1 to 2013:Q2, inclusive
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Figure 6. Invertibility of QVAR(1) and QVAR(2) for the period of 1987:Q1 to 2013:Q2, inclusive
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