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I. Introduction

Macroeconomic time series analysis frequently involves stochastic seasonality components in

practical applications. The successful detection of those components is useful, for example, for a

first-step deseasonalization of macroeconomic data, in order to effectively measure the interac-

tion effects among the deseasonalized macroeconomic variables in a second-step. The detection

of seasonality is also useful in those cases, when the effectiveness of a previous seasonality ad-

justment is verified ex-post. In this paper, we suggest a new mechanism of seasonality detection

for multivariate macroeconomic time series, by extending the dynamic conditional score (DCS)

model for the multivariate t distribution (Harvey, 2013). We name the extended model as the

quasi-vector autoregressive (QVAR) model, and we present that the new seasonality detection

mechanism is very useful for a small macroeconomic dataset from the United States (US).

DCS models are observation-driven time series models (Cox, 1981). An example of a DCS

model is Beta-t-EGARCH (exponential generalized autoregressive conditional heteroscedastic-

ity) (Harvey and Chakravarty, 2008), which is an outlier-robust alternative to GARCH (Engle,

1982; Bollerslev, 1986). We refer to the recent Beta-t-EGARCH applications of Blazsek and

Villatoro (2015), Blazsek and Mendoza (2016), and Blazsek and Monteros (2017). Another

example of a DCS model is QAR (Harvey, 2013), which is a nonlinear and outlier-robust al-

ternative to AR moving average (ARMA) (Box and Jenkins, 1970). The QVAR model of this

paper is a nonlinear and outlier-robust alternative to VARMA (Tiao and Tsay, 1989). We also

refer to the following recent DCS models: Blazsek and Escribano (2016a) suggest a DCS count

panel data model, which is an alternative to the dynamic count panel data models of Blundell,

Griffith and Windmeijer (2002), Wooldridge (2005), and Blazsek and Escribano (2010, 2016b).

Ayala, Blazsek and Escribano (2017) suggest DCS-EGARCH (exponential GARCH) models

with score-driven shape parameters, which are extensions of the DCS-EGARCH models with

constant shape (see, for example, Harvey, 2013). Blazsek and Ho (2017) and Blazsek, Ho and

Liu (2018) suggest new Markov regime-switching DCS-EGARCH models. The works of Ayala

and Blazsek (2018a, 2018b) suggest new DCS copula models for financial portfolios.
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QVAR with lag-order p is a score-driven nonlinear multivariate dynamic location model, in

which the conditional score vector of the log-likelihood (LL) with respect to location (hereinafter,

score function) updates the dependent variables. QVAR(p) is an extension of the DCS model

for the multivariate t-distribution (Harvey, 2013) that is QVAR(1) under our notation. QVAR,

compared to multivariate Gaussian time series models, is robust to extreme values in the noise.

For QVAR, we present the details of the econometric formulation, computation of the impulse

response function (IRF), and the maximum likelihood (ML) estimation and related conditions

of consistency and asymptotic normality that include the condition of invertibility.

We estimate QVAR by using quarterly macroeconomic time-series data for the period of

1987:Q1 to 2013:Q2 inclusive, from the following I(0) variables: (i) quarterly percentage change

in non-seasonally adjusted crude oil real price; (ii) quarterly seasonally adjusted US inflation

rate; (iii) quarterly seasonally adjusted US real gross domestic product (GDP) growth. The

use of these variables is motivated by several works from the body of literature, which study

the question of how oil price shocks affect US real GDP growth and US inflation rate (e.g.

Blanchard, 2002; Barsky and Kilian, 2004; Kilian, 2008; Kilian and Lütkepohl, 2017). The

dataset of the present paper includes extreme observations (for example, those related to the

1990 oil price shock caused by the Iraqi invasion of Kuwait and also those related to the 2008

financial crisis), motivating the use of the outlier-robust QVAR(p) model. The sample size of

these data is relatively small, which is frequently the case in macroeconomic data analyses.

We show that the application of the nonlinear QVAR(p) model to this small dataset, is more

effective in identifying stochastic seasonality effects in the data series than the application of

classic linear multivariate time series models.

We compare the statistical performance of QVAR(p) with that of two linear benchmarks:

(i) Gaussian QVAR(p) is a limiting special case of QVAR(p) with multivariate t distribution,

when the degrees of freedom parameter goes to infinity. Gaussian QVAR(p) is a Gaussian

VARMA(p,p) model with restricted vector MA (VMA) parameters. (ii) Gaussian VARMA(p,q)

is a popular model in practical applications and it is also an extension of Gaussian VARMA(p,p).
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In relation to Gaussian VARMA(p,q), we also consider the Gaussian VAR(p) model.

We find that the statistical performance of QVAR(p) is superior to that of Gaussian QVAR(p)

and Gaussian VARMA(p,q). A relevant finding of this paper is that the nonlinear QVAR(2) with

multivariate t distribution is effectively estimated by using the ML method, while for its limiting

special case, the Gaussian QVAR(2) model, the ML estimator does not converge to an optimal

solution. This result is due to the fact the QVAR(2) with multivariate t distribution that is

updated by the score function is robust to extreme values in the irregular component, while its

Gaussian benchmark is sensitive to outliers. With respect to the identification of stochastic sea-

sonality effects, we find that QVAR(1) does not identify the aforementioned effects, motivating

the extension of that model to QVAR(p) with higher lag-orders. We find that the seasonal-

ity detection mechanism is effective for QVAR(2): (i) Annual stochastic seasonality effects are

identified for the non-seasonally adjusted percentage change in crude oil real price times series.

(ii) Seasonality is not detected for the seasonally adjusted US inflation rate time series, thus

the seasonality detection mechanism suggests that seasonality adjustment was successful at the

data source. (iii) Annual stochastic seasonality effects are detected for the seasonally adjusted

US real GDP growth time series, suggesting that the seasonality adjustment was not effective

at the data source. With respect to the linear Gaussian alternatives, seasonality effects are not

detected for any of the QVAR(p) and Gaussian VARMA(p,q) specifications of this paper.

The focus of this paper is seasonality detection, by using QVAR(p), for multivariate macroe-

conomic time series data. Nevertheless, QVAR(p) can also be applied to the detection of different

forms of nonlinearity in time series, other than seasonality. For example, QVAR(p) can be ap-

plied to (i) the detection of regime-switching time series dynamics, (ii) the highlighting of the

presence of extreme observations in a dataset, or (iii) the identification of different forms of

heteroscedasticity. The QVAR(p) model of this paper identifies stochastic seasonality and it

also verifies whether seasonality adjustment was successful at the data source. These results

may motivate the consideration of QVAR(p) in future macroeconomic analyses, which use small

datasets with extreme observations that are frequent properties of macroeconomic data.
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The remainder of this paper is organized as follows. Section II presents the nonlinear

QVAR(p) model. Section III presents the benchmark linear Gaussian QVAR(p) and Gaussian

VARMA(p,q) models. Section IV describes the macroeconomic data. Section V summarizes the

empirical results. Section VI concludes.

II. Score-driven nonlinear multivariate dynamic location model: QVAR(p)

Reduced-form and structural-form representations

The reduced-form representation of QVAR(p) for yt (K × 1) is

yt = c+ µt + vt, (1)

µt = Φ1µt−1 + . . .+ Φpµt−p + Ψ1ut−1, (2)

where c (K × 1), Φ1, . . . ,Φp (each K ×K) and Ψ1 (K ×K) are time-constant parameters. The

conditional mean of the dependent variables is given by E(yt|y1, . . . , yt−1) = c + µt, because

the updating term ut−1 (K × 1) with zero unconditional mean is a function of y1, . . . , yt−1 and

E(vt) = 0K×1. For the first p observations, we initialize µt by using µt = E(µt) = 0K×1.

With respect to the updating terms, vt (K × 1) is the reduced-form error term and ut

(K × 1) is a scaled score function vector. vt is multivariate i.i.d. with vt ∼ tK(0,Σ, ν), where

Σ = Ω−1(Ω−1)′ is positive definite and ν > 2 denotes the degrees of freedom parameter (thus,

the variance of vt is finite). The log of the conditional density of yt is

ln f(yt|y1, . . . , yt−1) = ln Γ

(
ν +K

2

)
− ln Γ

(ν
2

)
− K

2
ln(πν) (3)

−1

2
ln |Σ| − ν +K

2
ln

(
1 +

v′tΣ
−1vt
ν

)
.

The partial derivative of the log of the conditional density with respect to µt is

∂ ln f(yt|y1, . . . , yt−1)

∂µt
=
ν +K

ν
Σ−1 ×

(
1 +

v′tΣ
−1vt
ν

)−1

vt =
ν +K

ν
Σ−1 × ut, (4)
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The latter equality defines the scaled score function ut by using the reduced-form error term. In

the definition of ut, vt is multiplied by [1+(v′tΣ
−1
v vt)/ν]−1 = ν/(ν+v′tΣ

−1
v vt) ∈ (0, 1). Therefore,

the scaled score function is always bounded by the reduced-form error term: |ut| < |vt|. The

scaled score function ut is multivariate i.i.d. with mean zero and covariance matrix

Var(ut) = E

[
∂ ln f(yt|y1, . . . , yt−1)

∂µt
× ∂ ln f(yt|y1, . . . , yt−1)

∂µ′t

]
=

ν +K

µ+K + 2
Σ−1. (5)

Related to the structural-form representation of QVAR(p), for the reduced-form error term

vt ∼ tK(0,Σ, ν) we have E(vt) = 0 and Var(vt) = Σ× ν/(ν − 2). We factorize Var(vt) as

Var(vt) = Σ× ν

ν − 2
=

(
ν

ν − 2

)1/2

× Ω−1(Ω−1)′ ×
(

ν

ν − 2

)1/2

, (6)

and we introduce the multivariate i.i.d. structural-form error term εt as

vt =

(
ν

ν − 2

)1/2

Ω−1 × εt, (7)

where E(εt) = 0, Var(εt) = IK and εt ∼ tK [0, IK × (ν − 2)/ν, ν]. By substituting equation (7)

into equation (1), we obtain the structural-form representation of QVAR(p):

(
ν

ν − 2

)−1/2

Ωyt =

(
ν

ν − 2

)−1/2

Ωc+

(
ν

ν − 2

)−1/2

Ωµt +

(
ν

ν − 2

)−1/2

Ωvt = (8)

=

(
ν

ν − 2

)−1/2

Ωc+

(
ν

ν − 2

)−1/2

Ωµt + εt.

Furthermore, by substituting equation (7) into ut from equation (4), we obtain

ut = [(ν − 2)ν]1/2Ω−1 × εt
ν − 2 + ε′tεt

, (9)

which is the representation of the scaled score function ut according to the structural-form error

term εt (we use the latter equation to obtain the IRF formulas in the next three subsections).
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First-order representation

The first-order representation of the reduced-form QVAR(p) model of equations (1) and (2) is

Yt = C +Mt + Vt, (10)

Mt = ΦMt−1 + ΨUt−1, (11)

where

Yt =



yt

yt−1

...

yt−p+1


(Kp×1)

C =



c

c

...

c


(Kp×1)

Mt =



µt

µt−1

...

µt−p+1


(Kp×1)

Vt =



vt

vt−1

...

vt−p+1


(Kp×1)

,

Φ =



Φ1 Φ2 · · · Φp−1 Φp

IK 0K×K · · · · · · 0K×K

0K×K IK 0K×K · · · · · ·

· · · · · · · · · · · · · · ·

0K×K · · · 0K×K IK 0K×K


(Kp×Kp)

Ψ =



Ψ1 0K×K · · · 0K×K

0K×K 0K×K · · · 0K×K

· · · · · · · · · · · ·

0K×K · · · · · · 0K×K


(Kp×Kp)

Ut =



ut

ut−1

...

ut−p+1


(Kp×1)

Infinite vector moving average representation

From equations (10) and (11), the reduced-form nonlinear VMA(∞) representation of yt is

yt = c+

(
∞∑
j=0

JΦjJ ′Ψ1ut−1−j

)
+ vt, (12)
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yt = c+

[
∞∑
j=0

JΦjJ ′Ψ1

(
1 +

v′t−1−jΣ
−1vt−1−j

ν

)−1

vt−1−j

]
+ vt. (13)

where J = (IK , 0K×K , · · · , 0K×K) (K ×Kp). By using equation (7), the related structural-form

nonlinear VMA(∞) representation of yt is given by:

yt = c+

{
∞∑
j=0

JΦjJ ′Ψ1[(ν − 2)ν]1/2Ω−1 εt−1−j

ν − 2 + ε′t−1−jεt−1−j

}
+

(
ν

ν − 2

)1/2

Ω−1εt. (14)

We use C1 to denote the maximum modulus of all eigenvalues of Φ. C1 < 1 implies that the

different series in equations (12) to (14) are convergent.

Impulse response function

From equation (14), we obtain IRFj = ∂yt+j/∂εt for j = 0, 1, . . . ,∞ that is given by

IRF0 =

(
ν

ν − 2

)1/2

Ω−1, (15)

IRFjt = JΦjJ ′Ψ1[(ν − 2)ν]1/2Ω−1Dt−1−j for j = 1, . . . ,∞, (16)

where

Dt =
∂ εt
ν−2+ε′tεt

∂εt
=


d11,t · · · d1K,t

· · · · · · · · ·

dK1,t · · · dKK,t

 = (17)

=



ν−2+ε′tεt−2ε21t
(ν−2+ε′tεt)

2
−2ε1tε2t

(ν−2+ε′tεt)
2 · · · −2ε1tεKt

(ν−2+ε′tεt)
2

−2ε2tε1t
(ν−2+ε′tεt)

2

ν−2+ε′tεt−2ε22t
(ν−2+ε′tεt)

2 · · · · · ·

· · · · · · · · · · · ·
−2εKtε1t

(ν−2+ε′tεt)
2 · · · · · · ν−2+ε′tεt−2ε2Kt

(ν−2+ε′tεt)
2


.

As IRFjt for j = 1, 2, . . . ,∞ depends on t, we evaluate its unconditional mean

IRFj = E(IRFjt) = JΦjJ ′Ψ1[(ν − 2)ν]1/2Ω−1E(Dt−1−j) for j = 1, 2, . . . ,∞. (18)
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If all elements of Dt are covariance stationary, then E(Dt−1−j) can be estimated by using the

sample average (see, for example, Hamilton, 1994). We test the covariance stationarity of Dt by

using the augmented Dickey–Fuller (1979) (ADF) unit root test with constant. It is important

to note, however, that an alternative to the use of the time-invariant E(IRFjt) is the period-by-

period estimation of IRFjt. In those applications, IRFjt is averaged, for example, for pre- and

post-recession periods and the resulting different IRF estimates are compared.

Maximum likelihood estimation

We estimate the parameters of QVAR (c, Φ1, . . . ,Φp, Ψ1, Ω−1 and ν), by using the ML method.

The ML estimator of parameters is given by

Θ̂ML = arg max
Θ

LL(y1, . . . , yT ; Θ) = arg max
Θ

T∑
t=1

ln f(yt|y1, . . . , yt−1; Θ), (19)

where Θ denotes the vector of parameters. We use the numerically estimated inverse information

matrix for the ML standard errors (Creal, Koopman and Lucas, 2013; Harvey, 2013), and we

also use results from Harvey (2013, Chapters 2.3, 2.4 and 3.3) for the conditions of consistency

and asymptotic normality of the ML estimator. Related to the asymptotic properties of the

ML estimator, we also study the invertibility of QVAR(p) (see, for example, Blasques, Gorgi,

Koopman and Wintenberger, 2018).

First, Condition 1 is C1 < 1, which ensures that µt is covariance stationary. Second,

Condition 2 is that the scaled score function ut (K×1) and its derivative ∂ut/∂µt (K×K) have

finite second moments and covariance that are dynamic and do not depend on µt. For this con-

dition, we refer to the specific elements uj,t and ∂uk,t/∂µl,t, where j, k, l = 1, . . . , K. Condition 2

holds if E[u2−i
j,t (∂uk,t/∂µl,t)

i] < ∞, where i = 0, 1, 2 and j, k, l = 1, . . . , K. We test Condition 2

by using the ADF test with constant for each u2−i
j,t (∂uk,t/∂µl,t)

i. Third, for Condition 3, we

consider the representative element Ψij from the matrix Ψ. From equation (11), we have

∂Mt

∂Ψij

= Φ
∂Mt−1

∂Ψij

+ Ψ
∂Ut−1

∂Ψij

+WijUt−1 (20)
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for all t = 1, . . . , T , where the element (i, j) of the matrix Wij (Kp×Kp) is one and the rest of

the elements of Wij are zero. We use the chain rule to express

∂Ut−1

∂Ψij

=
∂Ut−1

∂M ′
t−1

∂Mt−1

∂Ψij

, (21)

and we substitute the latter equation into equation (20) to get the first-order AR representation

∂Mt

∂Ψij

=

(
Φ + Ψ

∂Ut−1

∂M ′
t−1

)
∂Mt−1

∂Ψij

+WijUt−1 = Xt
∂Mt−1

∂Ψij

+WijUt−1, (22)

where Xt (Kp×Kp) is defined by the last equality. Condition 3 is that all eigenvalues of E(Xt)

are within the unit circle. We denote the maximum modulus of all eigenvalues of E(Xt) by using

C3. If each element of Xt is covariance stationary, then E(Xt) can be estimated by using the

sample average. We test covariance stationarity of Xt by using the ADF test. Condition 3 is

a necessary condition of consistency and asymptotic normality of ML. Fourth, the information

matrix of QVAR(p) depends on the following term, expressed by using equation (22) for the

specific elements (i, j) and (k, l):

∂Mt

∂Ψij

∂M ′
t

∂Ψkl

= Xt
∂Mt−1

∂Ψij

∂M ′
t−1

∂Ψkl

X ′t +Xt
∂Mt−1

∂Ψij

W ′
ijUt−1 + U ′t−1Wkl

∂M ′
t−1

∂Ψkl

X ′t +WijUt−1U
′
t−1W

′
kl.

(23)

We write this equation according to a first-order dynamic representation, as follows:

vec

(
∂Mt

∂Ψij

∂M ′
t

∂Ψkl

)
= (Xt ⊗Xt)vec

(
∂Mt−1

∂Ψij

∂M ′
t−1

∂Ψkl

)
+ (24)

+vec

(
Xt
∂Mt−1

∂Ψij

W ′
ijUt−1

)
+ vec

(
U ′t−1Wkl

∂M ′
t−1

∂Ψkl

X ′t

)
+ vec

(
WijUt−1U

′
t−1W

′
kl

)
,

where ⊗ is the Kronecker product and vec(x) indicates that the columns of the matrix are being

stacked one upon the other. Condition 4 is that all eigenvalues of E(Xt ⊗ Xt) are within the

unit circle. We denote the maximum modulus of all eigenvalues of E(Xt ⊗Xt) by using C4. If

each element of Xt ⊗ Xt is covariance stationary, then E(Xt ⊗ Xt) can be estimated by using
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the sample average. We test covariance stationarity of Xt ⊗ Xt by using the ADF test with

constant. Condition 4 is a sufficient condition of consistency and asymptotic normality of ML.

For the computation of Xt = Φ+Ψ(∂Ut−1/∂M
′
t−1), we need the formula for ∂ut/∂µ

′
t (K×K).

As aforementioned, the scaled score function is given by

ut =

(
1 +

v′tΣ
−1vt
ν

)−1

vt =
ν(yt − c− µt)

ν + (yt − c− µt)′Σ−1(yt − c− µt)
, (25)

and the formula of ∂ut/∂µ
′
t can be obtained by using standard matrix calculus.

In addition to the previous conditions, we also study the invertibility of QVAR, which is

a condition of the consistency and asymptotic normality of ML. Invertibility is studied in the

recent literature on DCS models (see for example: Blasques, Gorgi, Koopman and Wintenberger,

2018). From equations (10) and (11) we express:

Yt = C − ΦC + ΦYt−1 − ΦVt−1 + ΨUt−1 + Vt. (26)

We substitute the scaled score function vector Ut−1 into the previous equation and obtain:

Yt = C − ΦC + Φyt−1 + (Ψt − Φ)Vt−1 + Vt, (27)

where

Ψt =



Ψ1t 0K×K · · · 0K×K

0K×K 0K×K · · · 0K×K

· · · · · · · · · · · ·

0K×K · · · · · · 0K×K


(Kp×Kp)

(28)

and

Ψ1t = Ψ1 ×
(

1 +
v′t−1Σ−1vt−1

ν

)−1

= Ψ1 ×
ν

ν + v′t−1Σ−1vt−1

. (29)

QVAR(p) is a VARMA(1,1) model with the VMA(1) parameter Ψt−Φ. If the maximum modulus

of eigenvalues of Ψt − Φ is lower than one for all t, then QVAR will be invertible.
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III. Benchmark linear multivariate time series models

First benchmark: Gaussian QVAR(p)

From the nonlinear QVAR(p) model that uses the multivariate t distribution for the reduced-

form error term vt, we obtain linear multivariate time series models with multivariate normal

distribution for vt. If ν → ∞, then in the limiting case vt ∼ tK(0,Σ, ν) →d NK(0,Σ) and

ut = vt[1+(v′tΣ
−1
v vt)/ν]−1 →p vt. The multivariate model obtained for ν →∞, named Gaussian

QVAR(p), is considered as the first benchmark model. For the limiting case, QVAR(p) is

yt = c− Φ1c− . . .− Φpc+ Φ1yt−1 + . . .+ Φpyt−p + vt + Ψ1vt−1 − Φ1vt−1 − . . .− Φpvt−p, (30)

which is a Gaussian VARMA(p,p) specification with VMA coefficients Ψ1 − Φ1,−Φ2, . . . ,−Φp.

For the Gaussian QVAR(1) case (Harvey, 2013), we have the reduced-form representation:

yt = c− Φ1c+ Φ1yt−1 + vt + (Ψ1 − Φ1)vt−1, (31)

which is a Gaussian VARMA(1,1) model with VMA coefficient Ψ1 − Φ1. Under the restriction

Ψ1 = Φ1, we obtain the reduced-form representation of the classic Gaussian VAR(1) model:

yt = c− Φ1c+ Φ1yt−1 + vt. (32)

For the lag-orders p > 1, it is not possible to obtain the Gaussian VAR(p) model by using

parameter restrictions from the Gaussian QVAR(p) model; see equation (30).

For Gaussian QVAR(p), which is a special case of the classic Gaussian VARMA(p,q) model,

we refer to the work of Lütkepohl (2005), with respect to the structural-form and VMA(∞)

representations of yt, the IRF, and the ML estimation and related conditions of covariance

stationarity and invertibility. It is noteworthy that even if the vt ∼ NK(0,Σ) assumption does

not hold for Gaussian QVAR(p), the ML estimator still provides consistent parameter estimates

due to the quasi-ML (QML) results of Gouriéroux, Monfort and Trognon (1984).
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Second benchmark: Gaussian VARMA(p,q)

The Gaussian VARMA(p,p) specification of equation (30) is a special case of the classic linear

Gaussian VARMA(p,q) model that is frequently used by practitioners for the analysis of macroe-

conomic data. Gaussian VAR(p), which to our knowledge is even more popular for practical use,

is a special case of Gaussian VARMA(p,q). Motivated by these points, we consider Gaussian

VARMA(p,q) as the second benchmark model, and present estimation results for both Gaussian

VARMA(p,q) and Gaussian VAR(p). The reduced-form representation of VARMA(p, q) is

yt = µ̃t + vt = µ̃t + Ω−1εt, (33)

where vt ∼ NK(0,Σ) is the multivariate i.i.d. reduced-form error term. We factorize the positive

definite covariance matrix as Var(vt) = Σ = Ω−1(Ω−1)′. The multivariate i.i.d. structural-form

error term εt = Ωvt ∼ NK(0, IK). Furthermore, µ̃t is the conditional mean of yt|(y1, . . . , yt−1)

that is specified as

E(yt|y1, . . . , yt−1) = µ̃t = c̃+ Φ1yt−1 + · · ·+ Φpyt−p + Ψ̃1vt−1 + . . .+ Ψ̃qvt−q, (34)

where c̃ (K×1), Φ1, . . . ,Φp (each K×K) and Ψ̃1, . . . , Ψ̃q (each K×K) are constant parameters.

For the classic Gaussian VARMA(p,q) we use tilde notation for several parameters to indicate the

difference of parameters with respect to Gaussian QVAR(p). Under the restriction Ψ̃j = 0K×K

for j = 1, . . . , q, we obtain the classic Gaussian VAR(p) model. For the first p observations, we

initialize µ̃t by using the unconditional mean µ̃t = E(yt) = J(IKp − Φ)−1C̃, where

Φ =



Φ1 Φ2 · · · Φp−1 Φp

IK 0K×K · · · · · · 0K×K

0K×K IK 0K×K · · · · · ·

· · · · · · · · · · · · · · ·

0K×K · · · 0K×K IK 0K×K


(Kp×Kp)

C̃ =



c̃

0K×1

· · ·

0K×1


(Kp×1)
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and J = [IK , 0K×K , · · · , 0K×K ] (K ×Kp).

For Gaussian VARMA(p,q), we refer to the work of Lütkepohl (2005), with respect to the

structural-form and VMA(∞) representations of yt, the IRF, and the ML estimation and related

conditions of covariance stationarity and invertibility. We refer to the QML asymptotic results

as noted earlier, for the case when vt ∼ NK(0,Σ) is used for VARMA(p,q).

VI. Data

We use macroeconomic data from the book of Kilian and Lütkepohl (2017) (the data are down-

loaded from: http://www-personal.umich.edu/∼lkilian/figure9 1 chol.zip; original data sources:

Federal Reserve Economic Data, Federal Reserve Bank of St. Louis; Economagic). This dataset

includes the following variables: (i) non-seasonally adjusted monthly West Texas Intermediate

(WTI) spot price of crude oil for the period of December 1972 to June 2013, inclusive; (ii) sea-

sonally adjusted quarterly US GDP deflator for the period of 1959:Q1 to 2013:Q2, inclusive; (iii)

seasonally adjusted quarterly US real GDP level for the period of 1959:Q1 to 2013:Q2, inclusive.

We highlight the facts that the crude oil price series is non-seasonally adjusted and the US GDP

deflator and US real GDP level series are both seasonally adjusted. The stochastic seasonality

detection mechanism of the present paper is able to detect the seasonality of crude oil price, and

the same mechanism is also able to evaluate whether the seasonality adjustments for US GDP

deflator and US real GDP level were effective at the data source.

We define: (i) percentage change in the crude oil real price y1t, as the quarterly first difference

of log real price of crude oil; (ii) US inflation rate y2t, as the quarterly first difference of log

US GDP deflator; (iii) US real GDP growth y3t, as the quarterly first difference of log US real

GDP level. All variables are measured in percentage points. We define yt = (y1t, y2t, y3t)
′, hence,

K = 3 for all models. We use data for the period of 1987:Q1 to 2013:Q2 inclusive (see Figure 1),

motivated by the work of Kilian and Lütkepohl (2017). All results of this paper are according to

the variable ordering (y1t, y2t, y3t). Nevertheless, we also perform robustness analyses by using

different variable orderings (see Blazsek and Escribano, 2017). The results of this paper are

supported with respect to alternative orders of variables.
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In Panel A of Table 1, we present the start and end dates of the dataset, and sample size (T ),

minimum, maximum, mean, standard deviation, skewness and excess kurtosis for each variable.

In the same table, we also present ADF test results and partial autocorrelation function (PACF)

estimates (see, for example, Hamilton, 1994) up to 20 lags. The ADF test for three alternative

test specifications suggests that all dependent variables are I(0). The PACF estimates indicate

that all variables are I(0) and significant serial correlation for several lags for all variables.

In Panel B of Table 1, we report descriptive statistics of deterministic annual seasonality

effects for the percentage change in crude oil real price, US inflation rate and US real GDP growth

time series. For each variable yit, we estimate the linear regression model yit = δi,Q1DQ1,t +

δi,Q2DQ2,t+δi,Q3DQ3,t+δi,Q4DQ4,t+ηit, where DQ1,t, DQ2,t, DQ3,t and DQ4,t are dummy variables

indicating each quarter of the year, and ηit is the error term. We use heteroscedasticity and

autocorrelation consistent (HAC) standard errors (Newey and West, 1987) for the ordinary least

squares (OLS) estimation of this model. We test the significance of parameter differences for each

linear regression. The corresponding p-values, reported in Panel B of Table 1, indicate significant

deterministic seasonality effects for the variables y1t and y3t. These preliminary results suggest

that the deterministic seasonality effects are significant for the percentage change in crude oil

real price, that the seasonal adjustment of US inflation rate was successful at the data source,

and that the seasonal adjustment of US real GDP growth was ineffective at the data source. We

do not include seasonality dummies in QVAR, VAR and VARMA, motivated by the design of the

seasonality detection mechanism of this work. The stochastic seasonality detection mechanism

of this paper can detect seasonality effects in a more general way than the linear regression

model with quarterly dummies and constant parameters.

The relatively small sample size of data (T = 106) used in this paper is a frequent property

of macroeconomic time series data. In the next section, we present the consequences of the

limited sample size for the effective estimation of QVAR(p) and that of the benchmark Gaussian

QVAR(p) and Gaussian VARMA(p,q) models.

[APPROXIMATE LOCATION OF TABLE 1 AND FIGURE 1]
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V. Empirical results

Identification of structural forms

The QVAR, VAR and VARMA models of this paper are recursively identified structural mod-

els. This identification method is supported by the argument that oil price shocks may act as

domestic supply shocks for the US economy (Kilian and Lütkepohl, 2017).

In this subsection, we present the identification of the most general QVAR model of this

paper: QVAR(2). The identification of the structural-form representation is identical for all

other models of this paper. Let K = 3 and P = 2 in equations (1) and (2), then the reduced-

form QVAR(2) is


y1t

y2t

y3t

 =


c1

c2

c3

+


Φ1,11 Φ1,12 Φ1,13

Φ1,21 Φ1,22 Φ1,23

Φ1,31 Φ1,32 Φ1,33



µ1,t−1

µ2,t−1

µ3,t−1

+ (35)

+


Φ2,11 Φ2,12 Φ2,13

Φ2,21 Φ2,22 Φ2,23

Φ2,31 Φ2,32 Φ2,33



µ1,t−2

µ2,t−2

µ3,t−2

+


Ψ1,11 Ψ1,12 Ψ1,13

Ψ1,21 Ψ1,22 Ψ1,23

Ψ1,31 Ψ1,32 Ψ1,33



u1,t−1

u2,t−1

u3,t−1

+


v1t

v2t

v3t


Let Var(vt) = [ν/(ν − 2)]× Σ = [ν/(ν − 2)]× Ω−1(Ω−1)′ where

Ω−1 =


Ω−1

11 0 0

Ω−1
21 Ω−1

22 0

Ω−1
31 Ω−1

32 Ω−1
33

 (36)

is a lower-triangular matrix. Then,

vt =

(
ν

ν − 2

)1/2

Ω−1εt =

(
ν

ν − 2

)1/2


Ω−1

11 ε1t

Ω−1
21 ε1t + Ω−1

22 ε2t

Ω−1
31 ε1t + Ω−1

32 ε2t + Ω−1
33 ε3t

 (37)
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For QVAR, VARMA and VAR, the decomposition Σ = Ω−1(Ω−1)′ is a Cholesky decomposition.

As Σ is positive definite for all cases, the Cholesky decomposition is unique if the diagonal of

Ω−1 includes positive elements (i.e. Ω−1
11 > 0, Ω−1

22 > 0 and Ω−1
33 > 0).

Estimation for a small dataset with extreme observations

For QVAR(p) with multivariate t distribution, the ML procedure does not converge to an opti-

mum for the dataset of this paper, due to the small number of observations for each variable.

We use the Ψ1 = Ψ1,11× IK restriction, where Ψ1,11 ∈ IR. This implies that Ψ1 is diagonal with

Ψ1,11 = Ψ1,22 = Ψ1,33 (Harvey, 2013, p. 211, notes that the effective specification of matrix Ψ1

is related to the specific application of the multivariate DCS model). Under that restriction,

we identify all elements of c, Φ, Ω−1 and ν. Due to the small sample size, the ML procedure

does not converge to an optimum for the QVAR(p) specification with p > 2. Therefore, for

QVAR(p) with multivariate t distribution, we report results for QVAR(1) and QVAR(2) with

scalar Ψ1. In future works that use a greater sample size for the dataset, the full Ψ1 matrix can

be estimated and QVAR(p) with p > 2 can be used for data analysis.

For Gaussian QVAR(p) and Gaussian VARMA(p,q) the ML procedure does not converge

to an optimum, due to the small number of observations. We use scalar VMA parameters for

all Gaussian multivariate specifications. For Gaussian QVAR(p) we denote the scalar VMA

parameter by Ψ1,11, and for Gaussian VARMA(p,q) we denote the scalar VMA parameters by

Ψ̃j,11 with j = 1, . . . , q. Under those restrictions, we identify all elements of c, Φ and Ω−1. The

ML estimation procedure converges for the following Gaussian models: Gaussian QVAR(1),

Gaussian VARMA(1,1), Gaussian VARMA(2,1), Gaussian VAR(1) and Gaussian VAR(2).

A relevant result of the present paper is that QVAR(2) with multivariate t distribution is

successfully estimated, while Gaussian QVAR(2) (i.e. the special case of QVAR(2) with mul-

tivariate t distribution) and Gaussian VARMA(2,2) are not estimated effectively. This is due

to the fact that QVAR(2) is robust to extreme observations while the Gaussian multivariate

models are sensitive to those observations. This result shows the advantage of QVAR(2) for

practical application, with respect to the Gaussian models. In addition, the ML procedure does
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not converge to an optimum for the Gaussian QVAR(p) and Gaussian VARMA(p,q) specifica-

tions with p > 2 and q > 2. Therefore, we report results for the Gaussian QVAR(1), Gaussian

VARMA(1,1), Gaussian VARMA(2,1), Gaussian VAR(1) and Gaussian VAR(2) models.

First-order multivariate models

We present the parameter estimates and model diagnostics for QVAR(1), Gaussian QVAR(1),

Gaussian VARMA(1,1) and Gaussian VAR(1) in Table 2. We present the IRFs for those models

in Figures 2 to 5, respectively. We present the invertibility of QVAR(1) in Figure 6(a).

For all models, we find that conditions of consistency and asymptotic normality of ML are

supported by the C1, C2, C3 and C4 metrics (Table 2). With respect to QVAR(1), the null

hypothesis of the ADF test with constant is always rejected for conditions C2, C3, C4 and

matrix Dt (Table 2). In Figure 6(a), we present the evolution of the maximum modulus of

eigenvalues of Ψt −Φ for QVAR(1), with the related ±2σ interval, for the period of 1987:Q1 to

2013:Q2, inclusive. Those results suggest that QVAR(1) is invertible. We compare the statistical

performance of the first-order models, by using the following likelihood-based metrics: LL and

Akaike information criterion (AIC). Both metrics suggest that the statistical performance of

QVAR(1) is superior to the other first-order alternatives of this paper (Table 2).

We find that some elements of Φ1 and Ω−1 are significantly different from zero for all models

(Table 2). To check the robustness of our results, we also estimate a restricted version of all

models, for which each non-significant parameter in Φ1 and Ω−1 is restricted to the value zero (see

Blazsek and Escribano, 2017). All results reported in this work are robust to those restrictions.

This suggests significant dynamic and contemporaneous interaction effects, respectively, among

the percentage change in crude oil real price, US inflation rate and US real GDP growth. We

study the dynamic interaction effects by using the IRFs in Figures 2 to 5, for which we report

the mean IRF estimates up to 20 leads. We do not report the IRF confidence intervals in those

figures, due to the small number of observations in the dataset and due to the fact that the main

focus of the present paper is seasonality detection based on the mean IRF estimates. A common

finding for all first-order models is that the stochastic seasonality effects are not identified
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in any of the IRF figures. These results show that the score-driven first-order multivariate t

distribution model, also named QVAR(1) model, does not identify the seasonality effects for

the small macroeconomic dataset of this paper. This motivates the application of higher-order

QVAR(p) specifications, which are presented in the following subsection.

[APPROXIMATE LOCATION OF TABLE 2 AND FIGURES 2 TO 6]

Second-order multivariate models

We present the parameter estimates and model diagnostics for QVAR(2), Gaussian VARMA(2,1)

and Gaussian VAR(2) in Table 3. We present the IRFs for those models in Figures 7 to 9,

respectively. We present the invertibility of QVAR(2) in Figure 6(b).

All conditions of consistency and asymptotic normality of ML are supported by the C1, C2,

C3 and C4 metrics (Table 3). With respect to QVAR(2), the null hypothesis of the ADF test with

constant is always rejected for conditions C2, C3, C4 and matrix Dt (Table 3). In Figure 6(b),

we present the evolution of the maximum modulus of eigenvalues of Ψt −Φ for QVAR(2), with

the related ±2σ interval, for the period of 1987:Q1 to 2013:Q2, inclusive. Those results suggest

that QVAR(2) is invertible. The LL and AIC metrics suggest that the statistical performance

of QVAR(2) is superior to the other second-order alternatives of this paper (Table 3).

We find that some elements of Φ1, Φ2 and Ω−1 are significantly different from zero for all

models (Table 3), suggesting significant dynamic and contemporaneous interaction effects among

the percentage change in crude oil real price, US inflation rate and US real GDP growth. To

check the robustness of our results, we also estimate a restricted version of all models, for which

each non-significant parameter in Φ1, Φ2 and Ω−1 is restricted to the value zero (see Blazsek and

Escribano, 2017). All results reported in this work are robust to those restrictions. We study

the dynamic interaction effects by using the IRFs in Figures 7 to 9. In those figures, we report

the mean IRF estimates up to 20 leads (as aforementioned, we do not report IRF confidence

intervals due to the small number of observations). According to the IRF estimates, clear annual

stochastic seasonality effects are observed for QVAR(2) for several years (Figure 7), while the

same effects are not found for the Gaussian VARMA(2,1) and Gaussian VAR(2) specifications
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(Figures 8 and 9, respectively).

We obtain the following conclusions from the diagonal panels of Figure 7. For the non-

seasonally adjusted percentage change in crude oil real price time series, the seasonality detection

mechanism for QVAR(2) suggests that the percentage change in crude oil real price time series

includes a significant annual stochastic seasonality component. For the seasonally adjusted

US inflation rate time series, the seasonality detection mechanism of QVAR(2) suggests that

seasonality correction was effective at the data source. For the seasonally adjusted US real

GDP time series, the seasonality detection mechanism for QVAR(2) suggests that seasonality

correction was not effective at the data source, because the seasonally adjusted US real GDP

growth time series includes a significant annual stochastic seasonality component.

Our results for QVAR(2) with multivariate t distribution may motivate the use of the new

score-driven nonlinear multivariate QVAR(p) model, in order to identify stochastic seasonality

effects in small macroeconomic datasets with extreme observations and to verify the effectiveness

of different deseasonalization methods for macroeconomic variables.

[APPROXIMATE LOCATION OF TABLE 3 AND FIGURES 7 TO 9]

VI. Conclusions

In this paper, we have introduced a new mechanism of seasonality detection for multivariate

macroeconomic time series, by extending the DCS model for the multivariate t distribution. We

have named the extended model QVAR(p). We have used a relatively small macroeconomic

dataset that includes extreme observations for the period of 1987:Q1 to 2013:Q2, inclusive.

The variables considered have been quarterly percentage change in non-seasonally adjusted

crude oil real price, quarterly seasonally adjusted US inflation rate, and quarterly seasonally

adjusted US real GDP growth. We have found that the statistical performance of QVAR(p) is

superior to that of the linear Gaussian multivariate alternatives. Stochastic seasonality effects

have not been detected by the linear Gaussian QVAR(p), Gaussian VARMA(p,q) and Gaussian

VAR(p), whereas those effects have been detected by the nonlinear QVAR(p) with multivariate

t distribution. Our results have indicated that, for those cases when the seasonality adjustment
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is not correct or the data series includes a significant seasonality component, the VAR and

VARMA specifications of this paper are unable to detect seasonality effects, while QVAR is

able to detect seasonality effects, even for small macroeconomic datasets that are frequent in

practical applications.
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TABLE 2

Parameter estimates and model diagnostics for first-order multivariate time series models

A. Parameters QVAR(1) Gaussian QVAR(1) A. Parameters Gaussian VARMA(1,1) Gaussian VAR(1)

c1 2.7357(1.7330) 1.5209(2.0607) c̃1 0.4544(3.2069) 2.2474(7.1518)

c2 0.5628∗∗∗(0.0688) 0.5592∗∗∗(0.0600) c̃2 0.0037(0.0241) 0.1359∗∗(0.0640)

c3 0.6944∗∗∗(0.0831) 0.6647∗∗∗(0.0984) c̃3 0.1913∗∗(0.0879) 0.4377∗∗(0.2137)

Φ1,11 0.4059(0.2914) −0.2759(0.2245) Φ1,11 0.4148∗∗∗(0.1526) −0.0483(0.1323)

Φ1,12 −17.4749(11.5521) −10.7715(15.4631) Φ1,12 −1.5651(5.0321) −5.0643(11.3223)

Φ1,13 −10.9163(6.8459) −8.0130(7.9166) Φ1,13 1.7358(1.8527) 2.7481(3.5702)

Φ1,21 0.0083∗(0.0045) 0.0147∗∗∗(0.0050) Φ1,21 0.0017(0.0012) −0.0001(0.0018)

Φ1,22 1.1893∗∗∗(0.1546) 1.0510∗∗∗(0.1675) Φ1,22 0.9241∗∗∗(0.0387) 0.6615∗∗∗(0.0923)

Φ1,23 0.2019∗∗(0.0866) 0.1268(0.0841) Φ1,23 0.0535∗∗∗(0.0185) 0.0776∗∗(0.0367)

Φ1,31 −0.0038(0.0092) −0.0069(0.0135) Φ1,31 −0.0030(0.0028) −0.0012(0.0031)

Φ1,32 −0.3238(0.3283) −0.3548∗(0.2150) Φ1,32 −0.1899(0.1417) −0.1380(0.3169)

Φ1,33 0.6674∗∗∗(0.1809) 0.7500∗∗∗(0.1080) Φ1,33 0.8847∗∗∗(0.0702) 0.4428∗∗∗(0.1133)

Ψ1,11 0.3871∗∗∗(0.1018) 0.2486∗∗∗(0.0522) Ψ̃1,11 −0.5969∗∗∗(0.0752) NA

Ω−1
11 12.8909∗∗∗(1.3657) 17.8343∗∗∗(1.2332) Ω−1

11 17.1544∗∗∗(1.1348) 17.4057∗∗∗(1.2077)

Ω−1
21 0.0087(0.0167) 0.0199(0.0163) Ω−1

21 0.0121(0.0247) 0.0078(0.0229)

Ω−1
22 0.1354∗∗∗(0.0130) 0.1595∗∗∗(0.0107) Ω−1

22 0.1568∗∗∗(0.0113) 0.1743∗∗∗(0.0102)

Ω−1
31 0.0828(0.0528) 0.1354∗∗∗(0.0520) Ω−1

31 0.1342∗∗(0.0568) 0.1359∗∗(0.0671)

Ω−1
32 0.0099(0.0597) 0.0030(0.0472) Ω−1

32 −0.0125(0.0638) −0.0218(0.0585)

Ω−1
33 0.4347∗∗∗(0.0394) 0.5217∗∗∗(0.0352) Ω−1

33 0.5242∗∗∗(0.0431) 0.5390∗∗∗(0.0433)

ν 5.2255∗∗∗(1.3534) NA ν NA NA

B. Diagnostics QVAR(1) Gaussian QVAR(1) B. Diagnostics Gaussian VARMA(1,1) Gaussian VAR(1)

C1 0.8660 0.8468 C1 0.9029 0.6017

C2 NA 0.2486 C2 0.5969 NA

C2 ADF All stationary NA C2 ADF NA NA

C3 0.8230 NA C3 NA NA

C3 ADF All stationary NA C3 ADF NA NA

C4 0.6791 NA C4 NA NA

C4 ADF All stationary NA C4 ADF NA NA

Dt ADF All stationary NA Dt ADF NA NA

LL −4.5353 −4.6514 LL −4.6000 −4.7484

AIC 9.4479 9.6612 AIC 9.5586 9.8365

Note: Quasi-vector autoregressive (QVAR); VAR moving average (VARMA); not available (NA); augmented Dickey–Fuller (ADF);

log-likelihood (LL); Akaike information criterion (AIC). For all models, |C1| < 1 indicates covariance stationarity. For QVAR(1),

C2 ADF indicates that ut and its derivative ∂ut/∂µt have finite second moments and covariance that are dynamic and do not

depend on µt. For all Gaussian models, |C2| < 1 indicates invertibility. For QVAR(1), |C3| < 1 and |C4| < 1 indicate necessary and

sufficient conditions for the asymptotic properties of the ML estimator, respectively. For QVAR(1), Dt ADF indicates that all time

series formed by the elements of Dt are covariance stationary. Bold likelihood-based metrics indicate superior model performance.

Standard errors are reported in parentheses. ∗, ∗∗ and ∗∗∗ indicate significance at the 10%, 5% and 1% levels, respectively.
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TABLE 3

Parameter estimates and model diagnostics for second-order multivariate time series models

A. Parameters QVAR(2) A. Parameters Gaussian VARMA(2,1) Gaussian VAR(2)

c1 3.6927(2.9517) c̃1 −0.3198(3.6659) −0.6156(6.3289)

c2 0.5982∗∗∗(0.0836) c̃2 0.0086(0.0321) 0.0719(0.0626)

c3 0.6997∗∗∗(0.0635) c̃3 0.2031∗(0.1137) 0.4321∗∗(0.2091)

Φ1,11 0.0434(0.4088) Φ1,11 0.4535∗∗(0.1885) −0.0551(0.1381)

Φ1,12 −14.0767(17.4553) Φ1,12 −2.4832(16.8823) −11.6530(14.6404)

Φ1,13 −14.9229(10.5581) Φ1,13 2.8715(4.9101) 2.8974(4.1635)

Φ1,21 0.0093∗(0.0057) Φ1,21 0.0006(0.0018) 0.0003(0.0018)

Φ1,22 1.6014∗∗∗(0.1649) Φ1,22 0.8223∗∗∗(0.2101) 0.4208∗∗∗(0.1187)

Φ1,23 0.2874∗∗∗(0.1111) Φ1,23 0.0776∗(0.0453) 0.0698(0.0447)

Φ1,31 −0.0058(0.0156) Φ1,31 −0.0018(0.0029) −0.0012(0.0028)

Φ1,32 0.6641(0.8137) Φ1,32 −0.1016(0.4782) −0.2377(0.4349)

Φ1,33 0.8487∗∗∗(0.2772) Φ1,33 0.8758∗∗∗(0.1683) 0.3270∗∗∗(0.1212)

Φ2,11 0.5330(0.3849) Φ2,11 −0.2073∗(0.1205) −0.2819∗∗(0.1287)

Φ2,12 18.0614(14.6695) Φ2,12 2.2500(16.3773) 10.0400(12.6349)

Φ2,13 10.0051(10.7389) Φ2,13 −0.7693(5.6546) 1.8566(5.0159)

Φ2,21 0.0003(0.0063) Φ2,21 0.0025(0.0016) 0.0023∗(0.0014)

Φ2,22 −0.6958∗∗∗(0.1458) Φ2,22 0.0909(0.1742) 0.3371∗∗∗(0.0998)

Φ2,23 −0.0595(0.1270) Φ2,23 −0.0242(0.0411) 0.0195(0.0399)

Φ2,31 −0.0492∗∗(0.0224) Φ2,31 −0.0036(0.0041) −0.0029(0.0052)

Φ2,32 −0.3714(1.0000) Φ2,32 −0.0704(0.4839) −0.0640(0.4330)

Φ2,33 −1.2614∗∗∗(0.4601) Φ2,33 −0.0134(0.1463) 0.2882∗∗(0.1291)

Ψ1,11 0.4251∗∗∗(0.1046) Ψ̃1,11 −0.5495∗∗∗(0.1424) NA

Ω−1
11 12.2978∗∗∗(1.3441) Ω−1

11 16.7792∗∗∗(1.3796) 16.6400∗∗∗(1.5254)

Ω−1
21 0.0034(0.0163) Ω−1

21 0.0184(0.0301) 0.0134(0.0314)

Ω−1
22 0.1157∗∗∗(0.0109) Ω−1

22 0.1506∗∗∗(0.0114) 0.1582∗∗∗(0.0096)

Ω−1
31 0.1033∗∗(0.0501) Ω−1

31 0.1237∗(0.0644) 0.1326∗∗(0.0617)

Ω−1
32 0.0084(0.0549) Ω−1

32 −0.0065(0.0818) −0.0236(0.0738)

Ω−1
33 0.3825∗∗∗(0.0378) Ω−1

33 0.5222∗∗∗(0.0450) 0.5176∗∗∗(0.0470)

ν 3.6079∗∗∗(0.9566) ν NA NA

B. Diagnostics QVAR(2) B. Diagnostics Gaussian VARMA(2,1) Gaussian VAR(2)

C1 0.8932 C1 0.8874 0.7779

C2 NA C2 0.5495 NA

C2 ADF All stationary C2 ADF NA NA

C3 0.9010 C3 NA NA

C3 ADF All stationary C3 ADF NA NA

C4 0.8137 C4 NA NA

C4 ADF All stationary C4 ADF NA NA

Dt ADF All stationary Dt ADF NA NA

LL −4.4445 LL −4.5342 −4.5664

AIC 9.4362 AIC 9.5968 9.6422

Note: Quasi-vector autoregressive (QVAR); VAR moving average (VARMA); not available (NA); augmented Dickey–Fuller (ADF);

log-likelihood (LL); Akaike information criterion (AIC). For all models, |C1| < 1 indicates covariance stationarity. For QVAR(1),

C2 ADF indicates that ut and its derivative ∂ut/∂µt have finite second moments and covariance that are dynamic and do not

depend on µt. For all Gaussian models, |C2| < 1 indicates invertibility. For QVAR(1), |C3| < 1 and |C4| < 1 indicate necessary and

sufficient conditions for the asymptotic properties of the ML estimator, respectively. For QVAR(1), Dt ADF indicates that all time

series formed by the elements of Dt are covariance stationary. Bold likelihood-based metrics indicate superior model performance.

Standard errors are reported in parentheses. ∗, ∗∗ and ∗∗∗ indicate significance at the 10%, 5% and 1% levels, respectively.
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Fig. 1(a) Percentage change in crude oil real price y1t

Fig. 1(b) US inflation rate y2t

Fig. 1(c) US real GDP growth y3t

Figure 1. Dataset for the period of 1987:Q1 to 2013:Q2, inclusive
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Fig. 6(a) QVAR(1): Maximum modulus of eigenvalues of Ψt − Φ with ±2σ estimates

Fig. 6(a) QVAR(2): Maximum modulus of eigenvalues of Ψt − Φ with ±2σ estimates

Figure 6. Invertibility of QVAR(1) and QVAR(2) for the period of 1987:Q1 to 2013:Q2, inclusive
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