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ENTROPY-BASED SEGREGATION 
INDICES 

Ricardo Mora* 
Javier Ruiz-Castillo* 

Recent research has shown (hat two entropy-based segregation 
indices possess an appealing mixture of basic and subsidiar y but 
useful properties. Jt would appear that the only fundamental differ­
ence between the mutual information or M index, and the entropy 
information or H index, is that the second is a normalized version 
of the first. This paper introduces another normalized index in 
that fami/y, the H* index, which captures segregation as the ten­
dency of racial groups to have different distributions across schools. 
More importantly, the paper shows that applied researchers may 
do better using the M index than using either H or H* in two 
circumstances: (1) if they are interested in the decomposability 
of the measurement of segregation, and (2) if they are interested 
in a margin-free measurement of segregation changes. The short­
comings of the H and H* indices are illustrated below by means 
of numerical examples, as well as with school segregation data by 
ethnic group in the Us. public school system between 1989 and 
2005. 

1. INTRODUCTION 

Segregation measures describe differences in the distribution of two or 
more demographic groups (genders, racial/ethnic groups) over a set of 
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organizational units (occupations, neighborhoods, schools). As with the 
measurement of other complex, multifaceted phenomena in the social 
sciences-such as income inequality or economic poverty-it should 
come as no surprise that there exists a plethora of indicators capturing 
difIerent aspects of the same phenomenon (surveys inelude James and 
Taeuber [1985J; Massey and Denton [1988J; and Flückiger and Silber 
[1999]). In sorne circumstances, this multiplicity of potential measures 
does not cause any practical problem. In most applications, however, 
difIerent indices wi11lead to difIerent conelusions, making it relevant to 
seek criteria to discriminate between the admissible alternatives. 

As in the income inequality literature, one way to select an ade­
quate segregation measure is to study which properties difIerent indices 
satisfy. For example, in many practical situations it is important to study 
segregation at severallevels simultaneously. For that purpose, it is con­
venient to use additively decomposable segregation indices that for any 
partition of organizational units into clusters or demographic groups 
into supergroups allow us to express overall segregation as the sum of a 
between-groups term and a within-groups termo I This paper studies in 
depth three additively decomposable segregation indices that are related 
to the entropy concept first imported from information theory to the 
social sciences by Theil (1967, 1971): 

l. The mutual information, or M index, an unbounded index first pro­
po sed by Theil (1971) and whose ordinal ranking has been recentIy 
characterized by Frankel and Volij (forthcoming). 

2. The entropy, information or H index, a normalization of the M 
index by the ethnic group entropy, which was first introduced by 
Theil and Finizza (1971) and Theil (1972) for the two-group case, 

1 Examples of clusters in the school segregation context are the set of 
public or private schools in a country, or the sets of schools in major regions, states, 
cities, school districts, or neighborhoods. In the occupational segregation context, 
we can have clusters of occupations in professional categories, economic activity 
sectors, or two- or three-digit occupations. Of course, supergroups can be defined 
only in a muItigroup segregation context. Examples in a school or residential context 
can be seen when precisely defined ethnic categories, such as Mexican or Puerto 
Rican, are aggregated into a major category such as Hispanic. In an occupational 
context, supergroups appear when different categories of female and male workers 
are aggregated into people of both genders of different age and/or educational 
attainment. 



            

    

           
  

            
            

          
          

             
           

         
        
           

           
          

            
     

             
          

            
            

         
         

          
          
          

        
           
          

          
             

              
           

            
              

             
            

             
        

3

and was later extended to the multigroup case by Reardon and 
Firebaugh (2002). 

3. The H* index, a normalization ofthe M index by the organizational 
unit entropy, which is proposed in this paper for the first time. 

In empirical contexts where it is advisable to use decomposable 
segregation indices, such as the entropy-based ones, a key question 
arises: Which index should be used? This is an important issue in a 
scenario in which, except for Frankel and Volij (forthcoming) in school 
segregation and Fuchs (1975), Mora and Ruiz-Castillo (2003, 2004), 
and Herranz, Mora, and Ruiz-Castillo (2005) in occupational segrega­
tion, the authors who have used an entropy-based index have preferred 
the H index. 2 Taking as reference the school segregation problem in 
the multiracial case, this paper establishes the practical and conceptual 
advantages of the M index in multilevel studies of segregation and its 
trends for the following reasons. 

l. Assume, for example, that we want to assess the degree to which 
overall school segregation is due to racial differences across school dis­
tricts, or how much is due to segregation within a large supergroup 
consisting of all minority races in the "United States". As pointed out 
in the income inequality literature, these deceptively simple questions 
raise a number of conceptual and methodological problems (Shorrocks 
1988:435). This paper shows that the empirical questions usually asked 
in decomposability analysis receive the les s ambiguous answers that 
are possible in a segregation context when the segregation measure sat­
isfies two strong decomposability properties. These properties require 
that the within-groups term is the weighted average of segregation in 
each cluster or supergroup with weights equal to their demographic 
shares. However, as soon as these properties are imposed on segrega­
tion measures we are left solely with the M index (Frankel and Volij 

2 Theil and FinÍZZa (1971) introduce the H index for the study of school 
segregation in the two-group case. Reardon, Yun, and McNulty (2000) distinguish 
between the central city and the suburbs in a study ofwithin-cities school segrega­
tion in the multigroup case, while Miller and Quigley (1990) and Fisher (2003) on 
the one hand and Iceland (2002) on the other study within-cities and within-regions 
residential segregation. Fisher et al. (2004), who ofTer the only contribution on resi­
dential segregation that develops a full multilevel approach using the H index, only 
report pair wise comparisons of racial! ethnic groups. 
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forthcoming) 3 , which hence becomes the only index that provides un­
ambiguous answers in decomposability analysis. 

2. It turns out that the H and H* indices-like aH bounded 
segregation measures-violate these strong decomposability properties 
(Frankel and Volij forthcoming, Claim 2). However, Reardon et al. 
(2000) show that the H index satisfies some weaker decomposability 
properties, while we show that this is also the case for the H* indexo The 
decomposition of organizational units into c1usters according to the H 
index and the decomposition of demographic groups into supergroups 
according to the H* index are free from ambiguities. This paper estab­
lishes that, unfortunate1y, this is not the case for the decomposition into 
supergroups according to the H index, as well as the decomposition 
into c1usters according to the H* indexo Moreover, the weights in aH 
the decompositions for the H and the H* indices are not invariant to 
changes in the within-group distributions, leading to additional prob­
lems of interpretation. The shortcomings of the decompositions of the 
H and H* indices are illustrated below by mean s of numerical examples, 
as well as school segregation data by ethnic group in the U.S. public 
school system between 1989 and 2005. 

3. One well-known problem with M and its normalized versions 
H and H* is that they are not margin free. First, they violate the com­
position invariance property (11 hereafter), satisfied by the segregation 
indices used by sociologists and economists in a majority of empirical 
studies. An index violates 11 if it changes when the number of peo­
pIe in a given demographic group is multiplied by the same positive 
constant throughout all organizational units. Second, they violate the 
occupational invariance property (12 hereafter), discussed in the liter­
ature on occupational segregation by gender in the 1980s. An index 
does not satisfy 12 if it changes when the number of people in a given 
organizational unit is multiplied by the same constant throughout all 
demographic groups. Therefore, the three entropy-based indices mix up 
segregation changes with changes in the marginal distributions in seg­
regation comparisons over time or across space. However, the M index 
admits two decompositions that isolate one term that captures segrega­
tion changes net of the impact of pure demographic factors (Mora and 

3 Similar results are obtained for the c1ass ofrelative income inequality en­
tropy indices for different versions of the decomposability properties (Bourguignon 
1979; Shorrocks 1980, 1984, 1988; Foster 1983). 
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Ruiz-Castillo 2009). This paper presents the first evidence showing the 
advantages of using the M index rather than the H and H* indices to 
de al with these issues by means of numerical examples, and in the con­
text of inter-temporal changes of school segregation in the U.S. public 
school sector between 1989 and 2005. 

The rest of this paper is organized into six sections. Section 2 
introduces the notation, and establishes that, for strongly school and 
group decomposable segregation indices, the empirical questions usu­
ally asked in decomposition analysis are free of ambiguities. Section 3 
introduces the entropy-based segregation indices. Section 4 disentangles 
the different problems of interpretation that plague the weak decom­
posability properties satisfied by the H and the H* índices. Section 5 
discusses the invariance properties, while Section 6 briefly discusses the 
normalization issue. Section 7 concludes the discussion. 

2. NOTATION AND STRONG DECOMPOSABILITY 
PROPERTIES 

2.1. Notation 

It would be useful to refer to a specific segregation problem. The case 
discussed throughout the paper is the school segregation problem. As­
sume that a city X consists of N schools, indexed by n = 1, ... , N. 
Each student belongs to any of G racial groups, indexed by g = 1, ... , 
G. However, given the racial diversity existing in many countries, this 
paper studies the multigroup case where G ::: 2. The data available can 
be organized into the G x N matrix 

[ 

tll 

X = {tgn} = : 
tGl 

where t gn is the number of individual s of racial group g attending school 
n, so that t = 2::=1 2:~=1 tgn is the total student population. 

The information contained in the joint absolute frequencies of 
racial groups and schools, tgn, is usually summarized by means of nu­
merical indices of segregation. Let :s: (G, N) be the set of all cities with 
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G groups and N schools. A segregation index S is a real valued func­
tion defined in E (G, N), where S(X) provides the extent of school 
segregation for any city XEE(G, N). The following notation will be 
useful: 

Pgn = t gn / t: proportion of students in group g and school n in the city, 
Pglk: proportion of students in group g whose school n is located 

in school district k, 
Pk: proportion of students in the city whose schools are 10-

cated in school district k, 
Pg: proportion of students in the city who be10ng to group g, 

Pnl/: proportion of students in supergroup 1 who study in school 
n, 

PI: proportion of students who belong to supergroup 1 in the 
city, 

Pgln: proportion of students in school n who belong to group g, 
Pnlg: proportion of students in group g who study in school n, 

and 
Pn: proportion of students who study in school n in the city. 

While lowercase P denotes a proportion, capital P denotes the 
vector of proportions that describes the associated discrete distribu­
tions. For example, P gn will refer to the joint ethnic and school discrete 
distribution of city X. In the sections that follow, the discussion will be 
restricted to indices that capture a relative view of segregation in which 
all that matters is the joint distribution-that is, those indices that admit 
a representation as a function of P gn. 4 

2.2. Strong School Decomposability 

In many research situations it is useful to partition organizational units 
into clusters of different sizes. For example, we may want to assess the 

4 This property, satisfied by most segregation indices, is referred to as size 
invariance in James and Taeuber (1985) and as weak scale invariance in Franke1 and 
V01ij (forthcoming). For a study that focuses on trans1ation invariant segregation 
indices that represent an abs01ute view of segregation, see Chakravarty and Si1ber 
(1992). 
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degree to which overall school segregation is due to racial differences 
across school districts. Consider then a partition of the N schools into 
K < N school districts, X =XI U ... X k ... U X K, where X k is the set of 
schools that belong to district k. In addition, let XC refer to the district 
in which all schools in district k have been combined into a single school 
with conditional racial distribution P glk • 

Following Frankel and Volij (forthcoming), a school segregation 
index S is said to be strong/y schoo/ decomposab/e (SSD) if and only 
if for any partition X =XI U ... X k ... U XK of the schools into K 
clusters overall segregation, S( X), can be written as 

K 
-1 -K '"" k S(X) = S(X U ... U X ) + ~ PkS(X ). (1) 

k=1 

Therefore, if a school segregation index is SSD, then overall segregation 
can be expressed as the sum of two terms, one that captures between­
groups segregation and one that captures within-groups segregation 
and is equal to the weighted average of segregation levels within each of 
the clusters, with weights equal to the demographic importance of each 
cluster. 

For any partition of schools into clusters, we have to make sure 
that three magnitudes are well defined: (1) the contribution to overall 
segregation of any individual cluster; (2) the part of overall segregation 
accounted for by segregation within all clusters; and (3) the amount of 
segregation that can be attributed to racial differences across clusters 
of different sizes. 

In the first place, note that if we are merely interested in rank­
ing clusters' segregation levels, the decomposability requirement is quite 
inessential. However, ifthe analysis involves comparisons between clus­
ters and overalllevels, then decomposability can be very use fui indeed. 
As pointed out in the field of income inequality, a problem arises in the 
different interpretations that can be placed in statements like "x per­
cent of overall segregation is attributed to cluster k" (Shorrocks 1980, 
1984, 1988). Fortunately, SSD implies a satisfactory way of assigning 
segregation con tribu tion s to the clusters. For, it seems natural, when 
equation (1) holds for any partition of N schools into K clusters, to 
define the contribution to overall segregation of cluster k by 
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(2) 

It is easy to check that this definition for Ck is consistent with the other 
two obvious interpretations of the sentence "contribution to segrega­
tion of cluster k." First, consider the situation in which the original 
frequencies of students across races and schools in the city are replaced 
by one frequency in which all schools in cluster k are incorporated into 
a single school. Since in this case S(x") = O, then from equation (1) we 
can irnmediately see that 

Ck = S(X) - S(XI U ... U x"-I U x" U Xk+1 U ... U X K ), 

That is, the contribution Ck can al so be interpreted as the amount 
by which overall segregation falls if the segregation within cluster k is 
eliminated. Second, consider the situation by which the original joint 
frequencies are replaced by one in which all clusters except k become 
single school clusters. Since in this situation S(XJ

) = O, for allj =lk, it 
follows that 

-1 :.k-I k _-.k+ 1 - K -1 - K 
Ck = S(X U ... U .x U X U.x U ... U X ) - S(X U ... U X ). 

That is, Ck can also be interpreted as the amount by which overall 
segregation increases if segregation within cluster k is introduced start­
ing from the position of zero segregation within each cluster. There­
fore, under SSD it is possible to provide the same answer to different 
interpretations of what is meant by the con tribu ti o n of each cluster 
to overall segregation. ConsequentIy, the problem of unambiguously 
comparing individual clusters' contributions is solved. For example, the 
ratio S(Xk)/ S(X) is greater than, equal to, or smaller than one when­
ever cluster k's contribution to the overall segregation level, Ck/ S(X), 
is greater than, equal to, or smaller than its demographic importance 
given by Pk. 

In the second place, we must examine the contribution made to 
overall segregation by all clusters taken together, C. This question ad­
mits two sensible interpretations. First, a natural response is to compute 
the reduction in overall segregation that would arise if the segregation 
within all clusters were eliminated. In the partition into K cIusters C 
will be 
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-1 -K 
C = S(X) - S(X U ... U X ). 

A second interpretation would consist of the sum of the individual 
contributions defined in expression (2), that is, 

K K 

L Ck = L PkS(X
k
). 

k=1 k=1 

We can irnmediately see that for any segregation measure S satisfy­
ing SSD, C = 'L,{=I Ck so that both interpretations provide the same 
answer. 

Finally, consider the possibility of partitioning the set of schools 
in a country into clusters of different size, say regions, cities, or school 
districts. An empirical question must then be addressed 'How much seg­
regation can be attributed to racial differences across regions as opposed 
to other geographicallevels.' This may be interpreted two ways: (1) by 
how much segregation would fall if racial differences across clusters 
were the only source of school segregation, or (2) by how much segre­
gation would fall if racial differences at the cluster level were eliminated. 
Interpretation (1) suggests a comparison of overall segregation with the 
amount that would arise if segregation within each of K clusters were 
made equal to zero but racial differences across districts remained the 
same. As shown earlier, for mea sures satisfying SSD this would elim­
inate the total within-groups term and leave only the between-groups 
contribution, so that S(X) = S(X

I 
U ... U Y). Interpretation (2) sug­

gests a comparison of overall segregation with the segregation level that 
would result if all clusters had the same racial composition, equal to 
the one for the nation as a whole, but the segregation within each clus­
ter remained unchanged. Unfortunately, in contrast to the situation for 
relative measures of income inequality, this conceptual experiment is 
not possible for measures of segregation, a difficulty that de serves an 
explanation. 

For any partition of an income distribution, any decomposable 
inequality index allows expressing overall income inequality as the sum 
of a between- and a within-groups term, where the between-groups term 
is the inequality ofthe distribution where each individual is assigned the 
mean income of the subgroup to which she belongs. In this situation, 
starting from an income distribution x and a partition of the population 
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into subgroups, there is no difficulty in constructing a new income 
distribution y satisfying two conditions: (l) the mean income of any 
subgroup is equal to the mean income for the entire population, so that 
the between-groups inequality of distribution is equal to zero, and (2) 
income inequality within each subgroup is preserved. It is thus easy to 
see that the difference between income inequality in the initial situation, 
say l(x) = B(x) + W(x), and income inequality in the second situation, 
l(y) = B(y) + W(y) = O + W(x), is equal to the between-groups term: 

l(x) - l(y) = B(x) + W(x) - W(x) = B(x). 

That is, according to interpretation (2), between-groups income in­
equality is the amount by which overall income inequality is reduced 
when the differences between subgroup income mean s are eliminated 
by making them equal to the population income mean. 5 

The corresponding conceptual exercise in the segregation case is 
10gically impossible. Starting from X =Xl U ... Xk ... U X K , let us 
attempt to construct another city Y satisfying two conditions. 

1 .. The racial composition of every cluster k in Y is the same as the 
one for the original population as a whole-that is, Pg¡k = Pg for 
all k and g, so that there is no between-groups segregation in Y. In 
this case, overall segregation in Y coincides with the within-groups 
termo 

2. The level of segregation within each cluster remains as in the original 
city, so that the within-groups term in Y coincides with the one in 
X. Hence, overall segregation in Y coincides with within-groups 
segregation in X. 

If this operation were possible, it is easy to see that, as in the 
income inequality case, the difference between overall segregation in X 
and in Y would be equal to the between-groups termo However, under 
condition (1) within-group segregation in Y results from the comparison 

5 As a matter of fact, the answers to interpretations (1) and (2) coincide 
and are equal to the between-groups term only when the weights in the within­
groups term do not depend on the subgroup means. This is only the case for one 
of the members of the entropy family of income inequality indicators: the mean 
logarithmic deviation (Shorrocks 1980). 
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between the racial distributions at schoollevel with the racial distribu­
tion in the original city; but this comparison is what is involved in com­
puting overall segregation in X. Therefore, within-groups segregation in 
y is equal to overall segregation in the original city, which contradicts 
the fact that overall segregation in Y coincides with within-groups segre­
gation in X. This contradiction arises because it is generally impossible 
in the segregation context to eliminate the between-groups segregation 
maintaining the existing within-groups segregation as the former affects 
the latter. Nevertheless, this do es not prec1ude the investigation of the 
original question about which geographicallevel accounts for a greater 
percentage of overall segregation. For any segregation measure satisfy­
ing SSD, the size ofthe between-groups term at each geographicallevel 
provides a c1ear answer, if only in the sen se of interpretation (1). 

2.3. Strong Group Decomposability 

In many research situations it is use fuI to partition demographic groups 
into supergroups. For example, we may want to assess the degree to 
which overall school segregation is due to segregation within a large su­
pergroup consisting of all minority races in the USo Consider a parti tion 
of G groups in city X into L < G supergroups, X =X1 U ... Xl ... U XL, 
where XI is the set of groups that belongs to supergroup 1. In addition, 
let XI be the supergroup in which all groups in supergroup I have been 
combined into a single group with conditional school distribution P nll 

Following Frankel and Volij (forthcoming), a school segregation 
index S is said to be strongly group decomposable (SGD), if and only 
if for any partition X =X1 U ... XI ... U XL of the G groups into L 
supergroups overall segregation, S( X), can be written as 

L 

S(X) = S(X1 U ... U Xd + L PIS(XI). (3) 
1=1 

Therefore, if a school segregation index is SGD then for any partition of 
the racial groups into supergroups, overall city segregation can be ex­
pressed as the sum oftwo terms, one that captures between-supergroups 
segregation, and another that captures within-supergroups segregation 
and is equal to the weighted average of segregation within each of the 
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supergroups, with weights equal to the supergroups' demographic im­
portance. 

This definition al so implies a satisfactory way of assigning segre­
gation contributions to the supergroups. For, when equation (3) holds, 
the definition e, = p, S(X¡) is consistent with all the obvious interpre­
tations of the concept "contribution to segregation by supergroup /": 
the amount by which overall segregation falls if the segregation within 
supergroup / is eliminated, or the amount by which overall segregation 
increases if segregation within supergroup / is introduced starting from 
the position of zero segregation within each supergroup. Reflecting a 
similarity with the case of the partition of schools into clusters, an index 
satisfying SGD provides a satisfactory answer to the question of how 
much segregation would faH if school differences across supergroups 
were the only source of segregation. However, it is 10gicalIy impossible to 
eliminate the between-supergroups segregation maintaining the existing 
within-supergroups segregation as the latter is affected by the former. 

3. ENTROPY-BASED SEGREGATION INDICES 

3.1. Preliminaries 

Before we present the entropy-based indices of segregation, the concept 
of entropy of a distribution must be introduced. Consider a discrete ran­
dom variable x that takes Q probability values, indexed by q = 1, ... , Q. 
Let Pq be the probability ofthe qth value with Pq ~ O and Li=¡ Pq = 1. 
For instance, if x is the ethnic group of a randomly selected student, then 
Pq is the proportion of students in the city who are in the qth group. The 
entropy of the Q values of variable x is the real value function defined 
as 

with O log(l/O) = 0. 6 Heuristically, the information brought about by 
observing the actual value of x is the opposite of the logarithm of its 

6 The base of the logarithm is irrelevant, providing essentially a unit of 
measure. In this paper the naturallogarithm will be used. 
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likelihood, -log(pq) = 10g(lIpq): the observation of an unlikely value 
brings about a large amount of information once observed. Therefore, 
the entropy is a measure of the expected information for the value of 
variable x brought about by an observation. 

3.2. The M Index 

The M index is defined as follows. Suppose that a student is drawn 
randomly from the city, so that the expected information of learning 
her race is measured by the entropy of the city's ethnic distribution, 
E(Pg). If we were informed about the school the student attends, the 
expected information from learning her race would now be measured by 
the entropy ofher school's ethnic distribution, E( P gln). Ifthe schools in 
the city are aH segregated, then the latter entropy will tend to be lower 
because the student's school conveys sorne information about her race. 
The M index equals this change in entropy, E(Pg1n ) - E(Pg), averaged 
over the students in the city: 

N 

M= LPn(E(Pg) - E(Pg1n )). (4) 
n=l 

The M index thus captures segregation viewed as the extent to which 
schools have different racial compositions from the population as a 
whole. This notion of segregation corresponds to differences in the 
column percentages in city X. 

Note that PglnPn = PnlgPg so that log(pg) -log(Pgln) = log 
(Pn) -log(Pnlg) : The information obtained about race from learning 
about the school the student attends equals the information gained 
about the school the student attends when learning about her race. 
Hence, the M index also equals the reduction in uncertainty about a 
student's school that comes from learning her race: 

G 

M = L Pg(E(Pn) - E(Pnlg ))· (5) 
g=l 

Therefore, the M index also captures segregation as the tendency of 
racial groups to have different distributions across schools, or the dif­
ferences in row percentages in X. 
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3.3. The Normalized Entropy-based Indices 

It can be shown from equation (4) that ME[O, log G]. In particular, M 
takes its minimum value whenever the racial entropy in each school 
coincides with the racial entropy in the city, E(Pg1n ) = E(Pg ), n = 
1, ... , N. This situation arises only when the racial distribution of each 
school equals the racial distribution of the city, in which case it is said 
that the city is completely integrated. The M index reaches its maximum 
value when the racial groups are uniformly distributed in the city and 
there is no ethnic mix within schools. In other words, according to the 
M index complete segregation requires two conditions: there must be no 
racial mix within schools, and races must be uniformly distributed in the 
city. For any given racial marginal distribution Pg, M attains its maxi­
mum at the city's racial entropy, E(Pg). This fact suggests normalizing 
Mby E(Pg): 

(6) 

Therefore, the H index measures the proportional increase in expected 
information about race that occurs when learning about the school that 
the student attends. Consequently, H captures segregation as relative 
differences in the column percentages in city X. As with M, there is 
complete integration whenever the racial distribution of each school 
equals the racial distribution of the city. However, in contrast to M, 
H reaches its maximum value whenever there is no racial mix within 
schools, thus providing a characterization of complete segregation that 
is independent ofthe racial distribution in the city. Although H is neither 
11 nor 12, this characterization of complete segregation coincides with 
the one provided by any 11 or 12 index that satisfies the principIe of 
transfers. 7 

It can be shown from equation (5) that, as a function ofthe school 
entropies by racial group, M reaches its minimum value, 0, whenever the 

7 The principIe 01 translers, first proposed by James and Taeuber (1985) 
for segregation studies, states that segregation must decrease if a student of a given 
group moves from a school where her group's proportion is aboye that in the city 
as a whole to a school where her group's proportion is be10w that in the city as a 
whole. 
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school entropy is the same for all racial groups, E(Pnlg ) = E(Pn), g = 
1, ... , G, while it reaches its maximum value, log N, when the schools 
are evenly distributed in the city and each racial group attends a disjoint 
set of schools. Thus, the notion of complete segregation as departure 
from row percentages for M also demands two conditions: In addition 
to requiring no racial mix within organizational units, schools must be 
uniformly distributed at the city leve!. For any given school distribution 
Pn , M attains its maximum at the schools entropy at the city level, E( Pn). 

This fact suggests normalizing M by E( Pn ): 

The H* index has not been defined previously, although it is c10sely re­
lated to both M and H. Intuitively, it captures the proportional expected 
increased in the information about the school when learning about the 
race of a student. Consequently, in contrast to H, H* captures segrega­
tion as difTerences in the row percentages in city X. As with M and H, 
there is complete integration whenever the racial distribution of each 
school equals the racial distribution of the city. As with H, it can only 
take values within the unit interval, and it reaches the unity whenever 
there is no racial mix within schools. Finally, although H* is neither 
I1 nor 12, this characterization of complete segregation coincides with 
the one provided by any I1 or 12 index that satisfies the principIe of 
transfers. 

4. DECOMPOSABILITY PROPERTIES OF THE 
ENTROPY-BASED INDICES 

4.1. Decomposability Properties of the M Index 

It is easy to show that the M index satisfies both SSD and SGD in the 
multigroup case. First, equation (l) takes the form 

K 

M= ME + LPkMt, (8) 
k=1 
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where 

K G 

M B = L Pk(E(Pg) - E(Pg1k» = L Pg(E(Pk) - E(Pklg» 
~I g=1 

is the between-groups term that captures what we will refer to as cluster 
segregation, and 

G 

M[ = LPn(E(Pg1k) - E(Pg1nExtc» = Lhlk(E(PnlnExtc) - E(Pnlg,nExtc» 
nExtc g=1 

captures school segregation within cluster ko Given that the M index 
satisfies SSD, the contribution C M[ = PkM¡.W is consistent with aH the 
obvious interpretations of the concept "contribution to segregation by 
cluster ko" Similarly, M admits the decomposition 

L 

M= MB+ LPIMt, (9) 
1=1 

where 

N L 

MB = LPn(E(P¡) - E(P¡ln» = LPI(E(Pn) - E(Pnll» 
n=1 

is the between-groups term that captures school segregation by super­
group, and 

N 

Mt = L Pn(E(Pg1gEX,) - E(Pg1n,gEX,» 
n=l 

= L hlgEX,(E(PnlgEX,) - E(Pnlg,gEX,» 
gEX¡ 

captures school segregation within supergroup lo Given that the M index 
satisfies SGD, the contribution CMt = PI Mt is consistent with all the 
obvious interpretations of the concept "contribution to segregation by 
supergroup lo" 
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4.2. Weaker Decomposability Properties 

Although the H and H* indices violate SSD and SGD, it can be seen that 
they satisfy sorne weaker decomposability properties. First, consider any 
partition of the N schools into K < N c1usters, and recall that H can 
be computed by dividing the M index by the racial entropy, E(Pg). On 
the one hand, starting from the definition of M in equation (5) and 
decomposition (8) we have 

Multiplying and dividing each summand of the second term by the 
within-group's racial entropy, E( P glü,and using the relation between 
the un-normalized and the normalized indexes, we have 

K 

H = H B + '" E( Pg1k) H,W 
~Pk E(P.) k' 
k=l g 

(10) 

where HB captures cluster segregation, and HJ:' captures school segre­
gation within cluster k. On the other hand, starting from the definition 
of M in equation (4) and decomposition (8), for the H* index we have 

Multiplying and dividing the between-groups term by E(Pk) and each 
summand ofthe second term by E(Pn1k), we have 

(11) 

where Jt B captures cluster segregation and ~ W captures school seg­
regation within cluster k. 

Second, consider any partition of the G groups into L < G su­
pergroups. Starting from equations (5) and (9), for the H index we 
have 
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M B L M¡W 
H = E(P.) + ¿PI E(P. )' 

g 1=1 g 

Multiplying and dividing the between-groups term by E(P¡) and each 
summand ofthe second term by E(PgII), we have 

L 
H = E(P¡) H +" E(PgII) H,w 

E(P.) B ~ PI E(P.) I 
g 1=1 g 

(12) 

where HB captures school segregation by supergroup, and H,w cap­
tures school segregation within supergroup 1. 8 Finally, starting from 
equations (4) and (9), we have 

L W 

H* MB " M¡ 
= E(Pn) + ~ PI E(Pn)' 

Multiplying and dividing each summand ofthe second term by E( P nll), 

we have 

L 
H* = H':, +" E(Pnll) IC w 

B ~ PI E(P.) I ' 
1=1 n 

(13) 

where HB captures school segregation by supergroup, and JI, W captures 
school segregation within supergroup l. 

4.3. Ambiguities in the Interpretation 
of the Contributions to Segregation 

It should be noted at the outset that the contributions of the between­
groups and within-groups terms expressed as a percentage ofthe H and 
the H* indices in expressions (10)-(11) and (12)-(13) pose no problem 
beca use they coincide with those same relative con tri bution s for the M 
index in expressions (8) and (9), respectively. Thus, for example, in the 
case of decomposition (10) we have 

8 Equation (12) figures prominently in Reardon et al. (2000); see their 
equation (4). 
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Similarly, for decomposition (11) we have 

It is important to recognize, however, that the terms in decom­
positions (10) and (13) admit the same interpretations as those terms 
in any SSD and SGD indexo Let's first, define cluster k's contribution 
to overall segregation as C H{ = Pk ~(~;~) H{. It is easy to show that 
CHt can be interpreted both as the amount by which overall segre­
gation falls if the segregation within cluster k is eliminated, and the 
amount by which overall segregation increases if segregation within 
cluster k is introduced starting from the position of zero segregation 
within each cluster. Likewise, we can define the contribution of all 
clusters to segregation as CHw = 'Lf=l CH{. It turns out that CHw 

equals the reduction in segregation that would arise if the segregation 
within all clusters were eliminated. Finally, the interpretation of the 
between-groups term in decomposition (10), H B, is subject to the same 
conceptuallimitation pointed out earlier in Section 3.1 in relation to 
the decomposition of any SSD indexo Namely, H B can be interpreted 
as the leve! of segregation if racial difTerences across clusters were the 
only source of school segregation so that Ht = O for all k = 1, ... , K. 
However, it cannot be interpreted as a decrease in segregation if racial 
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difTerences at the cluster level were eliminated. For reasons of brevity, 
the properties of decomposition (13) are not discussed in detail. Never­
theless, similar arguments to those provided for decomposition (10) can 
be used to show that the terms in decomposition (13) can be interpreted 
as those in the decomposition of any SGD index for any partition of 
ethnic groups into supergroups. 

However, as discussed in the introduction, decompositions (11) 
and (12) present serious problems of interpretation. Example 1 in the 
next paragraph illustrates that equation (12) does not provide the H 
index with a decomposition that admits the same interpretation as 
that of any SGD indexo It first shows that the contribution of super­
group 1 to overall segregation, e H¡w = PI ~tÍ>.l; H¡w, cannot generally 
be interpreted as the amount by which overafl segregation falls if the 
segregation within supergroup 1 is eliminated. The reason is that in 
this case the overall racial entropy E(Pg) will usually change, and this 
may induce changes in the weights of the contributions by other super­
groups. The example also shows that the term CHt cannot always be 
interpreted as the amount by which overall segregation increases if seg­
regation within supergroup 1 is introduced starting from the position of 
zero segregation within each racial supergroup. Finally, it becomes clear 
that e HB = :~~~ HB cannot be interpreted as the level of segregation if 
difTerences in th~ supergroup distributions across schools were the only 
source of school segregation. 

Example 1. Consider two cities, X and Y, with students from three 
racial groups, white, Asian, and black, and two schools, sI and s2. The 
joint frequencies of students across schools and racial groups can be 
summarized in two matrices: 

Ethnic groups 

x~ [: 3i] y~ [: 
28] [White] 

and 12 Astan 

20 20 5 black 

[ sI s2 ] [ si s2] 

Schools Schools 

Suppose that we group together white and Asian students, referring to 
the resulting supergroup as wa. To begin with, according to index H 



            

     

            
 

        

    
    

 
   

  

           
            

              
            

            
          
         

                
 

  
       

   

            
          

     

         
   

            
         

           
      

         
               

           
     

21

school segregation within supergroup wa is zero in city Y, but positive 
inX, 

However, the contribution ofwithin-supergroups segregation in city X, 

w E(Pg1¡) w 32.51 
CHwa(X) = p¡--Hwa(X) = 0.67-

8 
-13.57 = 3.45, 

E(Pg) 5.32 

is not equal to the fall in overall segregation when eliminating segre­
gation within supergroup wa-that is, moving from city X to city Y, 
H(Y) - H( X) = - 7.14. The reason is that the overall racial entropy has 
increased: E(Pg(Y» = 104.38 versus E(Pg(X) = 85.32. It is clear that 
CH:! (X) = 3.45 does not equal the amount by which overall segrega­
tion increases if segregation within supergroup 1 is introduced starting 
from the position of zero segregation within each racial supergroup-­
that is, moving from city y to city X, H( X) - H(Y) = 7.14. Finally, the 
term 

E(P¡) 63.65 
CHB(X) = -(-HB(X) = --227.12 = 20.23 

E Pg) 85.3 

does not equal the level of segregation if difTerences in the supergroup 
distributions across schools were the only source of school segregation, 
H(Y) = ?:~¡~~27.l2 = 16.54. 10 

4.4. Additional Problems of Interpretation Due to the Nature 
of the Weights 

All weights in decompositions (10) to (13) are not invariant to changes 
in the within-groups distributions, leading to several problems of 

9 AH entropy and index calculations reported hereafter are computed using 
naturallogarithms and are multiplied by 100. 

10 Note that the contributions ofthe between- and the within-supergroups 
terms expressed as a percentage of the H (H*) indices in expressions (11) and (12) 
pose no interpretability problem because they coincide with those same relative 
contributions for the M indexo 
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interpretation. Consider decomposition (12) for H. The nature of the 
weights :~~~ and PI ~~PKi leads to two problems. (1), We may have two 

cities with the same H B but difTerent contribution C HB = :~~~ HB to 

overall segregation due to difTerences in the entropy ratio :~:.~ and (2), 
for a ;.ivenjoint distribution ofsupergroups and schools, Pln, t&e weights 
PI ~~f/i generally change in response to exogenous changes in the joint 
distri6ution of groups and schools within supergroups. Thus, although 
supergroup demographic shares, PI, remain constant, the overall racial 
entropy at group level E(Pg) or the racial entropy at group level in 
supergroup 1, E(Pg1I), may change. Consequently, the contribution to 
within-groups segregation, C Hw = 'LL C s¡w, may change in a direc­
tion contrary to what the terms Ht would indicate. Both problems are 
illustrated in the example that follows. 

Example 2. Consider two cities, X and Y, with students from four 
racial groups (white, Asian, black, and Hispanic) and two schools (sI 
and s2). The relative frequencies (expressed as a percentage) ofstudents 
across schools and racial groups can be summarized in two matrices: 

x=[~ 20 

20 

[ sI 

n md 

s2 ] 

Schools 

y= 

Ethnic groups 

[

9.05 

2.95 

36 

4 

35.95] [ white ] 
2.05 Asian 

9 black 

1 Hispanic 

[ sI s2 ] 

Schools 

Suppose that we group together, on the one hand, white and Asian 
students, referring to the resulting supergroup as wa, and, on the other 
hand, black and Hispanic students, referring to the resulting super­
group as bh. There are two points to note heTeo First, the joint distri­
bution of supergroups and schools is the same in both cities X and 
y and, consequently, so is the value for school segregation by super­
group, HB(X) = HB(y) = 24.03. However, the contribution ofbetween­
groups segregation to overall segregation, CHB, is larger in Y than in X 

(CHB(Y) = l~i~81224.03 = 16.36 versus CHB(X) = l6fo~21324.03 = 13.86) 
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simply beca use the entropy ratio is larger there. Second, measured by 
H¡V, supergroup wa experiences slightly more school segregation in X 
than in Y (H!! (X) = 10.28 versus H!! (Y) = 9.74), while supergroup 
bh has no school segregation in both cities (HiJ,(X) = Hlf,(Y) = O). 
Since the difTerence in the shares of black and Hispanic students is 
much smaller in X than in Y, both the overall racial entropy and the 
racial entropy within supergroup bh are larger in X than in Y: E(Pg(X) 
= 120.23 versus E(Pg(Y» = 101.82, and E(Pg1bh(X) = 34.66 versus 
E(Pg1bh(Y» = 9.48. As a result, even though the joint frequency of 
supergroups and schools is the same for both cities, the weights PI ~~1>~I; 
are so much larger in city Y -the city with less segregation within super­
group wa-that the contribution of within-groups segregation is also 
larger there: 

32.50 
CHw(Y) = 0.50 101.829.73 = 1.55 versus 

32.51 
CHw(X) = 0.50 120.2310.28 = 1.39. 

Decomposition (10) for H presents analogous problems of interpre­
tation for the within-groups term as CHw = Lff=1 Pk ~J~) H{ may 

change in a direction contrary to what the terms HJ: would indicate. 
Also, the decompositions (11) and (13) for H* have similar problems of 
interpretation. For decomposition (ll), we may have two cities with the 
same between-groups segregation, Jt B, but difTerent contributions to 
overall segregation due to difTerences in the entropy ratio i~~~. Finally, 
the contributions to within-groups segregation, 

K L 
CH*W -" E(Pn1k) mW d CE -" E(Pnl/) lC w 

- ~ Pk E(P.) k ,an W - ~ PI E(P.) I ' 
k=1 n 1=1 n 

may change in a direction contrary to what the terms ~ W and JI¡ W 

would indicate, respectively.11 

11 For the sake ofbrevity, proofs ofthe statements in this paragraph using 
illustrative examples will be available only upon request. 
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TABLE 1 
School Enrollment, Ethnic Mix, Entropies, and School Segregation in the United 

States, 1989-2005 

Number ofStudents (millions) Racial Shares (%) 

1989 2005 Change (%) 1989 2005 Change 

Minorities 8.61 12.24 42.10 34.78 48.05 13.27 
N ative American 0.17 0.23 33.77 0.68 0.89 0.20 

Asian 1.03 1.40 36.11 4.15 5.49 1.34 
Black 3.99 4.53 13.70 16.10 17.80 1.70 
Hispanic 3.43 6.08 77.33 13.85 23.87 10.02 

White 16.14 13.23 -18.06 65.22 51.95 -13.27 
Total 24.76 25.47 2.87 100 100 O 

Entropies and Segregation Indexes 

N G 

E(PIi} E(Pn} LPnE(Pliln} LPliE(Pnlg ) M H H* 
n=1 g=1 

1989 101.27 1040.25 57.35 996.32 43.92 43.37 4.22 
2005 119.07 1035.72 70.17 986.82 48.90 41.07 4.72 
Change 17.80 -4.53 12.82 -9.50 4.98 -2.30 0.50 

Notes: Ethnic shares are the percentages of students from every race/ethnic group. 
The terms Native American, Asian, black, and white refer to non-Hispanic members of 
these racial groups; Asian ineludes Native Hawaiians and Pacific Islanders; Native American 
ineludes American Indians and Alaska Natives (lnnuit or Aleut). The term Hispanic is an 
ethnic rather than a racial category since Hispanic persons may belong to any race. Minorities 
inelude all categories except white. 

4.5. Decomposability Properties in Practice: The M versus the H Index 

It will be illustrative to see how the decomposability properties ofthe M 
and the H in dices fare in practice with data about the evolution of the 
U.S. student population enrolled in public schools in Core-Based Sta­
tistical Areas (CBSAs)-urban clusters of 10,000 or more inhabitants, 
referred to in the sequel as cities-during the 1989-1990 and 2005-2006 
academic years. 12 Table 1 clarifies two issues. First, the evolution of the 

12 Results pertain to those schoo1s for which racial and ethnic information 
is available both in 1989 and in 2005. Given that a small proportion of schools 
did not report results in 1989, focusing on the schools that did probably gives a 
fairer comparison between the distributions observed in 1989 and in 2005 beca use 
it does not inelude those schools that did report in 2005 but failed to do so in 1989. 
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ethnic diversity ofthe student popu1ation is shown. Minorities (name1y, 
Native Americans, b1acks, Asians, and Hispanics) a1ready represent 
34.8% ofthe total popu1ation of24.8 million in 1989. Since aH ofthem 
grew more rapid1y than whites during this period, they represent as 
much as 48.1% of the total popu1ation of 25.5 million in 2005. Sec­
ond, the segregation 1eve1s achieved by the different entropy indices are 
shown. In particular, the change in the M index during this period is tlM 
= 48.90 - 43.92 = 4.98. Suppose that we group together Asian, black, 
Hispanic, and Native American students, referring to the resulting "mi­
norities" supergroup as m. Consider now the evo1ution of segregation 
between whites versus minorities and the evo1ution of segregation within 
minorities. Since on1y one supergroup is considered, equation (9) sim­
plifies to M = M B + PmM!:, where Pm denotes the share ofminorities 
in the student popu1ation, M;:: is the M index within minorities, and 
M B is the M index of schoo1 segregation for whites versus all minorities 
combined. The observed increase in overall segregation is due primari1y 
to the in crease in M B, which becomes tlMB = 1.83. In addition, the 
share of the minorities (who are high1y segregated among themse1ves) 
increases substantiaHy to tlpm = 0.13. Thus, in spite of the fact that 
schoo1 segregation within minorities is decreasing, tlM;:: = -8.25, the 
contribution of segregation within minorities to overall segregation is 
positive, tlCM!: = 3.15. Consequent1y, tlM = 1.83 + 3.15 = 4.98. 

Given equation (2), we can see that H decreases because the 
racial entropy is increasing (119.07 - 101.27 = 17.80) fas ter than M: 

tlH = (48.90/119.07) - (43.92/101.27), 

= 41.07 - 43.37 = -2.30. 

But how does H account for the trends in the minorities' partition? 
Note that, with only one supergroup, decomposition (12) simplifies to 

H = E(P¡) H + E(Pg1m ) H W. 
E(Pg) B Pm E(Pg) m 

However, interpretability ofthe results presented here is potentially compromised by 
the fact that sorne schools have been created while others have disappeared between 
1989 and 2005. Nevertheless, results using all observations are qualitatively similar, 
suggesting that the selection mechanisms at work are not essential to our analysis. 
Results obtained using the full sample are available upon request. 
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The H index also finds a decrease in segregation within minorities, 
!1H);; = -7.13, and a very small increase in school segregation between 
whites and minorities, !1H B = 0.03. In spite ofthe increasing importance 
of minorities in the student population, the within-minorities weight 
increases only slightIy (from 0.36 to 0.42) as a combined result of the 
decrease in the racial entropy within minorities (from 105.40 in 1989 to 
103.71 in 2005), together with the increase in the overall racial entropy 
(from 101.27 to 119.07). The small increase in the weight does not 
offset the large decrease in segregation within minorities, and, hence, 
the contribution of segregation within minorities to overall segregation 
is negative, !1CH);; = -0.11. Moreover, the contribution of between­
groups segregation is also affected by the evolution of the ratio :~;~. 
It turns out that simply beca use the racial entropy is growing re1ativ;ly 
more than the supergroup entropy between whites and minorities, most 
of the reported decrease in the entropy index, !1 H = -2.30, stems from 
the decrease in the contribution of the between-groups term, .6. C HB = 
-2.19, in spite ofthe reported increase in HB . 

5. INVARIANCE PROPERTIES 

5.1. The Invariance Question 

Consider for a moment the special but important case of occupational 
segregation by gender, and as sume that segregation data in 1950 and 
2000 are being compared in a given country. Several questions are 
often asked. First, should the measurement of occupationa1 segregation 
be independent of the fact that female labor participation has greatIy 
increased over time? Many people would agree that, as long as the 
mal e and female distributions over occupations remain constant, the 
degree of segregation should be the same in the two situations-that is, 
that an index of occupational segregation by gender should satisfy 1I. 
In the school segregation case with several racial groups, the question 
becomes whether segregation should be invariant to changes in the 
ethnic composition of the population as long as the distribution of each 
group within schools remains constant. Second, should occupational 
segregation be independent from the fact that agricultural and industrial 
occupations are much more important in 1950 than in 2000, while 
service occupations carry much more weight in 2000 than in 1950? 
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Many people would agree that, as long as the gender composition of 
each occupation remains constant, the degree of segregation should 
be the same in the two situations-that is, an index of occupational 
segregation should be 12. In the school segregation case with several 
racial groups, the question beco mes whether segregation should be 
invaríant to changes in the size distribution of schools as long as the 
racial composition of each school remains constant. 

As indicated in the introduction to this paper, the three entropy­
based measures M, H, and H* violate both properties-that is, they 
mix up segregation changes with changes in the marginal distributions 
in segregation comparisons over time or across space. However, Mora 
and Ruiz-CastilIo (2009) present two decompositions ofthe M index in 
pairwise comparisons over time or across space that iso late the effects of 
the changes in the marginal distributions. In the first place, to identify 
an Il term in a decomposition of a pairwise comparison, the differences 
in the M index can be written as 

b.M = b.Net(Il) + b.M(Pg) + b.E(Pn), (14) 

where b.E(Pn) is the change in the school entropy, b.M(Pg) isolates 
changes in M due to changes in the racial marginal distribution, Pg , 

while b.Net(Il) is an Il term in the sense that it equals zero as long as 
P nlg remains constant. The term b.Net(Il) is referred to in the discussion 
that foIlows as changes in net segregation viewed as differences in rows. 
In the second place, to identify an 12 term in a decomposition of a 
pairwise comparison, the differences in the M index can be written as 

b.M = b.Net(I2) + b.M(Pn) + b.E(Pg), (15) 

where b. M( Pn) isolates changes in M due to changes in Pn, b. E( Pg) is the 
change in the racial entropy, and b.Net(12) is an 12 term in the sen se that 
it equals zero as long as P gln remains constant. In the discussion that 
foIlows, the term b.Net(12) is referred to as changes in net segregation 
viewed as differences in columns. 

Decompositions (14) and (15) are not available for the H and 
H* indexes. However, it is sometimes argued that since normalization 
makes complete segregation as defined in H independent of Pg , then 
the notion ofsegregation captured by H "is independent ofthe popula­
tion's diversity" (e.g., see Reardon et al. 2000:354). ClearIy, H is neither 
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I1 nor 12, but to what extent does H reduce the invariance problems 
in M? Taking into account equation (14) and the linear approxima­
tion to changes in H, I:1H:::= E(~)I:1M - I:1E(Pg», it is obvious that as 
long as I:1M(Pg) :::= O and E(Pg) :::= 1, then I:1H:::= 1:1 Net (12). However, 
it will presently be seen that changes in H can be a very inadequate 
approximation to isolate 12 changes in P gln' First, by means of a nu­
merical example it will be shown that changes in H (and also changes 
in H*) may be unduly influenced by changes in Pg and in Pn when the 
racial and school entro pies do not change. Second, in the case of the 
evolution of the U.S. student population enrolled in public schools, it 
will be seen how a large increase in the racial entropy coupled with a 
relatively smaller change in the school marginal distribution leads both 
to H greatly undervaluing the reductions in net segregation as differ­
ences in columns and H* missing the reductions in net segregation as 
differences in rows. 

5.2. Changes in the Marginal Distributions Without Changes in the 
Entropies 

The next example illustrates how neither H nor H* correct for the lack 
of invariance in M if the marginal distributions of schools and races 
change but the entropies do not. 

Example 3. Consider two cities, X and Y, with students from three 
racial groups, white, black, and Hispanic, and three schools, sI, s2, and 
s3. The joint absolute frequencies of students across schools and racial 
groups are summarized in two matrices: 

Ethnic groups 

[30 10 

I~J [10 10 10] white 

X= ; 15 and Y= 5 15 25 [ black l 
10 10 10 5 Hispanic 

[ sI s2 s3 ] [ sI s2 s3 ] 

Schools Schools 

City X is predominantly white, while city Y is predominantly black. 
Hispanics are the second largest group in X and the smallest group 
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in Y. However, racial entropies in both cities (multiplied by 100) are 
the same: E(Pg(X)) = E (Pg(Y») = 106.71. Schooll is the largest and 
school 3 the smallest in city X, while the order is reversed in city Y. 
However, these changes in the school marginal distribution do not 
affect the school entropy (multiplied by 100): E(Pn(X)) = E (Pn(Y») = 
108.05. Moreover, both the school entropy and the racial entropy are 
close to 1. Consequently, changes in H and H* are very similar to 
changes in M: M(X) - M(Y) = 6.56 versus H(X) - H(Y) = 6.15 
versus H*(X) - H*(Y) = 6.07. However, according to decomposition 
(14), net segregation as differences in rows is lower in X than in Y, 
~Net(I1) = -7.98, and the change in the racial distribution increases M 
in X, ~ M( Pg) = 17.19. Similarly, according to decomposition (15), net 
segregation as deviations in columns is lower in X than in Y, ~Net(12) = 
-5.98, and the change in the school distribution increases segregation 
in X, ~M(Pn) = 12.54. Hence, neither H nor H* correct for the lack 
of invariance in M if the marginal distributions of schools and races 
change but the entropies do not. 

5.3. The Eflects 01 an Increase in the Racial Entropy: Invariance 
Properties in Practice 

The case of the evolution of the U.S. student population enrolled in 
public schools already studied in Section 3.2 is reconsidered here to 
evaluate whether, in practice, changes in either the H or the H* index 
can be seen as reasonable approximations of 12 or I1 terms, respec­
tively. In Section 3.2 it was reported that during the 1989-2005 period 
the M index increased by 4.98, the H index decreased by -2.30 because 
the racial entropy increased relatively more than M, and the H* index 
slightly increased by 0.50 because the school entropy decreased. How­
ever, in equation (15) the change in the M index due to the change in 
the racial entropy is 17.80, while the change due to the change in the 
marginal distribution of schools is -0.59. Therefore, the variation in net 
segregation independent of these effects is 

~Net(I2) = 4.98 - (-0.59) - 17.80 = -12.23. 

Hence, the change in the normalized entropy index H greatly underval­
ues the improvement in net segregation as differences in columns. 
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In contrast, the change in the M index in equation (13) due to 
the change in the schoo1s' entropy is -4.53, while the change due to the 
change in the marginal distribution ofracia1 groups is 10.63. Therefore, 
the change in net segregation independent of these effects is 

L1Net(ll) = 4.98 - (-4.53) - 10.63 = -1.11. 

Hence, the change in the normalized entropy index H* misses the im­
provement in net segregation as differences in rows. 

6. THE NORMALIZATION ISSUE 

Clear1y, it is convenient for any index to be normalized in the sense 
that it reaches a maximum value for a particular notion of complete 
segregation and a minimum value for a particular notion of complete 
integration. Most researchers would identify the absence of segregation 
with the situation where organizational units have the same racial com­
po sitio n or, equivalentIy, where demographic groups have the same 
distribution across organizational units. Similarly, most researchers 
would accept that demographic groups are completely segregated when­
ever they do not mix at aH within organizational units. A segregation 
index is said to be normalized in the unit interval-or to possess the 
NOR property-ifit takes value O whenever there is no segregation and 
it takes value 1 whenever it reaches complete segregation as defined 
aboye. 

It has been shown that while H and H* satisfy NOR, the M 
index do es not because it requires an additional condition to reach 
maximum segregation. However, there are conceptual reasons to defend 
the notion of complete segregation implicit in M. Both H and H* rank 
aH cities with no racial mixing within schools as equaHy segregated, 
while M assigns a higher segregation level to cities in which there is less 
initial expected information about a student's racial group. FoHowing 
an example for another purpose in Frankel and Volij (forthcoming), 
consider city A with three schools and three racial groups and city B 
with two schools and two racial groups, such that 
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[

50 

A= ~ 

o 
50 

O 

Given each city's marginal distributions, segregation is at a maximum 
in both cities according to the three indexes. Both H and H* assign to 
each city a segregation value of 1. However, learning a student's school 
(racial group) in A conveys more information about a student's race 
(school) than in B. Consequently, segregation in A is larger than in B 
according to the M index: M(A) = 1.10 and M(B) = 0.69. Consider 
now a third completely segregated city C: 

Both H and H* assign again to C a segregation value of 1. 13 How­
ever, since there is much les s uncertainty about a student's racial group 
(school) in C than in either A or B, segregation in C according to M is 
much smaller than before: M(C) = 0.06. 

As Clotfelter (1979) pointed out, a critical problem with segre­
gation in dices that satisfy NOR is that they fail to capture well changes 
in interracial contact. Compare the effect of merging the two schools in 
city C, yielding the one-school city represented by column vector [99 1]', 
with the effect of merging the two schools in B, yielding the one-school 
city represented by [5050]'. The first merger has a very smaIl effect on 
the interracial exposure ofthe average student, while the second one has 
a much larger effect: Each student switches from a completely segre­
gated school to one that is completely integrated. The M index refIects 
this difference, falling by 0.06 in C versus 0.69 in B. In contrast, H and 
H* miss the difference beca use the segregation value they both assign 
decreases by 1 in the two cases. 

Furthermore, as has been indicated in the introduction, Frankel 
and Volij (forthcoming) establish the incompatibility of NOR and 

13 As a matter of fact, any 11 or /2 segregation index that satisfies the 
principie of transfers and is bounded aboye by I would also assign to the three 
cities A, B, and e a maximum segregation value of 1 in this example. However, as 
already stated, H and H' violate the two invariance properties 11 or /2, proving 
that both 11 and /2 are independent properties from NOR. 
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decomposability properties SSD and SGD, providing an argument in 
empirical studies for avoiding indexes that satisfy NOR. 

Finally, it should be noted that all segregation indices that are 
bounded aboye can be weakly normalized, in the sense that they can be 
expressed as proportions of maximum segregation, by simply dividing 
them by their maximum values. In particular, the M index reaches its 
maximum at the smallest value between log( G) and 10g(N) because, as 
a measure of ditTerences in the rows in city X, it cannot be larger than 
10g(N), and, as a measure of ditTerences in the columns in city X, it 
cannot be larger than log( G). Given that in most empirical applications 
log( G) < 10g(N), normalizing M in this weak sense is simply equiva­
lent to computing the logarithm in base G. The resulting measure can 
be interpreted as the proportion of maximum ditTerences in columns. 
However, this exercise is not useful for two reasons. First, the most ro­
bust feature of the index-namely, the ranking it induces-is still the 
same and captures both ditTerences in rows and ditTerences in columns. 
Second, although the resulting index takes values in the unit interval, it 
still does not satisfy NOR. 

7. CONCLUSIONS 

This paper borrows from the income inequality Iiterature the method­
ological criterion that one way to select an adequate segregation 
measure is to study which basic and subsidiary but useful properties 
ditTerent indices satisfy. The importance of doing this is discussed by 
one of the leading advocates of this approach: "If this search is not un­
dertaken, there is a tendency to continue using those measures that have 
been popular in the past. The index is then chosen by default, or histor­
ical accident, rather than by any assessment of its merits" (Shorrocks 
1988:433).14 We have discussed three types of subsidiary properties 

14 Grusky and Charles (1998:497) complain that this situation has indeed 
been prevalent in the history ofresearch on occupational segregation by gender:"For 
all its faddishness, the concept of path dependency proves useful in understanding 
the history of sex segregation research, and not merely because the index of di s­
similarity (hereafter, D) has shaped and defined the methodology of segregation 
analysis over the last 25 years. It is perhaps more important that D has been so 
dominant during this period that it undermined all independent conceptual devel­
opment. Indeed, segregation scholars have etTective1y assumed that sex segregation 
is simply whatever D measures." 
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as they apply to three entropy-based segregation indices, M, H, 
and H*. 

First, it is often convenient to have segregation measures with 
the subsidiary property of additive decomposability. In a decomposition 
context, consider the notion of contribution to overall segregation by a 
subgroup k, or by all subgroups together in a certain partition, or con­
sider the question ofhow much segregation can be attributed to a given 
discrete variable. As in the income inequality or the economic poverty 
literature, it is not always possible that all intuitive interpretations of 
these questions coincide under a certain decomposability property. As 
shown in this paper, for the first time in the literature these questions 
receive the more unambiguous answers that are possible in a segrega­
tion context under the decomposability properties SSD and SGD that 
are only satisfied by the M indexo The H and the H* indices satisfy 
sorne weaker decomposition properties. However, numerical examples 
and actual data have been used to establish that the dependence of 
the weights in these decompositions on both demographic information 
about the marginal distributions and school and racial entropies pose 
serious problems of interpretation, specially in the decomposition of 
the H index for partitions of groups into supergroups, and the decom­
position of the H* index for partitions of schools into clusters. 

Second, the invariance properties that require a segregation mea­
sure to be independent from changes in the relative importance of de­
mographic groups or organizational units have also greatIy concerned 
many authors in the segregation field. The M index is not invariant in 
this sense but changes in overall segregation according to the M in­
dex can be decomposed in two complementary ways to isolate terms 
that capture changes in net segregation independent of variations in 
the marginal distributions of schools and racial groups. No such de­
compositions are available to the H and the H* indices. When such 
demographic changes are important, as we have shown to be the case 
in an example in Section 5.2 and when assessing the change in school 
segregation in the U.S. during 1989-2005, this is a serious limitation. 

Finally, many authors have insisted on the convenience of a 
third subsidiary property-namely, normalization. This can be eas­
ily achieved in our case by dividing the M index into the appropriate 
population entropy. If the racial entropy is chosen, then the H index 
is obtained. Similarly, if the entropy of the schools is chosen, then the 
H* index is obtained. However, the cost of either normalization is very 
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high indeed. On the one hand, at a conceptual or intuitive level, it can 
be argued that neither the H nor the H* index captures changes in inter­
racial or inter-group exposure well. On the other hand, all normalized 
indices, including the H and the H* indices, violate the strong de­
composability properties SSD and SGD with the consequences already 
analyzed. 

In conclusion, applied researchers have available three segre­
gation indices based on the entropy notion first advocated by Theil 
and Finizza (1971): the M index on the one hand, and the H and 
H* indices on the other. However, the advantages of the M index are 
inescapable. In the first place, Frankel and Volij (forthcoming) have 
formally characterized the ranking induced by the M index in terms 
of eight ordinal axioms-a result that allows us to know exactly which 
value judgments are invoked when using this ranking rather than the 
ones induced by the remaining entropy-based indices for which no 
such characterization result is available. 15 But beyond this convenient 
situation, we select which index to use in practice by also taking into 
account its cardinal properties. In this respect, this paper has shown 
that when decomposability properties are desired in the empirical work 
there is much to be gained by focusing exclusively on the un-normalized 
M indexo In addition, when invariance properties are al so thought to 
be useful, it has been seen that applied researchers would do better 
using the M index and its invariant decompositions rather than using 
either H or H*. Finally, the significance of the segregation differences 
and levels can only be studied under an alternative hypothesis if the 
measure is explicitly embedded in a statistical framework. Researchers 
with these considerations in mind can exploit the statistical properties 
established in Mora and Ruiz-Castillo (2010) for the M indexo No com­
parable statistical framework has yet been provided for the H and H* 
indices. 

15 Few segregation in dices have been similarly characterized. In the two 
groups case, Chakravarty and Silber (1992) characterize an index of absolute segre­
gation, while Chakravarty and Silber (2007) axiomatically derive a class of numer­
ical indices of relative segregation that parallel the multidimensional Atkinson in­
equality indices. Two members ofthat c1ass are monotonically re1ated to the square 
root index, independently characterized by Hutchens (2004), and the M indexo In 
the multigroup case, Frankel and Volij (2010) provide an ordinal characterization 
of an Atkinson indexo 
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