
Design and implementation of a distributed

architecture for embedded devices to provide

real-time location and similar services

Author:
Guido Fioravantti Rassat

Supervisors:
Joerg Widmer
Albert Banchs

Tribunal

Presidente:

Vocal:

Secretario:

Realizado el acto de defensa y lectura del Trabajo de Fin de Grado el d́ıa 10
de Julio de 2015 en Leganés, en la Escuela Politécnica Superior de la Universidad
Carlos III de Madrid, acuerda otorgarle la CALIFICACIÓN de

VOCAL

SECRETARIO PRESIDENTE

2

Abstract

Ever since Global Positioning System technology appeared, there has
been an active discussion about developing a similar service for indoor
environments. Applications for indoor RILS (Real-time Indoor Location
System) range from Business Intelligence to security appliances and their use
is sure to have a significant impact on society. Though several alternatives
have been explored throughout the years, no solution has been able to strike
a balance between ease of use, expandability and low cost that would allow
one of them to become mainstream.

Taking on this challenge, this document explores the state of the art
of RILS, classifies them, identifies their advantages and disadvantages
and proposes an alternative solution: FIBER. Furthermore, a real world
deployment of said solution and further discussion about the results obtained
is also included.

4

Agradecimientos

Quiero dar las gracias a todas las personas que me han ayudado a realizar
este trabajo, ya sea con su consejo, cariño, experiencia o apoyo. También
quiero hacer una mención especial a mis compañeros y compañeras de
carrera, sin los que esta aventura hubiera sido menos emocionante culminar
y cuyo compañerismo y amistad agradeceré siempre.

19 de Junio de 2015
Madrid, España.

6

CONTENTS

Contents

1 Motivation and objectives 12
1.1 Business Intelligence and Marketing 12
1.2 Employee Tracking . 13
1.3 Security . 14
1.4 Safety . 15

2 Discussion of the problem to solve 17
2.1 Classification of real-time location systems 17
2.2 State of the art . 18

2.2.1 Client side with alternative sensors 18
2.2.2 Client side with IEEE 802.11/Bluetooth 19
2.2.3 Infrastructure-based with Time of Flight techniques 19
2.2.4 Licensed spectrum solutions 20
2.2.5 Infrastructure-based Fingerprinting 20

3 Technical implementation 21
3.1 Terminology . 21
3.2 Architecture . 23
3.3 Sniffers . 23

3.3.1 Requirements . 23
3.3.2 Hardware . 25
3.3.3 Software . 32

3.4 Back end . 36
3.4.1 Requirements . 36
3.4.2 Hardware . 36
3.4.3 Software Requirements . 37
3.4.4 Aggregator . 38
3.4.5 Location software . 40
3.4.6 Database . 41
3.4.7 JSON API software . 42

3.5 Infrastructure . 44
3.5.1 Network . 44
3.5.2 Power . 45

3.6 Methodology . 47
3.6.1 Offline phase (or calibration) 47
3.6.2 Online phase (or localization) 48

4 Results and evaluation 51
4.1 First set of results . 52

4.1.1 Window method . 52
4.2 Results after recalibration . 54

5 Future work 57
5.1 Improving speed . 57

5.1.1 Bluetooth integration . 57
5.2 Viterbi-like trajectory reconstruction 57

8

CONTENTS

5.3 Improving robustness . 58
5.3.1 Relative histograms . 58

6 Budget and work planning 59
6.1 Budget . 59

6.1.1 Labor force cost . 59
6.1.2 Hardware costs . 59
6.1.3 Software costs . 60
6.1.4 Total cost . 60
6.1.5 Indirect costs . 61

6.2 Planning . 61
6.2.1 Activities table . 61
6.2.2 PERT diagram . 63
6.2.3 Gantt diagram . 64

7 Conclusions 65

Appendices 66

A Summary 66
A.1 Motivation and objectives . 66

A.1.1 Business Intelligence and Marketing 66
A.1.2 Employee Tracking . 67

A.2 Discussion of the problem to solve 68
A.2.1 Classification of real-time location systems 69
A.2.2 State of the art . 69

A.3 Technical implementation . 71
A.3.1 Terminology . 71
A.3.2 Architecture . 72
A.3.3 Methodology . 73

A.4 Results and Evaluation . 76
A.5 Budget and planning . 76
A.6 Future work . 76
A.7 Conclusions . 76

9

LIST OF FIGURES

List of Figures

1 A representation of how New Visitor vs. Returning Visitor
information can provide useful insight on Marketing campaign
success evaluation . 12

2 An example of a RILS + ET application tracking time spent by an
employee on different machines . 14

3 An example of an airplane application of RILS where an offender is
detected in row 9 . 15

4 An example of what a RILS + Safety implementation may look like
detecting movement during a fire 16

5 Proposed location systems classification 17
6 Comparison of single-spiked and double-spiked RSSI histograms . . 21
7 FIBER architecture showing Sniffers + Backend + JSON API

interface . 23
8 An example of how altitude can affect line of sight contact with

clients with 1 meter height obstacles 24
9 Comparison of well and badly placed sniffers with respect to a radio

map point (RMP) . 24
10 The Odroid C1’s front component scheme 26
11 The Odroid C1’s back component scheme 26
12 The Odroid C1’s Specification . 27
13 The Solid Run Hummingboard i1’s front component scheme 28
14 The Raspberry Pi 2 Model B’s front component scheme 29
15 A photograph of the TL-WN722N network interface 31
16 kismet wrapper flow diagram . 34
17 Flow diagrams for bootscripts . 35
18 A closeup of the back end architecture 36
19 An illustration of how the aggregator module works 38
20 Aggregator flow diagram . 39
21 An example of how the aggregator module can be exported to a

given sniffer (S4 in this example) in order to create a mesh network 40
22 The ’Clients’ table database schema 41
23 An example of a JSON-formatted response from the API 42
24 An example of a JSON-formatted response filtered by floor 43
25 An example of latitude and longitude bound filtering 44
26 An illustration of how client and sniffer networks are separated . . . 45
27 The RavPower Deluxe Series RP-PB22 battery 46
28 An explanation of how FIBER localization works 48
29 An example of normalized histogram, showing a 0.25 probability of

a -45dBm measurement belonging to it 49
30 Legend for Figures 31 and 32 . 52
31 Results on overall system accuracy (legend in Figure 30) 54
32 Results on overall system accuracy after recalibration (legend in

Figure 30) . 56
33 A PERT diagram showing all activities from Table 26 (critical path

in orange) . 63

10

LIST OF FIGURES

34 The project’s Gantt diagram (one day is 5 hours of work) 64
35 A representation of how New Visitor vs. Returning Visitor

information can provide useful insight on Marketing campaign
success evaluation . 67

36 An example of a RILS + ET application tracking time spent by an
employee on different machines . 68

37 Proposed location systems classification 69
38 Comparison of single-spiked and double-spiked RSSI histograms . . 72
39 An explanation of how FIBER localization works 74
40 An example of normalized histogram, showing a 0.25 probability of

a -45dBm measurement belonging to it 75

11

Motivation and objectives

1 Motivation and objectives

Business intelligence, marketing, employee tracking, security and safety are just
some of many applications that can be built on top of Real-time Indoor Location
Systems (or RILS). RILS can contribute to these areas, making them more
intelligent, less intrusive and more accurate overall. In this section we will describe
real scenarios where this technology is being used and the benefits it has yield thus
far.

1.1 Business Intelligence and Marketing

The most fitting scenario for describing RILS and business intelligence combined
is the so called Smart Shopping Mall. This type of mall includes a deployment
of RILS and therefore knows more about smartphone users that shop in it. This
information (a collection of user’s MAC addresses and an estimate of their location
inside the shopping mall), is compiled by business intelligence agents and used to
aid the mall’s commercial staff in a variety of ways.

In a similar fashion as website traffic analysis tools (such as Google Analytics
[11]) have aided web owners [5], RILS provides mall owners with information about
new vs returning visitors, visitor flow through the mall, visitor to client conversion,
etc. This information, as happens in the web, can be critical to assess factors such
as:

• Marketing campaign success rate (How many new visitors came to the mall?)

• Floor plant design (Why are users flowing more through certain corridors?)

• Mall space valuation (This area is more expensive because more people flow
through it)

Returning Visitor

87.5%

New Visitor

12.5%

(a) Before Marketing campaign

Returning Visitor

67.25%

New Visitor

32.75%

(b) After a successful Marketing campaign

Figure 1: A representation of how New Visitor vs. Returning Visitor information
can provide useful insight on Marketing campaign success evaluation

Significant statistical inference can be made from such a data set. For this
reason, it’s rapidly becoming a powerful tool for Marketing applications. Many
of these uses are still to be discovered, but others are Internet-born Marketing
techniques that can be adopted directly. Such techniques enable:

12

Motivation and objectives

• User profiling (Where does this user usually spend time and what is he/she
interested in?)

• Shop profiling (What do customers of this shop do before/after shopping in
it?)

• Trajectory based offers (This user did not buy in this shop and is leaving:
¿last opportunity offer?)

• Bounce rate, Average stay time, Number of stores visited, etc.

1.2 Employee Tracking

Companies from diverse industries have long tracked their employees. Motivations
for doing so are diverse, ranging from measuring productivity to making sure
employees are well rested.

Some of these companies are trying new techniques in hopes of providing
seamless employee tracking (or ET). One of these new trends, for example, has
been using quantifiers to achieve tracking. While quantifier can report on employee
activity accurately, they’re oblivious of where such activity takes place.

RILS can provide a solution for this scenario by pinpointing employees’
locations and mapping them to working places. By building an employee tracking
application on top of RILS, developers can keep historical data of worker’s locations
for later analysis as well as react to real-time events. As a complete solution,
employee tracking on top of RILS could, for example, provide:

• Automated alerts on physical stress

• Hours worked vs. productivity analysis

• Machine usage analysis

• Accident reenacting (improving safety)

13

Motivation and objectives

(a) A corner section of a factory floor plan
representing machines labeled from M1 to
M5 and a corridor in a right angle

M5

15.4%

M1

13.5%

M2

31.75%

M4

14.1%

M3

15.05%

Break

10.2%

(b) Time spent by a given employee on
different machines

Figure 2: An example of a RILS + ET application tracking time spent by an
employee on different machines

The RILS described in this report was developed for use in combination with
employee tracking in a factory that produces metal products. The implementation
details of the system will be described in further sections.

1.3 Security

Most modern security system is based on one way of tracking or another. Like
employee tracking, where employees are tracked based on the mobile devices
they use, infrastructure-based IEEE 802.11 [10] and Bluetooth [13] RILS (which
this report focuses on and will be further explained) can track a user that is
using a device for transmission without their active collaboration (unlike client-
based RILS). Based on this capability, many security based applications can be
envisioned.

For example, in some places like commercial airplanes, it is vital that electronic
equipment is turned off. In this scenario, RILS can detect active interfaces and
locate them so that offenders can be stopped without having to laboriously check
every passenger’s device.

14

Motivation and objectives

Figure 3: An example of an airplane application of RILS where an offender is
detected in row 9

Other uses for this non user-consented device detection capability could be
alerting about transmitting devices in conference rooms where such behavior is
banned. A simply alert could be triggered when active interfaces are detected,
warning meeting members to take appropriate action.

1.4 Safety

RILS can be combined with safety in a number of ways. One example is building
evacuation. According to firefighters [6], assessing if there are people trapped inside
a burning house or office is one of the most difficult tasks they face, for which they
often resort to a risk/probability approach based on partial data. RILS could
provide useful insight in these situations. If the system detects moving workers in
a given area, such information may aid firefighters on planning rescue operations.
Another thing to note is that for a conventional RILS + ET system to provide
this service, backup batteries so that the equipment can run through emergency
power cuts is all that it needed.

15

Motivation and objectives

Figure 4: An example
of what a RILS +
Safety implementa-
tion may look like
detecting movement
during a fire

Other inspiring scenarios for RILS and safety include locating doctors in a
hospital when needed, knowing the last position of a stranded worker or verifying
devices are turned off in a ’explosion risk’ environment.

16

Discussion of the problem to solve

2 Discussion of the problem to solve

Finding an adequate way of solving RILS is striking a balance between four aspects:
convenience, expandability, cost and accuracy. In order to formally define these
three aspects:

• Convenience refers to how easy it is to deploy the system with current
wide-spread technologies. For example, a RILS aided by sensor present in
most smartphones will be more convenient than a system which requires
specific hardware.

• Expandability is measured by how straight forward it is for developers to
build applications on top of the RILS in question. A RILS that is highly
modular and provides well known interfaces for developer interaction will
generally score higher in terms of expandability. For example, a FIBER
provides a JSON API with location information is highly expandable since
it uses a well known and simple interface to output relevant information on
top of which a web based application is straight forward to build.

• Cost is simply defined as the amount of money that must be invested in
order to get the RILS operative. If a RILS uses license spectrum or requires
the user to bear a specific device, the cost will be high in comparison to a
system that can run on off the shell hardware and existing user devices.

• Accuracy is related to the precision with which a client can be located in
terms of meters. However, we are not looking for the best accuracy possible,
just for a ’good enough’ accuracy (3-4m). All the systems analyzed deliver
this type of accuracy.

2.1 Classification of real-time location systems

Real-time Location Systems

Outdoor

Client based

Licensed Spectrum

Time of Flight

GPS

(...)

Indoor (RILS)

Client based

Alternative sensors

Fingerprinting

IndoorAtlas Project Tango

IEEE 802.11/Bluetooth

Fingerprinting

Horus

Infrastructure Based

IEEE 802.11/Bluetooth

Fingerprinting

FIBER

Time of Flight

CAESAR

Licensed spectrum

(...)

Figure 5: Proposed location systems classification

A complete classification scheme for location systems and RILS is proposed in
Figure 37. Our development, FIBER (Fingerprinting Infrastructure-BasEd
Rils), classifies as IEEE 802.11 [10]/Bluetooth [13] fingerprint infrastructure based
RILS. Other state of the art RILS (IndoorAtlas [4], Project Tango [3], Horus [2]
and CAESAR [1]) have been placed in it for reference.

17

Discussion of the problem to solve

2.2 State of the art

Current implementations of RILS are highly diverse in terms of technology used
to achieve indoor location. We will now go over some of them, explaining how
they work and why they pose limitations that made FIBER necessary.

2.2.1 Client side with alternative sensors

Systems like Google’s Project Tango [3] and IndoorAtlas [4] focus on meter-
accuracy of location. To achieve said accuracy, they rely on alternate sensors
such as depth-aware cameras (such as [7]) and magnetic sensors [8].

Google’s Project Tango [3] works on devices bearing special cameras and
sensors providing depth perception, area learning and motion tracking. This
information is then processed by the device in order to infer information about its
position within a building. A developer API is also available, allowing developers
to expand the core functionality of the system and C, JAVA, Android or Unity
written applications to run on top of it.

Advantages Disadvantages
High precision Requires new sensors

API for developers Client side
Requires user involvement

Table 1: Table showing advantages and disadvantages of Google’s Project Tango

While Project Tango provides modularity/expandability thanks to the provided
developer API, requiring specific hardware not available to the public make cost
and ease of use an issue. Moreover, being a client-side solution, many real-life
scenarios (see Section 1) are not possible without user collaboration. Therefore,
there is still room for FIBER to take on Project Tango’s weak points.

IndoorAtlas [4] combines traditional IEEE 802.11 [10]/Bluetooth [13] finger-
printing techniques [9] with magnetic-field fingerprinting [8]. Relying on the earth’s
magnetic field is more convenient than 2.4GHz/5GHz spectrum, since it will not
be affected by physical object’s movement in the environment (i.e., furniture rear-
rangement, moving pieces in a factory, etc.).

Advantages Disadvantages
Robust fingerprinting Requires magnetic sensor

Less calibration Client side
Requires user involvement

Table 2: Table showing advantages and disadvantages of IndoorAtlas

IndoorAtlas [4] inherits all the disadvantages of client-side RILS when it comes
to our target scenarios (see Section 1). Additionally, as in the case of Project
Tango [3], using specific hardware makes cost and ease of use an issue.

18

Discussion of the problem to solve

2.2.2 Client side with IEEE 802.11/Bluetooth

The Horus [2] location system provides some of the mathematical framework for
FIBER as well as some of the techniques for medium calibration and data analysis.
FIBER and Horus systems are similar except for a crucial difference: Horus is
client-based while FIBER is infrastructure based.

Client based systems require some degree of active user involvement. The
user must run a location app on their device, generally helping said user to
locate his/herself inside a building. Infrastructure based location systems do not
depend on active user involvement and can operate without user-side consent.
Moreover, infrastructure based location systems will only require a user to be
sending information using IEEE 802.11 [10] or Bluetooth [13] for their device to
be located.

Another important aspect about client-based vs. infrastructure-based systems
that use fingerprinting is that, generally speaking, fingerprinting yields accuracy
of 3-4 meters. In short, IEEE 802.11 [10]/Bluetooth [13] fingerprinting [9] provides
area-level accuracy, which is good enough for infrastructure-based applications (see
Section 1), but not quite good enough for most client-side applications (i.e., indoor
navigation).

Advantages Disadvantages
Uses existing sensors Area level accuracy not enough

Recalibration on environment change
Requires user involvement

Table 3: Table showing advantages and disadvantages of the Horus system

Horus provides cost effectiveness and ease of use thanks to the use of common
sensors as well as certain expandability but being client-side makes it incompatible
with our targeted scenarios. The Horus system paper states [2] that porting the
system to infrastructure-based is trivial, but there are some important issues in
doing so that will be discussed further on (see Section 3).

2.2.3 Infrastructure-based with Time of Flight techniques

Location systems using Time of Flight (or ToF) attempt to compute the location
of a given device based on very accurate measurement of time intervals between
transmissions towards and from said device. Famously, GPS [12] uses this
technique.

According to CAESAR [1], the reason ToF has not been more present in IEEE
802.11 [10] based RILS is that, since they are used mainly for communication,
ranging techniques suffer from ”noise in the measurement due to clock drift,
interaction with system tasks, and protocol overhead”. Caesar will also tend to
loose accuracy when not in direct line of sight of the device due to reflections.

Advantages Disadvantages
Uses existing sensors Requires strict time sync with device

Meter accuracy Reflection sensitive

19

Discussion of the problem to solve

Table 4: Table showing advantages and disadvantages of the CAESAR system

All things considered, CAESAR poses as a solid option for our target scenarios
(see Section 1) since it’s infrastructure-based. Anyhow, the need for strict timing
synchronization with the device and reflection problems may be an issue for certain
scenarios (i.e, a metal factory).

2.2.4 Licensed spectrum solutions

Although some RILS solutions take advantage of higher frequencies with better
accuracy than IEEE 802.11 [10] (2.4GHz/5GHz) or Bluetooth [13] (2.4GHz), they
require specific hardware on the client-side and need a license for operation within
their spectrum range. Since cost effectiveness is one of our goals, we do not consider
these systems.

2.2.5 Infrastructure-based Fingerprinting

Our development (FIBER) is an infrastructure based fingerprinting RILS that
solves Horus’ [2] client-side inconvenience. While not as accurate as other
non-fingerprinting systems like CAESAR [1], ease of use, cost effectiveness and
expandability of FIBER, along with some robustness against reflections, makes it
the better match. Table 32 shows FIBER against other systems according to the
criteria we defined at the beginning of this section:

Convenience Expandability Cost Accuracy
Project Tango [3] low high high X
Indoor Atlas [4] low medium high X

CAESAR [1] medium medium medium X
Horus [2] medium high low X
FIBER high high low X

Table 5: Comparison table of SOA RILS according to the evaluation criteria.

Requiring only widespread sensor on current smartphones, convenience is a
selling point for FIBER. Using free spectrum technologies for fingerprinting [9] such
as IEEE 802.11 [10] and Bluetooth [13] help with cost-effectiveness and enables
the use off-the-shelf hardware for sniffers (also alleviating regulatory frameworks).
Finally, building software in exportable modules and providing a JSON API
interface for developers to easily build applications on top of FIBER contributes to
the system’s expandability. If FIBER can provide area-level accuracy (see results
and evaluation in Section 4), it’s the best solution for our needs.

20

Technical implementation

3 Technical implementation

In this section we will see how the elements composing the FIBER system were
implemented and made to work together. The development of the system was
focused around three fundamental pillars, deemed necessary to succeed. These
pillars are (you might want to refer to terminology at Section 3.1):

1. Obtaining good RSSI histograms during fingerprinting [9]

2. Having a good calibration technique

3. Adequately placed sniffers

3.1 Terminology

When discussing the system’s details, the following terms will be used:

• RSSI stands for Received Signal Strength Information. It provides
information about the received signal strength in dBm for a given
transmission. Values are usually negative, and range from -90dBm (bad
signal reception) to 0dBm (perfect signal reception).

• RSSI histogram (or RH) is the result of compiling RSSI values for a
certain amount of time.

• Single-spiked histogram (or SSH) refers to a relative histogram where
RSSI values are distributed towards a single value (see Figure 38 [a]).

• Multiple-spiked histograms (or MSH) are RSSI histograms where
RSSI values are centered around two (or more) values instead of one (see
Figure 38 [b]).

(a) An example of a single-spiked histogram
(SSH) centered around -41dBm

(b) An example of a multiple-spiked his-
togram (MSH) centered around -41dBm
and -58dBm

Figure 6: Comparison of single-spiked and double-spiked RSSI histograms

21

Technical implementation

• Each radio map point (or RMP) is made up of a set of sniffer reports
taken during the calibration. A radio map point is associated a to
the GPS coordinates [12] corresponding to the physical location where the
calibration of said point took place.

• A client (or user) is a person carrying an IEEE 802.11 [10] capable device
that will be tracked by the system and whose location the system tries to
infer.

• A sniffer is a device bearing at least one NIC (network interface card) used
by the sniffing software running in it to sniff RSSI values from client
transmissions.

• Sniffer report refers to the RH provided by a sniffer.

• Offline phase (or calibration) consists in gathering sniffer reports from
all available sniffers when a client is at a known position. This technique
is known as fingerprinting [9]. The collected Sniffer reports make a
radio map point that will be associated to the GPS coordinates [12] of the
location at which the calibration takes place.

• A radio map (or RM) is a collection of several radio map points.

• Online phase consists in gathering RSSI values from clients and
comparing them to the radio map recorded during the offline phase in
order to determine which is the most probable location of said client.

22

Technical implementation

3.2 Architecture

Figure 7: FIBER architecture showing Sniffers + Backend + JSON API interface

The FIBER architecture can be divided into two functional groups: sniffers and
back end. Sniffers are devices that will act as the sensing part of the system and
will forward measurements (RSSI values from clients’ communications) to the back
end. The back end, will process this measurements and use them for calibration
or to infer location information about the clients detected. This information is
accessible to the exterior via a JSON [27] API, that will send JSON [27] formatted
responses to queries about clients’ locations (see Section 3.4.7).

3.3 Sniffers

Sniffers are the sensing part of FIBER. They exist to provide sniffer reports for
the offline and online phases. They are based on small ARM chips and require one
NIC for sniffing purposes, another NIC for communication with the back end and
power. We will now review the sniffers’ requirements, hardware and software.

3.3.1 Requirements

For adequate sniffing, sniffers must fulfill a number of requirements:

1. Adequate placement is crucial for proper sniffing. The altitude at which
the sniffer’s antenna is located drastically affects the range at which it can
detect clients, cause unwanted shifts in sniffers reports and increase the need
for re-calibration. Sniffers should be placed at an altitude and orientation

23

Technical implementation

such that the amount of radio map points in direct line of sight of sniffing
antenna should be maximized.

Figure 8: An example of how altitude can affect line of sight contact with clients
with 1 meter height obstacles

2. Direct line of sight from any radio map point to at least one sniffer per
120o sector (see Figure 9).

(a) An example of well placed sniffers with
respect to a radio map point (RMP): At
least one sniffer per 120o sector

(b) An example of badly placed sniffers
with respect to a radio map point (RMP):
One 180o sector has no sniffers in it

Figure 9: Comparison of well and badly placed sniffers with respect to a radio
map point (RMP)

24

Technical implementation

3. Automated setup is required to make batch deployment at site seamless.
Sniffers’ configuration must be easily parametrizable as to connect to network
infrastructure automatically and connect to the back end.

4. Self reparation is also required in case of software failure (hardware failure
cannot be solved without human intervention). Sniffers should be able to
self-diagnose issues and attempt fixes to avoid human intervention. Since
sniffers will typically be located at non-easily accessible places, technician
work should be reduced as much as possible.

5. Remote access is the ability to remotely control devices to change
configurations or debug issues. Access through SSH [35] (or similar) is a
requirement for sniffers, specially since they will be located in remote places
where physical access is limited.

3.3.2 Hardware

The sniffer form factor should be as compact as possible as to enable its placement
in remote areas with minimum inconvenience. In order to achieve a compact form
factor, ARM architecture [14] based systems are preferred. Three platforms are
considered: Raspberry Pi 2 model B [15], Hardkernel’s Odroid C1 [16] and Solid
Run’s HummingBoard i1 [17]. We will now discuss them in detail.

Originally intended to run Android OS [32], the Odroid C1 also supports ARM
Debian Linux [20]. It improves USB capabilities over the Raspberry Pi 2, as
it doesn’t suffer from the USB/Ethernet performance anomaly issue, where the
Ethernet [33] bus is shared with the USB bus and can reduce network performance
under load. It also has a dedicated charging port, separate from the micro-USB
port, which allows both of them to be used simultaneously.

Advantages Disadvantages
No USB/Ethernet performance issues Not as good Debian as Raspbian

Dedicated charging port

Table 6: Advantages and disadvantages of Hardkernel’s Odroid C1

The Odroid C1’s front and back component schemes can be found in Figure 10
and 11 respectively. A full specification list can be found in Figure 12.

25

Technical implementation

Figure 10: The Odroid C1’s front component scheme

Figure 11: The Odroid C1’s back component scheme

26

Technical implementation

Figure 12: The Odroid C1’s Specification

Solid Run’s Hummingboard i1 is also considered as a candidate. Having a
higher computational power that the Odroid C1 and the Raspberry Pi 2, it can
handle heavier tasks than its contenders. The extra power, however, causes a bigger
heat dissipation and a higher power consumption. This board is the only board of
the three considered that needs a heatsink. Another issue is its lower popularity,
that translates into a less community-debugged version of ARM Debian Linux [20].
It also has less USB 2.0 ports than both the Raspberry Pi 2 and the Odroid C1.

Advantages Disadvantages
Higher CPU computational power Needs heatsink

Reduced community support
Vaguely optimized Debian
Only two USB ports

Table 7: Advantages and disadvantages of Solid Run’s Hummingboard i1

27

Technical implementation

The Hummingboard i1’s front component scheme can be seen in Figure 13. A
technical specification list of the board can be found in Table 8.

Figure 13: The Solid Run Hummingboard i1’s front component scheme

Technical Specifications
CPU i.MX6 Dual Lite

2 cores
RAM 1GB

64 bit, 1GB @ 800Mbps
GPU GC880

OpenGL ES1.1,2.0
Multi-format video decoder and encoder

Video IO HDMI 1080p with CEC
1.4, 3D support
MIPI CSI 2.0 Camera
2 Lane CSI-2

IO Ethernet 10/100/1000
2x Powered USB 2.0
GPIO header UART, 8 GPIO, SPI with 2 CS, i1C

Audio IO Coax SPDIF audio out
PWM Mono output

Storage UHS-1 Micro SD interface

Table 8: The Solid Run HummingBoard i1’s specifications

28

Technical implementation

Being the most popular of the three, the Raspberry Pi 2 model B has a big
support community in its favor. The curated Debian Linux [20] it uses, called
Raspbian OS [19], is also a big advantage, as it offers the biggest compatibility
with well known Linux programs. A specification list can be seen in Table 10 and
a component scheme is available in Figure 14.

Advantages Disadvantages
Raspbian OS USB/Ethernet performance anomaly

Big support community
High compatibility with Linux software

Table 9: Advantages and disadvantages of Solid Run’s Hummingboard i1

Figure 14: The Raspberry Pi 2 Model B’s front component scheme

29

Technical implementation

Technical specifications
Processor Broadcom BCM2836 ARMv7 Quad Core Processor

powered Single Board Computer running at 900MHz
RAM 1GB RAM
IO 40pin extended GPIO

4 x USB 2 ports
10/100 Ethernet Port
4 pole Stereo output and Composite video port
Full sized HDMI
CSI camera port
DSI display port

Storage Micro SD port
Power Micro USB power source

Table 10: The Raspberry Pi 2’s technical specifications

Using a stripped down version of the Raspbian OS on the Odroid C1’s and
Raspberry Pi’s, we were able to use them indistinctly, which helps with stock,
customs and shipping delays either one may suffer. The customized Raspbian OS
[19] is also mounted as a read-only image, as to increase the system’s robustness
in case of power failure or other abrupt power-offs.

Each sniffer is equipped with two IEEE 802.11 [10] capable usb dongles. One
of them will provide a sniffing interface for Kismet [18]. The other will connect
to the network infrastructure (see Section 3.5.1) in order to provide connectivity
with the back end (see Section 3.4).

The dongle that provides the sniffing interface had to be carefully selected. Not
all drivers will report accurate RSSI values and not all dongles are guaranteed to be
perfectly compatible with the operating system’s kernel. Therefore, the following
criteria was employed to select a good match:

• RSSI value report consistency

• Raspbian GNU/Linux 7 [19] compatibility

• Driver compatibility with used Linux kernel

The best match turned out to be the TP-Link TL-WN722N (see Figure 15).
The TL-WN722N wireless and hardware features are listed in Table 13 and 11
respectively. Operation details such as certification and operating temperatures
can be found in Table 12

30

Technical implementation

Figure 15: A photograph of the TL-WN722N network interface

HARDWARE FEATURES
Interface USB 2.0
Button WPS Button
Dimensions (W x D x H) 3.7 x 1.0 x 0.4 in. (93.5 x 26 x 11mm)
Antenna Type Detachable Omni Directional (RP-SMA)
Antenna Gain 4dBi

Table 11: TL-WN722N Hardware features

OPERATION DETAILS
Certification CE

FCC
RoHS

Package Contents Wireless Adapter
4dBi detachable Omni directional antenna
Resource CD

Environment Operating Temperature: 0oC - 40oC
Storage Temperature: -40oC - 70oC
Operating Humidity: 10% - 90% non-condensing
Storage Humidity: 5% - 90% non-condensing

Table 12: TL-WN722N Operation details

31

Technical implementation

WIRELESS FEATURES
Wireless Standards IEEE 802.11n

IEEE 802.11g
IEEE 802.11b

Frequency 2.400-2.4835GHz
Signal Rate 11n: Up to 150Mbps(dynamic)

11g: Up to 54Mbps(dynamic)
11b: Up to 11Mbps(dynamic)

Reception Sensitivity 130M: -68dBm@10% PER
108M: -68dBm@10% PER
54M: -68dBm@10% PER
11M: -85dBm@8% PER
6M: -88dBm@10% PER
1M: -90dBm@8% PER

Transmit Power <20dBm
Wireless Modes Ad-Hoc

Infrastructure mode
Wireless Security Support 64/128 bit WEP

WPA-PSK/WPA2-PSK
Modulation Technology DBPSK

DQPSK
CCK
OFDM
16-QAM
64-QAM

Advanced Functions WMM
PSP X-LINK(For Windows XP)
Roaming

Table 13: TL-WN722N Wireless features

As for the dongle used for communication, there are no particular requirements.
The cheapest is chosen and no homogeneity is required among devices.

3.3.3 Software

The most important program in the sniffers is Kismet [18]. For the purpose of the
project, it’s important to know that Kismet can run in server mode, in which it
will open a local socket (127.0.0.1:2501). Any program can connect to this local
socket and ask for certain information about what Kismet is sniffing through the
configured interface. This information can be RSSI values, client MAC addresses,
etc. They are referred to as ’sources’ in Kismet’s terminology.

The developed software inside the sniffers is focused on wrapping the Kismet
[18] program running in server mode. The name of the wrapper program is
kismet wrapper and it was written in C [21] as to increase performance as much
as possible. The task of kismet wrapper is to:

32

Technical implementation

1. Interact with the Kismet in order to enable sources and have Kismet report
MAC address, RSSI and timestamp values from sniffed clients.

2. Collect information sniffed by Kismet from the local socket provided
(127.0.0.1:2501)

3. Translate Kismet information into the following format:

<sniffer mac> <timestamp> <rssi> <client mac>

...

ab:cd:ef:12:34:56 1234567890 -37 f6:e5:d:4:c3:b2:a1

4. Handle Kismet failures by monitoring its local socket’s state. If failed, the
program shall exit with a given code that will signal the bootscripts to take
appropriate action (see Table 14).

33

Technical implementation

Start

Try connecting to
127.0.0.1:2501

Is the
socket
con-

nected?

Exit with code -1

Try connecting
to back end

Is the
back end

con-
nected?

Grab info,
translate and send

Exit with code 0

yes

no

yes

yes

no

Figure 16: kismet wrapper flow diagram

Kismet and kismet wrapper are launched by two bash scripts that will
relaunch them if they terminate. This bash scripts, called kismet bootscript

and kismet wrapper bootscript respectively, are scheduled to launch at boot
time using cron. Watchdogs are used to reboot the system in case of system
crash.

In order to facilitate configuration, a file named location service.conf is
placed inside the home folder, containing the address of the backend and other
information used by the sniffer software. Once this info is changed, a simple

34

Technical implementation

reboot is guaranteed to restart all software in an ordered way thanks to cron and
the bootscripts.

Boot

run kismet

Is exit
code -1?

Reboot

yes

no

(a) kismet bootscript.sh flow diagram

Boot

run kismet wrapper

Is exit
code -1?

Reboot

yes

no

(b) kismet wrapper bootscript.sh flow
diagram

Figure 17: Flow diagrams for bootscripts

Sniffers are also programmed to take actions autonomously in case of specific
failures. Table 14 shows different failure points that are taken into account and
the response that the sniffer takes to overcome them.

Error Response
Kismet failure Kismet reboot. Third time failing causes

system reboot.
General communications failure Communication interface reset. Third

time: system reboot.
Back end communication failure System reboot.
System block (watchdog) System reboot.
Memory availability issue Kismet (known memory leak) reset.

Third time: system reboot.

Table 14: Table describing course of action in case of Sniffer failures

35

Technical implementation

3.4 Back end

Figure 18: A closeup of the back end architecture

3.4.1 Requirements

The back end of the system is in charge of aggregating all the information provided
by the sniffers, use it for calibration or to determine a user’s location, returning
that information in a JSON [27] formatted response via a web service.

3.4.2 Hardware

The back end integrates four separate software modules (location software,
aggregator, database and API) that run in the same machine. This machine will
be called ’back end server’, and its recommended minimum requirements can be
found in Table 15.

Back end server hardware
Server-grade power supply

Server-grade hard drive (1TB+)
Intel Core 2 duo (2.0GHz) +

Ethernet capable NIC

Table 15: A list containing requirements for the back end server

36

Technical implementation

Basically, the hardware used for the server can be generic. Any box containing
a sever-grade power supply (with always-on performance focus), server-grade hard
drive (with continuous IO performance focus), standard Ethernet connectivity and
dual core 2.0GHz or more processing power is more than enough.

3.4.3 Software Requirements

Operating System wise, a Unix [23] or Linux [24] based solution is required, as some
of the software developed for FIBER relies on Unix Sockets [22] for communication
among processes. Porting the system to a DOS based OS like Windows is possible
but not advised. A list of software packets that must be present in the server can
be found in Table 16

Software Version
MySQL Server 14.0 (or higher)
Java JRE 1.8.0 (or higher)
Apache Tomcat Server 8.0 (or higher)

Table 16: Software requirements for the back end

37

Technical implementation

3.4.4 Aggregator

Figure 19: An illustration of how the aggregator module works

The aggregator is in charge of aggregating al data flows sent by sniffers into a
single socket. Typically, sniffers will send flows to the aggregator on port 5555 and
the aggregator will combine them into a single stream onto port 5454 of the same
machine or a different one (more about this feature later).

The aggregator is written in C and is aimed is to provide the fastest and most
efficient aggregation (one of the reasons it was not directly included in the Java
written FIBER module). To achieve fast aggregation of up to hundreds of sniffers
at a time, a memory-sacrifice strategy is used. A memory pool with reserved
memory for each sniffer is managed by a thread that waits for newline on a flow
before sending it off. The result is a line-per-measurement-per-sniffer joint output
flow. The flow diagram for the aggregator program can be seen in Figure 20.

38

Technical implementation

Start

Wait for incoming
connection

on port 5555

Had this
sniffer

reported
before?

Reserve space
in memory pool

Copy data into
memory pool

Was a
newline

character
received?

Send off accumulated
data to port 5454

yes

no

yes

Figure 20: Aggregator flow diagram

Since the aggregator module is independent from the rest of the system, it
can be exported onto another machine different from back end server. During the
deployment, the range on the IEEE 802.11 [10] network might not be enough to
cover the extension of the site. In that situation, one could run an instance of the
aggregator on a sniffer, that will act as a hop in order to forward the data flows
from out-of-range sniffers. This mesh network is described in Figure 21.

39

Technical implementation

Figure 21: An example of how the aggregator module can be exported to a given
sniffer (S4 in this example) in order to create a mesh network

3.4.5 Location software

The location software is the core of the system. It grabs the information from the
aggregator as a unified stream and provides the following functionality:

• Record map points during calibration

• Create radio maps with calibrated points. This map is saved to the hard
drive and used during localization.

• Load radio maps from the hard drive.

• Computing the location of clients based on live reports from all sniffers.

• Insert new clients into the database as they appear. Even if a location
is not yet computed for the client, a registry is added so that information for
’counting’ (see Section 1.1) is available immediately after the client is sniffed.

• Update the database’s client records with new information on location.
The task of removing ’old’ clients relies on the database itself (see Section
3.4.6).

This software implements a programatic version of the methodology for
calibration and localization that can be found in Section 3.6. The programs in
this module can be though of as a suite, containing all programs listed in Table
17.

40

Technical implementation

Program name description
Mapper Uses measurements from the calibration device

to compose a radio map point. It then adds said
point to an existing map or creates a new one
depending on the parameters specified.

MapMerger Takes two maps which’s names are specified in
the arguments and creates a new one as result of
merging them together.

PointDeleter Takes the coordinates of a given point and the
name of the map in which it’s contained and
deletes it from said map. This facilitates the
task of repeating the calibration of a given point
without having to dump the entire map.

MapInfo Displays information of the map which name is
passed as a parameter. This information includes
point’s coordinates and the time and date they
where captured at.

MapEvaluator Once the ground truth on the client’s location
is fed as a parameter, it can evaluated the
percentage of time the estimation of location
matches said ground truth. It then scores the
point, allowing FIBER deployers to evaluate a
radio map point performance and ponder the
need to recalibrate it.

Fiber The location software itself. Takes a single
parameter with the name of the radio map to
locate users on.

Table 17: A table containing all programs in the location module suite and their
descriptions

3.4.6 Database

The database used to store client’s locations is a MySQL [29] database. In it,
only one table named ’Clients’ is defined. This table contains all the information
relative to clients located by the system. The schema followed for this table is seen
in 22. The table engine is INNODB.

Figure 22: The ’Clients’ table database schema

41

Technical implementation

• id is an integer value assigned to each client that is unique and is set
automatically by the database.

• mac stores a string containing the client’s MAC address.

• floor indicates the floor on which the client was located.

• lat stores the client’s location in terms of latitude.

• lon stores the client’s location in terms of longitude.

• lastseen is a timestamp that is automatically updated when the client
record is updated (i.e, when the client’s location is recomputed).

The database is also configured to launch an event scheduled every 10 seconds
that deletes clients whose lastseen timestamp is older than a given amount of
time. This is intended so the system ’forgets’ clients that have presumably left the
building.

3.4.7 JSON API software

In order to provide an API that returns JSON-formatted [27] data (see Figure
23) regarding located clients, the back end uses an Apache Tomcat [28] server, for
which a web app has been developed using Java Servlets [26].

Figure 23: An example of a JSON-formatted response from the API

42

Technical implementation

The API is developed following standard MVC [25] practices. There is a
single view, which plots the locations of clients on a map. This is supposed to
be an example, since the idea is for developers to develop much more complex
front ends that can take advantage of FIBER through the API. The controller
responds to both GET and POST petitions. The model for a client location is
direct representation of the database’s client (see Section 3.4.6).

A full interface to the database is provided through the API, so queries will be
translated into MySQL [29] equivalents and the response from the database will
be formatted into JSON [27].

This JSON-to-MySQL and vices-versa feature makes this solution very flexible,
as it can accommodate any developer requirement. For example, if the developer
only wants location information related to clients located on the second floor, a
simple GET petition like /fiber?floor=2 (or its POST equivalent) could return
something like Figure 24.

Figure 24: An example of a JSON-formatted response filtered by floor

There are many other uses of this direct database interfacing. In another
example, instead of filtering by floor, a developer might be interested in
geographical area, for which he/she would simply forge the following request:

(where lt stands for ’less than’ and mt stands for ’more than’). The result will
be location information regarding clients located on the rectangular area defined
between latitudes -3.64817264 and -3.89294822 and longitudes 22.38274652 and
22.87264512. An illustrated example can be seen in Figure 25.

43

Technical implementation

Figure 25: An example of latitude and longitude bound filtering

3.5 Infrastructure

In order for the system to be properly operated, power and network infrastructures
are required. In this section we will go over the specific requirements that both
need to fulfill.

3.5.1 Network

Two separate networks need to be deployed to ensure adequate operation of the
FIBER system. One network, called client network, will be the one the clients are
connected to (which the system won’t require control of) and the other one, called
sniffer network, will provide connectivity between the sniffers and the back end.

44

Technical implementation

Figure 26: An illustration of how client and sniffer networks are separated

As will be mentioned in the methodology for calibration (see Section 3.6.1),
there is a problem with co-channel interference that can cause multiple-spiked
histograms (refer to terminology in Section 3.1) to appear in sniffer reports, causing
an overall loss in accuracy. One way to avoid this interference is to have the sniffer
and client networks operate in far apart IEEE 802.11 [10] channels. For example,
one would run in channel 1 whilst the other one in channel 11. If the client network
isn’t in control of the system, a spectrum analysis should reveal an ’unpopulated’
channel on which the sniffer network should be set to operate.

Another issue that could cause multiple-spiked histograms is power adaptation
on the client’s device or switching physical rates. To avoid this, IEEE 802.11g [10]
(for fixed physical rate) is forced if the client network is under the system controls.
If the client network is not being controlled by the system, alternative solutions
can be found, which will be discussed in Section 5.

3.5.2 Power

All sniffers, access points and back end must be fed with electrical current to
operate. This is a problem for sniffer placement, since areas with power availability
are not necessarily the ones for better sniffer placement.

To overcome this problem, batteries are used for sniffers during the initial
deployment. Once the calibration supports that the sniffer positions are optimum,
proper power infrastructure should be deployed (i.e, cabling) to those locations.
Information on the batteries used can be examined in Figure 27 and Table 18.

45

Technical implementation

Figure 27: The RavPower Deluxe Series RP-PB22 battery

Specifications
Model RP-PB22

Capacity 13000mAh
Output 5V / 2.4A

5V / 2.1A
Input DC 5V/1.5A

Weight 0.31 Kg
Size 12.7 x 8.13 x 2.18 cm

Table 18: The RavPower Deluxe Series RP-PB22 specifications

46

Technical implementation

3.6 Methodology

This sections discuses the procedures followed by our system to achieve client
location. The way FIBER computes client locations can be explained in two
stages: offline (or calibration) phase and online (or localization) phase.

3.6.1 Offline phase (or calibration)

The calibration is where a known device (called ’calibration device’, i.e., a
smartphone) is placed in a known physical location. Then, the device generates
traffic (typically by pinging the access point) in order to be sniffed by a cloud of
sniffers previously deployed at the site. In the back end, a histogram per sniffer
(called sniffer report) containing RSSI values reported over calibration time is
stored. All sniffer reports associated to that particular physical location are stored
as a radio map point (or RMP) as well as the physical location’s GPS coordinates
(which should be known at the time of the calibration). This point will be one
of several points that comprise the radio map. This process is repeated for all
physical locations that will be contained in the radio map and constitutes what is
known as fingerprinting [9].

The resulting radio map contains a set of radio map point formed by sniffer
reports. These sniffer reports, should be comprised of single peaked histograms
and in some cases, due to reflections in the medium, multiple-spiked histograms.

There is an issue, however, where co-channel interference in IEEE 802.11 [10]
networks can cause the appearance of multiple-spike histograms in absence of
reflections. Although not necessarily breaking the methodology, this low-RSSI
interference reduces the amount of useful data in the histogram, reducing its
’resolution’. This can negatively impact the statistical inference that will be made
in the online phase, causing an overall loss of accuracy.

To avoid co-channel interference, far apart IEEE 802.11 channels are used for
communication between the sniffer cloud and the back end (sniffer network) and
the calibration device (client network).

47

Technical implementation

3.6.2 Online phase (or localization)

Figure 28: An explanation of how FIBER localization works

Let there be a client at a pre-calibrated site bearing a device that is transmitting
through an IEEE 802.11 [10] interface. The sniffer cloud will start reporting on
every packet the smartphone sends, including the device’s MAC address and RSSI
value of the transmission (see Section 3.3.3). The system will record a radio map
point corresponding to the location of the user’s device in the same way as during
calibration but with two exceptions:

1. The physical location of the point is not known beforehand (that’s what we
are trying to determine)

2. Instead of requiring a number of measurements per sniffer report (as
to guarantee sufficient histogram resolution), a parametrizable number of
different sniffers must report at least one measurement

Once these two conditions are satisfied, the system has a new radio map point
representing the location of the user that can be compared to the points in the
radio map. Let the new point corresponding to the user’s location be called user
point (φu), the set of sniffer reports contained in it Su and the latitude-longitude
pair location values Lu. If there are N sniffer reports in Su, then:

48

Technical implementation

Lu = (lat, lon)
Su = {s0, ..., sN}
φu = [Su, Lu]

The system must now determine what points in the radio map are more related
to the user point. To do so, it determines what radio map points contain all sniffer
reports in Su. While the methodology could still work comparing the user point
against all points in the radio map, filtering points that don’t contain all sniffer
reports in the user point (hence useless at this time) saves time and processing.

Now, we have the user point (φu) and a subset of candidate points (Φc). The
candidate point that is most similar to the user point is probably the point the
user is nearest to. The system must compare all sniffer reports contained in φu
with those contained in all candidate points in Φc.

In order to do the comparison, a naive joint probability approach is used. Let
the histogram in each sniffer report be normalized. Then, given an RSSI value,
one could simply obtain the probability of that value happening in that particular
histogram by looking at its frequency. In the following example, the probability
with which the value -45dBm occurs in the histogram is 0.25 (or 25%).

Figure 29: An example of normalized histogram, showing a 0.25 probability of a
-45dBm measurement belonging to it

It follows that for the set of sniffer reports Su in the user point φu, the
probability that they would come from a given candidate point φc is simply the

49

Technical implementation

joint probability that every sniffer report from Su ’came from’ its homologue Sc.
We define this probability as relation probability Prel. The location Lc of the
candidate point with higher Prel is the most probable user location Lu. So, the
relation probability that the user is at candidate point ’c’ (Prel) is :

Prel = p(sc0|su0) ∩ ... ∩ p(scj|suj) ∀scj ∈ Sc
or

Prel =
∏

φcj∈φc p(Scj | Suj)

If we call the candidate point with the largest relation probability φpref , we
can finally state:

φpref = φck where k = arg max
k

(
Prel0, ..., Prelk

)
Client location is:

Lu = Lpref

50

Results and evaluation

4 Results and evaluation

Once the system prototype is developed, it must be tested. The objective of these
tests is to determine if the FIBER can deliver on the 3-4 meter accuracy promised.
Having a good point-to-sniffer ratio is also crucial, since if too many sniffers need
to be deployed to achieve target accuracy, cost will be excessive. We consider
1sniffer
2points

to be the minimum ratio allowable.
The testbed is a 18 x 8 meter room, where 12 radio map points have been

calibrated and 6 sniffers have been deployed. A single device will have to be
located at the site as being in one of the 12 calibrated points. In order to more
precisely measure the system’s accuracy, the floor is divided into 1 m2 tiles. The
device will stay on each of these tiles long enough to be located 10 times (less than
10 seconds). The percentage of accurate localizations is represented as the legend
in Figure 30 shows.

• Accurate localization means that the client device was said to be at the
nearest radio map point. Nearest means on the 4 adjacent blocks or on the
2 blocks on top of which the point lays.

• Failed localization means that the client device was said to be elsewhere.

During the tests, the device is carried in a volunteers pocket. The device will be
pinging the client network’s access point constantly during the entire experiment.
The client network is set to channel 11 and fixed to IEEE 802.11g [10] physical
rate (to avoid power adaptation causing rssi shifts, see Section 3.1). The sniffer
network is set to channel 1 with automatic physical rate. It should also be noted
that the calibration was done with four angles (90o apart) per point and 30 samples
per angle (30 sample resolution per histogram).

51

Results and evaluation

Figure 30: Legend for Figures 31 and 32

4.1 First set of results

The resulting heat map can be seen in Figure 31. Data inspection reveals 48
highly reliable tiles (less than 10% failure rate), 44 moderately reliable tiles (less
than 30% failure rate) and 16 non reliable tiles (more than 50% failure rate). Out
of 108 tiles, 44.45% were reliable, 40.74% were moderately reliable and
14.81% were not reliable.

Highly reliable 44.45%
Moderately reliable 40.74%
Non reliable 14.81%

4.1.1 Window method

Moderately reliable tiles can be more useful by taking a time window of N location
attempts. For example, storing 10 locations and reporting the mode location (the
most occurring one) as the client’s location, will make the system’s guess right
most of time.

Using this technique, we can re-evaluate the system performance. In this case,
we take into account that green and yellow tiles will yield good results and red
tiles will not. If each point is assigned 6 tiles that should be mapped to it, we can
talk about useful area around a point. We now seek points with 100% useful area

52

Results and evaluation

and call them good points. Note that the rooms’ corners will always yield bad
results and therefore will not be considered.

Using this analysis (and ignoring corners), we see that 7 points are good points
and 5 are bad points. The result is a 58.33% of accurate location, which is not
impressive.

To improve this ratio, we use FIBER’s software tools (see Section 3.4) to re-
calibrate bad point. The results are shown in the following section.

53

Results and evaluation

Figure 31: Results on overall system accuracy (legend in Figure 30)

4.2 Results after recalibration

After the recalibration, we see that direct analysis yields better results than before,
with 57 highly reliable tiles (green), 46 moderately reliable tiles (yellow) and
only 5 non reliable tiles (red). So, this time, out of 108 tiles, 52.78% were

54

Results and evaluation

reliable, 42.59% were moderately reliable and 4.63% were not reliable.
The resulting heat map can be seen in Figure 32.

Highly reliable 52.78%
Moderately reliable 42.59%
Non reliable 4.63%

The most noticeable change is that non reliable tiles (red) have decreased
from almost 15% to less than 5%. By applying the window method with these
results we obtain 11 good points and only one bad point (P6). The overall
accuracy of the system has increased to 91.67%, making the system accurate
enough for our needs.

55

Future work

Figure 32: Results on overall system accuracy after recalibration (legend in Figure
30)

56

Future work

5 Future work

There are some improvements that can be made to the FIBER system in the future.
These improvements focus on increasing the system’s robustness and speed, while
maintaining or improving the system’s overall accuracy.

5.1 Improving speed

As discussed in Section 4, a windowing method is used to filter bad location
estimations based on the fact that they happen less often than good estimations.
This method consists in waiting for a parametrizable amount of estimations on
the client’s location to be made and then taking the mode estimation as the valid
one (since it happened more often). While this technique improves the system’s
overall accuracy, it also implies a time delay, which slows the system down and
makes moving clients harder to track. Two approaches can be followed to overcome
this problem:

1. Bluetooth [13] integration

2. Viterbi-like trajectory reconstruction for moving clients

5.1.1 Bluetooth integration

Let there be a window of locations formed by several estimations. Some of the
estimations will be wrong, and some will be right. Let the wrong estimations be
majority and, hence, the mode estimation be wrong. If sniffers are equipped with
Bluetooth [13] sensors that can detect the device and their range is smaller (a
few meters) than a typical IEEE 802.11 [10] wireless range, some sniffers’ reports
may be discarded as being to far away from the client to be relevant and not be
considered for the estimation.

If this range-based discrimination is applied to the previous window of
locations, it may happen that wrong estimations are discarded, thus the good
estimations considered only. This technique can help when reflections not
accounted for during calibration are altering RSSI measurements from the sniffers.

Using this technique might help reduce the window for locations, reducing the
time needed for the estimation of a clients locations, increasing system speed.

5.2 Viterbi-like trajectory reconstruction

In a very similar way as the Viterbi algorithm [34] is used to reconstruct symbol
sequences in channels with memory, a succession of possible locations for a moving
client can be used to determine the most plausible trajectory taken by said client.
For every step, a constellation of possible points could be plotted. If one particular
set of estimations suggests a client is moving at vehicle speeds, that potential
trajectory can be discarded. With enough steps, a single possible trajectory may
remain, which would probably the one taken by the client.

Another benefit of this method is that its complexity only grows linearly with
the number past locations (steps) take into account. If the number of past locations

57

Future work

is smaller than the window used in the current implementation, it will also improve
speed.

5.3 Improving robustness

One weak point of the current system is that the use of fingerprinting [9] implies a
calibration that is subject to be rendered useless on significant medium change or
device heterogeneity. To overcome the medium issues, a set of recommendations
on sniffer placement and calibration techniques have been discussed in Section
3.3.1. The problem with tracking different devices, however, has to be solved in
another manner.

The problem with trying to locate different devices is that different device
interfaces may have different RSSI mean power shifts, that make the calibration
made with one device useless for another. To approach this problem, relative
histograms are proposed.

5.3.1 Relative histograms

Instead of storing one histogram per sniffer that sees the calibration device during
calibration, relative histograms will store the difference in RSSI values between the
sniffers. Say, for example, that sniffers A, B, C and D see the calibration device.
Then the following histograms will be stored (note that some of these histograms
are redundant due to transitivity, so the implementation would be more efficient):

A - B
A - C
A - D
B - A
B - C
B - D
C - A
C - B
C - D
D - A
D - B
D - C

Once a map is constructed this way, when a client is trying to be located,
its reported online values would be relativized in the same way. The advantage
is that relative histograms do not take into account mean values, hence different
devices with different mean RSSI values should be able to be located without
major problems.

58

Budget and work planning

6 Budget and work planning

6.1 Budget

This section is devoted to present an estimated cost for the FIBER system
development in terms of labor force, hardware, software and indirect costs.

6.1.1 Labor force cost

Five workers were involved in the development of FIBER. Three professors who
provided guidance in a weekly meeting, one telecommunications engineer with
expertise in hardware and operating systems and a telecommunications student
intern (the author of this report) with some background in system development.
All salaries are shown before taxes.

Qualification Contribution Amount Salary [e/h] Total [e]

Professor 2 h/week guidance 10 18.5 3700
Professor 2 h/week guidance 10 18.5 3700
Professor 2 h/week guidance 10 18.5 3700

Telecom. Engineer 6 h/day 47 12.5 3525
Intern 5 h/day 47 6 1410

TOTAL 16035 e

Table 19: Labor force costs table

6.1.2 Hardware costs

A considerable amount of hardware is needed for the system to work. Since the
prototype of this project is destined to a client, no amortization is taken into
account, as it’s a one-time cost for the team that will not be reused. Detailed
information on hardware costs is shown in the following tables, organized by sniffer
hardware, back end hardware and infrastructure hardware.

Sniffer hardware costs

Expenditure Amount Cost per unit [e] Total [e]

Raspberry Pi 2 Model B 17 41.2 700.4
SolidRun Hummingboard i1 3 61.63 184.9

HardKernel Odroid c1 6 30.82 184.92
SunDisk MicroSD cards 26 5 130

5V power source 26 5.28 137.28
Enclosures 26 7.04 183.04

TpLink TL-WN722N 26 9 234
LogiLink 26 8 208

SUBTOTAL 1962.54 e

59

Budget and work planning

Table 20: Sniffer hardware costs table

Back end costs

Expenditure Amount Cost per unit [e] Total [e]

Dell Server 1 645.3 645.3
SUBTOTAL 645.3 e

Table 21: Back end hardware costs table

Infrastructure hardware costs

Expenditure Amount Cost per unit [e] Total [e]

Batteries 26 23.6 613.6
Ethernet cables 5 6 30

Power cable extenders 3 8.3 24.9
SUBTOTAL 668.5 e

Table 22: Infrastructure hardware costs table

Some prices were converted from dollars to euros. Shipping costs and customs
fees were not included. VAT was included. A total hardware cost table is presented
in Table 23.

Total cost table

Expenditure Total [e]

Sniffer hardware 1962.54
Back end hardware 645.3

Infrastructure hardware 668.5
TOTAL 3276.34 e

Table 23: Total hardware cost stable

6.1.3 Software costs

Only free software under MIT license [30] or BSD 2-clause [31] license were used
in the development of this project. No costs are observed in this area.

6.1.4 Total cost

If we add the costs for labor force, hardware and software, we have an estimate of
the FIBER’s development cost. The total cost is 20137.14 e. Infrastructure cost
still have to be discussed, as they depend on the total cost (see Section 6.1.5). For
a more detailed view, see Table 24.

60

Budget and work planning

Total project cost

Expenditure Total [e]

Labor force 16035
Hardware 3276.34
Software 0
TOTAL 19311.34 e

Table 24: Total project costs table

6.1.5 Indirect costs

Indirect costs are considered to be all expenses that are related with the
development and deployment of the system. As this project was developed in
a research centre, a 25% of the total cost is given to the centre to pay for office
area, computers, materials, etc. Other indirect costs are related to the trip made
to a Spanish city for the deployment.

Indirect costs

Expenditure Amount Cost per unit [e] Total [e]

Working infrastructure - - 4827.84
Train tickets 2 82.3 164.6

Hotel room night 2x3 75.2 451.2
Daily trip expense 2x3 70 210

TOTAL 5653.64 e

Table 25: Indirect costs table

6.2 Planning

In this section we will discuss what activities took place in the development of
FIBER and their duration. We will list them in Section 6.2.1, analyze how they
interact with each other using a PERT diagram in Section 6.2.2 and finally show
them on a timeline using a Gantt diagram in Section 6.2.3.

There are some general notes to take into account in this section. The system is
developed as an evolving prototype and only the first few iterations are developed
(stays as a prototype) in this report. In time planning, a day counts as 5 hours,
since that is the time per day devoted to the development of the system.

6.2.1 Activities table

The activities described in Table 26 sum 300 hours. It’s important to note that
some activities where done in parallel to others, so the PERT (see Figure 33) and
Gantt (see Figure 34) will reveal lower ’minimum’ times. In reality however, the
project spanned roughly 250 hours. The rest of the time was spent assembling this
report. A list of these activities and their required predecessors follows:

61

Budget and work planning

Activity Label Requirements Duration
Background research on RILS A - 10
Develop a list of hardware candidates for
sniffers

B A 10

Obtain sniffer hardware candidate test
units

C B 75

Test sniffer candidate hardware D C 15
Obtain definitive sniffer hardware E D 75
Develop sniffer software F C 25
Test SOA alternatives G D 30
Design FIBER system H G, F 10
Implement FIBER prototype I H, E 30
Test system J I 10
Improve system K J 10

Table 26: A table showing the activities that took place during the development
of FIBER as well as an assigned label for further reference, predecessor activities
and their duration in hours

These activities can be categorized into four groups: Previous work, Hardware
decisions, Design and development and Evaluation and tweaking. The following
tables show a further description of each activity within its group (Tables 27, 28,
29 and 30 respectively).

Activity Description
A Background research on RILS consists in a finding out

what is the state of the art in real-time indoor location
systems. Said work can be found in Section 2.2.

Table 27: Activities belonging to the ’Previous work’ category

Activity Description
B Developing a list of hardware candidates for sniffers

is necessary for the project as sniffers are an essential part of
the system that can’t be emulated on any other hardware (not
like the back end that runs on a laptop during development).
Information about the hardware candidates considered can be
found in Section 3.3.2.

C Obtaining sniffer hardware candidate test units con-
sists in finding adequate prices and most convenient shipping.
Customs and shipping delays are considerable and therefore
are taken into account.

D Testing sniffer candidate hardware is done once it arrives.
This activity consists in finding out which hardware is best
according to the needs of the project.

E Obtaining definitive sniffer hardware is done once the
tests have revealed the best hardware for the project’s needs.
The same process as for C is followed.

62

Budget and work planning

Table 28: Activities belonging to the ’Hardware decisions’ category

Activity Description
F Developing sniffer software comprises developing all the

software programs the sniffer needs to operate as such. A list
of said programs and details about their implementation can
be found in Section 3.3.3.

G Testing SOA alternatives meant gathering some hands-on
knowledge of the state of the art systems (see Section 2.2) in
order to learn from them. This process is essential to better
design FIBER.

H Designing FIBER system consists in creating a list of
requirements for the system and determine how they will be
met. A detailed description of FIBER’s architecture can be
found in Section 3.2.

I Implementing FIBER prototype is done once the design
has been completed. A technical discussion of the FIBER
implementation can be found in Section 3.

Table 29: Activities belonging to the ’Design and development’ category

Activity Description
J Testing the system means evaluating how many of the

requirements set in activity H are met. A discussion on the
results evaluation of FIBER can be found in Section 4.

K Improving the system is refactoring the code and refining
the original procedures based on the test’s experience.

Table 30: Activities belonging to the ’Evaluation and tweaking’ category

6.2.2 PERT diagram

Figure 33: A PERT diagram showing all activities from Table 26 (critical path in
orange)

The critical path analysis of the PERT diagram (shown in orange) reveals that
the minimum duration of the project is 235 hours which, in terms of a 5 hour

63

Budget and work planning

per day contract, means 47 days. If weekends are considered, the duration of the
project is 9.5 weeks. In reality, some slack was used to further research each stage
and improve over software implementations. Slack times can be inspected in Table
6.2.2.

Activity Free (Ej − Ei − dij) independent (Ej − Li − dij) Total (Lj − Ei − dij)
A - - -
B - - -
C - - -
D - - -
E - - -
F 20 20 55
G - - 35
H 35 - 35
I - - -
J - - -
K - - -

Table 31: A table showing free, independent, and total slack times for all activities

Slack times reveal that activities F, G, and H which are related to developing
sniffer software, testing SOA alternatives and designing FIBER can have 55, 35
and 35 hours of delay respectively. This is optimum, since development and design
activities are prone to consume more time than estimated and, in reality, did so.

6.2.3 Gantt diagram

In this section, a Gantt diagram of the project is shown in Figure 34. A work day
is considered to last 5 hours. The project starts on Monday 16th of March and
ends Tuesday 19th of May for a total duration of 47 days or 235 hours (as the
PERT diagram in Figure 33 shows).

Figure 34: The project’s Gantt diagram (one day is 5 hours of work)

64

Conclusions

7 Conclusions

With FIBER we set out to fill a gap in RILS for a ’good-enough’ accuracy system
that would be convenient, expandable and at a low cost. In roughly 300 hours, we
met our objective and presented a system that could deliver on all promises made,
localizing clients indoors with a 3-4 meter accuracy. On top of this, the system is
attractive to developers thanks to the easy JSON interface it offers.

The future of FIBER is planned out, with improvements to be made to the
methodology and software. Therefore, the health of the project is good and its
future is assured provided it attracts clients and developers, which shouldn’t be
difficult thanks to its versatility and low cost.

65

Summary

Appendices

A Summary

What you’re about to read is a section-by-section summary of the whole document.
In each of these summarized sections, you will find a reference to the corresponding
full document’s section where you may continue reading if interested. While this
summary is good enough to transmit a rough idea of the project, bear in mind
that some important aspects of the development are not featured in it. Please be
encouraged to read the full document.

A.1 Motivation and objectives

Business intelligence, marketing, employee tracking, security and safety are just
some of many applications that can be built on top of Real-time Indoor Location
Systems (or RILS). RILS can contribute to these areas, making them more
intelligent, less intrusive and more accurate overall. In this section we will describe
real scenarios where this technology is being used and the benefits it has yield thus
far.

A.1.1 Business Intelligence and Marketing

The most fitting scenario for describing RILS and business intelligence combined
is the so called Smart Shopping Mall. This type of mall includes a deployment
of RILS and therefore knows more about smartphone users that shop in it. This
information (a collection of user’s MAC addresses and an estimate of their location
inside the shopping mall), is compiled by business intelligence agents and used to
aid the mall’s commercial staff in a variety of ways.

In a similar fashion as website traffic analysis tools (such as Google Analytics
[11]) have aided web owners [5], RILS provides mall owners with information about
new vs returning visitors, visitor flow through the mall, visitor to client conversion,
etc. This information, as happens in the web, can be critical to assess factors such
as:

• Marketing campaign success rate (How many new visitors came to the mall?)

• Floor plant design (Why are users flowing more through certain corridors?)

• Mall space valuation (This area is more expensive because more people flow
through it)

66

Summary

Returning Visitor

87.5%

New Visitor

12.5%

(a) Before Marketing campaign

Returning Visitor

67.25%

New Visitor

32.75%

(b) After a successful Marketing campaign

Figure 35: A representation of how New Visitor vs. Returning Visitor information
can provide useful insight on Marketing campaign success evaluation

[Read more in Section 1.1]

A.1.2 Employee Tracking

Companies from diverse industries have long tracked their employees. Motivations
for doing so are diverse, ranging from measuring productivity to making sure
employees are well rested.

(...)

RILS can provide a solution for this scenario by pinpointing employees’
locations and mapping them to working places. By building an employee tracking
application on top of RILS, developers can keep historical data of worker’s locations
for later analysis as well as react to real-time events. As a complete solution,
employee tracking on top of RILS could, for example, provide:

• Automated alerts on physical stress

• Hours worked vs. productivity analysis

• Machine usage analysis

• Accident reenacting (improving safety)

67

Summary

(a) A corner section of a factory floor plan
representing machines labeled from M1 to
M5 and a corridor in a right angle

M5

15.4%

M1

13.5%

M2

31.75%

M4

14.1%

M3

15.05%

Break

10.2%

(b) Time spent by a given employee on
different machines

Figure 36: An example of a RILS + ET application tracking time spent by an
employee on different machines

[Read more about RILS applications in Sections 1.2, 1.3 and 1.4]

A.2 Discussion of the problem to solve

Finding an adequate way of solving RILS is striking a balance between four aspects:
convenience, expandability, cost and accuracy. In order to formally define these
three aspects:

• Convenience refers to how easy it is to deploy the system with current
wide-spread technologies.

• Expandability is measured by how straight forward it is for developers to
build applications on top of the RILS in question.

• Cost is simply defined as the amount of money that must be invested in
order to get the RILS operative.

• Accuracy is related to the precision with which a client can be located in
terms of meters. However, we are not looking for the best accuracy possible,
just for a ’good enough’ accuracy (3-4m). All the systems analyzed deliver
this type of accuracy.

[Read more in Section 2]

68

Summary

A.2.1 Classification of real-time location systems

Real-time Location Systems

Outdoor

Client based

Licensed Spectrum

Time of Flight

GPS

(...)

Indoor (RILS)

Client based

Alternative sensors

Fingerprinting

IndoorAtlas Project Tango

IEEE 802.11/Bluetooth

Fingerprinting

Horus

Infrastructure Based

IEEE 802.11/Bluetooth

Fingerprinting

FIBER

Time of Flight

CAESAR

Licensed spectrum

(...)

Figure 37: Proposed location systems classification

A complete classification scheme for location systems and RILS is proposed in
Figure 37. Our development, FIBER (Fingerprinting Infrastructure-BasEd
Rils), classifies as IEEE 802.11 [10]/Bluetooth [13] fingerprint infrastructure based
RILS. Other state of the art RILS (IndoorAtlas [4], Project Tango [3], Horus [2]
and CAESAR [1]) have been placed in it for reference.

A.2.2 State of the art

Current implementations of RILS are highly diverse in terms of technology used
to achieve indoor location. We will now go over some of them, explaining how
they work and why they pose limitations that made FIBER necessary.

Client side with alternative sensors

Systems like Google’s Project Tango [3] and IndoorAtlas [4] focus on meter-
accuracy of location. To achieve said accuracy, they rely on alternate sensors such
as depth-aware cameras (such as [7]) and magnetic sensors [8].

Google’s Project Tango [3] works on devices bearing special cameras and
sensors providing depth perception, area learning and motion tracking. This
information is then processed by the device in order to infer information about its
position within a building. A developer API is also available, allowing developers
to expand the core functionality of the system and C, JAVA, Android or Unity
written applications to run on top of it.

(...)

IndoorAtlas [4] combines traditional IEEE 802.11 [10]/Bluetooth [13] finger-
printing techniques [9] with magnetic-field fingerprinting [8]. Relying on the earth’s
magnetic field is more convenient than 2.4GHz/5GHz spectrum, since it will not
be affected by physical object’s movement in the environment (i.e., furniture rear-
rangement, moving pieces in a factory, etc.).

[Read more in Section 2.2.1]

69

Summary

Client side with IEEE 802.11 [10]/Bluetooth [13]

The Horus [2] location system provides some of the mathematical framework
for FIBER as well as some of the techniques for medium calibration and data
analysis. FIBER and Horus systems are similar except for a crucial difference:
Horus is client-based while FIBER is infrastructure based.

Client based systems require some degree of active user involvement. The
user must run a location app on their device, generally helping said user to
locate his/herself inside a building. Infrastructure based location systems do not
depend on active user involvement and can operate without user-side consent.
Moreover, infrastructure based location systems will only require a user to be
sending information using IEEE 802.11 [10] or Bluetooth [13] for their device to
be located.

[Read more in Section 2.2.2]

Infrastructure-based with Time of Flight techniques

Location systems using Time of Flight (or ToF) attempt to compute the
location of a given device based on very accurate measurement of time intervals
between transmissions towards and from said device. Famously, GPS [12] uses this
technique.

[Read more in Section 2.2.3]

Licensed spectrum solutions

Although some RILS solutions take advantage of higher frequencies with better
accuracy than IEEE 802.11 [10] (2.4GHz/5GHz) or Bluetooth [13] (2.4GHz), they
require specific hardware on the client-side and need a license for operation within
their spectrum range. Since cost effectiveness is one of our goals, we do not consider
these systems.

Infrastructure-based Fingerprinting

Our development (FIBER) is an infrastructure based fingerprinting RILS
that solves Horus’ [2] client-side inconvenience. While not as accurate as other
non-fingerprinting systems like CAESAR [1], ease of use, cost effectiveness and
expandability of FIBER, along with some robustness against reflections, makes it
the better match. Table 32 shows FIBER against other systems according to the
criteria we defined at the beginning of this section:

Convenience Expandability Cost Accuracy
Project Tango [3] low high high X
Indoor Atlas [4] low medium high X

CAESAR [1] medium medium medium X
Horus [2] medium high low X
FIBER high high low X

Table 32: Comparison table of SOA RILS according to the evaluation criteria.

70

Summary

Requiring only widespread sensor on current smartphones, convenience is a
selling point for FIBER. Using free spectrum technologies for fingerprinting [9] such
as IEEE 802.11 [10] and Bluetooth [13] help with cost-effectiveness and enables
the use off-the-shelf hardware for sniffers (also alleviating regulatory frameworks).
Finally, building software in exportable modules and providing a JSON API
interface for developers to easily build applications on top of FIBER contributes to
the system’s expandability. If FIBER can provide area-level accuracy (see results
and evaluation in Section 4), it’s the best solution for our needs.

A.3 Technical implementation

NOTE: Please keep in mind that this is a very simplified version of the technical
implementation of FIBER. A complete and detailed explanation of the system’s
architecture, sniffers, back end, infrastructure, hardware and software is made
available in Section 3.

A.3.1 Terminology

When discussing the system’s details, the following terms will be used:

• RSSI stands for Received Signal Strength Information. It provides
information about the received signal strength in dBm for a given
transmission. Values are usually negative, and range from -90dBm (bad
signal reception) to 0dBm (perfect signal reception).

• RSSI histogram (or RH) is the result of compiling RSSI values for a
certain amount of time.

• Single-spiked histogram (or SSH) refers to a relative histogram where
RSSI values are distributed towards a single value (see Figure 38 [a]).

• Multiple-spiked histograms (or MSH) are RSSI histograms where
RSSI values are centered around two (or more) values instead of one (see
Figure 38 [b]).

71

Summary

(a) An example of a single-spiked histogram
(SSH) centered around -41dBm

(b) An example of a multiple-spiked his-
togram (MSH) centered around -41dBm
and -58dBm

Figure 38: Comparison of single-spiked and double-spiked RSSI histograms

• Each radio map point (or RMP) is made up of a set of sniffer reports
taken during the calibration. A radio map point is associated a to
the GPS coordinates [12] corresponding to the physical location where the
calibration of said point took place.

• A client (or user) is a person carrying an IEEE 802.11 [10] capable device
that will be tracked by the system and whose location the system tries to
infer.

• A sniffer is a device bearing at least one NIC (network interface card) used
by the sniffing software running in it to sniff RSSI values from client
transmissions.

• Sniffer report refers to the RH provided by a sniffer.

• Offline phase (or calibration) consists in gathering sniffer reports from
all available sniffers when a client is at a known position. This technique
is known as fingerprinting [9]. The collected Sniffer reports make a
radio map point that will be associated to the GPS coordinates [12] of the
location at which the calibration takes place.

• A radio map (or RM) is a collection of several radio map points.

• Online phase consists in gathering RSSI values from clients and
comparing them to the radio map recorded during the offline phase in
order to determine which is the most probable location of said client.

A.3.2 Architecture

The FIBER architecture is divided into two parts: a cloud of sensors (sniffers) and
a server (back end). Each sniffer continuously captures IEEE 802.11 [10] packet
headers sent by mobile devices and decodes their MAC address and RSSI values.
This information is then sent to the back end. If the system is instead being used

72

Summary

for calibration, the back end turns this information into radio map points that will
become part of a radio map. If the system is being used for localization, the same
information is now used to try infer where a given mobile device is located at.
The methodology the back end applies for either use is described in the following
section. The back end also makes location information about tracked devices
available through a JSON [27] API, for which a web service is built (read more in
Section 3.4).

A.3.3 Methodology

This sections discuses the procedures followed by our system to achieve client
location. The way FIBER computes client locations can be explained in two
stages: offline (or calibration) phase and online (or localization) phase.

Offline phase (or calibration)

The calibration is where a known device (called ’calibration device’, i.e., a
smartphone) is placed in a known physical location. Then, the device generates
traffic (typically by pinging the access point) in order to be sniffed by a cloud of
sniffers previously deployed at the site. In the back end, a histogram per sniffer
(called sniffer report) containing RSSI values reported over calibration time is
stored. All sniffer reports associated to that particular physical location are stored
as a radio map point (or RMP) as well as the physical location’s GPS coordinates
(which should be known at the time of the calibration). This point will be one
of several points that comprise the radio map. This process is repeated for all
physical locations that will be contained in the radio map and constitutes what is
known as fingerprinting [9].

The resulting radio map contains a set of radio map point formed by sniffer
reports. These sniffer reports, should be comprised of single peaked histograms
and in some cases, due to reflections in the medium, multiple-spiked histograms.

There is an issue, however, where co-channel interference in IEEE 802.11 [10]
networks can cause the appearance of multiple-spike histograms in absence of
reflections. Although not necessarily breaking the methodology, this low-RSSI
interference reduces the amount of useful data in the histogram, reducing its
’resolution’. This can negatively impact the statistical inference that will be made
in the online phase, causing an overall loss of accuracy.

To avoid co-channel interference, far apart IEEE 802.11 channels are used for
communication between the sniffer cloud and the back end (sniffer network) and
the calibration device (client network).

73

Summary

Online phase (or localization)

Figure 39: An explanation of how FIBER localization works

Let there be a client at a pre-calibrated site bearing a device that is transmitting
through an IEEE 802.11 [10] interface. The sniffer cloud will start reporting on
every packet the smartphone sends, including the device’s MAC address and RSSI
value of the transmission (see Section 3.3.3). The system will record a radio map
point corresponding to the location of the user’s device in the same way as during
calibration but with two exceptions:

1. The physical location of the point is not known beforehand (that’s what we
are trying to determine)

2. Instead of requiring a number of measurements per sniffer report (as
to guarantee sufficient histogram resolution), a parametrizable number of
different sniffers must report at least one measurement

Once these two conditions are satisfied, the system has a new radio map point
representing the location of the user that can be compared to the points in the
radio map. Let the new point corresponding to the user’s location be called user
point (φu), the set of sniffer reports contained in it Su and the latitude-longitude
pair location values Lu. If there are N sniffer reports in Su, then:

74

Summary

Lu = (lat, lon)
Su = {s0, ..., sN}
φu = [Su, Lu]

The system must now determine what points in the radio map are more related
to the user point. To do so, it determines what radio map points contain all sniffer
reports in Su. While the methodology could still work comparing the user point
against all points in the radio map, filtering points that don’t contain all sniffer
reports in the user point (hence useless at this time) saves time and processing.

Now, we have the user point (φu) and a subset of candidate points (Φc). The
candidate point that is most similar to the user point is probably the point the
user is nearest to. The system must compare all sniffer reports contained in φu
with those contained in all candidate points in Φc.

In order to do the comparison, a naive joint probability approach is used. Let
the histogram in each sniffer report be normalized. Then, given an RSSI value,
one could simply obtain the probability of that value happening in that particular
histogram by looking at its frequency. In the following example, the probability
with which the value -45dBm occurs in the histogram is 0.25 (or 25%).

Figure 40: An example of normalized histogram, showing a 0.25 probability of a
-45dBm measurement belonging to it

It follows that for the set of sniffer reports Su in the user point φu, the
probability that they would come from a given candidate point φc is simply the

75

Summary

joint probability that every sniffer report from Su ’came from’ its homologue Sc.
We define this probability as relation probability Prel. The location Lc of the
candidate point with higher Prel is the most probable user location Lu. So, the
relation probability that the user is at candidate point ’c’ (Prel) is :

Prel = p(sc0|su0) ∩ ... ∩ p(scj|suj) ∀scj ∈ Sc
or

Prel =
∏

φcj∈φc p(Scj | Suj)

If we call the candidate point with the largest relation probability φpref , we
can finally state:

φpref = φck where k = arg max
k

(
Prel0, ..., Prelk

)
Client location is:

Lu = Lpref

A.4 Results and Evaluation

After an initial calibration and further recalibration of some problematic points,
users are located correctly in 91.67% of the site’s surface. The system
accurate enough for our needs. For more information on how this accuracy was
measured and what it means, please refer to Section 4.

A.5 Budget and planning

The duration of this project was 300 hours which were distributed throughout 47
days. The cost of the project was 19311.34e, plus 5653.64e infrastructure costs.
For more detail on the project budget or planning, please feel encouraged to read
through Section 6.1 and 6.2, respectively.

A.6 Future work

There are some improvements that can be made to the FIBER system in the future.
These improvements focus on increasing the system’s robustness and speed, while
maintaining or improving the system’s overall accuracy. For more information on
future plans to achieve this, please refer to Section 5.

A.7 Conclusions

The FIBER system achieved all goals set. Improvements must be made but the
system is a promising prototype at the moment. For more on conclusions, review
Section 7.

76

Bibliography

References

[1] Domenico Giustiniano, Stefan Mangold, CAESAR: Carrier Sense-Based
Ranging in Off-The-Shelf 802.11 Wireless LAN

[2] Moustafa Youssef and Ashok Agrawala, The Horus WLAN Location Determi-
nation System, www.cs.umd.edu/~moustafa/papers/horus_usenix.pdf

[3] Google Inc., Project Tango, www.google.com/atap/project-tango/

[4] IndoorAtlas Ltd., Ambient magnetic field-based indoor location technol-
ogy, Bringing the compass to the next level, web.indooratlas.com/web/

WhitePaper.pdf, July 2012

[5] Brian Clifton, Advanced Web Metrics with Google Analytics

[6] Mark van der Feyst, Eric Wissner, James Petruzzi, Residential Fire Rescue

[7] Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard New-
combe, Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, An-
drew Davison, Andrew Fitzgibbon, KinectFusion: real-time 3D reconstruction
and interaction using a moving depth camera

[8] Jaewoo Chung, Matt Donahoe, Chris Schmandt, Ig-Jae Kim, Pedram Razavai,
Micaela Wiseman, Indoor location sensing using geo-magnetism

[9] Kaemarungsi, K., Krishnamurthy, P. Modeling of indoor positioning systems
based on location fingerprinting 2004

[10] Brian P. Crow, Indra Widjaja, Jeong Geun Kim, Prescott T. Sakai, IEEE
802.11 Wireless Local Area Networks www.di.unisa.it/~vitsca/RC-0910I/

pdf00001.pdf

[11] Google Analytics, www.google.com/analytics/

[12] J. Parthasarathy, Positioning and Navigation System using GPS, www.isprs.
org/proceedings/XXXVI/part6/208_XXXVI-part6.pdf

[13] Chatschik Bisdikian, IBM Research Report, 2001

[14] ARM Architecture infocenter.arm.com/help/index.jsp?topic=/com.

arm.doc.set.research/index.html

[15] Raspberry Pi 2, Raspberry Pi Foundation, www.raspberrypi.org/help/

what-is-a-raspberry-pi/

[16] Odroid C1, Hardkernel co., Ltd., www.hardkernel.com/main/products/

prdt_info.php

[17] Hummingboard i1, SolidRun Ltd., www.solid-run.com/products/

hummingboard/

[18] Kismet, Kismet Wireless, www.kismetwireless.net

77

www.cs.umd.edu/~moustafa/papers/horus_usenix.pdf
www.google.com/atap/project-tango/
web.indooratlas.com/web/WhitePaper.pdf
web.indooratlas.com/web/WhitePaper.pdf
www.di.unisa.it/~vitsca/RC-0910I/pdf00001.pdf
www.di.unisa.it/~vitsca/RC-0910I/pdf00001.pdf
www.google.com/analytics/
www.isprs.org/proceedings/XXXVI/part6/208_XXXVI-part6.pdf
www.isprs.org/proceedings/XXXVI/part6/208_XXXVI-part6.pdf
infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.research/index.html
infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.research/index.html
www.raspberrypi.org/help/what-is-a-raspberry-pi/
www.raspberrypi.org/help/what-is-a-raspberry-pi/
www.hardkernel.com/main/products/prdt_info.php
www.hardkernel.com/main/products/prdt_info.php
www.solid-run.com/products/hummingboard/
www.solid-run.com/products/hummingboard/
www.kismetwireless.net

Bibliography

[19] Raspbian Linux, Raspberry Pi Foundation & Debian Project, www.raspbian.
org

[20] Debian Linux, Debian Project, www.debian.org

[21] Brian Kernighan and Dennis Ritchie, The C Programming Language, 1978

[22] Unix Sockets, beej.us/guide/bgipc/output/html/multipage/unixsock.

html

[23] The UNIX System, www.unix.org

[24] The Linux Operating System, www.linux.org

[25] Steve Burbeck, Applications Programming in Smalltalk-80(TM): How to use
Model-View-Controller (MVC), st-www.cs.illinois.edu/users/smarch/

st-docs/mvc.html

[26] Java Servelets, www.oracle.com/technetwork/java/index-jsp-135475.

html

[27] JSON, json.org

[28] Apache Tomcat, Apache, tomcat.apache.org

[29] MySQL, www.mysql.com

[30] MIT License, opensource.org/licenses/MIT

[31] BSD 2-clause License opensource.org/licenses/BSD-2-Clause

[32] Android OS, www.android.com

[33] Robert M. Metcalfe and David R. Boggs, Ethernet: Distributed Packet
Switching for Local Computer Networks, ethernethistory.typepad.com/

papers/EthernetPaper.pdf

[34] G. David Forney, Jr., The Viterbi Algorithm, citeseerx.ist.psu.edu/

viewdoc/download?doi=10.1.1.412.6372&rep=rep1&type=pdf

[35] OpenSSH, www.openssh.com

78

www.raspbian.org
www.raspbian.org
www.debian.org
beej.us/guide/bgipc/output/html/multipage/unixsock.html
beej.us/guide/bgipc/output/html/multipage/unixsock.html
www.unix.org
www.linux.org
st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html
st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html
www.oracle.com/technetwork/java/index-jsp-135475.html
www.oracle.com/technetwork/java/index-jsp-135475.html
json.org
tomcat.apache.org
www.mysql.com
opensource.org/licenses/MIT
opensource.org/licenses/BSD-2-Clause
www.android.com
ethernethistory.typepad.com/papers/EthernetPaper.pdf
ethernethistory.typepad.com/papers/EthernetPaper.pdf
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.412.6372&rep=rep1&type=pdf
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.412.6372&rep=rep1&type=pdf
www.openssh.com

	Motivation and objectives
	Business Intelligence and Marketing
	Employee Tracking
	Security
	Safety

	Discussion of the problem to solve
	Classification of real-time location systems
	State of the art
	Client side with alternative sensors
	Client side with IEEE 802.11/Bluetooth
	Infrastructure-based with Time of Flight techniques
	Licensed spectrum solutions
	Infrastructure-based Fingerprinting

	Technical implementation
	Terminology
	Architecture
	Sniffers
	Requirements
	Hardware
	Software

	Back end
	Requirements
	Hardware
	Software Requirements
	Aggregator
	Location software
	Database
	JSON API software

	Infrastructure
	Network
	Power

	Methodology
	Offline phase (or calibration)
	Online phase (or localization)

	Results and evaluation
	First set of results
	Window method

	Results after recalibration

	Future work
	Improving speed
	Bluetooth integration

	Viterbi-like trajectory reconstruction
	Improving robustness
	Relative histograms

	Budget and work planning
	Budget
	Labor force cost
	Hardware costs
	Software costs
	Total cost
	Indirect costs

	Planning
	Activities table
	PERT diagram
	Gantt diagram

	Conclusions
	Appendices
	Summary
	Motivation and objectives
	Business Intelligence and Marketing
	Employee Tracking

	Discussion of the problem to solve
	Classification of real-time location systems
	State of the art

	Technical implementation
	Terminology
	Architecture
	Methodology

	Results and Evaluation
	Budget and planning
	Future work
	Conclusions

