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Abstract 

 

General risk functions are becoming very important in finance and insurance. Many risk functions 

are interpreted as initial capital requirements that a manager must add and invest in a risk-free 

security in order to protect his clients wealth. Nevertheless, until now it has not been proved that 

an alternative investment will be outperformed by the riskless asset. 

  

This paper deals with a complete arbitrage free market and a general expectation bounded risk 

measure and analyzes whether the investment in the riskless asset of the capital requirements is 

optimal. It is shown that it is not optimal in many important cases. For instance, if the risk measure 

is the CVaR and we consider the assumptions of the CAPM or the Black and Scholes model. 

Furthermore, the Black and Scholes model the explicit expression of the optimal strategy is 

provided, and it is composed of several put options. If the confidence level of the CVaR is close to 

100% then the optimal strategy becomes a classical portfolio insurance strategy. This may be a 

surprising and important finding for both researchers and practitioners. In particular, managers can 

discover how to reduce the level of initial capital requirements by trading options. 
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1 Introduction

General risk functions are becoming very important in finance and insurance. Since Artzner

et al. (1999) introduced the axioms and properties of the “Coherent Measures of Risk” many

authors have extended the discussion. The recent development of new markets (insurance

or weather linked derivatives, commodity derivatives, energy/electricity markets, etc.) and

products (inflation-linked bonds, equity indexes annuities or unit-links, hedge funds, etc.),

the necessity of managing new types of risk (credit risk, operational risk, etc.) and the

(often legal) obligation of providing initial capital requirements have made it necessary to

overcome the variance as the most used risk measure and to introduce more general risk

functions.1 Hence, it is not surprising that the recent literature presents many interesting

contributions focusing on new methods for measuring risk levels. Among others, Föllmer

and Schied (2002) have defined the Convex Risk Measures, Goovaerts et al. (2004) have

introduced the Consistent Risk Measures, Rockafellar et al. (2006) have defined the General

Deviations and the Expectation Bounded Risk Measures, and Brown and Sim (2009) have

introduced the Satisfying Measures.

Many classical actuarial and financial problems have been revisited by using new risk

functions. So, with regard to portfolio choice and asset allocation problems, amongst many

others authors, Alexander et al. (2006) compare the minimization of the Value at Risk

(V aR) and the Conditional Value at Risk (CV aR) for a portfolio of derivatives, Calafiore

(2007) studies “robust” efficient portfolios in discrete probability spaces, and Schied (2007)

deals with optimal investment with convex risk measures.

Pricing and hedging issues in incomplete markets have also been studied (Föllmer and

Schied, 2002, Nakano, 2004, Staum, 2004, etc.), as well as Equity Linked Annuities hedging

issues (Barbarin and Devolder, 2005), Optimal Reinsurance Problems (Balbás et al., 2009),

and other practical topics.

However, it seems that hedging problems have not been studied with general risk functions,

unless they are related to pricing or asset allocation issues. Coherent, expectation bounded

or convex risk measures are usually interpreted as capital requirements. They provide

1It has been proved that the variance is not compatible with the Second Order Stochastic Dominance

if asymmetries and/or heavy tails are involved (Ogryczak and. Ruszczynski, 1999).
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regulators and supervisors with the capital reserve that a manager must add in order to

protect the clients wealth. This reserve must be invested in a riskless asset, though, until

now, nobody has proved that the investment of the reserve in a riskless asset will outperform

every alternative hedging strategy. In a recent paper Artzner et al. (2009) consider the

possibility of investing the capital requirement in an alternative “eligible asset”, though

they do not present concrete examples. They also analyze risk measurement problems with

a collection of “several eligible assets”. The authors highlight that this approach may be

interesting if several currencies are involved in the portfolio, in which case, a risk-free asset

per currency may be called eligible.

Balbás et al., 2009 have shown that for linear pricing principles the optimal reinsurance

may be a stop-loss contract, though risk levels can be given by expectation bounded risk

measures. Actuaries know that a stop-loss reinsurance may be understood as a “European

option” whose underlying asset is the global amount paid by the insurer to his customers

(claims). On the other hand, a classical viewpoint uses European puts so as to provide

investors with “Portfolio Insurance”. Moreover, the empirical evidence seems to point out

that classical “portfolio insurance strategies” also perform well in practice if risk levels are

measured by V aR and CV aR (Annaert et al., 2009).

The present paper considers a general measure of risk and analyzes whether the investment

of the capital requirement in the risk-free security outperforms the remaining feasible hedg-

ing investments. According to the ideas above, it could make sense to study the effectiveness

of investing this money in adequate derivatives.

The article’s outline is as follows. Section 2 will present the notations and the general

framework we are going to deal with. We will consider a complete arbitrage-free market

and an expectation bounded risk measure ρ. The manager must add an initial capital

reserve so as to make it vanish the risk level indicated by ρ. Instead of assuming that the

reserve must be devoted to buy the risk-free security, we will provide a general optimization

problem that minimizes the global risk under a budget constraint, since the added capital

cannot be larger than the capital requirement indicated by ρ.

General optimality conditions will be presented in Section 3. In particular, Theorem 1

shows that the optimal added strategy y∗ can be characterized by a system of equations

that involves the sub-gradient of ρ and the Stochastic Discount Factor of the market.
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Corollary 2 and its remarks show that y∗ is often far of being a risk-free security. For

instance y∗ is a risky security if the sub-gradient of ρ is composed of essentially bounded

random variables and the stochastic discount factor is not essentially bounded. Examples

of risk functions are the CV aR, the Dual Power Transform (DPT ), the absolute deviation,

or the absolute down-side semi-deviation. Examples of pricing models are the Capital

Asset Pricing Model (CAPM), the Black and Scholes model and many others. Since y∗

eliminates the risk without being a risk-free security we have decided to call it “Shadow

Riskless Asset”.2

We focus on the CV aR and the Black and Scholes model in Section 4. On the one hand, the

CV aR is becoming a risk function very appreciated by both researchers and practitioners

owing to interesting properties. So, CV aR respects the Second Order Stochastic Dominance

(Ogryczak and. Ruszczynski, 2002) and is coherent and expectation bounded (Rockafellar

et al., 2006). On the other hand, the Black and Scholes model is also very popular and

used by managers, so it may be worth to provide them with practical methods to reduce

the capital requirements.

The most important result in Section 4 is Theorem 4, along with its remarks, which show

that the shadow riskless asset is a combination of European and digital puts, that will be

close to a single put option (a portfolio insurance strategy) if the level of confidence of the

CV aR is close to 100%. In some sense this may be a surprising finding that yields managers

with a very important and practical conclusion. They can reduce the capital requirements

by purchasing and selling options in a suitable manner.

Section 5 points out the most important conclusions of the paper.

2 Preliminaries and notations

Consider the probability space (Ω,F , µ) composed of the set of “states of the world” Ω, the

σ−algebra F and the probability measure µ. Consider also a couple of conjugate numbers

p ∈ [1,∞) and q ∈ (1,∞] (i.e., 1/p + 1/q = 1). As usual Lp (Lq) denotes the Banach

2We have taken the expression shadow riskless asset from Ingersoll (1987), where the author constructs

a hedging strategy in a pricing model without interest rate. The expression was later used in Balbás and

Ibáñez (1998), where the authors dealt with interest rate risk linked problems.
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space of IR−valued random variables y on Ω such that IE (|y|p) <∞, IE () representing the

mathematical expectation (IE (|y|q) <∞, or y essentially bounded if q =∞). According to

the Riesz Representation Theorem (Horvàth, 1966), we have that Lq is the dual space of

Lp.

Consider a time interval [0, T ], a subset T ⊂ [0, T ] of trading dates containing 0 and T ,

and a filtration (Ft)t∈T providing the arrival of information and such that F0 = {∅,Ω} and

FT = F . We will assume that the market is complete, i.e., every final pay-off y ∈ Lp may

be reached by an adapted to the filtration (Ft)t∈T price process of a self-financing portfolio

(St)t∈T ,3 in the sense that ST = y, a.s. Consequently, there is a continuous pricing rule

Π : Lp −→ IR

providing us with the price Π (y) of every y ∈ Lp.

The completeness of the model implies the existence of a riskless asset. Thus, denote by

rf ≥ 0 the risk-free rate and the equality

Π (k) = ke−rfT (1)

must hold for every k ∈ IR.

According to the Riesz Representation Theorem there exists a unique zπ ∈ Lq such that

Π(y) = e−rfT IE (yzπ)

for every y ∈ Lp. Moreover, to prevent the existence of arbitrage, the strict inequality

zπ > 0

a.s. must hold (Duffie, 1988). If we assume that p = 2 then zπ is usually called “Stochastic

Discount Factor” (SDF ), and it is closely related to the Market Portfolio of the CAPM

(Duffie, 1988). In this paper we will not impose p = 2 but zπ will be still called SDF .

Expression (1) implies that

ke−rfT = Π(k) = e−rfTkIE (zπ) ,

3Almost all the classical pricing models in finance are complete. Interesting examples are, among others,

the Black and Scholes and the Heston models for pricing equity linked derivatives.
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which leads to

IE (zπ) = 1. (2)

Let

ρ : Lp −→ IR

be the general risk function that a trader uses in order to control the risk level of his final

wealth at T . Denote by

∆ρ = {z ∈ Lq;−IE (yz) ≤ ρ (y) , ∀y ∈ Lp} . (3)

The set ∆ρ is obviously convex. We will assume that ∆ρ is also σ (Lq, Lp)−compact,4 and

ρ (y) =Max {−IE (yz) : z ∈ ∆ρ} (4)

holds for every y ∈ Lp. Furthermore, we will also impose

∆ρ ⊂ {z ∈ Lq; IE (z) = 1} . (5)

Summarizing, we have:

Assumption 1. The set ∆ρ given by (3) is convex and σ (Lq, Lp)−compact, (4) holds for

every y ∈ Lp and (5) holds. �

The assumption above is closely related to the Representation Theorem of Risk Measures

stated in Rockafellar et al. (2006). Following their ideas, and bearing in mind the Repre-

sentation Theorem 2.4.9 in Zalinescu (2002) for convex functions, it is easy to prove that

the fulfillment of Assumption 1 holds if ρ is continuous and satisfies:

a)

ρ (y + k) = ρ (y)− k (6)

for every y ∈ Lp and k ∈ IR.

b)

ρ (αy) = αρ (y)

4See Horvàth (1966) for further details about σ (Lq, Lp)−compact sets.
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for every y ∈ Lp and α > 0.

c)

ρ (y1 + y2) ≤ ρ (y1) + ρ (y2)

for every y1, y2 ∈ Lp.

d)

ρ (y) ≥ −IE (y)

for every y ∈ Lp.5

It is easy to see that if ρ is continuous and satisfies Properties a), b), c) and d) above then

it is also coherent in the sense of Artzner et al. (1999) if and only if

∆ρ ⊂ Lq+ = {z ∈ Lq;µ (z ≥ 0) = 1} . (7)

Particular interesting examples are the Conditional Value at Risk (CV aR) of Rockafellar

et al. (2006), the Dual Power Transform (DPT ) of Wang (2000) and the Wang Measure

(Wang, 2000), among many others. Furthermore, following the original idea of Rockafellar

et al. (2006) to identify their Expectation Bounded Risk Measures and their Deviation

Measures, it is easy to see that

ρ (y) = σ (y)− IE (y) (8)

is continuous and satisfies a), b), c) and d) if σ : Lp −→ IR is a continuous deviation, that

is, if σ satisfies b), c),

e)

σ (y + k) = σ (y)

for every y ∈ Lp and k ∈ IR, and

f)

σ (y) ≥ 0
5Actually, the properties above are almost similar to those used by Rockafellar et al. (2006) in order

to introduce their Expectation Bounded Risk Measures. These authors also impose a), b), c) and d), work

with p = 2, allow for ρ (y) =∞, and impose ρ (y) > −IE (y) if y is not constant.
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for every y ∈ Lp.

Particular examples are the classical p−deviation given by

ρ (y) = [IE (|IE (y)− y|p)]1/p , (9)

or the downside p−semi-deviation given by

ρ (y) = [IE (|Max {IE (y)− y, 0}|p)]1/p , (10)

among many others.

3 Characterizing the shadow riskless asset

Suppose that the random variable y0 ∈ Lp represents a trader’s final wealth. Its final risk

will be given by ρ (y0), which justifies that this quantity may be an adequate final value

(at T ) of the capital requirement.6 Indeed, (6) leads to

ρ (y0 + ρ (y0)) = 0 (11)

and the risk will vanish if the amount ρ (y0) e−rfT is invested in the riskless security. Our

purpose is to study whether the investment above in the riskless asset is the best solution so

as to make the risk vanish. Until now it has not been proved that an alternative investment

will be outperformed by the riskless asset.

Consequently, consider the pay-off y ∈ Lp added by the trader to his initial portfolio

y0 ∈ Lp. Suppose that C > 0 gives (the value at T of) the highest amount of money that

will be invested to reduce the risk level.7 Then the trader will choose y so as to solve






Min ρ (y + y0 − IE (yzπ))
IE (yzπ) ≤ C

y ≥ 0
. (12)

6i.e., ρ (y) e−rfT should be the initial cash reserve (or capital requirement) invested in the risk-free asset.
7If ρ (y0) > 0 then (11) shows that C = ρ (y0) could be a suitable choice for C.
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Problem (12) considers the global risk level ρ (y + y0 − IE (yzπ)) that the trader is facing,

so it has to incorporate the value IE (yzπ) of the added portfolio that will have to be paid

and will reduce the trader wealth. One might also skip the price of y and solve





Min ρ (y + y0)

IE (yzπ) = C

y ≥ 0
(13)

though (6) points out that the solution y∗ of (12) also solves (13) as long as IE (y∗zπ) = C.

Some results below will show that (13) is frequently solved by the solution of (12).

As we said and justified in the introduction of the paper, the solution y∗ of (12) will be

called “shadow riskless asset”.

Problem (12) does not consider any utility function. It only focuses on the capital needed

by the trader in order to reduce risk levels. Nevertheless, there are many relationships

between utility functions and risk functions, as pointed out by Ogryczak and Ruszczynski

(1999) and (2002), among others.

Problem (12) is not differentiable because ρ is not differentiable either. Recent literature

has developed several optimization methods that may solve this caveat (see, among others,

Ruszczynski and Shapiro, 2006). In this paper we will follow a procedure quite parallel to

that used in Balbás et al. (2009), where the authors deal with a mathematical program-

ming problem leading to optimal reinsurance contracts. Some duality linked properties

and Theorem 1 below will not be proved due to their analogy with similar results of the

mentioned paper.

In particular, bearing in mind Assumption 1, (12) is equivalent to the infinite-dimensional

linear optimization problem






Min θ

θ + IE ((y + y0) z)− IE (yzπ) ≥ 0, ∀z ∈ ∆ρ
IE (yzπ) ≤ C

θ ∈ IR, y ≥ 0

(14)

θ ∈ IR and y ∈ Lp being the decision variables, in the sense that y solves (12) if and only
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if there exists θ ∈ IR such that (θ, y) solves (14), in which case

θ = ρ (y + y0 − IE (yzπ))

holds. Furthermore, following Balbás et al. (2009), one can show that Problem






Max − Cλ− IE (y0z)
z ≤ (1 + λ) zπ

λ ∈ IR, λ ≥ 0, z ∈ ∆ρ
(15)

is the dual of (14), λ ∈ IR and z ∈ ∆ρ being the decision variables. Finally, the following

primal-dual relationships hold

Theorem 1 Suppose that y∗ ∈ Lp and (λ∗, z∗) ∈ IR× Lq. Then, they solve (12) and (15)

if and only if the following Karush-Kuhn-Tucker conditions






λ∗ (C − IE (y∗zπ)) = 0
C − IE (y∗zπ) ≥ 0
IE ((y∗ + y0) z) ≥ IE ((y∗ + y0) z

∗) , ∀z ∈ ∆ρ

IE (((1 + λ∗) zπ − z∗) y∗) = 0

(1 + λ∗) zπ − z∗ ≥ 0
y∗ ∈ Lp, y∗ ≥ 0, λ ∈ IR, λ ≥ 0, z∗ ∈ ∆ρ

(16)

are fulfilled. Moreover, the dual solution is attainable if (12) is bounded. �

As already said, until now nobody has proved that the investment in the riskless asset is

the best way to make the risk level ρ (y0) vanish. Next let us use the latter theorem so as

to prove that the riskless asset and the shadow riskless asset will be often different.

Corollary 2 Suppose that y∗ solves (12) and (λ∗, z∗) solves (15). Then,

a) If λ∗ > 0 then y∗ saturates the budget constraint (C − IE (y∗zπ) = 0). In particular, y∗

also solves Problem (13).

b) If λ∗ = 0 then z∗ = zπ.

c) If µ (y∗ > 0) = 1 then λ∗ = 0 and z∗ = zπ.
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Proof. a) is obvious, so let us prove b) and c). If λ∗ = 0 then the dual constraint leads

to z∗ ≤ (1 + λ∗) zπ = zπ, and therefore z∗ = zπ because both random variables have the

same expectation (see (2) and (5)). Besides, if µ (y∗ > 0) = 1 then the fourth equation in

(16) implies that z∗ = (1 + λ∗) zπ. Taking expectations and bearing in mind (2) and (5)

we have that 1 = 1 + λ∗. �

Remark 1 The previous corollary points out that the shadow riskless asset y∗ will fre-

quently be a risky asset. Indeed, if it were the riskless asset y∗ = C then Statement c)

would lead to zπ ∈ ∆ρ which does not hold for many important risk measures and pricing

models. For instance, since Lp ⊂ L1, suppose that ρ may be extended to the whole space

L1. Important expectation bounded risk measures satisfy this condition. Among others, the

DPT of Wang (2000), given by

DPTa (y) =

∫ 1

0

V aR1−t (y) g
′

a (t) dt

for every y ∈ L1, a > 1 being an arbitrary constant and

ga : (0, 1) −→ (0, 1)

given by

ga (t) = 1− (1− t)a ,

the CV aR and the measure (8) if σ is the 1−deviation (or absolute deviation) or the

1−down-side semi-deviation (or down-side absolute semi-deviation) (see (9) and (10)).8

In such a case (3) points out that ∆ρ ⊂ L∞, and therefore the elements in ∆ρ are essen-

tially bounded. But there are many pricing models whose Stochastic Discount Factor is

not essentially bounded. For instance, the CAPM , where p = 2 and the SDF is “almost

similar” to the Market Portfolio (Chamberlain and Rothschild, 1983, or Duffie, 1988), or

the Black and Scholes model, where p = 2 once again, and zπ is unbounded as will be seen

in Section 4. �

Remark 2 Statement b) shows that λ∗ > 0 will hold as long as zπ is unbounded and

∆ρ ⊂ L∞. Then Statement a) implies that the solution y∗ of (12) will also solve (13), and

it is not a riskless asset according to the previous remark. �

8Let us remark that these three risk measures respect the second order stochastic dominance (Ogryczak

and Ruszczynski, 1999 and 2002).
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4 Dealing with the CVaR and the Black and Scholes

model

Henceforth we will assume that ρ = CV aRµ0 , µ0 ∈ (0, 1) being the level of confidence.

According to Rockafellar et al. (2006) we have that

∆CV aRµ0 =

{
z ∈ L∞; IE (z) = 1, 0 ≤ z ≤ 1

1− µ0

}
. (17)

Hence, bearing in mind (7), CV aRµ0 is a coherent and expectation bounded measure of

risk. Moreover, Ogryczak and Ruszczynski (2002) have shown that CV aRµ0 is consistent

with the second order stochastic dominance. All these properties provoke that CV aRµ0 is

becoming a very popular risk measure for both academics and practitioners.9

First of all let us adapt (16) to the particular case we are dealing with. The third condition

in (16) shows that the dual solution z∗ must solve the mathematical programming problem





Min IE ((y∗ + y0) z)

IE (z) = 1

z ≤ 1

1− µ0
z ≥ 0
z ∈ L∞

(18)

We will need the following result:

Lemma 3 If y∗ ∈ Lp and z∗ is (18)-feasible then z∗ solves (18) if and only if there exist

α ∈ IR, α1, α2 ∈ Lp and a measurable partition Ω = Ω0 ∪ Ω1 ∪ Ω2 such that





y∗ + y0 = α− α1 + α2

αi ≥ 0 i = 1, 2

α1 = α2 = 0 on Ω0

z∗ =
1

1− µ0
and α2 = 0 on Ω1

z∗ = 0 and α1 = 0 on Ω2

(19)

9V aRµ
0

is also important and used in practice, but its major caveat is that it is not sub-additive, and

therefore it is not clear that it will favor diversification. This problem has motivated several authors so

as to study particular conditions that lead to a sub-additive V aRµ
0
. See, amongst others, García et al.

(2007).
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holds.

Proof. Problem (18) is obviously linear, in the sense that both the objective function

and the constraints are linear. Thus, its Karush-Kuhn-Tucker conditions are sufficient

optimality conditions. Besides, the Slater Qualification holds, since there are random

variables z that are feasible and

µ(0 < z <
1

1− µ0
) = 1

(for instance, take the zero-variance random variable z = 1). Thus the Karush-Kuhn-

Tucker conditions of (18) are also necessary optimality conditions (Luenberger, 1969).

Furthermore, the dual space of L∞ is composed of those finitely additive measures that have

bounded variation and are µ−continuous (Horvàth, 1966). Thus, according to Luenberger

(1969), the Karush-Kuhn-Tucker conditions of (18) hold if and only if there exist α ∈ IR, and

two measures in the dual of L∞ such that (19) is satisfied. In particular, α1 = α−(y∗ + y0)

in Ω1 and vanishes outside Ω1, which proves that α1 ∈ Lp. Similarly, α2 ∈ Lp. �

As an obvious consequence we can modify the third condition in (16) using (19), and we

will have new necessary and sufficient optimality conditions for (12) and (15).

Let us now focus on the Black and Scholes model. Consequently, suppose that y0 is the

final value (at T ) of a Geometrical Brownian Motion (GBM). Then it is known that y0 has

a log-normal distribution. Without loss of generality we can simplify the structure of the

probability space (Ω,F , µ). Indeed, assume that Ω = (0, 1) and µ is the Lebesgue measure

on the Borel σ−algebra of this set. Then we can take

y0 (ω) = Exp

((
r − σ2

2

)
T + σ

√
TΦ−1 (ω)

)
(20)

for ω ∈ (0, 1) a.s., r and σ denoting the drift and the volatility of the GBM , respectively

(Wang, 2000). Obviously, Φ : IR �−→ (0, 1) is the cumulative distribution function of the

standard normal distribution and is given by the well-known expression

Φ (x) =
1√
2π

∫ x

−∞

e−
u2

2 du,

for every x ∈ IR.
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Actually, if (20) represents the trader final wealth then µ (y0 > 0) = 1, and the risk level

ρ (y0) is strictly negative. Hence, no capital requirements should be added. Nevertheless,

one can consider the fund manager whose asset final value is given by (20) but whose

liability equals a positive amount M with maturity at T . Then the manager final pay-off is

given by y0 −M , that can be negative, and ρ (y0 −M) > 0 may hold. Thus (12) and (13)

should be modified and y0−M should play the role of y0. However, due to (6), the solution

of both problems remains the same if y0 replaces y0−M , so we do not miss anything if we

take y0 as in (20) and deal with (12) and (13).

Taking into account (20) it may be immediately verified that y0 is a continuous and strictly

increasing function (with respect to the ω variable) such that

Limω→0y0 (ω) = 0, (21)

and

Limω→1y0 (ω) =∞.

It is also easy to see (Wang, 2000) that zπ is the first derivative of the one to one increasing

and convex function

(0, 1) � ω �−→ g (ω) = Φ
(
a+Φ−1 (ω)

)
∈ (0, 1) , (22)

where

a =
r − rf
σ

√
T (23)

is positive because we assume, as usual, that r > rf . Computing the derivative in (22) we

have that

zπ (ω) = Exp

(
−a

2

2
− aΦ−1 (ω)

)
(24)

ω ∈ (0, 1), which easily allows us to verify that zπ is continuous and strictly decreasing,

Limω→0zπ (ω) =∞, (25)

and

Limω→1zπ (ω) = 0. (26)

Corollary 2 and its remarks have shown the existence of an alternative investment y∗

outperforming the riskless asset. Next let us compute y∗.
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Theorem 4 Under the assumptions and notations above, if y∗ solves (12) then it also

solves (13), and there exist α, β ∈ IR such that

0 < β < α,

and

y∗ =






0 if y0 > α

α− y0 if β < y0 ≤ α

0 if y0 ≤ β

(27)

Proof. Consider the dual solution (λ∗, z∗). (17) implies that ∆CV aRµ0 ⊂ L∞, while (25)

shows that zπ is not bounded. Then, Corollary 2 implies that λ∗ > 0. Furthermore,

Statement a) in the same corollary shows that y∗ also solves Problem (13).

Since (1 + λ∗) zπ is continuous and strictly decreasing (25) and (26) show the existence of

γ1 ∈ (0, 1) such that (1 + λ∗) zπ (γ1) =
1

1− µ0
, (1 + λ∗) zπ (ω) >

1

1− µ0
for ω ∈ (0, γ1) and

(1 + λ∗) zπ (ω) <
1

1− µ0
for ω ∈ (γ1, 1). In particular, z∗ (ω) < (1 + λ∗) zπ (ω) in (0, γ1),

which, along with the fourth and fifth equations in (16) imply that y∗ (ω) = 0 in (0, γ1).

On the other hand, being y0 continuous and strictly increasing, take β = y0 (γ1) and we

have that y0 ≤ β if and only if (0, γ1] � ω, i.e., the third part of (27) has been proved.10

Consider the partition (0, 1) = Ω0 ∪ Ω1 ∪ Ω2 of (19). Notice that the fourth equation in

(19) and the fifth one in (16) lead to Ω1 ⊂ (0, γ1]. Notice also that y0 = α − α1 in Ω1,

whereas y0 = α+ α2 in (0, γ1] \Ω1, since α1 vanishes outside Ω1 and y∗ vanishes in (0, γ1].

Being α1, α2 ≥ 0 we conclude that y0 increases from Ω1 to (0, γ1] \ Ω1. Since y0 is strictly

increasing there will exist γ̃1 ≤ γ1 such that Ω1 = (0, γ̃1].

Let us see that (γ̃1, γ1] ⊂ Ω2. Indeed, otherwise in a non-null subset of (γ̃1, γ1] we would

have y0 = α + α2 = α (α2 vanishes outside Ω2), but this is a contradiction because y0 is

strictly increasing and cannot achieve any concrete value with strictly positive probability.

Assume for a few moments that Ω0 is void. Then Ω2 = (γ̃1, 1) and z∗ = 0 in (γ̃1, 1) (last

condition in (19)). Since (1 + λ∗) zπ > 0 (see (24)), the fourth equation in (16) implies

y∗ = 0 in (0, 1). Then C > 0 and λ∗ > 0 provoke that the first equality in (16) does not

hold, and we are facing a contradiction.

10y∗ may be modified in {γ
1
} because it is a µ−null set.
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Consequently Ω0 is not a null set. Let us see that γ̃1 = γ1. Indeed, we know that Ω0 ⊂
(γ1, 1). Fix λ∗. According to (15), z∗ must solve

Min {IE (y0z) ; z ≤ (1 + λ∗) zπ, z ∈ ∆ρ} . (28)

If γ̃1 < γ1 then take v = Inf (Ω0), u = Sup (Ω0) and

z̃ =






z∗, ω ∈ Ω1 = (0, γ̃1]
z∗ (ω + v − γ̃1) , γ̃1 < ω < γ̃1 + u− v

0, otherwise

z̃ trivially satisfies the constraints of (28) because so does z∗, z∗ vanishes on Ω2 and zπ

is strictly decreasing. On the other hand, IE (y0z̃) < IE (y0z
∗) trivially holds because y0 is

strictly increasing, so z∗ does not solve (28). Hence, γ̃1 = γ1.

Applying an argument similar to that of the paragraph above it is easy to show the existence

of γ2 > γ1 such that Ω0 = (γ1, γ2). Moreover, y∗ = α−y0 in (γ1, γ2) implies that y0 (ω) ≤ α

for ω ∈ (γ1, γ2), because y∗ ≥ 0. Since y0 is continuous and strictly increasing one has that

α ≥ y0 (γ2) > y0 (γ1) = β > 0.

Finally, if y0 (ω) > α then ω > γ2, so ω ∈ Ω2, z∗ = 0 (last equation in (19)), the fifth

equation in (16) holds in terms of strict inequality, and the fourth equation in (16) shows

that y∗ vanishes. �

Remark 3 Notice that the solution y∗ above may be given by

y∗ = y∗α − y∗β − (α− β) y∗Dβ,

y∗α denoting the European put option with maturity at T and strike α, y∗β denoting the

similar put with strike β, and y∗Dβ denoting the digital put option with maturity at T and

strike β, whose pay-off is

y∗Dβ =





0 if y0 > β

1 if y0 ≤ β

Then the shadow riskless asset is a combination of three put options.

Remark 4 In order to apply our finding in practice we have to provide the values of β

and α. Suppose for a few moments that we know the value of the dual solution λ∗. Then
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theorem’s proof and (20) point out that β may be computed in practice by

β = Exp

((
r − σ2

2

)
T + σ

√
TΦ−1 (γ1)

)
,

where, according to the theorem’s proof and (24),

γ1 = z−1π

(
1

(1− µ0) (1 + λ∗)

)
= Φ

(
2L (1− µ0) + 2L (1 + λ∗)− a2

2a

)
,

and a is given by (23).

Since the theorem’s proof is constructive it also yields and algorithm leading to the compu-

tation of λ∗. Indeed, take in a first iteration γ1 = 1− µ0 and

1 + λ∗ =
1

(1− µ0)zπ (γ1)
. (29)

In the theorem’s proof this choice means that we are taking

z∗ =






1
(1−µ0)

ω ≤ γ1

0 otherwise

We know that this choice does not provide the dual solution because it implies that Ω0 is

void (see the theorem’s proof). Anyway, we can compute the (minus) objective of (15) in

the proposed solution,

Cλ∗ + IE (z∗y0) . (30)

Then, choose a “small enough step” ε > 0 and consider γ1 = 1 − µ0 − ε. Take λ∗ as in

(29) and

z∗ =






1
(1−µ0)

ω ≤ γ1

(1 + λ∗) zπ γ1 < ω ≤ γ2

0 otherwise

,

where γ2 must be selected so as to reach

IE (z∗) =
γ1

1− µ0
+ (1 + λ∗)

∫ γ2

γ1

y0 (ω) zπ (ω) dω = 1.

Notice that the integral may be calculated by numerical methods. Then compute the (minus)

objective of (15) as indicated in (30). If the value of (30) has decreased with respect to the

previous one then we already reached the desired value λ∗. Otherwise take γ1 = 1−µ0− 2ε
and repeat a new iteration of the algorithm.
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Once β has been computed one can calculate α because the price of y∗ must equal Ce−rfT ,

i.e., the following equation

Π(y∗α) = Ce−rfT +Π
(
y∗β
)
+ (α− β) Π

(
y∗Dβ

)

must hold. �

Remark 5 The risk measure CV aRµ0 may be also given by (Rockafellar et al., 2006)

CV aRµ
0
(y) =

1

1− µ0

∫ 1−µ0

0

V aR1−t (y) dt,

for every y ∈ Lp. Accordingly, since V aR (y) only focuses on “the worst” values of y (on

the left tail of y), so does CV aRµ0 (y). Thus, it is not so surprising that y∗ vanishes if y0

achieves high values, since they are not affecting the global risk level.

A little bit more shocking is that y∗ also vanishes if y0 achieves its lowest values. Notice

that the theorem’s proof leads to β = y0 (γ1), and, according to the previous remark,

0 < γ1 < 1− µ0.

Therefore,

Limµ0 �−→1γ1 = 0,

which, along with (21) and β = y0 (γ1), imply that

Limµ
0
�−→1β = 0.

Thus, for a high level of confidence the lowest values of y0 become very important, and y
∗

almost becomes the European put option y∗α. The limit value of α as µ0 tends to 1 may be

computed from Π(y∗α) = Ce−rfT . �

Remark 6 There are several classical strategies providing “portfolio insurance”. Maybe

the most popular one is the purchase of an appropriate European put option. Theorem 4

highlights that for high levels of confidence the use of portfolio insurance strategies may

be adequate to protect the investor’s risk. It is consistent with some empirical findings

of recent literature. For instance, the test implemented by Annaert et al. (2009) seems

to reveal that some put option-linked portfolio insurance strategies are not outperformed by

other hedging methods. The authors use stochastic dominance criteria and V aR and CV aR

in their empirical test. �
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5 Conclusions

The paper has considered a complete arbitrage free market and a general expectation

bounded risk measure, and has analyzed whether it is optimal to invest the capital require-

ments in the riskless asset. Once the optimal strategy, or shadow riskless asset, has been

characterized, it has been shown that it is not the riskless security in many important cases.

For instance, if the risk measure is the CV aR or the absolute deviation or down-side semi-

deviation and we consider the assumptions of the CAPM or the Black and Scholes model.

Furthermore, for the CV aR and the Black and Scholes model the explicit expression of

the shadow riskless asset has been provided, and it is composed of a long European put

plus a short European put plus a short digital put. If the confidence level of the CV aR is

close to 100% then the shadow riskless asset becomes an European put option. This may

be a surprising and important finding for both researchers and practitioners. In particular,

managers can discover how to significantly reduce the level of initial capital requirements

by trading options.
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