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1 Introduction

Let X be a random variable, and let uX be the right endpoint of its support. For any t < uX ,
the residual life at time t, that is associated with X, is any random variable that has the
conditional distribution of X − t given that X > t. We denote it by

Xt = [X − t
∣

∣X > t], t < uX . (1.1)

If FX denotes the distribution function of X, and FX = 1 − FX denotes the corresponding
survival function, then the survival function of Xt is given by

FXt(x) =
FX(t + x)

FX(t)
, x ≥ 0.

The residual life is of interest in many areas of applied probability and statistics such as
actuarial studies, biometry, survivorship analysis, and reliability — see, for example, Lillo
(2005) for a list of references.

The mean residual life function mX that is associated with X is given by

mX(t) =

{

E[X − t
∣

∣X > t], t < uX ;

0, t ≥ uX ,
(1.2)

provided the expectation exists. It is a useful tool for analyzing important properties of
X when it exists. However, the mean residual life function may not exist. Even when it
exists it may have some practical shortcomings, especially in situations where the data are
censored, or when the underlying distribution is skewed or heavy-tailed. In such cases, either
the empirical mean residual life function cannot be calculated, or a single long-term survivor
can have a marked effect upon it which will tend to be unstable due to its strong dependence
on very long durations.

An alternative to the mean residual life function is the α-percentile residual life function
qX,α, where α is some number between 0 and 1. This function is defined for any t < uX

by letting qX,α(t) be the α-percentile of Xt. A formal definition of qX,α(t) will be given in
Section 2, but here we note that such a function describes, for example, the value that will
be survived, by (1−α)% of items (in reliability theory) or of individuals (in biology), among
those that survived up to time t. The α-percentile residual life functions were studied in
some detail by Arnold and Brockett (1983), Gupta and Langford (1984), Joe and Proschan
(1984a), and Joe (1985), as well as by Haines and Singpurwalla (1974). Raja Rao, Alhumoud,
and Damaraju (2006) identified families of distributions for which simple expressions, for the
α-percentile residual life functions, can be obtained.

A particular α-percentile residual life function of interest is the median residual life
function given by qX,.5 — this function was studied in detail by Lillo (2005). Gelfand and
Kottas (2003) used it for Bayesian semiparametric modeling. In the above two papers the
reader can find further references to papers that studied the α-percentile and the median
residual life functions, and that used them in practical applications.
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In light of the extensive use of the α-percentile residual life functions in various areas of
probability and statistics, it is of interest to develop a theory that compares such functions.
The purpose of this paper is to do that. We study here a family of stochastic orders indexed
by α ∈ (0, 1). For a fixed α ∈ (0, 1) the αth order compares pointwise qX,α with qY,α,
where the latter is the α-percentile residual life function of a random variable Y . These
stochastic orders were introduced in Joe and Proschan (1984b), but their properties were
not extensively studied there.

In this paper the α-percentile residual life stochastic orders are formally defined in Sec-
tion 2. We also give there some equivalent ways of describing these orders; these equivalent
conditions turn up to be useful in the sequel. Section 3 consists of a thorough study of
the relationships among the α-percentile residual life orders and other stochastic orders in
the literature. Some useful properties of the α-percentile residual life orders are given in
Section 4, and some applications in reliability theory and finance are described in Section 5.
Finally, in the Appendix we collect some technical counterexamples that illustrate various
statements in the text.

Some conventions that we use in this paper are the following. By “increasing” and “de-
creasing” we mean “nondecreasing” and “nonincreasing”, respectively. For any distribution
function F we let function F−1 be the left continuous version of the inverse of F , that is

F−1(p) = inf{x : F (x) ≥ p}, p ∈ (0, 1).

2 Definition and equivalent conditions

Let X be a random variable. The α-percentile residual life function qX,α is defined by

qX,α(t) =

{

F−1
Xt

(α), t < uX ;

0, t ≥ uX .
(2.1)

A straightforward computation shows that

qX,α(t) = F
−1

X (αFX(t)) − t, t < uX , (2.2)

where α = 1 − α. Alternatively,

qX,α(t) = F−1
X (α + αFX(t)) − t, t < uX . (2.3)

Similar expressions can be found in Joe and Proschan (1984b). Note that, unlike Joe and
Proschan (1984a,b), we do not assume here that X is a nonnegative random variable.

Now let Y be another random variable, and let qY,α be its α-percentile residual life
function. If

qX,α(t) ≤ qY,α(t) for all t, (2.4)

then we say that X is smaller than Y in the α-percentile residual life order, and we denote
it as X ≤α-rl Y . The α-percentile residual life orders were introduced in Joe and Proschan

2



(1984b), but these orders were not extensively studied there. The focus of Joe and Proschan
(1984b) was to test the hypothesis H0 : FX = FY versus H1 : qX,α ≤ qY,α.

Note that (2.4) defines a family of stochastic orders, indexed by α ∈ (0, 1). It follows
from (2.1) and (2.4) that if X ≤α-rl Y then

uX ≤ uY , (2.5)

where uX and uY are the right endpoints of corresponding supports.

The following proposition states equivalent conditions for the α-percentile residual life
order to hold.

Proposition 2.1. Let α be in (0, 1) and let X and Y be two random variables.

(i) The random variables X and Y satisfy X ≤α-rl Y if, and only if,

F
−1

X (αFX(t)) ≤ F
−1

Y (αF Y (t)) for all t.

(ii) The random variables X and Y satisfy X ≤α-rl Y if, and only if,

F−1
X (α + αFX(t)) ≤ F−1

Y (α + αFY (t)) for all t.

(iii) Suppose that FX and FY are continuous. Then X ≤α-rl Y if, and only if,

F Y (F
−1

X (u))

u
≤

F Y (F
−1

X (αu))

αu
for all u ∈ (0, 1).

Proof. Parts (i) and (ii) follow at once from (2.2), (2.3), and (2.4). In order to prove part (iii)

we note that under the stated assumptions we have that FX

(

F
−1

X (p)
)

= p and F Y

(

F
−1

Y (p)
)

=
p for all p ∈ (0, 1). Now, by part (i), we have that X ≤α-rl Y is equivalent to

F
−1

X (αFX(t)) ≤ F
−1

Y (αF Y (t)) for all t.

Applying F Y to both sides of the above inequality we get that it is equivalent to

F Y

(

F
−1

X (αFX(t))
)

≥ αF Y (t) for all t.

Letting t = F
−1

X (u) in the latter inequality we see that it is equivalent to

F Y

(

F
−1

X (αu)
)

αu
≥

F Y

(

F
−1

X (u)
)

u
for all u ∈ (0, 1),

completing the proof.
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The α-percentile residual life orders indicate comparisons of size or magnitude. For
example, letting t → −∞ in (2.4) we see that if X ≤α-rl Y then the α-percentile of X is
smaller than (or at least not larger than) the α-percentile of Y . Inequality (2.5) is another
indication of comparisons of size or magnitude. Now, let lX and lY be the left endpoints of the
corresponding supports. One may wonder whether X ≤α-rl Y implies lX ≤ lY . Surprisingly,
Counterexample A.1 in the Appendix shows that this is not necessarily the case.

Before we proceed to the study of the relationship of the α-percentile residual life orders
to other stochastic orders, we present an example that describes a family of random variables
that are ordered with respect to ≤α-rl. This family will be used later in the paper.

Example 2.2. Let X have the Pareto distribution:

FX(t) = 1 −
( γ

γ + t

)ν

, t ≥ 0,

where γ > 0 and ν > 0. Then, for any α ∈ (0, 1),

qX,α(t) =

{

((1 − α)−1/ν − 1)γ − t, t < 0;

((1 − α)−1/ν − 1)(γ + t), t ≥ 0.

Let Y have the Pareto distribution:

FY (t) = 1 −
( δ

δ + t

)µ

, t ≥ 0,

where δ > 0 and µ > 0. Then, for any α ∈ (0, 1),

qY,α(t) =

{

((1 − α)−1/µ − 1)δ − t, t < 0;

((1 − α)−1/µ − 1)(δ + t), t ≥ 0.

It follows that

X ≤α-rl Y ⇐⇒

{

µ ≤ ν and
(1−α)−1/ν−1

(1−α)−1/µ−1
≤ δ

γ
.

◭

3 Relationship to other stochastic orders

Recall that a random variable X is said to be smaller than the random variable Y in the
ordinary stochastic order (denoted as X ≤st Y ) if FX(x) ≤ F Y (x) for all x ∈ R. It is known
that X ≤st Y if, and only if,

F−1
X (p) ≤ F−1

Y (p) for all p ∈ (0, 1); (3.1)

see, for example, (1.A.12) in Shaked and Shanthikumar (2007).

Next recall that a random variable X is said to be smaller than the random variable Y
in the hazard rate order (denoted as X ≤hr Y ) if FX(y)F Y (x) ≤ FX(x)F Y (y) for all x ≤ y.
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Recalling from (1.1) the notation Xt and Yt for the residual lives that are associated with X
and Y , it is known that X ≤hr Y if, and only if,

Xt ≤st Yt for all t < uX ; (3.2)

see, for example, (1.B.6) in Shaked and Shanthikumar (2007). Equivalently, recalling the
notation qX,α and qY,α from (2.1), we can apply (3.1) to (3.2) and see that X ≤hr Y if, and
only if,

qX,α(t) ≤ qY,α(t) for all t < uX and α ∈ (0, 1).

From (2.4) we thus obtain the following result (which has already been observed in Joe and
Proschan (1984b)).

Theorem 3.1. Let X and Y be two random variables. Then X ≤hr Y if, and only if,

X ≤α-rl Y for all α ∈ (0, 1). (3.3)

In particular, for any α ∈ (0, 1),
≤hr =⇒≤α-rl .

Joe and Proschan (1984b) stated, without proof, that there is no relationship between
the orders ≤st and ≤α-rl. The following discussion, especially Remarks 3.2 and 3.3 below,
extend and formalize that observation of Joe and Proschan (1984b).

Recall from (1.2) the definition of the mean residual life function mX of a random variable
X. Similarly the mean residual life function mY , of another random variable Y , is defined.
If

mX(t) ≤ mY (t) for all t ∈ R,

then X is said to be smaller than Y in the mean residual life order (denoted as X ≤mrl Y );
see Shaked and Shanthikumar (2007).

Remark 3.2. The random variables in Counterexample A.1 have expectations E[X(α)] =
α2+1

2
and EY = 1

2
. Thus, although X(α) ≤α-rl Y we have EX(α) > EY . That is, the

α-percentile residual life orders do not preserve expectations. It follows that any stochastic
order that preserves expectations cannot be implied by any α-percentile residual life order.
In particular, for any α ∈ (0, 1) we have

≤α-rl 6=⇒≤st,

≤α-rl 6=⇒≤mrl,

and

≤α-rl 6=⇒≤hmrl,

where ≤hmrl denotes the harmonic mean residual life stochastic order; see Shaked and Shan-
thikumar (2007) for the definition, and for the fact that the above orders preserve expecta-
tions. ⊳
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Recall that a random variable X is said to be smaller than the random variable Y in
the reversed hazard rate order (denoted as X ≤rh Y ) if FX(y)FY (x) ≤ FX(x)FY (y) for all
x ≤ y. Since the order ≤rh implies the order ≤st, it follows from Remark 3.2 that, for any
α ∈ (0, 1),

≤α-rl 6=⇒≤rh .

It is known (see, for example, Shaked and Shanthikumar (2007)) that ≤rh 6=⇒≤hr. It thus
follows from Theorem 3.1 that ≤rh 6=⇒≤α-rl for some α ∈ (0, 1). However, in the next remark
we show a much stronger result.

Remark 3.3. Note that the distribution FX(α) of the random variable X(α) in Counterex-
ample A.1 can be obtained from the distribution of the random variable Y there by shifting
some of the mass of FY to the right. Thus Counterexample A.1 shows in a simple manner
that shifting some mass of a distribution of a random variable to the right can actually
decrease it in the α-percentile residual life order. This shows that, for any α ∈ (0, 1),

≤st 6=⇒≤α-rl . (3.4)

In fact, it is easy to verify that FX(α) and FY in Counterexample A.1 satisfy FY (y)FX(α)(x) ≤
FY (x)FX(α)(y) for all x ≤ y; that is, Y ≤rh X(α). It follows that, for any α ∈ (0, 1),

≤rh 6=⇒≤α-rl . (3.5)

Note that (3.5) is a stronger statement than (3.4) because the order ≤rh implies the order
≤st. ⊳

Let us now return to the consideration of the relationship between the orders ≤α-rl and
≤hr. In Theorem 3.1 it is shown that condition (3.3) implies X ≤hr Y (actually these two
conditions are equivalent). The question that now arises is whether a weaker condition, such
as

X ≤α-rl Y for all α ∈ (0, β)

for some β ∈ (0, 1), implies the same conclusion. It turns out that this is indeed the case,
no matter how small β is (provided it is positive). In order to show it we need the following
lemma.

Lemma 3.4. Let α ∈ (0, 1) and let X and Y be two random variables with continuous

distributions. If X ≤α-rl Y then

X ≤(1−α2m
)-rl Y for all m = 1, 2, . . . .

Proof. By Proposition 2.1(iii), if X ≤α-rl Y then

F Y (F
−1

X (u))

u
≤

F Y (F
−1

X (αu))

αu
for all u ∈ (0, 1).

Replacing above u by αu we get

F Y (F
−1

X (αu))

αu
≤

F Y (F
−1

X (α2u))

α2u
for all u ∈ (0, 1),
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and by induction

F Y (F
−1

X (α2m−1
u))

α2m−1
u

≤
F Y (F

−1

X (α2m
u))

α2m
u

for all u ∈ (0, 1) and m = 1, 2, . . . .

Multiplying the above inequalities we get

F Y (F
−1

X (u))

u
≤

F Y (F
−1

X (α2m
u))

α2m
u

for all u ∈ (0, 1) and m = 1, 2, . . . ,

and, by Proposition 2.1(iii), this yields the stated result.

Theorem 3.5. Let β ∈ (0, 1) and let X and Y be two random variables with continuous

distributions. If

X ≤α-rl Y for all α ∈ (0, β)

then X ≤hr Y .

Proof. For any α ∈ (0, β), since X ≤α-rl Y it follows from Lemma 3.4 that

X ≤(1−α2m
)-rl Y for all m = 1, 2, . . . .

Now, let γ ∈ [β, 1), and consider

α
def
= 1 − (1 − γ)

1
2m where m =

[

log
( log(1−γ)

log(1−β)

)

log 2

]

+ 1;

here [s] denotes the integer part of s. It is straightforward to verify that α < β. Plugging
this α in the inequality X ≤(1−α2m

)-rl Y we obtain X ≤γ-rl Y . Since this is true for every
γ ∈ [β, 1) we get X ≤hr Y from (3.3).

Remark 3.6. Looking at condition (3.3) and at Theorem 3.5 it is natural to wonder whether
a condition such as

X ≤α-rl Y for all α ∈ (γ, β),

for some 0 < γ < β < 1 (note that here we do not allow γ = 0), implies X ≤hr Y . It turns
out that this is not the case. In order to see it, fix a γ ∈ (0, 1), and consider the random
variables X(γ) and Y from Counterexample A.1. For any α ∈ (γ, 1) we have

qX(γ),α(t) =











α − t, t < γ;

α(1 − t), γ ≤ t < 1;

0, t ≥ 1;

whereas qY,α is given in (A.1). It is now easy to verify that X(γ) ≤α-rl Y (and this is true
for all α ∈ (γ, 1)), but X(γ) �hr Y . ⊳
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In Counterexample A.2 in the Appendix it is shown that for any α ∈ (0, 1) we have

≤mrl 6=⇒≤α-rl .

Since ≤mrl =⇒≤hmrl (see Shaked and Shanthikumar (2007, page 95)), it follows from Coun-
terexample A.2 that for any α ∈ (0, 1) we have

≤hmrl 6=⇒≤α-rl .

One may wonder whether the orders ≤α-rl and ≤β-rl imply each other when α 6= β.
Counterexample A.3 in the Appendix shows that if β < α then X ≤α-rl Y does not necessarily
imply that X ≤β-rl Y . Counterexample A.4 in the Appendix shows that also if β < α then
X ≤α-rl Y does not necessarily imply that X ≤β-rl Y .

4 Closure properties

The α-percentile residual life orders satisfy some desirable closure properties. These are
described and discussed in this section.

First we show that the α-percentile residual life orders are preserved under strictly in-
creasing transformations.

Theorem 4.1. Let X and Y be random variables, let α ∈ (0, 1), and let φ be a strictly

increasing function. Then X ≤α-rl Y if, and only if, φ(X) ≤α-rl φ(Y ).

Proof. Let F φ(X) and F φ(Y ) denote the survival functions of the indicated random variables.
Since φ is strictly increasing we have

F φ(X)(t) = FX(φ−1(t)) and F φ(Y )(t) = F Y (φ−1(t)) for all t,

and
F

−1

φ(X)(u) = φ(F
−1

X (u)) and F
−1

φ(Y )(u) = φ(F
−1

Y (u)) for all u ∈ (0, 1).

Therefore, by Proposition 2.1(i), φ(X) ≤α-rl φ(Y ) if, and only if,

φ(F
−1

X (αFX(φ−1(t)))) ≤ φ(F
−1

Y (αF Y (φ−1(t)))) for all t.

By the strict monotonicity of φ, the latter condition is equivalent to

F
−1

X (αFX(φ−1(t))) ≤ F
−1

Y (αF Y (φ−1(t))) for all t.

Letting t′ = φ−1(t), this condition is the same as

F
−1

X (αFX(t′)) ≤ F
−1

Y (αF Y (t′)) for all t′,

and the stated result follows from Proposition 2.1(i).

For the next result we need the following lemma from van der Vaart (1998, page 305).
Note that the assumption in the following lemma, that a distribution function has interval
support, means that the distribution function has no “flats” on that interval.
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Lemma 4.2. Let {Fn} be a sequence of distribution functions that converges in distribution

to F . Suppose that F is continuous and has interval support. Then F−1
n converges to F−1

on (0, 1).

The following result gives conditions under which the α-percentile residual life orders are
closed under limits in distribution.

Theorem 4.3. Let {Xn, n = 1, 2, . . . } and {Yn, n = 1, 2, . . . } be two sequences of random

variables such that Xn →st X and Yn →st Y as n → ∞, where “→st” denotes convergence in

distribution. Suppose that both X and Y have continuous distribution functions with interval

supports. For any α ∈ (0, 1), if Xn ≤α-rl Yn, n = 1, 2, . . ., then X ≤α-rl Y .

Proof. From Lemma 4.2 we know that

F−1
X (α + αFX(t)) = lim

n→∞
F−1

Xn
(α + αFXn(t))

and that
F−1

Y (α + αFY (t)) = lim
n→∞

F−1
Yn

(α + αFYn(t))

for all t. If Xn ≤α-rl Yn, n = 1, 2, . . ., then, using Proposition 2.1(ii), we have

F−1
X (α + αFX(t)) = lim

n→∞
F−1

Xn
(α + αFXn(t)) ≤ lim

n→∞
F−1

Yn
(α + αFYn(t)) = F−1

Y (α + αFY (t)),

and the stated result follows from Proposition 2.1(ii).

Without the assumption of interval supports in Theorem 4.3 the conclusion of the theorem
may not hold. This is shown in Counterexample A.5 in the Appendix.

The following two lemmas, that deal with simple mixtures, will yield a general closure
under mixtures property of the α-percentile residual life orders.

Lemma 4.4. Let X, Y , U , and V be random variables with continuous distribution func-

tions, and let W be a random variable with distribution function

FW = pFX + (1 − p)FY ,

for some p ∈ [0, 1].

(i) If U ≤α-rl X and U ≤α-rl Y then U ≤α-rl W .

(ii) If X ≤α-rl V and Y ≤α-rl V then W ≤α-rl V .

Proof. First we prove (i). From U ≤α-rl X and U ≤α-rl Y , using Proposition 2.1(i), we obtain

F
−1

U (αFU(t)) ≤ F
−1

X (αFX(t)) and F
−1

U (αFU(t)) ≤ F
−1

Y (αF Y (t)) for all t.

It follows, by the continuity of FX and of FY , that

FX(F
−1

U (αFU(t))) ≥ αFX(t) and F Y (F
−1

U (αFU(t))) ≥ αF Y (t) for all t.
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Therefore,

pFX(F
−1

U (αFU(t))) + (1 − p)F Y (F
−1

U (αFU(t))) ≥ αpFX(t) + α(1 − p)FX(t) for all t;

that is,

FW (F
−1

U (αFU(t))) ≥ αFW (t) for all t.

By the continuity of FW we get

F
−1

U (αFU(t)) ≤ F
−1

W (αFW (t)) for all t;

that is, by Proposition 2.1(i), U ≤α-rl W .

Now we prove (ii). From X ≤α-rl V and Y ≤α-rl V , using Proposition 2.1(i), we obtain

F
−1

X (αFX(t)) ≤ F
−1

V (αF V (t)) and F
−1

Y (αF Y (t)) ≤ F
−1

V (αF V (t)) for all t.

It follows, by the continuity of FX and of FY , that

αFX(t) ≥ FX(F
−1

V (αF V (t))) and αF Y (t) ≥ F Y (F
−1

V (αF V (t))) for all t.

Therefore,

αpFX(t) + α(1 − p)F Y (t) ≥ pFX(F
−1

V (αF V (t))) + (1 − p)F Y (F
−1

V (αF V (t))) for all t;

that is,

αFW (t) ≥ FW (F
−1

V (αF V (t))) for all t.

By the continuity of FW we get

F
−1

W (αFW (t)) ≤ F
−1

V (αF V (t)) for all t;

that is, by Proposition 2.1(i), W ≤α-rl V .

Lemma 4.5. Let X1, X2, Y1, and Y2 be random variables with continuous distribution

functions, and let W and Z be random variables with distribution functions

FW = pFX1 + (1 − p)FX2 and FZ = pFY1 + (1 − p)FY2 ,

for some p ∈ [0, 1]. If there exists a random variable S such that

X1 ≤α-rl S, X2 ≤α-rl S, S ≤α-rl Y1, S ≤α-rl Y2,

then W ≤α-rl Z.

Proof. Since X1 ≤α-rl S and X2 ≤α-rl S, it follows from Lemma 4.4(ii) that W ≤α-rl S.
Furthermore, since S ≤α-rl Y1 and S ≤α-rl Y2, it follows from Lemma 4.4(i) that S ≤α-rl Z.
By the transitivity property of the order ≤α-rl we get W ≤α-rl Z.

By repeated application of Lemma 4.5, and limiting arguments, we obtain the following
result.
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Theorem 4.6. Let {Xθ, θ ∈ Θ} and {Yθ, θ ∈ Θ} be two families of random variables

with continuous distribution functions. Let W and Z be random variables with distribution

functions given by

FW (t) =

∫

Θ

FXθ
(t)dH(θ) and FZ(t) =

∫

Θ

FYθ
(t)dH(θ), t ∈ R,

where H is some distribution function on Θ. Suppose that there exists a random variable S
such that

Xθ ≤α-rl S ≤α-rl Yθ for all θ ∈ Θ. (4.1)

then W ≤α-rl Z.

Note that condition (4.1) can be rewritten as

Xθ ≤α-rl Yθ′ for all θ, θ′ ∈ Θ.

It is worth noting that results that are similar to Theorem 4.6 hold for the hazard rate
order, the reversed hazard rate order, the likelihood ratio order, and the mean residual life
order (see, respectively, Theorems 1.B.8, 1.B.46, 1.C.15, and 2.A.13 in Shaked and Shan-
thikumar, 2007).

A special case of Theorem 4.6 is the following result which shows that a random variable,
whose distribution is a mixture of two distributions of α-percentile residual life ordered
random variables, is bounded from below and from above, in the α-percentile residual life
order sense, by these two random variables.

Corollary 4.7. Let X and Y be two random variables with continuous distribution functions,

and let W be a random variable with distribution function

FW = pFX + (1 − p)FY ,

for some p ∈ [0, 1]. If X ≤α-rl Y then X ≤α-rl W ≤α-rl Y .

Again we note that similar results hold for the hazard rate order, the likelihood ratio
order, and the mean residual life order (see, respectively, Theorems 1.B.22, 1.C.30, and
2.A.18 in Shaked and Shanthikumar, 2007).

The possible preservation of a stochastic order under the formation of coherent systems
is a useful property that has important applications in reliability theory (see, for example,
Barlow and Proschan, 1975, for the definition and the use of coherent systems). Thus
it is of interest to ask whether the α-percentile residual life orders are closed under this
formation. Boland, El-Neweihi, and Proschan (1994) showed that the hazard rate order is
not preserved under the formation of coherent systems. It follows from Theorem 3.1 that,
for some α, the α-percentile residual life order is not closed under this formation. However,
in Counterexample A.6 in the Appendix it is shown that in fact, for all α, the α-percentile
residual life order is not closed under this formation. This is shown by considering a parallel
system of size 2 whose lifetime is the maximum of the lifetimes of its two components.

In fact, unlike the hazard rate order, for every α ∈ (0, 1), the α-percentile residual life
order is not even closed under the formation of series systems (that is, under the minimum
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operation). This is shown in Counterexample A.7 in the Appendix. We point out that some
comparisons of minima in percentile residual life orders are given in Corollary 5.2 below.

In relation to Counterexample A.7, which shows that the α-percentile residual life order
is not closed under the minimum operation, it is worthwhile to note that if X and Y are
continuous random variables, then, for any α ∈ (0, 1) we actually have

min{X, Y } ≤α-rl X. (4.2)

In order to see it we note that FX(t) ≥ αFX(t) for all t. Therefore t ≤ F
−1

X (αFX(t)) and

hence F Y (t) ≥ F Y (F
−1

X (αFX(t))) for all t. It follows that

αFX(t)F Y (t) ≥ FX(F
−1

X (αFX(t)))F Y (F
−1

X (αFX(t))) for all t.

Since Fmin{X,Y } = FXF Y , the last inequality can be written as

αFmin{X,Y }(t) ≥ Fmin{X,Y }(F
−1

X (αFX(t))) for all t,

or, equivalently,

F
−1

min{X,Y }(αFmin{X,Y }(t)) ≤ F
−1

X (αFX(t)) for all t.

Thus (4.2) follows from Proposition 2.1(i).

5 Some applications

Let X be a random variable with survival function FX . For θ > 0, let X(θ) denote a random

variable with survival function F
θ

X . In the theory of statistics, F
θ

X is often referred to as
the Lehmann’s alternative. In reliability theory terminology, different X(θ)’s are said to
have proportional hazards. If θ < 1 then X(θ) is the lifetime of a component with lifetime
X which is subjected to imperfect repair procedure where θ is the probability of minimal
(rather than perfect) repair (see Brown and Proschan (1983)). If θ = n, where n is a positive
integer, then F

n

X is the survival function of min{X1, X2, . . . , Xn} where X1, X2, . . . , Xn are
independent copies of X; that is, F

n

X is the survival function of a series system of size n
where the component lifetimes are independent copies of X. Similarly, if Y is a random
variable with survival function F Y , then denote by Y (θ) a random variable with survival

function F
θ

Y . The following result compares X(θ) and Y (θ).

Theorem 5.1. Let X and Y be two random variables with continuous distributions on

interval supports. Let α ∈ (0, 1) and θ > 0. If X ≤α-rl Y then

X(θ) ≤(1−αθ)-rl Y (θ). (5.1)

Proof. It is not hard to verify that under the continuity assumptions above we have

(F
θ

X)−1(u) = F
−1

X (u1/θ) and (F
θ

Y )−1(u) = F
−1

Y (u1/θ), u ∈ (0, 1),
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or, equivalently,

F
−1

X (u) = (F
θ

X)−1(uθ) and F
−1

Y (u) = (F
θ

Y )−1(uθ), u ∈ (0, 1).

Now, by Proposition 2.1(i), X ≤α-rl Y means

F
−1

X (αFX(t)) ≤ F
−1

Y (αF Y (t)) for all t,

that is,

(F
θ

X)−1(αθF
θ

X(t)) ≤ (F
θ

Y )−1(αθF
θ

Y (t)) for all t,

and the result follows from Proposition 2.1(i).

As a corollary of Theorem 5.1 we have the following “preservation property” of the α-
percentile residual life order under formation of series systems.

Corollary 5.2. Let X1, X2 . . . , Xn be independent and identically distributed random vari-

ables with a continuous distribution function on an interval support. Also let Y1, Y2 . . . , Yn

be independent and identically distributed random variables with a continuous distribution

function on an interval support. If X1 ≤α-rl Y1 then

min{X1, X2 . . . , Xn} ≤(1−αn)-rl min{Y1, Y2 . . . , Yn}. (5.2)

It is of interest to contrast Corollary 5.2 with the result in Counterexample A.7.

It is worthwhile to remark that each of the conclusions of Theorem 5.1 and Corollary 5.2
(that is, (5.1) with θ > 0, or (5.2) with n ≥ 1) is sufficient for X ≤α-rl Y or X1 ≤α-rl Y1,
respectively.

Corollary 5.2 can be useful in reliability theory when it is of importance to compare a
particular percentile (say the median; that is, α = .5) of the residual life of a series system
that survived up to time t0, with the same percentile (again, say the median) of the residual
life of another series system, with different components, that survived up to time t0. This
can be useful, for instance, when t0 is the time at which the initial warranty of the system
expires. For example, if the series systems consist of n = 4 components, then the second
one will be preferable to the first one, in the median residual life order, if the lifetimes of
the components of the first system are smaller than the lifetimes of the components of the
second system with respect to the order ≤.169-rl (since (1 − .169)4 ≈ .5). An engineer who
is familiar with the possible components of these systems can usually tell whether the two
types of components have lifetimes that are ordered with respect to ≤.169-rl.

Similar applications can be described in biometry and in statistics.

We now describe an application in the area of risk management. Consider a firm con-
fronted with a risky business over some time period, and let the random variable X represent
the loss that the firm incurs at the end of the period. A common measurement of the risk is
the value at risk, or VaR for short, which is defined as the α-percentile of the loss distribution
for some prescribed confidence level α ∈ (0, 1); see, for example, Hürlimann (2002, 2003).
Suppose that the firm insures itself against heavy losses, that is, against losses above some
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deductible t. Then the loss that the reinsurer experiences (if it does) is Xt = [X − t
∣

∣X > t].
Its corresponding VaR is qX,α(t). The order ≤α-rl yields comparisons of such VaRs, and thus
it can be useful in the area of reinsurance. This order can be verified through Theorem 3.1,
or, using empirical data, through Theorem 4.3.

The order ≤α-rl can also be useful in a market of used items. Suppose that an engineer (or
any individual) is considering a purchase of a used machine (or a car, say). Suppose that he
has a choice among a few equally aged machines (or cars). If the original machine lifetimes
are ordered with respect to the hazard rate order, and if the engineer wishes to maximize
a certain α-percentile of the remaining life of the purchased machine, then, obviously (for
example, by Theorem 3.1), he should select the machine whose lifetime is the highest with
respect to the order ≤hr. Note that the requirement that the machine lifetimes are ordered
with respect to ≤hr is a very strong requirement that may be hard to verify (or that may
not hold) in practice. On the other hand, verification of the order ≤α-rl may be a simpler
matter — and it yields the same decision. Moreover, if the above engineer (or individual)
has a choice between two markets that have different mixtures of aged machines, and if
the original machine lifetimes in these markets satisfy (4.1) [here Xθ and Yθ, θ ∈ Θ, are
the original machine lifetimes that are mixed in the two markets], then Theorem 4.6 can
determine which market is preferable.

A Technical Counterexamples

In this appendix we give the details of the counterexamples that were mentioned in the text.

Counterexample A.1. For some α ∈ (0, 1), let X(α) have the distribution function given
by

FX(α)(t) =











0, t < α;

t, α ≤ t < 1;

1, t ≥ 1;

that is, FX(α) is a mixture of a uniform distribution on (α, 1) with probability 1 − α, and a
degenerate variable at α with probability α. Let Y have the uniform distribution on (0, 1).
We compute

qX(α),α(t) =











α − t, t < α;

α(1 − t), α ≤ t < 1;

0, t ≥ 1;

and

qY,α(t) =











α − t, t < 0;

α(1 − t), 0 ≤ t < 1;

0, t ≥ 1.

(A.1)

It is easy to check that X(α) ≤α-rl Y but lX(α) = α � 0 = lY . ◭
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Counterexample A.2. For (ω, γ, λ) ∈ (0, 1)3, let X have the survival function given by

FX(t) =



















1, t < 0;

1 − ωt, 0 ≤ t < γ;

ω(1 − t), γ ≤ t < 1;

0, t ≥ 1;

(A.2)

that is, FX is a mixture of a uniform distribution on (0, 1) with probability ω, and a degen-
erate variable at γ with probability 1 − ω. Let Y have the survival function given by

F Y (t) =











1, t < 0;

1 − λt, 0 ≤ t < 1;

0, t ≥ 1;

(A.3)

that is, FY is a mixture of a uniform distribution on (0, 1) with probability λ, and a degenerate
variable at 1 with probability 1−λ. Lengthy computations show that the mean residual life
functions of X and Y , respectively, are given by

mX(t) =























ω
2

+ γ(1 − ω) − t, t < 0;
ω(1−t2)+2γ(1−ω)

2(1−ωt)
− t, 0 ≤ t < γ;

1−t
2

, γ ≤ t < 1;

0, t ≥ 1,

and

mY (t) =











1 − λ
2
− t, t < 0;

2−λ−λt2

2(1−λt)
− t, 0 ≤ t < 1;

0, t ≥ 1.

Now let ω and λ be such that
0 < ω < λ < 1, (A.4)

and set

γ =
1 − λ

1 − ω
; (A.5)

from (A.4) it follows that 0 < γ < 1.

For t < 0 we see that

mX(t) =
ω

2
+ γ(1 − ω) − t =

ω

2
+ 1 − λ − t ≤ 1 −

λ

2
− t = mY (t),

where the second equality follows from (A.5), and the inequality follows from (A.4).

For 0 ≤ t < γ note, by (A.4) and (A.5), that 2(1 − ωt) ≥ 2(1 − λt) and that

ω(1 − t2) + 2γ(1 − ω) = ω(1 − t2) + 2(1 − λ) ≤ λ(1 − t2) + 2(1 − λ) = 2 − λ − λt2.
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Thus,

mX(t) =
ω(1 − t2) + 2γ(1 − ω)

2(1 − ωt)
− t ≤

2 − λ − λt2

2(1 − λt)
− t = mY (t).

Finally, for γ ≤ t < 1 we have

mX(t) =
1 − t

2
≤

2 − λ − λt2

2(1 − λt)
− t = mY (t),

where the inequality follows (after some straightforward manipulations) from 0 < λ < 1 and
0 ≤ t ≤ 1. Thus

X ≤mrl Y.

Now consider an α ∈ (0, 1). If
λ > α, (A.6)

then the α-percentile of the random variable Y (with survival function given in (A.3)) is
easily seen to be

qY,α(0) =
α

λ
.

If
ωγ > α, (A.7)

then the α-percentile of the random variable X (with survival function given in (A.2)) is
easily seen to be

qX,α(0) =
α

ω
.

Note that if (A.4) holds then
qX,α(0) > qY,α(0),

and therefore X �α-rl Y . For the γ in (A.5) we can rewrite the inequality (A.7) as

ω(1 − λ)

1 − ω
> α. (A.8)

In summary, consider the following task:

For an α ∈ (0, 1), find (ω, λ) ∈ (0, 1)2

that satisfy the inequalities (A.4), (A.6),
and (A.8).

(A.9)

If we can find a solution to the task (A.9), then the corresponding X and Y , with survival
functions given in (A.2) and (A.3), will satisfy X ≤mrl Y and X �α-rl Y .

In order to find a solution to the task (A.9) (for any fixed α), let b > 1 be a number such
that

b−1 > α.

For a small positive ε (that will be shown below to exist), define

ω = α + ε and

λ = α + b ε;
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of course, ε should be small enough so that λ < 1. Then (A.4) and (A.6) hold. To see that
(A.8) also holds, we rewrite it as

(α + ε)(1 − α − b ε)

1 − α − ε
> α.

This simplifies to
1 − b α − b ε > 0.

Since α < 1/b we can find such an ε > 0, and the resulting ω and λ will satisfy (A.4), (A.6),
and (A.8). ◭

Counterexample A.3. Let 0 < β < α < 1. Let X and Y have the Pareto distributions,

given in Example 2.2, with µ = 1 and ν = 2. Choose γ and δ such that (1−α)−1/2−1
(1−α)−1−1

= δ
γ
. Then,

by Example 2.2, X ≤α-rl Y . It is not hard to verify that (1−α)−1/2−1
(1−α)−1−1

is strictly decreasing in

α ∈ (0, 1). Therefore (1−β)−1/2−1
(1−β)−1−1

> δ
γ
. It follows from Example 2.2 that X �β-rl Y . ◭

The basic idea in the following counterexample has been inspired by a study of Gupta
and Langford (1984). For simplicity we consider a special case of their study (that is, their
a and b are taken here to be both equal to 1) that still provides us with our objective – that
is, that for β > α, the inequality X ≤α-rl Y does not necessarily imply that X ≤β-rl Y .

Counterexample A.4. For α ∈ (0, 1), let X has the Pareto distribution with survival
function

FX(t) =
( 1

1 + t

)

− log(1−α)
log 2

, t ≥ 0. (A.10)

Now define

kε(x) = 1 + ε sin
( 2πx

log 2

)

, x ∈ R,

where ε > 0, and consider the function Hε given by

Hε(t) =
( 1

1 + t

)

− log(1−α)
log 2

· kε(log(1 + t)), t ≥ 0.

Obviously, Hε(0) = 1 and limt→∞ Hε(t) = 0. If we can find an ε > 0 such that Hε(t) is
decreasing in t ≥ 0, then it would follow that Hε is a survival function. In order to identify
such an ε, we note that the derivative of kε is given by

k′
ε(x) = ε cos

( 2πx

log 2

)

·
2π

log 2
, x ∈ R,

and thus the derivative of Hε is given by

H ′
ε(t) =

log(1 − α)

log 2
·
( 1

1 + t

)

− log(1−α)
log 2

·
1

1 + t

[

1 + ε sin
(2π log(1 + t)

log 2

)]

+
2π

log 2
·

1

1 + t
·
( 1

1 + t

)

− log(1−α)
log 2

· ε cos
(2π log(1 + t)

log 2

)

, t ≥ 0.
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Therefore Hε is decreasing if, and only if,

ε
[

log(1 − α) sin
(2π log(1 + t)

log 2

)

+ 2π cos
(2π log(1 + t)

log 2

)]

≤ − log(1 − α), t ≥ 0. (A.11)

Since

ε
[

log(1 − α) sin
(2π log(1 + t)

log 2

)

+ 2π cos
(2π log(1 + t)

log 2

)]

≤ ε(− log(1 − α) + 2π), t ≥ 0,

we see that if

ε ≤
− log(1 − α)

− log(1 − α) + 2π
(A.12)

then (A.11) holds. Thus, for such an ε the function Hε is a survival function.

Let Y be a random variable with the survival function Hε, namely,

F Y (t) =
( 1

1 + t

)

− log(1−α)
log 2

· kε(log(1 + t)), t ≥ 0.

Recall the random variable X with the survival function given in (A.10). From Gupta
and Langford (1984) we know that qX,α(t) = qY,α(t) for all t. So,

X ≤α-rl Y.

Let β > α (such that β < 1). We are going to identify a t0 > 0 such that

qX,β(t0) > qY,β(t0). (A.13)

(It would then follow that X �β-rl Y .) Rewriting (A.13) it is seen to be equivalent to

F Y (F
−1

X (β FX(t0))) < β F Y (t0).

Setting u0 = FX(t0) it is seen that rather than identifying a t0 that satisfies (A.13) we may
as well identify a u0 ∈ (0, 1) such that

F Y (F
−1

X (βu0)) < β F Y (F
−1

X (u0)). (A.14)

We now compute

F
−1

X (u) = u
log 2

log(1−α) − 1, u ∈ (0, 1),

and

F Y (F
−1

X (u)) = ukε(log(1 + F
−1

X (u))) = ukε

( log 2

log(1 − α)
· log u

)

.

So (A.14) is the same as

kε

( log 2

log(1 − α)
· log(βu0)

)

< kε

( log 2

log(1 − α)
· log u0

)

,
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which is the same as

sin
(

2π ·
log β + log u0

log(1 − α)

)

< sin
(

2π ·
log u0

log(1 − α)

)

. (A.15)

Now take u0 = exp
{ log(1−α)

4

}

. Then u0 ∈ (0, 1), as well as sin
(

2π · log β+log u0

log(1−α)

)

< 1 and

sin
(

2π · log u0

log(1−α)

)

= 1. So (A.15), and therefore also (A.14), hold for this u0. It follows that

X �β-rl Y . ◭

Counterexample A.5. Let α ∈ (0, 1). For every n > 1
α

let Xn be a random variable whose
distribution is the following mixture:











uniform on [1.5, 2.5] with probability αn
n+1

,

uniform on [2.5, 3.5] with probability 1
n+1

,

standard exponential with shift 4.5 with probability (1−α)n
n+1

;

that is

FXn(t) =































0, t < 1.5;
αn(t−1.5)

n+1
, 1.5 ≤ t < 2.5;

αn+t−2.5
n+1

, 2.5 ≤ t < 3.5;
αn+1
n+1

, 3.5 ≤ t < 4.5;

1 − (1−α)ne−(t−4.5)

n+1
, t ≥ 4.5.

It is easy to see that Xn converges in distribution to X whose distribution is
{

uniform on [1.5, 2.5] with probability α,

standard exponential with shift 4.5 with probability (1 − α);

that is

FX(t) =



















0, t < 1.5;

α(t − 1.5), 1.5 ≤ t < 2.5;

α, 2.5 ≤ t < 4.5;

1 − (1 − α)e−(t−4.5), t ≥ 4.5.

Next, for every n > 1
α

let Yn be a random variable whose distribution is the following
mixture:











uniform on [0.5, 1.5] with probability αn
n+1

,

uniform on [2.5, 3.5] with probability 1
n+1

,

standard exponential with shift 4.5 with probability (1−α)n
n+1

;

that is

FYn(t) =







































0, t < 0.5;
αn(t−0.5)

n+1
, 0.5 ≤ t < 1.5;

αn
n+1

, 1.5 ≤ t < 2.5;
αn+t−2.5

n+1
, 2.5 ≤ t < 3.5;

αn+1
n+1

, 3.5 ≤ t < 4.5;

1 − (1−α)ne−(t−4.5)

n+1
, t ≥ 4.5.
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It is easy to see that Yn converges in distribution to Y whose distribution is
{

uniform on [0.5, 1.5] with probability α,

standard exponential with shift 4.5 with probability (1 − α);

that is

FY (t) =



















0, t < 0.5;

α(t − 0.5), 0.5 ≤ t < 1.5;

α, 1.5 ≤ t < 4.5;

1 − (1 − α)e−(t−4.5), t ≥ 4.5.

Computing the α-percentile residual life functions that are associated with Xn and with
Yn we get

qXn,α(t) =







































2.5 + α − t, t < 1.5;

2.5 + α + nα(1 − α)(t − 1.5) − t, 1.5 ≤ t < 1.5 + 1
αn

;

4.5 − log
(

n+1−αn(t−1.5)
n

)

− t, 1.5 + 1
αn

≤ t < 2.5;

4.5 − log
(

n−αn−t+3.5
n

)

− t, 2.5 ≤ t < 3.5;

4.5 − log(1 − α) − t, 3.5 ≤ t < 4.5;

− log(1 − α), t ≥ 4.5;

and

qYn,α(t) =



















































2.5 + α − t, t < 0.5;

2.5 + α + nα(1 − α)(t − 0.5) − t, 0.5 ≤ t < 0.5 + 1
αn

;

4.5 − log
(

n+1−αn(t−0.5)
n

)

− t, 0.5 + 1
αn

≤ t < 1.5;

4.5 − log
(

n−αn+1
n

)

− t, 1.5 ≤ t < 2.5;

4.5 − log
(

n−αn−t+3.5
n

)

− t, 2.5 ≤ t < 3.5;

4.5 − log(1 − α) − t, 3.5 ≤ t < 4.5;

− log(1 − α), t ≥ 4.5.

It is straightforward to verify that qXn,α(t) ≤ qYn,α(t) for all t. Thus Xn ≤α-rl Yn, n > 1
α
. On

the other hand, by our convention that the inverse distribution function is the left continuous
version of it, we see that the α-percentile of X is 2.5 while the α-percentile of Y is 1.5. So
X �α-rl Y . ◭

Counterexample A.6. For any α ∈ (0, 1), let X be an exponential random variable with
rate − log(1 − α). That is,

FX(t) =

{

0, t < 0;

1 − e(log(1−α))t, t ≥ 0.

Let Y be a random variable that is degenerate at 0, and let Z be a random variable that
is degenerate at 1. Note that max{X,Y } =st X. Note also that Y ≤α-rl Z, and, of course,
X ≤α-rl X. Now we compute

qmax{X,Y },α(t) = qX,α(t) =

{

1 − t, t < 0;

1, t ≥ 0,
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and

qmax{X,Z},α(t) =

{

1 − t, t < 1;

1, t ≥ 1.

It is seen that max{X, Y } �α-rl max{X, Z} (in fact, max{X, Y } ≥α-rl max{X, Z} strictly).
Thus the α-percentile residual life order is not closed under the maximum operation. ◭

Counterexample A.7. Let X1 and X2 be two random variables that are degenerate at 1.
For any α ∈ (0, 1), let Y1 and Y2 be two independent exponential random variables, each
with rate − log(1 − α). The corresponding α-percentile residual life functions are

qX1,α(t) = qX2,α(t) =

{

1 − t, t < 1;

0, t ≥ 1;

and

qY1,α(t) = qY2,α(t) =

{

1 − t, t < 0;

1, t ≥ 0.

It is easy to see that X1 ≤α-rl Y1 and X2 ≤α-rl Y2. Now we compute

qmin{X1,X2},α(t) = qX1,α(t) =

{

1 − t, t < 1;

0, t ≥ 1;

and (note that min{Y1, Y2} is an exponential random variable with rate 2)

qmin{Y1,Y2},α(t) =

{

1/2 − t, t < 0;

1/2, t ≥ 0.

It is seen that min{X1, X2} �α-rl min{Y1, Y2}. Thus the α-percentile residual life order is
not closed under the minimum operation. ◭
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