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1 Introduction

Having accurate predictions of the future volatility of financial assets is a necessary ingredient

for markets participants to be able to price assets correctly. For some time, the implied

volatility obtained from the Black-Scholes model was the most popular measure of future

volatility. However, the predictive power of the Black-Scholes model diminished severely

after the October 1987 stock market crash due to the increasing changes in volatility and,

consequently, the implied volatility became a less attractive estimator of future volatility, [see,

Canina and Figlewski (1993)].

The availability of high-frequency data and the computational advances allow us to provide

today better estimates of future volatility. In the literature, one finds two main methods of

how to predict the future volatility. The first method uses intra-period data to calculate the

realized volatility (the sum of the intra-period squared returns) and then fits to it models

that incorporate its main features. In this case, volatility is treated as observed. Since

much of the theoretical literature assumes that the logarithm of the asset price follows a

continuous time model like a diffusion, one advantage of this procedure is the possibility of

getting unbiased and efficient estimators of the underlying integrated volatility. Contrarily,

the second method treats volatility as latent; that is, it is possible to filter the volatility after

estimating the structural model. It is rather obvious that the success of this method depends

on the specification, because the volatility estimates are model dependent.

In this paper, we follow the second approach and fit the continuous time model with two

volatility factors of Gallant and Tauchen (2001) to the returns of Microsoft. We choose a

two factor volatility specification, because one recent finding shows that stochastic volatility

models with one volatility factor are not able to characterize all the moments of the return

distributions, [see, Andersen et al. (2002), Chernov and Ghysels (2000), Eraker et al. (2003),

Jones (2003), Pan (2002), Gallant and Tauchen (2001), and Chernov et al. (2003)]. The main

reason for this result is that these models are not able to fit the fat tails of return distributions.

The introduction of two stochastic volatility factors can solve this problem, because one factor

is going to deal with the persistence while the other one tries to accommodate the kurtosis,

[see, Chernov et al. (2003)].

In the first step of our analysis we compare the forecasting performance of a set of bench-

mark models for two different out-of-sample periods and for two different forecasting horizons

(10-days-ahead and 1-day-ahead forecasts). As benchmark models we consider the GARCH,

the HYGARCH, the FIEGARCH, the FIGARCH, and the Component GARCH model. The

last model is the most direct alternative in discrete time to the SV2F since it allows for two

volatility components.
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The task of selecting the benchmark models is not an easy one. Often, the best model de-

pends upon the objectives of the researcher. González-Rivera et al. (2004) provided evidence

that the preferred models depend sharply upon the loss function being used. For instance,

in the context when an individual intends to maximize her/his expected utility by chosing

a portfolio that consists of a risk-free and a risky asset, then the asymmetric GARCH-type

models perform best, while stochastic volatility models clearly dominate other specifications

when the objective is to calculate value-at-risk. Andersen and Bollerslev (1998), Hansen and

Lunde (2005a), Pagan and Schwert (1990), and West and Cho (1995) also provided evidence

that ARCH-type models yield accurate volatility forecasts and Davidson (2004) reports en-

couraging empirical results for the hyperbolic GARCH (HYGARCH) with respect to Asian

exchange rates. Our choice is based mainly on the previous findings and include models

such as the GARCH, the FIGARCH, the HYGARCH, the FIEGARCH and the component

GARCH model (CModel). The FIGARCH, the HYGARCH and the FIEGARCH model have

in common that the volatility processes include fractional integrated roots whose purpose is

to capture long memory.1

In the second step of our analysis, we select the two best benchmark models at each

out-of-sample period and compare them to the SV2F by calculating the "rolling" volatility

forecasts. To do so, we proceed as follows: We estimate the SV2F model with the help

of the Efficient Method of Moments (EMM) of Gallant and Tauchen (1996) and filter the

underlying volatility using the reprojection technique of Gallant and Tauchen (1998). Under

the assumption that the model is correctly specified, we obtain a consistent estimator of the

integrated volatility. Finally, we regress a function of the realized volatility on a constant and

on a function of the volatility forecasts and evaluate the predictive power of the volatility

forecasts via the corrected R2 of the OLS regression and the corresponding mean squared

forecast error (MSFE), [see, Andersen et al. (2005)].

One common problem is that the realized volatility is only a consistent estimator of the

true volatility when prices are observed continuously and without measurement errors, [see,

Merton (1980)]. Unfortunately, these hypotheses are not true in general, and, as a conse-

quence, the realized volatility is often biased due to market microstructure noises. Moreover,

its bias tends to get worse as the sampling frequency of intra-day returns increases, [see,

Andreou and Ghysels (2002), Oomen (2002) and Bai et al. (2004)]. One way to minimize

this problem is to compute the realized volatility from intra-day returns that are sampled

1According to Parzen (1981), a stationary process {yt} with an autocovariance γy is called a long memory
process in the covariance sense, if n

τ=−n γy(τ)→ +∞ as n tends to +∞. Granger and Joyeux (1980) provided
a different definition of long memory. According to them, {yt} is a long memory process in the covariance
sense with a speed of convergence of order 2d, 0 < d < 1/2, whenever γy(τ) = C(d)τ2d−1, as τ → ∞ (here,

C(d) is a function that depends on d).
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at a moderate frequency. We use 15 minutes intra-day data. According to Andersen et al.

(2005a) this frequency is effective in reducing the bias of the realized volatility. An alternative

solution to decrease the biases is the application of kernel-based estimators [see, Zhou (1996),

Hansen and Lunde (2005b), Barndorff-Nielsen et al. (2004b) and Hansen and Lunde (2005c)]

or sub-sample based estimators [see, Zhou (1996), Zhang et al. (2005) and Zhang (2005)]. In

this paper, we also apply the simplest kernel-estimator of Hansen and Lunde (2005c).

Our empirical results evidence the superiority of the SV2F model in forecasting volatility

in both out-of-sample periods. Moreover, the performance of the benchmark models depends

mainly on the characteristics of the out-of-sample periods and on the forecasting horizons.

The paper is organized as follows: In the next Section, we introduce all models and

estimate them. In Section 3, we explain formally how the volatility forecasts are calculated

from the data. Afterwards, we evaluate the forecasting performance of all specifications.

Finally, we conclude. Figures and Tables are relegated to the Appendix.

2 Volatility Specifications

2.1 Continuous Time Stochastic Volatility

It is one of our main objectives to forecast the future volatility of the Microsoft share using

the stochastic volatility model (SV2F) of Gallant and Tauchen (2001). Formally, let Pt be

the value of one share of Microsoft at instant t (we reserve the notation U1t for the logarithm

of Pt) and assume that the instantaneous return of the asset at t, dPt
Pt
, is given by

dPt
Pt

= α10dt+ exp(β10 + β12U2t + β13U3t)(ψ11dW1t + ψ12dW2t + ψ13dW3t) (1)

and

dUit = (αi0 + αiiUit)dt+ dWit, for i = 2, 3. (2)

In equation (1), α10 denotes the instantaneous expected return, exp(β10 + β12U2t + β13U3t)

is the instantaneous standard deviation (or instantaneous volatility), Wi, i = 1, 2, 3, are

Wiener processes, and ψ1i, i = 1, 2, 3, are correlation coefficients that satisfy the restriction

ψ11 =
q
1− ψ212 − ψ213. A consequence of equation (1) and (2) is that the instantaneous

correlation between returns and changes in variance (the leverage effect) is given by

corr (dU1t, β12dU2t + β13dU3t) =
β12ψ12 + β13ψ13q

β212 + β213

dt. (3)

In the SV2F model (equations (1) - (3)), U2 and U3 are volatility factors whose drifts allow

for mean reversion (this is the case when α22 and α33 are negative). Moreover, if the absolute
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values of α22 and α33 are both smaller than one, then shocks to volatility take time to dissipate.

In this case, the volatility factors are said to be slow mean reverting. Observe finally that the

parameter β10 takes care of the long-run mean of volatility.

The SV2F model is not fully identified, but it is possible to deal with this problem by

imposing additional restrictions on some selected parameters. In particular, we set α20 =

α30 = 0. These restrictions are common in the literature on systems of differential equations,

because they provide flexibility and numerical stability in the estimation phase, [see, Gallant

and Tauchen (2001)].

In order to be able to forecast the volatility, we have to estimate the SV2F model first.

To do so, we use the Efficient Method of Moments (EMM) of Gallant and Tauchen (1996), an

estimation technique that is based on two compulsory phases. The first phase (Projection)

consists of projecting the observed data onto a transition density that is a good approximation

of the distribution implicit in the true data generating process. The simulated density is

called the auxiliary model and its score is said to be the score generator for EMM. The

advantage of EMM is that the score has an analytical expression. In the projection step,

we proceed carefully along an expansion path with tree structure and the auxiliary model

comes out to be a semi-parametric GARCH, as in Gallant and Tauchen (2001). In the second

phase (Estimation), the parameters of the models are estimated with the help of the score

generator. The score enters the moment conditions in which we replace the parameters of

the auxiliary model by their quasi-MLEs obtained in the projection step. The estimates are

finally obtained by minimizing the GMM criterion function. EMM includes a post-estimation

simulation (Reprojection) as an optional step. This step becomes crucial in our forecasting

analysis, because it allows us to filter the volatility implicit in the model.

The SV2F model and all alternative benchmark models presented later on are estimated

using data adjusted for stock splits from March 13, 1986 until February 23, 2001. In total,

we have 3.778 observations [for the time series of the Microsoft share over this period and the

corresponding daily returns, see Figure 2]. The SV2F model is estimated using the package

EMM which is available online at Duke University.

Table 1 reports the values of the diagnostic tests. The test statistic follows an asymptotic

chi-square distribution with pθ − pρ degrees of freedom, where pθ − pρ denotes the difference

between the number of parameters of the auxiliary model obtained in the projection step

and the structural SV2F model. We observe that the two factor volatility models (with and

without leverage effect) pass the specification test and that all coefficients are statistically

significant. Moreover, the first volatility factor is very slow mean reverting while the second

is extremely fast mean reverting as in Gallant and Tauchen (2001), [see, again Table 2]. With

respect to the coefficient estimates of leverage effect, ψ12 and ψ13, we see that they are both
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negative and statistically significant.

2.2 Discrete Time: ARCH-Type Models

2.2.1 HYGARCH and FIEGARCH Models

Davidson (2004) proposed the HYGARCH model as an alternative to the FIGARCH since it

is able to generate long memory without behaving oddly when d, the parameter of fractional

integration, approximates 1. Formally, let the prediction error εt satisfy

εt = σt�t, (4)

where σ2t is the conditional variance of εt given information at time t − 1, σt > 0, and

�t ∼ NID(0, 1). Additionally, it is assumed that σ2t is such that

σ2t = ω + θ(L)ε2t , (5)

where

θ(L) = 1− δ(L)

β(L)
(1 + α((1− L)d − 1)). (6)

In equation (6), θ(L), δ(L) and β(L) are polynomials in the lag operator L. Moreover, ω > 0,

α ≥ 0 and d ≥ 0. The HYGARCH model (equations (4)-(6)) simplifies to a GARCH(p, q)

and to a FIGARCH(p, d, q) if α = 0 and α = 1, respectively. For 0 < α < 1, we have a

nested model that behaves normal in the sense that increases in the parameter of fractional

integration d leads to more persistence.

If, on the other hand, εt follows a FIEGARCH(p, d, q), then the volatility process is given

by

lnσ2t = ω + φ(L)−1(1− L)−d[1 + ψ(L)]g(�t−1), − 1 6 d 6 1. (7)

In equation (7), φ(L) = 1−φ1L−...−φpLp and ψ(L) = 1+θ1L+...+θqLq are an autoregressive

polynomial and a moving average polynomial in the lag operator L, respectively. It is assumed

that the roots of φ(L) lie outside the unit circle and that both polynomials do not have

common roots. Note that the objective of the function g(�t−1) = γ1�t−1+γ2[|�t−1|−E(|�t−1|)]
is to introduce asymmetry between returns and changes in the variance, [see, Nelson (1991)].

2.2.2 The Component Model

Engle and Lee (1993) formulated a model with two components in the volatility specification.

The first one deals with the long-run features that could affect volatility while the second

tries to accommodate the short-run dynamics. Formally, let yt be the returns of a financial
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asset with expected value mt and conditional variance σ2t . It is assumed in the component

model (CModel) that yt follows a process such that

yt = mt + εt, (8)

where εt is given by equation (4) and �t and σt satisfy the assumptions imposed on equation

(4). However, the conditional variance is now assumed to be equal to

σ2t = qt + α(ε2t−1 − qt−1) + β(σ2t−1 − qt−1). (9)

In the former equation, qt is the permanent component of the conditional variance and it is

specified by

qt = ' + ρqt−1 + φ(ε2t−1 − σ2t−1), ρ > α+ β. (10)

In the CModel (equations (4) and (8)-(10)), the short-run component of the conditional

variance is given by the difference between the conditional variance σ2t and qt. The error ε
2
t−1−

σ2t−1, whose expected value is zero, drives the time-dependent movement of the permanent

component, and therefore, it might be seen as a trend.

2.2.3 Estimation Results

The benchmark models are estimated with the Ox package Garch 4.0 of Laurent and Peters

(2005) or with Eviews 5. We report our results in Tables 3, 3.1 and 4. With respect to

the HYGARCH model we observe that the hyperbolic parameter ln(α) is not statistically

different from 0. We have already commented before that the HYGARCH reduces to a

FIGARCH whenever α is equal to one. We also see that the estimate of the persistence of

the GARCH model is around 0.96 and that the asymmetric relation between returns and

volatility in the FIEGARCH model is negative but not significant. For this reason, we do

not consider models with leverage effect in the forecasting step. Finally, with respect to

the CModel, we observe that the autoregressive parameter ρ is close to one. This means

that the permanent component of the conditional variance has a high degree of persistence.

Analogously, the persistence level of the transitory component is given by α+ β in equation

(10). Since this sum is equal to 0.649, deviations of the conditional variance from its trend

seem to be temporary. Our estimation results for the CModel are similar to those of Engle

and Lee (1993).

3 Forecasting Volatility

SV2F: Concerning the SV2F model, our principal objective is to obtain an estimator σ̂2t+1 of

the one-step-ahead conditional variance forecast σ2t+1. To do so, we proceed as follows: As a
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by-product of the estimation step we obtain a long simulation of yt, {ŷτ}Nτ=1 with N = 100000,

at the estimated parameter vector of the structural model. Next, we impose the auxiliary

model found in the projection step on the simulated values {ŷτ}Nτ=1 in order to obtain a
good representation of the conditional variance.2 From the estimation of the auxiliary model

we can now calculate the conditional variance σ̃2τ in the semi-parametric GARCH. Then, we

regress σ̃2τ on its own lags and the lags of ŷτ and |ŷτ |. In particular, the expression

σ̃2τ = α0+α1σ̃
2
τ−1+ ...+αpσ̃

2
τ−p+ θ1ŷτ−1+ ...+ θqŷτ−q +π1|ŷτ−1|+ ...+ πr|ŷτ−r|+ ut, (11)

gives us a calibrated function inside the simulation. We obtain the reprojected volatility σ̂t

by replacing the simulated values on the right hand side of equation (11) by the true data;

that is,

σ̂2t = α̂0 + α̂1σ
2
t−1 + ...+ α̂pσ

2
t−p + θ̂1yt−1 + ...+ θ̂qyt−q + π̂1|yt−1|+ ...+ π̂r|yt−r|. (12)

Finally, we calculate σ̂2t+1 by evaluating a filter equation similar to equation (12) on the

observed data series. We ignore the conditional mean variation because it is negligible for

short forecasting horizons, [see, Andersen et al. (2005b)].

GARCH(1, 1): Using recursive substitutions, the GARCH(1, 1) model can be written as an

ARCH(∞); that is,

σ2t = ω(1− β)−1 + α
+∞X
i=1

βi−1ε2t−i. (13)

Since the unconditional variance of the process is equal to σ2 = ω(1 − α − β)−1, the multi-

step-ahead forecast of the conditional variance based upon the available information at t is

given by

σ2t+k = σ2 + (α+ β)k−1 · (σ2t+1 − σ2). (14)

Observe that we need to assume that (α + β) < 1 in order to guarantee that σ2 ex-

ists. Moreover, the multi-step-ahead forecast of the conditional variance converges to the

unconditional variance at an exponential rate fixed by α+ β, [see, Andersen et al. (2005b)].

FIGARCH(1, d, 1): If we consider a FIGARCH(1, d, 1), then the actual conditional variance

forecasts are given by

σ2t+k|t+k−1 = ω(1− β)−1 + λ(L)σ2t+k−1|t+k−2, (15)

where σ2t+k|t+k−1 ≡ ε2t for k < 0 and the coefficients of λ(L) ≡ 1 − (1 − βL)−1(1 − αL −
βL)(1− L)d are computed from the expressions λ1 = α+ d and for all j = 2, 3, ...,

λj = βλj−1 + [(j − 1− d)j−1 − (α+ β)]δj−1, with δj ≡ δj−1(j − 1− d)j−1. (16)

2Given the simulation length, these regressions are as Gallant and Tauchen (2001) say, analytic projections.
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Note that the δj ’s are the coefficients in the Maclaurin series expansion of (1 − L)d, [see,

Andersen et al. (2005b)].

CModel: Finally, forecasting volatility using the component model requires to elicit for all t,

given the available information at t−1, the multi-step-ahead forecasts of the conditional trend
qt+k and the conditional variance σ2t+k. According to Engle and Lee (1993) the conditional

trend and the conditional variance, respectively, are equal to

qt+k =
h
(1− ρk)/(1− ρ)

i
ω + ρkqt (17)

and

σ2t+k − qt+k = (α+ β)k
¡
σ2t − qt

¢
. (18)

In the former equations, ρ < 1 and (α+β) < 1. If ρ > (α+ β), then the transitory component

(equation (18)) will decay faster than the trend component (equation (17)), and therefore,

the trend component will dominate the conditional variance forecasts as k increases. In this

case, the conditional variance will converge to σ2t+k = qt+k = ω/(1− ρ) as k tends to infinity,

because the trend component is itself stationary.

4 Evaluating and Comparing Volatility Forecasts

4.1 Evaluation Procedure: Realized Volatility

Suppose for a second that we have obtained the volatility forecasts for every model. To

address the question which model performs best in terms of volatility forecasts, we compare

the volatility forecasts with the realized volatility. To do so, let rj,t, 0 ≤ j ≤ n, represent a

set of n + 1 intra-day returns for day t (j = 0 refers to the last price at day t − 1, j = 1

to the first observation after the market has opened on day t, and j = n is the last price

at day t). It can then be shown, under innocuous regularity conditions, that the realized

volatility RVt ≡
Pn

j=0 r
2
j,t converges to the integrated volatility (the time integral of the

instantaneous volatility), [see, e.g., Andersen and Bollerslev (1998), Andersen et al. (2001),

Barndorff-Nielsen and Shephard (2001, 2002a, 2002b, 2004a), Comte and Renault (1998),

Andersen et al. (2003) and Andersen et al. (2005a)]. In fact, for a given sample period, the

higher the frequency of the data and the larger the number of observations, the better the

approximation of the realized volatility estimator to the integrated volatility. In the cases

where the logarithm of asset price is not a pure diffusion (for instance, if it follows a jump-

diffusion process), Andersen et al. (2003) proved that the realized volatility converges to the

total variation of the asset return.
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In this paper, we use the intra-day 15-minutes return observations of Microsoft. Hence, we

have for every day 26 observations.3 Using this data set, we use two different estimatorsdRV t

of realized volatility: (1) We sum up the intra-day squared returns and (2) we implement the

simplest kernel-estimator of Hansen and Lunde (2005c). In the latter case,dRV t =
Pm

i=1 y
2
i +

2 m
m−1

Pm
i=1 yiyi+1, where m denotes the number of observations at day t. Figure 1 reports

the graphs for these two high-frequency volatility measures.

Finally, we regress, as it has been proposed for example by Andersen and Bollerslev (1998)

and Andersen et al. (2003), a function of the realized volatility on a constant and on a function

of the forecasts of the different models using the OLS estimation method. In particular, the

two loss functions we consider are such that

(dRV t+1)
0.5 = β0 + β1 · (σ̂2t+1|model)0.5 + ut+1 (19)

and

ln(dRV t+1) = β0 + β1 · ln(σ̂2t+1|model) + ut+1. (20)

Note that the variable model can take the values GARCH, FIGARCH, CModel or SV2F.

In order to decide which model performs best, we take into account mean squared forecast

error (MSFE), the corrected R2, and the t-statistics corresponding to the hypotheses β0 =

0 and/or β1 = 1.4 We only calculate the corrected R2, which we denote R∗2, when the

dependent variable of regressions (19) and (20) is a function of the realized volatility. When

the dependent variable is a function of the Kernel based estimator of Hansen and Lunde

(2005c), we present the values of the normal R2 because this measure is, supposedly, not

affected by microstructure noises.

4.2 Empirical Results

We compare the forecasting performance of the SV2F model to the forecasting performance

of the alternative models at two different out-of-sample periods. The first one ranges from

January 4, 1999 until December 31, 1999 (252 observations) whereas the second one ranges

from January 4, 2000 until January 23, 2001 (288 observations). We choose these two out-of-

sample periods, because they allow to test the models in two different environments; one in

a relatively constant volatility pattern (the first) and one in an increasing volatility pattern

(the second), [see, Figure 1].

3The data was obtained from Price-data.com.
4 In our analysis, we also account for possible measurement errors in the empirical realized volatility that

will often result in a downward bias in any measure of predictability. To solve this problem we follow Andersen

et al. (2005a) and compute the corrected R2 by scaling the original R2 by a multiplicative adjustment factor.
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The comparison of the forecasting performance takes place in two steps: First, we evaluate

the benchmark models and select the two best models at each of the two forecasting horizons

(10 days ahead for the first out-of-sample and 1 day ahead for the second out-of-sample

period). Then, in the second step, we compare the performance of the selected models to

the forecasting performance of the SV2F model. Proceeding like this allows us to perform a

thorough comparison of the alternative models, including several forecasting techniques, from

which the analysis may benefit.

We focus now on the first step of the two step comparison and consider the first out-

of-sample period. We compute the 10 days ahead volatility forecasts by re-estimating the

alternative models every 10 days. The results are reported in Tables 5, 5.1 and 6. We

observe in Tables 5 and 5.1 that both hypotheses β0 = 0 and β1 = 1 are not rejected at a 5%

significance level for the GARCH and the FIGARCHmodel. Hence, the volatility forecasts are

unbiased estimators of the two measures of realized volatility presented in this paper (intra-

day squared returns and kernel estimator). Moreover, we see with respect to the CModel

that its forecasting performance is the worst of the three alternative models, because (a) its

volatility forecasts in equations (19) and (20) are not statistical significant, (b) it presents

the smallest corrected R2 for both loss functions and its mean squared forecasting error is

bigger than the one of the GARCH model. Our results confirm the findings of Ederington

and Guan (2004) who have shown that more complex and flexible models forecast worse out-

of-sample because adding more parameters into the models increase the scope for estimation

error. Although the ratios of the MSFE in Table 5 and 5.1 are different from 1, we do not get

statistical evidence that their differences are statistical significant according to the S1 statistic

of Diebold and Mariano (2002).5 Therefore, for the first out of sample period, the FIGARCH

and the GARCH model are selected to proceed to the second comparison stage.

At the second out-of-sample period that ranges from January 4, we compute the 1 day

ahead forecasts by re-estimating the alternative models every day. In Tables 7 and 7.1 we

see, once more, that the FIGARCH is the best model in terms of forecasting performance. It

presents the highest R2’s and the smallest MSFE. Moreover, it is the only model for which we

do not reject the null hypotheses of β0 = 0 and β1 = 1 at the 5% significance level. With re-

spect to GARCH and CModel, we observe that they behave quite similar under both measures

of ex-post volatility. In fact, for both models the null hypotheses of β0 = 0 and β1 = 1 are

rejected for any conventional significance level. Finally, the results of this first step evidence

that the forecasting performance of the CModel gets better (comparatively to GARCH) at

5The null hypothesis is that the loss differential series between the GARCH and the FIGARCH

(or the CModel, respectively), SFEGARCH
t,10 − SFEmodel

t,10 , is equal to zero. Observe that SFEt,10 =

f (RVt,10)− f σ2t,10
2
. For alternative tests check West (1996) and Harvey et al. (1997).
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out-of-sample periods where the volatility pattern is not constant. The introduction of two

components into the volatility specification makes the model more flexible and allows the spe-

cialization of the components. One components accommodates the kurtosis while the other

deals with the persistence of data. Hence, for the second out-of-sample period, the FIGARCH

and the CModel are selected to proceed to the second comparison stage.

In the second step, we compare the forecasting performance of the two best alternatives

models at each out-of-sample period to the forecasting performance of SV2F. We use the same

forecasting horizons and the same measures of realized volatility as before, but, nevertheless,

we proceed in a slightly different way. The difference stems from the fact that it would

be too much time consuming to estimate the SV2F model every 10 days (or even every

day depending on the forecasting horizon), to filter the volatility and to compute finally

the volatility forecasts. Instead, we estimate the model the day before the beginning of the

out-of-sample period and compute afterwards the 10 days (or the 1 day) "rolling" volatility

forecasts.

Tables 9 and 9.1 and Figure 3 report the main results for the first out of sample period.

In terms of predictability, we mean R2 measures, the SV2F performs much better than the

selected alternative models. Moreover, we observe that the hypotheses of β0 = 0 and/or

β1 = 1 are sharply rejected for all regressions. These biases would disappear if we estimated

the models every 10 days, as we had seen before. It is revealed in Figure 3, where the forecasts

of the GARCH, the FIGARCH and the SV2F model are presented, that the GARCH type

models seem to produce forecasts that overestimate the kernel-based estimator of realized

volatility. With respect to the SV2F model, panel (a) of Figure 3 shows that the model

overestimates the kernel-based estimator for the first part of the out-of-sample period but

behaves quite well in the second part of the out-of-sample period.

The results for the second out-of-sample period confirm our previous finding that the

SV2F is the best model in terms of volatility forecasting: It has the highest R2 for the

kernel-based estimator of realized volatility and it is shown in panel (a) of Figure 4 that its

volatility forecasts track quite well the pattern of our realized volatility estimator (kernel-

based estimator). This allows us to conclude that stochastic volatility models designed in

continuous time seem to be more powerful in terms of volatility forecasting.

5 Conclusion

In this paper, we compare the forecasting performance of a continuous time stochastic volatil-

ity model with two factors of volatility (SV2F) to the one of the GARCH, the FIGARCH

and the component model. As a proxy of ex-post volatility, we choose the realized volatility

12



calculated from the intra-daily returns and the kernel-based estimator of Hansen and Lunde

(2005c).

The main contributions of this paper include the calculation of volatility forecasts using

the reprojection technique proposed by Gallant and Tauchen (1998), the evaluation and the

comparison of the forecasting performance of a continuous time model to the forecasting

performances of alternative models designed in discrete time, and the use of two different

measures of realized volatility (the simple sum of squared intra-daily returns and the kernel-

based estimator) at the Mincer-Zarnowitz style regressions of the ex-post realized volatility

on the model forecasts.

Our empirical analysis reveals that, at the first out-of-sample period, the forecasting

performance of the SV2F model is significatively better than the one of the GARCH and the

FIGARCH model and, at the second out-of sample period, the SV2F model is the best model

under the kernel-based estimator. Therefore, continuous time models with two volatility

factors seem to predict future volatility better than other possible specifications at relevant

time horizons and out-of-sample periods.
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Figure 1. High-Frequency Volatilities (%): a) Realized Volatility obtained by summing

up the intra-day squared returns and b) Kernel-estimator of Hansen and Lunde (2005c).
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Figure 2. Evolution of the Microsoft stock price and returns.
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Model α10 α22 α33 β10 β12 β13 ψ12 ψ13 N χ2 df p-val

SV2F * * * * * * 100k 6.70 5 0.24

Asym. SV2F * * * * * * * * 100k 6.83 3 0.08

Table 1: *is used for free parameters. 100k refers to a simulation of length 100 000 at

step size ∆ = 1/6048, corresponding to 24 steps per day and 252 trading days per year.

SV2F α10 α22 α33 β10 β12 β13 ψ12 ψ13

Estimate 0.424 -0.00028 -89.21 -0.110 0.006 -4.628

Std. Dev. 0.074 0.00015 3.933 0.009 0.001 0.076

95%Lower 0.269 -0.00049 -97.15 -0.123 0.004 -4.778

95% Upper 0.579 -0.00008 -81.43 -0.097 0.008 -4.480

Asym. SV2F

Estimate 0.344 -0.179 -88.63 -0.054 0.160 -5.545 -0.217 -0.137

Std. Dev. 0.088 0.104 5.409 0.007 0.030 0.231 0.021 0.062

95%Lower 0.337 -0.180 -88.66 -0.054 0.159 -5.545 -0.2174 -0.1371

95% Upper 0.346 -0.179 -88.63 -0.054 0.160 -5.543 -0.2173 -0.1369

Table 2: Estimates, standard deviations and confidence intervals.

Models const

(mean)

const

(var)

α β d γ1 γ2 hy =

ln(α)

GARCH 0.186 0.267 0.096 0.864

Std. Dev. 0.037 0.123 0.034 0.046

FIGARCH 0.181 7.687 0.098 0.226 0.275

Std. Dev 0.035 1.415 0.180 0.195 0.036

HYGARCH 0.180 0.922 0.115 0.252 0.300 -

0.060

Std. Dev. 0.037 0.473 0.275 0.313 0.138 0.169

FIEGARCH 0.142 2.344 0.113 0.360 0.485 -

0.051

0.259

Std. Dev 0.041 0.261 0.486 0.242 0.066 0.037 0.103

Table 3: Estimates and standard deviations.
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Models const

(mean)

const

(var)

α β d γ1 γ2 hy =

ln(α)

GARCH 0.186 0.267 0.096 0.864

Std. Dev. 0.037 0.123 0.034 0.046

FIGARCH 0.181 7.582 0.121 0.267

Std. Dev 0.035 1.339 0.038 0.031

HYGARCH 0.180 0.922 0.243

Std. Dev. 0.037 0.242 0.075

FIEGARCH 0.175 2.410 0.372 0.515 0.265

Std. Dev 0.038 0.304 0.199 0.067 0.094

Table 3.1: Final estimates and standard deviations.

Component Model ' ρ φ α β

Estimates 5.676 0.976 0.033 0.129 0.520

Std. Dev. 0.300 0.005 0.007 0.013 0.068

Table 4: Estimates and standard deviations.
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Dependent Variable Est. Std. Error T-statistic Prob R2 R∗2 MSFE
MSFEGarch

(RV )1/2 T=252

GARCH 0.030 0.041

β0 0.739 0.724 1.020 0.308

β1 0.625 0.312 2.006 0.046

FIGARCH 0.055 0.076 0.97

β0 -0.213 0.959 -0.222 0.825

β1 1.025 0.407 2.252 0.012

CModel 0.005 0.007 1.06

β0 1.524 1.014 1.503 0.134

β1 0.286 0.432 0.662 0.508

Dependent Variable

(Kernel)1/2 T=247

GARCH 0.041

β0 0.257 0.809 0.318 0.751

β1 0.819 0.350 2.342 0.020

FIGARCH 0.068 0.98

β0 -0.855 1.114 -0.716 0.444

β1 1.285 0.474 2.711 0.007

CModel 0.004 1.10

β0 1.549 1.433 1.081 0.281

β1 0.264 0.612 0.431 0.667

Table 5: First step forecasting evaluation (10 days-ahead forecasts). We report OLS

variance estimates robust to autocorrelation (Newey-West HAC Standard Errors & Co-

variance).
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Dependent Variable Est. Std. Error T-statistic Prob R2 R∗2 MSFE
MSFEGarch

ln (RV ) T=252

GARCH 0.033 0.043

β0 0.384 0.373 1.030 0.304

β1 0.637 0.219 2.912 0.004

FIGARCH 0.059 0.077 1.02

β0 -0.327 0.452 -0.722 0.471

β1 1.048 0.264 3.974 0.000

CModel 0.005 0.007 1.06

β0 0.982 0.447 2.197 0.029

β1 0.280 0.258 1.084 0.280

Dependent Variable

ln (Kernel) T=247

GARCH 0.048

β0 -0.390 0.506 -0.772 0.441

β1 1.039 0.297 3.499 0.001

FIGARCH 0.068 1.00

β0 -1.223 0.756 -1.619 0.107

β1 1.517 0.432 3.512 0.001

CModel 0.0004 1.09

β0 1.183 1.112 1.064 0.288

β1 0.108 0.656 0.164 0.870

Table 5.1: First step forecasting evaluation (10 days-ahead forecasts). We report OLS

variance estimates robust to autocorrelation (Newey-West HAC Standard Errors & Co-

variance).

Dependent Variable (RV )1/2 ln(RV )

MSFEFigarch/MSFEGarch 0.06 0.28

MSFECModel/MSFEGarch 0.22 0.20

Dependent Variable (Kernel)1/2 ln(Kernel)

MSFEFigarch/MSFEGarch 0.14 0.50

MSFECModel/MSFEGarch 0.18 0.11

Table 6: This Table provides the p-values from testing the null hypothese that FIGARCH

and CModel have similar MSFE than the GARCH. A low p-value indicates that forecasts

from the corresponding models would not be rejected in favor of GARCH forecasts. The

test statistic is the S1of Diebold and Mariano (2002).
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Dependent Variable Est. Std. Error T-statistic Prob R2 R∗2 MSFE
MSFEGarch

(RV )1/2 T=288

GARCH 0.060 0.069

β0 1.697 0.381 4.452 0.000

β1 0.414 0.119 3.490 0.001

FIGARCH 0.160 0.185 0.822

β0 0.768 0.482 1.592 0.113

β1 0.705 0.153 4.597 0.000

CModel 0.068 0.079 0.962

β0 1.567 0.387 4.051 0.000

β1 0.462 0.118 3.911 0.000

Dependent Variable

(Kernel)1/2 T=279

GARCH 0.043

β0 1.621 0.350 4.629 0.000

β1 0.378 0.107 3.526 0.001

FIGARCH 0.124 0.867

β0 0.706 0.463 1.523 0.129

β1 0.665 0.146 4.551 0.000

CModel 0.050 0.961

β0 1.507 0.361 4.180 0.000

β1 0.420 0.108 3.888 0.000

Table 7: First step forecasting evaluation (1 day-ahead forecasts). we report the OLS

variance estimates robust to autocorrelation (Newey-West HAC Standard Errors & Co-

variance).
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Dependent Variable Est. Std. Error T-statistic Prob R2 R∗2 MSFE
MSFEGarch

ln (RV ) T=288

GARCH 0.123 0.139

β0 0.844 0.298 2.835 0.005

β1 0.517 0.129 4.020 0.000

FIGARCH 0.210 0.237 0.854

β0 0.313 0.311 1.006 0.315

β1 0.750 0.132 5.668 0.000

CModel 0.142 0.161 0.932

β0 0.690 0.298 2.320 0.021

β1 0.594 0.128 4.631 0.000

Dependent Variable

ln (Kernel) T=279

GARCH 0.081

β0 0.705 0.288 2.451 0.015

β1 0.490 0.126 3.886 0.000

FIGARCH 0.155 0.912

β0 0.123 0.307 0.400 0.690

β1 0.746 0.132 5.647 0.000

CModel 0.099 0.943

β0 0.535 0.286 1.873 0.062

β1 0.574 0.124 4.610 0.000

Table 7.1: First step forecasting evaluation (1 day-ahead forecasts). We report OLS

variance estimates robust to autocorrelation (Newey-West HAC Standard Errors & Co-

variance).

Dependent Variable (RV )1/2 ln(RV )

MSFEFigarch/MSFEGarch 0.023 0.003

MSFECModel/MSFEGarch 0.024 0.001

Dependent Variable (Kernel)1/2 ln(Kernel)

MSFEFigarch/MSFEGarch 0.024 0.009

MSFECModel/MSFEGarch 0.020 0.001

Table 8: This table provides the p-values from testing the null hypothese that FIGARCH

and CModel have similar MSFE than the GARCH. A low p-value indicates that forecasts

from GARCH would be rejected in favor of the alternative models forecasts. The test

statistic is the S1of Diebold and Mariano (2002).
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Dependent Variable Est. Std. Error T-statistic Prob R2 R∗2

(RV )1/2 n=243

GARCH 0.0003 0.0004

β0 2.223 0.150 14.85 0.000

β1 -0.017 0.061 -0.271 0.787

FIGARCH 0.0003 0.0004

β0 2.223 0.150 14.85 0.000

β1 -0.012 0.046 -0.267 0.791

SV2F 0.011 0.015

β0 1.934 0.218 8.862 0.000

β1 0.088 0.073 1.207 0.229

Dependent Variable

(Kernel)1/2 n=243

GARCH 0.0014

β0 2.066 0.159 13.00 0.000

β1 0.041 0.069 0.594 0.223

FIGARCH 0.0014

β0 2.065 0.163 12.691 0.000

β1 0.031 0.055 0.566 0.572

SV2F 0.034

β0 1.660 0.238 6.967 0.000

β1 0.174 0.081 2.151 0.032

Table 9: Second step forecasting evaluation (10 days rolling forecasts). We report OLS

variance estimates robust to autocorrelation (Newey-West HAC Standard Errors & Co-

variance).
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Dependent Variable Est. Std. Error T-statistic Prob R2 R∗2

ln(RV ) n=243

GARCH 0.000 0.000

β0 1.449 0.128 11.32 0.000

β1 -0.001 0.077 -0.009 0.993

FIGARCH 0.000 0.000

β0 1.449 0.167 8.664 0.000

β1 -0.0001 0.077 -0.002 0.999

SV2F 0.021 0.027

β0 1.187 0.165 7.174 0.000

β1 0.132 0.076 1.733 0.084

Dependent Variable

ln(Kernel) n=238

GARCH 0.002

β0 1.238 0.146 8.461 0.000

β1 0.075 0.086 0.871 0.385

FIGARCH 0.003

β0 1.194 0.215 5.547 0.000

β1 0.076 0.098 0.775 0.439

SV2F 0.050

β0 0.816 0.178 4.008 0.000

β1 0.272 0.091 2.987 0.003

Table 9.1: Second step forecasting evaluation (10 days rolling forecasts). We report

OLS variance estimates robust to autocorrelation (Newey-West HAC Standard Errors &

Covariance).
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Figure 3: Comparison between the square roots of Kernel-estimator and volatility fore-

casts of the alternative models. Panel a)
√
Kernel and

√
SV 2F , Panel b)

√
Kernel and

√
FIGARCH and Panel c)

√
Kernel and

√
GARCH . The continuous line corre-

sponds to the Kernel and the dotted lines to volatility forecasts of the alternative models.
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Dependent Variable Est. Std. Error T-statistic Prob R2 R∗2

(RV )1/2 n=288

FIGARCH 0.027 0.031

β0 2.499 0.230 10.87 0.000

β1 0.128 0.04 3.019 0.003

CModel 0.016 0.018

β0 2.667 0.236 11.291 0.000

β1 0.120 0.061 1.971 1.971

SV2F 0.023 0.027

β0 2.727 0.203 13.41 0.000

β1 0.115 0.038 3.00 0.003

Dependent Variable

(Kestimator)1/2 n=279

FIGARCH 0.018

β0 2.376 0.227 10.45 0.000

β1 0.114 0.042 2.700 0.007

CModel 0.014

β0 2.467 0.215 11.48 0.000

β1 0.125 0.055 2.274 0.024

SV2F 0.020

β0 2.524 0.212 11.91 0.000

β1 0.115 0.042 2.743 0.007

Table 10: Second step forecasting evaluation (1 day rolling forecasts). We report OLS

variance estimates robust to autocorrelation (Newey-West HAC Standard Errors & Co-

variance).
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Dependent Variable Estimates Std. Error T-statistic Prob R2 R∗2

ln(RV ) n=288

FIGARCH 0.038 0.043

β0 1.481 0.191 7.763 0.000

β1 0.200 0.065 3.076 0.002

CModel 0.052 0.058

β0 1.603 0.162 9.911 0.000

β1 0.218 0.066 3.292 0.001

SV2F 0.040 0.045

β0 1.790 0.113 15.81 0.000

β1 0.133 0.039 3.378 0.001

Dependent Variable

ln(Kernel) n=279

FIGARCH 0.028

β0 1.298 0.211 6.149 0.000

β1 0.196 0.075 2.606 0.010

CModel 0.038

β0 1.407 0.162 8.702 0.000

β1 0.217 0.070 3.092 0.002

SV2F 0.050

β0 1.498 0.117 12.76 0.000

β1 0.175 0.044 3.995 0.000

Table 10.1: Second step forecasting evaluation (1 day rolling forecasts). We report OLS

variance estimates robust to autocorrelation (Newey-West HAC Standard Errors & Co-

variance).
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Figure 4: Comparison between the square roots of Kernel-estimator and volatility forecasts

of the alternative models. Panel a)
√
Kernel and

√
SV 2F , Panel b)

√
Kernel and

√
CModel and Panel c)

√
Kernel and

√
FIGARCH . The continuous line corresponds

to the Kernel and the dotted lines to volatility forecasts of the alternative models.
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