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Introduction

My thesis focuses on the testing problems in models where specific parametric structures are

not imposed. Specifically, it lies at the intersection of nonparametric tests, nonparametric mod-

els, time series and bootstrap. The proposed tests can have direct applications in many different

fields in economics and econometrics.

Chapter 1. We propose significance tests in nonparametric autoregression. Under the

null, forecast of any nonlinear autoregression of order p is unaffected by considering any extra

lagged value. A necessary and sufficient condition, which forms a basis for the tests, is that

the residuals of the p-th order nonparametric autoregression are uncorrelated with any measur-

able function of the lagged variables. The test statistic is based on Fourier transform of the

autocorrelation function of the nonparametric residuals and functions of the lagged values. The

tests are implemented with the assistance of a bootstrap technique. We illustrate the practical

performance of the test by means of simulations and an empirical application.

Chapter 2. We propose tests of symmetry of conditional distributions around a nonpara-

metric location function, which are able to detect general non-parametric alternatives. The

test is developed in a general serial dependence context, where innovations may exhibit an un-

known higher order serial dependence structure. The test statistic is a functional of the joint

empirical distribution of non-parametric residuals and explanatory variables, which is able to

detect non-parametric alternatives converging to the null at the parametric rate
√
n with n the

sample size. Critical values are estimated with the assistance of a bootstrap technique easy to

implement, and the validity of the resulting test is formally justified. A Monte Carlo studies
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the finite sample properties of the test. We also include an application of the proposed test to

investigate whether losses are more likely than gains given the available information in stock

markets.

Chapter 3. We propose consistent tests of conditional independence specifically designed

for data with weak dependence which are based on nonparametric regression. Under the null,

the generalized errors form a martingale process, i.e., its expectation given the conditioning

variables is zero. A necessary and sufficient condition, which forms a basis for the tests, is

that the generalized errors of the distribution nonparametric regression are not correlated with

any measurable function of the conditioning variables. The tests are implemented with the

assistance of a multiplier bootstrap technique. We perform an extensive Monte Carlo simulation

to evaluate the finite sample performance of the proposed tests. An empirical application to the

nonlinear predictability of equity premium using variance risk premium is conducted.
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Chapter 1

Significance Testing in Nonparametric

Autoregression

1.1 Introduction

Let {Yt}t∈Z be a strictly stationary and ergodic time series process. We consider the problem of

testing conditional mean independence of Yt, given Yt−1, . . . , Yt−p, with respect to any lagged

value Yt−p−k, k ≥ 1. That is, under the null hypothesis, the forecast of any nonlinear autore-

gression (NLAR) of order p is unaffected by considering any extra lagged value. Formally,

H0 : E(Yt|Yt−1, . . . , Yt−p, Yt−p−k) = E(Yt|Yt−1, . . . , Yt−p) a.s. ∀k ≥ 1. (1.1)

That is, any lagged value Yt−p−k is not significant in the nonparametric autoregression. The

alternative hypothesis H1 is the negation of H0. Notice that H0 nests the hypothesis that any

NLAR(p + 1) is identical to a NLAR(p). We shall also discuss specific test statistics for this

less general hypothesis. Our methodology is directly applicable to test that any set of l extra
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lags do not affect the forecast of any NLAR(p), i.e.

H(l)
0 : E(Yt|Yt−1, . . . , Yt−p, Yt−p−k1 , . . . , Yt−p−kl) =E(Yt|Yt−1, . . . , Yt−p) a.s.

∀kj ≥ 1, j = 1, . . . , l,

and for i < j, ki < kj . For simplicity, we focus on H0 in this paper. Notice that H0 (or H(l)
0 , a

stronger hypothesis) is a necessary condition, but not a sufficient one, for

E(Yt|Ft−1) = E(Yt|Yt−1, . . . , Yt−p) a.s. (1.2)

where Ft−1 is the sigma algebra generated by the infinite past history {Yt−j}∞j=1, which is much

harder to test. While (1.2) states that there is no NLAR of any order able to forecast differently

than a NLAR of order p, H0 means that the forecasting performance of any NLAR of order p

is unaffected by introducing an extra lag.

The proposed test is the natural generalization of the nonparametric significance test of

Delgado and Gonzalez-Manteiga (2001) to a time series context. In fact, checking that any

NLAR(p) is equivalent to any NLAR(p + 1) can be done by a straightforward application of

their nonparametric significance test. The main challenge here is that, rather than testing the

significance of an explanatory variable, possibly multivariate, we must check the significance

of infinite explanatory variables, in a stochastic process context. That is, to test H0, we must

check the significance of Yt−p−k for any k ≥ 1 .

There are two main approaches for testing significance of a set of regressors in an i.i.d.

context, which can be formally expressed by means of the restriction E(Y |X,Z) = E(Y |X)

a.s., with Y scalar and X and Z random vectors. One consists of comparing smooth estimates

of E(Y |X,Z) and E(Y |X), typically using kernels, which was proposed by Fan and Li (1996).

Their test statistic is a degenerate U -statistic, which converges to a standard normal under the

null. The second approach suggested by Delgado and Gonzalez-Manteiga (2001) consists of

using functionals of the standard empirical process of all the regressors (X and Z) marked

by the restricted nonparametric residuals under the null, i.e., the residuals based on a smooth
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estimate of E(Y |X). This second approach avoids to estimate E(Y |X,Z) using smoothers,

and is able to detect local alternatives converging to the null at the parametric rate n−1/2, where

n is the sample size. The test proposed by Fan and Li (1996) can only detect these types of

alternatives converging to the null at a slower rate, i.e. nh(dX+dZ)/2 with h a proper bandwidth

sequence converging to zero and dX and dZ the dimensions of X and Z, respectively, but

it can detect other hight frequency local alternatives in the lines suggested by Horowitz and

Spokoiny (2001) among others, which in turn cannot be detected by Delgado and Gonzalez-

Manteiga (2001)’s test. Therefore, tests based on these two approaches should be viewed as

complements to each other rather than substitutes.

Though the discussion is centered in testing conditional mean independence, the proposed

test can be easily extended to testing any higher-order conditional moment independence un-

der suitable regularity conditions, including total conditional independence (see, e.g. Dawid

(1979)). We discuss some extensions in the last section. The hypothesis of total conditional

independence has been recently considered in time series context by Wang and Hong (2012)

using Fan and Li (1996)’s proposal. This test can be directly applied to test the hypothesis that

Yt is independent of Yt−p−k given {Yt−j}pj=1 for a fixed k ≥ 1. To test this hypothesis for any

k ≥ 1, that is H0, we apply Delgado and Gonzalez-Manteiga (2001)’s methodology combined

with Hong (1998, 1999 and 2000)’s spectral approach for jointly testing lack of autocorrelation

between functions.

Our testing procedure can be extended test the following hypothesis,

E(1(Yt ≤ y)|Yt−1, . . . , Yt−p, Yt−p−k) =E(1(Yt ≤ y)|Yt−1, . . . , Yt−p)

a.s. ∀y ∈ R and ∀k ≥ 1,

For each fixed and given y, we have to check the significance of Yt−p−k for any k ≥ 1. To this

end, notice that the hypothesis of Markov property of order p for a time series is expressed as

E(1(Yt ≤ y)|Ft−1) = E(1(Yt ≤ y)|Yt−1, . . . , Yt−p) a.s. ∀y ∈ R,
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where Ft−1 is the sigma algebra generated by {Yt−j}j≥1. It is clear that the testing procedures

in this paper can serve as a powerful tool to test the Markov property of a stationary time series,

where instead of testing significance of lagged values in the mean, we in fact test significance

of lagged values in the whole distributional aspect. More examples can be found in parametric

distributional autoregressive models. For instance, an autoregressive distributional model of

order p is assumed to satisfy

F (y|Ft−1, θ0) = F (y|Yt−1, . . . , Yt−p, θ0)

for some unknown distribution function F and some θ0 ∈ Θ ⊂ Rdθ . Here, again, given that the

parametric specification F is correct, the first p lags and only the first p lags are significant in

explaining the distribution of Yt given its past.

The proposed test is also related to the vast literature of testing for (possibly nonlinear)

Granger causality in mean, see e.g. Nishiyama et al. (2011). For a given time series process

{(Yt, Xt)}t∈N, the null hypothesis of Granger no causality in mean is formally expressed as

E(Yt|Yt−1, . . . , Y1, Xt−1, . . . , X1) = E(Yt|Yt−1, . . . , Y1) a.s. We refer to the rejection of this

hypothesis by saying that “Xt (possibly nonlinearly) Granger causes Yt in mean”. In particular,

we can directly apply our test to check

E[Yt|Yt−1, . . . , Yt−p, Xt−k] = E[Yt|Yt−1, . . . , Yt−p] a.s. ∀k ≥ 1.

Finally, our formulation of conditional moment restriction (CMR) is well studied in the

literature of consistent specification testing for parametric models. Those testing procedures

consist of first expressing the null hypothesis at hand into a proper CMR and then transform-

ing the CMR, using a well-known equivalence principle, to an infinite number of uncondi-

tional moment conditions indexed by some parameters. See Bierens (1982), Stute (1997) and

Stinchcombe and White (1998) for more details about consistent specification testing in a CMR

framework. The main differences of our paper with those papers are that our innovations are

nonparametric in nature rather than parametric ones and we have an infinite number of CMRs
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because all k ≥ 1 has to be considered in the testing problem.

To summarise, our approach has several attractive features. First, we reformulate the clas-

sical problem of lag selection using various information criteria in time series into a standard

nonparametric significance testing one. In particular, we examine the exploratory power in the

mean for any additional lagged value apart from the first p lags. Under the null hypothesis, any

extra lag has no predictive power at all in the mean. Moreover, we have considered all possible

lags Yt−p−k such that k ≥ 1 in a pairwise fashion such that no lag truncation is necessary, which

partly circumvents the difficulty of curse of dimensionality problem. This feature differs from

many existing tests related to the current paper, for example, tests of total conditional indepen-

dence and tests of Granger non-causality, which could only consider a fixed number of lags.

Second, our test is able to detect local alternatives converging to the null at the parametric rate

n−1/2. Third, the test implemented with the assistance of a multiplicative bootstrap procedure,

which is based on the first order asymptotic expansion of the test statistic, does not require to

compute the restricted nonparametric residuals for each bootstrap resample.

The remaining of the paper is organized as follows. In section 2, we introduce a Cramér-

von Mises-type test statistic using a proper L2 norm. Section 3 establishes the asymptotic

distribution of the test statistic under the null and under fixed alternatives and investigates the

asymptotic local power of the test under local alternatives. To implement our test in practice,

we suggest a bootstrapped version of the test in section 4 and prove its asymptotic validity. Sec-

tions 5 and 6 provide some empirical evidence both from an extensive Monte Carlo simulation

and from an empirical application to four stock market indices representing different financial

market conditions across the world. We conclude the paper in section 7 and discuss some re-

lated extensions. Mathematical proofs and auxiliary lemmas are collected in the Appendix A

and B. Throughout the paper, we use the following notation: C denotes a generic positive finite

constant that may change from content to content, | · | for the Euclidean norm, and ac for the

complex conjugate of any complex number a, i =
√
−1 for the imaginary number, the modu-

lus is defined as |a| :=
√
aac. Unless otherwise stated, all limits are taken as the sample size

n→∞.
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1.2 Test statistic

In this section, we describe the idea of how to construct our test statistic. Henceforth, define

m(x1, . . . , xp) = E(Yt|Yt−1 = x1, . . . , Yt−p = xp)

for (x1, . . . , xp) ∈ Rp and the corresponding innovations

εt = Yt −m(Yt−1, . . . , Yt−p).

The null hypothesis can be equivalently expressed in terms of these innovations, i.e. (1.1) is

satisfied if and only if,

H0 : E(εt|Yt−1, . . . , Yt−p, Yt−p−k) = 0 a.s. ∀k ≥ 1.

Notice that H0 implies that, by the law of iterated expectations,

E(εt|Yt−p−k) = 0 a.s. ∀k ≥ 1, (1.3)

but (1.3) is not a sufficient condition for H0. Hence, we may not be able to reject (1.3) under

infinite many departures of H0.

We exploit the fact that a necessary and sufficient condition for H0 is that εt is not cor-

related with any measurable functions of {Yt−1, . . . , Yt−p, Yt−p−k} for any k ≥ 1. Using the

equivalence principle, see e.g. Theorem 1 in Bierens (1982), this claim can be expressed as

H0 : E
[
εte

i(
∑p
j=1 xjYt−j+yYt−p−k)

]
= 0, ∀k ≥ 1

almost everywhere (a.e.) for (x1, · · · , xp) ∈ Rp and y ∈ R. It is also advisable in the non-

parametric testing literature to avoid the random denominators arising from the estimation of

εt, i.e. through estimation of the density of Y t−1 = (Yt−1, . . . , Yt−p)
′. This is why we finally
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characterize H0 in terms of the following measure of (nonlinear) cross-covariance function

γk(x, y) = E[ζt(x)φt−k(y)]

with x = (x1, . . . , xp)
′, where

φt(y) = eiyYt−p

and

ζt(x) = εtf(Y t−1)eix′Y t−1 ,

where f is the probability density function of Y t−1. As mentioned before, we introduce the

weight f(Y t−1) to avoid the random denominators appearing in the nonparametric estimation

involved in εt. Notice that γk(x, y) is an effective nonlinear dependence measure able to detect

any departures from the null hypothesis (1.1).

Therefore, H0 is satisfied if and only if

H0 : γk(x, y) = 0, ∀(x, y) ∈ Rp+1, ∀k ≥ 1. (1.4)

It is natural to consider the Fourier transform of γk(x, y) in order to characterize the infinite

number of unconditional moment restrictions involved in (1.4) for any fixed (x, y). Define

γ−k(·, ·) = γk(·, ·) for k ≥ 1. We use the cross-spectrum of {ζt(x)}t∈Z and {φt(y)}t∈Z, i.e.

f 0(ω, x, y) =
1

2π

∞∑
k=−∞

γk(x, y) cos(kω), (ω, x, y) ∈ [−π, π]× Rp+1,

The above Fourier transform contains the same information as in {γk}k∈Z and f 0(ω, x, y) exists

if

sup
(x,y)∈Rp+1

{
∞∑

k=−∞

|γk(x, y)|

}
<∞,

which holds under a proper mixing condition, see e.g. Hong (2000). This type of Fourier trans-

form has been used extensively, for example, by Hong (1998, 1999 and 2000) and Escanciano
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and Velasco (2006) in different contexts for checking that an infinite number of generalized

autocovariance functions is equal to zero.

Our test is based on the cumulative cross-spectra distribution function

F 0(λ, x, y) =2

∫ λπ

0

f 0(ω, x, y) dω

=γ0(x, y)λ+ 2
∞∑
k=1

γk(x, y)
sin kπλ

kπ
, (λ, x, y) ∈ [0, 1]× Rp+1. (1.5)

Thus, H0 can be expressed as

H0 : F 0(λ, x, y) = γ0(x, y)λ, ∀(λ, x, y) ∈ [0, 1]× Rp+1.

The test is based on a proper estimator of F 0 in (1.5), which employs a Nadaraya-Watson (NW)

kernel estimator [see Nadaraya (1964) and Watson (1964)] of ζt(x),

ζ̂t(x) = ε̂tf̂(Y t−1)eix′Y t−1

=
1

(n− 1)hp

n∑
s=1,s 6=t

K

(
Y t−1 − Y s−1

h

)
(Yt − Ys)eix′Y t−1 ,

with ε̂t = Yt − m̂(Y t−1) the nonparametric counterpart of εt,

m̂(Y t−1) =

1
(n−1)hp

∑n
s=1,s 6=tK

(
Y t−1−Y s−1

h

)
Ys

f̂(Y t−1)

the leave-one-out NW estimator of conditional mean function m(Y t−1) = E(Yt|Y t−1) under

the null, and

f̂(Y t−1) =
1

(n− 1)hp

n∑
s=1,s 6=t

K

(
Y t−1 − Y s−1

h

)
the leave-one-out NW estimator of marginal density f(Y t−1), where K(u) =

∏p
j=1 k(uj) is

a p-product kernel with k(·) a univariate kernel function, typically a probability density, and

h = hn ∈ R+ a bandwidth sequence converging to zero at a suitable rate as n → ∞. Notice

that we have adopted the same bandwidth h1 = . . . = hp = h in the above nonparametric esti-
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mation problem. However, our asymptotic theory is still valid when using different bandwidths

h1, . . . , hp with more complicated bandwidth conditions in Assumption A.4. Then, based on a

sample of observations {Yt}nt=1, the dependence measure γk(x, y) is estimated by

γ̂nk(x, y) =
1

n− k

n∑
t=k+1

ζ̂t(x)φt−k(y),

a variant of a standard U -process (see, e.g. Stute (1994)), which resembles that used by Del-

gado and Gonzalez-Manteiga (2001) for significance testing in nonparametric regression in an

i.i.d. context. See Arcones and Yu (1994) for U -processes of stationary mixing sequences.

Therefore, a natural estimator of F 0(λ, x, y) is given by

F̂ 0
n(λ, x, y) = γ̂n0(x, y)λ+ 2

n−1∑
k=1

(
1− k

n

)1/2

γ̂nk(x, y)
sin kπλ

kπ
,

where the term (1−k/n)1/2 is a finite sample correction factor used in Hong (1999, 2000). This

correction factor is often important in practice. It delivers a better finite sample performance,

since it puts less weight on larger lags, where we will have less sample information. Neverthe-

less, it can be replaced by one without affecting the asymptotic theory. The test statistic is a

proper functional of the following stochastic process

Ŝn(λ, x, y) =
(n

2

)1/2 {
F̂ 0
n(λ, x, y)− γ̂n0(x, y)λ

}
=

n−1∑
k=1

√
n− kγ̂nk(x, y)

√
2 sin kπλ

kπ
.

For the sake of simplicity, we propose to use the Cramér-von-Mises (CvM) type of functional,

i.e.

CvMn =

∫ 1

0

∫
Rp+1

|Ŝn(λ, x, y)|2W (dx, dy)dλ

=
n−1∑
k=1

n− k
(kπ)2

∫
Rp+1

|γ̂nk(x, y)|2W (dx, dy), (1.6)
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where W is a non-negative weighting function satisfying some mild conditions, which will be

discussed in the next section. For the choice of W , from a practical point of view, it should

be chosen in a way such that CvMn has a closed form. A reasonable choice of W , which has

been recommended in other circumstances - e.g., Escanciano and Velasco (2006), Kuan and

Lee (2004) - is a standard multivariate normal cumulative distribution function (CDF) under

independence, i.e.

W (x, y) =

∫ x1

−∞
· · ·
∫ xp

−∞

∫ y

−∞

1

(2π)
p+1
2

e−
1
2

(
∑p
j=1 x̄

2
j+ȳ

2) dx̄1 · · · dx̄pdȳ.

Another choice is the multivariate exponential distribution function suggested by Kuan and Lee

(2004) in their tests for martingale difference hypothesis. This choice may also produce a test

statistic with closed form in our context, but we leave it for future study.

1.3 Asymptotic theory

We mainly work with weakly dependent data in this paper, since it is very natural in an autore-

gressive framework, parametric or nonparametric. Specifically, we focus on the dependence

concept of β-mixing or absolutely regular used in Robinson (1989) for dealing with U -statistic

in a serial dependence context. Let {Vt}t∈Z be a strictly stationary stochastic process and F t
s

denote the σ-algebra generated by {Vs, · · · , Vt} for s ≤ t. The stochastic process {Vt} is called

β-mixing or absolutely regular with mixing coefficient β(j), if as j →∞,

β(j) = sup
s∈N

E

[
sup

A∈F∞s+j

|Pr(A|F s
−∞)− Pr(A)|

]
→ 0

at an appropriate rate.

To derive the asymptotic null distribution of the test statistic CvMn in (1.6), we need to

impose the following assumptions.

Assumption A.1 (Data Generating Process) (a) {Yt} is a strictly stationary, ergodic and

absolutely regular process on R with β-mixing coefficients β(j) = O(j−(2+α)/α) for some con-
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stant α ∈ (0, 2/3); (b) the marginal density g(y) of Yt is positive, bounded and continuous, the

joint density f(x) ≡ f(x1, . . . , xp) of Y t−1 ≡ (Yt−1, . . . , Yt−p)
′ is bounded, and the conditional

density fk(x|y) of Y t−1 given Yt−p−k, for all k ≥ 1, is positive a.s., bounded and continuously

differentiable with respect to x up to order l with l ≥ 2; (c)E|Y1|2+δ <∞ for some δ satisfying

δ > α/(1− α).

Assumption A.2 (Autoregression Function) The true (restricted) autoregression function

m(x) := E(Yt|Y t−1 = x) is measurable with respect to Ft, bounded and continuously differ-

entiable with respect to x up to order l.

Assumption A.3 (Kernel Function) The function K is a l-th order product kernel function

satisfying K(u) =
∏p

j=1 k(uj),
∫
uiK(u) du = δ0i for i = 0, 1, · · · , l − 1 and

∫
ulK(u) du 6=

0, where k(·) is a bounded, symmetric univariate function on R and δij is delta function equal

to one when i = j and equal to zero otherwise.

Assumption A.4 (Bandwidth) The bandwidth sequence h is such that: (a) h→ 0; and (b)

nhp →∞ and nh2l → 0, as n→∞.

Assumption A.5 (Weighting Function) The function W is a probability measure on Rp+1,

absolutely continuous with respect to Lebesgue measure.

Some remarks are necessary with regard to the above assumptions. Assumption A.1(a) is

mild. Mixing conditions are commonly imposed to restrict the amount of temporal dependence

in {Yt}. For example, Amaro de Matos and Fernandes (2007) assume a β-mixing condition

with a geometric decay rate in checking conditional independence and Chen and Hong (2012)

assume an algebraic decay rate of β(k) when testing for Markov property. See also Wang and

Hong (2012) for testing conditional independence using characteristic functions. Our mixing

condition is weaker than those imposed in the above mentioned papers. Many dynamic pro-

cesses in the statistical and econometric literature satisfy this mixing assumption, for example,

linear stationary autoregressive (AR) processes, autoregressive and moving average (ARMA)

processes, and important nonlinear processes including bilinear process, nonlinear autoregres-

sive (NLAR) process. Amongst the NLAR models, our approach especially allows the expo-

nential autoregressive (EAR) model and the smooth transition autoregressive (STAR) model.
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Furthermore, the mixing condition also holds for autoregressive conditional heteroskedastic

(ARCH) model in Engle (1982) and generalized autoregressive conditional heteroskedastic

(GARCH) model in Bollerslev (1986). See also Fan and Li (1999) for a detailed discussion.

Assumption A.1(b) is regular and imposed to facilitate the Taylor expansion. The moment con-

dition in Assumption 1(c) is mild too and it reflects the trade-off between the mixing condition

and the moment restriction. However, our assumption here doesn’t allow to consider the data

generating processes like threshold autoregressive (TAR) models developed in Tong (1990),

which is influential in the fields of econometrics and economics. Thus, it would be interesting

to extend our methodology to this important case in the future.

Assumption A.2 specifies a smoothness condition for the autoregression function m un-

der the null and under the alternatives, which is similar to those imposed in other statistical

inference procedures involving smooth estimators (e.g. Robinson (1989)). This assumption

excludes the cases where there may be structural break in m not smooth enough, for example,

autoregression with known or unknown thresholds (the state-dependent or regime-switching

model family, e.g. TAR model).

Assumption A.3 is also common in the nonparametric literature. The higher-order kernel

K is often used to make compatible the rates of convergence of the bandwidth needed for

bias and variance. Specifically, Assumption A.3 is needed in the projection of γ̂nk(x, y) when

performing Hoeffding decomposition, see Lemma A.1 in Appendix A.

Bandwidth conditions in Assumption A.4 are standard.

Assumption A.5 specifies the possible candidates of the weighting functionW , for example,

(p+1)-variate multivariate normal distribution under independence or multivariate exponential

distribution. Different choices of weighting functions are useful to check the performance of

our test and can improve the power performance in certain directions. We also have to choose

W from a practical perspective in order to ease the computation. However, optimal choice of

W in order to maximize the performance of our test is beyond the scope of this paper. In the

simulation part of this paper, for the leading case p = 1, we choose standard bivariate normal

distribution in order to obtain a test statistic with a closed form. One nice feature of this choice
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is that the bootstrap assisted test statistic has a closed form too.

1.3.1 Asymptotic null distribution

In order to find the asymptotic null distribution of the test statistic CvMn, we first need to

establish the asymptotic distribution of the stochastic process Ŝn(λ, x, y) under the null. For

completeness, we need to introduce several notation for asymptotic theory in Hilbert space. See

Politis and Romano (1994), Chen and White (1996, 1998), or Chen and Fan (1999) for more

applications of Hilbert space theory in statistics and econometrics.

Let η = (λ, x, y) ∈ Π = [0, 1] × (−∞,∞)p × (−∞,∞) ≡ [0, 1] × Rp+1. Let ν be the

product measure of W ( with W the same function as in (1.6)) and the Lebesgue measure on

[0,1], i.e., dν(η) ≡ dν(λ, x, y) = W (dx, dy)dλ. In this paper, we consider Ŝn(η) ≡ Ŝn(λ, x, y)

as a random element in the Hilbert space L2(Π, ν) of all square integrable functions (with

respect to some measure ν) with inner product

〈f, g〉 :=

∫
Π

f(η)gc(η) dν(η)

≡
∫

Π

f(λ, x, y)gc(λ, x, y)W (dx, dy)dλ

for any complex random variables f ∈ L2(Π, ν) and g ∈ L2(Π, ν), where gc denote the com-

plex conjugate of g. Notice that L2(Π, ν) is endowed with the natural Borel σ-field induced by

the norm ‖f‖ = 〈f, f〉1/2 for any f ∈ L2(Π, ν). Moreover, if Z is a L2(Π, ν)-valued random

element and has probability distribution µZ , we say that Z has mean m if E[〈Z, g〉] = 〈m, g〉,

∀g ∈ L2(Π, ν). If E‖Z‖2 < ∞ and Z has mean zero, we define the covariance operator of Z

or µZ to be

CZ(g) = E[〈Z, g〉Z].

The covariance operator CZ(·) is a continuous, linear, symmetric, positive definite operator

from L2(Π, ν) to L2(Π, ν).

We need to define the weak convergence concept in this paper. Let⇒ denote weak conver-
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gence in the Hilbert space L2(Π, ν) endowed with the norm induced by the inner product 〈·, ·〉.

For any sequence of random elements Zn ∈ L2(Π, ν) and a random element Z ∈ L2(Π, ν),

we say that Zn ⇒ Z in the Hilbert space L2(Π, ν), if and only if for every random element

g ∈ L2(Π, ν), the inner product 〈Zn, g〉 converges in distribution to that of 〈Z, g〉. Recall that

εt = Yt −m(Y t−1) under the null. The next theorem establish the weak convergence of Ŝn in

the Hilbert space L2(Π, ν).

Theorem 1: Suppose Assumptions A.1-A.5 hold. Then under the null,

Ŝn ⇒ S∞

in the Hilbert space L2(Π, ν), where S∞ is a zero mean Gaussian process with covariance

operator CS∞(·) satisfying σ2
g = 〈CS∞(g), g〉 with

σ2
g =

∞∑
j=1

∞∑
k=1

E
[
ε2
t

∫
Π×Π

g(η1)gc(η2)ψct−p−j(x1, y1)ψt−p−k(x2, y2)Φj(ω1)Φk(ω2) dν(η1)dν(η2)

]

where ψt−p−k(x, y) = eix′Y t−1

(
eiyYt−p−kf(Y t−1)−

∫
eiyȳfk(Y t−1, ȳ) dȳ

)
, fk(Y t−1, Yt−p−k) is

the joint density of (Y t−1, Yt−p−k)
′, Φj(λ) =

√
2 sin jπλ/jπ, η1 = (λ1, x1, y1), and η2 =

(λ2, x2, y2).

The basic idea of the proof of Theorem 1 is simple. We first find a new process Sn and show

that the norm of the original process Ŝn is asymptotically equivalent to the norm of this new

process Sn. Then, we prove the weak convergence of Sn to S∞ in the Hilbert space L2(Π, ν).

Finally, by Theorem 4.2 of Billingsley (1968), we conclude that Ŝn also converges weakly to

the same process S∞ in the Hilbert space L2(Π, ν).

The next corollary is only a direct consequence of the Continuous Mapping Theorem

(CMT) and Theorem 1 above. See e.g. Billingsley (1968) Theorem 5.1.
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Corollary 1: Under the assumptions of Theorem 1 and under H0

CvMn →d CvM∞ :=

∫
Π

|S∞(η)|2 dν(η)

=

∫ 1

0

∫
Rp+1

|S∞(λ, x, y)|2W (dx, dy)dλ.

The asymptotic distribution of CvMn can be expressed as a weighted sum of independent

χ2
1 random variables with weights depending on the unknown DGP. As it can be seen from the

above null limiting distribution, the critical values will depend on the underlying DGP in an

unknown and complicated way. Since it is difficult to obtain or tabulate critical values in this

context, we need to implement our test with the assistance of a novel bootstrap method. We

shall propose and validate a multiplier bootstrap procedure in section 4.

1.3.2 Consistency

Under the alternative H1, we can find at least one k ≥ 1 such that E(Yt|Y t−1, Yt−p−k) 6=

E(Yt|Y t−1) with positive probability, while E(Yt|Y t−1, Yt−p−k) = E(Yt|Y t−1) := m(Y t−1) for

all k ≥ 1 a.s. under the null. This difference is essential in showing the consistency of the

test and is reflected in the nonlinear dependence measure {γk}k∈N. It guarantees that the test

statistic CvMn diverges to infinity as n → ∞ under the alternative which it is bounded under

the null. Formally, we have the following theorem about the consistency of the proposed test.

Theorem 2: Under Assumptions A.1-A.5 and under H1,

1

n
CvMn →p

∞∑
k=1

1

(kπ)2

∫
Rp+1

|γk(x, y)|2W (dx, dy) > 0.

Since under the alternative H1, there exits at least one k ≥ 1 such that γk(x, y) 6= 0 for some

subset of Rp+1 with a positive Lebesgue measure, CvMn →∞ and the test is consistent against

alternatives of the null (1.1). However, if we use CvMn to test (1.2), or generally speaking,

when testing hypotheses with infinite lags or conditioning variables, we have to pay a price.

As demonstrated in Escanciano and Velasco (2006) and Chen and Hong (2012), since only
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an important implication of the maintained hypothesis is tested, tests designed in a pair-wise

fashion will typically miss some dynamics and will not be able to detect alternatives such that

γk(x, y) = 0, ∀k ≥ 1 but not satisfying (1.2), though hopefully these types of alternatives are

not prevalent in economics and finance. On the contrary, our new formulation of the hypothesis

of interest (1.1) to a significance testing one will not have this problem.

1.3.3 Local power analysis

In this section we study the local power properties of our test statistic CvMn. Since CvMn

always goes to infinity under a fixed alternative to (1.1), it is desirable to check the local power

performance of the test. First of all, we investigate the behaviour of Ŝn(λ, x, y) under a se-

quence of alternative hypotheses approaching to the null at the parametric rate n−1/2. To this

end, we need to introduce the following nonparametric local alternatives,

H1n : E(Yt|Yt−1, . . . , Yt−p, Yt−p−k) = m(Yt−1, . . . , Yt−p)+
1√
n
g(Yt−1, . . . , Yt−p, Yt−p−k), a.s.

(1.7)

for some k ≥ 1. Denote gtk = g(Yt−1, . . . , Yt−p, Yt−p−k). In the sequel, we need the sequence

{gtk}nt=1 to satisfy the following regularity assumption.

Assumption A.6 (Local Alternatives) (a) {gtk} is measurable with respect to Ft−1, zero

mean, strictly stationary, ergodic, and square integrable sequence; (b) there exists at least one

k ≥ 1 such that E[gtkψt−p−k(x, y)] 6= 0 for some subset of Rp+1 with a positive Lebesgue

measure.

Theorem 3: Under the local alternatives in (1.7), suppose Assumptions A.1-A.6 hold, we

have

Ŝn ⇒ S1
∞

with

S1
∞

d
= S∞ +G∞

in the Hilbert space L2(Π, ν), where S∞ is the Gaussian process defined in Theorem 1 and G∞
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is the deterministic shift function with

G∞(η) ≡ G∞(λ, x, y) =
∞∑
k=1

Lk(x, y)

√
2 sin kπλ

kπ
,

where Lk(x, y) = E[gtkψt−p−k(x, y)] with ψt−p−k(x, y) defined in Theorem 1.

Under the local alternatives H1n and imposing Assumption A.6, there exists at least one

k ≥ 1 such that Lk(x, y) 6= 0 for some subset Rp+1 with a positive Lebesgue measure. We then

have
∞∑
k=1

1

(kπ)2

∫
Rp+1

|Lk(x, y)|2W (dx, dy) > 0.

Therefore, our test is able to detect local alternatives that converge to the null at the parametric

rate n−1/2. Though we have employed kernel estimators to estimate the unknown innovations εt

under the null hypothesis of no significance for any extra lagged value greater than p, the test is

still able to detect local alternatives converging to the null at a parametric rate, see also Delgado

and Gonzalez-Manteiga (2001) for a simpler case. This asymptotic power property is attractive.

The reason behind this is partly due to the weighted averaging of all lag orders greater than p

and partly due to the use of higher order kernel function. Notice that the asymptotic distribution

of Ŝn is non-trivially shifted under the local alternatives (1.7). Since the shift term G∞ is

not identically zero over the support of η = (λ, x, y) under H1n, otherwise, because of the

orthogonality of sin kπλ/kπ we need to have Lk(x, y) ≡ 0, ∀k ≥ 1. Thus, our test has non-

trivial power against the class of local alternatives in Hln.

As in Corollary 1, the next corollary is also an application of Continuous Mapping Theorem

and Theorem 4.

Corollary 2: Under the local alternatives (1.7), if Assumptions A.1-A.6 hold,

CvMn →d CvM
1
∞ :=

∫
Π

|S∞(η) +G∞(η)|2 dν(η)

=

∫ 1

0

∫
Rp+1

|S∞(λ, x, y) +G∞(λ, x, y)|2W (dx, dy)dλ.
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From the above corollary, we see that under the local alternatives, the limiting distribution

of the test statistic CvMn converges to a different distribution asymptotically due to the pres-

ence of a deterministic shift function G∞. This additional term will guarantee the non-zero

local power property of our test.

1.4 Bootstrap

Since the asymptotic null distribution of Ŝn and the corresponding test statistic CvMn depend

on the underlying data generating process in a highly complicated and unknown way, it is

rather difficult for us to calculate or tabulate the critical values in practice. To this end, we

propose a bootstrap method to estimate the critical values of our tests. Our bootstrap procedure

is somewhat related to the wild bootstrap, e.g., Wu (1986), Liu (1988). See also Neumeyer

and Dette (2007) for recent applications of wild bootstrap in a hypothesis testing context. But

our bootstrap is different, since rather than resampling imposing the restriction on H0, we use

the first order asymptotic representation of Ŝn(η). Specifically speaking, our bootstrap is of

a multiplier bootstrap type proposed in Delgado and Gonzalez Manteiga (2001). It has nice

theoretical and applied properties and it is straightforward to verify its asymptotic validity.

Moreover, it is computationally easy to implement in practice.

We propose and justify the use of the multiplier bootstrap in this section. Inspired by

Delgado and Gonzalez Manteiga (2001), in order to take advantage of the asymptotic equiva-

lence of the norms of process Ŝn and the norm of process Sn defined in (1.8) in Hilbert space

L2(Π, µ) as shown in Lemma A.1 in Appendix A, we suggest to implement our test assisted by

the following bootstrap method, i.e. we define the bootstrapped process

Ŝ∗n(η) =
n−1∑
k=1

√
n− kγ̂∗nk(x, y)

√
2 sin kπλ

kπ
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with

γ̂∗nk(x, y) =
1

n− k

n∑
t=k+1

ε̂te
ix′Y t−1

[
eiyYt−p−k f̂(Y t−1)−

∫
eiyȳf̂k(Y t−1, ȳ) dȳ

]
vt,

where ε̂t are the restricted residuals from the nonparametric regression of m and {vt}nt=1 is

a sequence of random variables with zero mean, unit variance (and sometimes zero skewness

depending upon the different use of vt), bounded support and is independent of {Yt}nt=1. Notice

that f̂k(Y t−1, Yt−p−k) is the NW kernel estimator of joint density function of (Y t−1, Yt−p−k).

In practice when we use standard normal density as the univariate kernel function in NW esti-

mator, the form of γ̂∗nk(x, y) is algebraically equivalent to

γ̂∗nk(x, y) =
1

n− k

n∑
t=k+1

ζ̂∗t (x)φ̄t−k(y),

where

ζ̂∗t (x) = ε̂tf̂(Y t−1)eix′Y t−1vt

and

φ̄t−k(y) = eiyYt−p−k − 1

n− k

n∑
t=k+1

eiyYt−p−k

is the centered version of eiyYt−p−k .

Intuitively, the bootstrap distribution of Ŝ∗n is supposed to “mimic” the asymptotic distri-

bution of Ŝn under the null hypothesis. The bootstrapped version of our original test statistic

CvMn is given by

CvM∗
n =

∫ 1

0

∫
Rp+1

|Ŝ∗n(λ, x, y)|2W (dx, dy)dλ

=
n−1∑
k=1

n− k
(kπ)2

∫
Rp+1

|γ̂∗nk(x, y)|2W (dx, dy).

We reject the null hypothesis at significance level α if CvMn > cv∗α, the critical value of

CvM∗
n.
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A stronger condition concerning the bandwidth h is needed in order to validate the multi-

plier bootstrap in our context.

Assumption A.4’ The bandwidth sequence h is such that: (a) h → 0; and (b) nh2p → ∞

and nh2l → 0, as n→∞.

In the next theorem we formally establish the asymptotic validity of our multiplier bootstrap

procedure, so that we can approximate the asymptotic distribution of the process Ŝn by that of

Ŝ∗n.

Theorem 4: Suppose Assumptions A.1-A.3, A.4’ and A.5 hold, then under the null hypoth-

esis (1.1), under any fixed alternative hypothesis or under the local alternatives (1.7),

Ŝ∗n ⇒ S∞ in probability

in the Hilbert space L2(Π, ν), where S∞ is the Gaussian process defined in Theorem 1 and

⇒ in probability denotes the weak convergence in probability under the bootstrap law, i.e.,

conditional on the original sample {Yt}nt=1.

1.5 Monte Carlo simulation

In this section, we report results from an extensive Monte Carlo simulation to investigate

the performance of our test in small and moderately large samples. Throughout this section,

{Yt}nt=1 is the time series of our primary interest, while we want to check whether or not and/or

how many lags of Yt are significant and accounts for the forecasting performance of Yt in the

mean.

Our hypothesis of interest is H0 : E[Yt|Yt−1, . . . , Yt−p, Yt−p−k] = E[Yt|Yt−1, . . . , Yt−p] for

any k ≥ 1. Henceforth, we focus on the leading case of p = 1, which is also the main interest

of economic and financial modelling and the most studied case in the analysis of time series

data. To implement our test, we first outline the multiplier bootstrap procedure developed in

section 4 in the following five steps:

Step 1: Estimate the nonparametric model Yt = m(Yt−1) + εt using the original sample
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{Yt}nt=1 and obtain the nonparametric residuals ε̂t = Yt − m̂(Yt−1) for t = 2, . . . , n.

Step 2: Compute γ̂∗nk(x, y) for k = 1, · · · , n− 2 based on {vt}nt=1, where vt is a two point

distribution, i.e. {vt}nt=1 is a sequence of independent identically distributed (i.i.d.) Bernoulli

random variables with P (vt = 0.5(1 −
√

5)) = (
√

5 + 1)/2
√

5 and P (vt = 0.5(1 +
√

5)) =

(
√

5− 1)/2
√

5 and is independent of the original sample {Yt}nt=1
1.

Step 3: Compute Ŝ∗n(η) and CvM∗
n.

Step 4: Repeat Steps 2-3 above B times to give a sample {CvM∗
n,b}Bb=1 of the bootstrapped

version of test statistic CvMn. The distribution of this sample, which is commonly called the

“bootstrap distribution” in the literature, will “mimic” the distribution of CvMn under the null

hypothesis.

Step 5: Let cCvM∗α,B be the (1 − α)-th sample quantile of the “bootstrap distribution” of

CvM∗
n. It is the bootstrap estimate of the α-level critical value. More formally, let CvM∗

n,(1) ≤

CvM∗
n,(2) ≤ · · · ≤ CvM∗

n,(B) denote the ordered values of the B realizations of CvM∗
n, we

choose cCvM∗α,B = CvM∗
n,([B(1−α)+1]). For instance, in the case of α = 0.05 and B = 100, we

would take cCvM∗α,B = CvM∗
n,(96). We reject the null hypothesis at the significance level α if

CvMn > cCvM∗α,B .

We state the Monte Carlo setup. In the sequel, let εt be a sequence of independently and

identically distributed standard normal random variables, that is, i.i.d. N(0, 1). To examine the

empirical size of the test under the null hypothesis, we consider the following five DGPs:

DGP S1 [AR(1)]: First-order autoregressive model, Yt = 0.5Yt−1 + εt.

DGP S2 [NLAR(1)-1]: First-order nonlinear autoregressive model, Yt = |Yt−1|0.8 + εt.

DGP S3 [EXP(1)]: First-order exponential autoregressive model, Yt = 0.6Yt−1 exp(−0.5Y 2
t−1)

+εt.

DGP S4 [NLAR(1)-2]: First-order nonlinear autoregressive model, Yt = −Yt−1/(1 +

Y 2
t−1) + εt.

DGP S5 [ARCH(1)]: Autoregressive conditional heteroskedasticity model of order one,

1The above choice of vt is widely used in the bootstrap literature, see e.g., Delgado and Gonzalez Manteiga
(2001) and Escanciano and Velasco (2006). Another popular choice of {vt} is i.i.d. Bernoulli random variables
with P (vt = 1) = P (vt = −1) = 0.5 (Rademacher random variables) and is applied in Liu (1988) and de Jong
(1996).

25



Yt = σtεt with σ2
t = 0.1 + 0.1Y 2

t−1.

To examine the empirical power of our test, we use the following seven DGPs:

DGP P1 [AR(2)-1]: Second-order autoregressive model, Yt = 0.5Yt−1 + 0.3Yt−2 + εt.

DGP P2 [AR(2)-2]: Second-order autoregressive model without the presence of the first-

order term, Yt = 0.5Yt−2 + εt.

DGP P3 [MA(1)]: First-order moving average model, Yt = εt + 0.5εt−1.

DGP P4 [MA(2)-1]: Second-order moving average model, Yt = εt + 0.5εt−1 + 0.3εt−2.

DGP P5 [MA(2)-2]: Second-order moving average model without the presence of the first-

order term, Yt = εt + 0.5εt−2.

DGP P6 [NLAR(2)]: Second-order nonlinear autoregressive model without the presence of

the first-order term, Yt = |Yt−2|0.8 + εt.

DGP P7 [NLMA(2)]: Second-order nonlinear moving average model, Yt = εt−1εt−2(εt−2+

εt + 1).

DGPs S3, S5 and P7 are used in Escanciano and Velasco (2006). DGPs S2, P3 and P7 are

used in Chen and Hong (2012). We have also considered the DGP Yt = εt ∼ i.i.d N(0, 1)

which is the case of martingale difference hypothesis (MDH). The MDH case is artificial since

i.id. N(0, 1) needs no lag to model it. We find that the performance of our test when testing for

MDH is acceptable even with small samples. The price we have to pay for using kernel method

to estimate the mean function, which is a constant zero in this case, is minimal. The results are

not reported here.

We consider three sample sizes: n=100, 250, 500. For each DGP, we first generate n+ 200

observations and then discard the first 200 observations to minimize the effect due to the initial

values. We then standardize the observations for each DGP to have zero mean and unit variance.

The number of Monte Carlo experiments is 1000 and the number of bootstrap replications is

B = 500. We consider a nominal size of α = 5%. Results from the other nominal sizes are

similar and are available upon request. We use standard normal density as our kernel function.

We adopt bandwidth of the form h = c × n−1/5 derived from univariate regression estimation
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problem. We have experimented many c’s ranged from 1.0 to 2.0. There seems to be not

too much significant difference among them. Therefore, in this simulation, we only report

the results from c = 1.5, which delivers overall reasonable size and power in small samples.

However, regarding to the different choices of c’s, one general pattern we observe is that for

too small c, the proposed test tends to be undersized while for relatively large c it tends to be

oversized. Some data-driven ways of selecting optimal bandwidth h∗ are highly desirable in our

significance testing context, e.g. the least squares cross-validation or plug-in method. However,

how to select the optimal value c∗ (or generally speaking, the optimal choice of bandwidth h)

to maximize the overall performance of our test in terms of size and power is very tricky and

beyond the scope of this paper.

As for the choice of weighting function W , the standard bivariate normal distribution with

correlation parameter ρ = 0 (i.e. bivariate normal under independence) is used. In fact, when

W (x, y) =
∫ x
−∞

∫ y
−∞ e−(x̄2+ȳ2)/2/(2π) dx̄dȳ, a standard bivariate normal CDF under indepen-

dence, we can obtain the following two closed form expressions for CvMn and its bootstrapped

counterpart CvM∗
n based on {Yt}nt=1,

CvMn =
n−2∑
k=1

1

(n− k)(kπ)2

n∑
t=k+2

n∑
s=k+2

ε̂tε̂sf̂(Yt−1)f̂(Ys−1)e−0.5(Yt−1−Ys−1)2

× e−0.5(Yt−1−k−Ys−1−k)2 ,

and

CvM∗
n =

n−2∑
k=1

1

(n− k)(kπ)2

n∑
t=k+2

n∑
s=k+2

ε̂tε̂sf̂(Yt−1)f̂(Ys−1)e−0.5(Yt−1−Ys−1)2

×

(
e−0.5(Yt−1−k−Ys−1−k)2 − 2

n− k − 1

n∑
t′=k+2

e−0.5(Yt′−1−k−Yt−1−k)2

+
1

(n− k − 1)2

n∑
t′=k+2

n∑
s′=k+2

e−0.5(Yt′−1−k−Ys′−1−k)2

)
vtvs.

Hence, this particular choice of W avoids the numerical integration of CvMn and CvM∗
n and

speeds the computation greatly. Moreover, this choice is appealing since it makes possible the
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Table 1.1: Empirical size of the proposed test CvMn

h = 1.5× n−0.2

DGP S1 DGP S2 DGP S3 DGP S4 DGP S5

n = 100 0.038 0.034 0.045 0.028 0.054

n = 250 0.044 0.056 0.048 0.056 0.052

n = 500 0.038 0.072 0.052 0.040 0.048

Table 1.2: Empirical Power of the proposed test CvMn

h = 1.5× n−0.2

DGP P1 DGP P2 DGP P3 DGP P4 DGP P5 DGP P6 DGP P7

n = 100 0.330 0.944 0.202 0.683 0.934 0.992 0.104

n = 250 0.868 1.000 0.498 1.000 1.000 1.000 0.282

n = 500 0.992 1.000 0.880 1.000 1.000 1.000 0.503

closed form of CvM∗
n in our bootstrap. Different ρ other than ρ = 0 could possibly render the

closed form expression difficult to derive. However, it may produce better power performance.

Another example ofW is the standard bivariate exponential distribution with parameter β under

independence. For example, under this W , we have a closed form of CvMn too, that is,

CvMn =
n−2∑
k=1

1

(n− k)(kπ)2

n∑
t=k+2

n∑
s=k+2

ε̂tε̂sf̂(Yt−1)f̂(Ys−1)

× 1 + β(Yt−1 − Ys−1)

1 + β2(Yt−1 − Ys−1)2

1 + β(Yt−1−k − Ys−1−k)

1 + β2(Yt−1−k − Ys−1−k)2
,

where β influences the power of the test. We leave the exponential case for future research.

In Table 1 we report the empirical sizes associated with the DGPs S1-S6. In Table 2 we re-

port the empirical powers against the DGPs P1-P7. In summary, the proposed test implemented

with the multiplier bootstrap procedure performs quite well in terms of empirical size and em-

pirical power. In fact, it delivers relatively high power against many kinds of alternatives.
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1.6 Empirical application

It is interesting to check whether some important financial time series are predictable (linearly

or nonlinearly) in the mean. By contrast, Chen and Hong (2012) test the Markov property of

stock prices, interest rates and foreign exchange rates. In order to confront the findings in some

literature that there seems not exist nonlinear predictability in the mean of asset prices given

their past history, an empirical application of our test to a number of major stock indices around

the world is conducted.

In this section, we focus on four stock indices, namely S&P 500 index, FTSE 100 index,

Nikkei 225 index and Shanghai A-Share index to find some evidence of nonlinear predictabil-

ity of stock returns in the mean in different stock market conditions, developed and emerging

markets across the world. These four indices represent very different aspects of the underly-

ing stock returns and the corresponding market efficiency or maturity. The indices series are

collected using daily data from 1 January 2001 to 31 December 2004 with a total of 1045 obser-

vations after deleting all public holidays and non-trading days. We then generate their returns

series using rt = log(Pt/Pt−1) × 100% with Pt the time series sequence for any stock index.

Figure 1 plots all these indices and their returns. They exhibit the stylized facts of volatility

clustering and fat tails. Standard tests indicate the returns series are stationary.

We are interested to study the nonlinear autoregressive behaviour of rt for all four returns.

The main concern here is that whether or not there exists some lagged value rt−k other than

rt−1, which can improve the predictability of rt in the sense of mean forecasting. Formally

speaking, we aim to test H0 : E(rt|rt−1, rt−k) = E(rt|rt−1), for any k ≥ 2. In other words,

the rejection of this hypothesis indicates that the mean of rt given its past history could be a

(nonlinear) function of lagged value rt−k for some k ≥ 2 besides rt−1. The main reason we

consider testing autoregressive order p = 1 is because it is the main interest of economic and

financial modelling, e.g. AR(1)-GARCH models, widely used in financial applications. The

same bandwidth h = 1.5 × n−0.2 as in the simulation part is adopted. For each of the four

return series, we use B = 1000 bootstrap iterations.
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The bootstrapped p-values are 0.000, 0.003, 0.012, and 0.116, respectively, for S&P 500,

FTSE 100, Nikkei 225 and Shanghai A-Share. We reject the null hypothesis of no significant

rt−k for k ≥ 2 at the 5% significance level for three developed stock markets, that is, it suggests

that there exists some unknown form of (nonlinear) predictability in the mean for certain lagged

values rt−k with k ≥ 2. We may conclude that the stock returns from these three markets do

not follow an autoregressive process of order one. An unknown form of higher order (autore-

gressive) nonlinearity in its conditional mean is likely to be present. This phenomenon calls

for more attention in modelling the (nonlinear) conditional mean before modelling higher order

moments of these time series, say, conditional variance, skewness and kurtosis. For example,

the widely applied GARCH-in-mean model like rt = µ(rt−1) + σ(rt−1)εt, where µ(rt−1) is an

known conditional mean function and σ(rt−1) is the conditional variance function assumed to

follow a GARCH process, may not be correctly specified and induce false conclusions. It is

helpful to model the conditional mean using more lags rather than considering the first lag only.

On the other hand, we can not reject the null for Shanghai A-share returns series, indicating

that a (nonlinear) autoregressive order one process is sufficient to model its conditional mean.
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Figure 1.1: Financial Time Series Plots
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1.7 Conclusions and future research

In this paper we propose a significance testing procedure for nonparametric autoregression. Our

test statistic is a functional of the generalized spectral distribution function involving smooth

non-parametric autoregressive residuals. We establish asymptotic null distribution of the test

statistic, prove its consistency, analyse its local power performance and provide a simple boot-

strap procedure to implement our test. The practical performance of the proposed test is il-

lustrated by means of an extensive Monte Carlo simulation and also by an investigation of the

nonlinear predictability in the mean of stock returns for four indexes.

As we have mentioned in the Introduction, our test is nested in a much stronger hypothesis

H(l)
0 : E(Yt|Yt−1, . . . , Yt−p, Yt−p−k1 , . . . , Yt−p−kl) =E(Yt|Yt−1, . . . , Yt−p) a.s.

∀kj ≥ 1, j = 1, . . . , l.

That is, under the null hypothesis, any set of l extra lags do not affect the forecast of any

nonlinear autoregression of order p. For the sake of simplicity, our main hypothesis of interest

in this paper is a special case when l = 1. However, the methodology developed is directly

applicable to test the much stronger case.

It is also theoretically and empirically relevant that we could design a test such that l→∞

at some suitable rate as the sample size n → ∞ and therefore achieve a consistent test for the

specification of any (nonlinear) autoregression of order p, i.e. the hypothesis (1.2). By far, to

the best of our knowledge, de Jong (1996) is the only attempt towards this direction in which

he considers an infinite dimensional conditioning variables. Nevertheless, his test is generally

infeasible when the sample size is large, since it requires to perform a numerical integration

with dimension equal to the sample size. This will be left as our future research.
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1.8 Appendix A: Proofs of Main Results

Throughout the appendix, we let C ∈ (0,+∞) denote a generic bounded positive constant,

which may be different in different places. Recall that εt = Yt − E(Yt|Yt−1, . . . , Yt−p) =

Yt − E(Yt|Y t−1) is the unknown regression innovations under the null. Let fk(Y t−1, Yt−p−k)

denote the joint probability density function of (Y t−1, Yt−p−k).

Let’s denote a new stochastic process

Sn(η) =
n−1∑
k=1

√
n− k γnk(x, y)

√
2 sin kπλ

kπ
(1.8)

with η = (λ, x, y), where

γnk(x, y) =
1

n− k

n∑
t=k+1

εte
ix′Y t−1

[
eiyYt−p−kf(Y t−1)−

∫
eiyȳfk(Y t−1, ȳ) dȳ

]
.

Notice that the quantity in brackets is similar in nature to f(Y t−1)(eiyYt−p−k − E(eiyYt−p−k)). In

fact, if Y t−1 ⊥ Yt−p−k, the two terms are identical to each other. We can deem this quantity in

brackets as a properly “weighted” version of the centered marginal characteristic function.

The following lemma states that the norm of the process Ŝn can be approximated by the

norm of the process Sn defined in (1.8).

Lemma A.1: Under the null and Assumptions A.1-A.5,

∣∣∣‖Ŝn‖2 − ‖Sn‖2
∣∣∣→p 0.

Proof of Lemma A.1: Its proof consists of applying Lemma B.2 and Lemma B.3. To show the

result, we first decompose Ŝn(η) = Sn(η) +Rn(η) with

Rn(η) =
n−1∑
k=1

√
n− k [γ̂nk(x, y)− γnk(x, y)]

√
2 sin kπλ

kπ
.
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So

‖Ŝn‖2 = ‖Sn‖2 + ‖Rn‖2 + 2Re
{∫ 1

0

∫
Rp+1

Sn(η)Rc
n(η)W (dx, dy)dλ

}
, (1.9)

where for any random element g(η) in L2(π, ν),

‖g‖2 =

∫ 1

0

∫
Rp+1

|g(η)|2W (dx, dy)dλ.

By Lemma B.3, we have
√
n− k [γ̂nk(x, y)− γnk(x, y)] = op(1) uniformly in (x, y) ∈

Rp+1 under the null hypothesis. We immediately get

‖Rn‖2 = op(1) (1.10)

by applying Lemma B.2, where we simply take hk,n(x, y) =
√
n− k [γ̂nk(x, y)− γnk(x, y)]

and the two conditions are easily verified.

On the other hand, it is easy to show that under the null

E
[
‖Sn‖2

]
= E

{∫ 1

0

∫
Rp+1

|Sn(η)|2W (dx, dy)dλ

}
=

n−1∑
k=1

n− k
(kπ)2

E
{∫

Rp+1

|γnk(x, y)|2 W (dx, dy)

}
≤C

∞∑
k=1

1

(kπ)2

=O(1). (1.11)

Combining (1.9), (1.10), (1.11) and Cauchy-Schwartz’s inequality, we conclude the proof

of Lemma A.1. �

Proof of Theorem 1: The weak convergence of the process Ŝn to S∞ in the Hilbert space

L2(Π, ν) can be proved using the similar arguments in Escanciano and Velasco (2006). First,

observe that by Lemma A.1, the norm of the process Ŝn can be approximated by the norm of

Sn. So it suffices to show that the finite dimensional projections 〈Sn(η), g〉 are asymptotically
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normal ∀g ∈ L2(Π, ν) with the appropriate asymptotic variance, and that the sequence {Sn(η)}

is tight, see e.g. Parthasarathy (1967). The idea is to prove these facts for a partitioned version

of Sn, and then, to show that the remainder term is asymptotically negligible. We state three

important steps in Theorems A.1-A.3. Combining these three theorems and Theorem 4.2 of

Billingsley (1968), Theorem 1 follows.

Formally, we write for some integer L,

Sn(η) =
L∑
k=1

√
n− kγnk(x, y)

√
2 sin kπλ

kπ
+

n−1∑
k=L+1

√
n− kγnk(x, y)

√
2 sin kπλ

kπ

:=SLn (η) +RL
n(η).

Theorem A.1: Under the conditions of Theorem 1, for an arbitrary but fixed integer L, the

finite dimensional distributions of SLn (η), 〈SLn (η), g〉, converges to those of SL(η), 〈SL(η), g〉,

∀g ∈ L2(Π, ν), where SL(η) is a Gaussian process with zero mean and asymptotic projected

variances

σ2
g,L := Var[〈SL, g〉]

=
L∑
j=1

L∑
k=1

E

[
ε2
t

∫
Π×Π

g(η1)gc(η2)ψct−p−j(x1, y1)ψt−p−k(x2, y2)Φj(ω1)Φk(ω2) dν(η1)dν(η2)

]
,

where ψt−p−k(x, y) = ei(x′Y t−1+yYt−p−k)f(Y t−1)− eix′Y t−1

∫
eiyȳfk(Y t−1, ȳ) dȳ.

Theorem A.2: Under the conditions of Theorem 1, for an arbitrary but fixed integer L, the

sequence {SLn (η)} is tight.

Theorem A.3: Under the conditions of Theorem 1, the process RL
n(η) satisfies that, for all

ε > 0,

lim
L→∞

lim
n→∞

Pr[‖RL
n(η)‖ > ε] = 0.

The proofs of Theorem A.1-A.3 are the same as those in Escanciano and Velasco (2006),
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and hence they are omitted. This finishes the proof of Theorem 1. �

Proof of Theorem 2: By Lemma B.2 and Lemma B.4, we have

1

n
CvMn =

n−1∑
k=1

1

n(kπ)2

∫
Rp+1

∣∣∣√n− kγ̂nk(x, y)
∣∣∣2 W (dx, dy)

=
n−1∑
k=1

1

n(kπ)2

∫
Rp+1

∣∣∣√n− k [γnk(x, y) + γ0
nk(x, y)

]∣∣∣2 W (dx, dy)[1 + op(1)]

:=(D1n +D2n +D3n)[1 + op(1)],

where

D1n =
n−1∑
k=1

n− k
n(kπ)2

∫
Rp+1

|γnk(x, y)|2 W (dx, dy),

D2n =
n−1∑
k=1

n− k
n(kπ)2

∫
Rp+1

∣∣γ0
nk(x, y)

∣∣2 W (dx, dy),

and

D3n = 2
n−1∑
k=1

(n− k)

n(kπ)2
Re
[∫

Rp+1

γnk(x, y)γ0c
nk(x, y)W (dx, dy)

]
.

Under the alternative hypothesis, following the same arguments as those in Theorem 1 and

continuous mapping theorem, we can conclude that nD1 converges in distribution so that

nD1n = Op(1). So we have that D1n = op(1). By the fact that γ0
nk(x, y) →p γk(x, y) by

the law of large numbers and law of iterated expectation (see Lemma B.4 for further details),

we can show that

D2n →p

∞∑
k=1

1

(kπ)2

∫
Rp+1

|γk(x, y)|2W (dx, dy).

and thus D2n = Op(1). Finally, by Cauchy-Schwartz’s inequality, D1n = op(1) and D2n =

Op(1) we obtainD3n = op(1). Then,CvMn/n = Op(1). Thus, the test statisticCvMn diverges

to infinity under the alternative hypothesis as n→∞ and the test is consistent. �

Proof of Theorem 3: Denote εnt = Yt − m(Y t−1) − n−1/2gtk under the local alternatives

H1n and recall ψt−p−k(x, y) = ei(x′Y t−1+yYt−p−k)f(Y t−1) − eix′Y t−1

∫
eiyȳfk(Y t−1, ȳ) dȳ. Let

ψ̂t−p−k(x, y) = ei(x′Y t−1+yYt−p−k)f̂(Y t−1) − eix′Y t−1

∫
eiyȳf̂k(Y t−1, ȳ) dȳ. Then, by simple al-
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gebra

γ̂nk(x, y) =
1

n− k

n∑
t=k+1

(
Yt −m(Y t−1)− gtk√

n

)
f̂(Y t−1)ei(x′Y t−1+yYt−p−k)

− 1

n− k

n∑
t=k+1

(
m̂(Y t−1)−m(Y t−1)

)
f̂(Y t−1)ei(x′Y t−1+yYt−p−k)

+
1√
n

1

n− k

n∑
t=k+1

gtkf̂(Y t−1)ei(x′Y t−1+yYt−p−k)

=
1

n− k

n∑
t=k+1

εntψ̂t−p−k(x, y)

+

(
1

n− k

n∑
t=k+1

(
Yt − m̂(Y t−1)

)
f̂(Y t−1)ei(x′Y t−1+yYt−p−k)

− 1

n− k

n∑
t=k+1

(
Yt −m(Y t−1)

)
ψ̂t−p−k(x, y)

)

+
1√
n

1

n− k

n∑
t=k+1

gtkψ̂t−p−k(x, y)

:=γ̂1nk(x, y) + γ̂2nk(x, y) +
1√
n
γ̂3nk(x, y),

where γ̂2nk(x, y) = γ̂21nk(x, y) − γ̂22nk(x, y) with γ̂21nk(x, y) and γ̂22nk(x, y) defined accord-

ingly. Substituting the expression into Ŝn(η), we have

Ŝn(η) =
n−1∑
k=1

√
n− kγ̂nk(x, y)

√
2 sin kπλ

kπ

:=Ŝ1n(η) + Ŝ2n(η) + Ĝn(η),

where

Ŝjn(η) =
n−1∑
k=1

√
n− kγ̂jnk(x, y)

√
2 sin kπλ

kπ

for j = 1, 2, and

Ĝn(η) =
n−1∑
k=1

1√
n

√
n− kγ̂3nk(x, y)

√
2 sin kπλ

kπ

First of all, the density estimators f̂(Y t−1) and f̂k(Y t−1, Yt−p−k) are consistent estimators
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for f(Y t−1) and fk(Y t−1, Yt−p−k), respectively, under Assumptions A.1, A.3 and A.4, see e.g.

Györfi et al. (1989), Härdle (1992) or more recently Theorem 6 in Hansen (2008). Thus,

applying Lemma B.2 and following the same arguments as in the proof of Lemma A.1, one can

show that Ŝ1n(η) can be approximated by S̃1n(η) in Hilbert space L2(Π, ν), where

S̃1n(η) =
n−1∑
k=1

√
n− kγ̃1nk(x, y)

√
2 sin kπλ

kπ

with

γ̃1nk(x, y) =
1

n− k

n∑
t=k+1

εntψt−p−k(x, y).

Now, noticing that under the local alternatives, the sequence of innovations εnt is a MDS with

respect to the σ-field Ft. Following the steps in Theorem 1, it is straightforward to show

that the process S̃1n converges weakly to S∞. The weak convergence of Ŝ1n to S∞ follows

immediately.

Applying a similar argument as in Lemma B.3, we can show

√
n− kγ̂2nk(x, y) =

{
1

n

n∑
t=1

∫
e(x,y)(ȳ)g(ȳ)

1

hp
K

(
Y t−1 − x̄

h

)
dx̄dȳ

−E
[
e(x,y)(Yt−p−k)g(Yt−p−k)

]}
+ op(1), (1.12)

where g(ȳ) is the marginal density of Yt and e(x,y)(ȳ) = E[gtke
i(x′Y t−1+yYt−p−k)|Yt−p−k = ȳ].

Under suitable smoothness assumptions on e(x,y), then, the first term in the right hand side of

(1.12) is op(1). We have used the fact

∫
1

hp
K

(
Y t−1 − x̄

h

)
dx̄ = 1.

So
√
n− kγ̂2nk(x, y) = op(1) uniformly in (x, y). Thus, applying Lemma B.2, Ŝ2n(η)

converges in probability to zero in L2(Π, ν), that is ‖Ŝ2n‖2 = op(1).

Finally, by the uniform ergodic theorem (UET) for stationary and ergodic time series, see

38



e.g. Dehling and Philipp (2002, p. 4), we get

sup
(x,y)∈Rp+1

|γ̂3nk(x, y)− Lk(x, y)| = op(1), ∀k ≥ 1,

whereLk(x, y) = E[gtkψt−p−k(x, y)]. Using Lemma B.2, we can easily show that Ĝn converges

in probability to G∞ in L2(Π, ν), where

G∞(η) =
∞∑
k=1

Lk(x, y)

√
2 sin kπλ

kπ

is a deterministic shift function. So, under the local alternatives,

Ŝn ⇒ S∞ +G∞

in Hilbert space L2(Π, ν) by Slutsky’s Theorem. This proves Theorem 3. �

Proof of Theorem 4: Our bootstrap is a new type called multiplier bootstrap. It is easy to

prove its asymptotic validity. Define

S0∗
n (η) =

n−1∑
k=1

√
n− k γ0∗

nk(x, y)

√
2 sin kπλ

kπ
,

where

γ0∗
nk(x, y) =

1

n− k

n∑
t=k+1

εte
ix′Y t−1

[
eiyYt−p−kf(Y t−1)−

∫
eiyȳf(Y t−1, ȳ) dȳ

]
vt,

with εt = Yt − m(Y t−1) and {vt}nt=1 a sequence of random variables with zero mean, unit

variance and independent of the sample {Yt}nt=1.

Following the same argument as Delgado and Gonzalez-Manteiga (2001) and Escanciano

and Velasco (2006), it suffices to first establish that the norm of Ŝ∗n and the norm of S0∗
n are

asymptotically equivalent in the Hilbert space L2(Π, ν), i.e.

∣∣∣‖Ŝ∗n‖2 − ‖S0∗
n ‖2

∣∣∣→p 0,
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where ‖Ŝ∗n‖2 := 〈Ŝ∗n, Ŝ∗n〉 =
∫

Π
Ŝ∗n(η)Ŝ∗cn (η) dν(η) is the squared norm of Ŝ∗n(η) and ‖S0∗

n ‖2

is defined in a similar way. Then, we show that the finite dimensional projections of S0∗
n (η)

converge (conditional on the original sample) to those of Ŝn(η) in probability for all samples

and that the sequence {S0∗
n (η)} is tight in probability.

Notice that we can decompose Ŝ∗n(η) into the following,

Ŝ∗n(η) = S0∗
n (η) +R∗n(η)

with

R∗n(η) =
n−1∑
k=1

√
n− k

[
γ̂∗nk(x, y)− γ0∗

nk(x, y)
] √2 sin kπλ

kπ
.

As in Lemma A.1, to show that ‖Ŝ∗n‖2 →p ‖S0∗
n ‖2, it suffices to show that ‖R∗n‖2 = op(1)

and ‖S0∗
n ‖2 = Op(1). We now write

√
n− k

[
γ̂∗nk(x, y)− γ0∗

nk(x, y)
]

=
1√
n− k

n∑
t=k+1

ε̂te
ix′Y t−1

[
eiyYt−p−k f̂(Y t−1)−

∫
eiyȳf̂k(Y t−1, ȳ) dȳ

]
vt

− 1√
n− k

n∑
t=k+1

εte
ix′Y t−1

[
eiyYt−p−kf(Y t−1)−

∫
eiyȳfk(Y t−1, ȳ) dȳ

]
vt

=

{
1√
n− k

n∑
t=k+1

ei(x′Y t−1+yYt−p−k)
[
ε̂tf̂(Y t−1)− εtf(Y t−1)

]
vt

}

−

{
1√
n− k

n∑
t=k+1

eix′Y t−1

[
ε̂t

∫
eiyȳf̂k(Y t−1, ȳ) dȳ − εt

∫
eiyȳfk(Y t−1, ȳ) dȳ

]
vt

}

=B1n(x, y)−B2n(x, y).

By triangle inequality,

‖R∗n‖2 ≤ 2
(
‖R∗1n‖2 + ‖R∗2n‖2

)
,
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where, for j = 1, 2,

R∗jn(η) =
n−1∑
k=1

Bjn(x, y)

√
2 sin kπλ

kπ
,

it suffices to show that ‖R∗jn‖2 = op(1) for j = 1, 2, where

‖R∗jn‖2 =

∫ 1

0

∫
Rp+1

∣∣R∗jn(η)
∣∣2W (dx, dy)dλ.

To do so, we need to verify the two conditions in Lemma B.2. Denote by E∗ and V∗ the

expectation and the variance, respectively, given the sample {Yt}nt=1. The first condition is

straightforward. We only have to check the second condition. Write

B1n(x, y) =
1

n3/2

n∑
t=1

n∑
s6=t

ei(x′Y t−1+yYt−p−k)

×
[

1

hp
K

(
Y t−1 − Y s−1

h

)
(Yt − Ys)− εtf(Y t−1)

]
vt

× [1 + op(1)].

Using the similar proof of Lemma B.3 and taking into account that vt’s are i.i.d. and indepen-

dent of the sample {Yt}nt=1,

sup
(x,y)

|B1n(x, y)|

= sup
(x,y)

∣∣∣∣∣ 1√
n

n∑
t=1

Dh(Yt, Y t−1)ei(x′Y t−1+yYt−p−k)vt

∣∣∣∣∣+ op(1), (1.13)

where

Dh(y, x) =

∫
(y −m(x̄)) f(x̄)

1

hp
K

(
x− x̄
h

)
− (y −m(x)) f(x).

Reasoning as in the proof of Lemma B.3 again, we can show that the first term in (1.13) is

op(1) under suitable smoothness assumptions. Thus, sup(x,y) |B1n(x, y)| = op(1). We conclude
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‖R∗1n‖2 = op(1).

We further write

B2n(x, y) =
1√
n− k

n∑
t=k+1

eix′Y t−1εt

(∫
eiyȳ

[
f̂k(Y t−1, ȳ)− fk(Y t−1, ȳ)

]
dȳ

)
vt

− 1√
n− k

n∑
t=k+1

eix′Y t−1(εt − ε̂t)
(∫

eiyȳf̂k(Y t−1, ȳ) dȳ

)
vt

=B1
2n(x, y)−B2

2n(x, y).

Again, by triangle inequality, we have

‖R∗2n‖2 ≤ 2
(
‖R1∗

2n‖2 + ‖R2∗
2n‖2

)
,

where, for j = 1, 2,

Rj∗
2n(η) =

n−1∑
k=1

Bj
2n(x, y)

√
2 sin kπλ

kπ
.

So, it suffices to show that ‖Rj∗
2n‖2 = op(1) for j = 1, 2 with

‖Rj∗
2n‖2 =

∫ 1

0

∫
Rp+1

∣∣Rj∗
2n(η)

∣∣2W (dx, dy)dλ.

First of all, since

B1
2n(x, y) =

1

n3/2

n∑
t=1

n∑
s 6=t

eix′Y t−1εt

×
[

1

hp
K

(
Y t−1 − Y s−1

h

)
eiyYs−p−k −

∫
eiyȳfk(Y t−1, ȳ) dȳ

]
vt

× [1 + op(1)],

Reasoning as before and taking into account that vt’s are i.i.d. and independent of the
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sample, we have

sup
(x,y)

∣∣B1
2n(x, y)

∣∣ = op(1)

by applying the fact

1√
n

∑
t

∫ [
1

hp
K

(
Y t−1 − x̄

h

)
eiyYt−p−k −

∫
eiyȳfk(Y t−1, ȳ) dȳ

]
dx̄ = op(1).

Thus, ‖R1∗
2n‖2 = op(1).

Now, for term B2
2n(x, y), we write

B2
2n(x, y) =

1√
n− k

n∑
t=k+1

eix′Y t−1
(
m̂(Y t−1)−m(Y t−1)

) ∫
eiyȳf̂k(Y t−1, ȳ) dȳvt

=
1√
n− k

n∑
t=k+1

eix′Y t−1
(
m̂(Y t−1)−m(Y t−1)

) ∫
eiyȳ 1

fk(Y t−1, ȳ)(
fk(Y t−1, ȳ)− f̂k(Y t−1, ȳ)

)
f̂k(Y t−1, ȳ) dȳvt

+
1√
n− k

n∑
t=k+1

eix′Y t−1(m̂(Y t−1)−m(Y t−1))

∫
eiyȳ f̂

2
k (Y t−1, ȳ)

fk(Y t−1, ȳ)
dȳvt

=B21
2n(x, y) +B22

2n(x, y).

Since

E
[(
m̂(Y t−1)−m(Y t−1)

)2
f̂ 2
k (Y t−1, Yt−p−k)

]
= Op

(
1

nhp

)
and

E
[(
fk(Y t−1, Yt−p−k)− f̂k(Y t−1, Yt−p−k))

)2
]

= Op

(
1

nhp

)
,
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by applying the Cauchy-Schwarz and the Markov inequalities, we have

sup
(x,y)

∣∣B21
2n(x, y)

∣∣
=Op

(
n1/2

{
E
[(
m̂(Y t−1)−m(Y t−1)

)2
f̂ 2
k (Y t−1, Yt−p−k)

]
× E

[(
fk(Y t−1, Yt−p−k)− f̂k(Y t−1, Yt−p−k))

)2
]}1/2

)

=Op

(
n1/2

(
1

n1/2hp/2

)(
1

n1/2hp/2

))
=op(1),

where we have used nh2p →∞ in Assumption A.4’. So, by Lemma B.2, ‖R21∗
2n ‖2 = op(1).

Following the same arguments as above, we can show that sup(x,y) |B22
2n(x, y)| = op(1), so

that ‖R22∗
2n ‖2 = op(1) too. Thus, ‖R2∗

2n‖2 = op(1).

Combining all the results, we have shown that ‖R∗n‖2 = op(1) holds. It is straightforward

to see that

E∗
[
‖S0∗

n ‖2
]

= E∗
{∫ 1

0

∫
Rp+1

∣∣S0∗
n (η)

∣∣2W (dx, dy)dλ

}
=

n−1∑
k=1

n− k
(kπ)2

E∗
{∫

Rp+1

∣∣γ0∗
nk(x, y)

∣∣2 W (dx, dy)

}
≤C

∞∑
k=1

1

(kπ)2

=O(1).

Thus we have proved ‖Ŝ∗n‖2 →p ‖S0∗
n ‖2.

The proofs that (1) finite dimensional projections of 〈S0∗
n (η), g〉 (conditional on the original

sample) are asymptotically normal ∀g ∈ L2(Π, ν) with the same asymptotic variance of Ŝ(η)

in probability for all samples, and that (2) the sequence {S0∗
n (η)} is tight in probability are

based on the similar arguments to those used in the poof of Theorem 1. We complete the proof

of Theorem 4. �
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1.9 Appendix B: Lemmas

We first state a lemma by Yoshihara (1976), which is useful to prove Lemma B.3. Its proof is

omitted.

Lemma B.1: Let {Ut}, t = 1, . . . , T , be a d-dimensional strictly stationary absolutely regular

stochastic process with mixing coefficient β(k). Let t1 < · · · < tk be integers. Let F (i, j), i ≤

j, be the distribution function of Uti , . . . , Utj . Let h(φ) := h(φ1, . . . , φk) be a Borel-measurable

function on Rkd such that for some δ > 0 and given j, M ≡
∫
|h(φ)|1+δ dF (1, j)dF (j + 1, k)

exists. Then,

∣∣∣∣∫ h(φ) dF (1, k)−
∫
h(φ) dF (1, j)dF (j + 1, k)

∣∣∣∣ ≤ 4M1/(1+δ)β(l)δ/(1+δ),

where l = tj+1 − tj .

We then adapt Lemma 1 of Escanciano and Velasco (2006) to our context, which is needed

to prove the main asymptotic results. Its proof is similar to that in Escanciano and Velasco

(2006) and hence it is omitted.

Lemma B.2: For η = (λ, x, y), suppose we have a random element in L2(Π, ν) of the form

hn(η) =
n−1∑
k=1

hk,n(x, y)

√
2 sin kπλ

kπ

If Assumption A.5 and the following two conditions hold,

(i)
∫
Rp+1 E|hk,n(x, y)|2W (dx, dy) < C uniformly in 1 ≤ k < n,

(ii) sup(x,y)∈[−a,a]p+1 |hk,n(x, y)| = op(1), ∀1 ≤ k < n, ∀a > 0,

then, hn(η) converges in probability to zero in L2(Π, ν), i.e. ‖hn‖2 = op(1).

The next lemma establishes an asymptotic equivalence between γ̂nk(x, y) and γnk(x, y)

uniformly in (x, y) ∈ Rp+1 under the null hypothesis.

Lemma B.3: Under Assumptions A.1-A.4 and the null hypothesis, we have for all k, 1 ≤ k <
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n,

sup
(x,y)∈Rp+1

∣∣∣√n− k [γ̂nk(x, y)− γnk(x, y)]
∣∣∣ = op(1).

Proof of Lemma B.3: First, γ̂nk(x, y) can be written as

γ̂nk(x, y) =
1

n− k

n∑
t=k+1

ε̂tf̂(Y t−1)ei(x′Y t−1+yYt−p−k)

=
1

(n− k)(n− 1)

n∑
t=k+1

n∑
s=1,s 6=t

1

hp
K

(
Y t−1 − Y s−1

h

)
(Yt − Ys)ei(x′Y t−1+yYt−p−k).

We decompose

γ̂nk(x, y) =
1

(n− k)(n− 1)

n∑
t=1

n∑
s=1,s 6=t

1

hp
K

(
Y t−1 − Y s−1

h

)
(Yt − Ys)ei(x′Y t−1+yYt−p−k)

− 1

(n− k)(n− 1)

k∑
t=1

n∑
s=1,s 6=t

1

hp
K

(
Y t−1 − Y s−1

h

)
(Yt − Ys)ei(x′Y t−1+yYt−p−k)

Let

γ̂1
nk(x, y) =

1

n(n− 1)

n∑
t=1

n∑
s=1,s 6=t

1

hp
K

(
Y t−1 − Y s−1

h

)
(Yt − Ys)ei(x′Y t−1+yYt−p−k)

and

γ̂2
nk(x, y) =

1

n(n− 1)

k∑
t=1

n∑
s=1,s 6=t

1

hp
K

(
Y t−1 − Y s−1

h

)
(Yt − Ys)ei(x′Y t−1+yYt−p−k).

Since γ̂nk(x, y) = n/(n − k) (γ̂1
nk(x, y) + γ̂2

nk(x, y)) for all k, 1 ≤ k < n, it suffices to study

the asymptotic behaviour for γ̂1
nk(x, y) and γ̂2

nk(x, y), respectively. We shall resort to the theory

of U -statistics. We start with γ̂1
nk(x, y), and then we show that the second term γ̂2

nk(x, y) is

asymptotically of order op(n−1/2) under the assumptions stated in section 3.
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We have to show that for any fixed (x, y) ∈ Rp+1,

E
[∣∣∣√n− k [γ̂nk(x, y)− γnk(x, y)]

∣∣∣2] = o(1). (1.14)

Now, for all k, 1 ≤ k < n, putWkt = (Yt, Y t−1, Yt−p−k). We introduce

Uk(Wkt,Wks) =
1

2

[
1

hp
K

(
Y t−1 − Y s−1

h

)
(Yt − Ys)ei(x′Y t−1+yYt−p−k)

+
1

hp
K

(
Y t−1 − Y s−1

h

)
(Ys − Yt)ei(x′Y s−1+yYs−p−k)

]

For notational simplicity, we have suppressed the dependence on (x, y) of Uk(Wkt,Wks). So,

γ̂1
nk(x, y) can be written as a U -statistic of the following form,

√
nγ̂1

nk(x, y) =
√
n

2

n(n− 1)

n−1∑
t=1

n∑
s=t+1

Uk(Wkt,Wks),

However, it is important to emphasize that this U -statistic is not a standard one since the kernel

Uk(Wkt,Wks) depends on the sample size n implicitly through the bandwidth h. The most

powerful tool used to study the asymptotic behaviour of a U -statistic is the Hoeffding’s decom-

position, see Hoeffding (1948). It has been shown, both in the i.i.d. and the weak dependent

contexts, that a U -statistic can be decomposed into several terms having different orders of

magnitudes, and that in general only the one term with the leading order will determine the

asymptotic behaviour of the U -statistic, see Serfling (1980) and Borovkova et al. (2001) for

further details.

So, according to U -statistic theory, we calculate the projection term of Uk(Wkt,Wks). De-
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noteWk = (Y, Y −1, Y−p−k) and ε = Y −m(Y −1). We obtain

uk1(Wk) =E[Uk(Wkt,Wks)|Wks =Wk]

=
1

2
E

[
1

hp
K

(
Y t−1 − Y −1

h

)
m(Y t−1)ei(x′Y t−1+yYt−p−k)

]
− 1

2
E

[
1

hp
K

(
Y t−1 − Y −1

h

)
ei(x′Y t−1+yYt−p−k)

]
Y

+
1

2
E

[
1

hp
K

(
Y t−1 − Y −1

h

)]
ei(x′Y −1+yY−p−k)Y

− 1

2
E

[
1

hp
K

(
Y t−1 − Y −1

h

)
m(Y t−1)

]
ei(x′Y −1+yY−p−k)

:=A11 + A12 + A13 + A14,

where we have used the fact the under the null hypothesis, E(Yt|Y t−1, Yt−p−k) = m(Y t−1) a.s.

for all 1 ≤ k < n.

Let fk(Y t−1|Yt−p−k) denote the conditional density function of Y t−1 given Yt−p−k and

fk(Y t−1, Yt−p−k) the joint density function of (Y t−1, Yt−p−k). And let g(Yt) denote the marginal

density of Yt. Now let’s calculate A1j for j = 1, . . . , 4. First of all, by using the change of vari-

able technique and Taylor expansion of order l around Y−1, we can show that

A11 =
1

2

∫
eiyȳ

[∫
1

hp
K

(
z − Y −1

h

)
m(z)eix′zfk(z|ȳ) dz

]
g(ȳ)dȳ

=
1

2

∫
eiyYt−p−k

[∫
K(u)m(Y −1 + hu)eix′(Y −1+hu)fk(Y −1 + hu|ȳ) du

]
g(ȳ)dȳ

=
1

2

∫
eiyȳ

{
m(Y −1)fk(Y −1|ȳ) +

[
1

2
m(Y −1)f

′′

k (Y −1|ȳ) +m′(Y −1)f ′k(Y −1|ȳ)

+
1

2
m
′′
(Y −1)fk(Y −1|ȳ)

]
h2

∫
u2K(u) du+O(hl)

}
eix′Y −1 g(ȳ)dȳ + o(hl)

=
1

2
m(Y −1)eix′Y −1

∫
eiyȳfk(Y −1|ȳ) g(ȳ)dȳ +O(hl)

=
1

2
m(Y −1)eix′Y −1

∫
eiyȳfk(Y −1, ȳ) dȳ +O(hl),

where in the calculation we have exploited the higher order kernel properties for K in Assump-
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tion A.3. Similarly, we can calculate

A12 = −1

2
Y eix′Y −1

∫
eiyȳfk(Y −1, ȳ) dȳ +O(hl),

A13 =
1

2
Y f(Y −1)ei(x′Y −1+yY−p−k) +O(hl),

and

A14 = −1

2
m(Y −1)f(Y −1)ei(x′Y −1+yY−p−k) +O(hl).

Thus, we obtain

uk1(Wk)

=− 1

2
εeix′Y −1

∫
eiyȳfk(Y −1, ȳ) dȳ +

1

2
εeix′Y −1f(Y −1)eiyY−p−k +O(hl)

=
1

2
εeix′Y −1

{
eiyY−p−kf(Y −1)−

∫
eiyȳfk(Y −1, ȳ) dȳ

}
+O(hl).

Apparently, once we get the projection term like the one in the above equation, we obtain

that uk1(Wkt) ≈ εte
ix′Y t−1{eiyYt−p−kf(Y t−1) −

∫
eiyȳfk(Y t−1, ȳ) dȳ}/2 := ξt/2. Let’s denote

φk(Wkt,Wks) = Uk(Wkt,Wks)− uk1(Wkt)− uk1(Wks). Therefore, by Hoeffding’s decompo-

sition,
√
nγ̂1

nk(x, y) could be expressed as

√
nγ̂1

nk(x, y)

=
2√
n

n∑
t=1

uk1(Wkt) +
√
n

2

n(n− 1)

n−1∑
t=1

n∑
s=t+1

φk(Wkt,Wks)

=
1√
n

n∑
t=1

ξt +
√
n

2

n(n− 1)

n−1∑
t=1

n∑
s=t+1

φk(Wkt,Wks) +Op((nh
2l)1/2).

We have seen that n−1/2
∑n

t=1 ξt =
√
nγnk(x, y) + op(1). By Assumption A.4, we have

Op((nh
2l)1/2) = op(1). The remaining proof about the expansion of

√
nγ̂n1k(x, y) consists
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of showing the following result, that is, for any fixed (x, y) ∈ Rp+1,

√
n

2

n(n− 1)

n−1∑
t=1

n∑
s=t+1

φk(Wkt,Wks) = op(1).

To this end, we shall prove that for any fixed (x, y) ∈ Rp+1,

E

∣∣∣∣∣√n 2

n(n− 1)

n−1∑
t=1

n∑
s=t+1

φk(Wkt,Wks)

∣∣∣∣∣
2
 = o(1). (1.15)

Combining the results (1.14) and (1.15) and applying Chebyshev’s inequality, we conclude that

∣∣∣√n− k [γ̂nk(x, y)− γnk(x, y)]
∣∣∣ = op(1), ∀(x, y) ∈ Rp+1.

Now, let’s show (1.15). The basic idea to prove it is to find a suitable upper bound for the

expectation as demonstrated in Robinson (1989). One of the most useful tools used to derive

this bound is one fundamental lemma for absolutely regular (ARE) processes established in

Yoshihara (1976). To this end, we first need to decompose the expectation into the following

three terms of different natures and show that they are all asymptotically negligible. Formally,

we shall show that

(i1) the double summation term

E

{
1

n3

n−1∑
t=1

n∑
s=t+1

φk(Wkt,Wks)
2

}
= o(1), (1.16)

(i2) the triple summation term

E

{
1

n3

n−2∑
t=1

n−1∑
s=t+1

n∑
u=s+1

φk(Wkt,Wks)φk(Wkt,Wku)

}
= o(1), (1.17)
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and (i3) the quadruple summation term

E

{
1

n3

n−3∑
t=1

n−2∑
s=t+1

n−1∑
u=s+1

n∑
v=u+1

φk(Wkt,Wks)φk(Wku,Wkv)

}
= o(1), (1.18)

respectively. Moreover, to prove (1.18), as in Yoshihara (1976), we need to consider the fol-

lowing two different cases separately, case (i3.1) with t < s < u < v and s − t > v − u, and

case (i3.2) t < s < u < v and s− t ≤ v − u. Since both cases are of the same nature and can

be handled by similar techniques, we only focus on the first case (i3.1), that is, we shall show

E

{
1

n3

∑∑∑∑
t<s<u<v,s−t>v−u

φk(Wkt,Wks)φ(Wku,Wkv)

}
= o(1). (1.19)

It suffices to prove that the three terms in (1.16), (1.17), and (1.19) are all asymptotically

negligible. LetFk(wkt) be the marginal distribution function ofWkt andFkt1,...,ktL(wkt1 , . . . , wktL)

be the joint distribution function ofWkt1 , . . . ,WktL . Henceforth, for notational economy, the

dependence of Uk(wkt1 , wkt1), φk(wkt1 , wkt2), Fk(wkt) and Fkt1,...,ktL(wkt1 , . . . , wktL) on k will

be suppressed.

For term (1.16), by Assumptions A.1 and A.2, we have

∫
|φ(wt1 , wt2)|2+δ dF (wt1)dF (wt2)

≤C
∫
|U(wt1 , wt2)|2+δ dF (wt1)dF (wt2) + C

≤C
∫

1

hp(2+δ)

∣∣∣∣K (Y t1−1 − Y t2−1

h

)∣∣∣∣2+δ ∣∣m(Y t1−1)− Yt2
∣∣2+δ

∣∣∣ei(x′Y t1−1+yYt1−p−k)
∣∣∣2+δ

dF (wt1)dF (wt2) + C

≤C{h−p(1+δ) + 1} := C1h. (1.20)

The first inequality follows since E|uk1(Wkt)|2+δ is of smaller order than E|Uk(Wkt,Wks)|2+δ

and the last equality is because of change of variables and Assumption A.1. Noticing that when
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δ = 0, the inequality in (1.20) holds too, so that

∫
φ(wt1 , wt2)

2 dF (wt1)dF (wt2) ≤ C(h−p + 1) = O(h−p). (1.21)

Further, by Lemma B.1, we have

∣∣∣∣∫ φ(wt1 , wt2)
2 dFt1,t2(wt1 , wt2)−

∫
φ(wt1 , wt2)

2 dF (wt1)dF (wt2)

∣∣∣∣
≤4C

2/(2+δ)
1h β(s− t)δ/(2+δ)

≤Ch−2p(1+δ)/(2+δ)(s− t)−(2+α)δ/(2+δ)α, (1.22)

where we have used the β-mixing condition in Assumption A.1. Combing inequalities (1.21)

and (1.22), we have

E{φ(Wt,Ws)
2} =

∫
φ(wt1 , wt2)

2 dFt1,t2(wt1 , wt2)

≤ C
{
h−2p(1+δ)/(2+δ)(s− t)−(2+α)δ/(2+δ)α + h−p

}
.

Therefore,

E

{
1

n3

n−1∑
t=1

n∑
s=t+1

φ(Wt,Ws)
2

}

=
1

n3

n−1∑
t=1

n∑
s=t+1

E{φ(Wt,Ws)
2}

≤C

(
1

n3

n−1∑
t=1

n∑
s=t+1

{
h−2p(1+δ)/(2+δ)(s− t)−(2+α)δ/(2+δ)α + h−p

})

≤C
(

1

n2h2p(1+δ)/(2+δ)
+

1

nhp

)
=C

(
h2p/(2+δ)

(nhp)2
+

1

nhp

)
= o(1),

by applying h → 0 and nhp → ∞ in Assumption A.4. The last inequality follows due to the

fact that
∑n−1

t=1

∑n
s=t+1(s− t)−(2+α)δ/(2+δ)α = O(n) by noticing that δ > α and (2 + α)δ/(2 +
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δ)α > 1.

For term (1.17), an upper bound of
∫
|φ(wt1 , wt2)φ(wt1 , wt3)|1+δ/2 dFt1,t2(wt1 , wt2)dFt3(wt3)

is computed in a similar way,

∫
|φ(wt1 , wt2)φ(wt1 , wt3)|1+δ/2 dFt1,t2(wt1 , wt2)dFt3(wt3)

=

∫
|φ(wt1 , wt2)|1+δ/2

[∫
|φ(wt1 , wt3)|1+δ/2 dFt3(wt3)

]
dFt1,t2(wt1 , wt2)

≤C{h−pδ + 1} := C2h.

Applying Lemma B.1, we have

∣∣∣∣∫ φ(wt1 , wt2)φ(wt1 , wt3) dFt1,t2,t3(wt1 , wt2 , wt3)

−
∫
φ(wt1 , wt2)φ(wt1 , wt3) dFt1,t2(wt1 , wt2)dFt3(wt3)

∣∣∣∣
≤4C

2/(2+δ)
2h β(s− t)δ/(2+δ)

≤Ch−2pδ/(2+δ)(s− t)−(2+α)δ/(2+δ)α. (1.23)

Noticing that
∫
φ(wt1 , wt3) dFt3(wt3) = 0 by construction, based on (1.23), we immediately

have

|E{φ(Wt,Ws)φ(Wt,Wu)}| =
∣∣∣∣∫ φ(wt1 , wt2)φ(wt1 , wt3) dFt1,t2,t3(wt1 , wt2 , wt3)

∣∣∣∣
≤ Ch−2pδ/(2+δ)(s− t)−(2+α)δ/(2+δ)α.
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We then get

∣∣∣∣∣E
{

1

n3

n−2∑
t=1

n−1∑
s=t+1

n∑
u=s+1

φ(Wt,Ws)φ(Wt,Wu)

}∣∣∣∣∣
≤ 1

n3

n−2∑
t=1

n−1∑
s=t+1

n∑
u=s+1

|E {φ(Wt,Ws)φ(Wt,Wu)}|

≤C

(
1

n3

n−2∑
t=1

n−1∑
s=t+1

n∑
u=s+1

{
h−2pδ/(2+δ)(s− t)−(2+α)δ/(2+δ)α

})

≤C 1

nh2pδ/(2+δ)

=C
hp(2−δ)/(2+δ)

nhp
= o(1)

by h→ 0, nhp →∞ and the fact that δ < 2.

Finally, for the case (i3.1) in (1.19), we obtain an upper bound,

∫
|φ(wt1 , wt2)φ(wt3 , wt4)|1+δ/2 dFt1,t2,t3(wt1 , wt2 , wt3)dFt4(wt4)

≤
∫
|φ(wt1 , wt2)|1+δ/2

[∫
|φ(wt3 , wt4)|1+δ/2 dFt4(wt4)

]
dFt1,t2,t3(wt1 , wt2 , wt3)

≤C{h−pδ + 1} := C3h.

Applying Lemma B.1 again,

∣∣∣∣∫ φ(wt1 , wt2)φ(wt3 , wt4) dFt1,t2,t3,t4(wt1 , wt2 , wt3 , wt4)

−
∫
φ(wt1 , wt2)φ(wt3 , wt4) dFt1,t2,t3(wt1 , wt2 , wt3)dFt4(wt4)

∣∣∣∣
≤4C

2/(2+δ)
3h β(s− t)δ/(2+δ)

≤Ch−2pδ/(2+δ)(s− t)−(2+α)δ/(2+δ)α.
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Noticing that we still have
∫
φ(wt3 , wt4) dFt4(wt4) = 0 by construction. We obtain

|E{φ(Wt,Ws)φ(Wu,Wv)}| =
∣∣∣∣∫ φ(wt1 , wt2)φ(wt3 , wt4) dFt1,t2,t3,t4(wt1 , wt2 , wt3 , wt4)

∣∣∣∣
≤ Ch−2pδ/(2+δ)(s− t)−(2+α)δ/(2+δ)α.

So, we get

∣∣∣∣∣E
{

1

n3

∑∑∑∑
t<s<u<v,s−t>v−u

φ(Wt,Ws)φ(Wt,Wu)

}∣∣∣∣∣
≤ 1

n3

∑∑∑∑
t<s<u<v,s−t>v−u

|E {φ(Wt,Ws)φ(Wu,Wv)}|

≤C

(
1

n3

∑∑∑∑
t<s<u<v,s−t>v−u

{
h−2pδ/(2+δ)(s− t)−(2+α)δ/(2+δ)α

})

≤C 1

n2(δ−α)/α(2+δ)h2pδ/(2+δ)

=C
h2p(δ−α−δα)/α(2+δ)

(nhp)2(δ−α)/α(2+δ)
= o(1),

where the last equality follows by assumptions nhp → ∞ and δ > α/(1 − α) so that δ > α

and δ − α− δα > 0. We have proved (1.15).

We prove
√
nγ̂2

nk(x, y) is negligible. Observe that

γ̂2
nk(x, y) =

[
1

n(n− 1)

k∑
t=1

k∑
s=1,s 6=t

1

hp
K

(
Y t−1 − Y s−1

h

)
(Yt − Ys)ei(x′Y t−1+yYt−p−k)

]

+

[
1

n(n− 1)

k∑
t=1

n∑
s=k+1

1

hp
K

(
Y t−1 − Y s−1

h

)
(Yt − Ys)ei(x′Y t−1+yYt−p−k)

]

:=γ̂21
nk(x, y) + γ̂22

nk(x, y).

Since E{
√
nγ̂2

nk(x, y)}2 ≤ 2(E{
√
nγ̂21

nk(x, y)}2 + E{
√
nγ̂22

nk(x, y)}2), we shall now prove that

E{
√
nγ̂21

nk(x, y)}2 → 0 and E{
√
nγ̂22

nk(x, y)}2 → 0, respectively. Then, by Chebyshev’s in-

equality, we finish showing
√
nγ̂21

nk(x, y) = op(1) and
√
nγ̂22

nk(x, y) = op(1). First noting that
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√
nγ̂21

nk(x, y) can be written as

√
nγ̂21

nk(x, y) =
2√

n(n− 1)

k−1∑
t=1

k∑
s=t+1

Uk(Wkt,Wks),

As in the proof for γ̂1
nk(x, y), the expectation E{

√
nγ̂21

nk(x, y)}2 consists of three terms of dif-

ferent nature. For example, the double summation term,

E

{
1

n3

k−1∑
t=1

k∑
s=t+1

Uk(Wkt,Wks)
2

}
(1.24)

converges to zero since it is always bounded by C
(∑n−1

t=1

∑n
s=t+1E{φk(Wkt,Wks)}2/n3

)
=

o(1) as shown before. Likewise, we can show that the triple summation terms and the quadruple

summation terms are all asymptotically negligible. Thus we have shown that
√
nγ̂21

nk(x, y) =

op(1) uniformly in (x, y). Similarly, we can prove that
√
nγ̂22

nk(x, y) = op(1) uniformly in

(x, y). Combined with the previous expansion of
√
nγ̂1

nk(x, y), we then finish the proof of

Lemma B.3. �

The final lemma provides an asymptotically expansion for γ̂k(x, y) in (x, y) ∈ Rp+1 under

the alternative hypothesis.

Lemma B.4: Under Assumptions A.1-A.4 and the alternative hypothesis, there exists at least

one k ≥ 1 such that

sup
(x,y)∈Rp+1

∣∣∣√n− k [γ̂nk(x, y)− γnk(x, y)− γ0
nk(x, y)

]∣∣∣ = op(1),

where

γ0
nk(x, y) =

1

n− k

n∑
t=k+1

eix′Y t−1

∫
(Yt −m(Y t−1))eiyYt−p−kf(Yt, Y t−1, Yt−p−k) dYt dYt−p−k

and γnk(x, y) is defined the same as in Lemma B.3.

Proof of Lemma B.4: This lemma is proved using a similar argument as in the proof of Lemma

B.3. Hence only a sketch of its proof is provided here. Under the alternative hypothesis, the
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projection term is obtained by

uk1(Wk) =E[Uk(Wkt,Wks)|Wks =Wk]

=
1

2
E

[
1

hp
K

(
Y t−1 − Y −1

h

)
(Yt −m(Y t−1))ei(x′Y t−1+yYt−p−k)

]
+

1

2
E

[
1

hp
K

(
Y t−1 − Y −1

h

)
m(Y t−1)ei(x′Y t−1+yYt−p−k)

]
− 1

2
E

[
1

hp
K

(
Y t−1 − Y −1

h

)
ei(x′Y t−1+yYt−p−k)

]
Y

+
1

2
E

[
1

hp
K

(
Y t−1 − Y −1

h

)]
ei(x′Y −1+yY−p−k)Y

− 1

2
E

[
1

hp
K

(
Y t−1 − Y −1

h

)
m(Y t−1)

]
ei(x′Y −1+yY−p−k)

:=A10 + A11 + A12 + A13 + A14,

where A1j for j = 1, . . . , 4 are defined the same as in Lemma B.3. We have an extra term

comparing to Lemma B.3. Notice that under the alternative hypothesis, there exists at least one

k ≥ 1 such that E(Yt|Y t−1, Yt−p−k) 6= E(Yt|Y t−1) = m(Y t−1). Therefore, the term A10 is not

zero identically. In fact, we have

A10 =
1

2

∫
1

hp
K

(
z − Y −1

h

)
(Yt −m(z))ei(x′z+yYt−p−k)f(Yt, Y −1, Yt−p−k) dYt dY −1 dYt−p−k

=
1

2

∫
K(u)

(
Yt −m(Y −1 + hu)

)
eix′(Y −1+hu)+iyYt−p−k

× f(Yt, Y −1 + hu, Yt−p−k) dYt du dYt−p−k

=
1

2
eix′Y −1

∫
(Yt −m(Y −1))eiyYt−p−kf(Yt, Y −1, Yt−p−k) dYt dYt−p−k +O(hl).

So, uk1(Wkt) ≈ {ξt + eix′Y t−1

∫
(Yt − m(Y t−1))eiyYt−p−kf(Yt, Y t−1, Yt−p−k) dYt dYt−p−k}/2,

where ξt is defined in Lemma B.3.

It is important to notice that γ0
nk(x, y) →p γk(x, y). Therefore, γ0

nk(x, y) →p 0 almost

everywhere in (x, y) ∈ Rp+1 if and only if under H0, so that Lemma B.4 reduces to Lemma B.3

under the null hypothesis. However, under the alternative, γ0
nk(x, y) converges to a non-zero

dependence measure γk(x, y) in probability for some k ≥ 1, causing an additional non-trivial
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shift term asymptotically. As a matter of fact, this distinctive behaviour under the null and

under the alternative is the key to guaranteeing the consistency of our test. See also the proof

of Theorem 2 for further explanation.

Then, following the same steps as in Lemma B.3, we finish the proof of Lemma B.4. �
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Chapter 2

Testing Symmetry of a Nonparametric

Conditional Distribution

2.1 Introduction

Testing symmetry of a conditional distribution is useful in model checking, but also on its

own. Location and dispersion can be unambiguously defined under symmetry, and the center

of symmetry can be robustly, even adaptively, estimated. That is, statistical inferences can be

improved under the symmetry assumption. Most popular specifications are ruled out when the

symmetry assumption is rejected. Despite specification related issues, it is interesting to test

symmetry in many circumstances. For instance, we may be interested in testing whether losses

are more likely than gains in stock markets controlling for the available information, or whether

negative and positive shocks are equally likely in macroeconomic models. For example, check-

ing asymmetries in business cycles. The rich body of empirical studies suggests that business

cycle expansions appear to be more persistent and less volatile than contractions. For exam-

ple, DeLong and Summers (1986), Hussey (1992), Verbrugge (1997) and Belaire-Franch and

Contreras (2002) all showed that economic time series tend to behave asymmetrically over the

business cycle. Brunner (1992) argued that the assumption of Gaussian shocks places strong

restrictions on the time series behaviour of economic fluctuations. Models built upon the Gaus-
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sian assumption would be too restrictive and even produce unreliable conclusions. The as-

sumption of symmetry would also affect our forecasts. Symmetry implies that positive shocks

to the conditional mean are as likely as negative shocks. If this is not the case, forecasts should

adjust to the possibility that positive and negative forecast errors are not equally likely. For ex-

ample, Campbell and Hentschel (1992) proposed the ‘No news is good news’ model in which

the residuals in a model of log returns conditional on volatility are asymmetrically distributed.

Therefore, both theoretically and empirically speaking, whether or not to impose symmetric

Gaussian shocks to the conditional mean is a crucial problem to be addressed in macro-model-

building exercises before exploring more complicated business cycle structures.

The first symmetry test is due to Smirnov (1947) as an extension of the classical goodness-

of-fit tests. Testing symmetry of the unknown marginal distribution of residuals coming from

some parametric specification of the regression curve is an effective way of testing symme-

try of the conditional distribution when innovations are independent of explanatory variables.

See, for instance, Gupta (1967), Butler (1969), Gastwirth (1971), Doksum et al. (1977), Ran-

dles et al. (1980), Aki (1981), Antille et al. (1982), Battacharya et al. (1982), Hušková (1984),

Koziol (1985), Schuster and Barker (1987), Hollander (1988), Ahmad and Li (1997), Hyndman

and Yao (2002) or Psaradakis (2003). These tests are unable to detect infinitely many depar-

tures from the conditional symmetry hypothesis where innovations are not independent of the

explanatory variables. The hypothesis of independence between innovations and explanatory

variables has been relaxed to allow conditional scale-location models, where rather than the

innovations, only suitably scaled innovations are assumed to be independent of covariates. For

instance, Fan and Gencay (1995) and Bai and Ng (2001) considered fully parametric location

and scale functions, motivated by testing conditional symmetry in GARCH-type models. Dette

et al. (2002) and Neumeyer and Dette (2007) considered tests with nonparametric location

and scale functions. However, these tests are still inconsistent in directions where the scaled

innovations are not independent of the covariates, which is likely in a serial dependent data

context, e.g. heterokurtosis is likely when dealing with financial data (Harvey and Siddique

1999, 2000). Delgado and Escanciano (2007) proposed a test of conditional symmetry around
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a parametric location function in a serial dependence context, which is consistent in general

situations where higher order conditional moments may be dependent of functions different to

those characterizing location and scale. Misspecification of the regression function may lead

to misleading conclusion, but this nuisance is avoided in this article by estimating the location

using smoothing techniques.

The rest of the paper is organized as follows. In the next section, we describe in details our

testing problem and how to construct the test statistics. In Section 3, we provide the asymptotic

distribution of the test statistics. In Section 4, the asymptotic power of the tests is studied. In

Section 5, we suggest and validate a wild bootstrap method in order to implement our tests

in practice. Extensive Monte Carlo simulation results are shown in Section 6. We include

an empirical application of the proposed tests for stock market returns in Section 7. Mathe-

matical proofs of the main results and some auxiliary results are deferred to the mathematical

Appendices A and B, respectively.

2.2 The testing procedure

Consider a R1+d−valued strictly stationary time series process (Y,X) = (Yt, Xt)t∈Z and an

information set It = {(Ys−1, Xs) , t− k + 1 ≤ s ≤ t} at time t, i.e. It ∈ Rp with p = k(1+d).

We are interested in testing whether the conditional distribution of Yt given It = u is symmetric

around m(u) for each u ∈ Rp, where m : Rp → R is an unknown but smooth function.

Consider the family of symmetric distributions around zero

G = {G : G(v) = 1−G(−v)} ,

and define the conditional distribution of innovations εt = Yt −m(It) given It = u evaluated

at εt = v as F (v|u) = P (εt ≤ v| It = u). The null hypothesis can be expressed as

H0 : F (·|u) ∈ G for each u ∈ Rp a.s.
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This hypothesis can be equivalently characterized in terms of the joint distribution of the

innovations and the corresponding information set, i.e. K(v, u) = P (εt ≤ v, It ≤ u) =

E (1(It ≤ u)F (v|It)) , where 1(A) is the indicator function of the event A and event (It ≤ u)

indicates that each component of the vector It is less than or equal to the corresponding element

in u.

First, we notice that H0 is satisfied if and only if the conditional characteristic function of

εt given It is real valued, i.e. it does not have an imaginary part, see Ghosh and Ruymgaart

(1992) and Heathcote et al. (1995) and references therein. That is, H0 holds if and only if (iff)

H0 : E (sin (wεt)| It = u) =

∫
R

sin(ws)F (ds|u) = 0 for each (w, u) ∈ Rp+1.

Applying the fundamental theorem of calculus, we can expressH0 as a moment restriction with

respect to the joint distribution, i.e.

H0 : E (sin (wεt) 1(It ≤ u)) = 0 for each (w, u) ∈ Rp+1. (2.1)

If the innovations {εt}nt=1 were observed, a natural estimator of the expectation in (2.1) is

R0
n(w, u) =

∫
R

sin(wv)K0
n(dv, u)

=
1

n

n∑
t=1

sin(wεt)1(It ≤ u)

where K0
n (v, u) = n−1

∑n
t=1 1(εt ≤ v)1(It ≤ u) is the empirical distribution function of

{εt, It}nt=1 . There exist functional central limit theorems (FCLT) for α0
n =
√
n (K0

n −K) un-

der i.i.d. observations and specific serial dependence structures, and the limiting distribution

of
√
nR0

n under H0 is obtained from these FCLT’s. However, it is hard to get the limiting dis-

tribution of α0
n under a general serial dependence structure. However, we can take advantage
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of the fact that, H0 holds iff S0 = 0 a.s. almost everywhere, where,

S0(v, u) = E (1 (It ≤ u) (F (v|It)− 1− F (−v|It)))

= K0 (v, u)−K0(∞, u)−K0(−v, u).

Therefore, under H0,

R0
n(w, u) =

1

2

∫
R

sin(wv)S0
n(dv, u)

with

S0
n(v, u) = K0

n (v, u)−K0
n(∞, u)−K0

n(−v, u).

It is easy to handle the limiting distribution of
√
nS0

n under general serial dependence assump-

tions by exploiting the fact that, for (v, u) ∈ Rp+1 fixed, ωt (v) = (1 (εt ≤ v)− 1 (−εt ≤ v))

is a martingale difference with respect to the σ−field generated by the information set obtained

up to time t, Ft = σ (It, It−1, ...) , i.e. E (ωt (v)| Ft) = 0 a.s. for each (v, u) ∈ Rp+1. Hence,

the asymptotic distribution of
√
nS0

n under H0 can be obtained by applying weak convergence

results for martingales, e.g. Levental (1989), Bae and Levental (1995) and Nishiyama (2000).

The next two regularity conditions summarize the restrictions on the serial dependence

structure of the underlying time series process.

A.1 {Yt, It}t∈Z is a strictly stationary and ergodic process.

A.2 The joint distribution of (ε1, I1), K, is uniformly continuous on Rp+1
and {εt}t∈Z is a

Markov’s process, in the sense that, under H0,

P (εt ≤ ·|Ft) = F ( ·| It) a.s. for each t ∈ Z.

By defining S0
n(−∞, ·) = S0

n(·,−∞) = 0, the sample paths of
√
nS0

n belong to the space

`∞(Rp+1
), the space of all uniformly bounded real functions on Rp+1

:= [−∞,∞]p+1 , which

is equipped with the sup-norm. Assuming A.1 and A.2, Delgado and Escanciano (2007) show

that under H0,
√
nS0

n converges weakly on the topology of `∞(Rp+1
) endowed with the sup-
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norm to S0
∞, a Gaussian process centered at zero with continuous sample paths and covariance

function

E
(
S0
∞ (v1, u1)S0

∞ (v2, u2)
)

= E (ω1 (v1)ω1 (v2) 1 (u1 ∧ u2)) ,

where a ∧ b ≡ min{a, b} element-wisely for any vectors a and b. Therefore, applying the

continuous mapping theorem (CMT),
√
nR0

n converges in distribution to R0
∞ under H0, with

R0
∞(w, u) =

1

2

∫
R

sin(wv)S0
∞(dv, u).

Furthermore, for any continuous functional ϕ : `∞(Rp+1
) 7→ R,

ϕ(S0
n)→d ϕ(S0

∞).

If {εt}nt=1 were observed, tests statistics could be based on ‖
√
nR0

n‖, where ‖·‖ is any norm

satisfying the Riesz property, i.e. if g ≤ h, then ‖g‖ ≤ ‖h‖ . The test would be given by the

statistic φ0
n(c) = 1 (‖

√
nR0

n‖ ≥ c) , where 1(A) is the indicator function of the event A and c

is the critical values which determines the size of the test. In particular, a test at a significance

level α uses the critical value cα, such that P (‖R0
∞‖ ≥ cα) = α.

A feasible test is based on residuals ε̂t = Yt − m̂(It), t = 1, . . . , n, for some suitable

nonparametric estimator m̂ of m. Let

Kn (v, u) =
1

n

n∑
t=1

1(ε̂t ≤ v)1(It ≤ u),

and define the feasible estimator of S0 by

Sn(v, u) = Kn (v, u)−Kn(∞, u)−Kn(−v, u),

where Kn(∞, u) ≡ K0
n(∞, u) = FnI(u) is the empirical distribution function of {It}nt=1. The
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estimator Rn based on Sn is therefore given by

Rn(w, u) =
1

2

∫
R

sin(wv)Sn(dv, u).

To test H0, we propose test statistics based on Sn, i.e. the Cramér-von Mises-type statistic

CvMn =

∫
Rp+1

(√
nSn(v, u)

)2
Kn(dv, du)

=
n∑
t=1

Sn(ε̂t, It)
2,

and the Kolmogorov-Smirnov-type statistic

KSn = sup
(v,u)∈Rp+1

|
√
nSn(v, u)|.

Furthermore, a test statistic of the Cramér-von Mises-type based on Rn is given by

CvMn =

∫
Rp+1

(√
nRn(w, u)

)2
Hn( dw, du),

where following the arguments of Epps and Pulley (1983), we choose Hn to be a weighting

function of the form Hn(w, u) = Φ(w)FnI(u) with Φ(w) the standard normal cumulative

distribution function and FnI(u) the empirical distribution function of {It}nt=1 defined before.

Likewise, a Kolmogorov-Smirnov-type statistic based on Rn is

KSn = sup
(w,u)∈Πc

|
√
nRn(w, u)|, (2.2)

where Πc ⊂ Rp+1 is a compact subset containing the origin.
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2.3 Asymptotic results

The aim of this section is to study the asymptotic distribution of the test statistics under the null

hypothesis.

We start by estimating the location function m(u) for an arbitrary point u = (u1, . . . , up).

There are many available nonparametric estimators in the literature. We propose to estimate

m(u) by the Nadaraya-Watson estimator, see Nadaraya (1964) and Watson (1964), i.e.

m̂(u) =
n−1

∑n
t=1 YtKh (u− It)
f̂I(u)

, (2.3)

where f̂I(u) is the Nadaraya-Watson estimator of the density function fI(u),

f̂I(u) = n−1

n∑
t=1

Kh (u− It) .

Here, for u = (u1, . . . , up) ∈ Rp, K(u) =
∏p

j=1 k(uj) is a p-dimensional product kernel, k :

R → R is a symmetric univariate kernel function, h = (h1, . . . , hp) ∈ Rp
+ is a p-dimensional

bandwidth vector converging to zero when n tends to infinity, andKh(u) =
∏p

j=1 k(uj/hj)/hj .

Notice that, to simplify our analysis, we will let h1 = . . . = hp = h. However, different

bandwidths could be easily allowed and, with slightly more complex notation, the asymptotic

theory developed in this paper will still be valid when hj (j = 1, . . . , p) satisfies hj/h→ cj for

some 0 < cj <∞ and some baseline bandwidth h satisfying Assumption A.5 below.

One remark is in order. Since we have to estimate εt nonparametrically, there is a technical

issue of random denominators (f̂I(u) in the expression of (2.3)). To avoid such a problem,

we can introduce a trimming parameter b > 0 to trim out those close-to-zero values of the

density estimates f̂I(It) such that 1t = 1(|f̂I(It)| > b), see e.g. Robinson (1988). However, the

choice of the trimming parameter b is introduces some difficulty. Another way to circumvent

the random denominator problem consists of restricting the justification of our tests to the

case where the density function fI(u) is bounded from below by some positive constant δ,

i.e. infu∈Rp fI(u) ≥ δ > 0. This assumption may look restrictive since it would rule out

70



any regressors whose distribution has unbounded support such as the commonly used normal

regressors. But in the present paper, this assumption appears not causing severe problems to

the size and power performance of the proposed tests when it is not fulfilled, as illustrated in

the Monte Carlo part of Section 6.

To derive our asymptotic results, we need A.2 and modify A.1 to A.1’ below.

A.1’ (i) {Yt, It}t∈Z is a strictly stationary, ergodic and absolutely regular process with β-mixing

coefficients β(j) = O(j−(2+η)/η) for some constant 0 < η < 1; (ii) the marginal density

fI(u) of It is bounded from below and from above, its partial derivatives exist up to order

L for some integer L ≥ 2, and they are uniformly continuous; (iii) E
(
|Yt|2+δ

)
< ∞ for

some δ > η/(1− η).

We also impose the following regularity conditions.

A.3 All partial derivatives of location m up to order L exist a.s., and they are uniformly con-

tinuous and bounded.

A.4 The p-th product function K satisfies
∫
uiK(u) du = δ0i for i = 0, 1, · · · , L − 1 and∫

ulK(u) du 6= 0 with δij the delta function equal to one if i = j and zero otherwise.

The univariate function k is a bounded, symmetric probability density function on R.

A.5 The bandwidth h is such that: (i) h→ 0; (ii) nh3p+γ →∞ for some small γ > 0; and (iii)

nh2L → 0, as n→∞.

A.6 The distribution function of εt, Fε, is twice continuously differentiable a.s. Its density

function fε(v) is bounded from above a.s. and satisfies supv f
′
ε(v) <∞.

All the assumptions are quite standard in nonparametric time series analysis. Assumption

A.1’ is a regularity condition on the underlying data generating process (DGP) of {Yt, It}t∈Z.

Assumption A.1’(i) restricts the degree of temporal dependence in {Yt, It}, which is generally

adopted in the nonparametric time series literature, see, e.g. Hjellvik et al. (1998), Su and

White (2007, 2008), Chen and Hong (2010, 2012) and Wang and Hong (2012) amongst others.
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Let {Vt}t∈Z be any strictly stationary stochastic process. We say that {Vt} is β-mixing (or

absolutely regular) with mixing coefficient β(j) if

β(j) = sup
s∈N

E

[
sup

A∈F∞s+j

|Pr(A|F s
−∞)− Pr(A)|

]
→ 0

as j → ∞, where F t
s is the σ-algebra generated by {Vs, · · · , Vt} for s ≤ t. For the no-

tion of β-mixing and other mixing conditions such as ϕ-mixing and strong mixing, see e.g.

Doukhan (1994) and Fan and Yao (2003) amongst others. Many well-known processes, such

as stationary autoregressive moving average (ARMA) processes and a large class of nonlinear

processes, including bilinear, nonlinear autoregressive (NLAR), and autoregressive conditional

heteroskedasticity (ARCH) models, satisfy the β-mixing condition, see e.g. Fan and Li (1999).

We believe that the β-mixing condition in Assumption A.1’(i) can be relaxed to a strong mix-

ing condition. Assumption A.1’(ii) and Assumption A.1’(iii) impose some smoothness and

moment conditions. Assumption A.3 is a smoothness condition on the location functionm. As-

sumptions A.4 and A.5 are standard in deriving asymptotic theory of nonparametric regression.

A.6 is needed to prove that the first order Taylor expansion around the distribution function of

true innovations is allowed and the reminder term in the expansion is asymptotically negligible.

Neumeyer and Van Keilegom (2010) also assume a similar assumption to A.6.

We are now ready to state the main results of this section.

Theorem 1: Under the null, and under Assumptions A.1-A.2,

√
nS0

n ⇒ S0
∞

in `∞(Rp+1
), where S0

∞ is a zero mean Gaussian process with covariance function

E
(
S0
∞(v1, u1), S0

∞(v2, u2)
)

= E[ω1(v1)ω1(v2)1(I1 ≤ u1 ∧ u2)].

As discussed already in the Introduction, the proof of Theorem 1 above is Theorem 1 in
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Delgado and Escanciano (2007). Notice that, if we let u = ∞ in S0
n, we will obtain a test

of unconditional symmetry of εt. In fact, we can calculate that in the unconditional case, the

covariance expression above reduces to 2Fε (−|v1| ∨ |v2|) with a ∨ b ≡ max{a, b}, which

coincides with the covariance function of the limit of the classical empirical symmetry process

S0
n(v,∞) based on an i.i.d. sample, see e.g. Smirnov (1947).

The following theorem establishes that Sn can be represented in terms of S0
n and some shift

term asymptotically.

Theorem 2: Under the null, if Assumptions A.1’-A.6 hold, then, uniformly in (v, u) ∈ Rp+1
,

Sn(v, u) = S0
n(v, u) +W 0

n(v, u) + op(n
−1/2),

where

W 0
n(v, u) = (fε(v) + fε(−v))

1

n

n∑
t=1

εt1(It ≤ u),

with εt = Yt −m(It) the symmetric errors conditional on It.

Now notice that

W 0
n(v, u) =

1

2
(fε(v) + fε(−v))

∫
R
v̄ S0

n(dv̄, u).

The asymptotic distribution of
√
nSn is then a straightforward consequence of Theorems 1 and

2. We immediately have the following result.

Corollary 1: Under the null and Assumptions A.1’-A.6,

√
nSn ⇒ S1

∞

in `∞(Rp+1
), where

S1
∞(v, u)

d
= S0

∞(v, u) +
1

2
(fε(v) + fε(−v))

∫
R
v̄ S0
∞(dv̄, u).
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It is interesting to compare our asymptotic results with those obtained by Neumeyer and

Dette (2007) in an i.i.d. context for a univariate case, where they assume explicitly indepen-

dence of I and ε. Again, under the null hypothesis of a symmetric error distribution, by letting

u =∞ in Sn(v, u), we can obtain a covariance structure given by

2Fε (−|v1| ∨ |v2|) + 4fε(v1)fε(v2) + 4fε(v1)

∫ v2

−∞
v̄fε(v̄) dv̄ + 4fε(v2)

∫ v1

−∞
v̄fε(v̄) dv̄.

The above covariance function coincides with that obtained by Neumeyer and Dette (2007).

Comparing to the classical covariance function obtained by Smirnov (1947), there are three

additional terms depending on the density of the error distribution. As in Neumeyer and Dette

(2007), this complication is caused by the estimation of the location function in our procedure.

We state in Corollaries 2 and 3 the asymptotic null distributions of
√
nRn and the test

statistics based on Sn or Rn as a straightforward application of Corollary 1 and the continuous

mapping theorem, see e.g. Billingsley (1968) Theorem 5.1.

Corollary 2: Under H0, if Assumptions A.1’-A.6 hold, then

√
nRn ⇒ R1

∞

in `∞(Rp+1
) with

R∞(w, u)
d
=

1

2

∫
R

sin(wv)S1
∞(dv, u).

Corollary 3: Suppose Assumptions A.1’-A.6 hold. Then, under the null,

CvMn →d

∫
Rp+1

S1
∞(v, u)2K(dv, du),

,

CvMn →d

∫
Rp+1

R1
∞(w, u)2H(dw, du),

where H(w, u) = Φ(w)FI(u), FI(u) is the CDF of I1 and Φ(v) is the CDF of standard normal
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distribution, and

KSn →d sup
(v,u)∈Rp+1

|S1
∞(v, u)|,

KSn →d sup
(w,u)∈Πc

|R1
∞(w, u)|,

where Πc ⊂ Rp+1 is a compact subset containing the origin.

2.4 Behaviour under local alternatives

We consider contiguous asymmetric nonparametric alternatives of the following form:

HAn : f (n)(v|u) = f(v|u)

[
1 +

1√
n
δn(v, u)

]
a.s., (2.4)

where f(·|·) is a symmetric conditional density, i.e. f(v|u) = f(−v|u) for each (v, u) ∈ Rp+1,

and δn : Rp+1 → R is a function such that for each n ≥ 1 and each (v, u) ∈ Rp+1,

1√
n
δn(v, u) ≥ −1, δn(v, u) 6= δn(−v, u), sup

u∈Rp

∣∣∣∣∫
R
δn(v, u)f(dv|u)

∣∣∣∣ = 0,

and

δn → δ in L2(H),

where L2(H) is the Hilbert space of all H-square integrable real-valued functions on Rp+1.

We will show in the proof of Theorem 3 in Appendix A that, the asymptotic expansion of

Sn under the local alternatives (2.4) can be expressed as

√
nSn(v, u) =

√
nS̃n(v, u) + (fε(v) + fε(−v))

1√
n

n∑
t=1

(Yt −m(It))1(It ≤ u)

+ Ξ(v, u)− Ξ(∞, u) + Ξ(−v, u) + op(1), (2.5)

uniformly in (v, u) ∈ Rp+1, where S̃n is a new stochastic process. One can show that
√
nS̃n

converges weakly to the same Gaussian process S0
∞ with zero mean and covariance structure
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E (ω1(v1)ω2(v2)1(I1 ≤ u1 ∧ u2)) in Theorem 1. It is important to stress that the functions

Ξ(v, u), Ξ(∞, u), and Ξ(−v, u) are three nontrivial shift terms caused by the asymmetric local

alternatives f (n)(v|u). Formally, Ξ(v, u) is given by

Ξ(v, u) =

∫ v

−∞
E [f(v̄|I1)δn(v̄, I1)1(I1 ≤ u)] dv̄.

On the other hand, in the context of parametrically specified location m(u) = m(u, θ0), Del-

gado and Escanciano (2007) assume that the consistent estimator θn of θ0 has to satisfy the

following asymptotic representation,

√
n(θn − θ0) =

1√
n

n∑
t=1

lθ0(εt, It) + op(1),

where lθ0(·, ·) is such that E [lθ0(ε1, I1)] = 0 and E
[
lθ0(ε1, I1)l′θ0(ε1, I1)

]
exists and is positive

definite. However, unlike Delgado and Escanciano (2007), here we don’t have an additional

shift term caused by the parametric model. Since in our nonparametric context, the crucial as-

sumption that the
√
n-consistent estimators θn of the true parameters θ0 must satisfy an asymp-

totic representation of Bahadur form is no longer needed. In fact, the asymptotic behaviour of

θn under the contiguous alternatives HAn is no longer a concern to us at all. Nevertheless, we

notice that comparing to the expansion of Sn,θn under their HAn in Delgado and Escanciano

(2007), its nonparametric counterpart of asymptotic representation of Sn under the local alter-

natives (2.4), which takes the form in (2.5), is very similar to that of Sn,θn except without

an additional shift term resulting from the parametric assumption (i.e. term ∆2
θ(u, v) in their

expansion). This result is not unexpected given that we do not need to model the location using

a parametric specification.

Denote by Ξ1(v, u) = Ξ(v, u)−Ξ(∞, u) + Ξ(−v, u). We obtain the following theorem for

the asymptotic distribution of Sn under the class of local alternative HAn.

Theorem 3: Under the alternative hypothesis HAn in (2.4), if Assumptions A.1’-A.6 hold,

then
√
nSn − Ξ1 ⇒ S1

∞
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in `∞(Rp+1
).

This theorem shows that the asymptotic distribution of Sn is nontrivially shifted under the

local alternatives HAn and hence guarantees that the corresponding test statistics based on suit-

able continuous functionals has power against the class of local alternatives HAn. That is, our

tests are able to detect non-parametric alternatives converging to the null at the parametric rate
√
n with n the sample size. Generally speaking, the shift term Ξ1 is not identically zero which

would guarantee the good power performance of the tests. Only under very rare and uninterest-

ing circumstances would Ξ1 be zero. In those cases, the tests do not have power against them

since it cannot detect those types of alternatives which happen to make Ξ1 = 0. A detailed

exploration of such cases is beyond the scope of the present paper.

2.5 Bootstrap

Since the asymptotic distribution of the process Sn under the null hypothesis depends on the

unknown data generating process in a highly complicated way, the test statistics are not asymp-

totically distribution-free. We cannot compute the critical values without estimating the un-

known features of the true data generating processes. Furthermore, we cannot tabulate the

critical values because different critical values will be needed for different DGPs. To overcome

all these difficulties, we propose to implement our tests through the wild bootstrap procedure

to test for conditional symmetry in a dynamic nonparametric regression framework. See, e.g.

Wu (1986), Liu (1988), Härdle and Mammen (1993), Li and Wang (1998), Stute et al. (1998),

Whang (2000) and Neumeyer and Dette (2007) amongst many others, for detailed discussions

about the advantages of wild bootstrap approach in various contexts.

The essential problem here is to find a bootstrap distribution that mimics the null distri-

bution of the test statistics even though the data may fail to satisfy the null hypothesis. In

this paper, to successfully impose the null restriction and to allows heteroskedastic errors, we

consider the following wild bootstrap procedure for the test statistic CvMn (or KSn):

Step 1: Estimate the nonparametric model Yt = m(It) + εt using the original sample
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{(Yt, It)}nt=1 and obtain the nonparametric residuals ε̂t = Yt − m̂(It) for t = 1, . . . , n.

Step 2: Obtain the wild bootstrap residuals ε∗t for t = 1, . . . , n using a two point distribution,

i.e., ε∗t = vtε̂t, where {vt}nt=1 is a sequence of i.i.d. Rademacher random variables, i.e. P (vt =

1) = P (vt = −1) = 0.5 and is independent of the sample {(Yt, It)}nt=1.

Step 3: Obtain Y ∗t = m̂(It) + ε∗t for t = 1, . . . , n. The resulting sample {(Y ∗t , It)}nt=1 is the

bootstrap sample.

Step 4: Generate new estimated nonparametric residuals according to ε̂∗t = Y ∗t − m̂∗(It),

where the regression function m̂∗(·) is defined analogously to m̂(·) in (2.3) but is based on the

bootstrap sample {(Y ∗t , It)}nt=1.

Step 5: Compute the bootstrapped value of CvMn by applying the definition of CvMn to

the bootstrap sample {(Y ∗t , It)}nt=1 in place of the original sample {(Yt, It)}nt=1. We denote the

bootstrapped test statistics by CvM∗
n.

Step 6: Repeat Steps 2-5 above B times to give a sample {CvM∗
n,b}Bb=1 of the bootstrapped

value of CvMn. The distribution of this sample, which is commonly called the “bootstrap

distribution” in the literature, mimics the distribution of CvMn under the null hypothesis.

Step 7: Let cCvM∗α,B be the (1 − α)-th sample quantile of the “bootstrap distribution” of

CvM∗
n. It is the bootstrap estimate of the α-level critical value. More formally, let CvM∗

n,(1) ≤

CvM∗
n,(2) ≤ · · · ≤ CvM∗

n,(B) denote the ordered values of the B realizations of CvM∗
n, we

choose cCvM∗α,B = CvM∗
n,([B(1−α)+1]). For instance, in the case of α = 0.05 and B = 100, we

would take cCvM∗α,B = CvM∗
n,(96). We reject the null hypothesis at the significance level α if

CvMn > cCvM∗α,B .

The asymptotic behaviour of the bootstrapped process S∗n conditional on the original sample

{Yt, It}nt=1 will be established. Formally, the bootstrapped version of the empirical process Sn

is defined as the following,

S∗n(v, u) =
1

n

n∑
t=1

ω̂∗t (v)1(It ≤ u), (v, u) ∈ Rp+1,

where ω̂∗t (v) = 1(ε̂∗t ≤ v)− 1(−ε̂∗t ≤ v) is the bootstrap counterpart of ω̂t(v) and the sequence
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{ε̂∗t}nt=1 are the wild bootstrap nonparametric residuals obtained from the above proposed boot-

strap procedure. The “bootstrap distribution” of S∗n is expected to mimic the asymptotic distri-

bution of Sn under the null hypothesis.

We now establish the first order asymptotic validity of the wild bootstrap procedure. There-

fore, we can approximate the asymptotic distribution of the process Sn by that of the boot-

strapped process S∗n.

Theorem 4: Suppose Assumptions A.1’-A.6 hold,

√
nS∗n ⇒ S1

∞ in probability

in `∞(Rp+1
), where S1

∞ is the Gaussian process defined in Corollary 1 and ⇒ in probability

denotes the weak convergence in probability under the bootstrap law, i.e., conditional on the

original sample {(Yt, It)}nt=1.

Let K∗n(v, u) = n−1
∑n

t=1 1(ε̂∗t ≤ v)1(It ≤ u). Define by

CvM∗
n =

∫
Rp+1

(√
nS∗n(v, u)

)2
K∗n(dv, du)

=
n∑
t=1

S∗n(ε̂∗t , It)
2

and

KS∗n = sup
(u,v)∈Rp+1

|
√
nS∗n(v, u)|

the bootstrapped version of our test statistics. Likewise, we can get

R∗n(w, u) =
1

2

∫
R

sin(wv)S∗n(dv, u),

and the bootstrapped test statistics based on it:

CvM
∗
n =

∫
Rp+1

(√
nR∗n(w, u)

)2
Hn(dw, du),
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and

KS
∗
n = sup

(w,u)∈Πc

|
√
nR∗n(w, u)|.

The following corollary establishes the limiting distributions of our bootstrapped test statis-

tics CvM∗
n and KS∗n based on S∗n, and CvM

∗
n and KS

∗
n based on R∗n.

Corollary 4: If Assumptions A.1’-A.7 hold, then,

CvM∗
n →d

∫
Rp+1

S1
∞(v, u)2K(dv, du),

KS∗n →d sup
(v,u)∈Rp+1

|S1
∞(v, u)|,

CvM
∗
n →d

∫
Rp+1

R1
∞(w, u)2H(dw, du),

and

KS
∗
n →d sup

(w,u)∈Πc

|R1
∞(w, u)|,

where S1
∞ and R1

∞ are the same Gaussian processes stated in Corollary 1 and Corollary 2,

respectively.

As before, the proof of Corollary 4 can be obtained straightforwardly by exploiting Theo-

rem 4 and the continuous mapping theorem.

2.6 Monte Carlo Simulations

In this section, the finite sample performance of the proposed tests is studied by means of Monte

Carlo experiments.

Let us consider a general nonparametric dynamic model Yt = m(It)+εt without exogenous

explanatory variables. Recall that our primary interest is whether the conditional distribution of

Yt given It is symmetric around some function m(It), or equivalently, whether the conditional

distribution of εt given It is symmetric around zero. We consider the cases where It = Yt−1.

Specifically, the conditional location function m(u) is specified according to the following four
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basic types of data generating processes:

DGP1: m(Yt−1) = µ and εt is i.i.d.;

DGP2: m(Yt−1) = α + βYt−1 and εt is i.i.d.;

DGP3: m(Yt−1) is a smooth nonlinear function of Yt−1 and εt is i.i.d.;

or

DGP4: m(Yt−1) = µ and εt = σtet is conditionally heteroskedastic, where et is a sequence of

i.i.d. random variables with zero mean and unit variance, and σ2
t is generated by a GARCH

(p, q) process.

In the sequel, let εt be i.i.d. random variables according to symmetric or asymmetric dis-

tributions. To examine the size accuracy of the test under the null hypothesis, we consider the

following designs:

(S1) Yt ∼ i.i.d. N(0, 1).

(S2) Yt ∼ i.i.d. t5.

(S3) Yt ∼ i.i.d. e11(Z ≤ 0.5) + e21(Z > 0.5) with e1 ∼ i.i.d. N(−1, 1), e2 ∼ i.i.d.

N(1, 1) and Z ∼ i.i.d. U(0, 1) mutually independent.

(S4) Yt = 0.5Yt−1 + εt with εt ∼ i.i.d. N(0, 1).

(S5) Yt = 0.5Yt−1 + εt with εt ∼ i.i.d. t5.

(S6) Yt = 0.5Yt−1 + εt with εt ∼ i.i.d. e11(Z ≤ 0.5) + e21(Z > 0.5) with e1 ∼ i.i.d.

N(−1, 1), e2 ∼ i.i.d. N(1, 1) and Z ∼ i.i.d. U(0, 1) mutually independent.

(S7) Yt = 0.23Yt−1(1.6 − Yt−1) + 0.4εt with εt ∼ i.i.d. N(0, 1) truncated in the interval

[−12, 12].

(S8) Yt = 0.5Yt−1 + εt, where εt = σtet, σ2
t = φ0 + φ1σ

2
t−1 + φ2ε

2
t−1, et ∼ i.i.d. N(0, 1);

φ0 = 2, φ1 = 0.5 and φ2 = 0.3 (S8.1); φ0 = 2, φ1 = 0.9 and φ2 = 0.05 (S8.2).

(S9) Yt = γ0 + γ1Yt−1 + γ2εt−1 + εt with

εt = λtet, et ∼ tvt ,

σ2
t = α0 + α1σ

2
t−1 + α2ε

2
t−1 + α31(εt−1 < 0)ε2

t−1,
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kt = β0 + β1kt−1 + β2

ε4
t−1

σ4
t−1

+ β31(εt−1 < 0)
ε4
t−1

σ4
t−1

,

vt =
2(2kt − 3)

kt − 3
,

λt = σt

√
vt − 2

vt
.

We set γ0 = 0.1, γ1 = 0.5, γ2 = 0.2, α0 = 0.01, α1 = 0.8, α2 = 0.05, α3 = 0.2, β0 = 3.5,

β1 = 0.2, β2 = 0.5, β3 = 0.3.

In order to investigate the empirical power of the test in finite samples, we consider the

following eight designs:

(P1) Yt = 0.5Yt−1 + εt with εt ∼ i.i.d. χ2
2.

(P2) Yt = 0.5Yt−1 + εt with εt ∼ i.i.d. exp(N(0, 1)).

(P3) Yt = 0.5Yt−1 + εt with εt ∼ i.i.d. − ln(U(0, 1)).

(P4) Yt = 0.5Yt−1 + εt with εt ∼ i.i.d. asymmetric λ-distribution with parameters λ1 = 0,

λ2 = −1, λ3 = −0.001 and λ4 = −0.13.

(P5) Yt = 0.5Yt−1 exp(−0.5Y 2
t−1) + εt with εt ∼ i.i.d. χ2

(2).

(P6) Yt = |Yt−1|0.8 + εt with εt ∼ i.i.d. exp(N(0, 1)).

(P7) Yt = −Yt−1/(1 + Y 2
t−1) + εt with εt ∼ i.i.d. − ln(U(0, 1)).

(P8) Yt = Xt −Xt−1 with Xt ∼ i.i.d. χ2
(2).

(P9) Yt = Xt −Xt−1 with Xt ∼ i.i.d. − ln(U(0, 1)).

(P10) Yt = 1 + εt, where εt = σtet, σ2
t = φ0 + φ1σ

2
t−1 + φ2ε

2
t−1, et ∼ i.i.d. asymmetric

λ-distribution with parameters λ1 = 0, λ2 = −1, λ3 = −0.0001 and λ4 = −0.17.; φ0 = 2,

φ1 = 0.5 and φ2 = 0.3 (P10.1); φ0 = 2, φ1 = 0.9 and φ2 = 0.05 (P10.2).

All designs except (S7), (S9), (P5)-(P7) are based on or slightly modified from those in

Delgado and Escanciano (2007). The λ values in designs (P4) and (P10) are taken from Ran-

dles et al. (1980). Design (S7) is a quadratic AR(1) time series model considered in Hyndman

and Yao (2002), which by construction is a nonlinear autoregressive model of order 1 too. It

is interesting to notice that in this design the conditional distribution of Yt given It = Yt−m is

symmetric for m = 1 but not necessarily so for m > 1. In this case, the conditional center of
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symmetry is the quadratic function m(x) = 0.23x(16− x). Designs (P5)-(P7) are included to

study the effects of nonlinear location functions under the alternatives. We also study the gen-

eralized autoregressive conditional heteroskedastic model of Bollerslev (1986), especially the

GARCH(1,1) model, in designs (S8) and (P10). Two different sets of parameters are consid-

ered, among which the choice (φ0, φ1, φ2) = (2, 0.9, 0.05) is close to being an IGARCH(1,1)

model. It is interesting to remark that, under the alternatives in designs (P8) and (P9), uncondi-

tional symmetry is satisfied, but conditional symmetry does not hold. All parameter combina-

tions considered were selected to make the results of our study comparable with those obtained

by Delgado and Escanciano (2007), whenever this is possible.

In design (S9), we consider a new model for autoregressive conditional heteroskedasticity

and kurtosis proposed by Brooks et al. (2005), where the conditional variance and conditional

kurtosis are permitted to evolve separately through a time-varying degrees of freedom param-

eter. Notice that the last terms in the conditional variance and conditional kurtosis equations

permit the next period values of these quantities to have asymmetric responses to the signs of

the realized innovations from the previous period, in the style of Glosten et al (1993). The

design (S9) is a design that specifically allows for the time-varying conditional higher order

moments, e.g. conditional kurtosis, through an autoregressive fashion. Unlike all the other

designs, where E(ε4
t |It) equals to a constant, for design (S9), we have that E(ε4

t |It) = g(It) is

not constant, i.e. g(It) a non-degenerate function. See also the closely related autoregressive

conditional skewness model developed in Harvey and Siddique (1999, 2000) where E(ε3
t |It) is

allowed to be time-varying.

Three sample sizes, n=50, 100, 200 are considered in the simulation study. For each design,

we first generate n + 200 observations and then discard the first 200 observations to minimize

the initial value effect. The Monte Carlo experiments are based on 500 replications and the

bootstrap critical values are approximated by B = 500 bootstrap replications. We only report

results for the nominal size of 5%. Results for the other nominal sizes are available from

the authors upon request. Standard normal density is used as our kernel function K. In all

the simulations, we have adopted bandwidth of the form h = c × n−0.2 as in the univariate
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nonparametric estimation and we choose optimal bandwidth h∗ for estimation (however, not

for testing) according to the rule-of-thumb suggestion of Bowman and Azzalini (1997). That

is, optimal bandwidth h∗ = c∗×n−0.2 is calculated by h1 = median(|x−median(x)|)/0.6745×

(4/3/n)0.2, h2 = median(|y − median(y)|)/0.6745 × (4/3/n)0.2 and h∗ =
√
h1 × h2, so that

optimal c∗ is implicitly decided.

Tables 1 and 2 report the percentage of rejections for designs (S1)-(S9). They show fairly

accurate size properties of our proposed tests CvMn and KSn with the exception of desgin

(S9), where both tests appear to have an over-sized problem. It will require relatively large

sample size to guarantee good size performance in the case of time varying conditional kurtosis.

As a matter of fact, when sample size reaches 300, the empirical sizes for both tests are already

very close to the nominal size 5%. In Tables 3 and 4 we report the empirical power performance

against the alternatives (P1)-(P10). In summary, the proposed tests CvMn and KSn, both

implemented with the wild bootstrap procedure suggested in Section 5, perform quite well in

terms of empirical size and empirical power and are preserving the intrinsic advantage of robust

to various kinds of parametric specification for the location.

2.7 Application to Stock Indices

In this section, we revisit the real problem of asymmetric behaviour for stock returns. That is,

we shall apply the proposed test to investigate whether losses are more likely than gains given

the available information in stock markets.

Four important stock indices across the world including both developed and emerging mar-

kets, namely S&P 500 index, FTSE 100 index, Nikkei 225 index and Shanghai A-Share index,

which represent very distinct maturity and regulation conditions of the corresponding stock

market, are considered. The four indices series are collected using daily data from 1 January

2001 to 31 December 2004 with a total of 1045 observations after deleting all public holidays

and non-trading days. Returns series are calculated by rit = log(Pit/Pi,t−1) × 100%, where

Pit denotes the time series sequence for any of the four stock indices with i = 1 denoting S&P
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500, i = 2 FTSE 100, i = 3 Nikkei 225, and i = 4 Shanghai A-Share. Figure 1 provides plots

for both time series of the indices and returns. Table 5 reports some descriptive statistics for

the returns series. The augmented Dickey-Fuller test for the indices indicates that there exists

a unit root in all three index series but not in their returns series. All four returns series exhibit

the well-recorded stylized facts of volatility clustering and high kurtosis indicating the exis-

tence of fat tails, and hence all of these returns are highly leptokurtic. For example, the returns

series from the Shanghai A-Share index has an excess kurtosis more than 7. However, con-

clusions drawn from information about the skewness coefficients are somewhat mixed. S&P

500 returns and Shanghai returns are positively skewed and the other two returns series are

negatively skewed. Surprisingly, the skewness coefficient of Shanghai A-Share is more than

0.8 in sharp comparison to the magnitudes of the other series, while Nikkei 225 only has a

slightly negative skewness coefficient. We therefore suspect our tests can detect this abnormal

behaviour in Shanghai A-Share. Moreover, Jarque-Bera test statistics indicate that they are

highly non-normal. We also plot the kernel density estimates for the four returns series (but

not reported here). Judging from the (unconditional) density plots, we find that, although they

are highly unlikely to be normally distributed, they all appear to be unconditionally symmetric

except returns from Shanghai index. But as we have demonstrated, unconditional symmetry

does not necessarily imply conditional symmetry.

We shall focus on the case where only the first lagged value will predict the stock returns,

i.e. the returns series follow a Markov structure of order one. Specifically, we consider the

following nonlinear autoregressive process of order 1, NLAR(1),

rit = m(ri,t−1) + εt, , i = 1, 2, 3, 4.

We are of interest to test whether rit, for i = 1, . . . , 4, is symmetric around the unknown center

m(ri,t−1) given the information ri,t−1, at the significance level 5%. Apart from the proposed

two-sided tests of CvMn and KSn, we also implement two one-sided tests of the Kolmogorov-

Smirnov-type to determine whether the conditional distribution is skewed to the right or to the
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left, which are given by

KS+
n = sup

(v,u)∈Rp+1

(√
nSn(v, u)

)
in order to test the null hypothesis of conditional symmetry against the one-sided alternatives

skewing to the right, and

KS−n = sup
(v,u)∈Rp+1

(
−
√
nSn(v, u)

)
in order to test conditional symmetry against the one-sided alternatives skewing to the left.

In Table 6, we summarize the results from the tests CvMn, KSn, KS+
n and KS−n assisted

with the help of the wild bootstrap procedure proposed in Section 5. The implementation

is as in the Monte Carlo simulations part. To facilitate interpretations we present both the

bootstrapped critical values and bootstrapped p-values for the four returns series. We observe

that, for returns from S&P 500, FTSE 100 and Nikkei 225, both two-sided tests CvMn and

KSn fail to reject the hypothesis of conditional symmetry. Results support the conclusion that

losses are equally likely than gains given the information of previous period returns for these

three stock markets. These findings are further confirmed by the one-sided tests of KS+
n and

KS−n . On the other hand, there is a strong indication of conditional asymmetric behaviour for

returns from Shanghai A-Share stock market. Moreover, one-sided test KS−n suggests that the

conditional distribution of r4t given r4,t−1 is skewed to the left, indicating that losses are more

likely than gains in Chinese’s stock market.

2.8 Conclusions

In this paper we have investigated a useful model specification tool for nonparametric innova-

tions in a dynamic context, i.e. the symmetry of conditional distributions around a nonpara-

metric location function. Therefore, the (conditional) center is not parametrically specified and

robust to the misspecifcation of the regression function. Test statistics of Cramér-von Mises-
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type and Kolmogorov-Smirnov-type are proposed. They are able to detect nonparametric alter-

natives converging to the null hypothesis at the parametric rate
√
n, where n is the sample size.

A wild bootstrap procedure is suggested to obtain the critical values and the validity of the re-

sulting bootstrap assisted test is formally justified. Extensive Monte Carlo simulation indicates

that the proposed tests work very well in fairly small sample sizes. An empirical application is

conducted to examine whether losses are more likely that gains given the available information

in four major stock markets.
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Table 2.1: Empirical size of CvMn at 5%

h = c∗ × n−0.2

(S1) (S2) (S3) (S4) (S5) (S6) (S7) (S8.1) (S8.2) (S9)

n = 50 5.2 5.7 4.5 5.3 7.7 5.5 5.7 4.2 6.0 9.4

n = 100 5.1 5.1 4.0 6.4 7.0 6.8 6.9 5.8 6.4 10.8

n = 200 5.1 5.7 4.8 5.9 6.5 4.9 6.0 6.2 6.6 8.8

Table 2.2: Empirical size of KSn at 5%

h = c∗ × n−0.2

(S1) (S2) (S3) (S4) (S5) (S6) (S7) (S8.1) (S8.2) (S9)

n = 50 4.0 4.8 2.8 3.6 6.4 5.0 5.6 3.8 4.8 7.0

n = 100 5.4 4.0 3.4 5.4 5.8 5.4 6.8 4.8 4.8 8.8

n = 200 4.6 6.0 3.6 3.4 6.0 7.4 5.2 4.0 5.4 8.8
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Table 2.3: Empirical power of CvMn at 5%

h = c∗ × n−0.2

(P1) (P2) (P3) (P4) (P5) (P6) (P7) (P8) (P9) (P10.1) (P10.2)

n = 50 93.1 99.0 92.2 96.0 91.8 98.3 86.3 41.4 39.2 96.8 97.4

n = 100 99.9 100.0 100.0 100.0 99.9 100.0 99.6 68.6 71.2 100.0 100.0

n = 200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 94.6 96.6 100.0 100.0

Table 2.4: Empirical power of KSn at 5%

h = c∗ × n−0.2

(P1) (P2) (P3) (P4) (P5) (P6) (P7) (P8) (P9) (P10.1) (P10.2)

n = 50 89.0 98.2 88.4 93.6 88.0 97.4 86.6 47.4 46.6 93.8 95.4

n = 100 100.0 100.0 99.4 99.8 100.0 100.0 99.2 77.6 80.6 100.0 100.0

n = 200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.8 99.0 100.0 100.0
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Figure 2.1: Time series plots for stock indices and returns
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Table 2.5: Descriptive statistics for stock returns

01/01/2001-31/12/2004

S&P 500 FTSE 100 Nikkei 225 Shanghai

Mean -0.0001 -0.0002 -0.0002 -0.0007

Std 0.0122 0.0128 0.0149 0.0129

Skewness 0.1740 -0.1536 -0.0151 0.8052

Kurtosis 5.0627 5.9779 4.4240 10.1822

JB 190.3467 389.8607 88.2508 2356.7000

(0.0000) (0.0000) (0.0000) (0.0000)

ADF -33.5576 -34.3813 -33.3503 -31.8028

(0.0000) (0.0000) (0.0000) (0.0000)

Note: ADF denotes the augmented Dickey-Fuller test, e.g. Said and Dickey (1984). JB denotes the

Jarque-Bera test for normality proposed by Jarque and Bera (1980). p-values are reported in

parentheses.
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Table 2.6: Conditional symmetry tests for stock returns

S&P 500 FTSE 100 Nikkei 225 Shanghai

Statistics p-values Statistics p-values Statistics p-values Statistics p-values

CvMn 0.1864 0.1140 0.1936 0.1470 0.0727 0.6480 0.5327 0.0490

(0.2601) (0.3073) (0.2787) (0.5251)

KSn 1.2386 0.2870 1.7959 0.0840 1.1457 0.5450 2.8797 0.0160

(1.7340) (2.0127) (2.1830) (2.5081)

KS+
n 0.8051 0.4880 0.6193 0.6600 1.1457 0.2240 0.9908 0.5930

(1.6721) (1.8578) (1.8424) (2.3223)

KS−n 1.2386 0.1290 1.7959 0.0450 0.5574 0.8520 2.8797 0.0020

(1.5482) (1.7650) (2.0746) (2.1520)

Note: Bootstrapped critical values at level 5% are reported in parentheses.
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2.10 Appendix A

We provide the proofs of the main theoretical results in this appendix. Denote F̂ε(v) =

n−1
∑n

t=1 1(εt ≤ v) and F̂ε̂(v) = n−1
∑n

t=1 1(ε̂t ≤ v). The following lemmas are needed

to establish the asymptotic theory for Sn(v, u).

Lemma A.1: Under Assumptions A.1’-A.6, then,

‖m̂−m‖p+α = op(1),

where 0 < α < δ/2, δ is defined as in Assumption A.5, and where for any function f defined

on Rp,

‖f‖p+α = max
k.≤p

sup
u
|Dkf(u)|+ max

k.=p
sup
u,u′

|Dkf(u)−Dkf(u′)|
‖u− u′‖α

with k = (k1, . . . , kp),

Dk =
∂k.

∂uk11 · · · ∂u
kp
p

,

k. =
∑p

j=1 kj , and ‖ · ‖ is the Euclidean norm on Rp.

Proof of Lemma A.1: It follows from Theorem 8 in Hansen (2008) or Theorem 1 in Kristensen

(2009) that

sup
u
|m̂(u)−m(u)| = Op((nh

p)−1/2(log n)1/2) +O(hL),

which is op(1) by Assumption A.5.

On the basis of this result it can be shown that for k. ≤ p,

sup
u

∣∣Dkm̂(u)−Dkm(u)
∣∣ = Op((nh

p+2k.)−1/2(log n)1/2) +O(hL−k.) = op(1),

and for k. = d,

sup
u,u′

|Dkm̂(u)−Dkm(u)−Dkm̂(u′) +Dkm(u′)|
‖u− u′‖α

= Op((nh
3p+2α)−1/2(log n)1/2) +O(hL−p−α) = op(1),
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See Proposition 3.2 and Theorem 3.2 in Ojeda (2008) for a detailed proof for the case p = 1.

For the p ≥ 2 case, the proof is similar but more technical, see also Masry (1996) and Hansen

(2008). The rest of the proof is therefore omitted. �

Lemma A.2: Under Assumptions A.1’-A.6,

sup
v

∣∣∣F̂ε̂(v)− F̂ε(v)− Fε̂(v) + Fε(v)
∣∣∣ = op(n

−1/2),

and

sup
v,u

∣∣∣∣∣ 1n
n∑
t=1

[1(ε̂t ≤ v)− 1(εt ≤ v)− Fε̂(v) + Fε(v)] [1(It ≤ u)− FI(u)]

∣∣∣∣∣ = op(n
−1/2),

where Fε̂(v) is the distribution of residuals ε̂ = Y − m̂(I) conditional on the data {Yt, It}nt=1,

i.e., considering m̂ as a fixed function, and where Fε(v) is the distribution of errors ε = Y −

m(I).

Proof of Lemma A.2: The proof is similar to that of Lemma 1 in Akritas and Van Keilegom

(2001). We will show the first statement. The second one can be proved in a similar way. The

first statement above can be expressed as the following:

F̂ε̂(v)− F̂ε(v)− Fε̂(v) + Fε(v)

=
1

n

n∑
t=1

{1(ε̂t ≤ v)− 1(εt ≤ v)− P (ε̂ ≤ v|(Y, I)) + P (ε ≤ v)}

=
1

n

n∑
t=1

{1(εt ≤ v + dn(It))− 1(εt ≤ v)− P (ε ≤ v + dn(I)) + P (ε ≤ v)}

where dn(It) = m̂(It) −m(It). We will focus our attention on 1(εt ≤ v + dn(It)) − 1(εt ≤

v)− P (ε ≤ v + dn(I)) + P (ε ≤ v). The following proof is mostly based on results from van

der Vaart and Wellner (1996). Let

F = {(u, e)→ 1(e ≤ v + d(u))− 1(e ≤ v)− P (ε ≤ v + d(u)) + P (ε ≤ v);

−∞ < v <∞, d ∈ Cp+α(RI)},
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where Cp+α(RI) is the class of p-times-differentiable functions d defined on support RI of I

such that ‖d‖p+α ≤ 1 with ‖d‖p+α defined in Lemma A.1. First notice that Lemma A.1 implies

that P (dn ∈ Cp+α(RI)) → 1 as n → ∞ with dn(u) = m̂(u) − m(u). It follows that it

suffices to show that the class F is Donsker, i.e. we will establish the weak convergence of

n−1/2
∑n

t=1 f(εt, It), f ∈ F , and that the variance of 1(ε ≤ v + dn(I)) − 1(ε ≤ v) − P (ε ≤

v + dn(I)) + P (ε ≤ v) tends to zero, uniformly in v.

In a first step, we will show that the class F is Donsker. According to Theorem 2.10.6

in van der Vaart and Wellner (1996), we can deal with the four terms in the definition of F

separately. It suffices to prove that the class

F1 = {(u, e)→ 1(e ≤ v + d(u));−∞ < v <∞, d ∈ Cp+δ(RI)}

is Donsker, since the other terms are similar, but much easier. This is done by verifying the

condition of Theorem 2.5.6 in van der Vaart and Wellner (1996):

∫ ∞
0

√
logN[ ](ε̄,F1, L2(P )) dε̄ <∞,

where N[ ](ε̄,F1, L2(P )) is the ε̄2-bracketing number of the class F1, i.e., the smallest number

of balls of L2(P )-radius ε̄ needed to cover F1, P is the probability measure corresponding to

the joint distribution of (ε, I), and where L2(P ) is the L2-norm. To this end, by Theorem 2.7.1

of van der Vaart and Wellner (1996), for any ε̄ > 0, the ε̄2-bracketing numbers of the class

Cp+α(RI) are bounded by

m = N[ ](ε̄
2, Cp+α(RI), L2(P )) ≤ exp(Kε̄−2p/(p+α)),

where K > 0. Let dL1 ≤ dU1 , . . . , d
L
m ≤ dUm be the functions defining the m brackets for

Cp+α(RI). For each d and each fixed v, we have:

1(ε ≤ v + dLi (I)) ≤ 1(ε ≤ v + d(I)) ≤ 1(ε ≤ v + dUi (I)).
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Define FL
i (v) = P (ε ≤ v + dLi (I)) and let −∞ = vLi1 < vLi2 < . . . < vLi,mL = ∞ (mL =

O(ε̄−2)) partition the line in segments having FL
i -probability less than or equal to a fraction of

ε̄2.

Similarly, define FU
i (v) = P (ε ≤ v + dUi (I)) and let −∞ = vUi1 < vUi2 < . . . < vUi,mU =∞

(mU = O(ε̄−2)) partition the line in segments having FU
i -probability less than or equal to a

fraction of ε̄2. Now define the following bracket for v:

vLik1 ≤ v ≤ vUik2 ,

where vLik1 is the largest of the vLik with the property of being less than or equal to v and vUik2 is

the smallest of the vUik with the property of being greater than or equal to v. We will show that

1(ε ≤ vLik1 + dLi (I)) ≤ 1(ε ≤ v + d(I)) ≤ 1(ε ≤ vUik2 + dUi (I)).

Since we have

‖1(ε ≤ vUik2 + dUi (I))− 1(ε ≤ vLik1 + dLi (I))‖2
2

= FU
i (vUik2)− F

L
i (vLik1)

= FU
i (v)− FL

i (v) +Kε̄2,

and also by applying a Taylor expansion to the function Fε we get

FU
i (v)− FL

i (v)

=

∫
[Fε(v + dUi (u))− Fε(v + dLi (u))] dFI(u)

=

∫
fε(v + d̄(u))[dUi (u)− dLi (u)] dFI(u),

where d̄(u) is between dUi (u) and dLi (u), the above expression is bounded in absolute value

by K1‖dUi − dLi ‖P,1 ≤ K1ε̄
2. Hence, for the class F1 and for each ε̄ > 0, we have at most

O(ε̄−2exp(Kε̄−2p/(p+α))) brackets in total. However, for ε̄ > 1, one bracket is enough. So we
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have, ∫ ∞
0

√
logN[ ](ε̄,F1, L2(P )) dε̄ <∞.

This shows that the class F1 (and hence F ) is Donsker.

Next, we show that the variance of 1(ε ≤ v+dn(I))−1(ε ≤ v)−P (ε ≤ v+dn(I))+P (ε ≤

v) tends to zero, uniformly in v. We calculate

Var(1(ε ≤ v + dn(I))− 1(ε ≤ v)− P (ε ≤ v + dn(I)) + P (ε ≤ v))

= Var(1(ε ≤ v + dn(I))− 1(ε ≤ v))

≤ E[E({1(ε ≤ v + dn(I))− 1(ε ≤ v)}2|(Y, I))]

= E[Fε(v + dn(I))− Fε(min(v, v + dn(I)))]

+ E[Fε(v)− Fε(min(v, v + dn(I)))]

= E [fε(v + θdn(I))|dn(I)|] ,

for some 0 < θ < 1 by Taylor expansion of Fε. By Assumption A.7, sup
−∞<v<∞

fε(v) ≤ C <∞,

the above expression is bounded by

CE|dn(I)| ≤ C‖m̂(u)−m(u)‖p+α →p 0

by Lemma A.1. Since the class F is Donsker, it follows from Corollary 2.3.12 in van der Vaart

and Wellner (1996) that

lim
δ↓0

lim sup
n→∞

P

(
sup

f∈F ,Var(f)<δ

1√
n

∣∣∣∣∣
n∑
t=1

f(εt, It)

∣∣∣∣∣ > ε̄

)
= 0

for every ε̄ > 0 By restricting the supremum inside this probability to the elements in F

corresponding to d(I) = dn(I) as defined above, the result follows. �

Lemma A.3: Under Assumptions A.1’-A.6,

sup
v

∣∣∣F̂−ε̂(v)− F̂−ε(v)− F−ε̂(v) + F−ε(v)
∣∣∣ = op(n

−1/2),
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and

sup
v,u

∣∣∣∣∣ 1n
n∑
t=1

[1(−ε̂t ≤ v)− 1(−εt ≤ v)− F−ε̂(v) + F−ε(v)] [1(It ≤ u)− FI(u)]

∣∣∣∣∣
= op(n

−1/2),

where F̂−ε̂(v) and F−ε̂(v) are defined in a similar way to F̂ε̂(v) and Fε̂(v) in Lemma A.2.

Proof of Lemma A.3: The proof of Lemma A.3 is identical to that of Lemma A.2 simply with

ε replaced by −ε and ε̂ replaced by −ε̂, and is therefore omitted. �

In the sequel, denote x = (v, u) ∈ Rp+1. Notice that Sn(x) = S0
n(x) +Wn(x) with

Wn(x) =
1

n

n∑
t=1

[ω̂t(v)− ωt(v)] 1(It ≤ u).

We further can decompose Wn(x) into the following six components,

Wn(x) := (Wn1(x) +Wn2(x) +Wn3(x))− (Wn4(x) +Wn5(x) +Wn6(x))

with

Wn1(x) = FI(u)
1

n

n∑
t=1

[1(ε̂t ≤ v)− 1(εt ≤ v)− Fε̂(v) + Fε(v)] ,

Wn2(x) =
1

n

n∑
t=1

[1(ε̂t ≤ v)− 1(εt ≤ v)− Fε̂(v) + Fε(v)] [1(It ≤ u)− FI(u)] ,

Wn3(x) =
1

n

n∑
t=1

[Fε̂(v)− Fε(v)] 1(It ≤ u),
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Wn4(x) = FI(u)
1

n

n∑
t=1

[1(−ε̂t ≤ v)− 1(−εt ≤ v)− F−ε̂(v) + F−ε(v)] ,

Wn5(x) =
1

n

n∑
t=1

[1(−ε̂t ≤ v)− 1(−εt ≤ v)− F−ε̂(v) + F−ε(v)] [1(It ≤ u)− FI(u)] ,

and

Wn6(x) =
1

n

n∑
t=1

[F−ε̂(v)− F−ε(v)] 1(It ≤ u).

Lemma A.4 below establishes the asymptotic behaviour of Wnj(x) for j = 1, . . . , 6. It

turns out that
√
nWnj(x) for j = 1, 2, 4, 5 is asymptotically negligible uniformly in x, while

both
√
nWn3(x) and

√
nWn6(x) admit an asymptotic representation composed of true errors

εt.

Lemma A.4: Assume A.1’-A.6, uniformly in x ∈ Rp+1,

Wnj(x) = op(n
−1/2), j = 1, 2, 4, 5,

Wn3(x) = fε(v)
1

n

n∑
t=1

(Yt −m(It))1(It ≤ u) + op(n
−1/2),

and

Wn6(x) = −fε(−v)
1

n

n∑
t=1

(Yt −m(It))1(It ≤ u) + op(n
−1/2).

Proof of Lemma A.4: This first statement follows directly from Lemma A.2 and Lemma A.3.

We now prove the second statement. Using ε̂t = εt−(m̂(It)−m(It)),Wn3(x) can be rewritten
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as

Wn3(x) =
1

n

n∑
t=1

[Fε (v + m̂(It)−m(It))− Fε (v)] 1(It ≤ u),

by Taylor expansion of Fε, we get

Wn3(x) =fε(v)
1

n

n∑
t=1

(m̂(It)−m(It)) 1(It ≤ u)

+
1

n

n∑
t=1

1

2
f ′ε(v̄) (m̂(It)−m(It))

2 1(It ≤ u)

where v̄ is between v + m̂(It) −m(It) and v, and v̄ may depend on It. By Assumption A.6,

f ′ε(v) is uniformly bounded, the second term above is bounded by

C · 1

n

n∑
t=1

(m̂(It)−m(It))
2 ,

which is the the mean square errors (MSE) of the Nadaraya-Watson estimator m̂(It) for m(It).

It is standard to establish that MSE of m̂ is Op((1/
√
nhp + hL)2) = op(n

−1/2) from Assump-

tions A.3-A.5, e.g. Masry (1996) or more recently Hansen (2008). Therefore,

Wn3(x)

=fε(v)
1

n

n∑
t=1

(Yt −m(It))1(It ≤ u)− fε(v)
1

n

n∑
t=1

(Yt − m̂(It))1(It ≤ u) + op(n
−1/2),

where the second term above is op(n−1/2) uniformly in x according to Lemma B.2 and As-

sumption A.6.

The third statement can be proved in a similar way. Since

Wn6(x) = − 1

n

n∑
t=1

[Fε (−v + m̂(It)−m(It))− Fε (−v)] 1(It ≤ u),

the same reasoning as for Wn3(x) applies. Hence, we finish the proof. �
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Proof of Theorem 1: It is omitted. See the proof of Theorem A.1 and Theorem 1 in Delgado

and Escanciano (2007). �

Proof of Theorem 2: Its proof consists of applying Lemma A.4 and the decomposition that

Sn(x) = S0
n(x) +Wn(x). �

Proof of Theorem 3: Notice that under the local alternatives in (2.4),

E(ωt(v)|It)

=E(1(εt ≤ v)|It)− 1 + E(1(εt ≤ −v)|It)

=

∫ ∞
−∞

1(v̄ ≤ v)f (n)(v̄|It) dv̄ − 1 +

∫ ∞
−∞

1(v̄ ≤ −v)f (n)(v̄|It) dv̄

=
1√
n

[∆(v, It)−∆(∞, It) + ∆(−v, It)]

=
At(v)√

n

where At(v) = ∆(v, It)−∆(∞, It) + ∆(−v, It), and

∆(v, It) =

∫ v

−∞
f(v̄|It)δn(v̄, It) dv̄,

and the second equality follows by the symmetry of the density function f(v|u) and the speci-

fication of local alternatives in (2.4).

Thus, we can rewrite

√
nSn(x)

=
1√
n

n∑
t=1

{
ωt(v)− At(v)√

n
+ ω̂t(v)− ωt(v) +

At(v)√
n

}
1(It ≤ u)

:=
√
nS̃n(x) + An1(x) + An2(x), (2.6)

where again ω̂t(v) = 1(ε̂t ≤ v)− 1(−ε̂t ≤ v),

√
nS̃n(x) =

1√
n

n∑
t=1

{
ωt(v)− At(v)√

n

}
1(It ≤ u),
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An1(x) =
1√
n

n∑
t=1

[ω̂t(v)− ωt(v)] 1(It ≤ u),

and

An2(x) =
1

n

n∑
t=1

At(v)1(It ≤ u).

Let’s first establish the asymptotic behaviour of
√
nS̃n. It is easy to see that the term{

ωt(v)− n−1/2At(v)
}

1(It ≤ u) is a zero mean square-integrable martingale difference se-

quence with respect to the filtration Ft for each (v, u). Thus, by Theorem A.1 in Delgado and

Escanciano (2007), we can obtain
√
nS̃n ⇒ S∞

in l∞(Rp+1
).

Similar to the arguments in Lemma A.4, we can show that, uniformly in x,

An1(x) = (fε(v) + fε(−v))
1√
n

n∑
t=1

[Yt −m(It)]1(It ≤ u) + op(1).

On the other hand, uniformly in x,

An2(x) =
1

n

n∑
t=1

At(v)1(It ≤ u)

= E (A1(v)1(I1 ≤ u)) + op(1)

= Ξ(v, u)− Ξ(∞, u) + Ξ(−v, u) + op(1)

:= Ξ1(v, u) + op(1),

where the second equality follows by the uniform ergodic theorem (UET) for stationary and

ergodic sequences, see e.g. Dehling and Philipp (2002, p. 4), and where Ξε(u, v) is given by

Ξ(u, v) =

∫ v

−∞
E[f(v̄|I1)δn(v̄, I1)1(I1 ≤ u)] dv̄.
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Thus, uniformly in (v, u), we have

√
nSn(v, u) =

√
nS̃n(v, u) + (fε(v) + fε(−v))

1√
n

n∑
t=1

εt1(It ≤ u) + Ξ1(v, u) + op(1),

where Ξ1(v, u) = Ξ(v, u) − Ξ(∞, u) + Ξ(−v, u) is a deterministic shift function. So, by

Slutsky’s theorem,
√
nSn converges weakly to S1

∞+Ξ1 in l∞(Rp+1
) under the local alternatives

HAn in (2.4). Hence, we finish the proof of Theorem 3. �

Proof of Theorem 4: Denote ω∗t (v) = 1(ε∗t ≤ v)− 1(−ε∗t ≤ v) with ε∗t = vtε̂t, where {vt}nt=1

is a sequence of random variables with zero mean and unit variance and also independent of

the original sample. As before, we first decompose
√
nS∗n in the following way,

√
nS∗n(x)

=
1√
n

n∑
t=1

ω∗t (v)1(It ≤ u) +
1√
n

n∑
t=1

[ω̂∗t (v)− ω∗t (v)] 1(It ≤ u)

:=
√
nS∗n1(x) +

√
nS∗n2(x).

First of all, for term
√
nS∗n2(x), we decompose

√
nS∗n2(x) = (B∗n1(x) +B∗n2(x) +B∗n3(x))− (B∗n4(x) +B∗n5(x) +B∗n6(x)),

where

B∗n1(x) = FI(u)
1√
n

n∑
t=1

[1(ε̂∗t ≤ v)− 1(ε∗t ≤ v)− Fε̂∗(v) + Fε∗(v)] ,

B∗n2(x) =
1√
n

n∑
t=1

[1(ε̂∗t ≤ v)− 1(ε∗t ≤ v)− Fε̂∗(v) + Fε∗(v)] [1(It ≤ u)− FI(u)] ,
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B∗n3(x) =
1√
n

n∑
t=1

[Fε̂∗(v)− Fε∗(v)] 1(It ≤ u),

B∗n4(x) = FI(u)
1√
n

n∑
t=1

[1(−ε̂∗t ≤ v)− 1(−ε∗t ≤ v)− F−ε̂∗(v) + F−ε∗(v)] ,

B∗n5(x) =
1√
n

n∑
t=1

[1(−ε̂∗t ≤ v)− 1(−ε∗t ≤ v)− F−ε̂∗(v) + F−ε∗(v)] [1(It ≤ u)− FI(u)] ,

and

B∗n6(x) =
1√
n

n∑
t=1

[F−ε̂∗(v)− F−ε∗(v)] 1(It ≤ u).

Using the same arguments as in Lemma A.4, we can show

sup
x
|B∗nj(x)| = op(1),

for j = 1, 2, 4, 5, and conditional on the original sample {Yt, It}nt=1,

B∗n3(v, u) = fε∗(v)
1√
n

n∑
t=1

ε∗t1(It ≤ u)

and

B∗n6(v, u) = −fε∗(−v)
1√
n

n∑
t=1

ε∗t1(It ≤ u).

On the other hand, for the first term S∗n1, we only have to show that
√
nS∗n1 ⇒ S∞ in

probability conditional on the original sample. That is, we show that the finite-dimensional

distributions of
√
nS∗n1 converge (conditional on the original sample) to those of S∞ in proba-

bility for all samples and it is asymptotically tight in probability. To this end, let’s consider a

finite set of points (u1, v1), . . . , (ur, vr) and a real vector λ = (λ1, . . . , λr)
′ with |λ| = 1. We
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define

Z∗n,r =
1√
n

n∑
t=1

r∑
j=1

λjω
∗
t (vj)1(It ≤ uj) ≡

n∑
t=1

ξr∗n,t.

We notice that, conditional on the original sample {Yt, It}nt=1, the array of random variables ξr∗n,t

is an independent (however, not necessarily identically distributed) array of random variables.

Denote by E∗ and V∗ the expectation and the variance, respectively, given the sample

{Yt, It}nt=1. We have

E∗
(
Z∗n,r

)
= E∗

(
n∑
t=1

ξr∗n,t

)
=

1√
n

n∑
t=1

r∑
j=1

λjE∗(ω∗t (vj))1(It ≤ uj) = 0,

and

V∗
(
Z∗n,r

)
= V∗

(
n∑
t=1

ξr∗n,t

)

=
n∑
t=1

V ∗(ξr∗n,t)

=
r∑
j=1

r∑
h=1

λjλh

(
1

n

n∑
t=1

E∗(ω∗t (vj)ω∗t (vh))1(It ≤ uj)1(It ≤ uh)

)

=
r∑
j=1

r∑
h=1

λjλh

(
1

n

n∑
t=1

ω̂t(vj)ω̂t(vh)1(It ≤ uj)1(It ≤ uh)

)

:=σ̂2
h,r

→pσ
2
h,r :=

r∑
j=1

r∑
h=1

λjλhE (ωt(vj)ωt(vh)1(It ≤ uj)1(It ≤ uh)) ,

where σ2
h,r is the covariance function of S∞. Notice that the last result follows immediately by

Lemma B.3. Besides σ̂2
h,r →p σ

2
h,r, we can also show that

∑n
t=1 E∗

(
|ξr∗n,t|21(|ξr∗n,t| > δ)

)
→p 0

for some positive constant δ, see Stute et al. (1998, p. 149). By Lindeberg-Feller’s central

limit theorem, conditional on almost all samples,
∑n

t=1 ξ
r∗
n,t =⇒∗ N(0, σ2

h,r) in probability. The

asymptotic uniform equicontinuity in probability in all samples follows directly from Theorem

2.11.9 in van der Vaart and Wellner (1996) or from Theorem A.1 in Delgado and Escanciano

(2007). �
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2.11 Appendix B

The first lemma from Yoshihara (1976) is needed to prove Lemma B.2. Its proof is omitted.

Lemma B.1: Let {Ut}, t = 1, . . . , T , be a d-dimensional strictly stationary absolutely regular

stochastic process with mixing coefficient β(k). Let t1 < · · · < tk be integers. Let F (i, j),

i ≤ j, be the distribution function of Uti , . . . , Utj . Let h(φ) := h(φ1, . . . , φk) be a Borel-

measurable function on Rkd such that for some δ > 0 and given j, there exists

M ≡
∫
|h(φ)|1+δ dF (1, j)dF (j + 1, k) <∞

Then,

∣∣∣∣∫ h(φ) dF (1, k)−
∫
h(φ) dF (1, j)dF (j + 1, k)

∣∣∣∣ ≤ 4M1/(1+δ)β(l)δ/(1+δ),

where l = tj+1 − tj .

The next lemma establishes a result useful to prove the main asymptotic theory.

Lemma B.2: Under Assumptions A.1’-A.6,

sup
u

∣∣∣∣∣ 1n
n∑
t=1

(Yt − m̂(It)) 1(It ≤ u)

∣∣∣∣∣ = op(n
−1/2).

Proof of Lemma B.2: First noticing that

1√
n

n∑
t=1

(Yt − m̂(It)) 1(It ≤ u) =
1√
n

n∑
t=1

(
(Yt − m̂(It)) f̂I(It)

) 1(It ≤ u)

f̂I(It)
.

Now substituting Nadaraya-Watson kernel estimators m̂(It) and f̂I(It) into the above expres-
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sion, we have

1

n(n− 1)

n∑
t=1

n∑
s 6=t

1

hp
K

(
It − Is
h

)
(Yt − Ys)

1(It ≤ u)

f̂I(It)

=
1

n(n− 1)

n∑
t=1

n∑
s 6=t

1

hp
K

(
It − Is
h

)
(Yt − Ys)

1(It ≤ u)

fI(It)

+
1

n(n− 1)

n∑
t=1

n∑
s 6=t

1

hp
K

(
It − Is
h

)
(Yt − Ys)

1(It ≤ u)

fI(It)

(
fI(It)

f̂I(It)
− 1

)

:=Dn1(u) +Dn2(u).

Following Stute (1994) or Delgado and González-Manteiga (2001), Dn1 and Dn2 are two U -

processes indexed by u. Applying standard techniques from the theory of U -statistics, we will

show that Dn1 = op(1) and Dn2 = op(1) uniformly in u. Here we only prove Dn1 = op(1), the

proof of Dn2 is similar but easier by noticing that f̂I is a strongly consistent estimator of fI .

We can rewrite Dn1 as a U -statistic. To this end, letWt = (Yt, It) and introduce kernel

U(Wt,Ws) =
1

2

[
1

hp
K

(
It − Is
h

)
(Yt − Ys)

1(It ≤ u)

fI(It)

+
1

hp
K

(
It − Is
h

)
(Ys − Yt)

1(Is ≤ u)

fI(Is)

]
,

where we have suppressed the dependence on u of U(Wt,Ws). Thus,

Dn1 =
√
n

2

n(n− 1)

n−1∑
t=1

n∑
s=t+1

U(Wt,Ws)

has a U -statistic form, see e.g. Gao and Hong (2008). However, it is easy to notice that the

above (generalized) U -statistic is not a standard one since the kernel U(Wt,Ws) depends on

the sample size n implicitly through bandwidth h, which is a function of n.
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PutW = (Y, I) and ε = Y −m(I). We first calculate the projection term as follows,

u1(W) =E[U(Wt,Ws)|Ws =W ]

=
1

2
E

[
1

hp
K

(
It − I
h

)
m(It)

1(It ≤ u)

fI(It)

]
− 1

2
E

[
1

hp
K

(
It − I
h

)
1(It ≤ u)

fI(It)

]
Y

+
1

2
E

[
1

hp
K

(
It − I
h

)]
Y

1(I ≤ u)

fI(I)

− 1

2
E

[
1

hp
K

(
It − I
h

)
m(It)

]
1(I ≤ u)

fI(I)

:=D11 +D12 +D13 +D14.

We can also calculate that D11 = m(I)1(I ≤ u) + O(hL), D12 = −Y 1(I ≤ u) + O(hL),

D13 = Y 1(I ≤ u) +O(hL) and D14 = −m(I)1(I ≤ u) +O(hL), so that u1(W) = O(hL).

Put φ(Wt,Ws) = U(Wt,Ws) − u1(Wt) − u1(Ws). By the theory of Hoeffding’s decom-

position, we write

√
n

2

n(n− 1)

n−1∑
t=1

n∑
s=t+1

U(Wt,Ws)

=
1√
n

n∑
t=1

u1(Wt) +
√
n

2

n(n− 1)

n−1∑
t=1

n∑
s=t+1

φ(Wt,Ws).

Then, we want to show that

V ar

{
1√
n

n∑
t=1

u1(Wt)

}
→ 0, (2.7)

and

E

{
√
n

1

n(n− 1)

n−1∑
t=1

n∑
s=t+1

φ(Wt,Ws)

}2

→ 0 (2.8)

uniformly in u. It is straightforward to prove (2.7). We immediately have this result because of

the fact V ar (u1(Wt)) = O(h2L) due to Assumption A.4 and A.5.

We can follow the same idea as Yoshihara (1976) to prove (2.8). To this end, it suffices to
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show that the following three terms are asymptotically negligible, that is,

(a) the double summation term

E

{
1

n3

n−1∑
t=1

n∑
s=t+1

φ(Wt,Ws)
2

}
→ 0, (2.9)

(b) the triple summation term

E

{
1

n3

n−2∑
t=1

n−1∑
s=t+1

n∑
u=s+1

φ(Wt,Ws)φ(Wt,Wu)

}
→ 0, (2.10)

and (c) the quadruple summation term

E

{
1

n3

n−3∑
t=1

n−2∑
s=t+1

n−1∑
u=s+1

n∑
v=u+1

φ(Wt,Ws)φ(Wu,Wv)

}
→ 0.

Notice that, in order to show the last result, two distinct scenarios stand out, i.e. case (c.1) with

t < s < u < v and s− t > v − u, and case (c.2) t < s < u < v and s− t ≤ v − u. Given that

both cases can be handled in a similar way, it suffices to show

E

{
1

n3

∑∑∑∑
t<s<u<v,s−t>v−u

φ(Wt,Ws)φ(Wu,Wv)

}
→ 0. (2.11)

Lemma B.1 will be frequently used to prove the above claims. For example, for term (2.9),

we have

∫
|φ(wt1 , wt2)|2+δ dF (wt1)dF (wt2)

≤C
∫
|U(wt1 , wt2)|2+δ dF (wt1)dF (wt2) + C

≤C
∫

1

hp(2+δ)

∣∣∣∣K (It1 − It2h

)∣∣∣∣2+δ

|m(It1)− Yt2|
2+δ

dF (wt1)dF (wt2) + C

≤C{h−p(1+δ) + 1} := C1h (2.12)
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by Assumptions A.1’, A.4 and A.5, where the first inequality follows as E|u1(Wt)|2+δ is of

smaller order than E|U(Wt,Ws)|2+δ. By change of variables and Assumption A.1’, we can get

the last equality. When δ = 0, the inequality in (2.12) holds too, thus

∫
φ(wt1 , wt2)

2 dF (wt1)dF (wt2) ≤ C(h−p + 1) = O(h−p). (2.13)

Now, by the β-mixing condition in Assumption A.1’ and Lemma B.1,

∣∣∣∣∫ φ(wt1 , wt2)
2 dFt1,t2(wt1 , wt2)−

∫
φ(wt1 , wt2)

2 dF (wt1)dF (wt2)

∣∣∣∣
≤4C

2/(2+δ)
1h β(s− t)δ/(2+δ)

≤Ch−2p(1+δ)/(2+δ)(s− t)−(2+η)δ/(2+δ)η, (2.14)

Combing inequalities (2.13) and (2.14), we get

E{φ(Wt,Ws)
2} =

∫
φ(wt1 , wt2)

2 dFt1,t2(wt1 , wt2)

≤ C
{
h−2p(1+δ)/(2+δ)(s− t)−(2+η)δ/(2+δ)η + h−p

}
.

Therefore,

E

{
1

n3

n−1∑
t=1

n∑
s=t+1

φ(Wt,Ws)
2

}

=
1

n3

n−1∑
t=1

n∑
s=t+1

E{φ(Wt,Ws)
2}

≤C

(
1

n3

n−1∑
t=1

n∑
s=t+1

{
h−2p(1+δ)/(2+δ)(s− t)−(2+η)δ/(2+δ)η + h−p

})

≤C
(

1

n2h2p(1+δ)/(2+δ)
+

1

nhp

)
=C

(
h2p/(2+δ)

(nhp)2
+

1

nhp

)

converges to zero by Assumption A.5, where we have exploited the fact
∑n−1

t=1

∑n
s=t+1(s −
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t)−(2+η)δ/(2+δ)η = O(n) by noticing that δ > η and (2 + η)δ/(2 + δ)η > 1 under Assumption

A.1’. We therefore finish proving (2.9). The proofs of the terms (2.10) and (2.11) are similar

but lengthy, and is available upon request. �

The last lemma is needed to show the validity of bootstrap assisted test in Theorem 5.

Lemma B.3: For all (v1, u1), (v2, u2) ∈ Rp+1
,

1

n

n∑
t=1

ω̂t(v1)ω̂t(v2)1(It ≤ u1)1(It ≤ u2)

→pE (ωt(v1)ωt(v2)1(It ≤ u1)1(It ≤ u2)) .

Proof of Lemma B.3: Let’s rewrite

1

n

n∑
t=1

ω̂t(v1)ω̂t(v2)1(It ≤ u1)1(It ≤ u2)

=
1

n

n∑
t=1

ωt(v1)ωt(v2)1(It ≤ u1)1(It ≤ u2)

+
1

n

n∑
t=1

ωt(v1)[ω̂t(v2)− ωt(v2)]1(It ≤ u1)1(It ≤ u2)

+
1

n

n∑
t=1

ωt(v2)[ω̂t(v1)− ωt(v1)]1(It ≤ u1)1(It ≤ u2)

+
1

n

n∑
t=1

[ω̂t(v1)− ωt(v1)][ω̂t(v2)− ωt(v2)]1(It ≤ u1)1(It ≤ u2)

= B1 +B2 +B3 +B4.

It is immediate to have that B1 →p E (ωt(v1)ωt(v2)1(It ≤ u1)1(It ≤ u2)). Now we simply

need to show that Bj = op(1) for j = 2, 4 since B3 can be proven in the same way as B2. And

they are proven by using the similar but easier arguments as in Lemmas A.1-A.4. �
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Chapter 3

Nonparametric Tests of Conditional

Independence for Weakly Dependent Data

3.1 Introduction

A variable Y is said to be conditionally independent of Z given X if and only if the conditional

density of Y given Z and X equals to the conditional density of Y given X , that is, the realiza-

tion of Z does not carry any information about Y when the realization of X is already known.

Following David (1979), we write

Y⊥Z|X

to denote the hypothesis that Y is independent of Z givenX . The hypothesis Y⊥Z|X is related

directly to but stronger than the hypothesis that Y is independent of Z, i.e. Y⊥Z (unconditional

independence) or the mean independence conditions E(Y |Z,X) = E(Y |X).

The assumption of conditional independence plays an important role and is a widely im-

posed one in both statistical and econometric literature. For example, Markov property of

a time series process, Granger non-causality, the assumption of missing at random (MAR)

and exogeneity all can be formulated as a conditional independence problem, see Wang and

Hong (2013) for detailed explanation of the relevance and importance of testing the conditional

independence hypothesis in economics and econometrics. However, in stark contrast to the
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numerous tests of (unconditional) independence proposed either for independent and identi-

cally distributed (i.i.d.) data or for weakly dependent data, by far, there are not many tests

designed especially for checking conditional independence assumption. Nonparametric tests

for (unconditional) independence between random variables and/or vectors, and nonparamet-

ric tests for serial independence are abundant, e.g. a nonparametric test of Cramér-von Mises

type first introduced by Hoeffding (1948), the empirical distribution function-based tests of

Blum et al. (1961), Skaug and Tjøstheim (1993) for testing independence of raw data and Del-

gado and Mora (2000) or Ghoudi et al. (2001) for testing serial independence of time series

or regression errors, the empirical characteristic function-based test of Csörgö (1985), kernel

smoothing-based tests like Rosenblatt (1975), Robinson (1991), and Hong and White (2005),

and tests based on measures of association and dependence between random variables and/or

vectors such as Bakirov et al. (2006), Székely et al. (2007) or Diks and Panchenko (2007).

See also Diks (2009) for a brief summary on various nonparametric tests for independence in

the literature. On the other hand, among the recently available tests for conditional indepen-

dence, the majority are designed only for i.i.d. data, e.g. Linton and Gozalo (1996) develop a

non-pivotal nonparametric test based on the empirical distribution function, Song (2009) em-

ploys Rosenblatt transforms to obtain a distribution-free test, Huang (2010) propose a test based

on maximal nonlinear conditional correlation, and Huang et al. (2013) develop an integrated

conditional moment (ICM)-type test. Even fewer tests are tailored for dependence processes,

exceptions are Su and White (2007, 2008, 2011), Bouezmarni et al. (2012) and Wang and Hong

(2013) and some references therein.

In the present paper we aim to further fill the gap among the literature of testing conditional

independence and propose new consistent nonparametric tests for conditional independence

which are especially applicable to dependent data with weak dependence of unknown form.

Our approach exploits a proper conditional moment restriction and is in the same spirit with

Delgado and González-Manteiga (2001), which partially circumvents the “curse of dimension-

ality” problem. In comparison to the existing tests based on smoothers, our new test is able to

detect local alternatives converging to the null at a parametric
√
n rate, where n is the sample
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size.

We now lay out some preliminaries for testing the conditional independence hypothesis

in a time series framework. Formally, let Xt, Yt, and Zt be three random vectors defined

on some probability space (Ω,F , P ), with dimensions dx, dy, and dz, respectively. Denote

d = dx + dy + dz. The hypothesis we are interested in throughout this paper is that Yt is

independent of Zt given Xt, i.e. Yt⊥Zt|Xt using the previous notation. Intuitively speaking,

the conditional independence of Yt and Zt given Xt implies that, given the information realized

already in Xt, Zt can not provide any additional information in predicting Yt in any way. We

say that conditional on random vector Xt, the random vectors Yt and Zt are independent, if and

only if

FYt,Zt|Xt(y, z|x) = FYt|Xt(y|x)FZt|Xt(z|x),

almost everywhere for (x, y, z) ∈ Rd, where FYt,Zt|Xt , FYt|Xt and FZt|Xt denote the correspond-

ing conditional CDFs.

The plan of the rest of the paper is as follows. In Section 2 we examine the testing problem

and provide the test statistic. Section 3 establishes the asymptotic null distribution and Section

4 studies the consistency property of the test. The asymptotic power of the test under certain

nonparametric alternatives is investigated in Section 5 and a bootstrap assisted procedure to

implement the test is proposed and formally justified in Section 6. In Section 7, we study the

finite sample performance of our test by means of an extensive set of Monte Carlo simulations.

Section 8 presents an empirical example of using variance risk premium to predict equity risk

premium. Finally, Section 9 concludes the paper. All mathematical proofs are deferred to the

Appendices A and B.

3.2 The testing problem

We assume that we observe a time series of random vectors {Xt, Yt, Zt}nt=1. We aim to test the

null hypothesis of Yt⊥Zt|Xt. It is important to stress that our formulation specifically allows

for weak dependence in the data. Hence, our test is a new test for conditional independence
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designed towards time series data with weak dependence of unknown form. In principle, the

nonstationary time series data are also permitted by applying our methodology. This is evident

from the usage of time index t throughout the Introduction part. However, in the present paper,

to simplify the asymptotic analysis, we shall focus on the strictly stationary case and develop

our theoretical results based on this assumption, so that all the conditional distribution functions

do not depend on time index t any more. Henceforth, we drop the subscript t in the conditional

CDFs.

The null hypothesis of interest is that conditional on the information on random vector Xt,

the random vectors Yt and Zt are independent, i.e.

H0 : FY,Z|X = FY |XFZ|X a.s. (3.1)

The alternative hypothesis consists of the cases where H0 doesn’t hold. It is important to em-

phasize that this new formulation of testing conditional independence in (3.1) is highly attrac-

tive and useful, since it partly circumvents the notorious problem of “curse of dimensionality”

by directly conditioning on only the variable Xt in all three conditional CDFs, whereas, in the

usual formulation, one tend to condition on (Zt, Xt), e.g. Su and White (2007, 2008), Bouez-

marni and Taamouti (2012) and many others. The alternative hypothesis consists of all possible

dependent relationships between Yt and Zt conditional on Xt, that is, given Xt, Yt can be de-

pendent of Zt through mean, variance, and skewness and kurtosis, or even higher moments.

For instance, it is possible to have situations where the dependence between Yt and Zt in low

moments (mean, variance) does not exist, but it does exist in higher moments (e.g. skewness,

kurtosis). We shall abbreviate here the rejection of the null hypothesis as Y 6⊥ Z|X . See the

Monte Carlo section for more concrete examples of possible data generating processes under

the alternative hypothesis.

A more direct and commonly treated approach in order to check the null hypothesis (3.1)

would consist of the following two steps. First of all, we obtain appropriate (consistent) non-

parametric estimators for the three unknown conditional CDFs: FY,Z|X(y, z|X), FY |X(y|X)
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and FZ|X(z|X). For example, we can use the traditional Nadaraya-Watson (NW) kernel esti-

mator proposed by Nadaraya (1964) and Watson (1964), or the local logistic distribution esti-

mator and the weighted Nadaraya-Watson (WNW) estimator investigated by Hall et al. (1999)

to estimate the conditional distribution functions. These methods have the advantage of pro-

ducing distribution function estimators that are always constrained to lie between 0 and 1 and

to be monotone increasing. Other choices are local linear methods suggested by Yu and Jones

(1998). However, for the sake of exposition, in the present paper, we simply use NW estima-

tor without worrying the efficiency issues of using different methods to estimate conditional

distribution functions. To be concrete, a NW kernel estimator for FY,Z|X(y, z|x) is defined as

follows

F̂Y,Z|X(y, z|x) =
1

nhdx

∑n
t=1 1(Yt ≤ y)1(Zt ≤ z)K

(
Xt−x
h

)
f̂X(x)

,

where f̂X(x) = (nhdx)−1
∑n

t=1K((Xt−x)/h) is the NW kernel estimator of marginal density

function of Xt, fX(x), K is a dx-th product kernel function (usually a density) and h = hn ∈

R+ is a sequence of smoothing parameters (i.e. bandwidths). Similarly, we can obtain NW

kernel estimators F̂Y |X and F̂Z|X for FY |X and FZ|X , respectively. Comparing to previous

approaches in the literature, one important advantage here is that we only have to choose one

bandwidth parameter h for the estimation of all three conditional CDFs.

Once we have obtained the three estimators for the conditional distribution functions, the

next step is to measure how close the distance is to zero between F̂Y,Z|X and the product of

F̂Y |X and F̂Z|X . To measure this closeness, popular choices are the well known Kolmogorov-

Smirnov-type (KS) statistics of sup-norm or Cramér-von Mises-type (CvM) statistics of a L2-

norm with respect to a suitably chosen probability measure. For example, a CvM type test

statistic based on a L2-distance can be constructed in the following way,

Γn(h) =
1

n

n∑
t=1

{
F̂Y,Z|X(Yt, Zt|Xt)− F̂Y |X(Yt|Xt)F̂Z|X(Zt|Xt)

}2

W (Xt), (3.2)

where W (Xt) is a user chosen nonnegative weighting function, which may also depend on h.

One practical choice of W is the nonparametric estimator f̂ 4
X(Xt) in order to circumvent the
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problem of random denominators arising from the nonparametric estimation of the conditional

CDFs. It is worthy to mention that the above formulation reduces effectively the dimensions of

the testing problem, since we only face three dx-dimensional nonparametric estimation prob-

lems. In this case, only one bandwidth h is necessary.

Several alternative forms similar to (3.2) are proposed and extensively studied in the lit-

erature of testing conditional independence. They are designed to test the hypotheses of the

form Pr{FY |Z,X(y|Z,X) = FY |X(y|X)} = 1 almost everywhere for y ∈ Rdy . For example,

Bouezmarni and Taamouti (2012) exploit exactly the above formulation to construct tests for

the conditional independence hypothesis using conditional CDFs. Formally, they propose a test

statistic based on

Γn(h1, h2) =
1

n

n∑
t=1

{
F̂Y |Z,X(Yt|Zt, Xt;h1)− F̂Y |X(Yt|Xt;h2)

}2

W (Xt, Zt), (3.3)

with W (Xt, Zt) again a non-negative weighting function, where

F̂Y |Z,X(y|z, x;h1) =

(
nhdz+dx

1

)−1∑n
t=1 1(Yt ≤ y)K

(
Zt−z
h1

, Xt−x
h1

)
(
nhdz+dx

1

)−1∑n
t=1K

(
Zt−z
h1

, Xt−x
h1

)
and

F̂Y |X(y|x;h2) =

(
nhdx2

)−1∑n
t=1 1(Yt ≤ y)K∗

(
Xt−x
h2

)
(
nhdx2

)−1∑n
t=1K

∗
(
Xt−x
h2

) ,

are NW estimator of FY |Z,X and FY |X , respectively. In the above expressions, h1 and h2 are two

different bandwidths andK andK∗ are two different kernel functions. It is immediate to notice

that their test statistic is subject to the problem of “curse of dimensionality” more seriously

than (3.2) since they have to face a (dx + dz)-dimensional problem, that is, the nonparametric

estimation of FY |Z,X(y|z, x). Furthermore, they have to chose two different bandwidths h1 and

h2 while only one bandwidth h is needed in (3.2).

In this paper, we propose new tests based on the attractive formulation in (3.1) with the

inherent advantage of dimension reduction. According to the null hypothesis in (3.1), testing
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independence of Yt and Zt conditional on Xt is equivalent to testing that the conditional CDF

of (Yt, Zt)
′ given Xt is the product of two marginal conditional distributions of Yt given Xt and

Zt given Xt. Notice that FY,Z|X(y, z|x) = E[1(Yt ≤ y)1(Zt ≤ z)|Xt = x]. This useful fact

has been exploited by many authors, e.g. Delgado and González-Manteiga (2001) in their test

for conditional independence in an i.i.d framework. Clearly, the null hypothesis of conditional

independence can be re-expressed as

H0 : E[1(Yt ≤ y)1(Zt ≤ z)|Xt] = E[1(Yt ≤ y)|Xt]E[1(Zt ≤ z)|Xt] a.s.

a.e. for any (y, z) ∈ Rdy+dz . It is immediate to see that we can further transform the above null

hypothesis to

H0 : E {1(Yt ≤ y)(1(Zt ≤ z)− E[1(Zt ≤ z)|Xt])|Xt} = 0 a.s. (3.4)

a.e. for any (y, z) ∈ Rdy+dz . The alternative hypothesis is the negation of the null. Therefore,

the problem of testing hypothesis (3.1) is essentially equivalent to testing the properly modified

conditional moment restriction in (3.4) which by construction, comparing to the previous meth-

ods, already exploits the advantage of a certain degree of dimension reduction in formulating

the testing conditional independence problem at hand to the form of (3.4). It is also important

to mention that the above formulation of conditional moment restriction is indexed by parame-

ters (y, z) so that, for a given fixed pair of (y, z), we have one conditional moment restriction.

Since this restriction has to hold for all possible (y, z), as a matter of fact, we have an infinite

number (i.e. continuum) of conditional moment restrictions.

Now, put εt(y, z) = 1(Yt ≤ y)εt(z) for any (y, z) ∈ Rdy+dz with εt(z) = 1(Zt ≤ z) −

E[1(Zt ≤ z)|Xt]. Obviously, the errors εt(z) form a martingale process. We call εt(y, z) by the

name of generalized errors. We express the null hypothesis in terms of the generalized errors

εt(y, z), that is, (3.4) holds if and only if

E[εt(y, z)|Xt] = 0 a.s. ∀(y, z) ∈ Rdy+dz .
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To test the above conditional moment restriction, popular kernel based approach could be ap-

plied, that is, we could follow methods from Fan and Li (1996) and Zheng (1998)1 and construct

tests using the fact

E{εt(y, z)E[εt(y, z)|Xt]}

=E{(E[εt(y, z)|Xt])
2}

≥0,

where the equality holds if and only if E[εt(y, z)|Xt] = 0 a.s. Therefore, one possible con-

sistent test could be proposed basing on an estimator of the above expression. We leave this

possibility for future research.

Another widely adopted methodology to test a conditional moment restriction consists of

first transforming such conditional moment restriction to an infinite number of unconditional

moment restrictions. By a measure-theoretic argument, the conditional restriction can be char-

acterized by the following transformation, that is, it is equivalent to testing

E[εt(y, z)1(Xt ≤ x)] = 0 a.s. ∀(x, y, z) ∈ Rdx+dy+dz . (3.5)

This type of transformation is commonly seen and well studied in the literature of model checks

for regression, significance testing in regression analysis or other contexts for testing, e.g. Stute

(1997), Delgado and González-Manteiga (2001), and Escanciano and Velasco (2006). This in-

tegrated regression function approach is the approach that we are going to concentrate on. Our

test statistics are based on the stochastic process derived from a proper estimator of the previous

expression. Formally, based on (3.5), to avoid certain technical issues, we propose to test that

the following slightly modified (nonlinear) dependence measures γ(x, y, z) are identically zero

1See also Fan and Li (1999), Li (1999), Gu et al (2007) or more recently Jeong et al. (2012) and Dette et al.
(2014) and references therein for different applications of this specific methodology.
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for all (x, y, z) in their supports, i.e. we can characterize H0 as

H0 : γ(x, y, z) = 0 a.s., ∀(x, y, z) ∈ Rd, (3.6)

with d = dx + dy + dz, where

γ(x, y, z) = E[1(Xt ≤ x)εt(y, z)fX(Xt)]. (3.7)

The inclusion of marginal density estimator fX(Xt) in the modified formulation in (3.7) is

mainly because of technical reason. This so-called “density-weighted” null hypothesis helps

to avoid the random denominators problem arising from the kernel estimation of FZ|X , see

e.g. Powell et al. (1989). Theoretically speaking, there is an optimal weight function in

the sense of maximizing local power against the class of local alternatives (1.7) in Section

5. But using the density function fX(Xt) as the weight function appears not causing severe

problems to the size and power performance of the proposed test, as shown in the Monte Carlo

simulation of Section 7. Another solution to avoid this random denominators problem consists

of introducing a trimming parameter b > 0 to trim out those close-to-zero values of f̂X(Xt),

i.e. 1
(
f̂X(Xt) > b

)
, used in e.g. Robinson (1988). We shall not pursue this possibility here.

If we could observe εt(y, z) (hence, there is no need to include fX(Xt)), then simple test

statistics could be formulated based on the following (infeasible) stochastic process

Ŝ0
n(x, y, z) :=

√
nγ̂0n(x, y, z) =

1√
n

n∑
t=1

1(Xt ≤ x)εt(y, z).

By defining Ŝ0
n(−∞, ·, ·) = Ŝ0

n(·,−∞, ·) = Ŝ0
n(·, ·,−∞) = 0, the sample paths of Ŝ0

n belong

to the space `∞(Rd
), the space of all uniformly bounded real functions on Rd

:= [−∞,∞]d,

which is equipped with the sup-norm. Assuming some regularity conditions, one can show that

under the null hypothesis, Ŝ0
n converges weakly on the topology of `∞(Rd

) endowed with the

sup-norm to S0
∞, a Gaussian process with zero mean, continuous sample paths, and covariance
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structure

E[S0
∞(x1, y1, z1)S0

∞(x2, y2, z2)]

=E
(
1(X1 ≤ x1 ∧ x2))FY |X(y1 ∧ y2|X1)[FZ|X(z1 ∧ z2|X1)− FZ|X(z1|X1)FZ|X(z2|X1)]

)
,

where a ∧ b ≡ min{a, b} element-wisely for any vectors a and b.

Since we can not observe εt(y, z) in practice, we need to estimate it by its counterpart

ε̂t(y, z) = 1(Yt ≤ y)ε̂t(z) with ε̂t(z) = 1(Zt ≤ z) − F̂Z|X(z|Xt) the nonparametric residuals

from regression 1(Zt ≤ z) = FZ|X(z|Xt) + εt(z), where

F̂Z|X(z|Xt) =

1
(n−1)hdx

∑n
s=1,s 6=t 1(Zs ≤ z)K

(
Xt−Xs

h

)
f̂X(Xt)

is the leave-one-out NW kernel estimator for the conditional distribution function FZ|X(z|Xt)

and

f̂X(Xt) =
1

(n− 1)hdx

n∑
s=1,s 6=t

K

(
Xt −Xs

h

)
is the leave-one-out NW kernel estimator for the probability density function fX(Xt) evalu-

ated at the data point Xt. Therefore, a feasible estimator of γ(x, y, z) based on a sample of

observations {(Xt, Yt, Zt)}nt=1 is given by

γ̂n(x, y, z) =
1

n

n∑
t=1

1(Xt ≤ x)ε̂t(y, z)f̂X(Xt),

which is algebraically equivalent to

γ̂n(x, y, z) =
1

n(n− 1)

n∑
t=1

n∑
s=1,s 6=t

1

hdx
K

(
Xt −Xs

h

)
× 1(Xt ≤ x)1(Yt ≤ y)[1(Zt ≤ z)− 1(Zs ≤ z)]. (3.8)

Notice that the expression (3.8) is a variant of standard U -process, e.g. Stute (1994) or Del-

gado and González-Manteiga (2001). In fact, we rely on U -statistic theory to establish our

127



asymptotic results in the Appendix.

Finally, let’s put Ŝn(x, y, z) =
√
nγ̂n(x, y, z). Test statistics can be constructed based on

any continuous functionals. We propose a test statistic of the Cramér-von Mises-type based on

the L2 distance with respect to a suitable measure, in our case, the empirical joint distribution.

This yields

CvMn =

∫
Rd

(
Ŝn(x, y, z)

)2

dF̂n(x, y, z)

=
n∑
t=1

γ̂2
n(Xt, Yt, Zt), (3.9)

where

F̂n(x, y, z) =
1

n

n∑
t=1

1(Xt ≤ x)1(Yt ≤ y)1(Zt ≤ z)

is the empirical distribution function of {Xt, Yt, Zt}. A test statistic of the Kolmogorov-

Smirnov-type based on the sup-norm is given by

KSn = sup
(x,y,z)∈Rd

|Ŝn(x, y, z)|.

Under the null hypothesis, CvMn (or KSn) is expected to be very close to zero and con-

verges to a finite distribution, whileCvMn will diverge to infinity under the alternatives. Hence,

the CvMn test is a consistent test. We reject the null hypothesis of conditional independence

whenever CvMn exceeds a certain “big” value. However, since the asymptotic distribution is

not pivotal and depends on the underlying data generating process (DGP) in a complicated way,

this critical value may depend on the underlying DGP as well. Therefore, in practice, some kind

of bootstrap or re-sampling procedures are necessary in order to implement our tests. This issue

will be addressed in section 6.
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3.3 Asymptotic null distribution

In this section, we will establish the null limiting distribution of our test. Since in the present

paper we are mainly focusing on data with weak dependence, we need to specify the amount

of dependence allowed in the processes of interest. In what follows, we introduce the notion

of β-mixing dependence. Let us recall the definition of a β-mixing process (see e.g. Doukhan

(1994) and Fan and Yao (2003) amongst others). For
{
Wt = (Xt, Yt, Zt)

′ ; t ≥ 1
}

a strictly

stationary stochastic process and F st a sigma algebra generated by (Ws, . . . ,Wt) for s ≤ t, the

process {W} is called β-mixing (or absolutely regular) with mixing coefficient β(j), if

β (j) = sup
s∈N

E

[
sup
A∈F+∞

s+j

∣∣P (A|F s−∞)− P (A)
∣∣]→ 0, a.s. j →∞.

We impose the following regularity conditions.

Assumption A.1 (Data Generating Process): (a) {Xt, Yt, Zt}t∈Z is a strictly stationary,

ergodic and absolutely regular process with β-mixing coefficients β(j) = O(j−(2+η)/η) for

some constant 0 < η < 1; (b) the conditional distribution functions FY |X(y|x) and FZ|X(z|x)

are continuously differentiable with respect to x up to order l for some integer l ≥ 2.

Assumption A.2 (Kernel Function): K(u) is a bounded, continuous, and symmetric func-

tion on Rdx such that K(u) =
∏dx

j=1 k(uj),
∫
uiK(u) du = δ0i for i = 0, 1, · · · , l − 1 and∫

ulK(u) du 6= 0, where k : R→ R is a bounded, symmetric univariate function and δij is the

delta function taking value one when i = j and zero otherwise.

Assumption A.3 (Bandwidth): The sequence of bandwidths h satisfies (a) h→ 0; and (b)

nhdx →∞ and nh2l → 0 as n→∞.

Assumption A.1(a) restricts the amount of temporal dependence in {Xt, Yt, Zt}, which is a

standard assumption in nonparametric time series analysis. Assumption A.1(b) is a smoothness

condition and Assumption A.1(c). Assumption A.2 imposes a higher order kernel condition

and is standard in asymptotic theory of nonparametric regression. Bandwidth condition in

Assumption A.3 is minimal and guarantees that the projection terms of U -statistics in the proof

are asymptotically negligible.
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We now state the asymptotic distribution of Ŝn under H0.

Theorem 1: Let Assumptions A.1-A.3 hold. Then, under the null hypothesis,

Ŝn ⇒ S∞

in `∞(Rd
), where S∞ is a zero mean Gaussian process with covariance function

E (S∞(x1, y1, z1), S∞(x2, y2, z2)) = E
(
f 2
X(X1)1(X1 ≤ x1 ∧ x2)φ1(y1)φ1(y2)ε1(z1)ε1(z2)

)
with

φt(y) = 1(Yt ≤ y)− FY |X(y|Xt)

and

εt(z) = 1(Zt ≤ z)− FZ|X(z|Xt).

We state the null limiting distributions of our test statistics CvMn and KSn in the corollary

below. Its proof is given in the appendix.

Corollary 1: Let Assumptions A.1-A.3 hold. Then, under the null hypothesis,

CvMn →d CvM∞ =

∫
Rd

(S∞(x, y, z))2 dF (x, y, z)

and

KSn →d KS∞ = sup
(x,y,z)∈Rd

|S∞(x, y, z)|,

where S∞ is the Gaussian process defined in Theorem 1.
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3.4 Consistency

The consistency property of the second test based on rejecting H0 for large values of CvMn is

stated in the following theorems.

Theorem 2: Under Assumptions A.1-A.3 and under the alternative hypothesis,

1

n
CvMn →p

∫
Rd

(γ(x, y, z))2 dF (x, y, z)

and
1√
n
KSn →p sup

(x,y,z)∈Rd
|γ(x, y, z)|.

Clearly, γ(x, y, z), under the alternative hypothesis, is not identically zero for a positive

Lebesgue measure of (x, y, z) ∈ Rd, cf. Theorem 1 in Bierens (1982). This fact guarantees

that the tests will be consistent because

∫
Rd

(γ(x, y, z))2 dF (x, y, z) > 0

or

sup
(x,y,z)∈Rd

|γ(x, y, z)| > 0.

That is, the test is consistent against all alternatives of the null hypothesis in (3.6).

3.5 Asymptotic power

To further investigate the consistency properties of the proposed test, we first introduce the

following class of nonparametric local alternatives:

H1n : FY,Z|X(y, z|x) = FY |X(y|x)FZ|X(z|x) +
1√
n

∆(x, y, z), (3.10)
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where ∆(x, y, z) satisfies ∆(x,∞, z) = ∆(x, y,∞) = ∆(x,−∞, z) = ∆(x, y,−∞) = 0,

∆(x, y, z) 6= 0, and is a non-random, twice continuously differentiable function with uniformly

bounded first order derivatives with respect to x, y and z. The additional term n−1/2∆(x, y, z)

characterizes the departure of the conditional joint distribution function from the product of

conditional marginal distribution functions, whereas the rate n−1/2 is the exact speed at which

the deviation between FY,Z|X(y, z|x) and FY |X(y|x)FZ|X(z|x) vanishes to zero as the sam-

ple size n tending to infinity. In fact, when we characterize the local alternatives in terms of

conditional density functions, that is,

H1n : fY,Z|X(y, z|x) = fY |X(y|x)fZ|X(z|x) +
1√
n
δ(x, y, z),

where the deviation term δ(x, y, z) satisfies δ(x, y, z) 6= 0 and
∫∞
−∞

∫∞
−∞ δ(x, y, z) dydz =

0. It is immediate to infer that in our formulation ∆(x, y, z) needs to satisfy ∆(x, y, z) =∫ y
−∞

∫ z
−∞ δ(x, ȳ, z̄) dȳdz̄.

Furthermore, we assume the function ∆(x, y, z) to satisfy the following regularity condi-

tion.

Assumption A.4 (Local Alternatives) There exists some (x, y, z) ∈ Rd with a positive

Lebesgue measure such that the function ∆(x, y, z) satisfies that

∫ x

−∞
f 2
X(x̄)∆(x̄, y, z) dx̄ 6= 0.

Next theorem shows the asymptotic behaviour of Ŝn under the sequences of alternative

hypotheses tending to the null at the parametric rate n1/2.

Theorem 3: Under the local alternatives in (3.10), suppose Assumptions A.1-A.4 hold, then

Ŝn ⇒ S1
∞

with

S1
∞

d
= S∞ +G∞
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in `∞(Rd
), where S∞ is the zero mean Gaussian process defined in Theorem 1 and G∞ is a

deterministic shift function with

G∞(η) ≡ G∞(x, y, z) = E [fX(X1)1(X1 ≤ x)∆(X1, y, z)] .

Several remarks are in order. Since in general the deterministic shift function G∞ is not

identically zero under the regularity assumption, our test has nontrivial asymptotic local power

and is able to detect the class of local alternatives H1n converging to the null at a parametric

rate n1/2. The convergence rate n1/2 is much faster than the usual convergence rate obtained

from many other smoothed nonparametric tests. For example, Su and White’s (2008) test only

has power against local alternatives at distance n−1/2h−(dx+dy+dz)/4, while tests proposed by Su

and White (2007) and Bouezmarni and Taamouti (2012) have power against local alternatives at

distance n−1/2h−(dx+dz)/4. Among the smoothed nonparametric tests, Wang and Hong’s (2013)

test is the only test that has a relatively faster convergence rate and it can detect a class of local

alternatives that converges to the null at the rate n−1/2h−dx/4. Nonetheless, tests of the Wang

and Hong’s (2013) type are able to detect other hight frequency local alternatives considered by

Rosenblatt (1975) and Horowitz and Spokoiny (2001) amongst others, while our tests cannot

detect such type of alternatives.

We also notice that there could exist some peculiar non-conditional independence DGPs

(i.e. Y 6⊥ Z|X) such that the function ∆(x, y, z) happens to make G∞ ≡ 0, or in other words,

this class of ∆(x, y, z) violates the Assumption A.4. It is clear that our test will not be able to

detect such types of local alternatives included in H1n but failing our assumption. Fortunately,

these DGPs are not common in economics and finance. However, it would be interesting to

formally characterize these classes of non-conditional independence process that do not satisfy

Assumption A.4, but this is beyond the scope of this paper.

The next corollary is a direct application of Continuous Mapping Theorem and Theorem 3.

Its proof is similar to that of Corollary 1 and is therefore omitted.
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Corollary 2: Under the local alternatives (3.10), if Assumptions A.1-A.4 hold,

CvMn →d CvM
1
∞ =

∫
Rd

(S∞(x, y, z) +G∞(x, y, z))2 dF (x, y, z)

and

KSn →d KS
1
∞ = sup

(x,y,z)∈Rd
|S∞(x, y, z) +G∞(x, y, z)|.

We conclude that under the class of local alternatives specified in (3.10) and Assumption

A.4, the limiting distributions of the test statistics CvMn and KSn shift in a nontrivial way

asymptotically. The shifting termG∞ will guarantee that our tests have nontrivial power against

the class of local alternatives H1n. Therefore, the test is able to detect nonparametric alternatives

converging to the null at the parametric rate
√
n with sample size n.

3.6 Bootstrap

Since the null limiting distribution of our test statisticCvMn depends heavily on the underlying

DGP, it is difficult to obtain critical values by using the asymptotic distribution. So we use a

bootstrap procedure to estimate the critical values for our tests. Our bootstrap is of a multiplier

bootstrap type proposed by Delgado and González Manteiga (2001).

Taking advantage of the asymptotic theory developed in Theorem 1, we define the boot-

strapped process as

Ŝ∗n(x, y, z) =
√
nγ̂∗n(x, y, z)

with

γ̂∗n(x, y, z) =
1

n

n∑
t=1

f̂X(Xt)1(Xt ≤ x)
[
1(Yt ≤ y)− F̂Y |X(y|Xt)

]
×
[
1(Zt ≤ z)− F̂Z|X(z|Xt)

]
vt, (3.11)

where FY |X(y|Xt) and FZ|X(z|Xt) are the NW estimators of conditional CDFs FY |X(y|Xt) and
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FZ|X(z|Xt), and {vt}nt=1 is a sequence of independent random variables with zero mean, unit

variance, bounded support and is also independent of {Yt}nt=1. One example of {vt} sequences

is i.i.d. Bernoulli variates with

Pr

(
vt =

1−
√

5

2

)
=

1 +
√

5

2
√

5

and

Pr

(
vt =

1 +
√

5

2

)
=
−1 +

√
5

2
√

5
,

see Mammen (1993) for motivation on this popular choice, see the application of this choice in

Delgado and González-Manteiga (2001) or Escanciano and Velasco (2006). The other choice

of {vt} sequences is i.i.d. Bernoulli variates such that Pr(vt = 1) = 0.5 and Pr(vt = −1) = 0.5

(Rademacher variates) used by Liu (1988) and de Jong (1996). It is important to notice that

the third moment of vt in those cases is equal to 1, and hence the first three moments of the

bootstrap series coincide with the three moments of the original series. These properties have

implications on the second order asymptotic properties of the bootstrap approximation, see Liu

(1988).

In the next theorem we justify the asymptotic validity of our multiplier bootstrap method

and it allows us to approximate the critical values of the test.

Theorem 4: Suppose Assumptions A.1-A.3 hold, then under the null hypothesis (3.1), under

any fixed alternative hypothesis or under the local alternatives (3.10),

Ŝ∗n ⇒ S∞ in probability

in `∞(Rd
), where S∞ is the Gaussian process defined in Theorem 1 and ⇒ in probability

denotes the weak convergence in probability under the bootstrap law, i.e., conditional on the

original sample {(X ′t, Y ′t , Z ′t)′}nt=1.

Therefore, we can approximate the asymptotic distribution of the stochastic process Ŝn by

that of Ŝ∗n. In particular, we can simulate the critical values for the test statistics CvMn (or
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KSn) by the following algorithm:

Step 1: Estimate the nonparametric regression 1(Zt ≤ z) = FZ|X(z|Xt) + εt(z) using the

original sample {(X ′s, Z ′s)}ns=1, i.e. getting a n×n matrix of the NW estimates of FZ|X(Zt|Xs)

for (t, s), and obtain the corresponding matrix of nonparametric residuals ε̂t(Zs) for (t, s).

Compute γ̂n(Xt, Yt, Zt) for each t and compute the test statistic CvMn using (3.9).

Step 2: Generate a sequence of i.i.d. Bernoulli variates {vt}nt=1 independent of the original

sample. Compute γ̂∗n(Xt, Yt, Zt) based on (3.11) for t = 1, · · · , n and get the bootstrapped test

statistic CvM∗
n.

Step 3: Repeat Step 2 B times to give a sample of bootstrapped test statistic {CvM∗
n,b}Bb=1.

Compute the empirical (1−α)-th sample quantile of {CvM∗
n,b}Bb=1, CvM∗α

n say. The proposed

test rejects the null hypothesis at the significance level α if CvMn > CvM∗α
n .

Notice that given the result obtained in Theorem 4, the proposed bootstrap assisted tests

have a correct asymptotic level, are consistent and are able to detect local alternatives converg-

ing to the null at the parametric rate
√
n, where n is the sample size.

3.7 Monte Carlo simulation

In this section, we carry out an extensive set of experiments to examine the finite sample per-

formance of the proposed test CvMn under the null hypothesis and under the alternative hy-

pothesis. Results from the test KSn are available upon request. As noted in Section 1, testing

conditional independence can be seen as a tool of testing Granger causality in certain ways.

We shall focus on these Granger causality (or non-causality) types of data generating processes

(DGPs). Formally, we consider the following eleven DGPs taken or slightly modified from
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Wang and Hong (2013):

(S1): Yt = ε1,t, Zt = ε2,t, Xt = ε3,t

(S2): Yt = 0.5Yt−1 + ε1,t

(S3): Yt = 0.5Yt−1 exp (−0.5Y 2
t−1) + ε1,t

(S4): Yt =
√
h1,tε1,t, h1,t = 0.01 + 0.9h1,t−1 + 0.05Y 2

t−1

Zt =
√
h2,tε2,t, h2,t = 0.01 + 0.9h2,t−1 + 0.05Z2

t−1

(P1): Yt = 0.5Yt−1 + 0.5Zt−1 + ε1,t

(P2): Yt = 0.5Yt−1Zt−1 + ε1,t

(P3): Yt = 0.5Yt−1 + 0.5Z2
t−1 + ε1,t

(P4): Yt = 0.3 + 0.2 log(ht) +
√
htε1,t, ht = 0.01 + 0.5Y 2

t−1 + 0.3Z2
t−1

(P5): Yt = 0.5Yt−1 + 0.5Zt−1ε1,t

(P6): Yt =
√
htε1,t, ht = 0.01 + 0.5Y 2

t−1 + 0.25Z2
t−1

(P7): Yt =
√
h1,tε1,t, h1,t = 0.01 + 0.1h1,t−1 + 0.4Y 2

t−1 + 0.5Z2
t−1

Zt =
√
h2,tε2,t, h2,t = 0.01 + 0.9h2,t−1 + 0.05Z2

t−1

where ε1,t, ε2,t and ε3,t are three i.i.d. N(0, 1) sequences independent of each other and Zt in

DGPs (S2) and (S3) and DGPs (P1)-(P6) is generated by the following autoregressive process

of order 1, AR(1),

Zt = 0.5Zt−1 + ε2,t.

These DGPs cover a wide range of linear and nonlinear time series processes. DGPs (S1)-(S4),

serve to investigate the size performance of our test CvMn, while DGPs (P1)-(P7) allow us

to examine the powers. Specifically, for DGP (S1), the pure innovations case, we simply test

Yt⊥Zt|Xt, that is, ε1,t⊥ε2,t|ε3,t. But from DGP (S2) to DGP (P7), we will test whether Yt
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is independent of Zt−1 conditional on Yt−1, i.e. Yt⊥Zt−1|Yt−1, which is equivalent to testing

whether Zt Granger causes Yt by setting the lag order to 1.

For each DGP, we first generate n + 200 observations and then discard the first 200 obser-

vations to minimize the possible effects caused by initial values. The number of Monte Carlo

simulations is 500 and the bootstrap critical values are calculated from B = 500 bootstrap

replications. Three sample sizes, n = 100, 200500 are considered in all the simulation study.

We only report results for the nominal size of 5%. We choose the standard normal density

K(x) = (1/
√

2π) exp (−x2/2) as our kernel function. Bandwidth of the form h = c×n−1/3 is

chosen and results with c = 0.5, 1.0, 1.5 are reported. However, how to optimal the bandwidth

h∗ in order to maximize the performance of our test is beyond the scope of this paper.

Table 1 reports the empirical sizes of test under DGPs (S1)-(S3) at the 5% significance

level using bootstrapped critical values. Our test has reasonable sizes in the case of small

and moderate sample sizes. When sample size increases, the test shows fairly accurate sizes

especially for the choice of c = 1.0. Power performance is reported in Table 2. For small

sample size n = 100, the test is not powerful. However, it gains power rapidly for mildly large

sample sizes. A general pattern we observe is that larger c delivers higher power but produces

larger size distortion too.

It is important to mention that our test CvMn is also applicable for i.i.d. data, as demon-

strated already from the previous simulation result for DGP (S1). However, to further illustrate

the level and power performance of the test in an i.i.d. context, we conduct the following sim-

ulation. We generate an i.i.d. sample {Xi, Yi, Zi}ni=1 using the DGP taken from Huang et al.

(2013):

Y = θZ +X + εY

Z = X +X2 + εZ ,
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Table 3.1: Empirical size of CvMn

Bandwidth DGPs
h = cn−1/3 (S1) (S2) (S3) (S4)

n = 100

c = 0.5 0.036 0.036 0.064 0.088
c = 1.0 0.066 0.068 0.052 0.072
c = 1.5 0.082 0.080 0.078 0.098

n = 200

c = 0.5 0.050 0.056 0.052 0.070
c = 1.0 0.042 0.064 0.052 0.064
c = 1.5 0.056 0.064 0.060 0.080

n = 500

c = 0.5 0.038 0.048 0.032 0.062
c = 1.0 0.050 0.051 0.054 0.050
c = 1.5 0.060 0.054 0.058 0.064
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Table 3.2: Empirical power of CvMn

Bandwidth DGPs
h = cn−1/3 (P1) (P2) (P3) (P4) (P5) (P6) (P7)

n = 100

c = 0.5 0.972 0.112 0.280 0.220 0.140 0.126 0.104
c = 1.0 0.980 0.160 0.354 0.230 0.266 0.170 0.146
c = 1.5 0.990 0.178 0.408 0.284 0.270 0.164 0.162

n = 200

c = 0.5 1.000 0.370 0.862 0.608 0.360 0.216 0.124
c = 1.0 1.000 0.380 0.886 0.634 0.524 0.282 0.142
c = 1.5 1.000 0.388 0.910 0.622 0.432 0.300 0.186

n = 500

c = 0.5 1.000 0.912 1.000 0.998 0.988 0.808 0.408
c = 1.0 1.000 0.938 1.000 1.000 0.996 0.860 0.416
c = 1.5 1.000 0.942 1.000 1.000 1.000 0.886 0.456
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where  εY

εZ

 ∼ N

0,

 σ2
Y 0

0 σ2
Z


 = N

0,

 1 0

0 4




and

X ∼ N(0, σ2
X) = N(0, 3).

When θ = 0, the null is true; otherwise the alternative holds.

As in Huang et al. (2013), we use the above DGP to study the finite sample size and power

of the test against conditional mean dependence. We use n = 50, 100, 200 and bandwidth

h = 0.5n−1/3. Let

ρY,Z|X =
Cov(Y, Z|X)

σY |XσZ|X
=

θσ2
Z

σZ
√
σ2
Y + θ2σ2

Z

=
2θ√

4θ2 + 1
,

which indicates the strength of the dependence between Y and Z, conditional onX . Since both

Y |X and Z|X are normal, ρY,Z|X fully captures the dependence between Y and Z,conditional

on X . For given ρY,Z|X , θ is determined by

θ =
ρY,Z|X

2
√

1− ρ2
Y,Z|X

.

Figure 1 plots the rejection frequency of test CvMn for ρY,Z|X = −0.9,−0.8, . . . , 0.8, 0.9.

The size and power look fairly satisfactory for small sample sizes. They look very good when

the sample size reaches 200. When the sample size is small, the levels of Huang et al.’s (2013)

test approaches 5% nominal value from below, delivering conservative test. In comparison to

Huang et al.’s (2013) test, the levels of our test remain fairly accurate. However, for the specific

bandwidth choice of h = 0.5×n−1/3, when the sample size increases to 200, our test is slightly

oversized.
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3.8 An empirical study

In this section, we aim to examine and test whether there exists (nonlinear) predictability of

equity risk premium using variance risk premium. The variance risk premium is defined as the

difference between the risk-neutral and objective expectations of realized variance, where the

risk-neutral expectation of variance is measured as the end-of-month Volatility Index-squared

de-annualized and the realized variance is the sum of squared 5-minute log returns of the S&P

500 index over the month.

By now, there is a vast growing literature which focuses on its study on the predictive

power of variance risk premium for the aggregate stock market returns, bond returns or ex-

change rate returns. For example, Bollerslev et al. (2009) first discover that variance risk

premium is able to explain a nontrivial fraction of the time series variation in post 1990 aggre-

gate stock market returns, with high (low) premia predicting high (low) future returns; Wang et

al. (2013) find the empirical evidence suggesting that the firm-level variance risk premium has

a prominent explanatory power for credit spreads in the presence of market- and firm-level con-

trol variables; by defining a “global” variance risk premium, Bollerslev et al. (2013) uncover

stronger predictability of aggregate stock market returns using variance risk premium across

countries; while Della Corte et al. (2013) investigate the predictive information content in for-

eign exchange volatility risk premia for exchange rate returns and find that a portfolio that sells

currencies with high insurance costs and buys currencies with low insurance costs generates

sizeable out-of-sample returns and Sharpe ratios.

We use monthly aggregate S&P 500 composite index over the period January 1996 to

September 2008. Our empirical analysis is based on the logarithmic return on the S&P 500

in excess of the 3-month T-bill rate. The monthly variance risk premium is downloaded from

Hao Zhou’s website. Now, let RPt+τ be the risk premium τ months ahead and V RPt be the

variance risk premium at time t. In this empirical study, we take τ =1, 3, 6, and 9 months. We

shall examine if the variance risk premium V RPt explains (either in a linear or nonlinear fash-

ion) the risk premium RPt+τ given the information RPt, which is equivalent to stating whether
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V RPt Granger causes RPt by setting the lag order to τ . Formally, to test for the presence of

(nonlinear) predictability of V RPt, we consider the following null hypotheses

H0 : Pr {F (RPt+τ , V RPt|RPt) = F (RPt+τ |RPt)F (V RPt|RPt)} = 1

against the alternative hypothesis

H1 : Pr {F (RPt+τ , V RPt|RPt) = F (RPt+τ |RPt)F (V RPt|RPt)} < 1.

That is, for a given horizon τ , we test the conditional independence of RPt+τ and V RPt given

RPt, i.e. RPt+τ⊥V RPt|RPt.

For the purpose of comparison, we also perform the popular linear causality analysis in the

literature. To this end, we consider the following linear regression model:

RPt+τ = µτ + βτRPt + ατV RPt + εt+τ .

The hypothesis of interest is that VRP does not Granger cause RP for τ months ahead in a linear

way, i.e. testing the null hypothesis H0 : ατ = 0 against the alternative hypothesis H1 : ατ 6= 0.

To test H0, standard t-statistic given by tα̂τ = α̂τ/σ̂α̂τ will be calculated, where α̂τ is the least

squares estimator of ατ and σ̂α̂τ is the estimator of its standard error σα̂τ . Moreover, to avoid

the impact of possible dependence in the residual terms ε̂t+τ on our inference, σ̂α̂τ is calculated

using the commonly used heteroscedasticity autocorrelation consistent (HAC) robust variance

estimator suggested by Newey and West (1987).

Table 3 reports the testing results for Granger causality (nonlinear predictability) from vari-

ance risk premium to risk premium, at four different horizons, using our proposed test CvMn

and the linear test. The implementation is as in the Monte Carlo simulations part. Results from

linear test fail to reject the null hypothesis of no causality, it only indicates some predictability

until at the long 9 month horizon. On the other hand, by using our test, at the 5% significance

level, we have found convincing evidence that risk premium can be predicted using variance
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risk premium at both mid-run and long-run horizons. We also find that there is a very high de-

gree of predictability at horizons more than one-month which can be attributed to a nonlinear

causal effect.

3.9 Conclusion

This paper proposes a new consistent test of conditional independence for data with weak

dependence using the empirical process method. The asymptotic properties of the proposed test

is developed. To implement the test in practice, a multiplier bootstrap procedure is suggested

and its asymptotic validity is formally justified. The test can be applied to testing for possible

conditional dependence in a wide variety of nonparametric models. Using the proposed test,

we also study whether there exists some nonlinear predictability of equity risk premium using

variance risk premium.

Further research is needed to examine the testing of conditional independence with data

dependent bandwidths in order to maximize the performance of the tests. Allowing for the

bandwidths to be data dependent instead of fixed ones in the testing of econometric restrictions,

as studied by Li and Li (2010), may well be a useful approach to investigate.
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Table 3.3: Testing (nonlinear) Granger causality from VRP to RP

Direction of Causality h = c× n−1/3 CvMn p-value LIN
Horizon: One Month

VRP→RP
c = 0.5 0.0057 0.2250 0.0017

(0.0094) (0.4172)
c = 1.0 0.0050 0.1950

(0.0081)
c = 1.5 0.0050 0.1340

(0.0067)

Horizon: Three Months
VRP→RP

c = 0.5 0.0319 0.0950 0.0016
(0.0357) (1.5009)

c = 1.0 0.0312 0.0250
(0.0263)

c = 1.5 0.0277 0.0120
(0.0206)

Horizon: Six Months
VRP→RP

c = 0.5 0.0976 0.0000 0.0002
(0.0426) (0.3329)

c = 1.0 0.1160 0.0000
(0.0306)

c = 1.5 0.0953 0.0000
(0.0257)

Horizon: Nine Months
VRP→RP

c = 0.5 0.4254 0.0000 0.0005
(0.0597) (2.0807)

c = 1.0 0.3734 0.0000
(0.0406)

c = 1.5 0.2550 0.0000
(0.0303)

Note: For testCvMn, both bootstrapped critical values (in parentheses) at the 5% level and bootstrapped
p-values are reported. LIN corresponds to the linear test, where the least squares estimate α̂τ and its t-
statistic tα̂τ (in parentheses) based on HAC robust variance estimator, are reported.
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Figure 3.1: Power functions of CvMn for DGP i.i.d. with nominal size 5%
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Appendix A

In this appendix, we provide proofs of the main asymptotic results.

First, recall that for fixed (y, z), εt(y, z) := 1(Yt ≤ y)[1(Zt ≤ z)− FZ|X(z|Xt)]. Denote

γ0
n(x, y, z) =

1

n

n∑
t=1

et(x, y, z),

where

et(x, y, z) = fX(Xt)1(Xt ≤ x)φt(y)εt(z)

with φt(y) = 1(Yt ≤ y)− FY |X(y|Xt) and εt(z) = 1(Zt ≤ z)− FZ|X(z|Xt).

Proof of Theorem 1: By Lemma B.1, uniformly in (x, y, z),

Ŝn(x, y, z) =
√
nγ0

n(x, y, z) + op(1)

=
1√
n

n∑
t=1

et(x, y, z) + op(1).

Noticing that, under the null hypothesis , et(x, y, z) forms a martingale differenced sequence

with respect to the filtration {Ft}t∈Z for each (x, y, z) ∈ Rd, that is, E (et(x, y, z)|Ft) = 0

∀(x, y, z) ∈ Rd. Under Assumptions A.1–A.3, by applying a standard central limit theo-

rem (CLT) for martingales, see e.g. Hall and Heyde (1980), it can be shown that the finite-

dimensional distributions of the stochastic process Ŝn converge to those of S∞, a Gaussian

process with continuous sample paths and covariance function

E (S∞(x1, y1, z1), S∞(x2, y2, z2)) = E (e1(x1, y1, z1)e1(x2, y2, z2)) .

We need to extend the convergence of the finite dimensional distributions of Ŝn to the weak

convergence in `∞(Rd
), which is a direct consequence of Theorem A.1 in Delgado and Escan-

ciano (2007). �
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Proof of Corollary 1: By continuous mapping theorem, see e.g. Billingsley (1968) Theorem

5.1. and the weak convergence of the process Ŝn, we immediately have the convergence of

KSn in distribution.

For the null limit distribution of CvMn, we write

|CvMn − CvM∞|

=

∣∣∣∣∫
Rd

(
Ŝn(x, y, z)

)2

dF̂n(x, y, z)−
∫
Rd

(S∞(x, y, z))2 dF (x, y, z)

∣∣∣∣
≤
∣∣∣∣∫

Rd

(
Ŝ2
n(x, y, z)− S2

∞(x, y, z)
)
dF̂n(x, y, z)

∣∣∣∣
+

∣∣∣∣∫
Rd
S2
∞(x, y, z) d(F̂n(x, y, z)− F (x, y, z))

∣∣∣∣ .
The first term of the right-hand side of the above inequality is op(1) by Theorem 1. Glivenko-

Cantelli’s Theorem yields that sup(x,y,z) |F̂n(x, y, z)−F (x, y, z)| = o(1) a.s. Then, taking into

account that the trajectories of the limit process S∞(x, y, z) are bounded and continuous almost

surely and applying Helly-Bray Theorem (see p. 97 in Rao, 1965) to each of these trajectories,

we obtain ∣∣∣∣∫
Rd
S2
∞(x, y, z) d(F̂n(x, y, z)− F (x, y, z))

∣∣∣∣→a.s. 0

This concludes the proof of the Corollary. �

Proof of Theorem 2: We only prove the consistence result for CvMn since the proof for KSn

is similar but easier. From Lemma B.2, we get

1

n
CvMn =

1

n

∫
Rd

(√
nγ̂n(x, y, z)

)2
dF̂n(x, y, z)

=
1

n

∫
Rd

(√
n
(
γ0
n(x, y, z) + γ1

n(x, y, z)
))2

dF̂n(x, y, z)[1 + op(1)]

=(D1n +D2n +D3n)[1 + op(1)],
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where

D1n =
1

n

∫
Rd

(√
nγ0

n(x, y, z)
)2
dF̂n(x, y, z),

D2n =

∫
Rd

(
γ1
n(x, y, z)

)2
dF̂n(x, y, z),

and

D3n = 2

∫
Rd
γ0
n(x, y, z)γ1

n(x, y, z) dF̂n(x, y, z).

We shall prove that D1n = op(1) and D2n = Op(1). From Lemma B.1 and Theorem 1, we

have that nD1n converges in distribution. Thus, D1n = op(1). Noting that, for stationary and

ergodic sequences,

γ1
n(x, y, z) =

1

n

n∑
t=1

fX(Xt)1(Xt ≤ x)∆t(y, z)

→p E
(
fX(X1)1(X1 ≤ x)

[
FY,Z|X(y, z|X1)− FY |X(y|X1)FZ|X(z|X1)

])
:= γ(x, y, z),

we get

D2n =

∫
Rd

(
γ1
n(x, y, z)

)2
dF (x, y, z) +

∫
Rd

(
γ1
n(x, y, z)

)2
d
(
F̂n(x, y, z)− F (x, y, z)

)
→p

∫
Rd

(γ(x, y, z))2 dF (x, y, z) > 0,

where we have used the Glivenko-Cantelli’s Theorem for stationary and ergodic sequences, i.e.

sup(x,y,z) |F̂n(x, y, z)−F (x, y, z)| = o(1) a.s. From the Cauchy-Schwartz’s inequality, we also

conclude that D3n = op(1). Hence, we finish the proof. �

Proof of Theorem 3: Recall that ε̂t(y, z) = 1(Yt ≤ y)[1(Zt ≤ z) − F̂Z|X(z|Xt)]. Let’s
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denote εnt(y, z) = FY,Z|X(y, z|Xt) − FY |X(y|Xt)FZ|X(z|Xt) − n−1/2∆(Xt, y, z) under the

local alternatives H1n in (1.7). Then, by simple rearranging, we get

γ̂n(x, y, z)

=
1

n

n∑
t=1

f̂X(Xt)1(Xt ≤ x)εnt(y, z)

+
1

n

n∑
t=1

f̂X(Xt)1(Xt ≤ x)
[
ε̂t(y, z)− FY,Z|X(y, z|Xt) + FY |X(y|Xt)FZ|X(z|Xt)

]
+

1√
n

1

n

n∑
t=1

f̂X(Xt)1(Xt ≤ x)∆(Xt, y, z)

:=γ̂1n(x, y, z) + γ̂2n(x, y, z) +
1√
n
γ̂3n(x, y, z).

First of all, by utilizing standard kernel estimation theory, we can show that

γ̂1n(x, y, z) =
1

n

n∑
t=1

fX(Xt)1(Xt ≤ x)εnt(y, z) + op

(
1√
n

)

Now it is clear to see that under the local alternatives H1n, the sequence of innovations εnt

is a martingale difference sequence with respect to the σ-field Ft. Then, following similar

arguments as in the proof of Theorem 5, we can immediately prove that

Ŝ1n :=
√
nγ̂1n ⇒ S∞,

where S∞ is the same zero mean Gaussian process as in Theorem 5.
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For the term γ̂2n(x, y, z), we notice that it can be decompose into three parts,

γ̂2n(x, y, z)

=
1

n

n∑
t=1

f̂X(Xt)1(Xt ≤ x)
[
1(Yt ≤ y)1(Zt ≤ z)− FY,Z|X(y, z|Xt)

]
− 1

n

n∑
t=1

f̂X(Xt)1(Xt ≤ x)
[
1(Yt ≤ y)− FY |X(y|Xt)

]
FZ|X(z|Xt)

− 1

n

n∑
t=1

f̂X(Xt)1(Xt ≤ x)1(Yt ≤ y)
[
F̂Z|X(z|Xt)− FZ|X(z|Xt)

]
:=γ̂1

2n(x, y, z)− γ̂2
2n(x, y, z)− γ̂3

2n(x, y, z).

It suffices to establish that, uniformly in (x, y, z), all three terms γ̂j2n(x, y, z) = op(n
−1/2) for

j = 1, 2, 3. This is achieved by using the uniform ergodic theorem and the Glivenko-Cantelli’s

Theorem for ergodic and stationary time series.

Finally, for the third term, by standard law of large numbers for stationary sequences, it

is straightforward to show that γ̂3n(x, y, z) converges in probability to a deterministic shift

function G∞(x, y, z), where

G∞(x, y, z) = E [fX(X1)1(X1 ≤ x)∆(X1, y, z)] .

Thus, under the local alternatives H1n stated in (1.7),

Ŝn :=
√
nγ̂n ⇒ S∞ +G∞

by Slutsky’s Theorem. we conclude the proof of the theorem. �

Proof of Theorem 4: Define

Ŝ0∗
n (x, y, z) =

√
nγ̂0∗

n (x, y, z),
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with

γ̂0∗
n (x, y, z) =

1

n

n∑
t=1

fX(Xt)1(Xt ≤ x)
[
1(Yt ≤ y)− FY |X(y|Xt)

]
×
[
1(Zt ≤ z)− FZ|X(z|Xt)

]
vt,

where {vt}nt=1 is a sequence of independent random variables with zero mean, unit variance

and is independent of the original sample.

It suffices to prove that, uniformly in (x, y, z), the process Ŝ∗n(x, y, z) and the process

Ŝ0∗
n (x, y, z) are asymptotically equivalent, i.e.

sup
(x,y,z)∈Rd

∣∣√n [γ̂∗n(x, y, z)− γ̂0∗
n (x, y, z)

]∣∣ = op(1).

To achieve this, first note that

√
n
[
γ̂∗n(x, y, z)− γ̂0∗

n (x, y, z)
]

=
1√
n

n∑
t=1

[
f̂X(Xt)− fX(Xt)

]
1(Xt ≤ x)

[
1(Yt ≤ y)− F̂Y |X(y|Xt)

]
×
[
1(Zt ≤ z)− F̂Z|X(z|Xt)

]
− 1√

n

n∑
t=1

fX(Xt)1(Xt ≤ x)
[
F̂Y |X(y|Xt)− FY |X(y|Xt)

] [
1(Zt ≤ z)− FZ|X(z|Xt)

]
− 1√

n

n∑
t=1

fX(Xt)1(Xt ≤ x)
[
F̂Z|X(z|Xt)− FZ|X(z|Xt)

] [
1(Yt ≤ y)− FY |X(y|Xt)

]
+

1√
n

n∑
t=1

fX(Xt)1(Xt ≤ x)
[
F̂Y |X(y|Xt)− FY |X(y|Xt)

] [
F̂Z|X(z|Xt)− FZ|X(z|Xt)

]
:=B1n −B2n −B3n +B4n.

We shall show thatBjn = op(1), for j = 1, . . . , 4, uniformly in (x, y, z). LetC denote a generic

positive and bounded constant. For term B1n, the expectation of its square is bounded by

C · E
(
f̂X(Xt)− fX(Xt)

)2

→ 0
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since the mean squared errors of kernel estimator f̂X(Xt) vanishes asymptotically. Thus, by

Markov’s inequality, B1n = op(1).

The proof thatB2n andB3n are asymptotically negligible is similar, so we only showB2n =

op(1). Again, the expectation of B2
2n is bounded by

C · E
(
F̂Y |X(y|Xt)− FY |X(y|Xt)

)2

→ 0.

The proof of B4n = op(1) follows the same steps. �

Appendix B

In the first lemma we obtain the asymptotic behaviour for γ̂n(x, y, z) under the null hypothesis.

Lemma B.1: Under Assumptions A.1-A.3 and the null hypothesis,

sup
(x,y,z)∈Rd

∣∣√n [γ̂n(x, y, z)− γ0
n(x, y, z)

]∣∣ = op(1),

with

γ0
n(x, y, z) =

1

n

n∑
t=1

fX(Xt)1(Xt ≤ x)φt(y)εt(z),

where

φt(y) = 1(Yt ≤ y)− FY |X(y|Xt),

and

εt(z) = 1(Zt ≤ z)− FZ|X(z|Xt).

Proof of Lemma B.1: In the sequel, for notational simplicity, we will suppress the dependence
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on (x, y, z) of quantities like γ̂n(x, y, z). We first express γ̂n as a form of U -statistic. To this

end, defineWt = (Xt, Yt, Zt) and introduce

U(Wt,Ws) =
1

2

[
1

hdx
K

(
Xt −Xs

h

)
1(Xt ≤ x)1(Yt ≤ y)[1(Zt ≤ z)− 1(Zs ≤ z)]

+
1

hdx
K

(
Xt −Xs

h

)
1(Xs ≤ x)1(Ys ≤ y)[1(Zs ≤ z)− 1(Zt ≤ z)]

]
.

Therefore, we rewrite

√
nγ̂n =

√
n

2

n(n− 1)

n−1∑
t=1

n∑
s=t+1

U(Wt,Ws),

We shall use the technique of Hoeffding’s decomposition to study the asymptotic behaviour of

a generalized U -statistic like the above one, .

By standard U -statistic theory, see Serfling (1980) for further details, we first need to cal-

culate the projection term of U(Wt,Ws) givenWs. DenoteW = (X, Y, Z). We get

U1(W) =E[U(Wt,Ws)|Ws =W ]

=
1

2
E

[
1

hdx
K

(
Xt −X

h

)
1(Xt ≤ x)FY |X(y|Xt)FZ|X(z|Xt)

]
− 1

2
E

[
1

hdx
K

(
Xt −X

h

)
1(Xt ≤ x)1(Yt ≤ y)

]
1(Z ≤ z)

+
1

2
E

[
1

hdx
K

(
Xt −X

h

)]
1(X ≤ x)1(Y ≤ y)1(Z ≤ z)

− 1

2
E

[
1

hdx
K

(
Xt −X

h

)
FZ|X(z|Xt)

]
1(X ≤ x)1(Y ≤ y)

:=
4∑
j=1

A1j,

where we have applied the law of iterated expectation and the fact that E(1(Zt ≤ z)|Xt) =

FZ|X(z|Xt), and under the null hypothesis, FY,Z|X(y, z|Xt) = FY |X(y|Xt)FZ|X(z|Xt).

Now denote fY,X(y, x) to be the joint density of (Y,X). We further could calculate that

2A11 = 1(X ≤ x)FY |X(y|X)FZ|X(z|X)fX(X) +O(hl),
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2A12 = −1(X ≤ x)FY |X(y|X)1(Z ≤ z)fX(X) +O(hl),

2A13 = 1(X ≤ x)1(Y ≤ y)1(Z ≤ z)fX(X) +O(hl),

and

2A14 = −1(X ≤ x)1(Y ≤ y)FZ|X(z|X)fX(X) +O(hl),

so that

2U1(W) = 1(X ≤ x)[1(Y ≤ y)− FY |X(y|X)][1(Z ≤ z)− FZ|X(z|X)]fX(X) +O(hl).

Thus, U1(Wt) := ξt/2+Op(h
l) := 1(Xt ≤ x)φt(y)εt(z)fX(Xt)/2+Op(h

l). Now, according to

U -statistic theory, let’s denote ψ(Wt,Ws) = U(Wt,Ws)−U1(Wt)−U1(Ws). By Hoeffding’s

decomposition,
√
nγ̂n(x, y, z) can be written as

√
nγ̂n(x, y, z)

=
2√
n

n∑
t=1

U1(Wt) +
√
n

2

n(n− 1)

n−1∑
t=1

n∑
s=t+1

ψ(Wt,Ws)

=
1√
n

n∑
t=1

ξt +
√
n

2

n(n− 1)

n−1∑
t=1

n∑
s=t+1

ψ(Wt,Ws) +Op((nh
2L)1/2).

It is clear thatOp((nh
2l)1/2) = op(1) by Assumption A.3. We finish the proof about the uniform

expansion of
√
nγ̂n(x, y, z) by showing that

√
n

1

n(n− 1)

n−1∑
t=1

n∑
s=t+1

ψ(Wt,Ws) = op(1),
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uniformly in (x, y, z). By Markov’s inequality, this can be achieved by proving

E

∣∣∣∣∣√n 1

n(n− 1)

n−1∑
t=1

n∑
s=t+1

ψ(Wt,Ws)

∣∣∣∣∣
2
→ 0. (3.12)

The following proof is similar to that of Theorem 1 in Nishiyama et al. (2011). Observing

first the components from left-hand side of (3.12), we only need to show that, separately, the

following three terms are all asymptotically negligible, that is,

(a) the double summation term

E

{
1

n3

n−1∑
t=1

n∑
s=t+1

ψ(Wt,Ws)
2

}
→ 0, (3.13)

(b) the triple summation term

E

{
1

n3

n−2∑
t=1

n−1∑
s=t+1

n∑
u=s+1

ψ(Wt,Ws)ψ(Wt,Wu)

}
→ 0, (3.14)

and (c) the quadruple summation term

E

{
1

n3

n−3∑
t=1

n−2∑
s=t+1

n−1∑
u=s+1

n∑
v=u+1

ψ(Wt,Ws)ψ(Wu,Wv)

}
→ 0. (3.15)

Furthermore, in order to show (3.15), we have to consider two different scenarios. Specifically

speaking, case (c.1) with t < s < u < v and s− t > v − u, and case (c.2) t < s < u < v and

s− t ≤ v− u. Since both cases are of the same spirits and can be handled similarly, we simply

have to focus on case (c.1), i.e., we prove

E

{
1

n3

∑∑∑∑
t<s<u<v,s−t>v−u

ψ(Wt,Ws)ψ(Wu,Wv)

}
→ 0. (3.16)

One useful lemma from Yoshihara (1976) for strictly stationary mixing processes will be
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exploited. For illustration, we only prove (3.13). First of all, we calculate

∫
|ψ(w1, w2)|2+δ dF (w1)dF (w2)

≤C
∫
|U(w1, w2)|2+δ dF (w1)dF (w2) + C

≤C
∫

1

hdx(2+δ)

∣∣∣∣K (X1 −X2

h

)∣∣∣∣2+δ

dF (w1)dF (w2) + C

≤C{h−dx(1+δ) + 1} := C1h (3.17)

The first inequality holds because E|U1(Wt)|2+δ is of smaller order than E|U(Wt,Ws)|2+δ. By

change of variables, we get the last equality. Lemma B.1 yields

∣∣∣∣∫ ψ(w1, w2)2 dF1,2(w1, w2)−
∫
ψ(w1, w2)2 dF (w1)dF (w2)

∣∣∣∣
≤4C

2/(2+δ)
1h β(s− t)δ/(2+δ)

≤Ch−2dx(1+δ)/(2+δ)(s− t)−(2+η)δ/(2+δ)η. (3.18)

Since when δ = 0, the inequality in (3.17) holds too, so that

∫
ψ(w1, w2)2 dF (w1)dF (w2) ≤ C(h−dx + 1) = O(h−dx). (3.19)

Combing inequalities (3.19) and (3.18), we have

E{ψ(Wt,Ws)
2} =

∫
ψ(w1, w2)2 dF1,2(w1, w2)

≤ C
{
h−2dx(1+δ)/(2+δ)(s− t)−(2+η)δ/(2+δ)η + h−dx

}
.
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Therefore,

E

{
1

n3

n−1∑
t=1

n∑
s=t+1

ψ(Wt,Ws)
2

}

=
1

n3

n−1∑
t=1

n∑
s=t+1

E{ψ(Wt,Ws)
2}

≤C

(
1

n3

n−1∑
t=1

n∑
s=t+1

{
h−2dx(1+δ)/(2+δ)(s− t)−(2+η)δ/(2+δ)η + h−dx

})

=C

(
h−2dx(1+δ)/(2+δ) 1

n3

n−1∑
t=1

n∑
s=t+1

(s− t)−(2+η)δ/(2+δ)η + h−dx
1

n3

n−1∑
t=1

n∑
s=t+1

1

)

≤C
(

1

n2h2dx(1+δ)/(2+δ)
+

1

nhdx

)
=C

(
h2dx/(2+δ)

(nhdx)2
+

1

nhdx

)
,

which goes to zero because of Assumption A.3. The last inequality holds because

n−1∑
t=1

n∑
s=t+1

(s− t)−(2+η)δ/(2+δ)η =
n−1∑
t=1

n∑
s=t+1

(s− t)−1−γ ≤ Cn,

because γ = 2(δ − η)δ/((2 + δ)η) > 0 by picking some δ > η. The proofs that terms (3.14)

and (3.16) are all asymptotically negligible, are similar but lengthy. We hence omit the detailed

steps. �

The next lemma establishes the asymptotic representation of γ̂n(x, y, z) under the alterna-

tive hypothesis.

Lemma B.2: Under Assumptions A.1-A.3 and the alternative hypothesis,

sup
(x,y,z)∈Rd

∣∣√n [γ̂n(x, y, z)− γ0
n(x, y, z)− γ1

n(x, y, z)
]∣∣ = op(1),
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with

γ1
n(x, y, z) =

1

n

n∑
t=1

fX(Xt)1(Xt ≤ x)∆t(y, z),

where

∆t(y, z) = FY,Z|X(y, z|Xt)− FY |X(y|Xt)FZ|X(z|Xt),

and γ0
n(x, y, z) is defined the same as in Lemma B.1.

Proof of Lemma B.2: The proof of Lemma B.2 follows by using the similar steps as in Lemma

B.1. Hence we omit the details. Instead, we only provide the calculation of the projection term

of U(Wt,Ws) givenWs =W under the alternative hypothesis. Formally,

U1(W) = E[U(Wt,Ws)|Ws =W ]

=
1

2
E

[
1

hdx
K

(
Xt −X

h

)
1(Xt ≤ x)1(Yt ≤ y)(1(Zt ≤ z)− FZ|X(z|Xt))

]
+

1

2
E

[
1

hdx
K

(
Xt −X

h

)
1(Xt ≤ x)1(Yt ≤ y)FZ|X(z|Xt)

]
− 1

2
E

[
1

hdx
K

(
Xt −X

h

)
1(Xt ≤ x)1(Yt ≤ y)

]
1(Z ≤ z)

+
1

2
E

[
1

hdx
K

(
Xt −X

h

)]
1(X ≤ x)1(Y ≤ y)1(Z ≤ z)

− 1

2
E

[
1

hdx
K

(
Xt −X

h

)
FZ|X(z|Xt)

]
1(X ≤ x)1(Y ≤ y)

:=
4∑
j=0

A1j,

where A1j for j = 1, . . . , 4 is defined to be the same as in Lemma B.1 and A10 is a non-trivially

shifted term because of the alternative hypothesis. To see this, notice that by law of iterated
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expectation, A10 can be rewritten as

A10

=
1

2
E

[
1

hdx
K

(
Xt −X

h

)
1(Xt ≤ x)(FY,Z|X(y, z|Xt)− FY |X(y|Xt)FZ|X(z|Xt))

]
.

Clearly, A10 will be identically zero when under the null hypothesis of conditional indepen-

dence of Y and Z givenX , hence we go back to Lemma B.1 when under the null. Furthermore,

it is not too difficult to calculate that

A10 =
1

2
fX(X)1(X ≤ x)[FY,Z|X(y, z|X)− FY |X(y|X)FZ|X(z|X)] +O(hL).

Now, we have

U1(Wt)

=
1

2
fX(Xt)1(Xt ≤ x)φt(y)et(z) +

1

2
fX(Xt)1(Xt ≤ x)∆t(y, z) +Op(h

L)

Therefore, again by U -statistic theory and Hoeffding’s decomposition, if let ψ1(Wt,Ws) =

U(Wt,Ws)− U1(Wt)− U1(Ws), now
√
nγ̂n(x, y, z) can be rewritten as

√
nγ̂n(x, y, z)

=
2√
n

n∑
t=1

U1(Wt) +
√
n

2

n(n− 1)

n−1∑
t=1

n∑
s=t+1

ψ1(Wt,Ws)

=
1√
n

n∑
t=1

fX(Xt)1(Xt ≤ x)φt(y)et(z)

+
1√
n

n∑
t=1

fX(Xt)1(Xt ≤ x)∆t(y, z)

+
√
n

2

n(n− 1)

n−1∑
t=1

n∑
s=t+1

ψ1(Wt,Ws) +Op((nh
2L)1/2).

It is important to remark that the additional shift term γ1
n(x, y, z) converges in probability to

γ(x, y, z) by law of large numbers, where γ(x, y, z), under the alternative hypothesis, is not
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identically zero for a positive Lebesgue measure of (x, y, z) ∈ Rd. This fact will guarantee the

consistency of our test. See the proof of the theorem below.

To finish the proof of Lemma B.1, it suffices to prove that, uniformly in (x, y, z)

√
n

1

n(n− 1)

n−1∑
t=1

n∑
s=t+1

ψ1(Wt,Ws) = op(1),

which, by Markov’s inequality, is equivalent to showing

E

(√n 1

n(n− 1)

n−1∑
t=1

n∑
s=t+1

ψ1(Wt,Ws)

)2
→ 0. (3.20)

Now we use again the arguments for (3.12) in the proof of (3.20) (here with ψ1(Wt,Ws) in

the place of ψ(Wt,Ws)). We conclude the proof. �
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