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Abstract. We study the asymptotic properties of Stieltjes polynomials outside the sup-
port of the measure as well as the asymptotic behaviour of their zeros. These properties
are used to estimate the rate of convergence of sequences of rational functions, whose
poles are partially fixed, which approximate Markov-type functions. An estimate for
the speed of convergence of Gauss-Kronrod quadrature formula in the case of analytic
functions is also given.

1. Introduction

1.1. General Remarks. Let ω be a nonnegative function on the interval [−1, 1] with ω ∈
L1[−1, 1]. By dx, we denote Lebesgue’s measure on [−1, 1]. Let {pn}n∈N be the sequence
of orthonormal polynomials with respect to the weight function ω; that is, pn(z) = κn zn +
· · · , κn > 0, and

(1)

∫ 1

−1
pm(x) pk(x)ω(x) dx = δkm.

It is well known and easy to verify that there exists a unique monic polynomial Sn of
degree n which satisfies the orthogonality relations

(2)

∫ 1

−1
xk Sn(x) pn−1(x)ω(x) dx = 0, k = 0, 1, . . . , n − 1.

The polynomial Sn is called the nth Stieltjes polynomial with respect to the weight function
ω. This class of polynomials {Sn} was introduced by Stieltjes [22] for the Legendre weight
w ≡ 1 in terms of the associated function of the second kind. For more information see
remark after Lemma 2 below.

In the last two decades Stieltjes polynomials have attracted considerable attention. This
interest has been motivated by their connection with Gauss-Kronrod quadrature formulas

(3)

∫ 1

−1
f(x)w(x) dx =

n∑

k=1

σk,nf(xk,n) +
n+1∑

k=1

γk,nf(yk,n) + En(f),
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where {xk,n} are the zeros of the orthogonal polynomial pn. The nodes {yk,n} and weights
{σk,n}, {γk,n} are chosen so as to maximize the degree of exactness of the formula in
the space of polynomials. It is easy to see that if for a given weight, En(f) = 0 for all
polynomials of degree less than or equal to 3n + 1, then the nodes yk,n must be the zeros
of the Stieltjes polynomial Sn+1. The reciprocal statement is also true if the zeros of
the Stieltjes polynomials Sn+1 happen to be simple and distinct from the zeros of pn. In
fact, there is equivalence between the construction of Stieltjes polynomials and Gauss-
Kronrod quadrature formulas if multiple nodes are allowed (for details, see Section 5).
Kronrod [10] was the first to consider this type of formulas taking as nodes the zeros
of Legendre polynomials and the zeros of the corresponding Stieltjes polynomials. For
further references and surveys on this topic, see [9], [12], and [7].

From the point of view of quadrature processes it is important to know if the nodes are
simple, their interlacing properties, and certainly if they are contained in the set where
the function to be integrated is defined. Since Sn is orthogonal with respect to a sign
changing function, equations (2), in general, do not guarantee that the zeros of Sn lie in
[−1, 1], that they are simple and distinct from the zeros of pn−1, or even that they are real.

However, for the ultraspherical weight function wλ, wλ(x) = (1 − x2)λ−1/2, 0 ≤ λ ≤ 2,
Szegő proved in [24] that these properties hold for all n. Positivity of the coefficients
appearing in the quadrature formula and interlacing properties of the zeros have also been
studied for the ultraspherical weights wλ, 0 ≤ λ ≤ 1, in [11] and [4], respectively. The

same properties are analysed in [16] and [17] for weights of the type
√

1 − x2w(x), where√
1 − x2w(x) is positive and twice continuously differentiable on [−1, 1]. Estimates of the

error in Gauss-Kronrod quadrature formulas have been given for classes of functions with
different degree of smoothness. For the case of analytic functions, see [6] and [15]. In
connection with Lagrange interpolation see also [8].

Thus, to some extent the study of Stieltjes polynomials has been marked so far by their
applicability in Gauss-Kronrod quadrature. This has caused that research has focused on
weights for which quadrature is meaningful for classes of functions as large as possible.
We have shifted the attention to the Stieltjes polynomials themselves and to the study of
their asymptotic properties regardless of their immediate use in quadrature. We aim to
describe general classes of weights for which the corresponding Stieltjes polynomials have
either nth root (weak), ratio, or strong asymptotic behaviour. Such results have direct
application in the approximation of Markov functions by means of rational approximants
with partially prescribed poles (Padé-type approximants in the terminology commonly
used in recent years). Regarding such approximants, we refer to the papers [1]-[3] and
the references therein. As a by-product of the results obtained in rational approximation,
we give estimates of the rate of convergence of Gauss-Kronrod quadrature for functions
which are analytic on a neighbourhood of the set of integration.

1.2. Definitions and Known Results. Let µ be a finite, positive, Borel measure on the
real line R whose compact support S(µ) contains infinitely many points. Let µ′ = dµ/dx be
the Radon-Nykodym derivative of µ with respect to the Lebesgue measure dx. Whenever
we find it more convenient, we adopt the differential notation for a measure. The nth
Stieltjes polynomial with respect to µ is defined by (1) and (2) substituting ω(x) dx by
dµ(x). That is, let {Sn}n∈N be a sequence of polynomials such that for each n ∈ N, Sn is
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defined as the monic polynomial of degree at most n verifying
∫

S(µ)
xk Sn(x) pn−1(x) dµ(x) = 0, k = 0, 1, . . . , n − 1,

where pn−1 = κn−1z
n−1 + · · · , κn−1 > 0, is the (n − 1)th orthonormal polynomial with

respect to the measure µ. Finding Sn reduces to solving a system of n homogeneous
equations on n+1 unknowns. Thus a non-trivial solution always exists. From the orthog-
onality relations satisfied by Sn it is easy to conclude that deg Sn = n. Sn is called the
nth Stieltjes polynomial with respect to the measure dµ. Unless otherwise stated, the set
of integration is S(µ) in which case it will not be indicated. We will refer to sn = κn−1 Sn

as the normalized nth Stieltjes polynomial. The introduction of this notation allows to
give several formulas a closer form; of course, it has nothing to do with attempting to
orthonormalize the Stieltjes polynomials.

The largest class of measures with which we will deal is that of regular measures.
This class of measures was introduced in recent years and has been extensively studied.
The excellent monography [21] by H. Stahl and V. Totik is dedicated to the study of
these measures and their orthogonal polynomials. For the precise definition and different
equivalent forms of its expression see page 61 of that treatise. The regularity of the
measure µ, which is denoted µ ∈ Reg, is equivalent to either one of the following two
limit relations (see Theorem 3.1.1 in [21])

(4) lim
n→∞

κ1/n
n =

1

cap S(µ)
,

(5) lim
n→∞

|pn(z)|1/n = exp{gΩ(z,∞)},

uniformly on compact subsets of C \ Co(S(µ)), where Co(S(µ)) denotes the convex hull
of S(µ), cap S(µ) stands for the logarithmic capacity of S(µ), and gΩ(z,∞) is the (gener-
alized) Green function with singularity at infinity relative to the region Ω = C \ S(µ) (cf.
Section 1.2 and Appendix A.5 in [21] for the definition). We will assume that capS(µ) > 0
which is equivalent to the fact that gΩ(z,∞) 6≡ +∞.

The Blumenthal-Nevai class of measures is also of importance in the theory of orthogonal
polynomials and related subjects. Let

x pn(x) = an+1pn+1 + bnpn(x) + anpn−1(x), n ≥ 1,

be the recurrence relation satisfied by the sequence {pn}n∈N of orthonormal polynomials.
We say that µ ∈ M(a, b) if limn→∞ bn = b and limn→∞ an = a/2. In this case it is known
that S(µ) = [b − a, b + a] ∪ e, where e is at most a denumerable set whose only possible
accumulation points are b ± a. We will assume that a 6= 0 so that [b − a, b + a] does not
reduce to a point. In this case

(6) lim
n→∞

pn+1(z)

pn(z)
= Ψ

(
z − b

a

)
,

uniformly on compact subsets of C \ S(µ), where Ψ(z) = z +
√

z2 − 1. The square root
is taken to be positive for z > 1. This function is the conformal mapping of C \ [−1, 1]
onto {|w| > 1} such that Ψ(∞) = ∞ and Ψ′(∞) > 0. Because of these properties,
log |Ψ((z − b)/a)| happens to be the Green function with singularity at infinity relative
to the region C \ [b − a, b + a]. If µ ∈ M(a, b), in addition to (6), we have that for every
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bounded Borel-measurable function f on S(µ), continuous on [b − a, b + a], we have

(7) lim
n→∞

∫

S(µ)
f(x) p2

n(x) dµ(x) =
1

π

∫ b+a

b−a
f(x)

dx√
a2 − (x − b)2

.

For more details on this class of measures and its properties see the book [13] by P.
Nevai. A well known sufficient condition for µ ∈ M(a, b) due to E. A. Rakhmanov is that
S(µ) = [b − a, b + a] and µ′ > 0 almost everywhere on [b − a, b + a] (for a proof see, for
example, [19]).

Finally, we consider the Szegő class of measures. For simplicity in the notation, we
restrict our attention here to measures supported on [−1, 1]. We say that µ ∈ S if S(µ) =

[−1, 1] and log µ′(x)/
√

1 − x2 ∈ L1[−1, 1]. In this case

(8) lim
n→∞

pn(z)

[Ψ(z)]n
=

1√
2π

Sµ(Ψ(z)),

uniformly on compact subsets of C \ [−1, 1], where

Sµ(z) = exp





1

4π

2π∫

0

log(µ′(cos θ) | sin(θ)|) eiθ + z

eiθ − z
dθ




 , |z| 6= 1.

Relations of type (8) are called exterior strong asymptotic formulas.
As for strong asymptotics on the support of the measure, it is necessary to place more

restrictions on the measure µ to obtain some results. Thus, for instance, suppose that
dµ(x) = w(x) dx and the function f(θ) = w(cos θ) | sin θ| satisfies the Lipschitz-Dini con-
dition

|f(θ + δ) − f(θ)| < M (log δ)−L−1

where M and L are fixed positive numbers. Then, we have (see Theorem 12.1.4 in [23])
uniformly on −1 ≤ x ≤ 1

(9) (1 − x2)1/4
√

w(x)pn(x) =
√

2/π cos{nθ + γ(θ)} + O{(log n)−L},
where x = cos θ, exp{iγ(θ)} = Sµ(eiθ)/|Sµ(eiθ)|, and Sµ(eiθ) := limr→1− Sµ(reiθ).

1.3. Statement of Main Results. As mentioned above, the main object of this paper is
the study of the asymptotic behaviour of Stieltjes polynomials. In this respect not much
is known so far. Most of the results to the present are formulas of type (9), since they
allow to obtain pretty accurate information on the location and asymptotic distribution
of the zeros of Stieltjes polynomials. Ehrich, [4] and [5], proves relations similar to (9) for
Stieltjes polynomials with respect to the ultraspherical weights wλ, 0 ≤ λ ≤ 2. Previously,
Peherstorfer had given in [16] a representation of the limit of the Stieltjes polynomials

with respect to the weight
√

1 − x2w(x) in terms of the series expansion of Sw at z = 0

provided that
√

1 − x2w(x), is positive and twice continuously differentiable on [−1, 1] (see
also [17]). It is quite surprising, that formulas for the exterior asymptotic behaviour of
Stieltjes polynomials are only known for the class of weights considered in [17]. In that
work, the author asks whether such a relation takes place under weaker assumptions. As
we shall see, the only restriction is the least one possible; that is, that the measure satisfy
Szegő’s condition (µ ∈ S). Regarding other types of asymptotics as nth root or ratio
asymptotics, to the best of our knowledge the results we present are the first available.
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Set

E =

{
z ∈ C : gΩ(z,∞) ≤ max

w∈Co(S(µ))
gΩ(w,∞)

}
.

We will write S(µ) = ess[b−a, b+a] if the support of the measure µ has the same structure
as in the Blumenthal-Nevai class M(a, b); that is, consists of the interval [b− a, b + a] and
at most a denumerable set which may only accumulate at the points b ± a.

The functions of second kind with respect to µ are given by

gn(z) =

∫
pn(x)

z − x
dµ(x), z ∈ Ω = C \ S(µ).

These functions are analytic in Ω and gn(∞) = 0. Because of the orthogonality relations
satisfied by pn with respect to the measure µ, z = ∞ is a zero of gn of multiplicity n + 1.

We have

Theorem 1. The following assertions hold:

a) If µ ∈ Reg and cap S(µ) > 0, then

(10) lim
n→∞

sn+1(z) gn(z) = 1,

uniformly on compact subsets of C \ E. In addition, the set of accumulation points of the
zeros of {Sn+1}n∈N is contained in E and

(11) lim
n→∞

|sn+1(z)|1/n = exp{gΩ(z,∞)},

uniformly on each compact subset of C \ E. Moreover, if S(µ) = ess[b − a, b + a] then
relations (10) and (11) take place uniformly on each compact subsets of C \ S(µ) and
C \ S(µ) respectively, and the set of accumulation points of the zeros of the {Sn}n∈N is
contained in S(µ).

b) If µ ∈ M(a, b) with a 6= 0, then

(12) lim
n→∞

sn+1(z)

sn(z)
= Ψ

(
z − b

a

)
and lim

n→∞

pn(z)

sn+1(z)
=

1√
(z − b)2 − a2

,

uniformly on each compact subset of C \ S(µ).

c) If µ ∈ S, then

(13) lim
n→∞

sn+1(z)

[Ψ(z)]n
=

√
z2 − 1

2π
Sµ(Ψ(z)),

uniformly on each compact subset of C \ [−1, 1], where Sµ(z) is as in (8).

The paper is organized as follows. The next section is essentially dedicated to prove
an integral relation, between Stieltjes polynomials and functions of second kind, which
plays an important role in the subsequent arguments. The following section is dedicated
to the study of the asymptotic properties of Stieltjes polynomials and proving our main
results stated above. In Section 4, we apply our result on nth root asymptotics to obtain
convergence of a certain type of Padé type approximants to Markov functions. In turn, this
result is applied in Section 5 to estimate the speed of convergence of the Gauss-Kronrod
quadrature formula when integrating functions which are analytic on a neighbourhood of
the support of the measure. The final section contains an example illustrating the type of
difficulties one encounters with the location of the zeros and the asymptotic properties of
the Stieltjes polynomials when the support of the measure contains more than one interval.
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2. Some Lemmas

The next lemma provides some useful relations

Lemma 1. We have

(14) gn(z) pn(z) =

∫
p2

n(x)

z − x
dµ(x), z ∈ Ω,

and for any polynomial ℓn of degree less than or equal to n

(15) ℓn(z)

∫
sn(x)

z − x
pn−1(x)dµ(x) =

∫
ℓn(x)sn(x)

z − x
pn−1(x)dµ(x), z ∈ Ω.

Let K be a compact subset of C \ Co(S(µ)), then there exist positive constants M1, M2 ,
independent of n, satisfying

(16) M1 ≤ |gn(z) pn(z)| ≤ M2, z ∈ K.

In particular, pngn has no zeros on C \ Co(S(µ)). Moreover, if S(µ) = ess[b − a, b + a],
a < a′, and K is a compact subset of C \ (S(µ)∪ [b− a′, b + a′]), then there exists n0 such
that for all n ≥ n0, gn has no zeros on C \ [b − a′, b + a′] and (16) takes place uniformly
on K.

Proof. Relation (14) is well known (see e.g. Theorem 6.1.8 in [21]). It follows directly
from the orthogonality properties of pn. To prove (15) notice that from the orthogonality
relations satisfied by sn we have that

∫
ℓn(z) − ℓn(x)

z − x
sn(x)pn−1(x)dµ(x) = 0,

which is equivalent to (15).
The general statement concerning (16) is also well known. It is an immediate conse-

quence of (14). The upper bound is quite obvious. For the lower bound, notice that

gn(z) pn(z) =

∫
(ℜ(z) − x)p2

n(x)

|z − x|2 dµ(x) + iℑ(z)

∫
p2

n(x)

|z − x|2 dµ(x), z ∈ Ω,

which in the first place makes it obvious that gnpn has no zero in C \ Co(S(µ)), and
secondly it is easy to bound from below in absolute value by a positive constant on a
compact subset of C \ Co(S(µ)).

Now, assume that S(µ) = ess[b−a, b+a], and [b−a′, b+a′] and K are as in the second
part of the statement relative to (16). In this case, the set Co(S(µ))\(S(µ)∪ [b−a′, b+a′])
is made up of at most a finite number of non-intersecting open intervals (let us assume
that at least one, otherwise we would have nothing to prove). It is easy to prove that on
the closure of any bounded connected component of R\S(µ), pn can have at most one zero
(if this were not so, one can construct a polynomial ℓ of degree ≤ n− 2 such that ℓpn has
a constant sign on the support of the measure contradicting the orthogonality relations
satisfied by pn). On the other hand, each mass point of µ attracts at least one zero of
pn (see Theorem 6.1.1 [23]). Therefore, for all sufficiently large n, each one of the non-
intersecting open interval which compose Co(S(µ))\(S(µ)∪ [b−a′, b+a′]) contains exactly
one zero of pn which lies beyond a prescribed sufficiently small distance from K. Using
this, the upper bound in (16) on K is immediate on account of (14). Thus we have that the
family {pngn} is uniformly bounded on each compact subset of C \ (S(µ)∪ [b− a′, b + a′]).
Suppose that on the compact set K we had chosen before, |pngn| is not uniformly bounded
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from below by a positive constant. Take a convergent subsequence of {pngn} whose limit
function has a zero at z0 ∈ K. The limit function cannot be identically equal to zero
because that would contradict the lower bound which was shown to be true on compact
subsets of the complement of the convex hull of the support. Therefore, z0 is an isolated
zero. Choose a neighborhood V of z0 at a positive distance from S(µ) ∪ [b − a′, b + a′].
By Hurwitz Theorem, we conclude that there is a subsequence of indices ∆ such that for
each n ∈ ∆, pngn has at least one zero in V . Such zeros must be contained in the real line
since as was proved earlier pngn does not have zeros outside the real line for any n. Let us
show that they cannot be on the real line either for all sufficiently large n. Having proved
this we would arrive to a contradiction which implies that on K the sequence {|pngn|} is
uniformly bounded from below on K by a positive constant as needed.

First of all, using the arguments employed above we know that for all sufficiently large
n we can guarantee that pn has no zero on V . Let us prove that for all sufficiently large
n, gn does not have any zero on Co(S(µ)) \ [b − a′, b + a′] and thus on C \ [b − a′, b + a′].
To this end, notice that

(17) (pngn)′(z) =

∫
p2

n(x)

z − x
dµ(x) < 0, z ∈ R \ S(µ).

Therefore the funcion pngn has at most one simple zero in each one of the open intervals
which give the connected components of Co(S(µ)) \S(µ). On those intervals, we saw that
pn has exactly one zero for all sufficiently large n; therefore, for such n the functions gn

cannot have any zeros. With this we conclude the proof.
�

Now, let us obtain some integral expression connecting the Stieltjes polynomials and
the second kind functions.

Lemma 2. We have

(18) sn(z) − 1

gn−1(z)
=

1

gn−1(z)

∫
sn(x)

z − x
pn−1(x) dµ(x), z ∈ C \ Co(S(µ)),

and

(19) sn(z) gn−1(z) = 1 +
gn−1(z)

2πi

∫

γ

dζ

gn−1(ζ) (ζ − z)
,

where γ is any positively oriented close smooth curve which surrounds Co(S(µ)) such that
z is contained in the unbounded component of C\γ. If S(µ) = ess[b−a, b+a], then we can
take γ in (19) as any smooth contour surrounding [b − a, b + a] and the formula remains
valid for all sufficiently large n.

Proof. From the orthogonality relations of pn−1 with respect to the measure µ, we obtain

∫
Sn(z) − Sn(x)

z − x
pn−1(x) dµ(x) =

∫
zn − xn

z − x
pn−1(x) dµ(x)

=

∫
xn−1 pn−1(z) dµ(x) =

1

κn−1
.
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Rewriting this equality, we find that

gn−1(z) sn(z) = 1 +

∫
sn(x)

z − x
pn−1(x) dµ(x),

which is equivalent to the first formula of the lemma. From (18), (14), and (15) (used
with ℓn(x) = x pn−1(x)), it follows that

sn(z) − 1

gn−1(z)
=

(∫
p2

n−1(x)

1 − x/z
dµ(x)

)−1 ∫
x sn(x)

z − x
p2

n−1(x) dµ(x).

Therefore, this function is analytic in C \ Co(S(µ)) and has a zero of order at least 1 at
infinity. Using Cauchy’s integral formula with a curve γ as indicated above, we obtain

sn(z) − 1

gn−1(z)
=

1

2πi

∫

γ

sn(ζ) − 1/gn−1(ζ)

(z − ζ)
dζ =

1

2πi

∫

γ

dζ

gn−1(ζ) (ζ − z)
,

which is (19) in different form. When S(µ) = ess[b − a, b + a], take any smooth contour
that surrounds [b − a, b + a]. Choose a′ > a such that [b − a′, b + a′] does not intersect
the contour. According to Lemma 1, for all sufficiently large n, gn does not have zeros on
C \ [b − a′, b + a′]. Therefore, reasoning as before we can obtain (19) using this γ. The
proof is complete.

�

In his letter to Hermite [22], Stieltjes considers the function gn of second kind with
respect to the Legendre weight. He notices that such a function has a zero at infinity of
degree n + 1 and concludes that

1

gn(z)
= En+1 +

a1

z
+

a2

z2
+ · · · , n ∈ N,

where En+1 is a polynomial of degree n + 1. Using Cauchy’s integral formula he obtains
an integral representation of the polynomial En+1 (different from (18) and (19)) which
allows him to prove that it satisfies full orthogonality relations with respect to pn(x) dx.
Therefore, En+1 is Sn+1 up to a multiplicative constant. We have preferred to take (2) as
the starting-point for the Stieltjes polynomials.

3. Asymptotics of Stieltjes Polynomials

Recall that

E =

{
z ∈ C : gΩ(z,∞) ≤ max

w∈Co(S(µ))
gΩ(w,∞)

}
.

The set E contains the convex hull of S(µ) and has, in general, non empty interior.
Moreover, E coincides with S(µ) (and thus has empty interior) if and only if S(µ) is
connected (an interval). It is well known that the Green function gΩ(z,∞) tends to zero,
except at most on a set of capacity zero, as z goes to S(µ).

Let f be a bounded function defined on K. As usual, ‖f‖K = sup{|f(z)| : z ∈ K}.
The following theorem provides a stronger version of (10).
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Theorem 2. Let µ ∈ Reg and cap S(µ) > 0. Then

(20) lim sup
n→∞

‖ sn+1 gn − 1‖1/n
K ≤ ‖ exp{−gΩ(·,∞)}‖K ‖ exp{gΩ(·,∞)}‖Co(S(µ)),

where K is any compact subset of C\E. Moreover, if additionally we suppose that S(µ) =
ess[b − a, b + a], then

(21) lim sup
n→∞

‖ sn+1 gn − 1‖1/n
K ≤ ‖ exp{−gΩ(·,∞)}‖K ,

with K any compact subset of C \ S(µ).

Proof. Fix a compact set K ⊂ C \ E. Let r be a real number, r > ‖gΩ(·,∞)‖Co(S(µ)),

such that K lies in the unbounded component of C\γr, where γr = {ζ ∈ C : gΩ(ζ,∞) = r}.
Obviously, γr surrounds Co(S(µ)). From (19), applied integrating over γr, we have that

‖ sn+1 gn − 1‖K ≤ C
‖gn‖K

inf
ζ∈γr

|gn(ζ)| ,

where C is a positive constant depending on the length of γr and the distance between γr

and K. Therefore,

(22) lim sup
n→∞

‖ sn+1 gn − 1‖1/n
K ≤

lim sup
n→∞

‖gn‖1/n
K

lim
n→∞

inf
ζ∈γr

|gn(ζ)|1/n
.

By (16) and (5), we have that

(23) lim
n→∞

|gn(z)|1/n = exp{−gΩ(z,∞)},

uniformly on compact subsets of C \ Co(S(µ)). From (23), it follows that

(24) lim sup
n→∞

‖gn‖1/n
K = ‖ exp{−gΩ(·,∞)}‖K

and

(25) lim
n→∞

inf
ζ∈γr

|gn(ζ)|1/n = exp{−r}.

Relations (24) and (25) together with (22) give

lim sup
n→∞

‖ sn+1 gn − 1‖1/n
K ≤ exp{r} ‖ exp{−gΩ(·,∞)}‖K .

The left hand of this inequality does not depend on r; therefore, we can make r tend
to ‖gΩ(·,∞)‖Co(S(µ)) obtaining (20) for compact subsets of C \ E. The function under

the norm sign on the left hand of (20) is analytic on C \ S(µ) and, in particular, on
C\E; therefore, by use of the Maximum Principle the result is easily extended to compact
subsets of C \ E.

The proof of (21) is analogous to that of (20) taking advantage of the special structure
of S(µ). To avoid repetitions we simply outline the main ingredients. We start out again
with a fixed compact subset K which is now contained in C\S(µ). Take r > 0 sufficiently
small so that K lies entirely on the unbounded component of the complement of γr, taking
care that γr does not intersect any of the mass points which S(µ) has outside of [b−a, b+a].
According to Lemma 1 we know that for all sufficiently large n, gn has no zero on or outside
γr. Therefore, according to Lemma 2, (19) remains valid integrating over this γr and we
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deduce a bound analogous to (22). Now, (5) takes place uniformly on compact subsets
of C \ S(µ) (see Theorem 3.1.1 and Corollary 1.1.5 in [21]) taking into consideration that
the zeros of pn are bounded away from K. Using this and (16), we obtain (23) on each
compact subset of C \S(µ) and we can proceed as before, with the advantage that we can
make r approach zero. With this we conclude the proof.

�

With the aid of this theorem, we are able to prove our main result stated in the intro-
duction.

Proof of Theorem 1. a) Since ‖ exp{−gΩ(z,∞)}‖K ‖ exp{gΩ(z,∞)}‖Co(S(µ)) < 1 due

to the harmonicity of gΩ(z,∞) on C\E, relation (10) follows immediately from (20). The
statement concerning the zeros of {Sn+1}n∈N is a direct consequence of (10) and Hurwitz’
Theorem since the function 1 has no zeros on C \ E. Finally, (10) and (23) render (11).
The case when S(µ) = ess[b − a, b + a] is proved analogously using (21) in place of (20).

b) First, notice that it is sufficient to consider the case when a = 1 and b = 0: the general
case may be reduced to this one by means of an affine change of variables. Secondly,
according to (21), under the present conditions we know that (10) takes place uniformly
on each compact subset of C \ S(µ). Finally, from (14) and (7), we have that

(26) lim
n→∞

gn(z) pn(z) =
1

π

∫ 1

−1

dx

(z − x)
√

1 − x2
=

1√
z2 − 1

,

uniformly on each compact subset of C \ S(µ). Putting these things together and using
(6), we obtain

lim
n→∞

sn+1(z)

sn(z)
= lim

n→∞

sn+1(z) gn(z)

sn(z) gn−1(z)
×

lim
n→∞

pn−1(z) gn−1(z)

pn(z) gn(z)
× lim

n→∞

pn(z)

pn−1(z)
= z +

√
z2 − 1,

and all the limits hold uniformly on each compact subset K of C\S(µ). With this we prove
the first part of (12). From (26) and (10), we immediately obtain the second relation.

c) From (10), (8), and (26), we have

lim
n→∞

sn+1(z)

[Ψ(z)]n
= lim

n→∞

sn+1(z) gn(z) × lim
n→∞

pn(z)

[Ψ(z)]n

× lim
n→∞

1

gn(z) pn(z)
=

√
z2 − 1

2π
Sµ(Ψ(z)),

with uniform convergence on any compact subset K of C \ [−1, 1], which proves (13).
�

Comparing these results with (5), (6), and (8), one observes that, for these important
classes of measures, there are points in common between the asymptotic behaviour of
Stieltjes polynomials and of orthonormal polynomials; this is specially so when S(µ) =
ess[b − a, b + a]. When the support of the measure already contains two whole intervals
some differences do arise as the example in Section 6 illustrates. That example also reveals
that Theorem 2 is, in some sense, sharp.
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With respect to the location of the zeros, it is known (cf. [14] and [18]) that, in general,
Stieltjes polynomials may have complex zeros. Despite this fact, statement a) of Theorem
1 shows that the zeros may only accumulate on E (on S(µ) if S(µ) = ess[b − a, b + a])
when µ ∈ Reg. We will complement this assertion in the next result. In order to state
it properly it is necessary to give some additional definitions. It is well known (see [20],
Section 3.3) that among all probability measures σ with support in S(µ) there exists a
probability measure λ (which is unique if capS(µ) > 0) with support in S(µ), called the
extremal or equilibrium measure of S(µ), minimizing the energy

I(σ) =

∫ ∫
log

1

|z − t|dσ(z) dσ(t).

Let P (σ; z) = −
∫

log |z − t| dσ(t) be the potential of the measure σ. There exists a
constant F , called the equilibrium constant of S(µ), such that

P (λ; z) ≤ F, z ∈ C,

P (λ; z) = F, z ∈ S(µ) \ A with capA = 0.

It may be proved that the property above characterizes the equilibrium measure and that
the equilibrium constant F is precisely the minimal energy I(λ). We also remind that
cap S(µ) = exp{−F}. If capS(µ) > 0, the equilibrium measure of S(µ) is closely related
to the Green function relative to the region C \ S(µ) by means of the formula

(27) gΩ(z,∞) = F − P (λ; z), z ∈ C \ S(µ).

Let ρn and ρ be finite Borel measures on C. By ρn
∗−→ ρ, n → ∞, we denote the

weak∗ convergence of ρn to ρ as n tends to infinity. This means that for every continuous
function f on C

lim
n→∞

∫
f(x) dρn(x) =

∫
f(x) dρ(x).

For a given polynomial T , we denote by ΛT the normalized zero counting measure of
T . That is

ΛT =
1

deg T

∑

ξ: T (ξ)=0

δξ.

The sum is taken over all the zeros of T and δξ denotes the Dirac measure concentrated
at ξ.

Theorem 3. Suppose that S(µ) = ess[b − a, b + a], a > 0, and µ ∈ Reg. Then

ΛSn+1

∗−→ dx

π
√

a2 − (x − b)2
, n → ∞.

Proof. Set ΛSn+1
≡ Λn. In this case it is known (see [20], Corollary 5.2.4) that

cap S(µ) = a/2, that gΩ(z,∞) ≡ log |Ψ((z − b)/a)|, and the equilibrium measure λ is

dx/(π
√

a2 − (x − b)2).
All the measures Λn are probability measures. Let ∆ ⊂ N be a subsequence of indices

such that

(28) Λn
∗−→ Λ, n ∈ ∆, n → ∞.
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It is sufficient to prove that Λ ≡ λ for any such sequence ∆ of indices. According to
Theorem 1, in this case the support of Λ is contained in the set S(µ). Taking (11), (27),
and (4) into account, we have that

lim
n∈∆

P (Λn; z) = lim
n∈∆

−1

n + 1
log |Sn+1| = P (λ; z), z ∈ C \ S(µ).

On the other hand, from (28) one obtains

lim
n∈∆

P (Λn; z) = P (Λ; z), z ∈ C \ S(µ),

Thus, P (Λ; z) = P (λ; z) except at most on a set of Lebesgue measure zero in the complex
plane; therefore, from Theorem 3.7.4 in [20], we obtain that Λ ≡ λ as we wanted to prove.

�

Using basically the same arguments, one can show that the balayage onto ∂E of any
convergent subsequence of {ΛSn+1

}n∈N is the balayage onto ∂E of the corresponding equi-
librium measure λ.

4. Padé-type Approximation

The first part of Theorem 1 may be applied to estimate the rate of convergence of a
certain sequence of interpolating rational functions to Markov functions when part of the
poles are fixed at the zeros of the orthogonal polynomials of the given measure. Set

µ̂(z) = c +

∫
dµ(x)

z − x
, z ∈ C \ S(µ), c ∈ R.

Let pn be the nth orthonormal polynomial with respect to µ. It is easy to verify that there
exists a unique rational function Rn = Ln/(Qn pn), such that Ln and Qn satisfy:

• deg Qn ≤ n + 1,deg Ln ≤ 2n + 1, and Qn 6≡ 0.

• Qn(z) pn(z) µ̂(z) − Ln(z) = O( 1
zn+2 ), z → ∞ .

From the definition it follows immediately, using the Cauchy and Fubini Theorems, that
Qn satisfies ∫

xkQn(x)pn(x)dµ(x) = 0, k = 0, 1, . . . , n.

Therefore, taking Qn to be monic we have that Qn = Sn+1. Another immediate conse-
quence of the definition and Cauchy’s integral formula (taking into account that Qn =
Sn+1) is

(29) µ̂(z) − Rn(z) =
1

(s2
n+1 pn)(z)

∫
(s2

n+1 pn)(x)

z − x
dµ(x), z ∈ C \ S(µ).

Using the remainder formula above and the nth root asymptotic behaviour of the polyno-
mials pn and sn+1, we can prove

Theorem 4. Let µ ∈ Reg and cap S(µ) > 0. Then, on each compact subset K of C \ E,
we have

(30) lim sup
n→∞

‖ µ̂(z) − Rn(z)‖1/3n
K ≤ ‖ exp{−gΩ(·,∞)}‖K ‖ exp{gΩ(·,∞)}‖Co(S(µ)).
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If, additionally, we suppose that S(µ) = [b − a, b + a], a > 0, then

(31) lim sup
n→∞

‖ µ̂(z) − Rn(z)‖1/3n
K ≤ ‖ exp{−gΩ(·,∞)}‖K ,

where K is any compact subset of C \ S(µ).

Proof. Fix a compact set K ⊂ C \ E. Let r be a real number, r > ‖gΩ(·,∞)‖Co(S(µ)),

such that K lies in the unbounded component of C\γr, where γr = {ζ ∈ C : gΩ(ζ,∞) = r}.
For short, let us denote 1/(s2

n+1(z) pn(z)) by hn(z). From (29), we have that

µ̂(z) − Rn(z) = hn(z)

∫
1

hn(x)

dµ(x)

z − x
, z ∈ K.

Since for each z ∈ K, 1/((z − x)hn(x)) is analytic in an open neighbourhood of the
bounded component of C \ γr, we may use Cauchy’s integral formula to obtain

µ̂(z) − Rn(z) = hn(z)

∫ (
1

2πi

∫

γr

1

hn(ζ) (ζ − x)

dζ

z − ζ

)
dµ(x)

=
hn(z)

2πi

∫

γr

(∫
dµ(x)

ζ − x

)
dζ

hn(ζ) (z − ζ)
=

hn(z)

2πi

∫

γr

1

hn(ζ)

µ̂(ζ)

z − ζ
dζ,

where Fubini’s Theorem has been used in the second equality. Hence

‖ µ̂(z) − Rn(z)‖K ≤ C
‖hn‖K

inf
ζ∈γr

|hn(ζ)| ,

where C is a positive constant depending on the length of γr and the distance between γr

and K. Therefore,

(32) lim sup
n→∞

‖ µ̂(z) − Rn(z)‖1/3n
K ≤

lim sup
n→∞

‖hn‖1/3n
K

lim
n→∞

inf
ζ∈γr

|hn(ζ)|1/3n
.

From (11) and (5), we obtain

(33) lim
n→∞

|hn(z)|1/3n = exp{−gΩ(z,∞)},

uniformly on compact subsets of C \ E. By use of (33), we obtain

(34) lim sup
n→∞

‖hn‖1/3n
K = ‖ exp{−gΩ(z,∞)}‖K and lim

n→∞

inf
ζ∈γr

|hn(ζ)|1/3n = exp{−r}.

Relations (34) together with (32) give

lim sup
n→∞

‖ µ̂(z) − Rn(z)‖1/3n
K ≤ exp{r} ‖ exp{−gΩ(z,∞)}‖K .

The left hand of this inequality does not depend on r; therefore, we can make r tend to
‖gΩ(·,∞)‖Co(S(µ)) obtaining (30) for compact subsets of C \ E. Since the function under

the norm on the left hand of (30) is analytic on a neighbourhood of infinity, from the
Maximum Principle it is obvious that (30) is also true for any K ⊂ C \ E. Formula (31)
is a direct consequence of (30) when the support is an interval.

�

So far, most papers dealing with Padé-type approximants of Markov type functions,
take the distinct fixed poles to have even order (cf. [2] and [3]). This is done in order to
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ensure that the polynomials, whose zeros are the free poles of the rational approximant,
be orthogonal with respect to a positive measure. This simplifies matters quite a bit
because it forces the free poles to fall on the convex hull of the support of the measure.
The question arises whether this restriction, due to the method used in the proofs, may
be dropped or weakened. Theorem 4 is a first step in that direction.

5. Gauss-Kronrod quadrature

We first introduce an extended Gauss-Kronrod quadrature formula. Let us consider the
partial fraction decomposition of the approximant Rn

Rn(z) =
N∑

i=1

Mi∑

j=0

j! ai,j,n

(z − zn,i)j+1
.

N denotes the total number of distinct poles of Rn. The points zn,i are the zeros of sn+1 pn.
Though the zeros of pn are simple they may coincide with zeros of sn+1; therefore, for
given zn,i any value of Mi is possible (of course Mi ≤ n + 1). Obviously, N = N(n) and
Mi = Mi(n), but in order to simplify the notation, we omit the explicit reference to this
dependence.

Let f be an analytic function on a neighbourhood V of the compact set E. Set

(35) I(f) =

∫
f(x) dµ(x), In(f) =

N∑

i=1

Mi∑

j=0

ai,j,n f (j)(zn,i), En(f) = I(f) − In(f).

If µ ∈ Reg and capS(µ) > 0, from a) of Theorem 1, we know that for n ≥ n0(V ) all the
zeros of sn+1 are contained in V and the expressions above make sense. In the sequel, we
only consider sufficiently large n’s. Notice that if the zeros zn,i are all simple (which is
not known in general), then In is the usual Gauss-Kronrod quadrature formula. This fact
is made explicit by the following lemma where we study the degree of exactness of the
quadrature formula just introduced in the space of polynomials.

Lemma 3. There exists N ∈ N such that for each n ≥ N we have

I (h) = In (h) ,

where h is any polynomial of degree less than or equal to 3n + 1.

Proof. Let V be a neighbourhood of E. Let γ be an analytic Jordan curve such that V
lies in the bounded component of C\γ. For n ≥ N , all the zeros of Sn+1 belong to V and,
therefore, µ̂ − Rn is holomorphic in C \ V . From (29) we know that

µ̂(z) − Rn(z) = O(
1

z3n+3
), z → ∞.

Then, if h is any polynomial of degree less than or equal to 3n + 1, h(µ̂ − Rn) has a zero
at infinity of multiplicity at least two. Therefore, we can use Cauchy’s Theorem, Fubini’s
Theorem, and Cauchy’s integral formula to obtain, for n ≥ N

0 =

∫

γ
h(ζ)(µ̂ − Rn)(ζ) dζ =

∫

γ
h(ζ)

(∫
dµ(x)

ζ − x

)
dζ −

N∑

i=1

Mi∑

j=0

ai,j,n j!

∫

γ

h(ζ)

ζ − zn,i
dζ

=

∫ (∫

γ

h(ζ)

ζ − x
dζ

)
dµ(x) − 2πi

N∑

i=1

Mi∑

j=0

ai,j,nh(j)(zn,i) = 2πi [I (h) − In (h)] .
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�

Finally, we estimate the error of this extended Gauss-Kronrod quadrature formula for
analytic functions. In the following statement, En(f) should be understood in the sense
of (35). In case that all the zeros of Sn+1pn are simple it coincides with (3).

Theorem 5. Let f be an analytic function on a neighbourhood V of E. Let µ ∈ Reg and
cap S(µ) > 0. Then, we have

(36) lim sup
n→∞

|En(f)|1/3n ≤ ‖ exp{−gΩ(·,∞)}‖∂V ‖ exp{gΩ(·,∞)}‖Co(S(µ)),

where ∂V represents the set of boundary points of V . If S(µ) = [b − a, b + a] then

(37) lim sup
n→∞

|En(f)|1/3n ≤ ‖ exp{−gΩ(·,∞)}‖∂V ,

for any function f analytic on a neighbourhood V of [b − a, b + a].

Proof. Let W be a neighbourhood of E with W ⊂ V . There exists a natural number
n0(W ) such that for each n ∈ N with n ≥ n0(W ) the polynomial Sn+1 has all its zeros
contained in the open set W .

Let γ be an analytic Jordan curve contained in V such that W lies in the bounded
component of C \ γ. Using the Fubini and Cauchy Theorems, we have

I(f) − In(f) =
1

2πi

∫

γ
f(ζ)(µ̂ − Rn)(ζ) dζ.

From this equality and (30), we obtain

lim sup
n→∞

|I(f) − In(f)|1/3n ≤ ‖ exp{−gΩ(·,∞)}‖γ ‖ exp{gΩ(·,∞)}‖Co(S(µ)).

We can choose γ as close to ∂V as we want, so (36) immediately follows. Obviously, (37)
is a direct consequence of (36).

�

Notice that under the conditions of Theorem 5 we have that limn→∞ En(f) = 0 with
geometric rate of order 3n. The closer ∂V is to E, the slower En(f) tends to 0. We
wish to point out that Theorem 5 ensures the convergence of Gauss-Kronrod quadrature
formula for analytic functions regardless of the signs which the coefficients ai,j,n may have.
This approach allows us to obtain estimates for the rate of convergence of Gauss-Kronrod
quadrature formulas for a very general class of measures as compared with the measures
considered in [6] and [15]. Also, the order of convergence which we give is better than that
which follows from Theorem 1 in [6]. As regards [15], it is more difficult to compare the
order of convergence because of the different nature of the estimates.

Finally, we remark that (31) and (37) may also be proved imposing on the support of
the measure the weaker condition S(µ) = ess[b − a, b + a].

6. Example

The next example illustrates the nature of the difficulties one encounters in trying to
improve the results when S(µ) contains more than one interval. In fact it shows that, in
general, in the class of regular measures one cannot obtain asymptotics on a set larger
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than C \ E, or get estimates of the rate of convergence better than that expressed on the
right hand of (20).

Recall that pn gn has at most one simple zero in each one of the open intervals which
give the connected components of R \ S(µ) (see (17)).

Set dµ(x) = w(x) dx, where w(x) is an even function defined on [−β,−α] ∪ [α, β], β >
α > 0. This measure is symmetric with respect to the origin. Therefore, p2n+1 is an odd
function and it must have a zero at z = 0; thus, according to what was said above, g2n+1

does not have any zero in (−α, α). On the contrary, p2n is even and thus p2n/x is odd
from which it follows that g2n(0) = −

∫
p2n(x)/x dµ(x) = 0.

Let r > 0 and set γr = {ζ ∈ C : gΩ(z,∞) = r}. Since g−1
2n+1 is analytic in C \ S(µ), we

can prove (19) with γ = γr reasoning as in Lemma 2. With this formula on γr, following
the same proof as in Theorem 2, it is easy to obtain that

lim sup
n→∞

‖ s2n+2 g2n+1 − 1‖1/2n
K ≤ ‖ exp{−gΩ(z,∞)}‖K ,

on each compact subset K ⊂ C \ S(µ).
From symmetry, it is not difficult to see that gΩ(0,∞) = maxζ∈[−β,β] gΩ(ζ,∞). Take

a ∈ C \ S(µ), with gΩ(a,∞) < gΩ(0,∞). Let 0 < r < gΩ(a,∞) and γ be a positively
oriented circle centered at z = 0 such that a, γr and S(µ) lie in the unbounded connected
component of the complement of γ. Since g−1

2n has a simple pole at z = 0, following the
arguments used in proving (19) and using the Residue Theorem one has

(38)

s2n+1(a) g2n(a) = 1 +
g2n(a)

2πi

∫

γr

dζ

g2n(ζ) (ζ − a)
+

g2n(a)

2πi

∫

γ

dζ

g2n(ζ) (ζ − a)

= 1 +
g2n(a)

2πi

∫

γr

dζ

g2n(ζ) (ζ − a)
+

−g2n(a)

a g′2n(0)
.

For the integral on the right-hand side it is easy to deduce that

(39) lim sup
n→∞

∣∣∣∣
g2n(a)

2πi

∫

γr

dζ

g2n(ζ) (ζ − a)

∣∣∣∣
1/2n

≤ exp{r − gΩ(a,∞)} < 1.

For the third term in (38) (see (17) and take into account that g2n(0) = 0), we have

−g2n(a)

a g′2n(0)
=

g2n(a) p2n(0)

a
∫

p2
2n(x)x−2 dµ(x)

.

Since
1

β2
≤

∣∣∣∣
∫

p2
2n(x)

x2
dµ(x)

∣∣∣∣ ≤
1

α2

and limn→∞ |p2n(z)|1/2n = exp{gΩ(z,∞)} uniformly on compact subsets of C \ S(µ) (be-
cause p2n has no zeros in (−α, α)) it follows that

(40) lim
n→∞

∣∣∣∣
g2n(a)

a g′2n(0)

∣∣∣∣
1/2n

= exp{gΩ(0,∞) − gΩ(a,∞)} > 1.

Therefore, taking account of (38), (39), and (40); we obtain

lim
n→∞

|s2n+1(a) g2n(a) − 1|1/2n = exp{gΩ(0,∞) − gΩ(a,∞)}.

Hence, at point a, s2n+1(a) g2n(a) does not converge to 1. Moreover, it diverges with
geometric rate.
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Figure 1. Zeros of S20 and S21 for w ≡ 1, α = 1, β = 2.

We have considered the particular case w ≡ 1, α = 1, β = 2. Numerical experiments
show that the zeros of the Stieltjes polynomials for this measure have an interesting be-
haviour; while the zeros of S2n sit on [−2,−1]∪ [1, 2], those of S2n+1 draw the level curve
{ζ ∈ C : gΩ(ζ,∞) = gΩ(0,∞)}. Figure 1 shows the zeros of Sn for n = 20, 21 (the small
circles are the zeros of S20 and the crosses the zeros of S21). As this example shows, the
only drawback in extending the results of this paper to compact subsets closer to S(µ)
is the existence of zeros of gn in Co(S(µ)) \ S(µ). If we know for some reason that the
functions of second kind (or some subsequence) have no zeros on Co(S(µ))\S(µ), then we
can extend (20) to any compact subset of C \ S(µ) (for the corresponding subsequence).
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