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Abstract

We obtain an explicit expression for the Sobolev-type orthogonal polynomials @), (x) associated
with the inner product

1
<pg>= / ] p(@)e(z)p(z)dz + Aip(1)q(1) + Bip(=1)a(—1) + Asp'(1)¢' (1) + Bap'(=1)q' (-1),
where p(z) = (1—2)*(1+2)P is the Jacobi weight function, a, 3 > —1, Ay, By, Ay, By > 0 and p, q
€ IP, the linear space of polynomials with real coefficients. The hypergeometric representation (gFs)
and the second order linear differential equation that such polynomials satisfy are also obtained.
The asymptotic behaviour of such polynomials in [-1, 1] is studied. Furthermore, we obtain some
estimates for the largest zero of Q,(z). Such a zero is located outside the interval [-1, 1]. We
deduce his dependence of the masses. Finally, the WKB analysis for the distribution of zeros is
presented.

1 Introduction.

The study of some particular cases of orthogonal polynomials in Sobolev spaces has attracted
the interest of several authors [1], [9], [15], [20], [21] and [25]. Particular emphasis was given to the
so-called classical Sobolev polynomials of discrete type, i.e., polynomials orthogonal with respect to
an inner product

N
<pa>= [ p@a@)dut@) + 3 [ p9@)g® @) dpi (a),
| 2

where du(z) is a classical measure (Jacobi [1], Gegenbauer [8], Laguerre [16], Bessel [21]) and dug ()
are Dirac measures.
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<p,qg>= /]] p(z)q(z)p(z)dz + Aip(1)q(1) + Bip(—1)q(—1) + Azp'(1)¢' (1) + Bap'(—1)¢' (1),

where p(z) = (1 — 2)*(1 + z)? is the Jacobi weight function, a, 8 > —1, Ay, By, Ay, B, > 0 and p, ¢
€ IP, the linear space of polynomials with real coefficients. Some estimates concerning to this kind of
polynomials have been obtained in [3]. However, the explicit form of these polynomials in the general
case remains as an open question as well as the study of their zeros. We are trying in this paper to
cover this lack. Moreover, some of the usual properties of classical orthogonal polynomials — sym-
metry property, their representation as hypergeometric series and the second order linear differential
equation — are translated to the context of Sobolev-type ortogonality.

The structure of the paper is the following. In Section 2 we give some results concerning to classical
Jacobi polynomials. Using these results, in Section 3 we obtain an explicit formula for the Jacobi-
Sobolev-type orthogonal polynomials in terms of the classical ones and their first and second derivatives
which allows us to deduce a symmetry property. In Section 4 we establish the recurrence relation
that the Jacobi-Sobolev-type orthogonal polynomials satisfy, when the masses Ao and Bs are both
different from zero. In Section 5 a representation of our polynomials as a ¢ F5 hypergeometric function
is deduced. Finally, in Section 6 a general algorithm in order to generate the second order linear
differential equations that such polynomials satisfy is given. This result is basic for the development
of the Section 8, more precisely for the WKB method, in order to obtain the distribution of their
zeros. In Section 7, some asymptotic formulas, useful in the study of the zeros, are presented. Finally,
in Section 8 we obtain the speed of convergence of those zeros located outside [-1, 1]. On the other
hand, we show some graphics concerning the WKB density as well as the analytic behaviour of the
distribution of zeros for Jacobi-Sobolev-type orthogonal polynomials.

2  Classical Jacobi polynomials.

In this section we have enclosed some formulas for the classical Jacobi polynomials which will be
useful to obtain some properties of the Sobolev-type orthogonal polynomials. All the formulas as
well as some special properties for the classical Jacobi polynomials can be found in the literature
[23, Chapter 1-2], [27]. In this work we will use monic polynomials, i.e., polynomials with leading
coefficient equal to 1.

The classical Jacobi polynomials P24 (z) satisfy the orthogonality relation
1
/ POP () PeP (z)(1 — 2)*(1 + z)Pdx = 8, d2, (1)
—1

where
et S inil(n +a+ DE(n + B+ D00 +a+ 6 +1)

'Cn+a++1D)I'C2n+a+ 5+ 2)
They are the polynomial solution of the second order linear differential equation of hypergeometric
type

dy = ||Py (x)||* =

o(z)y"(z) + 7(2)y'(z) + Any(z) =0, (2)

where
o(z) = (1 —a?), T(z) =B —a— (a+[+2)r, A =n(n+a+pf+1)
respectively. Notice that deg o =2 and deg 7 =1. Also they verify the symmetry property
PO () = (~1)" PP (~a), (3)



dv
dz?

|
PO (z) = (P2 (2)) ) :%PST"”( ), withv<n andn=012., (4
n—urv).

as well as the three-term recurrence relation
2Py (z) = Pyt (z) + By P PP (@) + 75 P (), (5)
where

,3270/2
2ntatA2n+2+atp)

52”6

o _ dn(n+ a)(n + B)(n+ a+ B)
Cn+a+B8-1D)2n+a+B)22n+a+pB+1)

They are represented as the hypergeometric series
1—x
7
- ) , (7)

B 00 (al)k(aﬁ)k . (a‘p)k ’I‘_k
x) - z:: (01)k(b2)k - - - (bg)r k! (8)

and (a) is the Pochhammer symbol or shifted factorial (a)q := 1, (a)x := a(a+1)(a+2)---(a+k—1) =
= sf’(*')k) k=1,2,3,.... As a consequence of this representation we get

T

o, o 2”(0{+1)n
PP (z) = mtatf+), 2

—n,n+a+p+1
a+1

where

1,02, ...,0p
F ?
pq
b1, b, ..., by

2"+ 1),

ap_qy - (FD"2"(B+ 1)
(n+a+pf+1), B (1) =

o,B _
Fa1) = (n+a+B+1),

(9)

The Christoffel-Darboux formula is

Throughout the work we will denote

+ Pal( )P@ﬂ( ) _ 1 PRR@)PYi(y) — P ()Pt (y)
T —y d?

n—1

. n=1,2,3,.. (10)

a,6(p.q) _ N B ()(BR”) W (y) 0,8
Ky (z,y) = po Faray7 (

m=0 m

T, Y), (11)

the kernels of the Jacobi polynomials, as well as their derivatives with respect to z and y, respectively.
By using the symmetry property (3) and (11) it is straightforward to prove that the following symmetry
properties for the Jacobi kernels

Kg,ﬂ(xuy) :Kﬁ’a(_xa_y)a

n

KO0 (w,y) = =KD (—a, —y), (12)

n
Kf;’ﬁ(]’])(x,y) — K’g:a(]:])(_x’ _y)’

hold. In our work we need the explicit expressions of the kernels K:;ﬂ] (x,1), KP0D (2,1), K" (2, 1)

n—I1 n—1
and K:Lﬂ](o’l) (z, —1), respectively. To obtain these kernels we can use the Christoffel-Darboux formula,
the structure relation, the three-term recurrence relation and the differentiation formula for classical
monic Jacobi polynomials, respectively. The detailed computation can be found in [5]. We will provide



notation k2% = (2n +a + B+ 1)y

P24 (1)

K (1) = 22 [(1 4 2) (P (2) — nPP ()] (13)
dnflﬁn,
PaBY(1
KA, 1) = L 14 oy (pedy (o) - nped ()] -
dnflﬁ‘”7
(14)
pa,B(l)
R (14 B)(P22Y () + (& + 1)(P2?)" ()]
2 ri o+ 1)
From the two previous formulas and using the symmetry properties (12), we find
» Ppd(=1) [(1 =) (Pp?) () + nPd ()]
anl(xv_l) - - o B ;
dnflK‘”7
(PEAY(-1) [(1 — 2)(PIPY (2) + P (2)
P L R L A 1s)
dnf]"q‘n
LR (1= 2)(P)"(2) — (a+ 1) (P2 ()]
di 1w (B4 1) '
Also the following values are needed [5]
Poz,,[} 1 2 Pflyﬂ "(1 PO/’/B 1
ko) < B E8) s gy PRVOPE (0
2 (o + 1) 2 (ot 2)(n—1)
KB nPy?(-1)PrA(1) a,8(0,1) (PP) (=1)PP(1)(1 —n)
n71(1,—1) - - o a,B ) anl (L_l) - o a.B )
dnfl"q‘n dnflﬁ‘”
(16)
o0 1y PRI+ B) (0 + 202 + -+ 1) — (a-+ (o + 5+ 2)
nebo e 2d2 k2P (o + 1) (a + 2)(a + 3)(n — 1)~ ’
KON ) = (L) ()PP ()1 —n) [0 + nat+nf—a— 2]
nl ’ 2d%71mc{’ﬁ(a +1)
3 Jacobi-Sobolev-type orthogonal polynomials.
Consider the inner product in the linear space of polynomials with real coefficients
<p.q>=<p,q>c +Aip(1)q(1) + Bip(=1)q(—1) + Asp'(1)¢'(1) + Bap'(~1)q' (1), (17)
where < p,q >. is the Jacobi inner product
1
<pa>e = [ p@a@( =2 0 +afds,  a>-1 p> -l (18)
—1



We will denote {Q2541:B1:42:82 (1)1 the monic orthogonal polynomial sequence with respect to
the inner product (17). They will be called Jacobi-Sobolev-type orthogonal polynomials. Let us now
to find an explicit representation of the polynomials Q2:%:41:B1:42:82 (1) in terms of the classical ones.
To obtain this we write the Fourier expansion of the Jacobi-Sobolev-type polynomials in terms of the
Jacobi polynomials

n—1
Qn(f[.) = Q2751A1731’A27B2 (z) = P,fﬂ(fr) + Z (ln,kP;?’B(fﬂ), (19)
k=0

where P2(z) is the classical Jacobi monic polynomial of degree n. To find the coefficients (p ) We
can use the orthogonality of the polynomials Q%-%-41:B1:42:82 (1) with respect to <, >, i.e.,
< QU ALBL ALy (1) P () 5= 0<k<n. (20)

Thus, according to (17) we find

< Q%w&AhBl ,A2,B2 (.’E),P,;l’ﬂ(.’ﬂ) S=< Q%ﬁ,Al,Bl,A2,B2 ($)7P1?aﬂ($) >, +
+A1Q%”3,A1,31,A2,32(1)P£vﬂ(1) + Bng,ﬂ,Al,Bl,Az,Bg(,1)pgﬁ(,1)+ (21)

Ay (QEPAT B A By (1) (PFY (1) 4 By(QA-ArBrad2Boy (1) (pP) (~1),

If we use the decomposition (19) and taking into account (20) we find the following expression for the
coefficients a, i

0, = 7A]Q%75,A1,B1 ,AQ,Bz(l)P]?ﬁ(l) + By Q%’ﬂ’Al’B1’A2’B2(—1)Pka’ﬁ(—1)
n =
) d]%

E<n (22)
AQ(Qg’ﬂ’Al’Bl’AZ’BQ)'(l)(P]?’ﬂ)'(l) + BQ(Qg:ﬂ:AI;Bl;AZ:BQ)/(il)(P]g‘wg)/(il)
e ’

where di denotes the square norm of the classical Jacobi polynomials (1). Finally, the equation (19)
becomes

Q2757A1,B1,A2,B2 (T) — P;:”B (’I‘) . Ang’/&AhBl ,Aa,Bo (I)K(Xﬂ] (.’I,', 1),

n—

- B anﬂ:AlthAQ;BZ (_1)[(7?775] (z,—1) — A2(Q%ﬁ,/\l,31,/42,’?2)'(1)[(317/3](0:])($7 1)— (23)

_32(Q%:ﬁ,/‘l,31,/42,’32)'(_1)Kazf3(011) (z,—1).

n—1

In Order to ﬁnd the llnknowns Q%aﬂ:AlyBlyA21B2(l)’ Q%aﬂ:AlaBly‘AQ;BZ(il)’ (Q%aﬂ:AlaBlaAZJ—?Q)I(l) and
(Q-B-A1:B1:42.B2)/(_1) we can take derivatives in (23) and evaluate the resulting equation, as well
as (23), at z = 1 and z = —1. This leads to a linear system of equations



1+A1Kaﬂ( 1) BiK (1, 1)

- AK™P (1, 1) by — 1+ B K™ (~1,-1)
. A] 1ﬂ(0])(1 1) ’ ’ B]K :5(0])(_171) ’
A] ’B(O])(l,—l) B]Kztﬂl(o’])(—l,—l)
A KB (1 1) Bo KO (1, 1)
1) 1
b | A2 ’BO ( ! 1) b BQKg‘;ﬂl(“’] 1(—1,—1)
1+ Ay K B (1 1) ByK®A (1, 1)
A KO (L (1, 1) 14 Bk (-1, 1)
and Qn and Q,, are the column vectors
Qe aﬁ:AlthAZ;BZ(l) Pa,ﬂ( )
Q _ Qayﬂ A1,B1,A2,B2(_1) Q - P(Xﬂ( 1)
n = (QY aﬂ:AlaBlaAsz)’(l) ’ n = (Paﬁ) (1) ’
(Qo-B-A1B1, A2, B2yl (1) (P28)'(—1)

respectively. Let us denote IK;(Q,,) the matrix obtained substituting the j column in IK by Q,,. Then,
from the Cramer’s, rule the system (24) has a unique solution if and only if the determinant of KK does
not vanish. Moreover, the solution is given by

det K1(Q,,) det K9(Q,,)
a,3,A1,B1,A2,Bs — 1\ en a,8,A1,B1,A2,Ba (1) _ 2\%n
(25)
. det K3(Q,,) . B, det K4(Q,,)
a,8,A1,B1,42,B2y/ (1) _ 3\l%n ,8,A1,B1,A2,Bayl (1) _ n

Here we want to remark that, since our polynomials are orthogonal with respect to (17), then the
polynomials Q%:3:41:81:42.82 (1) exist for all values of the nonnegative masses A;, By, Ay and By. In
particular this implies that det IK # 0. This situation is very different from one studied in [5] where
the polynomials are orthogonal with respect to a linear functional which is not positive definite (in
general it is not a quasi-definite linear fuctional).

Proposition 1 The following symmetry property for the Jacobi-Sobolev polynomials holds
anﬂ:AlthAQ;BZ(im) — (71)”@&:%’317/“1,’?2,/\2(m)‘ (26)

Proof: Let us denote the determinant of IK by A%8:41:B1:42.82 35 the determinant of IK;(Q,,) by

Ag”f’A“B] A2B2(Q Y If we interchange in K5(Q,) the first and second columns and the first and

second rows, the third and fourth columns and the third and fourth rows, respectively, and then we
use the symmetry property of Jacobi polynomials (9) and their kernels (12) we find the following
relation for the determinants

AZ:?’Bl’AhBQ’Az(Qn) = (-1)" Az:{j;AlaBl;ALBQ (Q,).
If we handle with the same rows and columns but in IK we get
b 7A 7B 7A 7B e 9 7B 7A 7B 7A
A251122_Aga1122_
Then, from (25) we obtain

Qgﬁ,m ,B1,A2,B> (71) _ (71)nQZ,a,B1 ,A1,B2,A» (1) (27)



(Q A Brdnbay(1) = (—1rmh(QpPrAn ey (1), (28)

Now, if we provide the change of parameters a <+ 3, A; <> By and Ay <> Bs in (23) and then use the
symmetry properties for the Jacobi kernels (12) and (27)-(28) the proposition holds. [ ]

Let us now to obtain an explicit formula of Q%#41:81:42.82 () in terms of the classical Jacobi
polynomials and their first and second derivatives. We start from formula (23) where we substitute
the kernels by their explicit expressions (13)-(15) and use the formulas (25). This leads to the following.

A1,B1,A2,B2 (:E)

Proposition 2 The Jacobi-Sobolev orthogonal polynomials Q%% can be given in terms

of the classical Jacobi polynomials and their first and second derivatives

QA PLARE (1) = (14 nCy + n) Pe? (2) + [Ga(1 — 2) — 0 (1 + 2)+

(29)
+H(B+ Dxn + (@ + Dw (PEF () + [xn(1 + 2) — wa(1 — 2)] (PP ()",
where
(n = Blcﬂ,a731,A1,B2,A2 —l—BgDﬂ’a’B] 1A1,B2,A2
ST n n ?
(30)
n :Alcgaﬂ:AlthAQaBZ +A2D375,A1731,A2732’
XTL = AQEgaﬂzAlaBlaALBZ’ Wy, = BQEg’a’BI’Al’BQ’AQ’ (31)
and Ay1,B1,A2,B
Cavﬂ,A1,B1,A2,B2 _ Q%”B’ bEbe 2(I)Pgé’ﬂ(l)
n B d2 K/a’ﬁ ?
n—1"'N
0.B.Ay By A By (Q%,ﬁ,fh,B1,Az,Bz)I(1)(pTrlm,ﬂ)'(1)
Dn - ) (32)
d2 K/a’ﬁ
n—1"n

Ea,B,A1,Bl,A2,Bz — (Q%”&Im’Bl’AQVBz),(l)PT(LX’B(l)
" a2, KO (1+ )

Notice that the constants (., Nn, Xn and wy, depend on n,a, 8 and the masses Ay, By, Ay and Bj.

In the next Section we will establish the recurrence relation that the polynomials Q2%41:B1:42.B2 (g)
satisfy. Notice that, since the matrix of the moments of the inner product defined by (17) is not
of Hankel type because < z,z >#< 1,22 >, then the Sobolev-type orthogonal polynomials
QB A1BLALB (1) don’t satisfy a three-term recurrence relation. In fact they will satisfy a seven-
term recurrence relation (see [15]).

4 The seven-term recurrence relation for Q®%-41B1.428: (1),

Here we will prove that the polynomials Q%’B’Al’Bl’AZ’BQ (z) satisfy a seven-term recurrence relation.
In fact, it’s straightforward to prove that the multiplication operator by (z? — 1)? is symmetric with
respect to (17). The problem is to find a polynomial operator of the lowest degree which be symmetric
with respect to the Sobolev inner product (17).

CASES:

1. If Ay = By = 0 we have a standard inner product, hence the multiplication operator by x is
symmetric.



obtain a five-term recurrence relation.

3. If Ay # 0 and By = 0 then the multiplication operator by (z — 1)? is symmetric. Hence we
obtain a five-term recurrence relation.

There is another interesting case, when the masses Ay and By are both different from zero. This
situation will be considered below.
We assume that Ay # 0 and By # 0. In particular, from (17) we get

< hp,qg >=<p,hqg> p,q€P, (33)
for some polynomial h(z) of degree less than or equal to four. This implies that
Az (hp)' (1)’ (1) + Ba(hp)'(=1)¢'(=1) = Az(hq)'(1)p'(1) + Ba(hg)'(-=1)p'(=1). Vp,q € P.  (34)
Therefore
Ah ()p(1)g' (1) + Bah/ (= 1)p(—1)g' (-~ 1) = Az1"(1)q(1)p' (1) + Bol'(—1)g(~1)p'(~ 1), (35)
or, equivalently,
Azh! (1) [p(1)g' (1) — p'(1)q(1)] + Bah'(—1) [p(—~1)¢'(—1) —q(=1)p’(-1)] =0, Vp,q€P.  (36)
If p(x) =1 and ¢(x) = z the equation (36) yields
Aok (1) + Bol! (—1) = 0. (37)

If p(z) = 1 and ¢(z) = 22 the equation (36) leads

2451 (1) — 2Boh! (—1) = 0. (38)
Thus, from (37)-(38) we get
Agh!(1) + Boh'(—1) =0,
{ Azh'(1) - Bzh’(—l) — 0. (39)

As Ay # 0 and By # 0 = h'(1) = h'(=1) = 0, hence h'(z) = (22 — 1)r(z). The minimal choice of
r(z) is, in this situation, r(z) = 1. Therefore

h(a:):%—x—}—a (40)
or, equivalently,
h(z) = z° — 3z +b. (41)

In order to operate with h(z) we put b = 0. In such a way we can guarantee that h(z) = 2° — 3z
leads to the searched symmetric operator on IP, when Ay # 0 and By # 0. This fact allows to write a
seven-term recurrence relation for Q-%-A1:B1,:42.82 (1) T fact, from

n+3
A1,B1,A5,B:
($3 _ 3$)Qg’5’A1’B1’A2’B2(a)) _ Z aan;tﬁ, 1,B1,A, 2($) (42)
j=0

and taking into account that

< (,1;3 o 3m)Q%’ﬁ’A1’B1’A2’BQ (,I/,)’ Q?:B:A11B17A21B2 (’I/') >

Qpj = BB A B B.A1B1.4>.B B
<Q;lﬂ 1,B1,A2 Q(m),Q?’B 1,B1,A2 2(.’17)>

(43)

< QB ALBLAL B () (43 3m)Q?’ﬂ’A1’B1 ,Az,B2(,7;) > 0, if j<mn—3
< Q?,ﬂ,Al,B1,A2,Bz (m)’Q?’57A1,B1,A2,B2 (’I‘) S ’ )




n+3

(z® _3$)Q(y,,(3,A1,B1,Az,Bz Z i QS ,ﬂ,Al,Bl,Az,Bz( ), (44)
j=n—-3
where A A
< (x‘i _ 3$)Q(1757A1,B1,A2,B2 (.’E),ngi 1,81, A2, Bz (z) >
Onn-3 = A1,B1,A2,B ,,8,A1,B1,A2,B -
< QO AALBLALE (1 B ALBLALE (1

< Q%,B,A1,B1,A2,B2( ) (.’I) —355)@ :ﬂ:AlyBI;AZ:BZ( )>

k) 7A 7B 7A 7B k) 7A 7B 7A 7B
< Qi @), QI A (2) >

< a1ﬂ7A11B17A21B2 T C!,B,Al,Bl,AQ,BZ z) >
- Q 1ﬂ7A11B17A21B2( )’Q’ZzﬁaAl:Bl:AQ;BZ( ) > 0‘
< Q (LE), Q 3 (173) >

n—:

5 Representation as hypergeometric series.

Here we will prove the following proposition

Proposition 3 The orthogonal polynomial Q%’B’Al’Bl’AZ’BQ (x) is, up to a constant factor, a general-
ized hypergeometric series. More precisely,

-3
Qaaﬂ:AlaBlaALBQ(T) = 2" (a+3)n3ma(0) Fe | —mntatf+1.60+1,61+1,6241,63+1
n v m+tat+B+1), °° at3, Bo, Bi, B2, Bs

).

where w4(0) is given in (52) and the coefficients — [y, —B1, — P2 and — B3 are the zeros of a polynomial
of fourth degree at k (see formula (49) from below). In general, they are complex numbers. If for
some 1 = 0,1,2,3, —f; is a negative integer number we need to take the analytic continuation of the
hypergeometric series (46).

The representation (46) can be considered as a generalization of the representation as hypergeometric
series of the Jacobi polynomials.
Proof: Using (4)-(5) we can rewrite (29) as follows

ngﬂ,Al ,B1,A2,B> (x) — AnPr(z,X’ﬂ( ) +nB, Pa+1u3+1 ( ) + nC’nP,;H'l’m_l(x) + nanﬁj; ,B+1 (x)—l—
(47)
+n(n — 1) E P00 2 (@) + n(n = DE,PY 2 (@) 4 n(n — 1)G P01 (@),

where

An =1- nOn, n = Cn — Mp + C B(H_l 5+1 Cn = 7((71 + 7771)’ Dﬂ = n’}/r(zH_]l ﬂ+1
(48)
E,=xn—wn+ F, ,6“+2B+2, F,=xn+w, G,= ,ﬁfﬁgﬁ”

Substituting the hypergeometric representation of the Jacobi polynomials (7) in (47) we find

2"73((1-{-3)” 3 s
8A,(n+a)k+a+1)(k+a+2)—
(nt+atpf+1), kzo (ot e)(k tatktadt2)

Qaﬁyz‘h ,B1,A2,B> (’I‘) _
n T

—4AB,(n+a)(k—n)(k+n+a+B+1)(k+a+2)+

+8nCn(n+a)(n+a+1)(k+n+a+5+1)(k+n+a+ﬂ+2)(k+a+2)
2n+a+pB+1)2n+a+B+2)




T T
n—1

+2nE,(n+a)(k —n)(k—n+1)(k+n+a+pF+1)(k+n+a+pF+2)-

CAnF,(n—=1)(n+a)k—n)k+n+at+f+)(k+tntat+f+2(k+tn+tat+f+3)
Cn+a+p+1)2n+a+F+2)(n+a+1)"!

Gp(k—n)(k—n+1)(k-—n+2)(k+n+a+pf+1)2n+a+p)2n+a+p 1)
n—2

(=n)i(n+a+ B+ 1) <1 —x)’“
k! (o4 3)k 2 '

Taking into account that the expression inside the quadratic brackets is a polynomial in k of degree
4, denoted m4(k), we can write

2"+ 3)p_3vp

a,B,A1,B1,A2,B»
n (@4{n+a+ﬁ+nnx
y i (—n)k(n +a + B+ 1)k(k + Bo) (k + B1) (k + B2) (k + B3) (1 - T>k (49)
k=0 k! (o + 3)i 2 ’
where v, is the leading coefficient of 74 (k)
on = 20(n + ) B,y — dn(n—N(n+a)n+a+1)F,  2n+a+p)2n+a+pf- 1)Gn’ (50)

Cn+a+0+1)2n+a+5+2) n—2

and —f3; = —0i(n,a, B, A1, Ag, By, By) with i = 0,1,2,3, are the zeros of m4(k). Since (k + ;) =
Bi(Bi + 1)

,1=0,1,2,3, then (49) becomes
(Bi)k

_ 273 (o + 3),,_3m4(0)

a,8,A1,B1,42,B2 (.

A

(51)

y i (—n)p(n+a+ B+ 1)(1+ Bo)r(1 4+ B1)k(1 + Bo)r(1 + B3)k (1 - $>k
k=0 E! (a+3)k (Bo)k (B1)k (B2)k (B3)k 2 ’

where

74(0) =8A,(n+a)(a+1)(a+2)+4B(n+ a)(n+a+ 6+ 1)(a+2)n+

+80n(n—|—a)(n+oz+1)(n—|—0z+ﬁ+1)(n+a+ﬂ+2)(a+2)n+
Cnt+a+B+1)2n+a+pB+2)

2D, (a+2)n+2E,(n+a)(n+a+ B+ 1) (n+a+ B+ 2)n(n—1)+ (52)

+4Fn(n+a)(n+a+1)(n+0z+ﬁ+1)(n+0z+ﬁ+2)(n+a+ﬁ+3)n(n—1)+
C2n+a+p+1)2n+a+p+2)

+Gn(n+a+B+1)2n+a+B—1)2n+a+Hnn—1),

10



It is straightforward to see that in the case Ag, By equal to zero, from (46) we recover the monic
Jacobi-Koornwinder polynomials [17], and when A; = Ay = B; = By = 0, (46) becomes the represen-
tation (8), i.e., we recover the classical Jacobi polynomials.

6 Second order differential equation.

In this section we will show that the Jacobi-Sobolev polynomials satisfy a second order linear dif-
ferential equation (SODE). We want to remark here that the main result that allows us to obtain the
SODE is, as in the case considered in [5], the fact that the polynomials Q-%A1:P1.A2.B2(2) admit a
representation in terms of the classical Jacobi polynomials and their first and second derivatives of
the form (29).

First of all, we will rewrite (29) in terms of the polynomials and their first derivatives. In order to
do this we will use the SODE for the Jacobi polynomials (2). Then, if we multiply (29) by o(z) and
use the SODE (2) we find the following equivalent representation formula

d
o () QA PARB (3) — (1) PSP () + b(is m)

—— P (), (53)

where a(z;n),b(x;n) are polynomials of bounded degree in z with coefficients depending on n

a(z;n) = (140G, + n1n)o(2) = An [xn (1 +2) — wn(1 — 2],

(54)
i) = [Ca(1 — ) — (1 +2) + (B + Dxn + (0 + Deon] o(2) — 7(2) (1 + ) — wn(1 — 2)].
Taking derivatives in the above expression and using (2) and (53)
d d
o2 () - QAP AP (1) = () PO () + (i) - PO () (55)
dz dx
where
c(zin) = o(z)a'(z;n) — o' (z)a(z;n) — Anb(z;n),
(56)
d(z;n) = o(x)[a(z;n) + V' (z;n)] — o' (2)b(z;n) — 7(x)b(z;n).
Analogously, if we take derivatives in (55) and use (2) and (53), we obtain
3 d2 «a,B,A1,B1,A2,B: . d .
o ()L QA BLA () o) PO () + f(r5m) - PO (1), (57)
d z? dz
where
e(z;n) = o(x)d (z;n) — 20" (x)c(z;n) — A\pd(z5n),
(58)
Jsn) = oa)lelsn) +d'(an)] — 20" (@)d(w; n) — 7(2)d(w;n).
The above expressions (53), (55) and (57) lead to
QuiABAB () a(zn) blzin)
o) (@AM PP )Y e(in) d(zin) | =0. (59)
P @)@ B A )" elin) f(rin)

This yields

2
dd d QY B, A1,31,A2,Bz( ) + S\H(ZE)Qg:ﬂ:AI;BhALBQ (z) =0, (60)
.',E

a,B,A1,B1,A2,B2 ~
@ (@) + Fula)

on(z)

11



&(zin) = o*(z) [a(z;n)d(z;n) — c(z;n)b(x;n)],

7(z;n) = o(z)[e(z;n)b(z;n) — a(z;n) f(z;n)], (61)

Az;n) = c(z;n) f(zin) — e(z;n)d(z;n).

The explicit formulas for the coefficients (61) of the SODE (60) are cumbersome and we will not
provide it here. We have obtained explicitly the coefficients & (z;n), 7(x;n) and A(z;n) by using the
algorithm described in [6] and implemented in Mathematica [28]. From (61) one can see that the
coefficients &, T, A are polinomials on z. Some straightforward calculations with Mathematica show
that the degree of polynomials ¢ (z;n), 7(z;n) and A(z;n) is, at most, 6, 5 and 4, respectively.

7 Asymptotic formulas.

Some general asymptotic formulas for Sobolev-type orthogonal polynomials have been obtained in
[18]. In order to complete the present work we will provide some of them. We will use them later on
when we analyze the distribution of their zeros.

Using the asymptotic formula for the Gamma function [26, formula 8.16 page 88|
[(z) ~ \/27”379«,.7;3«,7%’ z>>1,2€R, (62)

we can find the following estimates

a+i a+3d
PoA(l) w0 — YT (pobyy e — VT e T (63
(e + 1)2n+atB n T(ax + 2)2nrathil 1™ Qantatp 2

From these formulas and (16) we can deduce

n2a+2 (_1)n+1na+ﬂ+1
K8 (1,1) ~ K8 (1,-1) ~ (64)
noL Do+ DD (a +2)20+8+17 nm1be I+ DT(B + 1)2at+5+17
20+4 _ 1)+l at8+3
KO0, ~ - R R LTCIRER) DU e A . (65)
' Mo+ 1) (a + 3)20+6+2 ' (B + 2)(a + 1)20+8+2
92)p, 2046 _ 1)+l atB8+5
KQLBI(]’])(l, ) -~ (Oé+ )TL KC!:B(],])(l’_l) ~ ( ) n (66)

D(a+2)[(a +4)20+6+37 -l [+ 2)T(B + 2)2a+5+3”

where z, ~ y, means lim, , z,/y, = 1. Using the above estimates and doing some straightfor-

ward calculations in (25) we find the following asymptotic expressions for Q:%-41:B1A2.B2(1) and
Q’a:ﬂ:AlthAQ:BQ(l)
n

anﬂ:AlaBlaALBQ(l) ~ Vrl'(a+3) (Q%:B:AlthAQ;BZ)’(l val(a+4) (67)

3 ~ 7
2”*1A]na+5 2”*2A2n0‘+5

as well as for the constants defined by (30)-(32)

~

Co:8,A1,B1,42.8y Mj D:B:A1,B1,A2,By
n n

_ (@+2)(a+3)  pa,B,A1,B1,A2,B, ., 2(e+2)(a+3)
A]TL2 3 n

Aon? Asnd ’
(68)

CB:2,B1,A1,B2,4 _ (B+1)(8+2) DBB1,ALBy Ay (8+2)(8+3) EB.0,B1,A1,B2,As _2(B42)(843)
n Bin?2 ’ n Ban? ’ n Ain? .
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Using (29), (63) and the following asymptotic formula for the Jacobi polynomials

1
na+2k+§

(k) N
peB 1) ~ > 92
( n ) (1) (o + k 4 1) 2ntatftk’ k22,

from (67)-(69), we can give the asymptotic behaviour for (Q2#A1Bi.A2B2)r (1)

9
(Q(X’/&AMB] ,Ag,BQ)u(l) - ﬁno“rz . (70)
n 2n+a+[3+1r(a + 5)

Taking into account the Darboux formula for the asymptotics of the Jacobi polynomials on the
interval 0 € [e,m — €],0 < e << 1 [27, equation 8.21.10 page 196]

A o) P2
a5 cont) = L) \/Tgm?) cos [nf -+ Sa+ f+ 100~ (a+ )r| +0(n 2,

%, and the explicit expression (29), we can find an explicit expression for the

difference between the new polynomials and the classical ones. Thus, we have the following asymptotics
on [-1, 1]

where a, =

n Qntaths

3 1
1 o\ 2 AN
— | Q®PALBLALB2 (5 0) — PP (cos 9)} = <Sin —) (cos —> X
2 [ n n /Trn 2

(71)
X [%(a + B+ 2)sinfcos(NO+T') + ((ﬁ +2)sin? & — cos? &(a +2)

N——

cos(N6 + FQ):| +0 (%) ,
n?2
where N =n+ J(a+8+1), 1= (a+3)Zand [y = —(a+ 3)Z.

On the other hand, using the well known result

1 (P>BY 1
n Py (z) z2—1

which is a simple consequence of the Darboux formula (see [27, Eq. 8.21.10 page 196]), the relative
asymptotics of the new polynomials is

Q%,B,Al,Bl,AZ,BQ(Z) 2(8 +2) z—1 2(a+ 2) z+1 1
P,?’B(z) N1+T{11/m+1}+ - {1 {I}l}_‘_o(E)‘ (72)

which holds uniformly outside any closed contour containing the interval [-1, 1].

8 The zeros of Q"4 (a).

In this section we will study the properties of the zeros of the Jacobi-Sobolev-type orthogonal
polynomials when the masses Ay, By, Ay and By are positive. It is known that for polynomials which
are orthogonal on an interval with respect to a positive weight function their zeros are real and simple
and lie inside the interval (see [11], [27] and [24]). The study of zeros for Sobolev-type orthogonal
polynomials in the non diagonal case was presented in [2]. Since the situation here is very different
from one studied in [2] the polynomials that we have investigated are orthogonal with respect to the
inner product (17), i.e., a diagonal case — we need to search their algebraic properties. In fact, we will
prove the following theorem.

13



different, real and simple zeros belonging to the interval (-1,1). For n large enough the two remainder
zeros are outside of the interval being one positive and the other one negative.

A1,B1,A2,B2 (:E)

Proof: Let 21,2y, x3, ..., 7}, be the different real zeros of odd multiplicity of Q%% on the

interval (—1,1) and ¢(z) be a polynomial such that
q(z) = (z — 1) (z — x3)...(x — x), hence QVPALBLA2B(1ya(r) >0, Ve e [-1,1].  (73)
Now define h(z)
h(z) = (z + a)(z + b)q(z) = (z + a)(z + b) (& — z1)(z — 32)...(x — z4), (74)

in such a way that h'(1) = A'(—1) = 0. Then

(1)
a+b+2+(a+1)(b+1) . =0,
7O (75)
a+b—24+(a—1)(b-1) =0,
q(=1)
where ” ) .
¢) _ + + .+ >0,
q(1 1—z1 1—x9 11—z (76)
q(—1) _ < 1 1 4 1 ) <0
q(—1) l+2 14+ 1+ zy,
From (75)-(76) between all the choices of a and b
—-1<a<l, a>1, a < —1,
—1<b<1, b>1, b< -1,
(77)
—-1<a<l, a> 1,
{ b<—1, or b>1 (a <) and { b< -1, (a )
only the last one holds.
Hence, from
< h(z), Q¥AALBLALB (1) S (0 then degh(z) >n, ie., k>n — 2. (78)

To obtain the above one writes in (78) the inner product (17) and makes use of (77).

To prove that Q%#A41:81,42.82 (1) has one real simple negative zero and one real simple positive zero
outside [-1, 1] we use the fact that for n large enough Q®%:41:B1.A2.B2(1) < (Q:8A1:Br.A2B2)1 (1) >
(see formula (67)) and the polynomial Q2-#A1:B1:42:82 (1) — "1 lower degree terms is a continuous
convex upward function for z > 1, then in some positive value z > 1 the polynomial changes its
sign. Using the symmetry property (26) and the same argument we prove that the polynomial has
one simple real negative zero outside [-1, 1]. This immediately implies that & = n — 2, hence the
proposition holds. |

We will denote the zeros of Q@#A41:81:42.B2(4) a5 Tpi < =1 <xpo<..<Tppo<1l<zyy Let
us study the zeros z, 1 and z,, in more detail.
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Rt N 4 A A \ /] -

V20T (0 + 3)T (@ +5) 90 B43D (o 4 )T (o + )
na+3\/A_] - A2n2a+8

1<z, <1+ +0 (n73a713) 7

(79)
a+B+3 +5+3
Caas g VETTELATE ) a0 4 (5 +5) F O ()
n nFB BT |
Proof: Using Taylor’s Theorem we have for = > 1,
Qgﬂw‘lh& ,A2,B2 (.’E) — Q%w&AhBl 7142732(1) + (Q%ﬁ,z‘h,& 7A27BQ)’(1)($ _ 1)+
(80)
(v — 1)* (v — 1)?
_‘_(ng&A1’BhALBQ)”(l)T + (Qgﬂw‘h,BhAz,BQ)'"(g)T’

where 1 < ¢ < 2. From (67) for n large enough, Q%-%41:B1:42:82(1) is negative while (Q2-#41-B1.42,82)/ (1)
is positive. Moreover, Q%%A41:81:42:B2(4) is a convex upward function for > 1 and has its first in-
flection point (from the right) somewhere at # < 1. Then for all z > 1, (QX2AuBuAzBM () > (),
Hence

,3,A1,B1,A2,Ba\11
A1,B1,As,B: (Qy )" (1)
Qgﬁ: 1,B1,A2, 2(’1‘) > n 5

.’112 n [(Qg’ﬂ’Al’Bl’AQ’BZ)I(l) o (Qg’ﬂ’Al’Bl’AZ’BQ)”(l)} o+

(Q%ﬁ’Al ,B1 ,Ag,Bg)H(l)

_ (Qaaﬂ:AlaBlaALBQ)’(l) + QQ:B:AhBI;AZ:BQ(l)
2 n n ?

+

and the zero z, , is located between the zeros of the quadratic polynomial on the right hand of the
previous expression. If we denote

2
(anﬂ:AlthAQ;BZ)’(l) N (Q%:BaAhBI;AZ;BZ)’(l) L Q%:BaAhBl:AQ;BZ(l) (81)
(anﬂ:AlaBlaAmBZ)H(l) (Q%:BaAhBl:AQ;BZ)H(l) (Q%,B,A1,B1,A2,B2)u(1)

T12=1—

and taking into account (67) and (70) we get

(Q%’ﬂ’Al ,B1 ,AQ,BQ)/(l) 2(¥+ﬂ+3[‘(a + 4)F(a + 5)

(Q%ﬁ,Au& 7142732)//(1) Agn2a+8 ’

(82)

ngﬂ,A1,B1,A2,B2(1) 2a+,6+2r(a +3)(a +5)

(Q%:B:AhBl:AQ;BZ)N(l) -~ A n20+6 :

Thus, when (n — oo) 29 behaves asymptotically as follows
3
go 14 \/2a+6+ o+ 3)I(a +5) 298D (0 + 4T (e + 5) L0 (n*f““*lf“) (83)
2 na+3\/A_1 A2n2(x—|—8 :

In the same way, using the symmetry property (26) we find the speed of convergence for z,, ;, then
(79) holds. [
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In this section we will apply the so-called semiclassical or WKB approximation (see [7], [29] and
references therein) to find the WKB density of zeros of the polynomials Q2-#A1:B1:42.82 (1) Tet us
denote these zeros by {7',7’7};7:1 Then the corresponding distribution function of zeros is given by

n

Zé(m — Tpi)- (84)

i=1

vn(z) =

Here we will use the method presented in [29] in order to obtain the WKB density of zeros, which
gives an approximate analytic expression for the density of zeros of the solutions of any linear second
order differential equation with polynomial coefficients. In particular we will consider (60)

o(@)y" +7(2)y’ + Mz)y = 0. (85)
The key step is the following
Theorem 3 ([29])

Let S(x) and €(x) be the functions
1

() = 5y [26(z) (2M(@) = 7(2)) + 7(2) (25 (&) — 7(2))] (86)
1 5[‘91(-73)}2 " P(z,n)
e(x) = - S (z); = , 87
= S P { is@] 0T Qe a
where P(x,n) and Q(z,n) are polynomials in x as well as in n. If the condition sup |e(x)| << 1 holds,
zeX
then the semiclassical or WKB density of zeros of the solutions of (85) is given by
1
pwrB(z) = —1/S(x), z € X CIR, (88)
T

in every interval X where the function S(x) is positive.

Using the above algorithm, the computations have been performed by using the symbolic com-
puter algebra package Mathematica [28]. First of all we check the conditions of the Theorem finding
that in the considered case € ~ n~', so the Theorem can be applied for n large enough. The explicit
expression for py x p(z) given by (88) is extremely large and we will omit it here. Tt is straightforward
to see that if we take the limit A, As, By, By — 0 in the resulting expression for pyw g g(z) we recover
the classical expression for the Jacobi polynomials [29]. We will provide here some graphics for the
normalized pw i p(z) function. In Figure 1 the WKB density of zeros for the Jacobi-Sobolev-type
orthogonal polynomials appears. We have used the formulas (60), (69), (86) and (88) and plotted the
normalized Density function for n = 10* in four different cases with several values of the parameters
aand f (a=0=0,a=0= f%, a = # =5 and nonsymmetric case & = 0 and § = 1). In Figure
2 appears the WKB density of zeros for the same values of o and 8 and n = 10°. In Figure 3 we
represent the WKB density of zeros for n = 10° and the same values of the parameters a and 3.
Finally, in Figure 4 is shown pw rg(z), for n = 107 with the above values of o and 3. Clear, in each
Figure from the bottom to the top, is distinguishible the case & = 8 = 0, while the remaining cases
behave almost equal. Some numerical tests based on the computation of the number N of zeros in

the interval (— L, 1) by using the expression N ~ Ll{}?o pw k B(x) dz for both families of orthogonal

polynomials P2 (z) and Q®841:BuA2.B2(5) show that their global spectral properties are the same.
This result is in accordance with the next one.

16



o

zero of QPALBLALB (1) Then

in the weak star topology.

Proof: From (6) and (69), we get

4 1 1+5 2_58— (2 1
n

n nt nt

o o 2 33
Bn_2(677]2(1)+2(a(19+a(7+a))—|—2a(5;1a)ﬁ 582 — +3(4+ﬁ))+0<%>
2 1 1 1
Cn:ﬁ(a+ﬁ+4)+o<m>, Dnzw(a+ﬁ+6)+o<m>,
124a(5+a)+8(05+0) 1 20124+ a(5+a) + 85+ B)) 1
F, = o +0<m>,Gn_ o +o<m>.
Using (47),

| QEAALBLALB (1) || < A || PO ()] 1 1y + nBal[PEP T (@)
+nCy| [ PO )y gy + nDy|[PET P @) gy + n(n = D EL||PE P (@)1 (89)

n(n — D F [P @)y + nln — 1)Gal[PEP ()11,

where || - [|[_1 1) denotes the sup-norm in the interval [-1, 1].

1
Because of HP,?’ﬂ(x)H[’LI < 3 (see [27]), we deduce

L 1

] aaﬂzA ,B 1A‘7B‘ n —
HIEIOIOHQR 1.B1,A2 2(3;)”[7],” < 5" (90)

Thus, from Theorem 2.1 in [10]
% 1

Vp — ——. 91
N o1
|
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Figure 1: WKB Density of zeros for n = 10* of
Qo841 B A2 B2 (1) with o € [—0.99,0.99].

Figure 2: WKB Density of zeros for n = 10° of
Qo041 B A2 B2 (1) with ¢ € [—0.99,0.99].

Figure 3: WKB Density of zeros for n = 10° of
Qo8-A1B1A2.B2 (1) with 2 € [0.986, 0.986].

=
o
)]
o
)]
=

Figure 4: WKB Density of zeros for n = 107 of
Q28-A1B1A B (1) with = € [—0.986, 0.986].

Figure 5: Comparison of the numerical computation results.
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