
JACOBI-SOBOLEV-TYPE ORTHOGONAL POLYNOMIALS:SECOND ORDER DIFFERENTIAL EQUATION AND ZEROS.J. Arves�u, R. �Alvarez-Nodarse, F. Marcell�an, and K. PanPreprint MA/UC3M/7/1997 �Dedicated to Professor Mario Rosario Occorsio on his 65-th birthday.Key words and phrases: Orthogonal polynomials, Jacobi polynomials,hypergeometric function, Sobolev-type orthogonal polynomials,WKB method.AMS (MOS) subject classi�cation: 33C45, 33A65, 42C05.AbstractWe obtain an explicit expression for the Sobolev-type orthogonal polynomials Qn(x) associatedwith the inner product< p; q >= Z 1�1 p(x)q(x)�(x)dx +A1p(1)q(1) +B1p(�1)q(�1) +A2p0(1)q0(1) +B2p0(�1)q0(�1);where �(x) = (1�x)�(1+x)� is the Jacobi weight function, �; � > �1, A1; B1; A2; B2 � 0 and p, q2 IP, the linear space of polynomials with real coe�cients. The hypergeometric representation (6F5)and the second order linear di�erential equation that such polynomials satisfy are also obtained.The asymptotic behaviour of such polynomials in [-1, 1] is studied. Furthermore, we obtain someestimates for the largest zero of Qn(x). Such a zero is located outside the interval [-1, 1]. Wededuce his dependence of the masses. Finally, the WKB analysis for the distribution of zeros ispresented.1 Introduction.The study of some particular cases of orthogonal polynomials in Sobolev spaces has attractedthe interest of several authors [1], [9], [15], [20], [21] and [25]. Particular emphasis was given to theso-called classical Sobolev polynomials of discrete type, i.e., polynomials orthogonal with respect toan inner product < p; q >= Z p(x)q(x)d�(x) + NXk=0 Z p(k)(x)q(k)(x)d�k(x);where d�(x) is a classical measure (Jacobi [1], Gegenbauer [8], Laguerre [16], Bessel [21]) and d�k(x)are Dirac measures.�December 14, 1997 1

Nota adhesiva
Published in: Journal of Computational and Applied Mathematics, 1998, vol. 90, n. 2, p. 135-156



p p p y g p p< p; q >= Z 1�1 p(x)q(x)�(x)dx +A1p(1)q(1) +B1p(�1)q(�1) +A2p0(1)q0(1) +B2p0(�1)q0(�1);where �(x) = (1 � x)�(1 + x)� is the Jacobi weight function, �; � > �1, A1; B1; A2; B2 � 0 and p, q2 IP, the linear space of polynomials with real coe�cients. Some estimates concerning to this kind ofpolynomials have been obtained in [3]. However, the explicit form of these polynomials in the generalcase remains as an open question as well as the study of their zeros. We are trying in this paper tocover this lack. Moreover, some of the usual properties of classical orthogonal polynomials { sym-metry property, their representation as hypergeometric series and the second order linear di�erentialequation { are translated to the context of Sobolev-type ortogonality.The structure of the paper is the following. In Section 2 we give some results concerning to classicalJacobi polynomials. Using these results, in Section 3 we obtain an explicit formula for the Jacobi-Sobolev-type orthogonal polynomials in terms of the classical ones and their �rst and second derivativeswhich allows us to deduce a symmetry property. In Section 4 we establish the recurrence relationthat the Jacobi-Sobolev-type orthogonal polynomials satisfy, when the masses A2 and B2 are bothdi�erent from zero. In Section 5 a representation of our polynomials as a 6 F5 hypergeometric functionis deduced. Finally, in Section 6 a general algorithm in order to generate the second order lineardi�erential equations that such polynomials satisfy is given. This result is basic for the developmentof the Section 8, more precisely for the WKB method, in order to obtain the distribution of theirzeros. In Section 7, some asymptotic formulas, useful in the study of the zeros, are presented. Finally,in Section 8 we obtain the speed of convergence of those zeros located outside [-1, 1]. On the otherhand, we show some graphics concerning the WKB density as well as the analytic behaviour of thedistribution of zeros for Jacobi-Sobolev-type orthogonal polynomials.2 Classical Jacobi polynomials.In this section we have enclosed some formulas for the classical Jacobi polynomials which will beuseful to obtain some properties of the Sobolev-type orthogonal polynomials. All the formulas aswell as some special properties for the classical Jacobi polynomials can be found in the literature[23, Chapter 1-2], [27]. In this work we will use monic polynomials, i.e., polynomials with leadingcoe�cient equal to 1.The classical Jacobi polynomials P�;�n (x) satisfy the orthogonality relationZ 1�1 P�;�n (x)P�;�m (x)(1 � x)�(1 + x)�dx = �nmd2n; (1)where d2n = jjP�;�n (x)jj2 = 22n+�+�+1n!�(n+ �+ 1)�(n+ � + 1)�(n+ �+ � + 1)�(2n+ �+ � + 1)�(2n+ �+ � + 2) :They are the polynomial solution of the second order linear di�erential equation of hypergeometrictype �(x) y00(x) + �(x) y0(x) + �n y(x) = 0; (2)where �(x) = (1� x2); �(x) = � � �� (�+ � + 2)x; �n = n(n+ �+ � + 1);respectively. Notice that deg � =2 and deg � =1. Also they verify the symmetry propertyP�;�n (x) = (�1)nP �;�n (�x); (3)2



d�d x� P�;�n (x) � (P�;�n (x))(�) = n!(n� �)!P�+�;�+�n�� (x); with � � n and n = 0; 1; 2; :::; (4)as well as the three-term recurrence relationxPn(x) = P�;�n+1(x) + ��;�n P�;�n (x) + 
�;�n P�;�n�1(x); (5)where ��;�n = �2 � �2(2n+ �+ �)(2n+ 2 + �+ �) ;
�;�n = 4n(n+ �)(n+ �)(n+ �+ �)(2n+ �+ � � 1)(2n + �+ �)2(2n+ �+ � + 1) : (6)They are represented as the hypergeometric seriesP�;�n (x) = 2n(�+ 1)n(n+ �+ � + 1)n 2F1  �n; n+ �+ � + 1�+ 1 �����1� x2 ! ; (7)where pFq  a1; a2; :::; apb1; b2; :::; bq �����x! = 1Xk=0 (a1)k(a2)k � � � (ap)k(b1)k(b2)k � � � (bq)k xkk! ; (8)and (a)k is the Pochhammer symbol or shifted factorial (a)0 := 1, (a)k := a(a+1)(a+2)���(a+k�1) == �(a+k)�(a) , k = 1; 2; 3; ::: . As a consequence of this representation we getP�;�n (1) = 2n(� + 1)n(n+ �+ � + 1)n ; P�;�n (�1) = (�1)n2n(� + 1)n(n+ �+ � + 1)n : (9)The Christo�el-Darboux formula isn�1Xm=0 P�;�m (x)P�;�m (y)d2m = 1x� y P�;�n (x)P�;�n�1(y)� P�;�n�1(x)P�;�n (y)d2n�1 ; n = 1; 2; 3; ::: (10)Throughout the work we will denoteK�;�(p;q)n (x; y) = nXm=0 (P�;�m )(p)(x)(P�;�m )(q)(y)d2m = @p+q@xp@yqK�;�n (x; y); (11)the kernels of the Jacobi polynomials, as well as their derivatives with respect to x and y, respectively.By using the symmetry property (3) and (11) it is straightforward to prove that the following symmetryproperties for the Jacobi kernels K�;�n (x; y) = K�;�n (�x;�y);K�;�(0;1)n (x; y) = �K�;�(0;1)n (�x;�y);K�;�(1;1)n (x; y) = K�;�(1;1)n (�x;�y); (12)hold. In our work we need the explicit expressions of the kernelsK�;�n�1(x; 1), K�;�(0;1)n�1 (x; 1), K�;�n�1(x;�1)andK�;�(0;1)n�1 (x;�1), respectively. To obtain these kernels we can use the Christo�el-Darboux formula,the structure relation, the three-term recurrence relation and the di�erentiation formula for classicalmonic Jacobi polynomials, respectively. The detailed computation can be found in [5]. We will provide3



g p pnotation ��;�n = (2n+ �+ � + 1)
�;�nK�;�n�1(x; 1) = P�;�n (1)d2n�1��;�n h(1 + x)(P�;�n )0(x)� nP�;�n (x)i ; (13)K�;�(0;1)n�1 (x; 1) = (P�;�n )0(1)d2n�1��;�n h(1 + x)(P�;�n )0(x)� nP�;�n (x)i�� P�;�n (1)d2n�1��;�n (�+ 1) h(1 + �)(P�;�n )0(x) + (x+ 1)(P�;�n )00(x)i : (14)From the two previous formulas and using the symmetry properties (12), we �ndK�;�n�1(x;�1) = �P�;�n (�1) h(1� x)(P�;�n )0(x) + nP�;�n (x)id2n�1��;�n ;K�;�(0;1)n�1 (x;�1) = �(P�;�n )0(�1) h(1� x)(P�;�n )0(x) + nP�;�n (x)id2n�1��;�n ++P�;�n (�1) h(1� x)(P�;�n )00(x)� (� + 1)(P�;�n )0(x)id2n�1��;�n (� + 1) : (15)
Also the following values are needed [5]K�;�n�1(1; 1) = (P�;�n (1))2n(n+ �)d2n�1��;�n (�+ 1) ; K�;�(0;1)n�1 (1; 1) = (P�;�n )0(1)P�;�n (1)(n + �)d2n�1��;�n (�+ 2)(n� 1)�1 ;K�;�n�1(1;�1) = �nP�;�n (�1)P�;�n (1)d2n�1��;�n ; K�;�(0;1)n�1 (1;�1) = (P�;�n )0(�1)P�;�n (1)(1 � n)d2n�1��;�n ;K�;�(1;1)n�1 (1; 1) = P�;�n (1)(P�;�n )0(1)(n+ �) �(� + 2)(n2 + n�+ n�)� (�+ 1)(� + � + 2)�2d2n�1��;�n (�+ 1)(� + 2)(� + 3)(n� 1)�1 ;K�;�(1;1)n�1 (1;�1) = (P�;�n )0(�1)P�;�n (1)(1 � n) �n2 + n�+ n� � �� � � 2�2d2n�1��;�n (�+ 1) :

(16)
3 Jacobi-Sobolev-type orthogonal polynomials.Consider the inner product in the linear space of polynomials with real coe�cients< p; q >=< p; q >c +A1p(1)q(1) +B1p(�1)q(�1) +A2p0(1)q0(1) +B2p0(�1)q0(�1); (17)where < p; q >c is the Jacobi inner product< p; q >c = Z 1�1 p(x)q(x)(1 � x)�(1 + x)�dx; � > �1; � > �1; (18)4



1 2 1 2 gWe will denote fQ�;�;A1;B1;A2;B2n (x)gn the monic orthogonal polynomial sequence with respect tothe inner product (17). They will be called Jacobi-Sobolev-type orthogonal polynomials. Let us nowto �nd an explicit representation of the polynomials Q�;�;A1;B1;A2;B2n (x) in terms of the classical ones.To obtain this we write the Fourier expansion of the Jacobi-Sobolev-type polynomials in terms of theJacobi polynomials ~Qn(x) � Q�;�;A1;B1;A2;B2n (x) = P�;�n (x) + n�1Xk=0 an;kP�;�k (x); (19)where P�;�n (x) is the classical Jacobi monic polynomial of degree n. To �nd the coe�cients an;k wecan use the orthogonality of the polynomials Q�;�;A1;B1;A2;B2n (x) with respect to <;>, i.e.,< Q�;�;A1;B1;A2;B2n (x); P�;�k (x) >= 0 0 � k < n: (20)Thus, according to (17) we �nd< Q�;�;A1;B1;A2;B2n (x); P�;�k (x) >=< Q�;�;A1;B1;A2;B2n (x); P�;�k (x) >c ++A1Q�;�;A1;B1;A2;B2n (1)P�;�k (1) +B1Q�;�;A1;B1;A2;B2n (�1)P��k (�1)++A2(Q�;�;A1;B1;A2;B2n )0(1)(P�;�k )0(1) +B2(Q�;�;A1;B1;A2;B2n )0(�1)(P�;�k )0(�1); (21)If we use the decomposition (19) and taking into account (20) we �nd the following expression for thecoe�cients an;kan;k = �A1Q�;�;A1;B1;A2;B2n (1)P�;�k (1) +B1Q�;�;A1;B1;A2;B2n (�1)P�;�k (�1)d2k � k < n�A2(Q�;�;A1;B1;A2;B2n )0(1)(P�;�k )0(1) +B2(Q�;�;A1;B1;A2;B2n )0(�1)(P�;�k )0(�1)d2k ; (22)where d2k denotes the square norm of the classical Jacobi polynomials (1). Finally, the equation (19)becomesQ�;�;A1;B1;A2;B2n (x) = P�;�n (x)�A1Q�;�;A1;B1;A2;B2n (1)K�;�n�1(x; 1)��B1Q�;�;A1;B1;A2;B2n (�1)K�;�n�1(x;�1) �A2(Q�;�;A1;B1;A2;B2n )0(1)K�;�(0;1)n�1 (x; 1)��B2(Q�;�;A1;B1;A2;B2n )0(�1)K�;�(0;1)n�1 (x;�1): (23)In order to �nd the unknowns Q�;�;A1;B1;A2;B2n (1), Q�;�;A1;B1;A2;B2n (�1), (Q�;�;A1;B1;A2;B2n )0(1) and(Q�;�;A1;B1;A2;B2n )0(�1) we can take derivatives in (23) and evaluate the resulting equation, as wellas (23), at x = 1 and x = �1. This leads to a linear system of equationsIK � ~Qn = Qn; (24)
5



y y 1 2 3 4k1 = 0BBBB@ 1 +A1K�;�n�1(1; 1)A1K�;�n�1(1;�1)A1K�;�(0;1)n�1 (1; 1)A1K�;�(0;1)n�1 (1;�1) 1CCCCA ; k2 = 0BBBB@ B1K�;�n�1(1;�1)1 +B1K�;�n�1(�1;�1)B1K�;�(0;1)n�1 (�1; 1)B1K�;�(0;1)n�1 (�1;�1) 1CCCCA ;
k3 = 0BBBB@ A2K�;�(0;1)n�1 (1; 1)A2K�;�(0;1)n�1 (�1; 1)1 +A2K�;�(1;1)n�1 (1; 1)A2K�;�(1;1)n�1 (1;�1) 1CCCCA ; k4 = 0BBBB@ B2K�;�(0;1)n�1 (1;�1)B2K�;�(0;1)n�1 (�1;�1)B2K�;�(1;1)n�1 (1;�1)1 +B2K�;�(1;1)n�1 (�1;�1) 1CCCCA ;and ~Qn and Qn are the column vectors~Qn = 0BBB@ Q�;�;A1;B1;A2;B2n (1)Q�;�;A1;B1;A2;B2n (�1)(Q�;�;A1;B1;A2;B2n )0(1)(Q�;�;A1;B1;A2;B2n )0(�1) 1CCCA ; Qn = 0BBB@ P�;�n (1)P�;�n (�1)(P�;�n )0(1)(P�;�n )0(�1) 1CCCA ;respectively. Let us denote IKj(Qn) the matrix obtained substituting the j column in IK by Qn. Then,from the Cramer's, rule the system (24) has a unique solution if and only if the determinant of IK doesnot vanish. Moreover, the solution is given byQ�;�;A1;B1;A2;B2n (1) = det IK1(Qn)det IK ; Q�;�;A1;B1;A2;B2n (�1) = det IK2(Qn)det IK ;(Q�;�;A1;B1;A2;B2n )0(1) = det IK3(Qn)det IK ; (Q�;�;A1;B1;A2;B2n )0(�1) = det IK4(Qn)det IK : (25)Here we want to remark that, since our polynomials are orthogonal with respect to (17), then thepolynomials Q�;�;A1;B1;A2;B2n (x) exist for all values of the nonnegative masses A1, B1, A2 and B2. Inparticular this implies that det IK 6= 0. This situation is very di�erent from one studied in [5] wherethe polynomials are orthogonal with respect to a linear functional which is not positive de�nite (ingeneral it is not a quasi-de�nite linear fuctional).Proposition 1 The following symmetry property for the Jacobi-Sobolev polynomials holdsQ�;�;A1;B1;A2;B2n (�x) = (�1)nQ�;�;B1;A1;B2;A2n (x): (26)Proof: Let us denote the determinant of IK by 4�;�;A1;B1;A2;B2n and the determinant of IKj(Qn) by4�;�;A1;B1;A2;B2n;j (Qn). If we interchange in IK2(Qn) the �rst and second columns and the �rst andsecond rows, the third and fourth columns and the third and fourth rows, respectively, and then weuse the symmetry property of Jacobi polynomials (9) and their kernels (12) we �nd the followingrelation for the determinants4�;�;B1;A1;B2;A2n;2 (Qn) = (�1)n 4�;�;A1;B1;A2;B2n;1 (Qn):If we handle with the same rows and columns but in IK we get4�;�;A1;B1;A2;B2n = 4�;�;B1;A1;B2;A2n :Then, from (25) we obtainQ�;�;A1;B1;A2;B2n (�1) = (�1)nQ�;�;B1;A1;B2;A2n (1): (27)6



y (Q�;�;A1;B1;A2;B2n )0(�1) = (�1)n�1(Q�;�;B1;A1;B2;A2n )0(1): (28)Now, if we provide the change of parameters � $ �, A1 $ B1 and A2 $ B2 in (23) and then use thesymmetry properties for the Jacobi kernels (12) and (27)-(28) the proposition holds.Let us now to obtain an explicit formula of Q�;�;A1;B1;A2;B2n (x) in terms of the classical Jacobipolynomials and their �rst and second derivatives. We start from formula (23) where we substitutethe kernels by their explicit expressions (13)-(15) and use the formulas (25). This leads to the following.Proposition 2 The Jacobi-Sobolev orthogonal polynomials Q�;�;A1;B1;A2;B2n (x) can be given in termsof the classical Jacobi polynomials and their �rst and second derivativesQ�;�;A1;B1;A2;B2n (x) = (1 + n�n + n�n)P�;�n (x) + [�n(1� x)� �n(1 + x)++(� + 1)�n + (�+ 1)!n](P�;�n (x))0 + [�n(1 + x)� !n(1� x)] (P�;�n (x))00; (29)where �n = B1C�;�;B1;A1;B2;A2n +B2D�;�;B1;A1;B2;A2n ;�n = A1C�;�;A1;B1;A2;B2n +A2D�;�;A1;B1;A2;B2n ; (30)�n = A2E�;�;A1;B1;A2;B2n ; !n = B2E�;�;B1;A1;B2;A2n ; (31)and C�;�;A1;B1;A2;B2n = Q�;�;A1;B1;A2;B2n (1)P�;�n (1)d2n�1��;�n ;D�;�;A1;B1;A2;B2n = (Q�;�;A1;B1;A2;B2n )0(1)(P�;�n )0(1)d2n�1��;�n ;E�;�;A1;B1;A2;B2n = (Q�;�;A1;B1;A2;B2n )0(1)P�;�n (1)d2n�1��;�n (1 + �) : (32)
Notice that the constants �n; �n; �n and !n depend on n; �; � and the masses A1; B1; A2 and B2.In the next Section we will establish the recurrence relation that the polynomialsQ�;�;A1;B1;A2;B2n (x)satisfy. Notice that, since the matrix of the moments of the inner product de�ned by (17) is notof Hankel type because < x ; x >6=< 1 ; x2 >, then the Sobolev-type orthogonal polynomialsQ�;�;A1;B1;A2;B2n (x) don't satisfy a three-term recurrence relation. In fact they will satisfy a seven-term recurrence relation (see [15]).4 The seven-term recurrence relation for Q�;�;A1;B1;A2;B2n (x).Here we will prove that the polynomials Q�;�;A1;B1;A2;B2n (x) satisfy a seven-term recurrence relation.In fact, it's straightforward to prove that the multiplication operator by (x2 � 1)2 is symmetric withrespect to (17). The problem is to �nd a polynomial operator of the lowest degree which be symmetricwith respect to the Sobolev inner product (17).Cases:1. If A2 = B2 = 0 we have a standard inner product, hence the multiplication operator by x issymmetric. 7



2 2 6 p p y ( yobtain a �ve-term recurrence relation.3. If A2 6= 0 and B2 = 0 then the multiplication operator by (x � 1)2 is symmetric. Hence weobtain a �ve-term recurrence relation.There is another interesting case, when the masses A2 and B2 are both di�erent from zero. Thissituation will be considered below.We assume that A2 6= 0 and B2 6= 0. In particular, from (17) we get< hp; q >=< p; hq > p; q 2 IP; (33)for some polynomial h(x) of degree less than or equal to four. This implies thatA2(hp)0(1)q0(1) +B2(hp)0(�1)q0(�1) = A2(hq)0(1)p0(1) +B2(hq)0(�1)p0(�1); 8p; q 2 IP: (34)ThereforeA2h0(1)p(1)q0(1) +B2h0(�1)p(�1)q0(�1) = A2h0(1)q(1)p0(1) +B2h0(�1)q(�1)p0(�1); (35)or, equivalently,A2h0(1) �p(1)q0(1) � p0(1)q(1)� +B2h0(�1) �p(�1)q0(�1)� q(�1)p0(�1)� = 0; 8p; q 2 IP: (36)If p(x) = 1 and q(x) = x the equation (36) yieldsA2h0(1) +B2h0(�1) = 0: (37)If p(x) = 1 and q(x) = x2 the equation (36) leads2A2h0(1) � 2B2h0(�1) = 0: (38)Thus, from (37)-(38) we get ( A2h0(1) +B2h0(�1) = 0;A2h0(1)�B2h0(�1) = 0: (39)As A2 6= 0 and B2 6= 0 =) h0(1) = h0(�1) = 0, hence h0(x) = (x2 � 1)r(x). The minimal choice ofr(x) is, in this situation, r(x) � 1. Thereforeh(x) = x33 � x+ a (40)or, equivalently, h(x) = x3 � 3x+ b: (41)In order to operate with h(x) we put b = 0. In such a way we can guarantee that h(x) = x3 � 3xleads to the searched symmetric operator on IP, when A2 6= 0 and B2 6= 0. This fact allows to write aseven-term recurrence relation for Q�;�;A1;B1;A2;B2n (x). In fact, from(x3 � 3x)Q�;�;A1;B1;A2;B2n (x) = n+3Xj=0 �njQ�;�;A1;B1;A2;B2j (x): (42)and taking into account that�nj = < (x3 � 3x)Q�;�;A1;B1;A2;B2n (x); Q�;�;A1;B1;A2;B2j (x) >< Q�;�;A1;B1;A2;B2j (x); Q�;�;A1;B1;A2;B2j (x) > == < Q�;�;A1;B1;A2;B2n (x); (x3 � 3x)Q�;�;A1;B1;A2;B2j (x) >< Q�;�;A1;B1;A2;B2j (x); Q�;�;A1;B1;A2;B2j (x) > = 0; if j < n� 3; (43)
8



(x3 � 3x)Q�;�;A1;B1;A2;B2n (x) = n+3Xj=n�3�njQ�;�;A1;B1;A2;B2j (x); (44)where �n;n�3 = < (x3 � 3x)Q�;�;A1;B1;A2;B2n (x); Q�;�;A1;B1;A2;B2n�3 (x) >< Q�;�;A1;B1;A2;B2n�3 (x); Q�;�;A1;B1;A2;B2n�3 (x) > == < Q�;�;A1;B1;A2;B2n (x); (x3 � 3x)Q�;�;A1;B1;A2;B2n�3 (x) >< Q�;�;A1;B1;A2;B2n�3 (x); Q�;�;A1;B1;A2;B2n�3 (x) > == < Q�;�;A1;B1;A2;B2n (x); Q�;�;A1;B1;A2;B2n (x) >< Q�;�;A1;B1;A2;B2n�3 (x); Q�;�;A1;B1;A2;B2n�3 (x) > > 0: (45)
5 Representation as hypergeometric series.Here we will prove the following propositionProposition 3 The orthogonal polynomial Q�;�;A1;B1;A2;B2n (x) is, up to a constant factor, a general-ized hypergeometric series. More precisely,Q�;�;A1;B1;A2;B2n (x) = 2n�3(�+ 3)n�3�4(0)(n+ �+ � + 1)n 6F5  �n;n+�+�+1;�0+1;�1+1;�2+1;�3+1�+3; �0; �1; �2; �3 �����1�x2 ! ; (46)where �4(0) is given in (52) and the coe�cients ��0, ��1, ��2 and ��3 are the zeros of a polynomialof fourth degree at k (see formula (49) from below). In general, they are complex numbers. If forsome i = 0; 1; 2; 3, ��i is a negative integer number we need to take the analytic continuation of thehypergeometric series (46).The representation (46) can be considered as a generalization of the representation as hypergeometricseries of the Jacobi polynomials.Proof: Using (4)-(5) we can rewrite (29) as followsQ�;�;A1;B1;A2;B2n (x) = AnP�;�n (x) + nBnP�+1;�+1n�1 (x) + nCnP�+1;�+1n (x) + nDnP�+1;�+1n�2 (x)++n(n� 1)EnP�+2;�+2n�2 (x) + n(n� 1)FnP�+2;�+2n�1 (x) + n(n� 1)GnP�+2;�+2n�3 (x); (47)whereAn = 1� nCn; Bn = �n � �n + Cn��+1;�+1n�1 ; Cn = �(�n + �n); Dn = Cn
�+1;�+1n�1 ;En = �n � !n + Fn��+2;�+2n�2 ; Fn = �n + !n; Gn = Fn
�+2;�+2n�2 : (48)Substituting the hypergeometric representation of the Jacobi polynomials (7) in (47) we �ndQ�;�;A1;B1;A2;B2n (x) = 2n�3(�+ 3)n�3(n+ �+ � + 1)n 1Xk=0 "8An(n+ �)(k + �+ 1)(k + �+ 2)��4Bn(n+ �)(k � n)(k + n+ �+ � + 1)(k + �+ 2)++8nCn(n+ �)(n+ �+ 1)(k + n+ �+ � + 1)(k + n+ �+ � + 2)(k + �+ 2)(2n+ �+ � + 1)(2n+ �+ � + 2) +9



+ n� 1 ++2nEn(n+ �)(k � n)(k � n+ 1)(k + n+ �+ � + 1)(k + n+ �+ � + 2)��4nFn(n� 1)(n+ �)(k � n)(k + n+ �+ � + 1)(k + n+ �+ � + 2)(k + n+ �+ � + 3)(2n+ �+ � + 1)(2n+ �+ � + 2)(n+ �+ 1)�1 ��Gn(k � n)(k � n+ 1)(k � n+ 2)(k + n+ �+ � + 1)(2n + �+ �)(2n + �+ � � 1)n� 2 #��(�n)k(n+ �+ � + 1)kk! (�+ 3)k �1� x2 �k :Taking into account that the expression inside the quadratic brackets is a polynomial in k of degree4, denoted �4(k), we can writeQ�;�;A1;B1;A2;B2n (x) = 2n�3(�+ 3)n�3vn(n+ �+ � + 1)n �� 1Xk=0 (�n)k(n+ �+ � + 1)k(k + �0)(k + �1)(k + �2)(k + �3)k! (� + 3)k �1� x2 �k ; (49)where vn is the leading coe�cient of �4(k)vn = 2n(n+ �)En � 4n(n� 1)(n+ �)(n+ �+ 1)Fn(2n+ �+ � + 1)(2n+ �+ � + 2) � (2n+ �+ �)(2n+ �+ � � 1)Gnn� 2 ; (50)and ��i = ��i(n; �; �;A1; A2; B1; B2) with i = 0; 1; 2; 3; are the zeros of �4(k). Since (k + �i) =�i(�i + 1)k(�i)k , i = 0; 1; 2; 3, then (49) becomesQ�;�;A1;B1;A2;B2n (x) = 2n�3(�+ 3)n�3�4(0)(n+ �+ � + 1)n �� 1Xk=0 (�n)k(n+ �+ � + 1)k(1 + �0)k(1 + �1)k(1 + �2)k(1 + �3)kk! (�+ 3)k (�0)k (�1)k (�2)k (�3)k �1� x2 �k ; (51)where�4(0) = 8An(n+ �)(� + 1)(� + 2) + 4Bn(n+ �)(n+ �+ � + 1)(� + 2)n++8Cn(n+ �)(n+ �+ 1)(n+ �+ � + 1)(n+ �+ � + 2)(� + 2)n(2n+ �+ � + 1)(2n + �+ � + 2) ++2Dn(�+ 2)n+ 2En(n+ �)(n+ �+ � + 1)(n+ �+ � + 2)n(n� 1)++4Fn(n+ �)(n+ �+ 1)(n+ �+ � + 1)(n+ �+ � + 2)(n+ �+ � + 3)n(n� 1)(2n+ �+ � + 1)(2n + �+ � + 2) ++Gn(n+ �+ � + 1)(2n+ �+ � � 1)(2n+ �+ �)n(n� 1);
(52)
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g yp g p (It is straightforward to see that in the case A2, B2 equal to zero, from (46) we recover the monicJacobi-Koornwinder polynomials [17], and when A1 = A2 = B1 = B2 = 0, (46) becomes the represen-tation (8), i.e., we recover the classical Jacobi polynomials.6 Second order di�erential equation.In this section we will show that the Jacobi-Sobolev polynomials satisfy a second order linear dif-ferential equation (SODE). We want to remark here that the main result that allows us to obtain theSODE is, as in the case considered in [5], the fact that the polynomials Q�;�;A1;B1;A2;B2n (x) admit arepresentation in terms of the classical Jacobi polynomials and their �rst and second derivatives ofthe form (29).First of all, we will rewrite (29) in terms of the polynomials and their �rst derivatives. In order todo this we will use the SODE for the Jacobi polynomials (2). Then, if we multiply (29) by �(x) anduse the SODE (2) we �nd the following equivalent representation formula�(x)Q�;�;A1;B1;A2;B2n (x) = a(x;n)P�;�n (x) + b(x;n) dd x P�;�n (x); (53)where a(x;n); b(x;n) are polynomials of bounded degree in x with coe�cients depending on na(x;n) = (1 + n�n + n�n)�(x)� �n [�n(1 + x)� !n(1� x)] ;b(x;n) = [�n(1� x)� �n(1 + x) + (� + 1)�n + (�+ 1)!n]�(x)� �(x) [�n(1 + x)� !n(1� x)] : (54)Taking derivatives in the above expression and using (2) and (53)�2(x) dd xQ�;�;A1;B1;A2;B2n (x) = c(x;n)P�;�n (x) + d(x;n) dd x P�;�n (x); (55)where c(x;n) = �(x)a0(x;n)� �0(x)a(x;n) � �nb(x;n);d(x;n) = �(x)[a(x;n) + b0(x;n)]� �0(x)b(x;n)� �(x)b(x;n): (56)Analogously, if we take derivatives in (55) and use (2) and (53), we obtain�3(x) d2d x2Q�;�;A1;B1;A2;B2n (x) = e(x;n)P�;�n (x) + f(x;n) dd xP�;�n (x); (57)where e(x;n) = �(x)c0(x;n)� 2�0(x)c(x;n) � �nd(x;n);f(x;n) = �(x)[c(x;n) + d0(x;n)]� 2�0(x)d(x;n) � �(x)d(x;n): (58)The above expressions (53), (55) and (57) lead to������� Q�;�;A1;B1;A2;B2n (x) a(x;n) b(x;n)�(x)(Q�;�;A1;B1;A2;B2n (x))0 c(x;n) d(x;n)�2(x)(Q�;�;A1;B1;A2;B2n (x))00 e(x;n) f(x;n) ������� = 0 : (59)This yields~�n(x) d2dx2Q�;�;A1;B1;A2;B2n (x) + ~�n(x) ddxQ�;�;A1;B1;A2;B2n (x) + ~�n(x)Q�;�;A1;B1;A2;B2n (x) = 0; (60)11



~�(x;n) = �2(x) [a(x;n)d(x;n) � c(x;n)b(x;n)] ;~�(x;n) = �(x)[e(x;n)b(x;n) � a(x;n)f(x;n)];~�(x;n) = c(x;n)f(x;n)� e(x;n)d(x;n): (61)The explicit formulas for the coe�cients (61) of the SODE (60) are cumbersome and we will notprovide it here. We have obtained explicitly the coe�cients ~�(x;n), ~�(x;n) and ~�(x;n) by using thealgorithm described in [6] and implemented in Mathematica [28]. From (61) one can see that thecoe�cients ~�, ~� , ~� are polinomials on x. Some straightforward calculations with Mathematica showthat the degree of polynomials ~�(x;n), ~�(x;n) and ~�(x;n) is, at most, 6, 5 and 4, respectively.7 Asymptotic formulas.Some general asymptotic formulas for Sobolev-type orthogonal polynomials have been obtained in[18]. In order to complete the present work we will provide some of them. We will use them later onwhen we analyze the distribution of their zeros.Using the asymptotic formula for the Gamma function [26, formula 8.16 page 88]�(x) � p2�e�xxx� 12 ; x >> 1; x 2 IR; (62)we can �nd the following estimatesP�;�n (1) � p�n�+ 12�(�+ 1)2n+�+� ; (P�;�n )0(1) � p�n�+ 52�(�+ 2)2n+�+�+1 ; d2n�1 � �22n+�+��2 : (63)From these formulas and (16) we can deduceK�;�n�1(1; 1) � n2�+2�(�+ 1)�(� + 2)2�+�+1 ; K�;�n�1(1;�1) � (�1)n+1n�+�+1�(�+ 1)�(� + 1)2�+�+1 ; (64)K�;�(0;1)n�1 (1; 1) � n2�+4�(�+ 1)�(�+ 3)2�+�+2 ; K�;�(0;1)n�1 (1;�1) � (�1)n+1n�+�+3�(� + 2)�(�+ 1)2�+�+2 ; (65)K�;�(1;1)n�1 (1; 1) � (�+ 2)n2�+6�(�+ 2)�(�+ 4)2�+�+3 ; K�;�(1;1)n�1 (1;�1) � (�1)n+1n�+�+5�(�+ 2)�(� + 2)2�+�+3 ; (66)where xn � yn means limn!1 xn=yn = 1. Using the above estimates and doing some straightfor-ward calculations in (25) we �nd the following asymptotic expressions for Q�;�;A1;B1;A2;B2n (1) andQ0�;�;A1;B1;A2;B2n (1)Q�;�;A1;B1;A2;B2n (1) � �p��(�+ 3)2n�1A1n�+ 32 ; (Q�;�;A1;B1;A2;B2n )0(1) � p��(�+ 4)2n�2A2n�+ 72 ; (67)as well as for the constants de�ned by (30)-(32)C�;�;A1;B1;A2;B2n � � (�+1)(�+2)A1n2 ; D�;�;A1;B1;A2;B2n � (�+2)(�+3)A2n2 ; E�;�;A1;B1;A2;B2n � 2(�+2)(�+3)A2n4 ;C�;�;B1;A1;B2;A2n � � (�+1)(�+2)B1n2 ; D�;�;B1;A1;B2;A2n � (�+2)(�+3)B2n2 ; E�;�;B1;A1;B2;A2n � �2(�+2)(�+3)A1n4 : (68)12



�n � n2 ; �n � n2 ; �n � n4 ; !n � � n4 : (69)Using (29), (63) and the following asymptotic formula for the Jacobi polynomials�P�;�n �(k) (1) � p��(�+ k + 1) n�+2k+ 122n+�+�+k ; k � 2;from (67)-(69), we can give the asymptotic behaviour for (Q�;�;A1;B1;A2;B2n )00(1),(Q�;�;A1;B1;A2;B2n )00(1) � p�n�+ 922n+�+�+1�(�+ 5) : (70)Taking into account the Darboux formula for the asymptotics of the Jacobi polynomials on theinterval � 2 ["; � � "]; 0 < " << 1 [27, equation 8.21.10 page 196]anP�;�n (cos �) = �sin �2���� 12 �cos �2���� 12pn� cos �n� + 12(�+ � + 1)� � 12(�+ 12)��+O �n� 32� ;where an = (n+�+�+1)2n n! , and the explicit expression (29), we can �nd an explicit expression for thedi�erence between the new polynomials and the classical ones. Thus, we have the following asymptoticson [-1, 1]n 2n+�+�2 hQ�;�;A1;B1;A2;B2n (cos �)� P�;�n (cos �)i = 1p� n �sin �2���� 32 �cos �2���� 12 �� h12(�+ � + 2) sin � cos(N� + �1) + �(� + 2) sin2 �2 � cos2 �2 (�+ 2)� cos(N� + �2)i+O� 1n 32 � ; (71)where N = n+ 12(�+ � + 1), �1 = �(�+ 12)�2 and �2 = �(�+ 32)�2 .On the other hand, using the well known result1n (P�;�n )0(z)P�;�n (z) = 1pz2 � 1 + o (1) ;which is a simple consequence of the Darboux formula (see [27, Eq. 8.21.10 page 196]), the relativeasymptotics of the new polynomials isQ�;�;A1;B1;A2;B2n (z)P�;�n (z) � 1 + 2(� + 2)n 241�sx� 1x+ 135+ 2(� + 2)n 241�sx+ 1x� 135+ o� 1n� : (72)which holds uniformly outside any closed contour containing the interval [-1, 1].8 The zeros of Q�;�;A1;B1;A2;B2n (x).In this section we will study the properties of the zeros of the Jacobi-Sobolev-type orthogonalpolynomials when the masses A1, B1, A2 and B2 are positive. It is known that for polynomials whichare orthogonal on an interval with respect to a positive weight function their zeros are real and simpleand lie inside the interval (see [11], [27] and [24]). The study of zeros for Sobolev-type orthogonalpolynomials in the non diagonal case was presented in [2]. Since the situation here is very di�erentfrom one studied in [2] { the polynomials that we have investigated are orthogonal with respect to theinner product (17), i.e., a diagonal case { we need to search their algebraic properties. In fact, we willprove the following theorem. 13



g g g p y Qn ( ydi�erent, real and simple zeros belonging to the interval (-1,1). For n large enough the two remainderzeros are outside of the interval being one positive and the other one negative.Proof: Let x1; x2; x3; :::; xk be the di�erent real zeros of odd multiplicity of Q�;�;A1;B1;A2;B2n (x) on theinterval (�1; 1) and q(x) be a polynomial such thatq(x) = (x� x1)(x� x2):::(x� xk); hence Q�;�;A1;B1;A2;B2n (x)q(x) � 0; 8x 2 [�1; 1]: (73)Now de�ne h(x)h(x) = (x+ a)(x+ b)q(x) = (x+ a)(x+ b)(x� x1)(x� x2):::(x � xk); (74)in such a way that h0(1) = h0(�1) = 0. Then8>><>>: a+ b+ 2 + (a+ 1) (b+ 1) q0(1)q(1) = 0;a+ b� 2 + (a� 1) (b� 1) q0(�1)q(�1) = 0; (75)where 8>><>>: q0(1)q(1) = 11� x1 + 11� x2 + :::+ 11� xk > 0;q0(�1)q(�1) = �� 11 + x1 + 11 + x2 + :::+ 11 + xk� < 0: (76)From (75)-(76) between all the choices of a and b( �1 < a < 1;�1 < b < 1; ( a > 1;b > 1; ( a < �1;b < �1;( �1 < a < 1;b < �1; or b > 1 (a$ b) and ( a > 1;b < �1; (a$ b) (77)only the last one holds.Hence, from < h(x); Q�;�;A1;B1;A2;B2n (x) >< 0; then deg h(x) � n; i.e., k � n� 2: (78)To obtain the above one writes in (78) the inner product (17) and makes use of (77).To prove that Q�;�;A1;B1;A2;B2n (x) has one real simple negative zero and one real simple positive zerooutside [-1, 1] we use the fact that for n large enough Q�;�;A1;B1;A2;B2n (1) < 0, (Q�;�;A1;B1;A2;B2n )0(1) > 0(see formula (67)) and the polynomial Q�;�;A1;B1;A2;B2n (x) = xn+ lower degree terms is a continuousconvex upward function for x > 1, then in some positive value x > 1 the polynomial changes itssign. Using the symmetry property (26) and the same argument we prove that the polynomial hasone simple real negative zero outside [-1, 1]. This immediately implies that k = n � 2, hence theproposition holds.We will denote the zeros of Q�;�;A1;B1;A2;B2n (x) as xn;1 < �1 < xn;2 < ::: < xn;n�2 < 1 < xn;n. Letus study the zeros xn;1 and xn;n in more detail.
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g g n;n O � � n;1 + O � � p y1 < xn;n < 1 + q2�+�+3�(�+ 3)�(�+ 5)n�+3pA1 � 2�+�+3�(�+ 4)�(� + 5)A2n2�+8 +O �n�3��13� ;�1 > xn;1 > �1� q2�+�+3�(� + 3)�(� + 5)n�+3pB1 + 2�+�+3�(� + 4)�(� + 5)B2n2�+8 +O �n�3��13� : (79)Proof: Using Taylor's Theorem we have for x > 1,Q�;�;A1;B1;A2;B2n (x) = Q�;�;A1;B1;A2;B2n (1) + (Q�;�;A1;B1;A2;B2n )0(1)(x � 1)++(Q�;�;A1;B1;A2;B2n )00(1)(x� 1)22 + (Q�;�;A1;B1;A2;B2n )000(�)(x� 1)36 ; (80)where 1 < � < x. From (67) for n large enough, Q�;�;A1;B1;A2;B2n (1) is negative while (Q�;�;A1;B1;A2;B2n )0(1)is positive. Moreover, Q�;�;A1;B1;A2;B2n (x) is a convex upward function for x > 1 and has its �rst in-
ection point (from the right) somewhere at x < 1. Then for all x > 1, (Q�;�;A1;B1;A2;B2n )000(x) � 0.HenceQ�;�;A1;B1;A2;B2n (x) � (Q�;�;A1;B1;A2;B2n )00(1)2 x2 + h(Q�;�;A1;B1;A2;B2n )0(1)� (Q�;�;A1;B1;A2;B2n )00(1)i x++(Q�;�;A1;B1;A2;B2n )00(1)2 � (Q�;�;A1;B1;A2;B2n )0(1) +Q�;�;A1;B1;A2;B2n (1);and the zero xn;n is located between the zeros of the quadratic polynomial on the right hand of theprevious expression. If we denotex1;2 = 1� (Q�;�;A1;B1;A2;B2n )0(1)(Q�;�;A1;B1;A2;B2n )00(1) �vuut" (Q�;�;A1;B1;A2;B2n )0(1)(Q�;�;A1;B1;A2;B2n )00(1)#2 � 2 Q�;�;A1;B1;A2;B2n (1)(Q�;�;A1;B1;A2;B2n )00(1) (81)and taking into account (67) and (70) we get(Q�;�;A1;B1;A2;B2n )0(1)(Q�;�;A1;B1;A2;B2n )00(1) � 2�+�+3�(�+ 4)�(� + 5)A2n2�+8 ;Q�;�;A1;B1;A2;B2n (1)(Q�;�;A1;B1;A2;B2n )00(1) � �2�+�+2�(�+ 3)�(�+ 5)A1n2�+6 : (82)Thus, when (n!1) x2 behaves asymptotically as followsx2 � 1 + q2�+�+3�(�+ 3)�(� + 5)n�+3pA1 � 2�+�+3�(�+ 4)�(� + 5)A2n2�+8 +O �n�3��13� : (83)In the same way, using the symmetry property (26) we �nd the speed of convergence for xn;1, then(79) holds.
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ppIn this section we will apply the so-called semiclassical or WKB approximation (see [7], [29] andreferences therein) to �nd the WKB density of zeros of the polynomials Q�;�;A1;B1;A2;B2n (x). Let usdenote these zeros by fxn;igni=1. Then the corresponding distribution function of zeros is given by�n(x) = 1n nXi=1 �(x � xn;i): (84)Here we will use the method presented in [29] in order to obtain the WKB density of zeros, whichgives an approximate analytic expression for the density of zeros of the solutions of any linear secondorder di�erential equation with polynomial coe�cients. In particular we will consider (60)~�(x)y00 + ~�(x)y0 + ~�(x)y = 0: (85)The key step is the followingTheorem 3 ([29])Let S(x) and �(x) be the functionsS(x) = 14~�(x)2 h2~�(x) �2~�(x)� ~� 0(x)�+ ~�(x) �2~�0(x)� ~�(x)�i ; (86)�(x) = 14[S(x)]2 (5[S0(x)]24[S(x)] � S00(x)) = P (x; n)Q(x; n) ; (87)where P (x; n) and Q(x; n) are polynomials in x as well as in n. If the condition supx2X j�(x)j << 1 holds,then the semiclassical or WKB density of zeros of the solutions of (85) is given by�WKB(x) = 1�qS(x); x 2 X � IR; (88)in every interval X where the function S(x) is positive.Using the above algorithm, the computations have been performed by using the symbolic com-puter algebra package Mathematica [28]. First of all we check the conditions of the Theorem �ndingthat in the considered case � � n�1, so the Theorem can be applied for n large enough. The explicitexpression for �WKB(x) given by (88) is extremely large and we will omit it here. It is straightforwardto see that if we take the limit A1; A2; B1; B2 ! 0 in the resulting expression for �WKB(x) we recoverthe classical expression for the Jacobi polynomials [29]. We will provide here some graphics for thenormalized �WKB(x) function. In Figure 1 the WKB density of zeros for the Jacobi-Sobolev-typeorthogonal polynomials appears. We have used the formulas (60), (69), (86) and (88) and plotted thenormalized Density function for n = 104 in four di�erent cases with several values of the parameters� and � (� = � = 0, � = � = �12 , � = � = 5 and nonsymmetric case � = 0 and � = 1). In Figure2 appears the WKB density of zeros for the same values of � and � and n = 105. In Figure 3 werepresent the WKB density of zeros for n = 106 and the same values of the parameters � and �.Finally, in Figure 4 is shown �WKB(x), for n = 107 with the above values of � and �. Clear, in eachFigure from the bottom to the top, is distinguishible the case � = � = 0, while the remaining casesbehave almost equal. Some numerical tests based on the computation of the number N of zeros inthe interval (� 110 ; 110 ) by using the expression N � R 1=10�1=10 �WKB(x) dx for both families of orthogonalpolynomials P�;�n (x) and Q�;�;A1;B1;A2;B2n (x) show that their global spectral properties are the same.This result is in accordance with the next one. 16



n � g nzero of Q�;�;A1;B1;A2;B2n (x). Then �n ��! 1�p1� x2 ;in the weak star topology.Proof: From (6) and (69), we getAn = 1� �+ � + 4n + o� 1n� ; En = 1 + 5�+ �2 � 5� � �2n4 + o� 1n4� ;Bn = 2(� � �)n2 + 2 �� (19 + � (7 + �)) + 2� (5 + �) � � 5�2 � �3 + 3 (4 + �)�n4 + o� 1n4�Cn = 2n2 (�+ � + 4) + o� 1n2� ; Dn = 12n2 (�+ � + 6) + o� 1n2� ;Fn = 12 + � (5 + �) + � (5 + �)2n4 + o� 1n4� ; Gn = 2(12 + � (5 + �) + � (5 + �))n4 + o� 1n4� :Using (47),jjQ�;�;A1;B1;A2;B2n (x)jj[�1;1] � AnjjP�;�n (x)jj[�1;1] + nBnjjP�+1;�+1n�1 (x)jj[�1;1]+nCnjjP�+1;�+1n (x)jj[�1;1] + nDnjjP�+1;�+1n�2 (x)jj[�1;1] + n(n� 1)EnjjP�+2;�+2n�2 (x)jj[�1;1]+n(n� 1)FnjjP�+2;�+2n�1 (x)jj[�1;1] + n(n� 1)GnjjP�+2;�+2n�3 (x)jj[�1;1]; (89)where jj � jj[�1;1] denotes the sup-norm in the interval [-1, 1].Because of jjP�;�n (x)jj 1n[�1;1] � 12 (see [27]), we deducelimn!1 jjQ�;�;A1;B1;A2;B2n (x)jj 1n[�1;1] � 12 : (90)Thus, from Theorem 2.1 in [10] �n ��! 1�p1� x2 : (91)ACKNOWLEDGEMENTSPart of this work was provided during the stay of the second author in the University of Amsterdam.He is very grateful to the Department of Mathematics of the University of Amsterdam for his kindhospitality. The research of the �rst author (JA) was supported by a grant of Ministerio de Educaci�ony Cultura (MEC) of Spain. The research of the three �rst authors (JA, RAN and FM) was supportedby Direcci�on General de Ense~nanza Superior (DGES) of Spain under grant PB 96-0120-C03-01. Theauthors are very grateful to the unknown referees for their helpful remarks and for help us to correctsome missprints and errors and signi�cantly improve the paper.
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Figure 1: WKB Density of zeros for n = 104 ofQ�;�;A1;B1;A2;B2n (x) with x 2 [�0:99; 0:99].
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Figure 2: WKB Density of zeros for n = 105 ofQ�;�;A1;B1;A2;B2n (x) with x 2 [�0:99; 0:99].
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Figure 3: WKB Density of zeros for n = 106 ofQ�;�;A1;B1;A2;B2n (x) with x 2 [�0:986; 0:986].
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Figure 4: WKB Density of zeros for n = 107 ofQ�;�;A1;B1;A2;B2n (x) with x 2 [�0:986; 0:986].Figure 5: Comparison of the numerical computation results.
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