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Abstract

Unobserved component models with GARCH disturbances are extended to allow for asymmet-
ric responses of conditional variances to positive and negative shocks. The asymmetric conditional
variance is represented by a member of the QARCH class of models. The proposed model allows
to distinguish whether the possibly asymmetric conditional heteroscedasticity affects the short-run
or the long-run disturbances or both. Statistical properties of the new model and the finite sample
properties of a QML estimator of the parameters are analyzed. The correlogram of squared auxiliary
residuals is shown to be useful to identify the conditional heteroscedasticity. Finite sample properties
of squared auxiliary residuals are also analysed. Finally, the results are illustrated by fitting the model
to daily series of financial and gold prices, as well as to monthly series of inflation. The behavior
of volatility in both types of series is different. The conditional heteroscedasticity mainly affects the
short-run component in financial prices while in the inflation series, the heteroscedasticity appears in
the long-run component. Asymmetric effects are found in both types of variables.
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1. Introduction

Economic time series can often be decomposed into components that have a direct inter-
pretation, for example, trend, seasonal and transitory components; see Harvey (1989) for
a detailed description of unobserved component models. In the simplest case, the series of
interest, y;, can be decomposed in a long-run component, representing an evolving level,
1, and a transitory component, ¢;. If the level follows a random walk and the transitory
component is white noise, the resulting model is given by

Yt = :ut + &ty
My = My + 1y, (N

where ¢; and 77, are mutually independent Gaussian white noise processes with variances h
and ¢ respectively. Model (1) is known as random walk plus noise and has been very useful
to represent the dynamic dependence of a large number of economic time series; see, for
example, Durbin and Koopman (2001) for several applications concerning this model.
The random walk plus noise model in (1) was extended by Harvey et al. (1992) to
allow the variances of both, the short- and the long-run components, to evolve over time

following GARCH(1,1) models. In particular, the disturbances are defined by & = sjhll/ 2
and 57, = njq,l/ % where sj and 7, are mutually independent Gaussian white noise processes

and A, and g, are given by

he = oo + oyery + ook,

4 =70+ 7101+ 12di-1: (2)

where the parameters o, o1, 2, 7o, ¥; and y, satisfy the usual conditions to guarantee the
positivity and stationarity of /4, and g;.

Model (1) with the variances defined as in (2) is a Structural ARCH (STARCH) model.
The main attractive of STARCH models is that they are able to distinguish whether the
ARCH effects appear in the permanent and/or in the transitory component. An alternative
heteroscedastic unobserved component model is proposed by Ord et al. (1997), where,
instead of considering different disturbances for each component, the source of randomness
is unique.

Unobserved component models with GARCH disturbances have been applied in fields
like macroeconomics and finance. For example, Evans and Wachtel (1993), Ball and Cec-
chetti (1990) and Evans (1991) analyze inflation, Kim (1993) analyzes inflation and interest
rates, Fiorentini and Maravall (1996) analyze the Spanish money supply and Diebold and
Nerlove (1989), King et al. (1994), Morgan and Trevor (1999), Hasbrouck (1999), Bos et
al. (2000) and Wei (2002) have applications to financial data.

The variances in Egs. (2) are specified in such a way that their responses to positive
and negative changes in the corresponding disturbances are symmetric. However, in some
cases, the empirical evidence suggest that the conditional variance may have a different
response to shocks of the same magnitude but different sign. This phenomenon, known as
“leverage effect’” in the Financial Econometrics literature, has often been observed in high
frequency financial data; see, for example, Shephard (1996) and the references therein. In the



context of macroeconomic time series, Brunner and Hess (1993), point out the importance
of considering the “leverage effect” in the modelization of inflation.

There are several alternative models proposed in the literature to represent asymmetric
responses of volatility to positive and negative shocks; see Hentschel (1995) and He and
Terdsvirta (1999) for two asymmetric models that encompass many of the most popular
alternatives. In this paper, we consider the Generalized Quadratic ARCH (GQARCH) model
originally proposed by Sentana (1995) because of its tractability in the sense that GQARCH
models pick up the “leverage effect” in an additive way. Consequently, the estimation of
these models is easier than in models that use a multiplicative specification like, for example,
the EGARCH model of Nelson (1991). If the disturbances ¢; and #, follow GQARCH(1,1)
processes, their variances are given by

hy = oo + ager 4 Per—1 + a1,
Gr =70+ 1M-1 + N1 + 1agi—1, 3)

respectively. The parameters in (3) should be restricted for the variances to be positive. In
particular o, o, o >0 and ﬁz <4oo9. On the other hand, ¢ is covariance stationary if
o + op < 1. Similar restrictions are imposed on ), 7, 0 and 7,; see He and Terisvirta
(1999).

Sentana (1995) analyzes the properties of the GQARCH(1,1) model and points out their
similarity to the GARCH(1,1) model. For example, the GARCH(1,1) and GQARCH(1,1)
models for ¢ have the same unconditional mean and variance equal to zero and o2 =
oo/ (1 — o — op), respectively. Furthermore, in both models, the odd moments are zero,
the series ¢ is uncorrelated and the cross-correlations between 8,2 and ¢_j, are zero for
all h>2. When h = 1, Cov (atz, g—1) = Bo? in the GQARCH(1,1) model and zero in the
GARCH(1,1) model. Using the results of He and Terdsvirta (1999), it is possible to derive
the following expressions for the kurtosis of ¢; and autocorrelation function (acf) of 8,2

. 3(1 = (o +x)?) N A* @
(l —304%—0(%—20{10(2) (1 —39(%—0(%—20410(2)
and
201 (1 — ayop — 03) + A* Bog + o)
P (1) = 2 (1 — 20000 — 03) 4 3A* ce=h 5)
(1 + )" pa (D), > 1,

where A* = (f/0;)*. Notice that the kurtosis of ¢ is larger than in the symmetric GARCH
model. For example, if o9 = 0.05, oy = 0.15, op = 0.8 and f§ = 0, the kurtosis is 5.57
while if, for the same parameter values, || = 0.1, the kurtosis is 6.14. On the other hand,
the autocorrelation function of the squares of a GQARCH(1,1) model decays at the same
rate as in the GARCH(1,1) model. Furthermore, if f§ is small relative to ag, as it is usually
the case in empirical applications, the autocorrelation of order one is almost the same in
both models. For example, for the same parameter values considered before, if f = 0, then
p2(1)=0.3 whileif |f| =0.1, then p,2 (1) =0.31. Therefore, it seems that incorporating the
leverage effect into the conditional variance increases the kurtosis of the process without
increasing the autocorrelations of squares.



The objective of this paper is to extend the STARCH model by allowing the variances of
the disturbances ¢; and 7, to follow GQARCH models. Hereafter, we call this new family of
models Quadratic STARCH (Q-STARCH). These models are able to represent asymmetric
responses of conditional variances to positive and negative disturbances distinguishing
whether the asymmetry appears in the short- or in the long-run components. Secondly, we
will show how the autocorrelations of the squared auxiliary residuals can be used to identify
which of these components is conditionally heteroscedastic.

It is important to mention that alternatively, the evolution of the variances of & and #,
could be modelled using stochastic volatility (SV) models instead of the GARCH type of
models chosen in this paper. However, in this case it is necessary to restrict the dynamic
of the variances to estimate the models. For example, Koopman and Bos (2004) propose a
model with unobserved SV components but they restrict all the components to have the same
dynamics for the variances. On top of this, the estimation of the parameters of the models
with SV components requires more complicated methods than when the disturbances belong
to the family of GARCH models.

The paper is organized as follows. Section 2 introduces the Q-STARCH model and
describes its properties. It also contains finite sample properties of the autocorrelations
of squared observations and squared auxiliary residuals, which are useful to identify the
presence of heteroscedastic asymmetric variances. In Section 3, we analyze the finite sample
properties of a quasi-maximum likelihood (QML) estimator of the parameters of the Q-
STARCH model based on the prediction error decomposition of the Gaussian log-likelihood.
In Section 4, the Q-STARCH model is fitted to daily gold and financial prices and to monthly
series of inflation. Finally, Section 5 concludes the paper.

2. Q-STARCH model

In this section, we analyze the statistical properties of the Q-STARCH model defined by
Egs. (1) and (3). The stationary form of the model is given by

Ay =1, + Ag;. (6)

From (6) it can be easily seen that y; follows an ARIMA(O0,1,1) with non-Gaussian innova-
tions. Furthermore, notice that the innovations of this model are uncorrelated although not
independent; see Breidt and Davis (1992). The mean, variance and acf of Ay, are the same
as in the homoscedastic random walk plus noise model; see, for example, Harvey (1989).
The presence of asymmetric ARCH effects is reflected in the kurtosis of Ay; given by

2
3 1 —(y1+7 + B*
K (Ay) = ——— {4q9 +q° (21 ) 5
(q+2) 1 =397 =217 =73
L4 (1=(oy 4+ o2)* + oy (1 — o — oo — 03)) + 2A% (14301 +02)
1—305% — 20(10(2—0(%

s
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where g=0, /07, 0,=70/ (1 — 71 — 72) and B*=(3/ 0,7)2. Notice that, in the homoscedastic
case, when o) =y; = =0=0, the kurtosis is, as expected, 3. The presence of ARCH effects,
o1 # 0 ory; # 0, causes excess kurtosis. Besides, in the asymmetric case, when f§ # 0 or
0 # 0, the excess kurtosis is even greater. Therefore, the kurtosis of a Q-STARCH model
is bounded from bellow by the kurtosis of a symmetric STARCH model independently of
the sign of f§ or 6. The kurtosis is, in general, a complicated function of the signal to noise
ratio, g, and of the ARCH parameters. For example,assuming that the ARCH effects of the
long and short-run disturbances are identical, i.e. yo = 0, y; = &1 and y, = o, the kurtosis
increases more when the asymmetry of the transitory component increases (f) than when
the asymmetry of the long-run disturbance increases (9).
Furthermore, the skewness of Ay, is given by

—3p

SK(Ay) = — P
W g+

®)

Note that only the asymmetry of the transitory component, f3, affects the skewness coeffi-
cient. Looking at expressions (7) and (8), it seems that, independently of the signal to noise
ratio, g, the asymmetries of the transitory noise are more influential than the asymmetries
of the long-run noise on the statistical properties of Ay,. In any case, the main dynamic
properties of (Ay,) appear in the squares. After some tedious algebra, it is possible to derive
the following expression of the autocovariance function of (Ay))?

ot g +2)* (x (Ay) — 1), T=0,
G? {qz(Kﬂ - 1)0112(1)
V(Ayt)z(‘f)z + (kg — D [1+ 2+ 0y —i—ocz)pgz(l)]}, =1, )

(o + 02) y(Ay,)z (t—D

(1 +7) = @1+ )] (1 +72) D), T2,

where «k (Ay,) is given in (7) and py2 (1) and V2 (1) are the autocorrelation and autocovari-
ance of order one of '7;2’ respectively. From (9), it is straightforward to obtain the acf of
(A yt)2. Notice that the decay in the correlogram of the squared first differences is the same
as for the symmetric STARCH model. Furthermore, when the persistence of the variances of
the short- and long-run components is similar, the decay of the autocorrelations is exponen-
tial with parameter a1 4. As expected, in the homoscedastic case, when o =y; =f=09=0,
all the autocorrelations for (Ay;)? are zero for lags greater than one and the autocorrelation
at lag one is (1/(q + 2)? = [pAyt(l)]z, where pp,, (1) is the lag one autocorrelation of
Ay,. Therefore, the autocorrelations of the squared observations are equal to the squared
autocorrelations of the row observations; see Maravall (1983).

The information about the asymmetric response of the variances to positive and negative
innovations is more evident in the cross-correlations between (Ay,)2 and Ay,_. that are



given by

0, Vi< —1,
26
@+ DBy — 2 T
@+ By~ 0
— oq — P (o + 02)
S (CORES @+ D By -2 T "

5()’1 + Vz)r_lq "
oe(q +2)%% (k(Ayy) — DV?
B (o1 +02)"2 — (o1 + 22)")
a5(q + 2% (k (Ayy) — DV

T=2.

Note that in the symmetric STARCH case these third order moments are always zero. In
any case, given that the asymmetry parameters, f§ and 0, are rather small in magnitude, the
size of the cross-correlations is so small that they are not an useful instrument to identify
the presence of asymmetries.

In unobserved component models, it can also be useful to analyze the auxiliary residuals,
that estimate the disturbances of each component; see Maravall (1987) and Harvey and
Koopman (1992). The latter authors show that the minimum mean square linear (MMSL)
estimators of & and 7, are given by

. (1+0*Ay

= a0+ oF) (1D
~ 0 ~

& = m (Vh+1 - ’7:) L (12)

where F is the lead operator such that Fx; = x;41, L is the lag operator such that Lx; =
x;—1 and 0 is the moving average parameter of the reduced form of Ay, given by 6 =

(—q —24+q%+ 4q> /2. Harvey and Koopman (1992) show that, if time is reversed,

7, follows an AR(1) model with parameter 6 whereas &, follows a strictly noninvertible
ARMA(1,1) process with autoregressive parameter . The first order autocorrelation of
& is then given by pz(1) = —0.5(0 + 1). The presence of conditional heteroscedastic-
ity in the components of the random walk plus noise model can be identified analysing
whether the autocorrelations of squared auxiliary residuals are larger than their squared
autocorrelations.

The finite sample properties of the autocorrelations of (Ayt)z,’.s\,2 and ’n\tz are analyzed by
means of extensive Monte Carlo experiments. The series have been generated with sample
size T = 1000 by the following four Q-STARCH models.



) o1 %3 p 0 71 V2 0

M1 0.25 0 0 0 0.05 0.15 0.8 —0.17
M2 0.05 0.15 0.8 -0.17 4.0 0 0 0
M3 4.0 0 0 0 0.05 0.15 0.8 —0.17
M4 0.05 0.15 0.8 —0.17 0.25 0 0 0

The first two models have ¢ = 4.0, while g = 0.25 for the other two. Models M1 and M3
have an homoscedastic short-run noise while the long-run component is heteroscedastic. On
the other hand, the short-run disturbances of models M2 and M4 are heteroscedastic while
the long-run variances are constant. The asymmetry parameter —0.17 has been chosen as
it is the largest to guarantee the positivity of the conditional variances. Results for other
designs and sample sizes are available from the authors upon request.

For each model, we generate 1000 replicates and for each replicate, we compute the
sample autocorrelations of (Ay;)?, ?12 and 77? for lags up to 36. Then, we compute the
average mean and standard deviation of the estimates through all replicates. All simulations
have been carried out on a Pentium desktop computer using our own FORTRAN codes.

The Monte Carlo results have been summarized in Fig. 1, that plots the mean autocorre-
lation function of (Ay,)? together with the corresponding acf derived in previous section. In
this figure, it can be observed that the biases are huge. Negative biases on the autocorrela-
tions of squares of conditionally heteroscedastic series have been previously documented in
the literature; see, for example Pérez and Ruiz (2003). On top of this, Fig. 1 illustrates that
the biases are more severe when ¢ is large and the transitory component is conditionally
heteroscedastic or when ¢ is small and the conditional heteroscedasticity appears in the
long-run noise. In the first case, the marginal variance of the long-run component is larger
than the marginal variance of the heteroscedastic transitory component. When computing
the sample autocorrelations of squares these are heavily biased towards zero. A similar
effect is observed when the long-run component is heterocedastic but its marginal variance
is small when compared with the marginal variance of the transitory component. In these
cases, it seems that the sample autocorrelations of (Ay;)? are not useful to identify the
presence of conditionally heteroscedastic unobserved noises.

The second and third rows of Fig. 1 plot the mean of the sample autocorrelations of the
squared auxiliary residuals,; and 7], together with the corresponding acf’s obtained assum-
ing homoscedasticity. First, notice that the autocorrelations are larger than expected if the
corresponding component were homoscedastic. Therefore, the autocorrelations of squared
auxiliary residuals can be a useful instrument to detect conditional heteroscedasticity. Fur-
thermore, in the first two models, the autocorrelations of squares are larger in 7, than in’g;.
On the other hand, for the last two models, the autocorrelations of '3? are larger than the
autocorrelations of 'ﬁtz Notice that this is a rather useful result because it allows to identify
the component that is conditionally heteroscedastic. Finally, it is also important to notice
that, as expected, when the transitory noise, &, is heteroscedastic, the autocorrelations of
/8;2 are larger the smaller is g. However, when the conditional heteroscedasticity affects the
long-run noise, #,, the autocorrelations of 'ﬁtz are larger the larger is g.
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Fig. 1. Mean autocorrelation function of (by rows) (A y[)z, §,2 and ﬁ,z for STARCH models (by columns). Results
based on 1000 replications of series with sample size T = 1000.



3. Estimation of Q-STARCH model

There are several estimators proposed in the literature for the parameters of unobserved
component models with heteroscedastic disturbances. For example, Dungey et al. (2000),
Calzolari et al. (2004) and Sentana et al. (2004) propose to use indirect estimation methods.
On the other hand, Fiorentini et al. (2004) have proposed an exact likelihood based estimator
based on MCMC. In this paper, we focus on the QML estimator proposed by Harvey et al.
(1992) because its simplicity and because it provides estimates of the latent components
which are usually of interest in empirical applications.

The QML estimator of the parameters of the STARCH model is based on expressing
the local level model in an augmented state space form. The state vector is augmented by
lags of 1, in such a way that it is possible to get estimations of both disturbances and their
associated correction factors. The measurement and transition equations are, respectively,
given by

=t +e&=[1 0 0o+,

W [l 0 07rH_ I
G= |y =1 0 Ol pm | +]0n. (13)
1y 0 0 0dLn,_y 1

Even if sj and 11: are assumed to be Gaussian processes, STARCH models are not con-
ditionally Gaussian, since knowledge of past observations does not imply knowledge of
past disturbances. Consequently, the QML estimator is based on treating the model as if
it were conditionally Gaussian and running the Kalman filter to obtain the one-step ahead
prediction errors and their variances to be used in the expression of the Gaussian likelihood
given by

T 1 « 1 12
logL = —— log(2n) — = log F; — = -~ 14
ogl=-73logm —3 ) logF -3 (14)
t=1 t=1
where vy, t= 1, ..., T are the innovations and F; their corresponding variances. The QML

estimator, ¥, is obtained by maximizing the Gaussian likelihood in (14) with respect to the
unknown parameters. Harvey et al. (1992) give a detailed description of the Kalman filter
for the random walk plus noise model with GARCH disturbances.

Estimation of GQARCH models by QML is easier using the following reparametrization
proposed by Sentana (1995) to guarantee the positivity of the variances h; and ¢,

hy =ap + a%(s,_l - b)2 + a%ht—l,

ar =80+ 81— — )’ + 83qs-1, (15)
where the parameters of interest are oy = ag + a%bz, = a%, oy = a% and f = —Zba%.
Similar transformations apply to the parameters of g;. After estimating the parameter vector,

¥ = (ao, a1, a2, b, go, g1, 82, d), these transformations can be used to obtain the original
parameters of the model.



The Kalman filter for the Q-STARCH model requires expressions of the following esti-
mates of & and 7,

& =Yt — My,

’711 =my — Mi_1|t, (16)

where m; = E;p, and m;_; = E;it,_; are MMSL updated estimates of y, and y, _; obtained
in a natural way by the augmentation of the state vector by yu,_; in (13). The ¢ under the
expectation operator means that the expectation is conditional on the information available
at time ¢. The filter also requires expressions of the conditional variances of the disturbances
& and 17,. For simplicity, we consider first the Q-STARCH model with the parameters o and
7, fixed to zero. In this case, the conditional mean of ¢, is zero and its conditional variance
is given by

Hi=E & =ap +al(F-1 —b)* +ai Py, (17)
17

where P,=E; ( u, —m ,) . Similarly, the conditional mean of the disturbance of the permanent
component, #;, is zero and its conditional variance is given by

Qt:,g nr=go+ gl —d)2+g%P,"_1, (18)

where Pt"_l=Pt+Pt71|t_2Pt,tfllt: P11 =E; (,Uz_1 - mtfl/t)z and Py ;11 =E; (.“t—mt)
(#,_1 —my—1/:). The required Py, P,_y; and Py ;_1}; are also provided by the Kalman filter.

In order to carry out the initialization of the filter, we set m; = y; and P; = Ep&) =
02 = (ap + aib?) / (1 — af). In the framework of a random walk plus white noise this
is equivalent to use a diffuse prior. Furthermore, if the conditional variance of #, at time
t — 1 is also set equal to its unconditional variance, the Kalman filter can be started with
E, (52) = 0'% and E,_ (n%) = U%.

If the parameters o and y, are different from zero, Harvey et al. (1992) suggest to consider
the following alternative definitions of /; and ¢;:

hy = ao + a3 (g1 — b)? + a? E (hi-1),
t_

2
9 =80+ 8i(m-1 —d)"+85 E (@0 (19)

Notice that E;_ (F[z) =FE;_1(h;)and E;_ (;7,2) = E;_1 (q;). Consequently, using Eqs. (17)
and (18), the following expressions are obtained:

Hy =ao+aiE—1 — b’ +ai i + a3 Hi 1,
0= 2y —d)’ + &P + g3 20
=80+ &1 (11 ) +giPl + 8501 (20)
In order to obtain the asymptotic distribution of the QML estimator, Harvey et al. (1992)
suggest to consider that the variances h; and g; are given by Egs. (20). In this case, the

Kalman filter is exactly the same as the one previously described but the model is con-
ditionally Gaussian. Consequently, the filter and the likelihood in (14) are exact and the

10



usual asymptotic theory can be applied. Under very general conditions, the asymptotic dis-
tribution of ¥ can be approximated by a multivariate normal distribution with mean ¥ and
covariance matrix (Avar)~'. The ij'th element of the matrix Avar is given by

T T
1 1 aF, aFl 1 @v, av,
[Aij(¥)=-E — — . 21
i) 2 [Z F? 0¥ asw+z F, awalp’} @h

t=1 =1

The derivatives in expression (21) can be numerically evaluated as explained by Harvey
(1989). Once, the matrix Avar has been computed, the delta method can be used to obtain
the covariance matrix of the parameters of interest.

The finite sample properties of the QML estimator are analyzed by means of Monte Carlo
experiments. The series are simulated by the following alternative Q-STARCH models with
parameters (o, o1, %2, B, 79, 71, 72, ) given by

) o] %) B Y0 71 72 0
M1 0.01 0.2 0 —0.05 0.01 0.1 0 —0.05
M2 0.01 0.2 0.5 —0.05 0.01 0.1 0.7 —0.05
M3 0.25 0 0 0 0.05 0.15 0.8 0
M4 0.05 0.15 0.8 0 4 0 0 0

In model M1 both components are heteroscedastic with ARCH disturbances while in
model M2, the disturbances are GARCH. The next two models have been chosen because the
asymmetric parameters § and 0 are zero so we can analyze whether the sample distribution
of the QML estimators of these parameters can be used to infer whether the transitory or
the long-run conditional variances are asymmetric. Results for other parameter designs are
available by the authors upon request.

The sample sizes considered are 7 =300, 1000 and 3000. The numerical optimization of
the likelihood has been performed using the IMSL subroutine DBCPOL with the parameters
op and 7 restricted to be nonnegative, and oy 4 o and y; + 7y, restricted to be between 0
and 1.

Table 1 reports the Monte Carlo means and standard deviations (brackets) for models
M1 and M2. This table also shows, in squared brackets, the corresponding approximated
asymptotic standard deviation computed using expression (20). The results for model M1
show that, the biases of all the parameters are rather small even when 7' = 300. However,
the asymptotic standard deviations of the ARCH parameters provide an adequate approxi-
mation to the empirical standard deviations only for the biggest sample size. In general, the
asymptotic standard deviation is larger than the empirical standard deviation that decreases
with the sample size at rate /7', approximately. Fig. 2 plots kernel estimates of the densities
of the parameter estimates of this model. This figure illustrates that the asymptotic Normal
approximation of the QML estimator is only adequate for relatively large sample sizes as,
for example, T = 3000.

1"



Table 1
Monte Carlo results for estimated parameters of Q-STARCH models with asymmetry in both components. Standard
deviations in brackets. Asymptotic Standard deviations in squared brackets

T T
300 1000 3000 300 1000 3000
0.0101 0.0100 0.0100 0.0112 0.0110 0.0101
o = 0.01 0.0023)  (0.0011)  (0.0007) o =0.01 (0.0101)  (0.0080)  (0.0057)
[0.0030]  [0.0016]  [0.0009] [0.0243]  [0.0128]  [0.0071]
0.2084 0.2087 0.2139 0.3158 0.2968 0.2822
0 =0.2 0.1328)  (0.0563)  (0.0378)  o; =02 (02631)  (0.2282)  (0.1712)
[0.2036]  [0.1037]  [0.0582] [0.6679]  [0.3706]  [0.2093]
0.3647 0.3815 0.4220
a0 =0.0 o =05 (0.3171)  (0.2894)  (0.2517)

[1.1964] [0.6342] [0.3518]

—0.0433  —0.0464  —0.0480 —0.0354  —0.0340  —0.0315
B=-005  (0.0246)  (0.0122)  (0.0063) f=—0.05 0.0676)  (0.0471)  (0.0270)
[0.0300]  [0.0143]  [0.0085] [0.0995]  [0.0509]  [0.0284]

0.0096 0.0096 0.0096 0.0167 0.0121 0.0106
70 =0.01 (0.0020)  (0.0011)  (0.0006) 7o =0.01 (0.0165)  (0.0076)  (0.0034)
[0.0035]  [0.0019]  [0.0011] [0.0087]  [0.0044]  [0.0026]

0.0988 0.1045 0.1082 0.2732 0.2684 0.2728
71 =0.1 (0.0464)  (0.0319)  (0.0188) ;=02 (0.1782)  (0.1065)  (0.0591)
[02737]  [0.1483]  [0.0849] [0.1351]  [0.0727]  [0.0451]

0.5365 0.6042 0.6190
75 =0.0 72 =0.7 (0.2585)  (0.1503)  (0.0771)

[0.1970] [0.0986] [0.0596]

—0.0426 —0.0469 —0.0486 —0.0605 —0.0565 —0.0564
0=-0.05 (0.0177) (0.0076) (0.0033) 0=-0.05 (0.0543) (0.0285) (0.0149)
[0.0383] [0.0193] [0.0112] [0.0495] [0.0247] [0.0137]

The results for model M2 are, in general, similar to the previous ones. However, it
is possible to observe that it seems to be a negative correlation between the parame-
ters o1 and op. The parameter o is overestimated while o is underestimated. The same
effect can be observed with respect to the parameters y; and y,. For example, when
T = 300, the empirical correlations between o and o and between 7, and y, are —0.57
and —0.61, respectively. When the sample size is 7 = 3000, these correlations are even
bigger, —0.73 and —0.88 respectively. Notice that these high correlations could be ex-
pected since we are estimating imposing the stationarity restrictions, o; + op <1 and
71 + 72 < 1 and the parameters chosen are very close to these boundaries. On top of that,
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Fig. 2. Kernel densities of the QML estimates of the estimated parameters of a Q-STARCH model with on=0.01,
70=0.01, 01 =0.2,y; =0.1, f=—0.05 and = —0.05. The dash—dotted line corresponds to T = 300, the dotted
line to 7' = 1000 and the solid line to 7 = 3000.

we can observe that the presence of the GARCH parameters worsens the estimation of
the asymmetry parameter, specially if such asymmetry appears in the short-run variance.

To illustrate the problems faced when the Quasi-likelihood is maximized, Fig. 3 plots
the Gaussian likelihood in (14) for series simulated by Q-STARCH processes with asym-
metry and conditional heteroscedasticity in the transitory component and four different
specifications in the permanent one as a function of the parameters a; and b. Note that the
function becomes flatter as the number of parameters increases. On the other hand, Fig. 3
shows that the log-likelihood has local maximum, and consequently, the performance of
any optimization algorithm strongly depends on the initial values provided. Finally, it is
important to realize that the difficulties estimating the parameter oy = al2 could be due to
the fact that the log-likelihood is rather flat when b is in its maximum.

Finally, Fig. 4 plots kernel estimates of the densities of the Monte Carlo of the estimates
of the parameters 5 and ¢ of models M3 and M4, which are actually zero. Looking at these
kernel densities, it seems that the null hypothesis Hy : f = 0 can be tested using standard
results.

4. Empirical application

In this section we fit the Q-STARCH model to two daily financial series of returns, a
daily series of gold prices and two monthly inflation series.

The two financial time series are daily prices of the Nikkei 225 index observed from
January 3, 1994 to December, 29, 2000 with 7' = 1825 and of the Hewlett-Packard stock

13
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Fig. 4. Kernel densities for the estimated asymmetry parameters in Q-STARCH models. The dash—dotted line
corresponds to 7' = 300, the dotted line to 7" = 1000 and the solid line to 7 = 3000.
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Table 2
Summary statistics of Ay; for Nikkei 225, Hewlett-Packard, gold prices series and Japan and United Kingdom
inflation series

NIK HPQ GOLD JAP UK
Mean —0.012 0.025 0.000 0.000 0.000
SK 0.013 —0.062 0.698 —0.055 0.117
K 5.588 6.920 9.159 3.985 3.624

p() Ay Ay)? Ay (Ay)? Ay (Ay)? Ay (Ay)? Ay (Ay)?

—0.045% 0.059* —0.017 0.048* —0.096* 0.054* —0.549* 0.384* —0.376*  0.211*
—0.010 0.091*  —0.057* 0.059* 0.020  0.036*  0.035 0.133* —0.115*  0.028
—0.029* 0.048* —0.018 0.038* 0.021  0.044*  0.075* 0.064* 0.107*  0.043
0.032* 0.129* 0.011 0.047% —0.023  0.022 —0.098* 0.131* —0.105* —0.068*
—0.024 0.101* —0.018 0.071* —0.042* 0.062*  0.067* 0.182* 0.006 0.006

[ N R

Q(10) 18.982 127.27% 17.017 76.406* 16224 20.172 134.480* 114.040* 93.756* 27.164*

* Significant at the 5% level.

observed from January 3, 1994 to May 20, 2003 with 7 = 2362. We also analyze a daily
series of the logarithm of gold prices in US observed from January 1, 1985 to December, 3,
1989 with T = 1074. Several descriptive sample moments of the first differences of these
series are reported in Table 2.All the series show excess kurtosis and autocorrelations of
squares larger than expected if they were linear. The two inflation series are monthly ob-
servations corresponding to Japan and United Kingdom. Inflation rates, y;, are obtained as
vt =(log (CPI;) — log (CPI;_1)) x 100 where CPI stands for consumer price index. The UK
CPI was observed from January, 1962 to August, 2001 with T = 476, while for Japan the
data were observed from January, 1970 to August, 2001, with 7 = 380. Intervention anal-
ysis and seasonal adjustment of inflation series were carried out with the program STAMP
6.20. Several descriptive sample moments of Ay, are reported in Table 2. In these series the
evidence of conditional heteroscedasticity is not so strong as in the daily series analyzed
before.

The estimates of the parameters of the homoscedastic random walk plus noise model for
the five series analyzed are shown in Table 3. These estimates have been obtained using
the program STAMP 6.20 of Koopman et al. (2000). Note that looking at the results for the
financial and gold prices it is possible to observe that the estimated signal to noise ratio,
g, is rather large, meaning that in these series the variability of the permanent component
dominates. However, in the two inflation series, g, is less than one, meaning that the esti-
mated variance of the permanent component, 8%, is small compared with the variance of

the transitory component, &5.

Table 3 reports several diagnostic statistics of the estimated innovations, v;, and the
auxiliary residuals, & and #),. In particular, for each of these series, we report the Box-Ljung
statistics of order 10, Q(10), for the original series and their squares. With respect to
the innovations, Q(10) does not show evidence of autocorrelation in any of the series.
However, the corresponding statistic for the squares, 0>(10), is highly significant at any
usual level. Consequently, the series of innovations may exhibit some kind of conditional
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Table 3

QML estimates of the parameters of the random walk plus noise model and summary statistics of estimated
innovations and auxiliary residuals

NIK HPQ GOLD JAP UK

&f 0.111 0.216 8.705 E-06 0.1180 0.0436
&% 1.482 7.352 8.225 E-05 0.0010 0.0064
q 13.288 33.975 9.448 0.0087 0.1489

Vt Vt Vt Vt Vt
Mean —0.018 0.011 0.014 —0.092 0.002
Std. Dev. 0.997 0.998 0.997 0.988 0.986
SK —0.149 0.050 0.214 0.091 0.231
K 4.629 4.988 5.493 3.650 3.965
Q(10) 15.892 20.898 4.505 14.073 11.516
0>(10) 145.78* 193.54* 52.913* 46.336* 9.703

& & & & &
Mean 0.000 0.001 0.001 0.000 0.000
Std. Dev. 0.999 1.001 1.001 0.995 0.992
SK —0.183 —0.058 0.190 0.215 0.280
K 4318 4.778 4.136 3.803 4.001
P & &2 & &2 & &2 & 8 & &2
1 —0.459*  0.332* —0.456* 0.319* —0.463*  0.294* —0.167* 0.159* —0.094* —0.011
2 —0.023*  0.065* —0.060*  0.078* —0.040*  0.186% —0.044  0.087* —0.173*  0.082*
3 —0.048*  0.081*  0.001 0.108*  0.034*  0.096* 0.016 0.028 —0.023 0.037
4 0.044*  0.161%  0.035%  0.088* —0.030 0.092% —0.102* 0.037 —0.141* —0.044
5 0.008 0.151* —0.040*  0.091* —0.015 0.130* —0.007  0.104* —0.060* —0.024
0(10) 408.67* 401.70* 515.39* 431.70* 237.30* 208.08% 20.897 41.696* 34.726% 12.179

;Il ﬁt ;’l ﬁt ;’l
Mean —-0.019 0.011 0.015 —0.437 —0.003
Std. Dev. 0.997 0.998 1.003 0.898 1.000
SK —0.141 0.051 0.191 —0.225 0.004
K 4.546 4.966 5.393 3.213 3.269
p@ iy i e i e oy i e i
1 0.066%  0.089*  0.029%  0.079* 0.095% 0.094* 0.872%  0.787*  0.674*  0.427*
2 —-0.011 0.094* —0.056*  0.081* 0.024  0.078* 0.788*  0.693*  0.412* 0.131*
3 —0.043*  0.042* —0.024*  0.090* 0.029  0.062* 0.714*  0.622*  0.269% 0.161*
4 0.015 0.143*  0.006 0.103* —0.026  0.070* 0.638*  0.536*  0.135* 0.101*
5 —-0.010 0.067* —0.032*  0.066* —0.026  0.066* 0.584*  0.483*  0.092*  0.042
0(10) 23.805* 148.81* 22.872 196.73* 14.679 58.811* 1460.8*  993.21* 354.47* 118.81*
* Significant at the 5% level.
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heteroscedasticity. With respect to the auxiliary residuals, remember that they are serially
correlated. For instance, the theoretical autocorrelation of order one for the Nikkei of &
is p,(1) = —0.4671 and the theoretical acf of 7, is pﬂ(r) =0.066p(t — 1), t=2,3,...,
with p, (1) = 0.66. Observe that the estimated autocorrelations in Table 3 are very close to
their theoretical counterparts. If the noises were homoscedastic, the autocorrelations of the
squared residuals are expected to be equal to the squared autocorrelations of the original
residuals.

Looking first at the results for the financial and gold prices, it is possible to observe that
the autocorrelations of ’ﬁtz are clearly larger than the squared autocorrelations. Furthermore,
notice that the Box—Ljung statistic of squares is much larger than the corresponding statistic
for7,. However, when looking at the autocorrelations of the auxiliary residuals of the tran-
sitory component, the Box—Ljung statistic of ’5,2 is smaller than the corresponding statistic
for &;. Consequently, the analysis of the diagnostics in Table 3 seems to suggest that in
these prices, the long-run component is heteroscedastic while the transitory component is
homoscedastic.

Therefore, we fit the following Q-STARCH model to these series:

Ve =y + &, Var (&) = a, , 22)
=y + . Var () =70+ vimi_y 4 0,y + 92401

The QML estimates of the parameters are

NIK:  h; = 0.079;
(2.396)

g = 0.035 + 0.082 #n?_, + 0.900 ¢>— 0.108 n,_;,
(3.468)  (5.082) (51.752) (4.949)

HPQ: h; = 0.399;
(3.186)

¢ = 0033 + 0.021 #* ,+ 0973 ¢>— 0.053 n,_,,
(2.896)  (4.886) (193.257) (2.274)

GOLD: h; = 1.0E — 05;
(2.339)

¢ = 4.0E —06 + 0.054 n>_, + 0.897 g2+ 0.001 n,_;.
(2.032)  (2.869) (28.265) (3.071)

The values between brackets are z-statistics. The ARCH effects are significant for the three
series considered. Therefore, these series have an underlying level that is heteroscedastic
and a homoscedastic short-run component. Furthermore, the estimate of the asymmetry
parameter, 0, is significant and negative for the two financial prices considered. Therefore,
our results are in concordance with the stylized fact, frequently observed in the empirical
analysis of financial returns, that the response of the volatility is larger when the returns are
negative than when they are positive. However, notice that the Q-STARCH model allows
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us to conclude that this effect appears in the long-run component of prices and not in the
transitory component. Obviously, the returns series inheritate the leverage effect.

Finally, notice that the asymmetric effect of the gold prices is positive. Therefore, in-
creases in the permanent component have a larger effect on future uncertainty of prices than
decreases on the long-run component. As in the case of the financial prices, the transitory
component is homoscedastic.

Looking now at the diagnostics reported in Table 3 for the two inflation series, it is pos-
sible to observe that the innovations corresponding to Japan show some kind of conditional
heteroscedasticity while in UK the autocorrelations of squared innovations are not signif-
icant. The same conclusion is reached looking at the Box-Ljung statistics for the squared
residuals of the transitory component. Finally, notice that the autocorrelations of f]tz are
approximately equal to the squared autocorrelations of #,. Therefore, it seems that the long-
run noises are not conditionally heteroscedastic while the transitory noises of Japan may
have some kind of conditional heteroscedasticity.

In this case, the preferred Q-STARCH model consists in a GQARCH(1,1) model for
the transitory component, and no ARCH effect in the permanent component disturbance
given by

Vo= &, Var(e) =og+ mel | + Be—1 + oh1,

23
W = 1 + 1, Var(n) =yo. 23)

The QML estimates of the parameters are

JAP: h,= 0.006 + 0.187 &+ 0.784 h?+ 0.029 &_;
(2.043)  (3.319) (12.589) (1.542)

g = 0.001,
(1.999)

UK: h,=4.0E—04+ 0.035 &2+ 0.956 h?+ 0.007 &_1;
0.913)  (1.723) (35.569) (1.371)

g = 0.003.
(4.306)

The estimation results are in concordance with the conclusions derived from the analysis
of the auxiliary residuals. The ARCH parameter o is clearly significant for Japan while for
UK is not statistically different from zero. Therefore, the monthly inflation in UK seems to
be homoscedastic, while in Japan the short-run component is conditionally heteroscedastic.
However, the asymmetry parameter is significant in Japan at the 10% level. As this param-
eter is positive, it implies that when the short-run inflation rises, the uncertainty associated
with future inflation increases more than when it goes down. On the other hand, according
to the estimated Q-STARCH models, the underlying long-run inflation is homoscedastic.
Finally, notice that these estimates support the Friedman hypothesis, according to which,
a positive shock in inflation affects future uncertainty about inflation more than a nega-
tive one; see Friedman (1977). Previous results on testing the Friedman hypothesis are
rather contradictory because the models proposed were not in general able to differentiate
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whether the long and short-run components were homoscedastic with asymmetric responses
of the uncertainty. The Q-STARCH model proposed in this paper can help to separate
these effects.

5. Summary and conclusions

In this paper we propose a new unobserved components model with conditionally het-
eroscedastic noises that allows the corresponding conditional variances to respond asym-
metrically to negative and positive shocks. We denote this model as Q-STARCH. We show
that the asymptotic distribution of a QML estimator could be an adequate approxima-
tion to the finite sample distribution. Consequently, inference can be based on classical
results.

We also show how the autocorrelations of squared auxiliary residuals contain information
useful to identify which of the components is conditionally heteroscedastic. However, the
sample autocorrelations are severely biased towards zero making, in some cases, the iden-
tification of conditional heteroscedasticity a difficult task. In this sense, it may be useful to
analyze the behavior of the portmanteau statistic proposed by Rodriguez and Ruiz (2003)
to test the uncorrelatedness of a time series that takes into account not only the magnitude
of the sample autocorrelations but also whether these autocorrelations have any systematic
pattern.

Finally, we show with empirical examples how the Q-STARCH model can be useful for
both financial and macroeconomic variables.

Two generalizations of the model are of special interest for the empirical applications:
first, the extension to models with seasonal components so that the model can be directly im-
plemented to analyze seasonal data as inflation, and second, the multivariate generalization.
Further research is being carried out in these directions.
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