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Abstract—Maximum Likelihood (ML) joint detection of Multi-
Carrier Code Division Multiple Access (MC-CDMA) systems
can be effi iently implemented with a Sphere Decoding (SD)
algorithm. In this paper, we examine the application of complex
instead of real SD to detect MC-CDMA, which solves many
problems in a more elegant manner and extends SD adapt-
ability to any constellation. We f rst propose a new complex
SD algorithm whose effi iency is based on not requiring an
estimate of the initial search radius but selecting the Babai
Point as the initial sphere radius instead; also, effi ient strategies
regarding sorting the list of possible lattice points are applied.
Indeed, complex SD allows complex matrix operations which are
faster than real counterparts in double dimension. Next, a novel
lattice representation for the MC-CDMA system is introduced,
which allows optimum multiuser detection directly from the
received signal. This avoids noise whitening operation, and
also despreading and equalization procedures are not required
further at the receiver side.

Index Terms—Multi carrier code division multiple access,
maximum likelihood decoding, sphere decoding, multiuser de-
tection.

I. INTRODUCTION

THE combination of the principles of Code Division Mul-
tiple Access (CDMA) with Multi-Carrier modulation,

called MC-CDMA and f rst proposed in 1993 [1], [2], is based
on applying Orthogonal Frequency Division Multiplexing
(OFDM) technique to a multiuser direct sequence DS-CDMA
signal. In this paper, the synchronous downlink is addressed,
which applies to the case of a single broadcaster simultane-
ously sending data symbols over an MC-CDMA link, as well
as to the case of symbols being transmitted to multiple users
which are multiplexed onto a common multicarrier signal. In
any case, the technique consists of spreading each frequency-
domain complex symbol over all subcarriers, and therefore
transmitting a portion of every symbol on each subcarrier; if
certain subcarriers are lost due to high frequency selectivity, all
symbols can still be retrieved. The term multiuser interference
(MUI) will be employed for any mutual interference between
different complex symbols due to frequency dispersion of the
channel, even though in the broadcast scenario all frequency-
domain complex symbols belong to the same user. To combat
this multiuser interference due to the loss of orthogonality,
various multiuser detection techniques have been proposed [3],
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[4], [5]; optimum multiuser detection, based on joint detection
using a Maximum Likelihood (ML) criterion, has a prohibitive
complexity that grows exponentially with the number of users
and the number of bits per modulation symbol [1].

The Sphere Decoding (SD) algorithm is an optimum ML
algorithm [6] but with lower expected complexity [7], [8]. It
was introduced in [9], f rst used in communications problems
in [10] and later applied to lattice code decoding in fading
channels in [11]. These previous works deal with real SD
algorithms; a complex sphere decoder algorithm was f rst
proposed by Hochwald [12]. It is worth mentioning a good
introduction to SD algorithm by Agrell [6].

Brunel introduced optimum and sub-optimum ML multi-
user detection schemes based on SD for MC-CDMA [13].
However, this scheme shows some complexity issues: its
application is limited to rectangular Quadrature Amplitude
Modulation (QAM) constellations1, the received signal has
to be divided into in-phase and quadrature components to
handle real symbols and so the dimension of the lattice is then
twice the dimension of the received symbol, and finall , this
SD method needs an estimate of the initial search radius for
the sphere. In addition, Brunel’s lattice model requires noise
whitening before the decoding procedure.

To reduce the complexity, we f rst propose a new complex
SD algorithm that performs an eff cient search on the lattice
points and then apply it to MC-CDMA systems. Indeed, a
complex algorithm allows complex matrix operations which
are faster than real counterparts in double dimension [14],
[15]. Moreover, a new lattice model for the MC-CDMA
system is introduced, which avoids any whitening process. We
evaluate the proposed detection scheme in a high frequency-
selective channel and compare SD with some sub-optimal
methods such as Equal Gain Combining (EGC), Minimum
Mean-Squared Error (MMSE), and Minimum Mean-Squared
Error per User (MMSE-U) [16], [17], [18] in full and non-

Section II the
MC-CDMA transmission system is described. Complex sphere
decoding is investigated in Section III. Optimum detection
of an MC-CDMA system with a sphere decoding algorithm
and its corresponding lattice description are addressed in
Section IV; also a new lattice model is proposed in this
Section. In Section V simulation results are presented and,
fi ally, some conclusions are drawn in Section VI.

II. MODEL DESCRIPTION OF MC-CDMA
Let us consider a synchronous MC-CDMA system with K

users and L subcarriers, K ≤ L. Every k-th user, 1 ≤ k ≤ K ,
1Checking invalid points is needed when dealing with constellations other

than rectangular QAM, that is, constellations which do not comprise all
combinations of real and imaginary alphabets.
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Fig. 1. MC-CDMA transmission model for downlink.

transmits a complex symbol bk per time slot; this symbol is
spread using a complex spread signature ck = {ck1, . . . , ckL}
of length L taken from an orthonormal set (< ck, cj >= δkj).
Each chip of the resulting vector after spreading (ckbk) is then
transmitted onto a different subcarrier. Thus, at �-th subcarrier,
1 ≤ � ≤ L, the sum of chips from all users S� =

∑K
k=1 bkck�

is sent. A block diagram for the MC-CDMA transmission
system is sketched in Figure 1. Assuming that every subcarrier
experiences almost f at-fading, the channel is denoted as L×L
diagonal matrix H where H�� is the single complex channel
coefficien per �-th subcarrier.

The received signal in frequency-domain is the L×1 vector
r given by

r = HCb + n (1)

where C is the L × K spreading matrix with (C)k = ck,
where (·)k denotes the k-th column of a matrix; K ×1 vector
b contains the user symbols and L×1 vector n represents the
Additive White Gaussian Noise (AWGN). At the receiver, the
signal is usually equalized and despread to obtain the K × 1
output vector y, which aims to be a good estimate of b,

y = C∗Gr = C∗GHCb + C∗Gn (2)

where L×L equalization matrix G compensates the channel
to restore orthogonality of the spreading codes, and the signal
is later despread using C∗; (·)∗ denotes conjugate transpose
matrix operation. Note that after these processes, the noise
term (C∗Gn) is not AWG anymore; this issue is analyzed
later in Section IV.

III. COMPLEX SPHERE DECODING

Sphere Decoding (SD) is an optimum technique to jointly
detect the symbols for all users using ML criterion. The
principal advantage of SD over traditional joint detection is
that the search is only performed inside a sphere with a certain
radius and thus the expected complexity is roughly cubic
with the number of users at moderate Signal-to-Noise Ratio
(SNR) values. The analysis provided herein is, in large part,
an extension of Hochwald’s complex sphere decoder [12]. Let
a generic transmission system be described as

r = Hs + n

where L × 1 vector r represents the system output, H is the
L×K channel matrix, K×1 vector s is the transmitted signal
sequence and L × 1 vector n represents AWGN. Therefore,
s can be estimated from r using SD algorithm. In joint ML
decoding, we look for ŝML such as

ŝML = arg min
s∈Λ

||r − Hs||2 = arg min
s∈Λ

(̂s − s)∗H∗H(̂s − s) (3)

where ŝ = (H∗H)−1H∗r is the transformed received point
and the center of the search sphere and Λ is the lattice
generated by H. Indeed, we can think of the columns of H
as basis vectors of a lattice lying in a L dimensional space;
vector s can be seen as the coordinates of a lattice point.

To solve this problem eff ciently Cholesky factorization is
employed to f nd an upper triangular U with uii real and
positive such U∗U = H∗H and the search is only performed
for the s that lie inside a sphere. So (3) can be written as

ŝML = arg min
s∈Λ

(̂s − s)∗U∗U(̂s − s)

= arg min
s∈Λ

K�
i=1

u2
ii

�����ŝi − si +

K�
j=i+1

uij

uii
(ŝj − sj)

�����
2

≤ r2
(4)

where r denotes the radius of the sphere where the search is
performed2. The search starts setting i = K in (4), which
provides inequality |ŝK − sK | ≤ r

uKK
. From the symbol

list that satisfie the former inequality, a valid symbol sK is
selected for K dimension. Once sK is fi ed, a valid symbol
sK−1 can be selected for K − 1 dimension from the symbol
list that satisfie the inequality obtained by setting i = K − 1
in (4). The search continues in the same way for the rest of
dimensions. If there are not valid symbols that fulf ll (4) in a
certain dimension for all combinations of symbols in previous
dimensions, then the search radius must be increased and the
search starts again.

In the following, we will develop recursive equations for a
quick evaluation of the list of possible constellation symbols
in each dimension that satisfy (4); at the end, we aim to obtain
a set of equations for an eff cient search algorithm.

Without loss of generality, a Phase Shift Keying (PSK)
constellation is assumed; a more complex constellation can
be represented considering different circumferences with the
appropriate radii. The intersection between the circumference
of the PSK constellation and the search disk is an arc whose
sweep can be found analytically. Let sK = rce

jθK , where
θK ∈ {0, 2π

2Mc , . . . , 2π(2Mc−1)
2Mc } are the angles of a 2Mc-

PSK constellation. To simplify the notation let ξi = ŝi − si,
qii = u2

ii, qij = uij/uii and

Ri =
1
qii

⎛
⎜⎝r2 −

K∑
l=i+1

qll

∣∣∣∣∣∣
ξl +

K∑
j=l+1

qljξj

∣∣∣∣∣∣

2
⎞
⎟⎠

which can be efficientl computed using

Ti = r2 −
K∑

l=i+1

qll

∣∣∣∣∣∣
ξl +

K∑
j=l+1

qljξj

∣∣∣∣∣∣

2

Si =
K∑

j=i+1

qijξj

Ti−1 = Ti − qii|ξi + Si|2 Ri =
Ti

qii

By defi ing s′i = ŝi + Si = r′c,ie
jθ′

i , we can write for the ith

2In [12] there is a typo in Equation (23) which is Equation (4) here.
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sum term in (4)

|s′i − si|2 = r2
c + r′2c,i − 2rcr

′
c,i cos(θi − θ′i) ≤ Ri

cos(θi − θ′i) ≥
1

2rcr′c,i

[
r2
c + r′2c,i − Ri

]
= ηi

Therefore, if −1 ≤ ηi ≤ 1 the range of allowable points for
the i-th dimension is

�
2Mc

2π
(θ̂i − cos−1 ηi)

�
≤ 2Mc

2π
θi ≤

�
2Mc

2π
(θ̂i + cos−1 ηi)

�
(5)

where �·� and �·� operators return the smallest integer greater
than or equal to, and, the largest integer less than or equal to
their respective arguments. When a point inside the sphere
is obtained, the distance from the received point can be
determined using

d2 = TK − T0 = TK − T1 + q11|ξ1 + S1|2.

Next, the search radius is updated as r2 = d2 and the
list of possible constellation symbols in each dimension is
recalculated using this new radius to check the possibility of
eliminating some of them [19]. The algorithm runs until no
unvisited points remain inside the sphere; note that the sphere
shrinks with each new point.

We improve the scheme proposed by Hochwald in two
ways. Firstly, an estimate of the sphere radius is not required
in our scheme. Indeed, we select the sphere radius as the
radius of the Babai Point [6], which is a point in the lattice
obtained by performing K single-user hard-decisions. It is not
necessarily the closest lattice point to the received point but
a good choice to start the search. This avoids the waste of
time which occurs when the search radius is too small and
the search must be restarted. Secondly, we explore the valid
points in the arc using the ideas from the Schnorr–Euchner
strategy [20] that have been successfully applied to real SD
in Multiple Input Multiple Output (MIMO) systems [19]; that
is, the list of possible points in (5) is visited in the following
order:

2Mc

2π
�θ̂i�, 2Mc

2π
�θ̂i� +

2π

2Mc
,
2Mc

2π
�θ̂i� − 2π

2Mc
,
2Mc

2π
�θ̂i� + 2

2π

2Mc
, . . .

where �·� operator returns the nearest integer to its argument.
In the general case, if each candidate point consists of a radius
and an angle then the candidate points from the different
circumferences which satisfy (4) are sorted using their distance
to the received point. Note that this order does not depend on
the sphere radius and the f rst visited point is the Babai point.

IV. SPHERE DECODING OF A MC-CDMA SYSTEM

To jointly detect an MC-CDMA system using SD, it must be
fi stly modelled as a lattice. Previous schemes in MC-CDMA
possibly came up as an evolution of DS-CDMA where noise
samples are correlated after despreading, and therefore, noise
whitening is a common procedure. According to (2), Brunel
def nes M = C∗GHC and y becomes a point of a lattice Λ
with generator matrix M:

y = C∗GHCb + C∗Gn = Mb + C∗Gn

However, C∗Gn is colored noise. To whiten this noise,
he carries out the Cholesky factorization of M = W∗W.
Therefore

yw = W∗−1W∗Wb + nw

where the new generator matrix turns into W and nw now
represents white noise.

Our proposal uses r instead of y for the ML sphere
decoding operation; with this strategy, the noise remains AWG
and no further processing is needed to whiten it. Thus, the
above equations can be simplifie as follows. Recalling (1),
the received signal is

r = HCb + n

where we defin a new channel matrix M′ = HC, which
includes spreading and channel effects; indeed, with this
approach, despreading and equalizing operations are avoided.
The joint ML detection is then performed minimizing the
following metric:

||r− M′b||2

over all b valid points in the new lattice Λ′ with generator
matrix M′. This scheme still performs optimum detection but
with a simpler procedure3; a complex sphere decoder is also
applied to the new lattice in contrast to real one previously
proposed [13]. As noted in [13], ML decoding of MC-CDMA
systems removes almost all the MUI, allowing near single user
performance.

V. EXPERIMENTS

We evaluate the proposed transmission system in two-path
highly frequency-selective channels with spectral nulls that
cancel some subcarriers. Channel impulse response is modeled
as a two-tap delayed line h(t) = δ(t) + 0.7δ(t − T ), where
T is the sampling period; similar results are obtained if
more dispersive two-ray channels like h(t) = δ(t) + (0.7 +
0.5j)δ(t − 4T ) are considered. At the transmitter, uncoded
user bits are mapped into a PSK constellation and these
user symbols are spread with Walsh-Hadamard sequences.
The system uses L=32 subcarriers, and a cyclic prefi is
appended to every OFDM symbol before transmission in
order to remove Inter-Symbol Interference. At the receiver
side, channel estimation is carried out using Pilot-Symbol
Assisted Modulation (PSAM) [21]; a preamble of one OFDM-
symbol composed of 16 subcarriers conveying pilot symbols
is employed to estimate the approximate f at-fading channel
per subcarrier.

Figure 2 compares the performance among EGC, MMSE
and SD (EGC0, MMSE0, SD lines) in a full-loaded system
(K = L). For EGC and MMSE sub-optimum techniques, we
also show results after two Parallel Interference Cancellation
(PIC) iterations [22] (EGC2 and MMSE2 lines). The sphere

3Although the number of matrix operations is almost the same, our proposal
is conceptually simpler and complex matrix operations are faster than real
counterparts in double dimension. For instance, a lattice modeled by a
complex matrix An×n can be also modeled by a real matrix A′

2n×2n; the
complexity of real Cholesky factorization of the lattice matrix A′

2n×2n is
1
3
O((2n)3) = 8

3
O(n3) [15] while the complexity of complex Cholesky

factorization of An×n is 4
3
O(n3); the same happens for the matrix inversion

operation [14].
3
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Fig. 2. Comparison between EGC, MMSE and SD in a time-dispersive
channel, for a full-loaded system K = L. 4-PSK signaling.

decoder remarkably outperforms MMSE for high SNR values,
without an estimation of the SNR as required in MMSE
technique; we see that the gains from the SD are about two
orders of magnitude in Bit-Error-Rate (BER) values. However,
for low SNR values, in this case lower than 10 dB, BER
performances are similar but decoding complexity of SD is
quite a bit higher. Thus, SD algorithms should not be used
for many users in very low SNR scenarios because the search
time grows with the noise level. In conclusion, this optimum
scheme should be used for systems with at least moderate
SNR.

In non full-loaded systems (K < L), we can take advantage
of MMSE-U equalizing strategy over MMSE at the cost of
more complexity. In Figure 3 we plot BER values obtained
for different MMSE, MMSE-U and SD methods for K =32,
28, 24, 20 users. We can see in this Figure that SD overcomes
other methods; for example, we can see that SD for 24 users
performs better than MMSE-U for 20 users. Furthermore, the
difference between MMSE and MMSE-U in the two PIC
iterations case is less when the number of users approaches
full-load, so perhaps the additional complexity of MMSE-U
is not worthwhile in this case. The expected complexity of
SD algorithm is roughly cubic with the number of users at
moderate SNRs; therefore this scheme is particularly suitable
for non full-loaded scenarios.

Next, we provide comparisons in terms of computa-
tional complexity between real and complex (both original
Hochwald’s and our proposal) SD. As calculating the covering
radius is itself NP-hard, we use the Rogers upper bound of the
covering radius for real SD [23]. For the original Hochwald’s
complex SD we use their radius estimation (which needs an
estimate of the noise variance), assuming that it should not
be increased with probability 0.8. Finally, for our proposal on
complex SD, we use the radius of the Babai point.

Considering a 16-QAM constellation, the number of real
operations performed by the real SD algorithm per visited
candidate symbol in k-th layer is (2k + 17). On the other
hand, the complex SD algorithm performs (8k + 36) real
operations [8], [24]. For instance, let us assume an 8-user
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Fig. 3. Comparison between MMSE, MMSE-U and SD for full-loaded and
non full-loaded systems in a time-dispersive channel, after two PIC iterations
for MMSE and MMSE-U algorithms. The label “32 MMSE” means 32 users
and MMSE method, the label “28 MMSE” means 28 users and MMSE method
and so on. 4-PSK signaling.

system and that the fir t lattice point found is the solution. In
this case, real SD needs

∑16
k=1(2k+17) = 544 real operations

(note that real SD employs double number of dimensions)
while complex SD requires

∑8
k=1(8k + 36) = 576 real

operations (5248 and 5376, respectively, for a 32-user system).
In other words, complex SD needs on average slightly more
real operations than real SD. The complexity of decoding is the
sum of two terms: a) the complexity of the lattice set-up, where
complex arithmetic is always preferable for complex spreading
sequences; b) the complexity of the search, where real SD may
be preferable4 for rectangular QAM constellations. Therefore,
for these constellations, the choice of real or complex SD will
be determined by the SNR and the lattice change rate, due to
channel or user changes. Further research is needed on this
issue.

However, for constellations other than rectangular QAM,
real SD wastes time in invalid points since it visits more
candidates on average and f nal complexity is much greater,
as shown in Figure 4. Also, the use of Schnorr–Euchner enu-
meration and Babai Point greatly decrease the average number
of candidates, which is the difference between Hochwald’s
and our complex SD. It can be observed that our proposal is
especially advantageous in low SNR scenarios. It must be also
noted that, in the PSK case with real spreading sequences, the
system can not be decoupled in separated real and imaginary
parts as in [13] because this may result in an invalid solution.

VI. CONCLUSIONS

In this paper we develop a new and eff cient complex sphere
decoder valid for all constellations and any complex spreading
sequence. An upside of this proposal is that it does not require
an estimate of the initial search radius. It is also faster than
real SD because complex matrix operations need fewer real
computations than real counterparts in double dimension. This

4Here we assume that both complex and real algorithms use the same
heuristics to sort the candidate points and to def ne the initial search radius.
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yields lower complexity for the complex lattice set-up, that
is, the computation of the lattice matrix and its factorization.
Also, it does not waste time on invalid points, as it is the
case of the real SD for non-rectangular QAM constellations.
In addition, we introduce a new lattice model to decode an
MC-CDMA system using a SD algorithm, based on jointly
detecting the transmitted symbols directly from the received
signal. With this conceptually simpler scheme, the received
signal does not need additional processing such as despreading
and equalizing, but is directly used to compare with lattice
points. Also noise whitening is avoided, since received noise
is not transformed. Simulation results have conf rmed the
feasibility of the new complex sphere decoder when applied
to detect MC-CDMA systems described with our novel lattice.
As a future work, it is envisaged that the proposed ideas on
lattice models can be extended to pure CDMA systems.

ACKNOWLEDGEMENT

The authors wish to thank the anonymous reviewers for their
detailed and valuable comments that have helped to greatly
improve the quality of the paper.

REFERENCES

[1] K. Fazel and L. Papke, “On the performance of convolutionally-coded
CDMA/OFDM for mobile communication system,” in Proc. IEEE
PIMRC’93, Yokohama, Japan, September 1993, pp. 468–472.

[2] N. Yee, J. P. Linnartz, and G. Fettweis, “Multi-Carrier CDMA in indoor
wireless radio networks,” in Proc. IEEE PIMRC’93, Yokohama, Japan,
September 1993, pp. 109–113.

[3] S. Hara and R. Prasad, “Overview of multicarrier CDMA,” IEEE
Commun. Mag., vol. 35, no. 12, pp. 126–133, December 1997.
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