Monitoring and Orchestration of Network
Slices for 5G Networks

Ramdén Pérez Hernandez

A dissertation submitted by in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in

Telematics Engineering

Universidad Carlos Il de Madrid

Tutor and Director:

Albert Banchs Roca

Leganés, January 2021

Este trabajo se ha realizado bajo la ayuda concedida por la Comunidad de
Madrid en la Convocatoria de 2017 de Ayudas para la Realizacion de
Doctorados Industriales en la Comunidad de Madrid (Orden 3109/2017,

de 29 de agosto), con referencia IND2017/TIC-7732.

This work was partly funded by the European Commission under the
European Union’s Horizon 2020 program - grant agreement number
815074 (5G EVE project). The Ph.D thesis solely reflects the views of the

author. The Commission is not responsible for the contents of this Ph.D thesis or
any use made thereof.

This thesis is distributed under license ” Creative Commons Attribution — Non
Commercial — Non Derivatives”.

(@0l

Los pequenos detalles
marcan la diferencia

ACKNOWLEDGEMENTS

Acknowledgements

En primer lugar, quiero expresar mi total agradecimiento a mi tutor, Albert
Banchs, por iluminarme en todo momento en este largo camino para ir abriéndome
paso en los temas e ideas que hemos ido discutiendo con el paso de los meses.
También por introducirme en el mundo de la investigacion y por permitirme el
lujo de conocer a fantésticos profesionales dentro de la Universidad Carlos III
de Madrid. Entre ellos, dar también mi especial agradecimiento a Pablo Serrano,
Marco Gramaglia y Jaime Garcia-Reinoso por sus consejos y su tiempo.

Agradecer también a todo el equipo de Telcaria Ideas S.L., con el que comencé
este camino del Doctorado Industrial, la confianza depositada en mi. En Telcaria,
he tenido la oportunidad de aprender numerosos conceptos, herramientas y
tecnologias desde cero, y gracias a todo este trabajo recorrido, puedo decir que
han sido unos anos muy enriquecedores en lo profesional y lo personal; y, por
supuesto, con ganas de que siga siendo asi.

I would like to thank professors Gianluca Reali and Mauro Femminella, from
the Universita degli Studi di Perugia, for all their support (despite the difficult
situation for everybody due to the COVID’19) during my Ph.D Visit in Perugia,
extending also my gratitude to Matteo Pergolesi and Priscilla Benedetti for the
joint work that we have been doing together during all the 2020, learning from
each other and also helping between us for any problem arisen. And finally, I
thank professor Ferdinando Treggiari for allowing me to stay in his lovely flat in
Perugia’s city center. It was such an amazing experience.

A todos mis amigos, tanto los més cercanos como los més lejanos, e incluso los
que han aparecido por mi vida durante estos meses, por poner su granito de arena
para que esta tesis saliese adelante con todos sus animos y fuerzas transmitidas.
Pero, sobre todo, por iluminar mi vida y por estar siempre ahi, sin importar
distancia, tiempo y momento.

A mi familia, que sufrié mi marcha de casa para empezar a estudiar Ingenieria
de Telecomunicaciones, pero que vivié con enorme alegria todos los éxitos
cosechados durante estos anos de trabajo y esfuerzo donde la lucha no se negocio.
Por todas las llamadas, todas las visitas, todos los buenos momentos vividos y que
viviremos, y también esos momentos donde no pudimos hacer cosas porque tenia
que sentarme a estudiar. Ahora, si que si, toca vivir.

Y, por qué no, gracias a mi mismo, por sobreponerme a todos los problemas,
por creer en mis posibilidades y porque, finalmente, el resultado de todo el esfuerzo,
de toda la ilusion y de todo el camino transcurrido, con momentos buenos y malos,
ya estd por fin terminado.

PUBLISHED AND SUBMITTED CONTENT

Published and Submitted Content

This Ph.D Thesis covers contributions from the following published papers,
in which the author has directly participated in, also including the chapters in
which the content is presented:

= M. Gramaglia, V. Sciancalepore, F. J. Fernandez-Maestro, R. Perez,
P. Serrano, and A. Banchs, ”“Fzperimenting with SRv6: a Tunneling
Protocol supporting Network Slicing in 5G and beyond,” in 2020 IEEE
25th International Workshop on Computer Aided Modeling and Design of
Communication Links and Networks (CAMAD), 2020, pp. 1-6 [1].

e Status: Published.

e Role: writing some sections of the paper, redesign of all the figures and
review of the final paper.

e Chapter in which this material is included: Chapter 1.

e Level of inclusion: partly included in the thesis.

= R. Perez, J. Garcia-Reinoso, A. Zabala, P. Serrano, and A. Banchs, "A
Monitoring Framework for Multi-Site 5G Platforms,” in 2020 European
Conference on Networks and Communications (EuCNC), 2020, pp. 52-56

2].
e Status: Published.

e Role: leader of the paper, responsible for the design, implementation
and testing of the platform.

e Chapters in which this material is included: Chapters 2, 3 and 4.

e Level of inclusion: wholly included in the thesis.

= D. Bega, M. Gramaglia, R. Perez, M. Fiore, A. Banchs, and X. Costa-
Pérez, "Al-based Autonomous Control, Management, and Orchestration in
5G: from Standards to Algorithms,” IEEE Network, vol. 34, no. 6, pp. 14-20,
2020 [3].

e Status: Published.

e Role: contribution to the architecture design and its alignment with the
standards.

e Chapters in which this material is included: Chapters 2 and 4.

e Level of inclusion: partly included in the thesis.

= M. Gramaglia, P. Serrano, A. Banchs, G. Garcia-Aviles, A. Garcia-Saavedra,
and R. Perez, "The case for serverless mobile networking,” in 2020 IFIP
Networking Conference (Networking), 2020, pp. 779-784 [4].

e Status: Published.

III

PUBLISHED AND SUBMITTED CONTENT

e Role: execution of experiments to validate the liquid scalability
approach, review of the final paper.

e Chapters in which this material is included: Chapters 2 and 7.

e Level of inclusion: partly included in the thesis.

= W. Nakimuli, G. Landi, R. Perez, M. Pergolesi, M. Molla, C. Ntogkas, G.
Garcia-Aviles, J. Garcia-Reinoso, M. Femminella, P. Serrano, F. Lombardo,
J. Rodriguez, G. Reali, and S. Salsano, ”"Automatic deployment, execution
and analysis of 5G experiments using the 5G EVE platform,” in 2020 IEEE
3rd 5G World Forum (5GWF), 2020, pp. 372-377 [5].

e Status: Published.

e Role: review of all the content related to the Monitoring platform, also
participating in the tests reported on the paper, and review of the final
paper.

e Chapter in which this material is included: Chapter 3

e Level of inclusion: partly included in the thesis.

Moreover, the following papers, which were submitted for publication and
are still under review, are also part of this Ph.D thesis:

= R. Perez, J. Garcia-Reinoso, A. Zabala, P. Serrano, and A. Banchs,
”A Distributed Framework Based on Publish-Subscribe to Monitor Beyond
5G Networks,” in EURASIP Journal on Wireless Communications and
Networking, 2020 [6].

e Status: Submitted for publication.

e Role: leader of the paper, responsible for the design, implementation
and testing of the platform.

e Chapters in which this material is included: Chapters 2, 3 and 4.

e Level of inclusion: wholly included in the thesis.

= R. Perez, A. Zabala, and A. Banchs, "Alviu: An Intent-Based SD-WAN
Orchestrator of Network Slices for Enterprise Networks,” in 2021 IEEE
7th International Conference on Network Softwarization (NetSoft) (NetSoft
2021), 2021 [7].

e Status: Submitted for publication.

e Role: leader of the paper, responsible for the design, implementation
and testing of the platform.

e Chapters in which this material is included: Chapters 2, 5 and 6.

e Level of inclusion: wholly included in the thesis.

And finally, from the joint work with the Universita degli Studi di
Perugia during the Ph.D Visit of the thesis author between September and
November 2020, it is expected to produce at least one paper (or two) related to

v

PUBLISHED AND SUBMITTED CONTENT

the serverless topic (currently without title and list of authors confirmed, and
that is the reason why they are not included in this list). Some of the expected
content of these papers are presented in Chapters 2, 7 and 8.

Note that this Ph.D thesis has been based on the different papers and work
referred above. Moreover, all the material taken from all the sources commented
before that has been included in this thesis, it is indicated with an explicit
reference.

OTHER RESEARCH MERITS

Other Research Merits

It is also worth to describe other related work, apart from the papers written
and commented in the Published and Submitted Content’s section, and that mainly
derives from the work done in Telcaria Ideas S.L., aligned with the objectives
of the Industrial Ph.D. These are the following:

» Participation in the 5G EVE project [8] and related deliverables, being
the responsible for the Monitoring platform presented in Chapter 3,
and which is also extended in Chapters 4 (for its adaptation in beyond 5G
networks), 7 and 8 (for its transformation to a serverless architecture).

» Design, development and testing of Alviu’s SD-WAN orchestrator [9],
a commercial product from Telcaria Ideas S.L. which is explained in
detail in Chapters 5 and 6.

VII

RESUMEN

Resumen

El concepto de Network Slicing ha estado siempre ligado a la evolucién de
las arquitecturas de red, proporcionando la capacidad de soportar multiples
redes légicas sobre la misma infraestructura. Esta tecnologia resulta de
capital importancia en el ambito de las redes moviles de nueva generacion,
o redes 5G, en las que se pretende soportar un amplio ecosistema de
tecnologias relativas a la virtualizacion de servidores y de redes, entre otros,
siendo también potenciales herramientas para mejorar las funcionalidades
del Network Slicing.

En este ambito, este trabajo pretende abordar el estudio de estas
arquitecturas basadas en Network Slices sobre redes 5G, en las que
multiples usuarios pueden hacer uso de la misma plataforma, requiriendo
el cumplimiento de ciertos requisitos en cuanto a métricas de rendimiento
de red, entre otras.

Para ello, el estudio se dividira en tres grandes ambitos, perteneciendo
todos al ecosistema creado por las redes 5G: la monitorizacién efectiva de
redes para recopilar métricas de red susceptivas de ser utilizadas para el
aseguramiento de las slices de red, la orquestaciéon de redes basadas en el
paradigma SDN, y la virtualizaciéon avanzada de componentes mediante el
uso de la tecnologia serverless.

Dichas herramientas, en su conjunto, permiten el desarrollo de un
sistema inteligente, utilizando mecanismos innovadores de virtualizacién de
servidores, capaz de recabar métricas de rendimiento de la red para su
aplicacién posterior en mecanismos de orquestacién de redes, con funciones
que pueden ir desde mecanismos de encaminamiento de trafico hasta la
aplicacién de politicas personalizadas de red, todas basadas en las métricas
recolectadas.

Dicho sistema es el resultado dltimo y principal via de futuro de este tra-
bajo, que se limitara al andlisis en detalle de cada uno de los tres aspectos
mencionados anteriormente por separado.

Palabras clave: monitorizacién, orquestacién, virtualizacion, redes 5G,
Network Slicing.

IX

ABSTRACT

Abstract

The concept of Network Slicing has always been linked to the evolution
of networking architectures, providing the ability to support multiple
logical networks on the same infrastructure. This technology is of capital
importance in the field of new generation mobile networks, or 5G networks,
in which it is expected to support a wide ecosystem of technologies related to
the virtualization of servers and networks, among others, being also potential
tools for improving Network Slicing functionalities.

In this scope, this work aims at addressing the study of these
architectures based on Network Slices over 5G networks, in which multiple
users can make use of the same platform, requiring the fulfillment of certain
requirements related to network performance metrics, among other.

In this way, the study will be divided into three main areas, all belonging
to the ecosystem created by 5G networks: the effective monitoring of
networks to collect network metrics that can be used for the assurance of
network slices, the orchestration of networks based on the SDN paradigm,
and the advanced virtualization of components through the use of the
serverless technology.

These tools, as a whole, allow the development of an intelligent
system, using innovative server virtualization mechanisms, capable of
collecting network performance metrics for their later application in network
orchestration mechanisms, with functions that can range from traffic routing
mechanisms to the application of custom network policies, all based on the
collected metrics.

The system aforementioned is the last and main future result of this
work, which will be limited to the detailed analysis of each of the three as-
pects mentioned above separately.

Keywords: monitoring, orchestration, virtualization, 5G networks,
Network Slicing.

XI

TABLE OF CONTENTS

Table of Contents

Acknowledgements I
Published and Submitted Content 111
Other Research Merits VII
Resumen IX
Abstract X1
Table of Contents XII1
List of Figures XVII
List of Tables XXI
List of Acronyms and Abbreviations XXIIT
1. Introduction 1
1.1. 5G Networks Characterization 2
1.2. Summary of Thesis Contributions 3
1.3. Thesis Overview 4

2. Related Work 7
2.1. Monitoring Architectures in 5G and Beyond 5G Networks. 7
2.2. Orchestration Solutions in SD-WAN and 5G Networks 9
2.2.1. Orchestration of SD-WAN Networks 10

2.2.2. Intent-Based Networking 12

2.2.3. Integration with Legacy Networks 13

2.3. Virtualization Mechanisms in 5G Networks 14
2.3.1. Evolution of Cloud Computing 14

2.3.2. Evolution of Mobile Networking 15

2.3.3. Introducing the Serverless Paradigm 16

Part 1. Monitoring of Network Slices 19
3. An Adaptable Monitoring Framework for 5G Environments 21
3.1. System Design 22
3.1.1. System Requirements 22

3.1.2. Proposed Architecture 23

3.2. Implementation Based on the Publish-Subscribe Paradigm 25
3.3. Performance Evaluation 28
3.3.1. System Assumptions 29

3.3.2. Testbed Setup 30

3.3.3. Preliminary Evaluation Process for a Single-Topic Experiment 31

XIII

TABLE OF CONTENTS

3.3.4. Performance Impact Assessment for Simultaneous Multi-

Topic Experiments 32
3.4. Demonstration of the Platform in a Real Case Scenario 35
3.4.1. Experiment Design, Definition and Preparation 36
3.4.2. Experiment Execution and Results Analysis 36
3.5, Summary ... 38
4. Towards a Distributed Monitoring Framework for Beyond 5G
Networks 39
4.1. New System Requirements 40
4.2. Revision of the System Design and Implementation 42
4.2.1. Adaptation of the Architecture 42
4.2.2. Extensions to the Architecture 43
4.2.3. Implementation Update 45
4.3. Performance Evaluation 46
4.3.1. Testbed Setup L 46
4.3.2. Singe-Broker Experiments A7
4.3.3. System Scalability Validation 49
4.3.4. Multi-Broker Experiments 50
44, SUMMATY . . . o o vt 53
Part 2. Orchestration of 5G Transport Networks 55
5. Novel Network Orchestration Techniques Based on SDN and
Intent-Based Capabilities 57
5.1. Network Infrastructure Model 59
5.2. Alviu Orchestrator’s Architecture 60
5.2.1. Intent-Based Networking Characterization 62
5.2.2. Alviu Specification 64
5.3. Intent States Management 69
5.3.1. States Specification 69
5.3.2. States Workflow L 70
5.4. Performance Evaluation 73
54.1. Testbed Setup 73
5.4.2. Deployment Time Evaluation 75
5.5, SUMMATY . . . o o v o 76
6. Evaluation and Demonstration of Intent-Based Orchestration
Capabilities in Real Scenarios 77
6.1. Interconnection with External IGP Domains 78
6.1.1. Use Case Overview 78
6.1.2. Integration of Quagga in OVS-based Switches 79
6.1.3. System Workflow 82
6.2. Load Balancing with Dual Link Between SDN Switches 88
6.2.1. Use Case Overview 88
6.2.2. Updates Needed in OVS-based Switches 89
6.2.3. System Workflow 90
6.3. Proof of Concept 93

X1V

TABLE OF CONTENTS

6.3.1. Testbed Setup 93
6.3.2. Basic Connectivity Between SDN Switches 94
6.3.3. Interconnection with External Domains 94
6.3.4. Testing Load Balancing Capabilities 96

6.3.5. Testing Network Slicing Features with Firewall and QoS
Policies 97
6.4. Summary 98
Part 3. New Virtualization Techniques 99
7. Integration of the Serverless Paradigm within 5G Networks 101
7.1. Serverless Mobile Architectures’ Overview 102
7.1.1. Concept 102
7.1.2. Advantages 104
7.1.3. Challenges to Address 106
7.2. Introducing Serverless Techniques in the Monitoring Platform . . . 107
7.2.1. Problems Found in the Legacy Architecture 107

7.2.2. Transformation from Legacy to Microservices Architecture . 108
7.2.3. Transformation from Microservices to Serverless Architecture 114
7.3. Workflow’s Validation 121
TA. SUMMATY o o 122

. Evaluation of the Monitoring Platform Deployment Based on

Different Virtualization Techniques 123
8.1. Testbed Setup 124
8.1.1. Servers’ Description 124

8.1.2. Testbed Specification for each Virtualization Technique . . . 125

8.2. Test Cases’ Description, 128
8.3. Single Server Performance Evaluation 129
8.4. Horizontal Scaling Performance Evaluation 135
8.4.1. Update of the Testbed Specification 135

8.4.2. Results Obtained 136

8.5, Summary 138

9. Conclusions and Future Work 139
9.1. Conclusions 139
9.2. Future Work 140
Appendices 145
A. Examples of Descriptors 145
A.1. General Configuration Descriptor 145
A.2. Branch Intent Descriptor 147
A.3. Connection Intent Descriptor 152
A.4. Policy Intent Descriptor L. 153
References 157

XV

LIST OF FIGURES

List of Figures

1.

i

= e 0N o

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.
21.

22.
23.
24.

25.

26.
27.
28.
29.

Monitoring and orchestration solutions applied over the 5G network
data plane.
Major transitions in the adoption of softwarization.
Monitoring metrics architecture. L.
Component chain that implements the general Monitoring metrics
architecture in the 5G EVE platform.
Data Collection Manager architecture.
Data Collection and Storage-Data Visualization architecture.
Calculations made for system setting.
Testbed architecture.
Batch write latency distribution in one experiment with 20 topics. .
CPU consumption and batch write latency evolution for 100 B
data traffic in different experiments, modifying a different design
parameter in each case whereas the other one remains fixed.

CPU consumption and I/O message rate evolution for 100 B
data traffic in different experiments, modifying both number of
experiments and total throughput in all cases.
Blueprints used for collecting the information related to monitoring
data and generaetion of the messages sent to the DCM.
Dashboards that present the evolution over time of a metric and a
KPI that belongs to a given experiment.
Monitoring architecture, highlighting the components to be deplo-
yed in the Cloud and in the Edge.
A network data analytics framework proposal with Al-driven
capabilities.
Enhanced network analytics framework with the integration of the
Monitoring framework for data collection purposes.
Testbed architecture. L.
Effect of saturation in performance parameters when limiting Kafka
vCPU allocated in different experiments.
Evolution of the I/O message rate related to 100 B data traffic in
one experiment when vertical scaling mechanisms are enabled.
Evolution of the three types of latency in multi-broker experiments.
Evolution of Data Collection Manager CPU consumption and 1/0O
message rate in multi-broker experiments.
Network infrastructure model implemented by Alviu.
Alviu’s high-level architecture.
Mapping between the type of descriptors that can be defined and the

configuration applied by Alviu in the managed network infrastructure.

Alviu architecture, including the building blocks that compose the

SDN Orchestrator and the SDN Controller.
General intent states present during the intent operation.
Branch Intent installation operation workflow.
Branch Intent withdrawal operation workflow.
Connection Intent installation operation workflow.

XVII

15
23

25
26
28
30

31
33

34

35

37

38

42

44

45
46

49

20
o1

o2
29
61

63

64
69
71
72
72

LIST OF FIGURES

30.
31.

32.
33.

34.
35.
36.

37.
38.

39.
40.
41.
42.
43.

44.

45.
46.

47.
48.

49.

50.

51.
52.
53.
54.
99.
96.
o7.
58.

59.
60.
61.
62.
63.
64.
65.

Connection Intent withdrawal operation workflow. 73
CI environment architecture, including the technologies used in each

component. 74
Star topology evaluated in the performance evaluation analysis. . . 75
Evolution of the deployment time, in seconds, varying the number

of branches deployed in the star topology. 76
Example of topology with interconnection with external domains. . 78
Typical internal architecture of a WAN-type SDN switch. 80
Connection of Quagga to OVS to allow the exchange of information

with external domains. L. 81
IGP connection establishment workflow. 82

Introduction of Next Hop and Prefix entities in the data model,
showing how all the entities related to IGP match in a real scenario. 84

Prefix learning workflow.o 85
Prefix deletion workflow. 87
Backup prefix activation workflow. 88
Practical scenario with switches connected by more than one link. . 89
Update of the OVS-based switches to include the components

needed for the load balancing use case. 90
Example of traffic flows captured in a scenario with dual link

between switches. oo 90
Load balancing workflow. 91
Testbed built with the Continuous Integration environment to do

the proof of concept. oL 93

Flows related to basic connectivity in the SDN switch of branch X. 94
Flows that includes the interconnection with external domains in

the SDN switch of branch X. 95
Flows that includes the interconnection with external domains in

the SDN switch of branch Y. 96
Update of the flows related to the interconnection with external

domains in the SDN switch of branch X. 96
Load Balancing Overlay flows in the switch from branch X. 97
Load Balancing Overlay flows in the switch from branch Y. 97
Example of firewall rules installed in the switch of branch Y. 97
Example of QoS rules installed in the switch of branch Y. 98
Mobile network architecture evolution. 103
Representation of the liquid scalability. 105
Data Collection Manager microservices architecture. 109
Data Collection and Storage-Data Visualization microservices

architecture. 110

Topic creation workflow for the Monitoring microservices architecture.110
Topic deletion workflow for the Monitoring microservices architecture.113
Serverless architecture of the Monitoring platform. 115
Topic creation workflow for the Monitoring serverless architecture. . 116
Topic deletion workflow for the Monitoring serverless architecture. . 119
Testbed for validating the Monitoring serverless architecture. 121
Physical testbed for the evaluation of the Monitoring platform. . . . 126

XVIII

LIST OF FIGURES

66.
67.
68.
69.
70.

71.

72.

73.

4.

75.

76.

77.

78.

79.

Virtual testbed for the evaluation of the Monitoring platform. . . . 126
Docker (runc) testbed for the evaluation of the Monitoring platform.127
Kubernetes (containerd) testbed for the evaluation of the Monito-

ring platform. oo 127
Kata (Firecracker/QEMU) testbed for the evaluation of the
Monitoring platform.o oL 128
CPU consumption evolution for all the testbeds of the Monitoring
platform (100 B messages). L. 130

(Top) Batch write latency evolution for all the testbeds of the
Monitoring platform, (bottom) also detailing the results for the

testbeds with lower values (100 B messages). 131
I/O message rate evolution for all the testbeds of the Monitoring
platform (100 B messages). L. 132
CPU consumption evolution for the Kata testbeds with a workload
lower than 1 experiment (100 B messages). 133
Batch write latency evolution for the Kata testbeds with a workload
lower than 1 experiment (100 B messages). 134
I/O message rate evolution for the Kata testbeds with a workload
lower than 1 experiment (100 B messages). 135
CPU consumption evolution for the Kubernetes testbed with two
Kafka brokers (100 B messages). 135
CPU consumption evolution for the Kubernetes testbed with two
Kafka brokers (100 B messages). 136
Batch write latency evolution for the Kubernetes testbed with two
Kafka brokers (100 B messages). 137
I/O message rate evolution for the Kubernetes testbed with two
Kafka brokers (100 B messages). 137

XIX

LIST OF TABLES

List of Tables

1. Comparison of commercial SD-WAN products, also positioning
Alviu in the current state of the art. Information extracted from
Bl and [32]. . . .o 11
2. Specification of the servers used in the testbed. 124

XXI

LIST OF ACRONYMS AND ABBREVIATIONS

List of Acronyms and Abbreviations

2G Second Generation.

3GPP 3rd Generation Partnership Project.

4G Fourth Generation.

5G Fifth Generation.

5Gr-VoMS 5Gr-Vertical-oriented Monitoring System.

6G Sixth Generation.

ACK Acknowledgement.

ACL Access Control List.

AT Artificial Intelligence.

AI-LTF Artificial Intelligence-Long-Term Forecast.
AI-MTF Artificial Intelligence-Mid-Term Forecast.
AI-STF Artificial Intelligence-Short-Term Forecast.
API Application Programming Interface.

ARP Address Resolution Protocol.

AWS Amazon Web Services.

B Byte.

BGP Border Gateway Protocol.

C-RAN Cloud Radio Access Network.
CI Continuous Integration.

CIDR Classless Inter-Domain Routing.
CNF Cloud-Native Network Function.
CPU Central Processing Unit.

CtxB Context Blueprint.

DCM Data Collection Manager.
DCS Data Collection and Storage.

DevOps Development and Operations.

XXIII

LIST OF ACRONYMS AND ABBREVIATIONS

DHCP Dynamic Host Configuration Protocol.
DN Data Network.

DNS Domain Name System.

DPDK Data Plane Development Kit.

DSCP Differentiated Services Code Point.

DV Data Visualization.

eBPF extended Berkeley Packet Filter.

ELK Elasticsearch Logstash Kibana.

ELM Experiment Lifecycle Manager.

eMBB Enhanced Mobile Broadband.

ENI Experiential Networked Intelligence.

ESP Encapsulating Security Payload.

ETSI European Telecommunications Standards Institute.

ExpB ExperimentBlueprint.
FaaS Function as a Service.

GB Gigabyte.

Gbps Gigabits per second.

GHz Gigahertz.

gNB Next Generation Node B.

gNB-CU Next Generation Node B-Central Unit.
gNB-DU Next Generation Node B-Distributed Unit.
GRE Generic Routing Encapsulation.

GUI Graphical User Interface.

HQ Headquarters.

HTTP Hypertext Transfer Protocol.

I/O Input/Output.

IBM International Business Machines.

XXIV

LIST OF ACRONYMS AND ABBREVIATIONS

IBN Intent-Based Networking.
IGP Interior Gateway Protocol.
IToT Industrial Internet of Things.
IoT Internet of Things.

IP Internet Protocol.

IPsec Internet Protocol security.
ISG Industry Specification Groups.
ISP Internet Service Provider.

IT Information Technology.
JSON JavaScript Object Notation.

KB Kilobyte.
Kbps Kilobits per second.

KPI Key Performance Indicator.
KVM Kernel-based Virtual Machine.

LAN Local Area Network.
LCM Life Cycle Manager.
LTS Long Term Support.
LXC LinuX Containers.

MAC Media Access Control.

MANO Management and Orchestration.

MB Megabyte.

Mbps Megabits per second.

MDAF Management Data Analytics Function.
MEC Multi-access Edge Computing.

MEF Metrics Extractor Function.

ML Machine Learning.

mMTC Massive Machine-Type Communications.

MPLS Multiprotocol Label Switching.

XXV

LIST OF ACRONYMS AND ABBREVIATIONS

ms millisecond.

MT /s Million Transfers per second.

NAT Network Address Translation.
NBI Northbound Interface.

NEMO Network Modeling.

NFV Network Function Virtualization.
NOP Network Operator.

NPN Non-Public Network.

NSaaS Network Slice as a Service.
NTP Network Time Protocol.

NWDAF Network Data Analytics Function.

O-RAN Open Radio Access Network.
ONAP Open Network Automation Platform.
ONF Open Networking Foundation.

ONOS Open Network Operating System.
OSPF Open Shortest Path First.

OVS Open vSwitch.

P-GW Packet Gateway.
PDU Protocol Data Unit.
PNF Physical Network Function.

PoP Point of Presence.

QEMU Quick EMUlator.

QoS Quality of Service.

RAM Random Access Memory.
RAN Radio Access Network.
RAV Results Analysis and Validation.

REST REpresentational State Transfer.

XXVI

LIST OF ACRONYMS AND ABBREVIATIONS

RNIB Radio Network Information Base.

s seconds.

S-GW Serving Gateway.

S-NSSATI Single Network Slice Selection Assistance Information.
SaaS Software as a Service.

SBA Service Based Architecture.

SBI Southbound Interface.

SD-WAN Software-Defined Wide Area Network.
SDN Software-Defined Networking.

SDO Standard Development Organization.

SLA Service Level Agreement.

SMF Session Management Function.

SR-IOV Single-Root Input/Output Virtualization.
SRv6 Segment Routing over IPv6.

SSH Secure SHell.

SUT System Under Test.

TB Terabyte.
TCB Test Case Blueprint.

TCP Transmission Control Protocol.

TP TRansit Point .

UDP User Datagram Protocol.

UE User Equipment.

UFW Uncomplicated Firewall.

UPF User Plane Function.

URL Uniform Resource Locator.

URLLC Ultra-Reliable and Low Latency Communications.

UUID Universally Unique IDentifier.
vCPU virtual CPU.

XXVII

LIST OF ACRONYMS AND ABBREVIATIONS

veth virtual Ethernet.
VM Virtual Machine.
VNF Virtual Network Function.

VSB Vertical Service Blueprint.

WAN Wide Area Network.
WE West-East.

ZSM Zero touch network & Service Management.

XXVIII

Introduction

The success of the upcoming Fifth Generation of mobile networks (5G)
and beyond is heavily tied with the implementation of the Network Slicing
paradigm [1]. Strongly supported by the virtualization and programmability
concepts, this represents a turning point that enables the capability of flexibly
assigning virtual instances of a mobile network to diverse services. In this
way, Network Operators (NOPs) are expected to (i) increase the revenues
obtained from their infrastructure by also (ii) achieving an overall higher
utilization due to resource sharing.

However, this higher flexibility and increased revenues might come at a
price. Technical challenges have to be solved while deploying Network
Slicing along all network domains, such as Radio Access, Transport
or Core Networks. Such domains need a simultaneous and efficient
interaction to properly provide Service Level Agreement (SLA) guarantees,
which is accomplished by a novel architectural block: the Management and
Orchestration (MANO), able to control, monitor and trigger actions
onto each network (virtual) function. As a result, networks supporting slicing
require advanced orchestration solutions that have attracted interest from
both industry and academia showing advantages and drawbacks in current
deployments.

And what is more, these MANO platforms need the joint interaction with
systems and mechanisms that provide the data needed by the orchestration
technologies for their own decision-making process. Among the tools that
can be identified in this vast ecosystem, efficient monitoring platforms are
having now its momentum, focusing on heterogeneous sources of network
or compute metrics from which the MANO components can extract useful
information about the status of the network for the consequent actions to
be performed.

These two topics aforementioned (i.e. monitoring and orchestration),
together with the research on new virtualization techniques for implementing
applications and services adapted to the current and future trends on
mobile network architectures, are the main topics covered in this thesis.

1 INTRODUCTION

Next, some general concepts will be explained before providing a deeper analysis
on each topic.

1.1. 5G Networks Characterization

The study done in this thesis analyzes with depth three different parts of
a given network architecture, focusing on (i) mechanisms to gather network
metrics from a given 5G infrastructure and application components, in
order to be provided to other elements that may be interested in using
these values, (ii) orchestration solutions for transport network, i.e. the User
Plane Functions and the Data Networks deployed in the 5G Core Network, using
the new trends in terms of network softwarization, and (iii) the research
on virtualization mechanisms to facilitate the deployment of network
functions in a given architecture.

The application of these trends in a general scenario based on 5G networks
can be observed in Figure 1, which depicts the key components implied on the
5G network data plane with the 3GPP-related reference points. This way,
in a typical workflow, the User Equipment (UE) establishes a data session
and gets assigned the corresponding User Plane Function (UPF) in the Core
Network, being responsible for routing and forwarding the traffic back and
forth between the UE and a Data Network (DN). The UPF selects the
appropriate transport network for the user traffic by means of N4 reference
point, which provides an interface with the Session Management Function
(SMF). This interface enables selecting a Network Instance ID based on the
S-NSSAI of the PDU session. Considering the actual transmission of user data
traffic, this arrives from the gNB to the UPF via the N3 interface, while
the UPF is connected to the DN via the N6 interface. Finally, the interface
N9 is defined in case there is communication between UPFs (e.g. from an
intermediate to an anchor UPF) [1].

Endpoints Access Network | Edge Network: Core Network
AMF Namf
Interfaces to
. | N11 SBA network
N1 N2 functions
: SMF \/ Nsmf
N4 N4|
|
(4) N3 N9 i |ne
—((A) =~ I-UPF UPF DN
gNB » LR 8
u MEC-RAN | i i icran i
H H : I ;

Monitoring platform |:|

Figure 1: Monitoring and orchestration solutions applied over the 5G network
data plane.

1 INTRODUCTION

In this scope, each component of the platform may have specific processes
running on them to gather metrics about different aspects of the network,
depending on the monitored components involved. These processes may be
proprietary software implemented by the vendors, or what is more interesting,
they may be small pieces of standard software, probably implemented
with lightweight virtualization tools, that can be adapted to different
components to extract a specific type of metric. In any case, these elements feed
a platform in charge of managing the monitoring of the collected data,
also offering them to interested elements of the network that may require their
usage.

The main example of this last topic is the MANO component presented
on Figure 1, which is directly connected to the Monitoring platform, using
the metrics to control the lifecycle of, for example, the networking components
used in the Core Network.

This introduction has been done to clearly identify the parts of the 5G
network on which this thesis focuses. There are more technologies or concepts
that may be applied in this kind of networks, e.g. the analysis of tunneling
protocols for user data traffic in 5G networks, as analyzed by the author in [I]
for the case of SRv6, but they are out of the scope of this thesis.

1.2. Summary of Thesis Contributions

To address the three topics mentioned above, this thesis has been distributed
into three main parts, each of them containing two subchapters for delving
into each specific subject.

First of all, in terms of monitoring processes on 5G networks, a complete
Monitoring architecture will be proposed, starting with its general design,
covering multi-site and multi-stakeholder scenarios with a flexible solution
based on a multi-brokering architecture, which allows to distribute the
metrics captured on each site with easy mechanisms. In particular, its
implementation is based on the publish-subscribe paradigm, in which this
Monitoring framework has been implemented. This contribution is mainly based
on the work done in [2], which presents this design and implementation,
together with a complete performance evaluation process to check its
suitability for the scenarios in which it is expected to be deployed. Moreover,
its validation in a complete test executed on the 5G EVE platform is also
reported in [5].

As an improvement of this platform, [6] proposes the implementation
of this Monitoring platform in Edge environments, having in mind the
future Beyond 5G scenarios that are currently under study and evaluation
in the research community. This deployment has also been evaluated in terms
of performance, checking again that the system is able to manage this kind
of unpredictable scenarios. Moreover, the platform can be also extended
with other modules to provide enhanced capabilities. This is the case of the
inclusion of the Data Analytics framework proposed in [3].

Secondly, it comes the orchestration of transport networks, focusing on
the description of Alviu’s SD-WAN orchestrator, a commercial product

1 INTRODUCTION

that belongs to Telcaria Ideas S.L. [9] and that has been improved during
this Ph.D. thesis, covering the objective of the Industrial Ph.D. Mention
as a result. The base of this work, which has been reported in [7], consist of
the description of the platform in terms of design and specification of
use cases, also including some performance evaluation tests to measure the
capability of the platform to deal with a given workload in the system. Note
that the source code of the orchestrator is not going to be released, as it
belongs to Telcaria Ideas S.L. and it is under a confidentiality agreement.
Finally, regarding the new virtualization techniques topic, the serverless
paradigm is studied in depth, starting with the introduction commented on
[1], and continuing with the transformation of the Monitoring platform
already explained to a serverless architecture, explaining the workflows to be
followed and comparing it with other architectures (e.g. a microservices-based
one). After this, it is performed a complete performance evaluation, following
the same procedures used for the testing of the Monitoring platform, in order
to compare the serverless technologies used with other virtualization and
containerization technologies. All this work has been done during the Ph.D.
International Visit from September to November 2020. Currently, it is
about to start with the writing of some papers including these results.

1.3. Thesis Overview

The content presented in Section 1.2 is presented in the following way:

= First of all, the state of the art of all the three topics aforementioned is
presented in Chapter 2.

= Starting with the monitoring topic, Chapter 3 presents the Monitoring
platform in terms of design, implementation and preliminary
performance evaluation and application in a real experiment
executed on the 5G EVE platform.

= In Chapter 4, the Monitoring platform is extended to deal with
Edge and Beyond 5G environments, also making some references
to the possibility of extending the platform to allow the introduction
of enhanced features, such as AI and Data Analytics. A new
performance evaluation is also done, also validating some preliminary
scalability mechanisms based on vertical scaling.

= Continuing with the orchestration topic, Chapter 5 presents Alviu’s
architecture, with a full description of the Intent-Based Networking
approach selected to implement this platform, and also performing a
performance evaluation process to evaluate the deployment time of
the intents.

= To conclude Alviu’s evaluation, Chapter 6 analyzes and validates two
particular use cases in depth, which are related to the interconnection
with external IGP domains and the load balancing with dual link
between SDIN switches.

1 INTRODUCTION

= Regarding the new virtualization techniques topic, Chapter 7 presents
the serverless paradigm in general terms, then applying it to
transform the Monitoring platform to a serverless-based platform.
The workflows for the new architecture are also detailed, presenting a
testbed that allows to validate these workflows.

= To conclude with the serverless part, Chapter 8 performs a complete
performance evaluation process of different testbeds, in which each of
them uses a different virtualization technique. This is done to compare
the performance obtained in the serverless scenario with the other cases.
Furthermore, horizontal scaling capabilities are also evaluated.

= Finally, Chapter 9 presents the conclusions and future work for each
topic.

Related Work

In order to position the research work related to each topic studied in
this Thesis within the state of the art, the related work for these topics will be
analyzed in this Chapter. To do this, the state of the art of each topic will be
presented separately, in different sections, following this order:

= First of all, in Section 2.1, the related work for the Monitoring topic in
both 5G and Beyond 5G networks will be studied.

s After this, Section 2.2 will focus on Orchestration, delving into different
topics of interest related to 5G network orchestration solutions, such as
intent-based networking.

= Finally, Section 2.3 will present the state of the art of novel Virtualization
technologies, focusing on the serverless paradigm.

2.1. Monitoring Architectures in 5G and Beyond 5G
Networks

Triggered by the complexity and novelty of 5G, several research initiatives
have started to gather an understanding of the envisioned features of these
types of networks, in order to be applied for effective Monitoring solutions,
among others. In this way, the related work in terms of Monitoring platforms
designed and provisioned for 5G (and also Beyond 5G) networks can be grouped
in three main categories, according to the environment in which the solution
presented in this Thesis has been involved.

First of all, the proposed Monitoring platform has been designed and
implemented within the scope of (i) European projects related to the research
on 5G networks; being more precise, the 5G EVE project [10], which aims at
deploying a validation 5G multi-site platform, involving four main facilities
located in Spain, Italy, France, and Greece, where verticals and other projects
can execute extensive trials [11]. In this context, the Monitoring solution
has to collect all the metrics generated by the different elements involved in an

7

2 RELATED WORK

experiment to show their evolution over time to the experimenter, and to feed
such data to KPI validation tools to confirm the achievement of the KPIs,
or also enabling new workflows like the optimization of network performance.

While a number of other 5G projects (European and International) have
addressed monitoring functionalities, limited work in this context have
addressed the publish-subscribe paradigm, a messaging pattern which can
be commonly found in the communication between distributed systems. This
paradigm was, in fact, the option selected by 5G EVE to implement its
Monitoring architecture, and this idea was also considered in the 5GROWTH
project, integrating some ideas and concepts present in the 5G EVE Monitoring
platform with the so-called Vertical-oriented Monitoring System (5Gr-
VoMS) [12], which is an extension of the Monitoring solution already proposed
in the 5G-TRANSFORMER project [13].

Another present context in these environments is (i¢) standardization.
In order to integrate monitoring and data collection features in the mobile
network architecture, 3GPP and other SDOs are working in data analytics
frameworks that take advantage of the collection of monitoring data related to the
network infrastructure in order to enable the autonomous and efficient control,
management and orchestration of mobile networks. In this working line,
3GPP defined the Network Data Analytics Function (NWDAF) [14] and
the Management Data Analytics Function (MDAF) [15] for 5G networks.

Other organizations, such as the O-RAN alliance, also contemplates similar
components in their architectures [16], and ETSI has also defined comparable
assisting elements within the Industry Specification Groups (ISGs) on
Experiential Networked Intelligence (ENI) and Zero touch network &
Service Management (ZSM) [17]. Moreover, open-source initiatives such
as ONAP [18] are also including data analytics into their architecture. All
these ongoing efforts are, however, at an early stage, so that the integration of
the Monitoring architecture presented in this Thesis may be useful to steer the
work of these initiatives, as proposed in Section 4.2.2.

And finally, moving to (i7i) Beyond 5G networks, requiring flexible
scenarios that may be probably oriented to Edge environments, there are
already several proposals that include the definition of a publish-subscribe
mechanism to distribute data between different entities in Edge-based
deployments. This is the case of [19] or [20], although they are mostly focused
on IoT and pure Edge platforms, not including 5G communications. There
are also other proposals not related to the publish-subscribe system, such
as [21], which analyzes the optimal placement and scaling of monitoring
functions in Multi-access Edge Computing (MEC) environments, but it does
not consider multi-site nor multi-stakeholder scenarios, which is a feature that
characterizes the solution presented in this Thesis.

In summary, while substantial work has been conducted to design publish-
subscribe platforms in distributed systems, and to devise Monitoring
solutions specific for Beyond 5G systems, the key novelty of the approach
proposed in this Thesis is to bring the publish-subscribe paradigm into
a Beyond 5G Monitoring platform, and to implement and evaluate
experimentally the performance of the platform devised.

2 RELATED WORK

2.2. Orchestration Solutions in SD-WAN and 5G Net-
works

The management and operation of traditional mobile transport
networks have been following the same trend as Wide Area Networks (WAN),
both being limited by two important factors: (i) cost and (ii) flexibility.
Firstly, legacy architectures are built using expensive and specialized vendor
equipment, meaning that they are costly to deploy and to maintain. Secondly,
as each component of the network equipment (e.g. routers, firewalls, etc.) bases
its functionality mainly on hardware, in conjunction with its own embedded
control software, they are forced to take control decisions based only on local
information, even though these decisions affect globally to the whole network.

Consequently, it is difficult to perform global changes in the network
configuration accurately, fast and dynamically, thus making legacy architectures
rigid and static. Furthermore, the flexibility is also limited in terms of adding
new functionalities to the network deployments, since they are limited to
the capabilities provided by specialized network equipment. Then, performing
upgrades or acquiring new equipment that performs the desired functionality
entails an additional and significant cost.

The advances in network virtualization over the past decade have tried to
overcome these limitations. This process resulted in the emergence of Software-
Defined Networking (SDN), a technology which decouples the network’s
control logic from the underlying network hardware in charge of forwarding
the traffic, centralizing the control logic in a software-based controller
entity [22]. As a result, its implementation is meant to be a potential enabler
to facilitate the automation of network configurations and, eventually, fully
program the network [23].

In this way, the introduction of SDN in mobile networks has been
considered one of the key technologies for the development of automated,
software-based 5G networks, together with other enablers such as NFV, Machine
Learning or Big Data [24]. Specifically, the plasticity that SDN can offer for the
control and management of 5G networks allows, among other features, to model
both the control and data plane according to the requirements of specific
applications and devices connected to the mobile network [25], thus being a
facilitator for enabling the mobile network programmability.

In fact, SDN has made its appearance into different 5G deployments
related to the research of this integration between 5G and SDN. This is the
case of some solutions proposed in different H2020 European projects;
such as 5G-Crosshaul [26], which proposes an adaptive, flexible and software-
based architecture for 5G transport networks integrating multi-technology
fronthaul and backhaul segments, leveraging on SDN and NFV for this
purpose, or SELFNET [27], also integrating SDN and NFV in order to enable
a fully autonomic and intelligent network management framework for 5G
networks.

In the case of the implementation of SDN in WAN architectures
with the so-called SD-WAN technology, the truth is that it is becoming
increasingly used. According to [28], practically all the global IT leaders have

2 RELATED WORK

already deployed SD-WAN or expect to deploy it within 24 months to automate
the network infrastructure, remarking network automation, SDIN and intent-
based networking as the technologies that will have the most impact on
networking in the following years. Furthermore, there are even proposals to merge
5G and SD-WAN features into single, commercial solutions to bring better
control to both the SD-WAN software and the cellular network. In this line, the
partnerships between AT&T and VMware, or Verizon and Cisco, both in
United States, expects to achieve this ambitious goal [29].

Next lines will be focused on SD-WAN, as it is the basis used for building
Alviu, the orchestration solution proposed in this Thesis. In particular, this
section will focus on the following state-of-the-art topics, which are included in
Alviu’s design and implementation: SD-WAN orchestration (which generalizes
the terms of network automation and SDN), intent-based networking and
integration with legacy networks.

2.2.1. Orchestration of SD-WAN Networks

The new generation of networks, presented as datacenters of varying
size which contain, among other elements, virtualized networking devices
or networking functions that are decoupled from the hardware, require a
network orchestration entity to control and manage this set of hardware
and software equipment and, eventually, to enable network automation.

Currently, the SDN market is in high demand but fairly difficult to
predict, due to the costs involved in making the move to this new architecture
due to the difficulty in integrating SDN into the existing networks, even
having the ambition of covering the control of peripheral devices separated from
the core network, or the novelty of the technology [30]. To overcome these issues,
the different SD-WAN solutions that have been appearing in the last years have
tried to target specific features of the network, thus creating a very wide catalog
of solutions, depending on users’ needs.

Furthermore, the stakeholders participating in this market have also
changed in the last decade, due to the growth and proliferation of Cloud
Computing services. In this manner, preliminary SD-WAN solutions were
offered mainly by specialized service providers, but nowadays there is a good
distribution between these providers, companies offering datacenter services,
Cloud providers and, to a lesser extent, companies’ access networks.

To summarize the heterogeneity of SD-WAN solutions available in today’s
market, Table 1 presents some of the most important SD-WAN platforms,
according to the last magic quadrant for WAN edge infrastructure made by Gartner
[31], with their main characteristics [32], reflecting the idea that each solution
tries to focus on particular aspects of the network to be eventually controlled
and orchestrated, and not finding a solution that covers all the features of
the network. In this comparison, Alviu is also positioned in the state of the art,
checking that it is aligned with the current trends in the market.

10

2 RELATED WORK

Table 1: Comparison of commercial SD-WAN products, also positioning Alviu in
the current state of the art. Information extracted from [31] and [32].

SD-WAN Gartner Orientation = WAN Form Firewall WAN Appl. path
product status architecture factor optimization selection
VeloCloud Leaders Software 100+ Global Physical, vir- Basm (advanced No Yes
PoP gateways tual, Cloud via partners)

Silver Peak Leaders Software Edge based Physical, * vir- Basm (advanced Yes No

tual, Cloud via partners)
Fortinet Challengers Hardware Edge based Physical Advanced zl?dé;; SOMe - No
CIS?O Me- Challengers Hardware Edge based Physical, Advanced Limited No
raki Cloud

. . . . Basic (Viptela . .
Cisco Vip- Challengers Hardware Edge based Physical, vir- hw.), advanced Yes (Cisco Yes (Cisco
tela tual, Cloud . hw.) hw.)
(Cisco hw.)

Citrix Challengers Hardware Edge based Physical, ~ vir- Advanced Yes (in some Yes

tual, Cloud models)
CloudGenix Visionaries Hardware Edge based Physical, vir- B.asm (advanced No Yes

tual, Cloud via partners)
Aryaka Visionaries ~ Software 25 Global - PoP Physical Basm (advanced Yes Yes

backbone via partners)
. Not ran- Physical, vir- .

Alviu ked Software Edge based tual, Cloud Basic No Yes

In general terms, according to manufacturers’ vision, two tendencies can be
identified in the design and development of SD-WAN solutions: (i) software-
orientation, led by software-related companies like VMware (with VeloCloud),
which proposes a software-based architecture that relies on the hardware
of the network equipment manufacturers and on Cloud providers, making it
compatible with different hardware technologies, and (ii) hardware-
orientation, where specialized hardware manufacturers (e.g. Cisco) build the
environment based on their own proprietary hardware!, achieving a solution
whose complete value chain is built by a single stakeholder with great
performance results, in exchange for losing flexibility in the installation on
different hardware equipment.

In any case, all the commercial SD-WAN platforms analyzed in the
comparative depend, to a greater or lesser extent, on proprietary hardware,
moving away from generic, off-the-shelf networking hardware due to performance,
price or simplicity. In fact, it is expected that, through 2021, more than the 80 % of
the SD-WAN solutions will still be delivered on dedicated hardware, maintaining
this trend [31].

Unlike most enterprise network solutions, Alviu differs from them as it does
not lock to a certain vendor and range of telecommunications equipment,
this being one of the key aspects from Alviu’s value proposal. This way, and coupled
with its open-source nature, Alviu provides a SDN-driven, unified WAN and
LAN with end-to-end network slicing to enterprise and academic networks based on
low-cost but high performing commodity network appliances and white-
box switches, which can be purchased and combined depending on user’s needs,
combining performance and low cost in one single solution.

Furthermore, in terms of simplicity, Alviu offers a flexible and movable
platform with an easy-to-use interface to define the SD-WAN scenario
to be managed, which eventually triggers the installation of the dynamic

!'However, physical machines from other manufacturers could be also used to supplement the
hardware part.

11

2 RELATED WORK

intent-based routes that provide connectivity to the network and, also, activates
specific value-added capabilities, such as policy-based control, monitoring and
error detection services, network virtualization, zero-touch deployment, distributed
firewall rules, data encryption, dedicated QoS policies, load balancing in redundant
topologies, or the integration of legacy routing protocols (e.g. OSPF or BGP) [9].

2.2.2. Intent-Based Networking

Intent-Based Networking (IBIN) systems are expected to be used by more
than 1000 large enterprises in production by 2020, up from less than 15 in
2018’s second quarter [33]. This paradigm expects to provide a full lifecycle
management of network systems, being able to automatically convert, verify,
deploy, configure and optimize the network in order to achieve a target network
state, according to the intent expressed by the user, also performing whatever
it takes (e.g. solve abnormal events) to ensure the network reliability.

These intents, unlike the traditional configuration of networks, which is
mostly manual and technology-dependent, just require to input the desired
business requirements to be achieved by the network in an abstract way
(e.g. I want the network to meet a specific QoS level for a given service).
As a result, the IBN technology can automatically translate the intents
into real-time operations to be performed in every networking phase (i.e.
provisioning, deployment, management, troubleshooting and remediation) to
satisfy the requirements exposed and to provide more intelligence and autonomy
[28] [34].

Since its first official specification by the Open Networking Foundation
(ONF) [35], this technology has proven to be of interest to different research
entities, including standardization organizations, open source communi-
ties, industry and academia, which are actively studying the mechanisms and
applications of IBN [34]. In what concerns Alviu, it leverages the lessons lear-
ned from open source’s and academia’s efforts related to the integration of IBN in
the ONOS SDN controller [36]. This integration have been traditionally studied
from two different perspectives: (i) the construction of an IBN architecture over
the ONOS controller, and (i) the enhancement of ONOS core by including
specific modules and applications.

For the first case, there are examples like [37], which defines an intent-
based northbound interface (INBI) architecture based on micro-services
and service-oriented architectures, relying on the ONOS Intent Framework
[38], to build more powerful SDN applications, and [39] introduces an hierarchical,
intent-based architecture that plays the role of network hypervisor and SDN
controller, being able to manage and virtual networks through intents. In the
second case, [10] expects to provide an ONOS application which is able to
calculate optimal paths, using the Dijkstra algorithm, in terms of the number
of hops and the bandwidth value on the link, and [41] proposes an ONOS module
that allows to monitor and reroute specific ONOS intents created beforehand.

Alviu’s philosophy is closer to the first perspective, building an
orchestration solution on top of the ONOS controller that uses the states
and the transition between states proposed by the ONOS Intent Framework to

12

2 RELATED WORK

create its own vision of the network intent. In this way, the input information
received by Alviu are the so-called Network Intent Descriptors, which contains
the information related to the SD-WAN scenario in JSON format, triggering the
execution of different operations in Alviu to fulfil the configuration proposed in
the descriptors. One of the purposes of this approach is to make the network
management and orchestration (M ANO) operations easier for system and
network administrators, as the current IBN commercial solutions in the industry
market are mainly focused on solutions based on the traditional telco operator’s
MANO mechanisms, whose workflows are too complex for these types of networks,
advocating simplicity and agility instead.

2.2.3. Integration with Legacy Networks

With the help of the increasing adoption of hybrid Cloud and enterprises’
expanding bandwidth requirements, business WAN traffic flow patterns are
becoming more software-based and hybrid by nature [28], coexisting legacy
routing protocols (e.g. OSPF or BGP) and mechanisms (e.g. MPLS) with
novel SDIN technologies. This makes sense in operator-controlled networks
with a significant networking infrastructure, where it is not an option to demolish
everything and rebuild from scratch a full SDN-based architecture,
as changes cannot be made overnight. In this context, SD-WAN should be
introduced in progressive deployments such as the renovation of a part of the
network or the construction of a new localized infrastructure [30].

The current solutions from the state of the art that take this topic into
account are mostly based on multi-domain SDIN scenarios, where there are
different domains controlled by SDN that may need to be connected. For
instance, [42] introduces a West-East Bridge (WE-Bridge) mechanism to
enable different SDN administrative domains to peer and cooperate, [13]
performs a strict analysis of multi-domain SDN interconnections focusing
on the programmability properties and their effect on the performance
of connectivity services, [14] proposes a multi-domain SDN provisioning
framework on top of an ONOS controller that uses BGP, through a specific
ONOS app based on the ONOS SDN-IP application, for managing the
interconnection between SDN domains, and and [15] presents B4; the Google’s
private SD-WAN, which uses BGP to interconnect the different WAN sites.

However, there are also other approaches that consider the connection
between SDN and non-SDN domains, achieving a full integration between
SDN and legacy networks, as already done in [46], which proposes a topology-
based hybrid model, separating the nodes controlled by each paradigm
(i.e. IP and SDN networks) in different regions that may be interconnected.
This is, in fact, the approach selected by Alviu, allowing to maintain the
network granularity with domains based on different technologies that can be
interconnected, also introducing the concept of transit network describing a
SDN domain that interconnects with multiple legacy domains.

For this purpose, the Quagga routing suite [17] is used in the edge SDN
switches (i.e. the switches from a SDN domain that are connected to legacy
domains) to handle legacy protocols messages exchanged with edge routers

13

2 RELATED WORK

from other domains, whose relevant information is eventually used by the SD-
WAN orchestrator to enable or disable the traffic between domains. Quagga
is, actually, a well-known, open-source tool present in SDN deployments
frequently combined with legacy routing scenarios in the state of the art, as
it can be seen in [43]-[44][416][48][19], therefore it can be considered a mature
technology for this purpose.

2.3. Virtualization Mechanisms in 5G Networks

There is a wide consensus among the research and industrial communi-
ties that future mobile networks will be software networks, due to flexi-
bility and cost reasons (in fact, some functionality such as the Evolved Packet
Core is already provided in specialized software running over general-purpose hard-
ware). However, the ability to match the network demand at any point in
time is still missed, requiring a technology that is (i) re-configurable over
very fast periods, and (ii) very granular, to reduce the cost of inaccuracies
in the re-configurations in e.g. the access network [50].

A similar problem has already been tackled by the Cloud Computing
community, which has continuously provided faster and more scalable
solutions over the last decade. Additionally, these solutions have also made the
system more flexible and open, enabling the appearance of new business
models.

In what follows, the current landscape of network softwarization and
modularization is described, comparing the advances in Computer science
and mobile networking to finally introduce the serverless paradigm and the
advances made in that field.

2.3.1. Evolution of Cloud Computing

The first major achievement in Cloud Computing took place in the
early 2000s, with the appearance of new virtualization solutions such as
Xen, VMWare or KVM. With these technologies, which efficiently exploited the
novel virtualization extensions supported by the hardware, a new way of
providing services “conquered” the Cloud Computing environment. It consisted
of a more modular architecture that supported a higher re-configuration
frequency but also requiring a higher management complexity. This
achievement is marked with an ‘A’ in Figure 2, where the different transitions
considered in this Section are depicted along three dimensions: architecture,
re-configuration frequency and complexity. For this first transition, the
Figure illustrates how the architecture evolved from monolithic functions to
modular ones, supporting a change of operational timescales from years to
months, but also increasing the complexity in the operation.

14

o DLT AT YORK

Cloud computing

Single Server Multi-tier Microservices
PNF VNF Highly Modular VNFs Seleness
Architecture BN I Jee3e2 A‘
A B . . c
Re-Configuration
Re-Orchestration Years Months 100x times per day Continuous
Frequency
VM / NFV r\?;?vi Lambda
Orchestration
Complexity Low Moderate T Very High Extreme

Mobile Networking

Figure 2: Major transitions in the adoption of softwarization.

The second transition identified is marked with a ‘B’ in Figure 2 and
happened in the early 2010s. It was caused by the arrival of the so-called
microservices paradigm [51], introduced by software architects to support a
much finer granularity. This paradigm supports, for example, that a database
server can be split into many tailored microservices, each one fulfilling a specific
functionality, e.g. an account manager or the data storage system. This transition
was driven by the availability of new virtualization technologies, such as
Docker and LXC Containers, which allow the deployment and scaling of small
virtual applications in a much more lightweight fashion, enabling also new
coding practices such as DevOps [51].

Finally, the last transition to be remarked in Figure 2 is the ‘C’, namely,
serverless architectures [52]. This recent paradigm, also known as Function
as a Service (FaaS), is an extremely liquid approach to scalability and
resource usage. With this approach, a tenant creates calls to functions, i.e.
the minimum building block of a software component, which are served by
the infrastructure provider. In this way, the software component becomes
both platform- and server-independent, as the different functions of the same
program could be served by different providers.

2.3.2. Evolution of Mobile Networking

There is currently a huge research effort on the softwarization of the
mobile network. Among other efforts, 5G mobile communications are
working towards the introduction of a fully softwarized architecture [53].
However, as compared to the Cloud evolution, the telecommunications world
is still half-way in this transition, despite the adoption of technologies
such as Software Defined Networking (SDN) and Network Function
Virtualization (NFV), which have helped towards the softwarization of
network architectures, and the architectural trend towards their modularization,
with a clean separation between the control and the user planes. This way, the trend
is to split, already at the architectural level, the formerly monolithic nodes
into several smaller logical entities. Thus, the 5G Next Generation NodeBs
(gNBs) can be split into centralized and distributed units, denoted as gNB-CU and

15

2 RELATED WORK

gNB-DU, respectively [54], while core network components grow both in number
and in functionality.

As depicted in Figure 2, the telco world is lagging in the adoption of novel
software paradigms, being approximately at mark ‘B’ of Cloud Computing,
with achievements such as:

» The standardization of 3GPP Release 15 [55], which specifies the
Service Based Architecture (SBA). This represents a new paradigm
for the 5G Core network and is driven by the trend towards the
modularization of the network. With this approach, the formerly static

interface between different elements has evolved into a flexible bus,
which hosts HTTP REST primitives between modules.

» The concept of Cloud-Native Network Functions (CNF), which is
making its way into the current technology. In fact, there are already
proposals for the design of Cloud-native VINF's. However, they are in a
very early stage and mostly involve Core Network VNFs only.

Despite these achievements, mobile networks are still in the middle of this
transition as the Cloud-native paradigm has not been fully adopted into
operational networks. This is caused by the poor agility of the current state-
of-the-art solutions, and the fact that current VINNF's are not truly agnostic
to the underlying NFV infrastructure. While dynamic Cloud resources
orchestration algorithms are currently under study [50], the VNFs that would
be running on such resources are still not optimized for this type of operation.

So even if the efforts towards the Cloud-native transition of the NFV are still
ongoing, the research community shall prepare for the next transition. This
will introduce a complete re-design of the whole mobile protocol stack, which
will certainly facilitate a dynamic resource orchestration and assignment,
being (i) more efficient in terms of both resource and time granularity
scalability, and (i7) capable to elastically adapt to the instantaneous
demand. With such a protocol stack, the deployment and operational costs
of the network would be reduced to their minimum. Given that this flexible and
on-demand operation of the network closely resembles the current operation of
Cloud Computing platforms, it should also follow similar principles, hence
the name Serverless Mobile Architectures introduced on Section 7.1. As a
result, in the near future, serverless computing would become a possibility for
implementing a wide range of communication services, being also considered
by service providers for implementing new networking services [57].

2.3.3. Introducing the Serverless Paradigm

For the deployment of Cloud applications, serverless is emerging as a
popular paradigm in the industry. It started becoming popular thanks to
Amazon, with its related product called AWS Lambda, which was followed
by similar products from other Cloud providers, such as Google Cloud
Functions, Microsoft Azure Functions or IBM OpenWhisk [58].

All of these technologies share the concept of deploying and executing
small code snippets without any control over the compute resources on

16

2 RELATED WORK

which the software is running. This way, it has also been extended to open-
source projects such as OpenLambda [59], an open-source serverless com-
puting platform for building next-generation web services and applica-
tions, creating a ecosystem based on the concept of Lambda, which is the
equivalent to the idea of serverless function itself.

Apart from that, it is also attracting the attention of the academia and
the research world, with projects such as SAND [60], which is a serverless
platform based on the introduction of application-level sandboxing and a
hierarchical message bus for the communication between processes, or SOCK
[61], a container system specifically optimized for serverless workloads.

However, these serverless platforms and techniques are somehow tied to
the platform in which they are implemented, as providers indend to lock-
in their serverless clients by also offering extra services that assorts
the provisioning of serverless applications. For this reason, the presence of
serverless frameworks are becoming increasingly popular, having the purpose
of abstracting the technical features of the serverless platform or Cloud
infrastructure for application developers, making then easier the process of
designing, developing and deploying the serverless functions [62].

Examples of these frameworks, in terms of open-source solutions,
are OpenFaaS, Kubeless, Fission or OpenWhisk (this last one already
mentioned before), among others, existing already studies that compare some
of these frameworks from different points of view; e.g. taking into account
the support offered by the framework on each software’s lifecycle phase,
like in [62], or performing tests for measuring some interesting metrics such
as the response time, the ratio of successful responses or the impact of auto-
scaling on some of these metrics, as done in [63]. The decision of choosing one
solution or another will depend on the stakeholders implied on the system
to be developed, as each framework offers different capabilities that make it
suitable for particular use cases.

Furthermore, for complementing this serverless ecosystem, other technolo-
gies have been proposed in the state of the art for solving specific needs in
this kind of platforms. This is the case, for example, of Kata Containers [64],
which brings together the speed of containers and the security offered by
virtual machines into a single product that expects to propose a two-layer
system-wide isolation for improving the security capabilities of contai-
nerized components. These containers can be used for handling serverless
workloads, being deployed over specific hypervisors adapted to the serverless
trend, such as Firecracker [05], a Virtual Machine Monitor that uses K VM
virtualization infrastructure to provide minimal virtual machines (also known as
MicroVMs).

17

Part 1. Monitoring of Network Slices

19

An Adaptable Monitoring
Framework for 5G Environments

The evolution of mobile networks from 2G to 4G generations was mainly
focused on providing a better quality of experience to end users, by increasing
the bandwidth offered by the network at the radio link segment. However, 5G
networks have a broader target, shifting traditional communication networks to
a new generation mobile network that embraces other business sectors.

In the case of 5G, the authors of [66] have reported the service requirements
expected by verticals, which is the terminology used by 5G to define these business
sectors moving to 5G as the main transport infrastructure. Due to the stringent
and different requirements imposed by all these potential verticals deploying
their services on top of 5G networks, the most important SDOs tackling the 5G
standardisation, like the 3GPP, have introduced the concept of Network Slicing
[67], which provides multiple isolated logical networks from a single physical one.

In this approach, each logical network may support a particular type of
5G service; e.g. Enhanced Mobile Broadband (eMBB), Massive Machine-Type
Communications (mMTC) or Ultra-Reliable and Low Latency Communications
(URLLC). As a matter of fact, 5G telecommunication operators have to design
their networks to support all these services and to guarantee that the Key
Performance Indicators (KPIs) demanded by their verticals are satisfied.

To support this, 5G networks will require a flexible and efficient monitoring
system to guarantee all Service Level Agreements (SLAs) between
operators and users. In this aspect, the collected network metrics would serve
to optimize the performance of the network, and to confirm the achievement
of the KPIs.

This Chapter presents a Monitoring framework capable of meeting the
above requirements. In particular, this Monitoring system has been fully designed,
implemented, evaluated and deployed within the scope of the 5G EVE European
project [10], providing a platform which allows the distribution and consumption
of metrics and KPIs (based on a formula that is applied to one or more metrics)
in multi-site 5G scenarios, where different verticals from different stakeholders are

21

3 AN ADAPTABLE MONITORING FRAMEWORK FOR 5G ENVIRONMENTS

implemented over a shared infrastructure. This platform is also flexible enough
to be implemented in other projects as well as by telecommunication operators
within the scope of advanced 5G networks.

The main topics that will be discussed in this Chapter are the following;:

3.1.

First of all, Section 3.1 presents the Monitoring general architecture,
which has been designed as a scalable, reliable, low-latency, distributed,
multi-source data aggregation and re-configurable architecture.

Secondly, Section 3.2 justifies and details the implementation selected in
the 5G EVE project to instantiate the proposed architecture, based on the
publish-subscribe paradigm.

Then, Section 3.3 validates such implementation against the require-
ments imposed to the Monitoring architecture from the 5G EVE project
specifications.

To confirm that the system works properly in a real scenario, Section 3.4
summarizes the execution of a given experiment in the 5G EVE platform,
focusing on the Monitoring and Data Collection workflow.

Finally, Section 3.5 summarizes and concludes the work related to this
Monitoring platform.

System Design

3.1.1. System Requirements

The characteristics to be offered by the Monitoring service which will be used
as input for the design of the platform, according to the thorough analysis of the
5G EVE infrastructure and service requirements done in [68], are the following:

1.

The Monitoring distribution architecture must support multi-site experi-
ments involving distant sites.

The platform must deal with experiments that may generate monitoring
data in the order of gigabytes.

Monitoring data has to be available to experimenters after the experiment
has concluded, estimating a retention time of at least 2 weeks.

Redundancy is needed to offer a fault-tolerant system.

The architecture must be flexible enough to accommodate a wide variety of
elements to be monitored.

The support of some pre-processing techniques (e.g. translation across
formats) may be needed for an efficient subsequent processing.

The collected metrics may be used and post-processed by a KPI Validation
Framework, also defined within the 5G EVE project, which can also
distribute the calculated KPIs’ values from a specific set of metrics using
this platform.

22

3 AN ADAPTABLE MONITORING FRAMEWORK FOR 5G ENVIRONMENTS

3.1.2. Proposed Architecture

The features presented in Section 3.1.1 result in the architecture for the
collection, distribution and pre-processing of monitoring data presented
in Figure 3, which satisfies all the requirements described above.

! Proprietary b
i interfaces -
! 5GEVE _—— i
| metrics Pl

‘ Intra-sﬂebroker}
| system

__

|MEF| |MEF| |MEF| |MEF|

T Y

Metrics
Mgmt.

Figure 3: Monitoring metrics architecture.

In this general-purpose architecture, two sets of components can be
distinguished:

= In dark blue, some elements of the experiment infrastructure to be
monitored, included here for the sake of completeness, and which may be
User Equipment devices (UEs), monitoring tools, (4G or 5G) radio antennas,
Physical Network Functions (PNFs) or Virtual Network Functions (VNF).

= In light blue, the elements that compose the Monitoring platform
itself, which will be presented next by following a bottom-up/west-east
approach.

The first component of the architecture to be described is the Metrics
Management entity, whose main role is to properly configure the other
components of the architecture, providing the configuration of the necessary
data service function chains in order to enable metrics to be gathered, filtered,
normalized and relayed to upper layers in the architecture to be further processed.

The component of the architecture directly connected to each experiment’s
infrastructure is the Metrics Extractor Function (MEF), which takes care
of extracting and translating (if required) the metrics generated by a
heterogeneous set of infrastructure components.

In the proposed architecture, it is assumed that there is a one-to-one logical
relationship between a particular MEF and its monitored infrastructure

23

3 AN ADAPTABLE MONITORING FRAMEWORK FOR 5G ENVIRONMENTS

component, although this may be implemented in different ways, mainly
depending on if it is fully, partially or not integrated in the monitored components,
as presented in Figure 3.

This modular design allows to have dedicated MFEF's per infrastructure
device, which satisfies the requirement (5) explained in Section 3.1.1. This way, it
would be possible to implement dedicated MEFs to handle any kind of proprietary
interfaces (dotted red lines in Figure 3). Then, the Metrics Management entity
instructs each MEF to extract metrics from its monitored component and to make
them available to the upper layer (i.e. the Broker system, which will be described
next).

It is important to remark that all these metrics have to follow the 5G EVE
format [09] to satisfy constraint (6) presented before. This might require a
translation from a proprietary or different standard formats to the 5G EVE one,
in order to handle all the messages received from the MFEFs in an unified way. This
format is presented later in Section 3.2.

The monitoring data is then received by the Broker system, which is in
charge of storing and distributing not only the metrics obtained from different
sites, but also the KPIs’ values generated in upper layers. For accomplishing
requirement (1), two brokering levels have been defined:

» The Intra-site broker, deployed per site, whose role is to eventually
harmonize the metrics’ format to provide data in an unified way,
preserving the data privacy of each site.

» The Inter-site broker, which interconnects all sites together to both:

o Aggregate metrics through the Metrics aggregation component,
generating new metrics automatically based on those provided by the
MFEFs. For example, a given function may receive the instantaneous
transmission rate at a given network interface every second, to then
compute the mean rate in a window of ten seconds. More complex
functions may estimate the average rate between two points in a defined
window time.

e Directly provide them to the different tools grouped in the Monito-
ring/Results collection/KPI tools entity, which is the entity con-
suming metrics from the Metrics aggregation or the Inter-site broker
system, laying the ground for a set of value-added additional com-
ponents that range from the KPI Framework for performance diagno-
sis already commented, which allows to fulfill requirement (7), to more
complex modules such as data analytics platforms, SLA enforcement
mechanisms or data visualization services, which can be fed from the
monitoring data provided by the system. The first example, related to
data analytics, will be further explained in Section 4.2.2.

Finally, in order to satisfy requirements (2), (3) and (4), the Metrics
Management entity is the responsible for properly configuring all levels of the
broker system in a per-experiment basis, also enabling the necessary security
mechanisms to ensure that only the actors belonging to a given experiment can
manage the monitored data of their experiment and not others.

24

3 AN ADAPTABLE MONITORING FRAMEWORK FOR 5G ENVIRONMENTS

3.2. Implementation Based on the Publish-Subscribe Pa-
radigm
The instantiation of the Monitoring architecture presented in Section 3.1

over the 5G EVE architecture [10] [70] results in the composition of a specific
component chain, depicted in Figure 4.

KPI Validation Framework tools

Monitored Data

component Visualization
deliver|metrics publish KPI A
extract| logs i i
Multi-Broker Cluster v visualize v data
Data publish Site replicate | Data Collection |deliver metrics | Data Collection

Shipper metrics || Broker | metrics Manager and KPls and Storage

Site n Interworking Layer 5G EVE Portal

Figure 4: Component chain that implements the general Monitoring metrics
architecture in the 5G EVE platform.

The keystone of this chain is the publish-subscribe messaging pattern,
providing a distributed system with parallel data processing capabilities which
allows to meet the requirements imposed to the Monitoring platform. This
paradigm suits the multipoint-to-multipoint monitoring data flow of the 5G EVE
project, closer to a big data pipeline rather than to a classic relational database
model, as a massive volume of data is pushed from site facilities without a specific
format, which is not suitable to be stored in a relational model [71].

Following the above, the Broker system is mapped into a set of publish-
subscribe queues, starting from local queues deployed in each site facility
(Intra-site broker) that aggregate metrics to the Interworking publish-
subscribe queue (Inter-site broker), which provides a transparent and
seamless access to metrics’ and KPIs’ values from all sites to components
from upper layers. In Figure 4, each Intra-site broker is represented by a Site
Broker entity, and the Inter-site broker, together with the Metrics Management
service, are implemented by the Data Collection Manager component in 5G
EVE architecture.

All the Site Brokers and the Data Collection Manager are based on Apache
Kafka [72], an open-source, industry-proven publish-subscribe tool that manages
data pipes and forwards the published data to the different components
subscribed, providing a higher maximum sustainable throughput than other
broker-based message-oriented middleware technologies [73]. Moreover, it also
implements several useful functionalities related to data transformation and
normalization (Kafka Streams), security (Kafka ACL) or data persistence (Kafka
Store), among others [74]. This makes Kafka an optimal solution for data-
movement, frequently adopted as pipe to different processing systems [75].

This hierarchical architecture can be encompassed with the so-called Multi-
Broker Cluster. In this way, the Site Brokers located in each site replicate
the data received towards the Data Collection Manager, which is in charge of

25

3 AN ADAPTABLE MONITORING FRAMEWORK FOR 5G ENVIRONMENTS

providing the data that come from different sources to the entities interested in
consuming that data.

The specific building blocks that composes the Data Collection Manager
can be seen in Figure 5, reflecting the usage of Apache Kafka as the core
component of this module, which is interconnected to all the Site Brokers
from each site facility. All the brokers are coordinated and orchestrated
by Apache ZooKeeper [7(], an open-source cluster coordinator for distributed
systems. Additionaly, a Python script [77] is also running in the DCM for
managing the data handled by this component, which are the names of the
processes to be orchestrated in Kafka, called topics. The steps to deploy and
configure all these modules are available in [78].

I DCS-DV I

ELM 5G EVE Portal RAV
DCM

9092

Subscribe metrics, KPls
REST8090 and signallinginfo

Subscription/|

withdrawal of Apache 9092

signalling

. jid Subscribe metrics
topics Kafka %kafka ¢) . Publish KPls
REST 8090 l ZooKeeper
Publish P

topicsinfo W logi 9092 | | 2181__J Apache
Ython 108IC |~ upiish i dusier | 760K
i signalling info i coordination 00 eeper

9092
Publish metrics

5G EVE Interworking Layer
i Site facilities

Sitel | Siten
M M
Apache Apache
Kafka Kafka

Bkaifka. Bkeifka.

Figure 5: Data Collection Manager architecture.

In particular, the information model that defines the different topics that
are handled by the Multi-Broker Cluster in a concurrent way is described in the
so-called Topic framework proposal [74]. In that way, each topic is designed
to manage a specific set of data (mainly related to a single metric or KPI to
be monitored) that will be different to the data consumed by the other topics,
enabling dataset isolation.

There are two main types of topics defined in the Topic framework, which are:

= Data topics, where each of them transports the values of the metric or
KPI they refer to, followed by some extra information that may be useful
for other modules. In particular, this information corresponds to the 5G
EVE format mentioned in Section 3.1.2, which specifies the fields that the
message containing the data related to the metrics’ and KPIs’ values to be
handled by the Monitoring platform must have. The data structure to be
followed in the case of the 5G EVE project, encoded in a JSON format, is
the following [69]:

26

3 AN ADAPTABLE MONITORING FRAMEWORK FOR 5G ENVIRONMENTS

Code 1: Information model used in 5G EVE to define the messages
containing monitoring data.

1 {

2 "records": [{

3 "value": {

1 "[metric_value|kpi_value]": <value captured from
the execution>,

5 "timestamp": <time in which the value has been
captured>,

6 "unit": <unit used for the value>,

7 "device_id": <ID of the device, to be used in
upper layers if needed>,

8 }

9 }]

10 }

= Signalling topics, used to deliver the name of data topics related
to each metric or KPI to be monitored for a given experiment, process
triggered by the Experiment Lifecycle Manager entity (ELM in Figure 5).
This is a function that fits in the scope of the Metrics Management service,
which automates the process of creation and deletion of topics.

The components that interact with the Multi-Broker Cluster can be classified
as publishers and subscribers, depending on whether they produce data
to the publish-subscribe platform or they consume it. This distinction allows to
simplify the workflow during the experiment execution, as subscribers only need to
be subscribed to the topics related to the metrics and KPIs they want to consume
data from (i.e. the ones used in the experiment), and then, when a publisher
produces data to these topics, the information is automatically delivered to the
subscribers that are listening to the topics.

The main component which performs the metrics’ data publishing
operation is the Data Shipper, playing the role of the MEF component from
the general architecture, and whose objective is to execute the log-to-metric
operation that transforms the heterogeneous, raw logs obtained from components
and collection tools into metrics with a common, homogeneous format. These
Data Shippers can be placed within each component as a lightweight software
(ranging from general-purpose solutions already developed and packaged like Beats
[79] to more complex solutions programmed for specific-purpose cases) or can be
deployed in a separated server, but in both cases, they must be connected to
the Multi-Broker Cluster with a logical connection.

Moreover, the KPI Validation Framework tools, e.g. the Result Analysis
and Validation (RAV) component in Figure 5, also contain publishers providing
KPIs related to a given set of metrics received from the Multi-Broker Cluster
after being published by specific Data Shippers, which means that these KPI tools
also implement a subscriber for each metric to be consumed.

Finally, the Data Collection and Storage-Data Visualization compo-
nent (DCS-DV in Figure 5) performs the expected functionalities provided by the
Monitoring/Results collection entities with a solution based on the Elastic (ELK)

27

3 AN ADAPTABLE MONITORING FRAMEWORK FOR 5G ENVIRONMENTS

Stack [80] [81]. This component, whose complete architecture is presented in Fi-
gure 6, receives the metrics’ and KPIs’” values through a specific subscriber for
each metric and KPI, and it is separated logically in two main blocks [82] [83]:

» The Data Collection and Storage component (DCS), which collects the
metrics and KPIs to which this component is subscribed through Logstash,
from the FElastic Stack, and provides data persistence, searching and
filtering capabilities (related to the Metrics aggregation functionality from
the general architecture) for obtaining the useful data to be monitored during
the experiment thanks to Elasticsearch, also from the FElastic Stack. In this
sense, a Python script [34] is in charge of automating the process of
correctly configuring both Logstash and FElasticsearch.

» The Data Visualization component (DV), in charge of enabling the
monitoring of the progress of the experiment in terms of that monitoring
data displayed through Kibana from the FElastic Stack. For this purpose,
a set of dashboards are created for experiment, presenting the graphs
related to each metric or KPI monitored. These dashboards are created by a
Java application placed in the DCS [85] [86], which directly interacts with
Kibana.

| Portal GUI I

I._ e -
. |pcs ! Dv| ;
| | :
. /(REST I
I => 8080 .
: Java| Java logic H%J Kibana | |
. 1 8 . kibana]
I . s SRS, SRS, SRS, SR SRR I
Signalling topic’s 4@%{;" Elasticsearch | .
activation process I : . I
= elasticsearc|
! Configurationfiles,l LOgStaSh | |
! Kaffka wn l0gstash |
I IIIII W N EEE F EES O B F S F B O B F S S S f e . e
,, 5G EVE Portal
5G EVE Interworking Layer

Figure 6: Data Collection and Storage-Data Visualization architecture.

The steps to deploy and configure all the DCS-DV modules are available in
[87].

3.3. Performance Evaluation

To assess and validate the proposed Monitoring framework implementation,
the testing process described below has been followed, based on the application

28

3 AN ADAPTABLE MONITORING FRAMEWORK FOR 5G ENVIRONMENTS

of a top-down approach. All the tests performed are based on single-broker
experiments (i.e. only the Data Collection Manager is used, without interacting
with Site Brokers) to characterize the platform in terms of several performance
parameters.

3.3.1. System Assumptions

The definition of the System Under Test (SUT) parameters is bound to the
5G EVE multi-site platform’s operation, in which a set of experiments
derived from the different use cases defined in the project may be running
simultaneously at a specific time, sharing all the computing and network
resources provided by both the 5G EVE platform and the site facilities.

As a first approach to the evaluation, the following assumptions were made:

= The Monitoring platform must be prepared to deal with extreme conditions,
such as the simultaneous execution of a considerable amount of experiments.
As the 5G EVE project initially proposes the validation of experiments from
six specific use cases [(3], the execution of an experiment from each
use case at the same time can be taken as the worst case study to
validate, resulting in six simultaneous experiments to be handled by
the Monitoring platform. For testing purposes, each experiment will last 5
minutes.

= FEach experiment can define a different number of metrics and KPIs
to be collected and monitored during the experiment execution, depending
on vertical’s needs. For this evaluation process, as these metrics can be
extracted from different sources (e.g. UEs, VNFs, PNFs, etc.), and each
source may have several related metrics or KPIs, it can be assumed that each
experiment will require the monitoring of an average of 20 parameters.
Furthermore, as each monitored parameter has a topic assigned for
the transport and delivery of their corresponding collected data, each
experiment on average will create 20 topics in the Monitoring platform.
As a result, the maximum number of topics? created in the platform
would be 20 x 6 = 120 in this case.

= The size and the publication rate of the messages containing the values
of metric or KPI managed by the Monitoring platform depend on the nature
of the data transported. As a result, four different alternatives have
been considered for the tests:

e B and 1 KB messages for data traffic (i.e. numeric or string values),
representing the 80 % of all the monitoring traffic (40 % for each case).
The publication rate for both options is set to 1000 messages/s.

e 100 KB and 1 MB messages for multimedia traffic (i.e. images
or video frames), which would be the remaining 20 % (10 % for each
case). The publication rate for both cases is less than the data traffic

2This figure does not include the signalling topics presented in Section 3.2, whose footprint is
not significant compared to these data topics.

29

3 AN ADAPTABLE MONITORING FRAMEWORK FOR 5G ENVIRONMENTS

one, as the received throughput almost never reached that value due
to the message size, with 10 messages/s for 100 KB messages and
1 message/s for 1 MB messages.

The percentages have been selected assuming that most of the data will
be small-side messages, but also considering that there may be larger
messages, mainly related to multimedia data. As a result of the figures
selected for each kind of message, this results in a concurrent publication
rate of approximately 102,4 Mbps per experiment.

All these assumptions are summarized in Figure 7 for better understanding;:

100 B @ 1000 msg/s » 6,4 Mbps

Data traffic g 8 topics (40%)
16 topics (80%) 1 KB @ 1000 msg/s » 64 Mbps

£ topics (40%)
6 for each 20 topi o
experiments [Rl

100 KB @ 10 msg/s > 16 Mbps

Multlm.edla ! 2 t0pics (10%)
traffic

4 topics (20%) 1MB @ 1 msg/s = 16 Mbps

2 topics (10%)

102,4 Mbps/experiment

Figure 7: Calculations made for system setting.

= Another important parameter related to the publishers is the message
batch size, which controls the amount of messages to collect before
sending messages to the Multi-Broker Cluster, and which was set to 1
after validating that higher values of this parameter cause worse results in
terms of latency.

= The selected values of publication rate for each message size are also coherent
for the subsequent calculation of the disk size estimation for each broker
node, which is computed as D = s*rxt* f /b, where s is the message size, r is
the publication rate, ¢ is the retention time (at least 2 weeks, as discussed in
Section 3.1.1), and f and b are both the replication factor and the number of
brokers in the system, typically f = b — 1, this leading to a value slightly
below 100 TB, which is an estimation of the expected amount of data
handled in the project.

3.3.2. Testbed Setup

The testbed used for the evaluation of the architecture consists of two
Virtual Machines (VMs) deployed in a host located in the 5G EVE Spanish
site facility, 5TONIC [88], using Prozmoz [39] as virtualization environment.
This host is equipped with 40 Intel(R) Xeon(R) CPU E5-2630 v4 at 2.20 GHz and

30

3 AN ADAPTABLE MONITORING FRAMEWORK FOR 5G ENVIRONMENTS

128 GB RAM. The distribution of components in each VM can be seen in Figure
8:

<sangrenel |ip_addr> <monit| ip_addr>

-writers-per-worker 1

- :' Traffic emulator VM publishesin <topic> 5 ! 5G EVE Monitoring Architecture VM ',
S = gl - H
QU jo} ! T ; R N
& L, L Dockerized testbed consumes from <topic>
5 Sangrenel S &,/
] S el
g g S, §8kafkc
E |
[—) delivers <topic> messages
r 1
< vl d
L S g8l lﬁ Wy logstash
s s !
H sangrenel -brokers <monit_ip_addr>:9092 2S00 . |
. S5 preprocesses gnd outputs <topic> messages |
-interval 1 Q :'u’ e !
-message-batch-size <msg _batch_size> S S ' == elasticsearch i
-message-size <msg_size>] 1 !
-produce-rate <rate> filters <topic> messages |
-topic <topic> S !
8 . kibana
g/k

W | S]
' |displays graphs from <topic> data

Visualization

Figure 8: Testbed architecture.

The proposed scenario simulates the monitoring and data collection
process of the metrics and KPIs related to a set of experiments where
only one VINF (VM#1) is publishing monitoring data in the Monitoring
architecture (VM#2). The characteristics and software deployed in each VM,
both based on Ubuntu Server 16.04 [90] and executed with 16 virtual CPU cores
and 32 GB of RAM, are the following;:

» VM#1: data publishers are emulated with Sangrenel [91], a Kafka
cluster load testing tool that allows to configure parameters such as the
message/batch sizing and other settings, writing messages to a specific
topic and obtaining, as output, the input message rate or the batch
write latency, which are the performance parameters under study,
being dumped every second.

s VM#2: for emulating a single-broker version of the 5G EVE Monitoring
architecture, a Dockerized [92] environment for testing the 5G EVE
Monitoring and Data Collection tools [93] has been used, implementing
the Data Collection Manager, Data Collection and Storage and Data
Visualization components from Figure 4 with a solution based on
Apache Kafka and the Elastic Stack. For monitoring the resource
consumption of each container, Docker native tools (e.g. docker stats)
have been used.

3.3.3. Preliminary Evaluation Process for a Single-Topic Experiment

To start with the performance analysis of the Monitoring platform, experi-
ments with only one topic created were performed, checking that the system
operates correctly and consistently for each message size and publication rate
proposed in Section 3.3.1 without limit of resources, and also with the objective

31

3 AN ADAPTABLE MONITORING FRAMEWORK FOR 5G ENVIRONMENTS

of defining the minimum set of computing resources (RAM and vCPU) for
the most critical components of the architecture.

In this set of tests, some of the assumptions from the system characterization
were confirmed, e.g. the poor results for multimedia traffic when its
publication rate is 1000 messages/s, where the Input/Output (I/O) message
rate (i.e. the received throughput divided by the publication rate) falls from 1
(obtained when the reduced publication rate is used) to 1/4 in the best-case
scenario, or that the optimal value for the message batch size parameter
is 1 for all types of traffic, as increases in their order of magnitude cause exactly
the same increase in the order of magnitude of latency. For example, for a 100 B
message size, the batch write latency goes from 0,8 ms with a message batch size
of 1 to 500 ms, where the message batch size is 1000.

Apart from that, it was also observed that the resource consumption
in the components of the Monitoring architecture is CPU-intensive for the
most critical components of the platform, which are Kafka, Logstash and
Elasticsearch, leaving the RAM for working as buffer and cache before saving data
to disk. As a consequence, this fact facilitates the sizing of these components,
as the RAM value can be fixed with a specific value (in this case, with 2 GB
of RAM is enough for working properly during the testing process), whereas the
CPU value is the only variable term.

In terms of CPU, for a single-topic experiment, Logstash is the most
critical component, with a consumption that ranges from 100 to 200 %, needing
4 vCPU in order not to degrade the performance. However, the CPU consumption
in Kafka and Elasticsearch stays below 100% for all types of traffic, so 1
vCPU for both of them should be enough to cover single-topic experiments.
However, in multi-topic experiments, which will be studied next, Kafka
becomes the most critical component with a noticeable increase in its CPU
consumption, whereas Logstash and FElasticsearch approximately maintain the
same consumption profile.

3.3.4. Performance Impact Assessment for Simultaneous Multi-Topic
Experiments

In multi-topic experiments, the distribution of performance parame-
ter values between topics of the same type (i.e. that handle the same type
of data, message size and publication rate) in a given experiment is expected to
be uniform in general conditions, where there are no more priority topics than
others.

This assumption is confirmed in Figure 9 for the batch write latency
analysis in one experiment with multiple topics, according to the per-
experiment topic distribution described in Section 3.3.1. As a result, this confirmed
assumption is used in subsequent tests for accumulating and averaging the
values obtained from performance parameters in topics of the same type, as
if they were a single topic, which allows to simplify the performance analysis.
Moreover, in Figure 9, it can be also observed that latency is higher in larger
message traffic, also increasing the deviation of the results, represented with
the higher values of the 95 % confidence interval estimated for multimedia traffic,

32

3 AN ADAPTABLE MONITORING FRAMEWORK FOR 5G ENVIRONMENTS

for example. This reflects that smaller messages result in better and more precise
values of latency.

0.015
0.014
0.013

__ 0012

L0.011

3 0.010

& 0.009

2

5 0.008

2 0.007

=

= 0.006

5 0.005

® 0.004

So.

0.003

0.002

0.001

0.000
- o~ ® < 0 © ~ © o S ha o b 3 2 e = @ 2 i
§§§§‘§§§§§%%8%%%%%%%%
RR R R R R RRE R e e e e e e

Topic

B 1008 @ 1000 msg/s [l 1 KB @ 1000 msg/s

Message size @ Message rate
Il 100KB @ 10 msg/s 1MB @ 1 msgls

Figure 9: Batch write latency distribution in one experiment with 20 topics.

Continuing with the different tests carried out related to multi-topic
experiments, they aim at evaluating two design parameters that causes
variations in the Monitoring platform’s workload: (i) the number of topics
created and running in the system as concurrent processes, due to the execution
of simultaneous experiments, and (i7) the total throughput received by the
Monitoring system, calculated as the sum of all input message rates received from
each topic.

However, a variation in any of these design parameters may cause different
effects in the system in terms of CPU consumption or performance that
must be characterized, also checking if the superposition property can be

applied when both parameters are modified simultaneously. For doing this, the
study was divided in two parts:

1. A first analysis where one of the design parameters is modified while
the other one stays fixed.

2. A final test including the modification of both parameters at the same
time, checking if the superposition of individual effects is present.

Part (1) is presented in Figure 10, where the CPU consumption and the

batch write latency related to 100 B aggregated data traffic® are evaluated
for different examples of experiments:

= On the left side, the number of experiment is fixed in 1, whereas the
total throughput is modified, using the theoretical input message rate as
upper limit (i.e. 102,4 Mbps) and dividing it by values between 1 and 6.

3This size is used in the rest of the analysis because it presents a lower value of latency with
a tighter 95 % confidence interval, according to Figure 9.

33

3 AN ADAPTABLE MONITORING FRAMEWORK FOR 5G ENVIRONMENTS

= On the right side, the number of experiments is variable, ranging from
1 to 6, but the total throughput for all experiments is conserved, which

is achieved by dividing the message rate aforementioned by the number of
experiments deployed.

experiments fixed, throughput variable Throughput fixed, # experiments variable
500 0.030 500 0.030
450 . 0.027 __ 450 0.027
R 400 0.024 X 400 0.024 %
S 350 0.021 § 350 0.0215
8 300 0.018 B.300 00185,
§ 250 0.015 § 250 0.015®
@ @ o
g 200 s ra T 0.012 g 200 0.012F7
[5) - i i o - Y =}
E 150 . 0.009 E 150 ° > z | 0.0092
) 100 o ° (] ® = ® Y 0.006) 100 °) 0.006@
50 0.003 50 0.003
0 0.000 0 0.000
[=ar} f=ar} c - j=37} c = [~} ca [~y ca C5 j=7} =7}
0 Q O Q o8 [TleN o &2 O Q [Tle% o8 [Tle% o 8 [Tle% [Tle%
=] £ =) £8 Ea €2 £EQ =) I=F] =) I=F] =]
== =3 =5 == TS == = = T = = == ==
[~ [© [9] [™ [I3 < [9] < [9) (9] ™ (9] (9] © (9] ~
o Q Q© Q jeNoV] a N QN QN Q Q© Q Q
XS xS X - X7 X > XN XN X - X X o A xS
RS Do mg (G v GRS v o o5 D« mg Vo SR\
- -« - - ™ - - - o~ ™ < o N ©
Experiment Experiment
Component Kafka Logstash Elasticsearch Component Kafka Logstash Elasticsearch

Figure 10: CPU consumption and batch write latency evolution for 100 B data

traffic in different experiments, modifying a different design parameter in each case
whereas the other one remains fixed.

In both cases, it is observed that the batch write latency does not vary
when modifying one of the design parameters, and it is also true for the
I/O message rate, which tends to 1. However, in the first case, when the
total throughput becomes higher, the Kafka CPU consumption increases
with a trend that seems exponential, but in the second case, the CPU
consumption also remains constant in average.

As a result, while the total throughput has an effect in the Kafka CPU
consumption with an exponential tendency, the number of experiments
(i.e. the number of topics in the system) does not seem to influence the system
performance, as long as the total throughput is conserved when there is an increase
in the number of topics, taking care of specifying correctly the publication rate
in order not to exceed the system limits. However, this is true while the system
is not saturated. When this happens, the effect is similar to the one shown in
Figure 11, related to the part (2) of the study aforementioned.

34

3 AN ADAPTABLE MONITORING FRAMEWORK FOR 5G ENVIRONMENTS

1000 [} 1.0
900 ~ 093
2 800 ° 0.8
5 700 = - o.7g
S 600 0.68
E —_
S 500 = 0.53
2]) @
g 400 04w
(&) Y &
S 300 03¢
o
O 200 023
100 T == = T 0.1®
0 - - - - 0.0

1 experiment @
102,4 Mbps/exp
2 experiment @
102,4 Mbps/exp
3 experiment @
102,4 Mbps/exp
4 experiment @
102,4 Mbps/exp

Experiment

Component Kafka Logstash Elasticsearch

Figure 11: CPU consumption and I/O message rate evolution for 100 B data
traffic in different experiments, modifying both number of experiments and total
throughput in all cases.

Here, when the number of experiments increases, the total throughput
is also higher, and in fact, it can be noticed that message loss is present from
two experiments deployed, as the I/O message rate is nearly 0,8 (so the 20 % of
messages are lost), and falling until less than 0,4 in the case of four experiments
deployed simultaneously, value that remains constant even if more experiments
are deployed (these experiments have not been included in Figure 11 just to present
the saturation process with more detail).

The evolution of the CPU consumption in Kafka is also stopped due to
this saturation state, as well as the latency starts to present variations as it
is calculated based on the messages that are eventually received.

In fact, these results are quite aligned with the outcomes from [94], where it
was reported that Kafka throughput depends linearly on the number of
topics, reaching a hard limit at some specific point. According to this study,
when there is only one Kafka replica, the limit is reached for around 15.000-20.000
packets per second, value which is close to these results, as one experiment in our
testbed means around 16.000 messages per second and the deployment of a second
experiment causes a loss of performance, since that limit, which should be between
16.000 and 32.000 messages per second, is exceeded.

3.4. Demonstration of the Platform in a Real Case
Scenario

This Section shows how the Monitoring platform behaves in the execution
of a real experiment in the 5G EVE platform, confirming that it works

35

3 AN ADAPTABLE MONITORING FRAMEWORK FOR 5G ENVIRONMENTS

properly according to the system specifications commented in Section 3.1.1 and
the performance evaluation carried out in Section 3.3.

In particular, all the steps followed to design and execute an experiment are
summarized in [5], which presents the testing process of a vertical service composed
of a web server and a client in the 5G EVE platform. However, only the workflow
related to the Monitoring system will be presented here, according to the four
major phases in which the experiment lifecycle can be split: (i) experiment
design and definition, (ii) experiment preparation, (ii) experiment execution and
(1v) experiment results analysis [81].

3.4.1. Experiment Design, Definition and Preparation

Prior to the experiment execution, the experiment design and definition
phase is focused on planning and formalizing the experiments for a given
vertical service, identifying aspects like the components that compose the
service, their interactions, the target execution environment(s) and condition(s),
the elements to be monitored and the related KPIs, or the detailed steps to run
the experiment [31].

The outcome of this stage is the definition of a set of blueprints (i.e. a sort
of templates) that define the high-level features of the service. These descriptors
also include several variable parameters that can be specified in the experiment
preparation phase for tuning the specific experiment instance, obtaining as
a result the descriptors that are used for the experiment instantiation.

There are different types of blueprints, depending on the information related
to the experiment they contain: vertical services (Vertical Service Blueprint, VSB),
contexts (Context Blueprint, CtxB), test cases (Test Case Blueprint, TCB) and
experiments (Ezperiment Blueprint, ExpB) [95]. Regarding the metrics and
KPIs to be monitored by the Monitoring system, these are defined in the VSB,
CtxB and ExpB in the case of metrics (depending on the metric type, which can
be infrastructure or application metric), and only in the ExpB in the case of KPIs.

Then, once the experiment is defined and on-boarded in the platform, i.e.
ready to be executed, the Experiment Lifecycle Manager component of
the 5G EVE platform gathers the information related to the metrics and KPIs
from these blueprints and sends it to the Data Collection Manager through the
signalling topics [96]. The process of building the messages sent to the DCM
can be seen in Figure 12.

After receiving all the messages, the DCM performs the creation of the topics
in the platform, sending also a notification to the DCS-DV in order to enable
the consumers that receives the monitoring data in each topic and to create
listeners that trigger the generation of monitoring dashboards when the
monitoring data is received in the DCS-DV. As a result, the Monitoring platform
is ready to start consuming monitoring data once the experiment starts its
execution.

3.4.2. Experiment Execution and Results Analysis

During the experiment execution phase, the scripts and applications to
run the experiment are executed. In this stage, the Data Shippers are in charge

36

3 AN ADAPTABLE MONITORING FRAMEWORK FOR 5G ENVIRONMENTS

VSB/CtxB ExpB
compatibleSites: sites:
m———— < <site_i> - <site_I>
I -l applicationMetrics:
| - metricldf<id> | = — - kpild ==
1 'other info) . (other info)
1 _metrics:
1 - metricld:|<id> |= =
| (other info)
=== ———— == -
|
| |
ELM r |
— — — - — — — -
Send POST /dcm/ pubIishf[sig—naIIing.metric.applicaR' signalling.metric.infrastruct%ignalling]pﬂ totheDCM
| N e memm=] T . o — -) _ - |
1{ 1 I I [
‘records': [{ |
1 ; . | 1
value': | I
! ' (autogenerated byl the ELM)', 1 |
| ‘action': \'[subscr‘ibeluns_u ribell , - = = — _NV - 1
‘topic': ' 4 . .fgpplication_metrld'j.i'lfr‘astr'uctur‘e_met_r'l kpi). 'y 1
b - - - - ST R T Lo
e m e = — — -
}
}
})
{
‘value': {
}
]
¥

Figure 12: Blueprints used for collecting the information related to monitoring
data and generaetion of the messages sent to the DCM.

of publishing the generated metrics in the Monitoring system through the
corresponding topics?. Consequently, the DCM delivers the metrics received
to the RAV (which calculates the KPIs associated to the metrics received and
publishes them again in the system) and the DCS-DV (which collects the data
and enables the dashboards to visualize them). The full workflow can be reviewed
in [69], which contains its latest update.

The dashboards offered by the Monitoring system, combined with the KPI
validation process performed by the 5G EVE platform, are the main outcomes
provided for the experiment result analysis phase, which is not a stage as is, but
it involves the interpretation and validation of the results obtained during
the experiment execution. As an example, Figure 13 shows the dashboards of a
metric (request_time_taken) and a KPI (time_taken_per_request_kpi) that belongs
to one of the experiment executions of the vertical service presented in [5], showing
their evolution over time.

4The Data Shippers must know in advance the topics in which they have to subscribe,
information that can be provided as Day-2 configuration by the Runtime Configuration
component from the 5G EVE platform [74].

37

3 AN ADAPTABLE MONITORING FRAMEWORK FOR 5G ENVIRONMENTS

Experiment Metrics Dashboards

Figure 13: Dashboards that present the evolution over time of a metric and a
KPI that belongs to a given experiment.

3.5. Summary

To sum up, this Chapter has presented a modular Monitoring architecture,
proposing an implementation based on the publish-subscribe paradigm.
Moreover, it has been shown that this architecture is able to monitor a real
experiment with the results commented in Section 3.4.

Furthermore, the performance evaluation process performed on Section 3.3 has
revealed some interesting insights related to the Monitoring architecture. The
first one is that the distribution of the performance parameter values in
topics of the same type is uniform for single-broker experiments, allowing the
aggregation of the performance values obtained for each topic of the same type
and, as a result, simplifying the study of the overall system.

In these single-broker experiments, it has also been detected that the
total throughput is the parameter that can cause the greatest impact on
system performance, with two different possibilities: while the system
has enough free resources to work, the CPU consumption tends to
increase exponentially, keeping batch write latency and I/O message rate
constant. However, when the system is saturated, which seems to happen for a
total throughput between 16.000 and 32.000 packets per second, this exponential
growth is stopped and the I/O message rate fails below 0,4 in the worst
case.

38

Towards a Distributed Monitoring
Framework for Beyond bG Networks

The work presented in Section 3, in terms of the application of monitoring
processes in 5G networks, has revealed the need for a flexible and efficient
monitoring system capable of realizing 5G multi-site and multi-stakeholder
scenarios. This kind of platforms, like the Monitoring framework already
presented, allows 5G to support the optimization of the network performance
and the support for the requirements and KPIs defined for each type of use
case accommodated in the system.

Nevertheless, for the evolution towards the so-called Beyond 5G commu-
nications, focusing on the next-generation 6G systems, it has to be noticed
that these networks will not only be Cloud-centric, which is a paradigm al-
ready present in 5G with examples such as Edge Computing or Cloud Radio Access
Networks (C-RAN). However, they will likely become fully Edge-centric, flow-
based networks, with a reduced relevance of core data centers in order to
move towards more flexible deployments based on the Edge [97].

Being more precise, in relation to 3GPP standardization from the current
5G system architecture perspective, the Release 17 is the phase in which it is
expected to see different improvements to be adopted for Beyond 5G networks.
Among those features, whose availability may arrive in mid-2021 as a first tentative
date, we have the enhanced support of IIoT, NPNs, wireless and wireline
convergence, multi-access Edge Computing or network automation [95].
These enhancements imply, consequently, the support for a diverse catalog of
use cases in a flexible, federated, secure and reliable way, in a network
composed by multiple network environments [97].

Then, assuming that the Edge Computing concept, together with the
current specification of 5G networks and the vastly increased number of data
processing devices at the Edge, will be the base of Beyond 5G networks
[99], these next-generation networks could be envisioned as a user-driven,
distributed Cloud Computing system where the resource pool is foreseen
to integrate the participating users. In this context, current monitoring

39

4 TOWARDS A DISTRIBUTED MONITORING FRAMEWORK FOR BEYOND 5G
NETWORKS

solutions are limited, as they have to be able to maintain 5G performance
in a distributed system with heterogeneous resources and still be efficient and
sustainable.

This Section proposes the application of the Monitoring framework
presented in Section 3 as a possible solution to monitor vertical deployments
not only in 5G networks, but also in Beyond 5G scenarios based on multi-
site, Edge deployments, where different stakeholders may share the resource
pool in a distributed environment. Taking advantage of the usage of publish-
subscribe mechanisms adapted to the Edge, this adaptable Monitoring solution
should fit and scale in different network deployments, anticipating new
requirements that Beyond 5G networks may impose, such as efficient resource
utilization or the processing of large amounts of real-time traffic generated
by the applications located in the resource pool.

Along the above lines, the following topics will be discussed in this Chapter:

» Firstly, Section 4.1 identifies the requirements that must be taken
into account in Beyond 5G scenarios, to be met by the Monitoring
architecture already presented in Chapter 3 when integrating it in Beyond
5G deployments.

= In Section 4.2, the general design and implementation of the Monitoring
platform are reviewed in order to check whether it fits in Beyond 5G
scenarios, and also proposing extensions to the architecture to integrate
new technologies and paradigms also present in these next-generation
environemnts, such as data analytics.

= Then, Section 4.3 presents the performance evaluation of an evolved
version of the testbed that holds the Monitoring platform, testing both
single-broker and multi-broker configurations in a scenario where
different constraints related to Edge deployments are imposed.

= Finally, Section 4.4 summarizes and concludes all the work presented in
this Chapter.

4.1. New System Requirements

To tackle the integration of the Monitoring platform in Beyond 5G scenarios, it
is not enough to fulfil the initial requirements imposed to the platform, already
presented in Section 3.1.1, but it is also necessary to accomplish the requirements
related to these next-generation networks.

As Beyond 5G and 6G communications are currently under research from
both the academia and the industry, being mostly a declaration of intentions on
how new networks should be built, these requirements have to be considered in
a higher level of abstraction, rather than providing specific KPI figures to be
achieved by the platform.

According to the current literature related to Beyond 5G and 6G networks
from the state of the art [98]-[97][100][99][101], where the analysis of Beyond 5G
and 6G system requirements, challenges and possible deployments is introduced,

40

4 TOWARDS A DISTRIBUTED MONITORING FRAMEWORK FOR BEYOND 5G
NETWORKS

the new requirements for this next-generation network architecture are the
following:

1. Alternative compute architecture: the current Cloud-based architec-
tures are not enough in this type of networks. As stated in the introduction
of this Chapter, the move to Edge deployments must be a reality, achieving
the building of distributed computing and communication resources
through federated network control and orchestration solutions in the-
se environments. The flexibility and adaptability to a wider range of use
cases must take center stage.

2. Service-based design: the network should also provide common service
discovery and monitoring functions in order to allow network fun-
ctions to easily interact between them, also facilitating the introduction
of new features in the future by utilizing existing services.

3. Self-operation with less human involvement: this feature is related to
the enhancement of network automation, which can be enabled with the
introduction of AT and ML technologies in order to allow the network
to scale on demand and enable the self-evolving capability of network
functions based on data analytics and predictive models. This may drive
the need for a new architecture that is AI-native and data-driven.

4. Global access: this not only involves the integration of multiple and
different use cases, but also it requires the access to the network
anywhere and anytime, transforming the network in order to simplify
and unify this access.

5. Ultra-scalability: evidently, scalability must be present, taking into
account the exponentially growing of the number of devices connected
to the network. In this way, the amount of data and information managed
by the network will explode, becoming impossible to use traditional
data collection, storage and analysis technologies to deal with this issue.
Consequently, the network should be designed to be distributed and flat,
extending network functions to the Edge to improve the scalability
of the system. For example, the AI/ML algorithms aforementioned can be
used in the Edge to enable the evolution of the MEC towards an Al-enabled
platform that is able to offer intelligent services delivered over the fixed or
mobile access network to the Edge devices.

6. Sustainability: this topic aims at reducing the footprint of current
deployments in terms of power consumption or computing resources’
allocation, among others. The limitation of the resources used in
Beyond 5G systems is, consequently, a fact that must be considered in the
design and implementation of platforms to be integrated in this ecosystem.

7. Respect for user privacy: the guarantee of data confidentiality is also
becoming a topic of interest in mobile networks, which are currently subject
to regulation in order to allow the user to decide how to handle their

41

4 TOWARDS A DISTRIBUTED MONITORING FRAMEWORK FOR BEYOND 5G
NETWORKS

personal data. This must be an instrument to put the user in full control of
their data, selecting to whom their activity data is given or to which statistics
it can be incorporated, among other actions. These security issues must
be also present in the design of the Beyond 5G and 6G systems.

4.2. Revision of the System Design and Implementation

As already stated in Chapter 3, the 5G EVE complete platform, based on
multiple sites with heterogeneous components generating useful data that is
likely to be monitored, relies on a flexible and distributed Monitoring service
in charge of collecting that monitoring data and distributing it to specific
entities that obtain insights about the behaviour of these components.

In this sense, a general-purpose Monitoring architecture like the one proposed
in Chapter 3 is desired, so that it can also fit in other similar scenarios to the
5G EVE one, with regard to multi-stakeholder environments; for example, by
introducing it in Beyond 5G scenarios.

To achieve this, the Monitoring architecture and its implementation based on
the publish-subscribe architecture must be reviewed in order to confirm that it
is able to meet the requirements and constraints of the Beyond 5G deployments,
already presented in Section 4.1, also proposing possible extensions of the
architecture that may be useful for fulfilling specific Beyond 5G requirements,
mainly related to the achievement of network automation by introducing Al-
based data analytics techniques.

4.2.1. Adaptation of the Architecture

The architecture presented in Section 3.1.2 is suitable for being integrated in
Edge environments, meeting the requirement (1) proposed in Section 4.1. In
Figure 14, the Monitoring architecture is presented again, but emphasizing the
components that can fit in either the Edge or the Cloud.

i Proprietary
! interfaces

| 5GEVE

3 metrics

Metrics
Mgmt.

Figure 14: Monitoring architecture, highlighting the components to be deployed
in the Cloud and in the Edge.

42

4 TOWARDS A DISTRIBUTED MONITORING FRAMEWORK FOR BEYOND 5G
NETWORKS

With this approach, it is clear that the sites would be Edge-based, making
the process of integrating new site facilities (i.e. new stakeholders) in the
platform easier due to this deployment mode, facilitating the global access to
the platform to meet requirement (4).

This implies the adaptation of the Broker System, which is the core of the
Monitoring platform, in order to fully integrate the Intra-site broker system
within Edge environments. For doing this, the resource consumption must
be limited for the sake of sustainability, related to requirement (6). Moreover,
as each Intra-site broker only manages the data related to the Edge location
in which it is deployed, the security policies to be applied to the monitoring
data can be different for each site, adapting them to the user needs to achieve
requirement (7).

This adaptation is also required for the MFEFs; but this module, from
a conceptual point of view, is flexible enough to be integrated in different
environments, from on-premises deployments to more agile facilities such as Edge
environments. [ts lightweight philosophy is a potential enabler for embedding
lots of devices in the platform, while maintaining the scalability of the system,
according to requirement (5).

Furthermore, the other components of the architecture can still be deployed
in a Cloud-based mode, but this does not prevent them from being also
integrated in the Edge. In any case, it is clear that it is a service-based
platform (requirement (2)), defining high-level building blocks that interact
between them and that can be extended with new functions, without requiring
the modification of the other blocks. One of the potential extensions that
may be added to this platform is the inclusion of technologies and paradigms
oriented to the network automation, that would allow the platform to achieve
the requirement (3). This topic will be addressed in the next Subsection 4.2.2.

4.2.2. Extensions to the Architecture

As commented in the last section, and also according to the definition of the
Monitoring/Results collection/KPI tools entity that belongs to the Monitoring
architecture, presented in Section 3.1.2, this block may encompass some other
components that take the monitoring data received from the Broker system as
input and provide value-added capabilities to the Monitoring platform.

In particular, this Section is focused on the integration of the Monitoring
platform in the AI-driven Data Analytics framework proposed in [3], whose
block diagram is presented in Figure 15:

43

4 TOWARDS A DISTRIBUTED MONITORING FRAMEWORK FOR BEYOND 5G
NETWORKS

Management & Orchestration domain
NFVO |
ong-term VNF
|I0:ad> Al-LTF |:> e placement
. engine .
history forecast decisions
MPAT VNFM mid-term
load Sy resource
|:> Al-MTF |:> By f‘> sc§I|.ng
history forecast decisions
Control plane PCE
load short-term PCE
NWDAF [EEEE)| | AlSTF |mmm) | P9 policies
hi engine T
istory forecast optimization
RIC
load short-term scheduler
RNIB [| Al-STF |mmmm) | "° 2 policies
history forecast Lone"® updates

3GPP modules ETSI modules
0O-RAN modules New algorithms

Figure 15: A network data analytics framework proposal with Al-driven
capabilities.

This framework supports an autonomous and efficient control, manage-
ment and orchestration of mobile networks. To achieve this, it relies on an
efficient collection of data in the network infrastructure, together with the
knowledge inference from these data. While the second point is performed by
the Al-based algorithms proposed in the framework (i.e. AI-LTF, AI-MTF and
AI-STF), there is no specific proposal to cover the data collection process.

A possible solution for this would be the integration of the Monitoring
platform in this system, as proposed at the beginning of this Section, as it
perfectly suits the problem of gathering monitoring data from different
sources (in this case, the MDAF [I5] module from the Management and
Orchestration plane and the NWDAF [102] and the RNIB [16] modules from the
Control plane) and delivering it to the interested entities (i.e. the Al-driven
algorithms).

The joint architecture of both Monitoring and Data Analytics framework is
presented in Figure 16, where there is one particular MEF module for each
data source, in charge of providing the network metrics to the Broker
system, which consequently delivers the metrics to the proper algorithm
engine.

44

4 TOWARDS A DISTRIBUTED MONITORING FRAMEWORK FOR BEYOND 5G
NETWORKS

Management & Orchestration domain
NFVO
long-term VNF
Al-LTF [:> eﬁFY[?e placement
forecast = decisions
MoAF K-~ VNFM .
mid-term T resource
£ Al-MTF :> engine scaling
3 forecast decisions
n
S
vy
|
Control plane _Ez’ PCE
E short-term, o PCF
NWDAF - A-STF () | < Igm) policies
forecast g optimization
RIC
short-term — scheduler
RNIB = H ALSTF |) enume | BB policies
forecast updates

3GPP modules ETSI modules Monitoring

b8 Framework

O-RAN modules New algorithms modules

Figure 16: Enhanced network analytics framework with the integration of the
Monitoring framework for data collection purposes.

In this way, the Monitoring framework could help to provide a consistent
way to obtain and transport network metrics, regardless of their origin
and destination (i.e. 3GPP, ETSI or O-RAN modules, among others), leaning
on the broker-based architecture proposed. This allows the Monitoring system to
deal with the different granularity of the network metrics handled, in terms of
traffic volume (at global, slice or flow levels) and timescale (intervals of hours,
tens of minutes, minutes or shorter), due to its flexible nature.

4.2.3. Implementation Update

As stated in Section 2.1, the publish-subscribe mechanism, which is the
paradigm selected by 5G EVE to implement the Broker System from the general
Monitoring architecture, is currently used in different solutions related to the
distribution of data in Edge environments, so that it is a good alternative
to be used in this kind of environments.

As a result, this feature allows to deploy small processes in the sites that
only gather monitoring data and forward it to upper layers of the platform,
being then aligned with Edge’s philosophy. This can be achieved by the correct
coordination between the Site Brokers and the Data Shippers.

In the case of these Data Shippers, and in the same way that happened
with the MEFs in the general architecture, they can be also deployed in a
wide variety of environments, from Edge to Cloud, according to their flexible
nature, making the transition to an Edge environment smooth, consequently.

45

4 TOWARDS A DISTRIBUTED MONITORING FRAMEWORK FOR BEYOND 5G
NETWORKS

4.3. Performance Evaluation

To assess and validate the suitability of the Monitoring framework
implementation for Edge environments, the testing process described below
has been followed, based on the application of a top-down approach, starting
with single-broker experiments to characterize the platform in terms of several
performance parameters, and finishing with multi-broker experiments to
check the impact of having the two brokering levels described in Section 3.1.

4.3.1. Testbed Setup

The testbed used for the evaluation of the architecture is an evolution of
the testbed presented in Section 3.3.2. It consists on a set of Ubuntu Server
16.04 virtual machines (VMs) [90] deployed in a server located in the 5G
EVE Spanish site facility, 5TONIC [38], using Prozmoz [39] as virtualization
environment, and K3s (a lightweight Kubernetes distribution) [103] to orchestrate
the containerized components® deployed in each VM. This server is equipped
with 40 Intel(R) Xeon(R) CPU E5-2630 v4 at 2.20 GHz and 128 GB RAM. The
distribution of components in each VM can be seen in Figure 17.

ol

display ‘graphs related to <topic> data
kubernetes

-
. . i) Master node
Data Visualization Kibana

fi IterI<topic> messages

Elasticsearch

Data Collection | preprocess?t and output

and Storage <topic> | messages nede KPI Validation

Logstash Latency
calculator

Framework tools

deliver | <topic> messages
Data Collection
— ZooKeeper
Manager — |

— — — —JKafka cluster management

Framework tools

!
I
o & | kubernetes
wls © Worker node
Slx Vo I
sl ES | cener node KPI Validati
I alidation
%g g_ I <topic> Latency
S 2

l WSl calculator

Site
Broker
‘ publish| data in <topic>
Data Timestamp
. Sangrenel
Shippers generator

Figure 17: Testbed architecture.

®The images of these components can be found in [104].

46

4 TOWARDS A DISTRIBUTED MONITORING FRAMEWORK FOR BEYOND 5G
NETWORKS

The proposed scenario simulates the monitoring and data collection process
of the metrics and KPIs related to a set of experiments. The components
deployed in each VM are the following:

= Kubernetes Worker node VMs: each Kubernetes worker emulates
a site, including Data Shippers for publishing monitoring data in a
Site Broker, based on Apache Kafka, that replicates the data towards
the Data Collection Manager, placed in the Kubernetes Master node.
Regarding the Data Shippers, this role is played by two components:

e Sangrenel [91], the Kafka cluster load testing tool already presented in
Section 3.3.2. The performance parameters obtained, each second,
from this tool, are the input message rate (used for calculating the
Input/Output (I/O) message rate, i.e. the received throughput
divided by the publication rate) or the batch write latency (i.e. time
spent until receiving an ACK message from the broker).

e A Python-based Timestamp generator [105], used exclusively in
multi-broker experiments. It sends messages with timestamps
embedded that are eventually received by a Latency calculator
component, based on Node.js® [107], which takes the timestamps and
calculates the so-called broker latency, i.e. time spent between the
publication of data and its reception in an entity subscribed to the
Site Broker. In fact, this component can be associated to the KPI
Validation Framework tools, as it calculates the latency (KPI)
based on timestamps (metric).

» Kubernetes Master node VM: in this server, the Data Collection
Manager, Data Collection and Storage and Data Visualization
components from Figure 4 have been implemented with a solution based
on Apache Kafka and the FElastic Stack. A ZooKeeper [70] instance is
also running to coordinate the Kafka cluster, and there is also another
instance of the Latency calculator deployed here to calculate the end-
to-end latency KPI, this being the time spent between the publication of
data in a given site and its reception in an entity subscribed to the Data
Collection Manager (so that data has been previously replicated from the
Site Broker).

For monitoring the resource consumption of each container, Docker [92]
native tools (e.g. docker stats) have been used.

4.3.2. Singe-Broker Experiments

For these experiments, only one Kafka broker is required, so the testbed
depicted in Figure 17 can be simplified by only using one Kubernetes Worker
node with just a Sangrenel container directly connected to that Kafka broker,

6This programming language has been used in order to make use of Kafka’s KIP-392 feature,
to receive data from the closest replica [106].

47

4 TOWARDS A DISTRIBUTED MONITORING FRAMEWORK FOR BEYOND 5G
NETWORKS

represented with the dark blue line that connects both components in the testbed
diagram.

In this way, this analysis continues with the conclusions extracted from the
performance evaluation carried out in Section 3.3.4, related to the saturation
effect observed in the last experiments performed. This issue must be also taken
into account in order to introduce these CPU-bound components in Edge
environments, where the number of physical and virtual resources allocated
to execute these workloads are quite limited. In this way, apart from having a
theoretical limit imposed by the technology itself, the amount of resources
can also have an impact on performance in case of sizing the platform wrongly,
provoking a loss of performance even before reaching the hard limit.

To reflect the impact on performance caused by the limitation on
computing resources (i.e. vCPU allocation in the Kafka container), Figure 18
presents the evaluation of both the batch write latency (top subplots) and the
I/O message rate (bottom subplots), for 100 B data traffic, in two situations:

= First of all, assuming that a full experiment is being executed in the
platform (i.e. a total throughput of 102,4 Mbps is received by Kafka), the
vCPUs assigned to the Kafka container was modified from 1 to 6 (the
two graphs on the left in Figure 18); checking that, from 5 vCPU, the
values obtained for the performance parameters become reasonably good
and stable.

= However, on a scenario where the Site Broker is placed in the Edge, a high
resource allocation cannot be guaranteed. For this reason, a new set of
tests in which the vCPU allocation was fixed to 1 vCPU, then varying
the throughput received by Kafka, was carried out (the two graphs on the
right in Figure 18). The values used for the throughput vary between the
100 % and the 10 % of the throughput related to an experiment (i.e. 102,4
Mbps). The results reflect that, although the latency does not improve
when a lower throughput is received, this is not the case for the I/O
message rate, which improves every time that throughput is reduced
until reaching a value of 1 when the throughput is reduced to the 10 %.

48

4 TOWARDS A DISTRIBUTED MONITORING FRAMEWORK FOR BEYOND 5G

NETWORKS
Total throughput fixed, # assigned vCPU variable # assigned vCPU fixed, total throughput variable
2500 0.10 500 0.10
~ 450 . - 0.09 450 0.09w
[() [] [
Sa0 ® = 008 400 ° ° 0,085
2350 0.07 350 ° 0.072
€ s
2 300 ° - 0.06 300 0.06 3.
5 250 0.05 250 0.05%
:‘; 200 — 0.04 200 0045
@ 150 ® 003 150 0.033
©100 —— 002 100 = T T - - 0.02=
% 50) ° PS 0.01 50 T 0.01&
¥ 0 0.00 0 0.00
@ » %] 7] 7] »

98 ©®8 ©8 ©&8 @8 o8 @5 ©2 ©®% ®% 05 os

o= o= o= o3 o= o3 22 2= 23 23 2= 2=

6 oI 5% o 6% &% ox ok o% 02 ok oy

S o S A S o S S S > o > o > g >N) =)

-2 Q2 ®2 <2 e ©2 -~) - © -< - - =

Experiment Experiment
500 1.0 500 ° 1.0_
£ 450 * e 09 450 0.93
§ 400 0 08 400 o.a%
E‘ 350 07 350) 07¢
5 300 2 0.6 300 062
§ 250 05 250 053
S 200 . 04 200 L4 043
Q. 150 03 150 ° 038
g 100 » 02 100 0 A4 - o o 0.2;
m 50 0.1 50 = 01%
< 9 0.0 0 0.0
@ 7] 7] 7] 7] 13

8 ©8 ©8 ©8 % of @5 ©®5 ©2 % @3 03

o3 o3 o= o= o3 o3 52 23 23 23 2= 2=

5y & &% Oy &y &3 5% 6% 6% 62 6% o3

22 2 a2 32 &2 ef° R R R

Experiment Experiment

Figure 18: Effect of saturation in performance parameters when limiting Kafka
vCPU allocated in different experiments.

Consequently, to move to an Edge environment, it is crucial to limit the
resource allocation, but also the throughput received by the Monitoring
platform, in order to avoid packet loss. This issue should not be a problem in Edge
environments, assuming that most use cases deployed in this kind of scenarios
will prioritize the ability to support a large number of connections rather
than guaranteeing a certain value of latency or bandwidth; as happens in IoT,
for example. Therefore, the higher values of latency, compared to the ideal
scenario in which there are no problems related to resource consumption (70 ms
vs. 10 ms, approximately), should not be a problem while the throughput
is kept at a reasonable value. In this case, this limit can be set to 10 Mbps.

4.3.3. System Scalability Validation

To avoid this saturation effect, the direct solution is to build mechanisms
and processes that allow system scalability, mainly oriented to the application
of horizontal and/or vertical scaling processes depending on the current
status of the platform. This kind of systems are useful for Edge environments, in
order to scale the platform according to the traffic demand and the resources
available.

For this evaluation process, a preliminary vertical scaling system for this
Monitoring platform is proposed (i.e. no new instances are added, but the
computing resources attached to the available instance are increased or decreased
depending on the workload), based on the results obtained in the previous tests

49

4 TOWARDS A DISTRIBUTED MONITORING FRAMEWORK FOR BEYOND 5G
NETWORKS

as training data, used to refine the different cases that can occur in terms
of resource consumption (mainly related to CPU) and performance evaluation
(mainly based on the batch write latency and the I/O message rate), and the
conditions related to each case that trigger the system scale process.

Figure 19 presents an example of vertical scaling for one experiment
deployed in the platform. In this case, the Kafka container is scaled by increasing
its vCPU assignment until the system is able to handle the workload received
without saturating, decision that depends on different parameters, such as,
e.g. the current CPU consumption, the delay to compute a KPI or some other
performance variable.

1000 1.0
900 0.9
800 0.8

o
3

a)el abessaw Jndinondu)

700

o
)

600

o
o0

500

@ Kafka scales to 6 vCPU

°
~

400

o
w

300

Kafka CPU consumption (%)

@ Kafka scales to 4 vCPU

o
)

200

@ Kafka scales to 2 vCPU

o

100

o
[S)

Experiment 1 deployed (Kafka = 1 vCPU)
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 100

Figure 19: Evolution of the I/O message rate related to 100 B data traffic in one
experiment when vertical scaling mechanisms are enabled.

Note that, in this case, for illustrative purposes, an upscale is only triggered
when a CPU is fully occupied for relatively long periods of times, this
resulting in a relatively high convergence time (around one minute) of the 1/O
message rate, but more “agile” schemes could be easily implemented if needed.

4.3.4. Multi-Broker Experiments

Finally, the full multi-broker platform, as built in the testbed already
presented in Figure 17, will be evaluated in terms of the performance
parameters already presented in Section 4.3.1 and the CPU consumption of the
Data Collection Manager’s Kafka broker, whose computing resources
will not be limited. On the other hand, the Site Brokers will be limited to 1
vCPU, taking the value already tested in the tests presented in Figure 18.

In this case, the meaning of experiment will be a bit different. This way,
each experiment deployed in multi-broker experiments will be executed in a
particular Kubernetes Worker node (so, for six experiments, six Kubernetes
Worker nodes will be required), sending monitoring data to the corresponding

20

4 TOWARDS A DISTRIBUTED MONITORING FRAMEWORK FOR BEYOND 5G
NETWORKS

Site Broker at 10 % of the total throughput calculated in Section 3.3.1 (i.e.
10,24 Mbps), which is the throughput hard limit to avoid saturation, as
stated in Figure 18.

The first performance parameter to be evaluated is the latency, in the
different acceptations that were defined in Section 4.3.1: the batch write
latency, the broker latency and the end-to-end latency. The values obtained
during the execution of experiments, from one to six, for 100 B data traffic, can
be seen in Figure 20. Here, a similar effect than the one obtained in Figure 9 can
be observed: the results obtained in each site are similar for each case, so that
performance data can be also aggregated in future analysis.

1 exp. 2 exp. 3 exp. 4 exp. 5 exp. 6 exp.

2.71

2.6 1

251 e] T =

2.44

2.3

2.24

2.14

2.0

1.9

1.84

1.79 Broker
z 12 Broker 1
3141 l Broker 2
G 131 Broker 3
LB' 124 [Broker 4

114 . Broker 5

104 Broker 6

0.9

0.8+

0.71

0.6

0.5

0.44

0.3

0.24

0 | i i) ——

0.0

oker 1
oker 2
roker 3
roker 2
roker 37
roker 4

Broker 1
Broker 17
Broker 2
Broker 1
Broker 27
Broker 3
roker 17
Broker 57
Broker 1
Broker 2
Broker 3
Broker 47
Broker 5
Broker 6

— Broker 4

D @ o O @ @ o
Kafka Broker @ 1 broker per experiment

Figure 20: Evolution of the three types of latency in multi-broker experiments.

Moreover, the same tendency in latency values than observed in Figure 18 can
be also seen here: the latency does not vary even though the total throughput
received by the Monitoring platform increases due to the deployment of new
experiments.

Furthermore, the results’ obtained for each type of latency are consistent
with the definition of each of them: it is expected that the batch write latency
(the darker colour for each case) would give the lowest value (approx. 70—80
ms), as it only implies the reception of the ACK from the Site Broker. The
next one would be the broker latency (the colour of “intermediate” darkness in
the graph), in which the Site Broker has also to deliver the data to a subscriber,

"Note that these results have been obtained in a virtualized scenario, in which the latency
between virtual machines and containers is negligible. In a real scenario, the delay introduced by
each of the path components must be also take into account.

o1

4 TOWARDS A DISTRIBUTED MONITORING FRAMEWORK FOR BEYOND 5G
NETWORKS

but it can be checked that this does not cause a great impact on latency, as it is
increased to nearly 150 ms in the worst case. And finally, the highest value on
latency (approx. 2,5—-2,6 seconds) is obtained for the end-to-end latency (the
lighter colour in the graph), due to the replication operation performed between
each Site Broker and the Data Collection Manager and also the delivery to the
corresponding subscriber. This value can be assumed in Edge environments
for the reasons aforementioned.

Finally, the impact on the I/O message rate in the multi-broker
experiments is the same than experienced in single-broker experiments with
CPU limitation (reflected in Figure 18), where the packet loss increases with
the increase of the total throughput received in the platform. This effect can
be seen in Figure 21, where the performance results from different brokers
have been aggregated due to the results obtained in Figure 20.

120 1.0

110 09

100
0.8

90

;

80 °

o
o

70

60

50 ==

o o
i o
ajel abessaw indinndu)

Kafka CPU consumption (%)

40

o
w

30

0.2
20

0.1

1 experiment 2 experiments 3 experiments 4 experiments 5 experiments 6 experiments
Number of experiments

Figure 21: Evolution of Data Collection Manager CPU consumption and 1/0
message rate in multi-broker experiments.

It can be observed that I/O message rate falls to nearly 0.65 when the six
experiments are being executed concurrently, meaning a total throughput
received of around 60 M bps. This result, compared to the case observed in 18 with
a single broker, with 1 vCPU, consuming 65,54 Mbps (the I/O message rate was
less than 0.3), implies that the distribution of the total throughput between
several Site Brokers improves the results.

Moreover, the CPU consumption in Data Collection Manager’s Kafka broker
also increases with each experiment, but in a less rate, reaching the 110 %
of vCPU consumption for six experiments. Consequently, although the core

92

4 TOWARDS A DISTRIBUTED MONITORING FRAMEWORK FOR BEYOND 5G
NETWORKS

of the Monitoring platform is expected to be executed in environments without
limit of computing resources, this final result may allow the deployment of some
components of this core (e.g. the Data Collection Manager) on the Edge; as
long as the total throughput, again, does not exceed a specific limit that causes
saturation (60 Mbps in this case).

4.4. Summary

In this Chapter, the modular Monitoring architecture already presented
in Chapter 3 has been extended, in terms of design and implementation,
to meet the requirements and expectations related to Beyond 5G scenarios,
with the specific example of Edge environments. In fact, it has been showed the
platform’s ability to be easily adapted when integrating new, advanced features,
such as the interaction with AI/ML techniques for data analytics purposes, as
commented in Section 4.2.2.

Regarding the performance evaluation of the platform, focused on these
new kind of network deployments, it has been shown that the platform is able
to manage real, complex experiments in both single-broker and multi-broker
configurations.

After detecting the possibility of saturating the platform in specific
conditions, the analysis of the performance parameters when the computing
resources allocated (i.e. the vCPU) are limited revealed that the system can
reach the saturation state even before that the theoretical limit provided
in Section 3.3.4.

This constraint can be regulated with the modification of the total
throughput injected in the platform, allowing to increase the I/O message
rate by reducing the throughput, while maintaining lower resource’s
usage and a practically constant latency. This is particularly important
in the transition towards more flexible deployment such as Edge-based
environments, in which resource’s consumption is a crucial issue to be tackled.
Furthermore, these results were used to build a preliminary vertical scaling
mechanism, which calculates how many resources are needed for a given
workload.

Finally, in multi-broker experiments, the impact of deploying several
experiments, consequently involving the joint activity of different Kafka
brokers, was evaluated, checking that the latency, in its different variants,
remains also constant, being then the I/O message rate the performance
parameter to be optimized by adjusting again the total throughput
received by the platform, issue that should be easy to solve in Edge
environments, where latency and bandwidth are not as important as a
flexible deployment of solutions to ensure a lower consumption, allowing
the connectivity of a huge set of devices to a given platform.

Summing up, based on the results obtained after this performance evaluation
process, it has been confirmed that this Monitoring platform is able to scale in
multi-site scenarios, enabling also lightweight deployments oriented to Edge
and Beyond 5G deployments.

93

Part 2. Orchestration of 5G
Transport Networks

95

Novel Network Orchestration
Techniques Based on SDN and
Intent-Based Capabilities

Since its conception, the 5G System architecture has been designed to
enable the use of techniques such as Network Function Virtualization (NFV)
and Software Defined Networking (SDIN) [55], in order to provide scalability,
flexibility, agility and programming capabilities to the multi-tiered 5G mobile
networks [108]. These technologies are expected to tackle some key challenges
in terms of the 5G network infrastructure and traffic management, where
the application of network slicing is crucial to achieve a real multi-tenant
architecture. Some of them are related, mostly, to the management of physical
and virtual resources, the end-to-end service orchestration of services and
the end-to-end connectivity services.

There are also other technologies that can help to cope with these challenges.
For example, in terms of orchestration capabilities, embedded monitoring
systems in orchestration solutions, like the proposal made in Section 4.2.2, can
allow the usage of measurement-based orchestration algorithms to improve
system’s performance.

Regarding the application of SDN in 5G networks, it can enable the
programmability of these connectivity services provided by 5G networks,
thanks to the dynamic configuration and management of traffic flows [108].
Moreover, SDN also allows to move from a networking infrastructure mostly
based on proprietary and specialized hardware, to a SDN-friendly
switching and routing equipment, thus reducing costs while gaining the
flexibility provided by the development and deployment of network applications
regardless of the underlying infrastructure.

The model of the 5G transport network to be managed and controlled
by SDN can resemble the Wide Area Networks (WAN) environments in
which SDN have also been introduced, with the so-called SD-WAN solutions,
for its operation, administration and management. Consequently, the 5G transport

o7

5 NOVEL NETWORK ORCHESTRATION TECHNIQUES BASED ON SDN AND
INTENT-BASED CAPABILITIES

network can be seen as a set of separate network domains, which are defined
depending on the scope of each of them, and whose connectivity is managed
by an SDIN-based solution. Furthermore, there may even be domains that are
external to the SDIN control (i.e. based on legacy routing protocols such as
BGP or OSPF) that may need to communicate with these SDN domains.

Then, a desirable SDN-based solution to this kind of environments should be
able to understand and learn from these legacy routing protocols used in
domains that are external to the SDN domains, in order to correctly forward
the traffic between the SDN domains (which acts as a transit network) and
the legacy domains that are present on the SDN network’s edge. Furthermore,
taking advantage of the benefits of SDN and network virtualization, a flexible
management can also be applied to the traffic to meet particular quality
of service (QoS) and service level agreement (SLA) requirements,
introducing the concept of network slicing for this purpose. Nevertheless,
this niche market, in both WAN and mobile networks, is fully dominated by
proprietary solutions, with hardly any competitive open-source solutions,
causing considerable cost increases that are, in fact, contrary to the SDN
philosophy.

To fill this gap, this Chapter presents Alviu [9], developed as a flexible,
resilient and Cloud-native SD-WAN orchestration solution for enterprise
and academic networks purely based on open-source tools, using ONOS as
SDN controller [36], but that can also be a potential solution for SDN-based
5G transport networks due to the similarity between the two scenarios, as
discussed above.

Alviu’s open-source nature®, together with its compatibility with
standard protocols in the SDN southbound API (e.g. OpenFlow) and the
application of the intent-based networking paradigm to manage the lifecycle
of the managed network (as stated in Section 2.2.2), contribute to reducing
the cost of network equipment and operational expenses while abstracting the
complexity of the underlying physical and Cloud infrastructure, avoiding the
risk of vendor lock-in through the support of commodity networking equipment
(white-box switches) and x86 servers.

To describe and evaluate this platform, the following topics are proposed:

= Firstly, Section 5.1 presents how the network infrastructure is modeled
from Alviu’s perspective to fit in the intent-based networking approach
proposed by this orchestration solution.

= Section 5.2 describes the Alviu’s modular architecture, designed to offer
a secure, easy-to-manage and centralized control over the managed SDIN-
based domains based on an intent-based operation in the orchestration
part.

= Then, Section 5.3 details how Alviu manages the intents, including the
specification of the intent states that are handled by it and the transition
between states, which are involved in the workflow followed by the
orchestrator.

8 Alviu’s code is not currently free, as it is a commercial product.

o8

5 NOVEL NETWORK ORCHESTRATION TECHNIQUES BASED ON SDN AND
INTENT-BASED CAPABILITIES

= Section 5.4 shows a performance evaluation to check the impact of this
solution in terms of the intent deployment time, depending on the number
of SDIN domains to be managed, verifying that the system is able to handle
a higher number of SDN domains without saturating.

= Finally, Section 5.5 summarizes and concludes this chapter.

5.1. Network Infrastructure Model

Alviu enables the integration of Cloud and network services through a
centralized and dynamic administration, overseeing the 3 Cs in the network
(Control, Communication and Computation) by following an intent-based
configuration at run-time. In particular, this novel paradigm tries to simplify
the network management for network administrators, providing an easy-to-
use REST API to declare the intents that are used to specify, in a comfortable
way, the scenario to be managed and the configuration to be achieved.

To achieve this, the network infrastructure managed and orchestrated
by Alviu must be modeled in terms of smaller, logical building blocks,
representing the entities that play a different role in the infrastructure. This
abstraction exercise is depicted in Figure 22:

Branch Intent

Virtual
Network L=

z
=2
[¢"]
—~
g
o
=
—~

<

Dynamic Entities

M
. N
. il] 1N . 1 Virtual [-
’ Region | ‘ Branch H S\I\iltch ’— Switch —(Elort Prefix
N

1
N
N

1

Controller IGP 1 n| Transit |]]x Next Ho
General Speaker Point P
Configuration

N
- i Tunnel Port ’ Firewall ‘ ’ QoS‘ _DN_S M
) ; Filtering
Connection Intent Policy Intent

Figure 22: Network infrastructure model implemented by Alviu.

Firstly, there is a distinction between the entities managed by intents or
independent entities that belong to the general configuration of the system.
In the first case, the Branch Intent gathers the entities related to the network
equipment and the IP networks, having the following particularities:

= The highest level component is the Branch, which represents a SDIN
domain composed by a set of SDN Switches. Each SDN switch can be
composed by several Virtual Switches connected logically between them;
which are, eventually, the components that interacts with the SDN
Controller by using the OpenFlow protocol.

29

5 NOVEL NETWORK ORCHESTRATION TECHNIQUES BASED ON SDN AND
INTENT-BASED CAPABILITIES

= The technology used to implement the virtual switches in the SDN switches
compatible with Alviu is Open vSwitch (OVS) [109], the de facto standard
used in switching solutions for virtualized environments.

= Each virtual switch can define a list of Ports that belongs to it, which can be
physical ports of the SDN switch or specific-purpose virtual ports (e.g.
to have a loopback interface for a service that may need it).

= The ports can manage traffic from two sources: (i) SDN domains, modeled
with the Network entity, and (i7) external domains, characterized by
a pair of entities: the IGP Speaker, which is the module, based on
Quagga [17], used for the communication with external domains, and
the Transit Point, which specifies all the information needed by the
IGP speaker to establish that communication in a specific port of a
given virtual switch, so that an IGP speaker can handle several transit
points at the same time. This data is eventually translated into Quagga
configuration to enable this exchange of information.

= Finally, from each Transit Point, all the data related to the edge routers
of the external domains connected to the Transit Point is saved in the so-
called Next Hop entity, from which all the Prefixes learned from these
external domains are also attached while they are announced. Note that
these two entities are dynamic and do not really belong to the Branch Intent
itself, as they only appear if there is communication with an external domain
(Next Hop entity) and if there are prefixes learned from them (Prefix entity).
For this reason, they appear in a different block called Dynamic Entities.

The other two groups related to intents are: (i) the Connection Intent, only
represented by the Tunnel entity, which represents the WAN interconnection
between two switches of the same or different branch, identified by a pair of
Tunnel Port entities, by using tunneling protocols like GRE or IPsec, and (1)
the Policy Intent, which groups a set of entities (i.e. Firewall, QoS or DNS
Filtering) related to policies to be applied to a specific network.

On the other hand, there are three main General Configuration entities
managed by Alviu: (7) the Region, which logically groups a set of branches that
will be controlled in an homogeneous way by (i7) one or a cluster of Controllers,
which are the SDN Controllers present in the network scenario, and finally, (iii)
the Virtual Networks, which are used in order to group network prefixes
that must be interconnected, even though they are used in different branches.

5.2. Alviu Orchestrator’s Architecture

Considering the network model commented in Section 5.1, Figure 23 presents
the Alviu high-level architecture operating in a typical network configuration,
in which it manages a set of SDN domains (or branches) that may interact
with a set of external, legacy domains or with Internet connections.

60

5 NOVEL NETWORK ORCHESTRATION TECHNIQUES BASED ON SDN AND
INTENT-BASED CAPABILITIES

1
1

General Config. Network Intent
Descriptor: Descriptor

e alviu

SDN
Orchestrator

SDN Applications SDN Applications

SDN Local SDN Local
Controller M Controller N

External
Domain X

Figure 23: Alviu’s high-level architecture.

Furthermore, Figure 23 allows to distinguish between the most relevant parts
that compose the final solution, which are the following:

= Descriptors: input information, provided by the users of the platform
(mainly network administrators), that serves to fully define the managed
network and the desired configuration. There are two main types,
aligned with the network model already presented: the Intent Network
Descriptors, used for configuring the entities related to the intents, and the
General Configuration Descriptors, related to the general configuration
itself. For doing that, this data is provided by following a specific data
model, codified in JSON format and provided to the platform through
the REST paradigm. More details about the descriptors and their content
can be found in Chapter 5.2.1.

s Alviu: the core of the solution, which can be divided in two main
components, depending on the level of abstraction that is applied in
each block:

e SDN Orchestrator: this component is in charge of handling the
lifecycle of the intents and configuration declared in the platform
through the descriptors, performing all the required actions and
operations (including calls to the SDN Controllers, the other block
that defines Alviu) to meet the requirements defined in the intents.

e SDN Controller: on the other hand, this module receives the calls
from the SDN Orchestrator through specific REST endpoints enabled
by a set of SDN Applications, which interact with the SDN Local

61

5 NOVEL NETWORK ORCHESTRATION TECHNIQUES BASED ON SDN AND
INTENT-BASED CAPABILITIES

Controller to create, update or delete the flow rules that are installed
in the SDN switches.

The full description of Alviu can be found in Section 5.2.2.

= Network infrastructure: by applying the network model described in
Section 5.1, Alviu is able to control a set of SDN switches, distributed
in domains or branches. Each domain can be controlled by a set of SDN
Controllers (depending on the clustering configuration), using OpenFlow
for the switch-controller communication. Moreover, the SDN branches
can interact with other domains, as presented in Figure 23; for instance,
different SDIN branches can be connected to each other by using
tunneling protocols (e.g. GRE or IPsec) through the Internet, or there
can be configurations where a SDN branch is connected to one or more
external domains (e.g. SDN Branch M connects External Domains X and
Y, or SDN Branch N is connected to External Domain Y), in which case the
SDN switch directly connected to the external domain must handle
the legacy protocols used by the external domain (e.g. BGP or OSPF) to
extract the reachable networks (and even routes to reach the Internet?)
from that domain, providing it upwards to Alviu through REST!® in order
to properly install the flow rules in the SDN switches to correctly route
the traffic to/from external domains. For this purpose, these edge SDN
switches are equipped with Quagga, an open-source routing software suite
that implements such legacy protocols in Unix systems [47]. This flexible
configuration allows the definition of scenarios in which the SDN branches are
more than isolated domains, but they can even act as transit networks that
connects several external domains (e.g. SDN Branch M, which interconnects
External Domains X and Y).

5.2.1. Intent-Based Networking Characterization

Network characterization is mainly declared by using the Network Intent
Descriptors. In particular, these descriptors can be divided in three main
classes, depending on the elements of the network to be defined, and which also
match with the intent’s types presented in Section 5.1:

1. Branch Intent Descriptor: it declares the SDN domains or branches,
in terms of SDN switches and networks managed for each branch.

2. Connection Intent Descriptor: it states the logical connections bet-
ween SDN branches and/or switches.

3. Policy Intent Descriptor: it serves to establish corporate policies to
be applied in specific parts of the networks, such as the specification of
distributed firewalls or QoS rules.

9For example, in the case of the interconnection between SDN Branch M and External Domain
X, the external domain is connected to the Internet and can propagate a default network to reach
the Internet to the edge SDN switch from the SDN branch.

10This interaction is presented in Figure 23 with blue, dotted lines that connect each edge
SDN switch with its corresponding SDN Controller.

62

5 NOVEL NETWORK ORCHESTRATION TECHNIQUES BASED ON SDN AND
INTENT-BASED CAPABILITIES

Moreover, there is also another type of descriptor apart from the intent ones: the
General Configuration Descriptor, related to the declaration of the regions
(with their corresponding controllers) and the virtual networks that are present
in all the scenario managed by Alviu.

In any case, each type of descriptor implies the creation of the corresponding
entities, already presented in Figure 22, in the SDN Orchestrator, to have the
vision of the whole network to be managed. This also results in the operation
of the SDIN Controllers to invoke the proper modules and applications that
triggers the deployment of configuration in the switches (e.g. the activation
of Quagga modules if required to communicate with external domains) and the
instantiation of the corresponding flow rules in the switches, among others.

The relationship between the three classes of descriptors/intents and the
configuration applied over the network infrastructure is depicted in Figure 24,
which takes the infrastructure presented in Figure 23 as example. In Figure 24,
different colours are used to differentiate each case: red colour represents the
definition of the SDIN branches and their switches, green colour shows the
connections between switches (excepting the connections to external domains,
which is managed by the previous class) and orange colour presents possible
corporate policies that may appear in this kind of scenarios (e.g. the usage of
DNS filtering to block traffic to a particular web page in a branch, or the data rate
limitation in a specific link).

Access blocked to
www.facebook.com

External
Domain Y

= SDN
Branch

Domain X Internet Rate limitted
to 10 Mbps

Figure 24: Mapping between the type of descriptors that can be defined and the
configuration applied by Alviu in the managed network infrastructure.

As commented in the introduction of this Section, the descriptors must follow
a data model to specify the fields that must be declared in each type and the
possible values to be included. The descriptors are codified in JSON, a well-
known text format to wrap information exchanged through RESTful applications,
as in this case.

For better readability of this subsection, the data model that composes each
class of intent descriptor, followed by the corresponding fields, their meaning
and an example, can be found in Annex A.

63

5 NOVEL NETWORK ORCHESTRATION TECHNIQUES BASED ON SDN AND
INTENT-BASED CAPABILITIES

5.2.2. Alviu Specification

Alviu has been designed as a modular system, decomposing the SDN network
orchestration and control platform into smaller building blocks with a specific
function in the system. These blocks can be grouped into two main categories,
which matches with the two main components that define Alviu: orchestration
modules and control modules.

The orchestration part, role played by the SDN Orchestrator, is in a
higher level of abstraction, as it works with the network model presented
in Section 5.1, without interacting directly with the network equipment to be
managed. Based on that model, the intents and configuration of the SDN domains
received through the descriptors are translated into specific operations that can
be internal or directed towards the control part, which has direct connection
to the infrastructure, so that it is able to apply the configuration needed on
the network infrastructure in order to meet the requirements declared in
the descriptors.

This interaction, which was summarized in Figure 23, is now detailed in Figure
25, presenting the internal modules of both the SDN Orchestrator and SDN
Controller.

Descriptors

General
Configuration

Network Intent Connection Policy
Branch Inten Intent Intent
— 1 I

REST

Alviu

Network Infrastructure Connection QoS Security
Manager Manager Manager Manager Manager
Event-based communication

Host Monitor

Manager Manager
SDN Orchestrator

REST

SDN Controller
SDN Applications

Alviu Default LAN @ Default WAN DNS
DHCP .
Events Overlay Overlay Filtering
" Internet @ IP-NAT Load Balancing ovs
Firewall
Overlay @ Overlay Overlay REST

Per-Host LAN Proxy Proxy QoS Transit
Overlay ARP IGP Overlay Overlay
S| ocal Controller

REST | OpenFlow
sFlow y SSH

Monitoring Module

Network Infrastructure

Figure 25: Alviu architecture, including the building blocks that compose the
SDN Orchestrator and the SDN Controller.

64

5 NOVEL NETWORK ORCHESTRATION TECHNIQUES BASED ON SDN AND
INTENT-BASED CAPABILITIES

Starting with the SDN Orchestrator, all the modules running on it have
a similar design from an implementation point of view, being oriented to
a microservice architecture. For this purpose, each module defines REST
endpoints to be accessed by external components (e.g. for the provision of
the descriptors), and, at the other end, it has REST clients to connect to the
applications of the SDN Controller.

Between both REST connectors, the orchestrator implements the main
functionalities carried out by the module, handling the lifecycle of the module:
receive data from the REST endpoints, perform operations (including the
event-based communication with other modules) and send instructions to
the SDN Controller.

The modules that are present in the SDN Orchestrator are the following:

= Infrastructure Manager: this module is in charge of receiving and
handling the data contained in the Branch Intent Descriptors, managing
all the details related to the branches and SDIN switches of the scenario.
Moreover, it also receives, from the General Configuration Descriptor,
the configuration of the regions and the controllers related to the
different branches. For the other elements that belongs to the branch intent
(e.g. virtual switches or networks), the Infrastructure Manager interacts
with other modules in order to achieve the configuration proposed in the
descriptors.

= Network Manager: it manages the lifecycle of all the networking
aspects of the SDN domains, including the virtual networks declared
(information received from the General Configuration Descriptor), the
networks defined for each branch, the presence of IGP speakers and
transit points if there are interactions with external domains, or even
utilities like the configuration of the DHCP engine of the SDN Controller
and the installation of flow rules to achieve LAN connectivity between the
switches of the same LAN segment.

= Device Manager: in this module, the management of the virtual
switches and ports is performed, controlling at all times their status in
order to act consequently (for example, Alviu is able to detect if a virtual
switch or port is down and reconfigure outdated settings as a result).

= Connection Manager: it is in charge of managing the connection
intents declared in the Connection Intent Descriptors. To do this,
this module translates the network infrastructure into a weighted graph,
so that it calculates the best path between the two endpoints of each
connection intent by applying the Dijkstra algorithm, and then it triggers
the creation of the corresponding tunnels to connect both endpoints. In case
of receiving events related to an incident on the network that may cause its
reconfiguration (e.g. physical link down), the Connection Manager is able to
recalculate the installed paths and change them if needed, guaranteeing
the fulfillment of the connection intents declared.

65

5 NOVEL NETWORK ORCHESTRATION TECHNIQUES BASED ON SDN AND
INTENT-BASED CAPABILITIES

QoS Manager: this module is completely dedicated to the management
of the QoS rules received from the Policy Intent Descriptors.

= Security Manager: in the same way that the previous module, the Security
Manager handles the firewall and DNS filtering rules received from the
Policy Intent Descriptors.

= Event Manager: this special module allows to aggregate events related
to the infrastructure (e.g. link up or down, switch up or down, etc.), so
that the other modules can act consequently in case of happening a specific
infrastructure event.

= Host Manager: this module pays attention to the hosts that can appear
in each SDN domain, obtaining information of them from the infrastructure
(e.g. the MAC addresses from the ARP messages exchanged over the
network) or triggering the networking configuration of each host through
DHCP if required.

= Monitor Manager: finally, this module manages the monitoring of
the different connections established, contacting with the Monitoring
Module of the SDN Controller for that purpose. This functionality can be
used, for example, to establish a load balancing service between switches
connected by more than one logical connection.

In the case of the SDN Controller, it is based on ONOS [36] and it
has been built by following the classical SDN approach [22], separating
the control plane from the data plane with the definition of a well-defined
programming interface between the Network Infrastructure and the SDN
Local Controller (i.e. the southbound API), where the controller platform is
able to configure and control the network equipment by using different protocols
(mainly OpenFlow).

In addition to this, all the standard functionalities provided by the SDN Local
Controller (control of the topology, link status, etc.) are complemented by specific-
purpose SDN Applications, which interact with the SDN Local Controller
through another well-defined API (i.e. the northbound API) to enhance the
control of the network. In this particular case, the SDN Appliactions, together with
the SDN Orchestrator (which is also in charge of orchestrating the operation of
each SDN Application), form the management plane of the platform.

Each SDIN Application takes care of a particular aspect of the network,
being also related to a set of modules of the SDIN Orchestrator to coordinate
their joint action. The main features implemented by each SDN Application are
the following [110]:

= Alviu Events: this application gathers all the network events that may
happen during the operation of the system (e.g. a link or switch down event),
informing through a REST interface to the Event Manager module from
the SDN Orchestrator, which will act consequently.

66

5 NOVEL NETWORK ORCHESTRATION TECHNIQUES BASED ON SDN AND
INTENT-BASED CAPABILITIES

= Default LAN Overlay: it is in charge of installing the flow rules to achieve
LAN connectivity between all the switches that belong to the same LAN
network, configuration triggered by the Network Manager module from
the SDN Orchestrator. For achieving this, the LAN network is logically
transformed into a tree topology, where the root node is a WAN switch, the
installing two kinds of flows: (i) a first set of flows related to upstream
traffic, oriented to reach the root node from any switch in the tree, and
(17) another set of flows for the downstream traffic, in order to reach any
switch in the tree from the root node.

= Default WAN Overlay: it allows to achieve connectivity between
WAN switches, both in the same or different SDN branches, by establishing
logical tunnels (e.g. GRE tunnels) to achieve the level-2 connectivity
through ISPs, so that this application must manipulate the packets
(i.e. changing the source and destination IP and MAC addresses) in order
to make use of these tunnels . The installation of the corresponding flow
rules are triggered by the Connection Manager module from the SDN
Orchestrator.

= DHCP: the DHCP application manages all the DHCP requests received
from the hosts connected to the SDN network, which are forwarded from
the switches to the controller automatically. This way, this application, based
on the DHCP configuration present in the Network Manager module
from the SDN Orchestrator, responds to the requests to provide the
networking configuration to the hosts.

= DNS Filtering: this application, based on the configuration provided by
the Security Manager module from the SDIN Orchestrator, is able to
block domains by examining the DNS requests sent by the hosts of the
SDN network.

= Firewall: in the same way, the Firewall application uses the firewall rules
provided by the Security Manager module from the SDN Orchestrator
to filter the traffic that matches the rules, based on the traffic information
between OSI levels 2 and 4.

= Internet Overlay: this application is an extension of the Default WAN
Overlay application, also managed by the Connection Manager module
from the SDN Orchestrator. However, in this case, this application install
the flow rules needed to connect the WAN switches of a given SDN
domain to the Internet, establishing tunnels that forward the traffic to
the edge SDN switch (i.e. the switch connected to the external domain or
to the ISP router that provides Internet access), in which another flow rule
is used to forward the traffic outwards. For not colliding with the Default
WAN Opverlay flow rules, the Internet Overlay flows have less priority than
the first ones, so that they act as default rules in the SDN domain (if the
traffic does not match with any Default WAN Overlay flow and there is any
Internet Overlay flow, the traffic will match with the Internet Overlay one).

67

5 NOVEL NETWORK ORCHESTRATION TECHNIQUES BASED ON SDN AND
INTENT-BASED CAPABILITIES

= IP-NAT Overlay: it applies NAT rules to specific hosts of the SDN
network that may need this functionality, translating the real IP and port
addresses to others that are reachable in the SDN network. This can be
used, for example, in case of having legacy hosts that need to be reconfigured,
but they are located in a hard-to-reach physical location. The information
needed to build the flow rules is provided by the Network Manager module
from the SDN Orchestrator.

= Load Balancing Overlay: this application installs the flow rules needed
to perform load balancing when there is more than one logical
connection between two switches. The Monitor Manager module from
the SDN Orchestrator is in charge of triggering the installation of these
flows, based on the monitoring information gathered from theMonitoring
Module in the SDN Controller using protocols like sFlow.

= OVS REST: it is one of the most used applications of the catalogue,
as it allows to configure the virtual switches deployed in the Network
Infrastructure. To do this, this application receives REST requests from
the SDN Orchestrator’s modules that need to perform an operation
related to the virtual switches’ lifecycle (e.g. the Device Manager module
can trigger the installation or removal of a virtual switch, together with
the management of the ports, or the Connection Manager can request the
creation or removal of specific ports to handle the traffic to be sent through
the tunnel between WAN switches). This way, this application translates
these requests into specific commands that are sent to the switches
through a reverse SSH tunnel.

= Per-Host LAN Overlay: this application complements the operation of
the Default LAN Overlay one by installing the flows that connects all the
hosts present in the SDN network with their corresponding LAN switch.
For this purpose, it uses the DHCP application to obtain the information
needed to build the flow rules.

= Proxy ARP: it manages all the ARP requests and responses that are
sent through the SDN network, in order to avoid loops in the topology that
may cause an inefficient behaviour of the network. Moreover, this information
is also used by applications and orchestration modules for specific
purposes (e.g. to feed the DHCP with the MAC addresses of the hosts
present in the network, so that the DHCP can apply the correct configuration
for each host).

= Proxy IGP: in the same way that the Proxy ARP application, the Proxy
IGP is able to manage the IGP traffic received from external domains (e.g.
OSPF or BGP packets), so that it can extract the useful information
from these packets (for example, the networking data related to the node
of the external domain that has established the IGP connection with the
SDN domain) to trigger the corresponding configuration related to the
connection with external domains, controlled by the Network Manager
module in the SDN Orchestrator. This information is complemented with

68

5 NOVEL NETWORK ORCHESTRATION TECHNIQUES BASED ON SDN AND
INTENT-BASED CAPABILITIES

the data extracted from the Quagga modules running on the edge SDN
switches connected to external domains, which provide the routes learned
from the IGP protocols to this application through REST.

= QoS Overlay: this application is in charge of managing the installation of
the QoS policies in the corresponding switches, being controlled by the
QoS Manager module from the SDN Orchestrator.

= Transit Overlay: this application, based on the operation of the Proxy
IGP application and the control of the Network Manager module from the
SDN Orchestrator, triggers the installation of the flow rules that connects
the edge SDN switches with the corresponding node of the external
domain, enabling the interconnection with external domains.

5.3. Intent States Management

In Alviu, the intent operation is based on the transition between the
possible states in which the intent could be in a given moment. These states are
applied, in turn, to all the entities that belong to a given intent (for example,
the Branch Intent relies on the Branch, Switch or Virtual Switch entities, among
others), summarizing their current situation in terms of the achievement of the
intent.

5.3.1. States Specification

All the entities involved in a given intent share a common set of states to
define their status during the intent operation. These possible states are depicted
in Figure 26, also including the possible transitions between states:

Intent Installation
Request

LR)
\ ¢ Transit State

-~ -

o Parking State

1 Intent Withdraw
’ 1 Request

________ » withdrawing
Intent Withdraw \
Request ~ 4

Figure 26: General intent states present during the intent operation.

First of all, there is a distinction between Parking and Transit States,
depending on whether the state is definitive or not. Starting with the Transit

69

5 NOVEL NETWORK ORCHESTRATION TECHNIQUES BASED ON SDN AND
INTENT-BASED CAPABILITIES

States, which are the first ones that appear when an intent is requested, there
are three possible options: (i) Compiling, which refers to the validation of the
consistency of the request, also verifying if the requirements exposed by the
intent can be met based on the input information, (i) Instantiating, where the
intent installation is performed, and (ii7) Withdrawing, which withdraws
the intent.

Regarding the Parking States, there are also three possible states that can
fit in this category: (i) Active, which means that the intent has been correctly
installed and all the requirements have been satisfied, (ii) Failed, which is
the opposite to Active: the intent cannot be installed in the current network
status, and (i7i) Withdrawn, where the intent is no longer held.

In the end, the objective of all intents is to have all their dependent entities
in Active states, and in case of discarding the intent, to correctly change
all the states to Withdrawn. Consequently, the configuration provided in the
definition of the intent is only completely installed when the Active state is
reached, and similarly, it is only completely deleted when the intent is in the
Withdrawn state.

In Figure 26, the transition between states is also represented, differen-
tiating between transitions that depend on external events or requests and
others that do not require them:

» In the first case, for example, transition (1) is triggered by the creation
of the intent, transitions (6), (7) and (8) are due to changes in the
environment related to the intent, and transitions (9) and (10) are related
to the intent withdrawal.

= In the second case, there are transitions related to successful operations,
like transitions (2), (3) and (11), and there are others connected with
operations that have failed, such as transitions (4) and (5).

5.3.2. States Workflow

As stated in the introduction of this Section, the status of an intent depends
on the individual states of each entity related to the intent. This way, although
the state diagram depicted in Figure 26 is followed by all the intent types, there
are particularities in each intent type, as the related entities have their own
complexity, introducing dependencies between states of different entities.

To analyze the impact of these constraints, the Branch Intent and
Connection Intent workflows for both intent installation and withdrawal
operations will be reviewed and explained in this subsection, checking how the
general intent states framework can be applied to each type.

In Figure 27, the Branch Intent installation operation is presented, with
all the possible states that the different entities related to the Branch Intent
(already presented in Figure 22) can have:

70

5 NOVEL NETWORK ORCHESTRATION TECHNIQUES BASED ON SDN AND
INTENT-BASED CAPABILITIES

retry the intent Branch if switch still down Switch
Failed

Failed
Branch /" Branch O\ /" Branch if retrying the intent
- ./ Branch O\ ifretyingtheintent
Intent _Compiling_/ \Unstantiating / : Branch
— — 1GP Speaker)
: Failed 1

v /" switch Switch
> Unstantiating/ Active]
~ if switch $till down

OVSDB Connection established

/" swich O\
Compiling/

Switch
Deactivated

Switch
Activated

Switch
ovsdbconn

Switch Configured event
Triggerd by Zero Touch link clicked

— S switch up Virtual Switch

/Virtual Switch /" Virtual Switch \\] Failed Network
™_Compiling //9 \ waitinginstantiation Active

sl ~ ot '\\% T e TN e -
Compiling/ waitinglnstantiation /) |,/ Virtual Switch® switch up Virtual Switch /" Network
T — \nstantiating / S Adive 2 [\Unstantiating)

irtual Switch

Instantiated
S Network
Failed

port down

/" Network " Nework)

_Compiling > *_waitinginstantiation /)

/7 Port O\ _Portu Port
\Unstantiating / Active

Port
Failed

if switch sfill down

Transit
Point Failed

| o/ ToP Speaker | (1P Speater
_Compiling _/ \wattinginsantiaion) P awaggn

I —— /1GP Speaker ™ Started IGP Speaker

\Unstantiating / Active

L

e —— 1GP Speaker
4 N Transit Point
Lo point > %mnwns‘a"“am/y Unstantiated /
~Compiling - ation, I N i
iy — Transit
(" Pont)
Minstantiating”

Transit port up
Point Active

Figure 27: Branch Intent installation operation workflow.

When the Branch Intent is declared, all the entities enter in the
Configuring state, and if all requirements are fulfilled, the Branch entity
changes its state to Instantiating. From this moment, the rest of entities stay
in an intermediate state, called WaitingInstantiation, because they are not
instantiated at the same time. In the case of the Switch entity, it passes through
different states related to the activation of the physical switch, using Zero Touch
procedures, before passing to the Instantiating state.

From this point, the instantiation of the Virtual Switches and IGP
Speakers are triggered. In the first case, the Virtual Switch is considered
Active when it is correctly installed and all the Ports that depend on it are also
installed. To achieve this, the corresponding switch up and port up events
have to be captured by Alviu to perform the transition between states. A
similar process happens with the IGP Speakers and their Transit Points: the IGP
Speaker is only Active when all the Transit Points are in Active state and
when the Quagga module is running.

The activation of a Virtual Switch triggers the instantiation and activation
of the Networks attached to the Ports of that Virtual Switch, and finally, when all
Networks and IGP Speakers are in Active state, the corresponding Switch
is marked as Active, and when all the switches of the branch are in Active
status, then the Branch is marked as Active, meaning that the requirements
declared in the Branch Intent have been met.

The diagram also presents some casuistries in which some entities may pass
to a Failed status. For example, if a switch down event is detected, the
corresponding Virtual Switch will be marked as Failed, and will wait some
time for receiving a switch up event. If it is not received, a cascade update
of all entities’ state is applied, changing all to the Failed state and restarting
the intent workflow to do all the changes needed meet the requirements
again. In addition to that case, the port down event is also represented, which
causes the Port Failed state and, consequently, the Transit Point Failed state

71

5 NOVEL NETWORK ORCHESTRATION TECHNIQUES BASED ON SDN AND
INTENT-BASED CAPABILITIES

for the transit points attached to that port, only returning to the Active state
again when the port up event is received.

The same process is followed in the Branch Intent withdrawal operation,
depicted in Figure 28. When the request is received, the different entities change
their state in order, reaching the Withdrawn state if all the operations
finished correctly. No Failed states have been represented in this diagram for
better readability.

—
Withdraw /" Branch \ Branch

Branch Withdrawin Withdrawn
\Withdrawing / l
T
/" switch Switch
Withdrawin, Withdrawn
\Withdrawing /
T
(Virtual Switch ™" " Virtual Switch
Withdrawin: Withdrawn
Nidiingy T
T
7 Port \Portdown Port
Withdrawin Withdrawn
Nidening”
—
[Network Network
Withdrawin, Withdrawn
Nithdrawing 7 fhdraw
T
(1GPSpeaker\ _(1GPSpeaker |
Withdrawin, Withdrawn
\\77177 ing / I
B
/Transi(Point Transit Point
\Withdrawing / Withdrawn
~—

Figure 28: Branch Intent withdrawal operation workflow.

In the case of the Connection Intent, as it has less entities that depend on
it, the workflow is also simpler. This is presented in Figure 29, where there are
two main entities that are used to establish a connection between two switches,
as depicted in Figure 22: the Tunnel entity (i.e. the connection itself), and a
pair of Tunnel Port entities, each of them associated to the switches that are
connected through the tunnel.

Conection Tunnel Tunnel

Intent Compiling Instantiating
unnel Port A
Compiling

Tunnel Port B
Compiling

port up

unnel Port A\, Port down unnel Port A
Active Failed

Tunnel
Active
Tunnel Port B POrt down Tunnel Port B

unnel Port A\ Pranch active _ fnnel port A\ POrt uP
WaitingInst. Instantiating

unnel Port A
Drawing

Tunnel
Failed

Tunnel Port B branch active _ Aynnel port B\ POrt UP
WaitingInst Instantiating

Tunnel Port B
Drawing

Figure 29: Connection Intent installation operation workflow.

After passing the Compiling state, the Tunnel passes to the Instantiating
state, and both Tunnel Ports stay in the intermediate WaitingInstantiation
state until each Branch that has each Switch becomes Active. Then, the Tunnel
Ports start to be instantiated, and after being deployed, the port up event
must appear. In that moment, the Tunnel Ports passes to the Drawing state, a
special state which means that the weighted graph is being updated with the

72

5 NOVEL NETWORK ORCHESTRATION TECHNIQUES BASED ON SDN AND
INTENT-BASED CAPABILITIES

new connection, calculating the best path to achieve the connectivity between
the two endpoints. After achieving this, the Tunnel Ports are marked as Active,
and consequently the Tunnel is activated.

Of course, there may happen problems during the intent operation; for
example, in case of receiving a port down event, the corresponding Tunnel
Port would be marked as Failed, then waiting some time for receiving a port
up event. In case of not receiving it, in the same way that happened with the
Branch Intent, the upper entity (i.e. the Tunnel) will be also marked as Failed
and the intent would be restarted in order to meet again the requirements.

Finally, the Connection Intent withdrawal operation also follows the
same procedure than the Branch Intent withdrawal operation, with a transition
between the Withdrawing to Withdrawn event when the port down event
related to the Tunnel Ports is received. This workflow can be seen in Figure 30:

port down
Tunnel Tunnel Port A Tunnel Port A
Withdrawing Withdrawing Withdrawn
port down
Tunnel Port B Tunnel Port B
Withdrawing Withdrawn

Figure 30: Connection Intent withdrawal operation workflow.

Withdraw
Connection

Tunnel
Withdrawn

5.4. Performance Evaluation

Apart from building a complete and functional service to orchestrate and
control SDN domains, the solution must also fulfil some specific performance
requirements, ensuring the convergence of the intent deployment in a
reasonably predictable time, avoiding deployment times with an exponential
evolution as the number of SDN branches increases.

In this Section, a full deployment of a network controlled by Alviu will be
evaluated in terms of the deployment time, which is the time elapsed from
the launch of the intent until the infrastructure is properly deployed (i.e.
all the branches are in active state) and there is connectivity between all the
switches on the network in a given topology.

5.4.1. Testbed Setup

The testbed used for the evaluation of this deployment consists of an Ubuntu
Server 16.04 LTS virtual machine [90], with 12 vCPU and 12 GB of RAM,
deployed in a server virtualized with Prozxmoz [89], which is equipped with 40
Intel(R) Xeon(R) CPU E5-2630 v4 at 2.20 GHz and 128 GB RAM. In the virtual
machine, Alviu has been deployed in a Dockerized format, deploying both the
SDN Orchestrator and the SDN Controller with Docker containers [92].

To deploy the different scenarios to test, a Continuous Integration platform
has been used. This environment consist of a set of microservices that allows
to check the correct definition of the Network Intent Descriptors, deploy
network topologies using lightweight virtualization technologies (e.g.
containers), or perform network unit tests (e.g. connectivity between nodes)
over that topology, among other functions.

73

5 NOVEL NETWORK ORCHESTRATION TECHNIQUES BASED ON SDN AND
INTENT-BASED CAPABILITIES

The architecture of this CI environment is presented in Figure 31, where three
microservices can be distinguished: (i) dockerTopo, in charge of deploying the
network topology with containers according to the data from the Topology
Descriptors, which contain the network elements (e.g. hosts, SDN switches,
routers from external domains, etc.) that compose the desired topology, (i7)
deploymentService, used to provision of the Scenario Descriptors, which
contain the definition of the topology and the intent descriptors, and
(1ii) proxyClient, which connects the deploymentService with both the
SDIN Orchestrator, providing the Network Intent Descriptors, and the
dockerTopo service, to supply the Topology Descriptors to it, so that it
performs the translation of the Scenario Descriptors to the corresponding
Topology and Network Intent Descriptors.

thon . Scenario
| Ll deploymentService |(— Descriptors\

proxyService |

Topology
Descriptor

Intent
Descriptors

FTT
dockerTopo
I
A 4
Network ONOS Apps
Infraes::t:)gture J Orchestrator
ONOS
| 3 dockerd |
choaTioaT
| akvM VM |
| - Proxmox |

Figure 31: CI environment architecture, including the technologies used in each
component.

The topology type chosen for the performance evaluation process is the star
topology, as it is the most common option followed by enterprise and academic
networks to connect their domains, having a central SDN branch acting as
headquarters and the rest of branches connected to the central one.

In particular, to simplify the scenario evaluated, each SDIN branch deployed
in the CI environment will be composed by a single SDN switch with OVS and
Quagga installed, with a host connected to it through a LAN port, and with a
connection to a router, based on Quagga, from an external domain through
a TRUNK port, using OSPF to exchange routes with it. This router will also
have a host connected to it, in order to check the connectivity between hosts
from different domains. Finally, one branch will act as headquarters, and
the rest of branches will be connected to it through a tunnel connection
established between SDIN switches.

4

5 NOVEL NETWORK ORCHESTRATION TECHNIQUES BASED ON SDN AND
INTENT-BASED CAPABILITIES

This particular deployment is depicted in Figure 32, presenting the HQ
Branch as the root branch of the star topology, and several branches, from
1 to N, attached to it through a GRE tunnel between SDN switches, which are
also secured with IPsec.

Figure 32: Star topology evaluated in the performance evaluation analysis.

5.4.2. Deployment Time Evaluation

The evaluation of the deployment time has been done by measuring the
time spent by Alviu to meet the requirements defined in the intents, which
are mainly two: (i) deploy an active branch with one SDN switch connected
to a host and to an external domain (i.e. Branch Intent), and (i) connect
the SDN switch to the endpoint located in the HQ Branch through a tunnel
(i.e. Connection Intent). However, the convergence time to learn the prefixes
from external domains has been excluded from the analysis, as it is difficult
to predict beforehand, directly impacting in the accuracy measurements during
the evaluation.

The evolution of this performance metric, changing the number of
branches deployed in the topology from one (only the HQ branch) to ten, can
be seen in Figure 33. Several conclusions can be extracted from this graph, which
shows the linear trend of the deployment time, confirming that the time spent
to deploy a given topology is quite predictable and scalable, which is a desired
behavior against exponential trends that can saturate the system. This has been
possible due to the concurrent management of multiple intents provided
by Alviu, which is able to process intent requests in parallel to improve system’s
scalability.

5

5 NOVEL NETWORK ORCHESTRATION TECHNIQUES BASED ON SDN AND
INTENT-BASED CAPABILITIES

90

Deployment Time (s)

1 2 3 4 5 6 7 8 9 10
Number of Branches

Figure 33: Evolution of the deployment time, in seconds, varying the number of
branches deployed in the star topology.

Furthermore, the values obtained are also coherent for a typical system
operation, having a minimum deployment time of around 30 seconds for one
branch, which increases at a rate of 10 seconds per new deployed branch,
approximately. This confirms Alviu’s ability to manage multiple branches
simultaneously. This time can even be lower because Alviu uses some small
guard times to stabilize the system that may be avoided (e.g. it waits a few
seconds after activating a branch and before starting the connection of the branch
with other branches), but they have been maintained as they ensure the system
scalability without having a great impact on performance.

5.5. Summary

In summary, this Chapter has presented Alviu, a SD-WAN Orchestrator
that can be applied to enterprise and academic networks, as well as to 5G
transport networks.

The main contributions that have been reviewed in this Chapter are Alviu’s
abstraction capabilities used for modeling the network infrastructure, as
presented in Section 5.1, which is managed and orchestrated with a system based
on a modular architecture, as discussed in Section 5.2, implementing intent-
based networking capabilities.

The intents have also had great relevance in this Chapter, including their
high-level definition with the usage of the Network Intent Descriptors, and
also the full specification of the different states that a particular intent and
their related entities may have during the operation of the system, as stated in
Section 5.3.

Finally, in Section 5.4, the deployment time spent by Alviu to achieve
intent’s fulfillment has been evaluated in a CI environment, which allows
to easily deploy and test a star topology with a variable number of
branches. In this way, the system scalability has been confirmed, as the
measured deployment time depends linearly on the number of branches
present in the scenario, not following an exponential trend.

76

Evaluation and Demonstration of
Intent-Based Orchestration
Capabilities in Real Scenarios

In Chapter 5, Alviu was presented and evaluated as an alternative to control
and orchestrate 5G networks with the application of Software-Defined
Networking and the intent-based networking approach. Its modularity,
together with the capability of enhancing the platform with the inclusion of new
features thanks to the network programmability of the platform, following a
simple deployment model, allows Alviu to achieve a customized management
of the SDN domains.

One of the most ambitious objectives of Alviu is to integrate different
network domains, which may be related to SDN or not. In this context, the
management of the information contained in the traditional IGP protocols is
crucial to accomplish this goal, extracting the network prefixes learned from
external domains to install the proper flow rules in the SDN network to ensure
the connectivity between domains.

Other value-added capability already integrated in Alviu is the ability to
perform load balancing between several logical connections between SDN
switches, thus guaranteeing a fault-tolerant service while using adequately the
network resources. These two examples, together with other ones like the
provision of distributed policies related to firewall or QoS services, justify
Alviu’s ability to be adapted to different scenarios and casuistries.

This Chapter focuses on the performance evaluation of Alviu, in the two first
use cases aforementioned: the interconnection with external domains and
the load balancing between switches connected with more than one link, detailing
the solution implemented in Alviu to integrate them in the system workflow, and
also testing them in a real scenario to confirm their correct implementation.

To to this, the following structure to describe both cases is proposed:

7

6 EVALUATION AND DEMONSTRATION OF INTENT-BASED ORCHESTRATION
CAPABILITIES IN REAL SCENARIOS

In Section 6.1, the first use case, related to the interconnection between
SDN domains and external domains is presented, detailing the way
Alviu handles the information received from IGP protocols to achieve
this connection.

Secondly, Section 6.2 goes in depth in the load balancing use case,
explaining the way in which multiple links are introduced in Alviu’s
network graph and how and when the load balancing between different
links that connect the same SDN switches is triggered.

After explaining the two main use cases studied in this Chapter, Section 6.3
describes the Proof of Concept performed to check the correct behaviour
of both use cases in the same testbed, and also introducing other value-
added capabilities like the provision of firewall and QoS rules related
to network slicing capabilities.

To conclude, Section 6.4 summarizes the lessons learned in this Chapter
and concludes this chapter.

Interconnection with External IGP Domains

6.1.1. Use Case Overview

As it has already been commented on several occasions, the problem of the
interconnection between SDN branches and external domains using legacy IGP
protocols is a matter of being able to understand the messages related to IGP
protocols that are sent from the external domains, manipulate them in order
to extract the useful information and use them to answer the external domain
back. This process is summarized in Figure 34:

A”nou
Nce Ne rk A
?Woka Announce Nem,o, o

W

Announce TE——= L e
A SDN Branch \——_
Switch a Switch b

Prop agate

- Router y -
@ y

Ext. DomainY / \ Ext. Domain Z
Network A — Switch b
Network Y - Switch b

Network Z — local

Network A — Switch a
Network Y - local
Network Z — Switch a

Network A —local Network A — local

Network Y - Router y Network Y - Switch a
Network Z — Switch b Network Z — Router z

Figure 34: Example of topology with interconnection with external domains.

In the previous Figure, it can be seen that the external domains Y and
Z announce their networks (networks Y and Z, respectively) to the edge
SDN switch with which they have an IGP session established (switches a and

78

6 EVALUATION AND DEMONSTRATION OF INTENT-BASED ORCHESTRATION
CAPABILITIES IN REAL SCENARIOS

b, respectively). This exchange of information has been possible because, during
the connection establishment phase, the edge SDN switches have been able to
understand the data encapsulated in the IGP messages, manipulate them to
obtain that data and use the IGP protocol messages to answer back with the
network information related to the SDN branch.

In this way, when a network prefix is received from an external domain,
it is immediately forwarded to Alviu, which decides the proper flow rules
to be installed in each SDN switch to correctly reach all the networks from
external domains, according to the best paths calculated in the network graph,
and also instructs the SDN domains to reply to the external domains in
order to provide to them the networks related to the SDN branch and to
other external domains to allow the connectivity between all the networks
present in the topology. As a result, each SDIN switch learns how to reach all
the networks of the scenario, and the same for each router from the external
domains.

In the previous example, the switch a, for instance, learns from the router y
that the network Y can be accessed from it. Regarding network Z, as the switch
b has already learned that it is reachable from router z and this information is
also known by Alviu, the orchestrator instructs switch a to learn that the network
Z is reachable from switch b (according to the network graph), propagating this
information to the router y, apart from announcing network A, so that router y
will learn that networks A and Z are reachable from switch a, despite there are
networks that are not handled by the SDN branch (e.g. network Z is not managed
by switch a, but it knows how to forward the traffic to reach it).

In the topology presented in Figure 34, the SDN branch is not only able to
connect with other external domains, but it also connects external domains
between them, acting as a transit network.

To achieve this, the integration of Quagga in the edge SDIN switches is
compulsory, in order to handle the typical IGP protocols that are used in
external domains (e.g. BGP or OSPF). However, this integration is not trivial,
as the SDN switches are based on OVS, needing a particular configuration to
allow the communication of Quagga through the switch ports that connect it
to the edge routers from external domains. This issue will be discussed in depth
in Section 6.1.2.

Moreover, apart from Quagga, some lightweight processes are also needed in
order to provide to Alviu all the information learned from external domains,
having then all the knowledge to make the proper decisions in terms of
interconnection with external domains (e.g. propagate prefixes to other external
domains, install the flow rules to achieve the connectivity, etc.). The specification
of these processes, together with the workflow followed by Alviu when receiving
IGP traffic, will be presented in Section 6.1.3.

6.1.2. Integration of Quagga in OVS-based Switches

As a reminder, Alviu deploys and configures OVS in the managed SDN
switches, interacting with it by using OpenFlow in order to fully instruct the

79

6 EVALUATION AND DEMONSTRATION OF INTENT-BASED ORCHESTRATION
CAPABILITIES IN REAL SCENARIOS

virtual switch with the proper flow rules to handle the traffic in such a way that
the intent’s requirements are met.

To do this, the physical ports of the switch are connected to the corres-
ponding OVS deployed on it, delegating to OVS the control and management of
the ports. This is true for the LAN (to be used in LAN networks) and TRUNK (to
connect the switch with external domains) ports, but WAN ports (which serve
to connect SDN branches through logical tunnels) need a specific deployment
to achieve their purpose, as an IP address must be specified for each endpoint to
create the tunnel and the ports directly managed by OVS cannot have
IP addresses attached.

The solution to achieve this goal is depicted in Figure 35, showing an example
of a typical SDN switch with four ports, using the first one as WAN port, and a
separate port for management purposes (e.g. to establish the OpenFlow session
between switch and SDN Controller). In this case, this switch has an intermediate
Linux Bridge to connect the WAN port (ge-1-1-1) and the OVS. As the Linux
Bridges can have IP addresses assigned to them, this would solve the issue for
WAN interconnection, using this bridge to create and terminate logical tunnels.
However, a bridge must connect interfaces between them, so the Linux Bridge
cannot be directly attached to the OVS. For this reason, a pair of Virtual
Ethernet (veth) interfaces (i.e. ge-w-1-1 and ge-w-2-1) are created, connecting
in this way the Linux bridge with the OVS.

Linux modules
ge-w-1-1

| - Logical interfaces
ge-w-2-1

| ge-1-1-2 ge-1-1-3 ge-1-1-4]

bro - Linux Bridges

ge-1-1-1 " Physicalinterfaces
WAN port LAN or TRUNK ports

Figure 35: Typical internal architecture of a WAN-type SDN switch.

The edge SDN switches are particular cases of WAN-type SDN
switches, as they are utilized to interconnect domains, so they must have
at least one WAN port defined on it, with the corresponding Linux Bridge and
a pair of veth interfaces to connect the Linux Bridge to the OVS, as already
explained. In this architecture, Quagga must fit in to establish the logical
connection with external domains.

This integration can be easily achieved with the architecture proposed in Figure
35 by handling the messages exchanged by Quagga from the Linux Bridge
of the WAN port, which is the only interface interacting with the OVS that
can have an IP address attached. Then, the IP address used by the switch for

80

6 EVALUATION AND DEMONSTRATION OF INTENT-BASED ORCHESTRATION
CAPABILITIES IN REAL SCENARIOS

the interconnection with the edge router of an external domain would be
defined in the Linux Bridge.

As a result, the Linux Bridge would have multiple IP addresses attached:
one for establishing tunnels with other SDN domains, and one for each
external domain. This feature is possible in the Linux kernel, enabling the
capability of handling IGP sessions from multiple external domains by just
connecting the switch to these domains, using TRUNK ports'!, and then
configuring the Linux Bridge and Quagga with the proper IP address and
IGP information to enable the IGP session with other external domains.

The only issue remaining to be solved would be how to forward the IGP
traffic in the Linux Bridge to reach the proper TRUNK port, as it acts as
level-2 switch: if a packet destination is unknown, it will send all the traffic
through all the ports excepting the one from which it has received the traffic. With
this behaviour, the Linux Bridge will also send all the IGP traffic managed
by Quagga through the WAN physical port, which must not happen.

The solution for this problem is presented in Figure 36, which completes
Figure 35 with the introduction of Quagga, exchanging the IGP traffic through
the Linux Bridge defined for the WAN port (br0), and also specifying that the
ge-1-1-2 port acts as TRUNK port, so that it would be used for the connection
with external domains. To avoid flooding the WAN port with IGP traffic,
a set of ebtables rules'? would be created in order to filter the traffic.
This way, the Linux Bridge will only send/receive IGP traffic to/from the
OVS, instructed by Alviu to correctly forward the traffic from/to the
corresponding TRUNK port. The details of this behaviour will be better
explained in Section 6.1.3.

w—
Quagga , 4 0VS Linux modules
ge-w-1-1

| Logical interfaces
ge-w-2-1

I ge-1-1- ge-1-1-3 ge-1-1-4
bro } Linux Bridges

ebtablesrulesx I

mgmt ReRERI } Physicalinterfaces
WAN port TRUNK port LAN ports

Figure 36: Connection of Quagga to OVS to allow the exchange of information
with external domains.

1Tt is possible that multiple external domains could be attached to the same TRUNK
port (e.g. if the TRUNK port is connected to a switch or router to which the external domains
are connected), so it would not be completely true that a TRUNK port was needed for each
external domain, fact that would help to save the use of physical ports as TRUNK ports if
necessary.

12They are similar to iptables rules, but they are specifically designed to act in Linux bridges,
which is the case here.

81

6 EVALUATION AND DEMONSTRATION OF INTENT-BASED ORCHESTRATION
CAPABILITIES IN REAL SCENARIOS

6.1.3. System Workflow

The workflow related to the interconnection with external domains consists
of different stages, but mostly involving the same components of the
architecture in all of them. That way, the entities which participate in this
process are the edge router from each external domain, the edge SDIN
switches from the SDN domains connected to the different external domains,
and Alviu, with the usage of the Proxy IGP application in the SDN
Controller and the Network and Connection Manager modules from the
SDN Orchestrator.

The first phase in the workflow is known as the IGP connection
establishment phase, which is detailed in Figure 37 with the high-level
messages exchanged between the different entities.

SDN domain Alviu

Controller Orchestrator

External domain

Edge router

Edge SDN
switch

1. Establishing IGP connection | |

|
V| 2. Send packet to the SDN Controller | |
»

: - 3. Proxy IGP applicationllearns a new Next
| 4. Action: forward the packet to Quagga Hop and decides the ac{\on for the packet
< 4'.Send Next Hop !

i

|

|

|

|

|

| |

| 5. Packet is forwarded from | 5'. Network Manager attaches the
| | TRUNK port to the Linux Bridge | 6'.NextHop received Next Hop to the Transit Point
|

|

|

| 6.
|

|

|

|

|

|

|

|

where Quagga is connected S |

. Send packet to the SDN Controller I |
| e 7. Proxy IGP appHcat\'or\l decides
8. AEl<t|on: forward the packet to Edge router the action for the packet

9. Packet is forwarded from the : :
Linux Bridge where Quagga is | |
| connected to TRUNK port | |
| |

! 10. Establishing IGP connection : | |

| | | |
This procgss continues until reaching convergence in the exchange of IGP messages, learning then the prefixes from thejotherdomain
- - - - T T T T T T T T T L T=°

Figure 37: IGP connection establishment workflow.

The full description of the messages is the following;:

1. A first message is received in a TRUNK port of the edge SDN switch
from the corresponding edge router, indicating the intention to establish
a IGP connection from the edge router. To make this message possible, the
edge router have to be configured beforehand with the proper network
information of the edge SDN switch (i.e. the IP address attached to
the Linux Bridge related to this connection) to be able to establish a IGP
neighbor relationship with the edge SDN switch.

2. The packet reaches the OVS, which has been instructed beforehand by
the SDN Controller to have a reactive behaviour with the IGP traffic,
sending it always to the SDIN Controller.

3. Then, the SDN Controller will be the responsible for deciding what
action must be done to the packet. In addition to this, as a new IGP
connection request has been received from an edge router in an external

82

6 EVALUATION AND DEMONSTRATION OF INTENT-BASED ORCHESTRATION
CAPABILITIES IN REAL SCENARIOS

10.

domain, this endpoint will be considered as a new Next Hop, being
saved internally in the Proxy IGP application with all its related network
information: IP address, device and TRUNK port where it is connected,
MAC address (obtained by the Proxy ARP application afterwards), etc. This
last action triggers a parallel workflow with the SDIN Orchestrator, with
the following messages:

4’. All the data related to this new Next Hop is sent upwards to the
Network Manager module of the SDN Orchestrator.

5. The orchestrator attaches the Next Hop learned to the Transit
Point that corresponds to this IGP interconnection. As the device and
port in which the Next Hop is connected are provided in the data
received from the SDN Controller, the Transit Point can be easily
inferred from that information. The impact of the inclusion of this
new entity in the data model will be reviewed after explaining all the
messages of this stage.

6’. Finally, the orchestrator sends a reply to the SDN Controller to
confirm the operation.

. As stated in message (3), the SDN Controller replies back to the OVS with

the action to do with the packet received. As it must be received by Quagga,
the action is to send the packet to the Linux Bridge to which Quagga
is attached.

This internal interaction represents the process of forwarding the packet
from the TRUNK port to the Linux Bridge, being then received by

Quagga.

Quagga generates the reply to the message and sends it to the Linux
Bridge. In this way, the bridge forwards the traffic to the OVS, and then,
the same interaction presented in message (2) is performed: as the OVS is
configured in reactive mode for IGP traffic, it sends the packet to the SDN
Controller in order to know what to do with it.

In this case, the message comes from Quagga and has to be sent to a Next Hop
which is already known, so the Proxy IGP application will only generate
the reply to the OVS with the action to do.

The action, in this case, is the opposite to the one instructed in message (4):
now, the message must be forwarded to the TRUNK port, in order to
reach the Next Hop.

In the same way that in the interaction number (5), the packet is forwarded
from the Linux Bridge to the TRUNK port.

Finally, the packet is received in the edge router, and from this point,
this process continues until the prefixes from the external domains are
announced due to a convergence in the IGP negotiation.

33

6 EVALUATION AND DEMONSTRATION OF INTENT-BASED ORCHESTRATION
CAPABILITIES IN REAL SCENARIOS

To see the relationship between the entities involved in this workflow,
Figure 38 presents an example of the mapping between the entities and the
real components of the network infrastructure. Firstly, the IGP Speaker
corresponds to Quagga, as already known. Each Transit Point is related to a
specific TRUNK Port of the switch, but it is possible to have several transit
points in a port, as it happens with the ge-1-1-N port in the example shown.
Then, each Transit Point can have at least one Next Hop behind, as there
can be an intermediate device (e.g. switch or router) connecting the TRUNK
port with the different edge routers, as happens with the interconnection between
the TP TRansit Pointl, in the ge-1-1-2 port, and the edge routers A and B.
Finally, a Next Hop may have also attached to it several Prefixes, as stated in
the external domain Y.

Port
1
N
IGP 1 n| Transit |, u 1N i
speaker Point Next Hop Prefix
PN “ External domain Z

& Prefix z
/Edge router Z

ge-1-1-M
E ‘Prm
ge-1-1-N > Prefix x

ge-1-1-2

ge-1-1-7

External domain B

&® Prefix b

ge-w- ge-w-
B - br0 - ge-1-1- } dge router B
1

1-1 2-1
External domain A
_______ Edge SDN =

S dge router A

Prefix a

Figure 38: Introduction of Next Hop and Prefix entities in the data model,
showing how all the entities related to IGP match in a real scenario.

With this clarification, and continuing with the stages of the workflow, the next
phase corresponds to the process of learning a specific prefix from an external
domain, which can be seen in Figure 39:

84

6 EVALUATION AND DEMONSTRATION OF INTENT-BASED ORCHESTRATION
CAPABILITIES IN REAL SCENARIOS

External domain SDN domain Alviu

g switch switches SDN switches Controller Orchestrator

| 1. Exchange IP prefixes| | | |

| |
2. Quagga updates the IP routes

|

2'. Propagate :
with the nelw prefixes learned |
|

|

|

1

forwarding routes
in the domain | |
| |

3. Serld new prefixes tHrough REST
T

5. Network Manager attaches the
Prefixes to the corresponding Next
Hops, generates the proper flows
depending on the prefix, configures the
other edge SDN switches and notifies
the Connection Manager module

4. Notify new prefixes

4'. Prefixes received

L L Treies recelved

|
|
|
|
L

)
| 6. Provide Transit
| Overlay flows to
| be installed

alt

prefixil not 0.0.0.0/0

7. Install Transif Overlay flows | |

l¢

|

|

|

|

I

|

|

|

|

i

|

| |
“'ﬂ"“%“““/“ : 6. Provide Internet
| | Overlay flows to be

installed
7. Install Internet Overlay flows | |

T 1 6'.Flows received |
[

| 8. Provide configuration|

|

|

|

: 9. Configure switches: to the other edge SDN
| through OVS REST switches

application

|
10. ApplyQuagga ~—=—2—=—="=
configuration | |
| |

|

|
<
<
|

I

|

|

|

|

|

|

|

|

|

| 12. Connection Manager module
|

1

T

|

)

|

|

|

|

|

|

|

|

|

| |
I 11. Configuration finigfjed
1

|

|

|

|

<

| updates the network graph and
" | | 13. Provide Default generates the corresponding flows
to reach the learned Prefixes
prefix 0t 0.0.0.0/0 | | WAN Overlay flows
! ! to beinstalled
14. Install Defalilt WAN Overlay flows | |

1
|
|
|
1 T S SN AL -l R
il | 13. Provide Internet
I Overlay flows to be

installed

Prefixi$0.0.0.0/0

Y ¥

¢

14. Install Internet Overlay flows | |
T¢

| (Il s >l
1 1
From this point, the interconnection l%etween the exter:na\ domain and the SDN:

Figure 39: Prefix learning workflow.

The full description of the messages is the following;:

1. When there is convergence between IGP neighbors, the IP prefixes
managed by each endpoint are exchanged. Of course, in the case of the
prefixes received by the edge SDN switch, the IGP packets will follow the
same workflow than presented in the Figure 37, but it is not represented here
to simplify the diagram.

2. This way, the prefixes are received by Quagga, then updating the IP
routes with the new prefixes learned. In parallel, the edge router from
the external domain also propagates the forwarding routes to the other
devices from its domain, according to the prefixes learned from the SDN
domain, which is represented with the message (2').

3. Due to this, a script running in the edge SDN switch, monitoring the
Quagga routing table, detects that new prefixes have been learned,
so that it triggers a notification to the SDN Controller, which has a
REST endpoint enabled in the Proxy IGP application to handle this kind of
notifications.

85

6 EVALUATION AND DEMONSTRATION OF INTENT-BASED ORCHESTRATION
CAPABILITIES IN REAL SCENARIOS

4.

10.

11.

12.

The Proxy IGP application in the SDN Controller forwards the prefixes
to the SDN Orchestrator, answering back with the message (4).

After receiving the prefixes, the orchestrator, in the Network Manager
module, performs several operations: (i) attach the prefixes learned to the
corresponding Next Hop entities, (ii) generate the flows to be installed
in the edge SDN switch (message (6)), (i7i) configure the other edge
SDN switches to propagate the prefixes in other external domains
(message (8)) and (iv) send a notification to the Connection Manager
module to update the graph and install the corresponding flows
(message (12)).

Depending on the network prefix learned, a specific flow is installed in the
edge SDN switch. If the prefix is different than the default one (i.e.
0.0.0.0/0), then the Transit Overlay flow is requested. In other case,
it would be the Internet Overlay flow, as the default prefix represents
an Internet connection. This message is replied back from the SDN
Controller notifying that the flows have been received correctly, as shown
in message (6').

This message is related to the installation of the corresponding flows
(Transit Overlay or Internet Overlay) in the edge SDN switch. This
flow specifies that all the traffic whose destination IP address is the
prefix learned must be sent through the corresponding TRUNK port. In
the case of the Internet Overlay flow, as the default prefix matches with
all IP addresses, its priority would be lower, so that a traffic flow would
only match that rule if no other flow with more priority is matched.

Here, it is reflected the notification from the Network Manager module
to the OVS REST application in the SDN Controller to configure the
rest of edge SDN switches with the prefixes learned, so that they can
propagate them through their corresponding external domains. This
request is replied back by the SDN Controller in the message (8).

As a result, a reverse SSH tunnel is established from the OVS REST
application to the switches in order to apply the configuration.

In this point, the configuration is applied in the Quagga modules, and
the prefixes learned start to be propagated in the other external domains.

Finally, the switches send a notification to OVS REST to confirm that the
operation has been done correctly, closing then the SSH tunnel.

Finally, the Connection Manager module of the orchestrator receives
the prefixes and calculates the best path to reach them from the rest of
SDN switches, updating the network graph consequently and triggering
the installation of the corresponding flows in these switches, depending
on the prefix again (whether it is the default prefix or not).

86

6 EVALUATION AND DEMONSTRATION OF INTENT-BASED ORCHESTRATION
CAPABILITIES IN REAL SCENARIOS

13. Again, depending of the prefix, the orchestrator asks the SDN Controller
to install a specific flow: if it is not the default one, the Default WAN
Overlay flow will be selected, managing the connectivity to the prefixes as
it were a WAN connectivity, so a tunnel will encapsulate the traffic. In
other case, the Internet Overlay flow will be selected again. This request
is answered back with message (13).

14. Finally, in the same way that in message (7), the corresponding flows are
installed on each SDN switch different than the edge SDN switch
from which the prefixes have been received. However, in this case, the
output port will be the next hop to reach the prefix learned, as calculated

by the network graph.

In the same way, in a specific point of time, a given prefix may be no
longer propagated by the edge router of an external domain, thus triggering
the prefix deletion workflow presented in Figure 40. This workflow will not be
fully explained because it follows exactly the same process than explained in
Figure 39, but doing the deletion instead of the installation.

SDN domain Alviu

Edge SDN Other SDN Other edge SDN SDN
switch switches SDN switches Controller Orchestrator

| |

External domain

Edge router

|
| |
2. Quagga updates the IP routes

|

3. Sen

|
|
|
with thelprefix removed | |
|
|
|

removed prefix through REST o
T

|
|
|
|
|
|

|

|
|
|
|
1

4. Notify removed prefixl

4'. Prefix received

ke — oo

alt

Prefix \%not 0.000/0

|

L2 ——

le

|
7. Remove Trangit Overlay flow | |

'
| 6. Notify the
| deletion of Transit
| Overlay flow

<
|

|

|
prefixi}0.0.0.0/0 |
|
|
|

7. Remove Internet

! 6. Notify the deletion
\ of Internet Overlay
flow
Overlay flow | |

1 6'. Notification received |
[

|

|

|
<
™ T
| |
} }
| |
| |
| |
| |
|

|

|

|

|

|

|

1

|
11. Configuration finished

I I
| 8. Provide configuration|

9. Configure switches ! to the other edge SDN
through OVS REST | switches

< application I

|
10. Apply Quagga
configuration]]

| |

1
alt |
Prefix is not 0.0.0.0/0 :

14. Remove Def;

ul

1

] 13. Notify the

| deletion of Default

| . WAN Overlay flow
't WAN Overlay flows

|
|
|
|
|

e vttt bttt b et ty Pl

| |
113", Notification received!
F >

| 13. Notify the
deletion of Internet
Overlay flow

|

rnet Overlay flows | |

A

14. Remove lhte!
¢

|

'L13‘, Notification received!

i
|
|
I
|
Prefix \%DD 0.0/0
|
|
I
|
|
I
|

Fro{n this point, the intercornection between{the SDN domain l?nd the removed prefix v{/ill no longer be ma'\nta\'n%d

Figure 40: Prefix deletion workflow.

87

5. Network Manager removes the Prefix
from the corresponding Next Hop, notifies
the deletion of the corresponding flows
depending on the prefix, configures the
other edge SDN switches and notifies the
Connection Manager module

12. Connection Manager module
updates the network graph and
notifies the deletion of the
corresponding flows

6 EVALUATION AND DEMONSTRATION OF INTENT-BASED ORCHESTRATION
CAPABILITIES IN REAL SCENARIOS

And finally, it may happen that a particular prefix could be learned from
different external domains, being then received in Alviu more than once. To
handle this, a status attribute is added to the Prefix entities, which could be
either active for the first prefix received, to which the prefix learning workflow
would be applied, or backup for the same prefixes learned afterwards, which would
not be reachable until the active prefix is deleted.

In that moment, the backup prefix activation workflow would be applied,
being described in Figure 41. Again, this workflow will not be explained in detail,
as it is practically equal to the prefix learning workflow, but in this case the process
will be triggered after removing a prefix that is repeated in Alviu.

External domain SDN domain Alviu
Edge router Edge SDN Other SDN Other edge
g switch swit]ches SDN switches Controller Orchestrator

1. If the same prefix was learned from
another edge SDN switch, this will be
marked as active and the corresponding
flows will be then installed, the other
edge SDN switches will be configured
and the Connection Manager module
will be notified

|
|
|
:
| 2. Provide Transit
| Overlay flows to
: be installed

3. Install Transit Overlay flows | |

|

|

: ! 2. Provide Internet

| | Overlay flows to be
installed

3. Install Interngt Overlay flows | |

t 1 2'.Flows received |
L

| 4. Provide configuration|

|

|

|

|

I

|

|

|

|

1

|

|

|

|

|

|

|

t

| 1
l I
| |
: : 5. Configure switches: to the other edge SDN
| | through OVS REST switches
|

|

|

|

|

|

|

|

|

|

|

|

L

|

|

|

|

|

|

|

r

|

1

application |

|
6. ApplyQuagga |- —=—=——=——="=
configuration | |
| |

8. Connection Manager module
updates the network graph and
generates the corresponding flows
to reach the learned Prefixes

|

| I 9. Provide Default
| I WAN Overlay flows
! ! to beinstalled

alt
Prefixifnot 0.0.0.0/0

! 10. Install DEfa:u\l WAN Overlay flows

|

|

! I 9. Provide Internet
: Overlay flows to be
| installed

10. Install \ntgrnet Overlay flows | |

1 . |
I L 9 Flowsreceived

I
I
I
Fvshx\%ﬂo 0.0/0
I
I
I
I
I
I

. .) | . | .
From this point, thejinterconnection hetween the extefnal domain and the SDNjdomain is achieved

Figure 41: Backup prefix activation workflow.

6.2. Load Balancing with Dual Link Between SDN Swit-
ches
6.2.1. Use Case Overview

This particular scenario is presented when there are more than one
logical connections between WAN-type SDN switches (i.e. switches that
interconnects SDN domains), having then the opportunity to balance the traffic
between these links according to a given algorithm. Note that these logical

88

6 EVALUATION AND DEMONSTRATION OF INTENT-BASED ORCHESTRATION
CAPABILITIES IN REAL SCENARIOS

connections can go through separate physical links for each case or using the
same physical link for a set of logical tunnels, depending on the case.
A practical example of this can be seen in Figure 42, where there are two

SDN branches, A and B, interconnected with a double-link connection between a
pair of WAN-type SDN switches.

SDN Branch B

Figure 42: Practical scenario with switches connected by more than one link.

This configuration has some impacts in different aspects of the platform,
such as the design of the SDN switches or the introduction of a new, parallel
workflow to handle the traffic that will trigger the creation of the proper flows to
manage the load balancing between switches. These issues will be discussed with
more depth in Sections 6.2.2 and 6.2.3, respectively.

6.2.2. Updates Needed in OVS-based Switches

Although the changes needed in the SDN switches to enable this use case are
less compared to the use case related to the interconnection with external domains,
some new modules and configurations are needed.

Obligatorily, a Monitoring agent must be deployed in the switches, being
connected to the Monitoring Module present in the SDN Controller, as
depicted in Figure 25, to exchange information about the traffic flows handled
by the switch.

Moreover, in case of using several physical links to perform the load
balancing, the corresponding physical ports must be tagged as WAN ports, also
requiring the same configuration based on a Linux Bridge and a pair of veth
interfaces as commented in Section 6.1.2. However, as explained in Section 6.2.1,
it is possible to have a load balancing based on logical connections established
through a single physical link, thus only needing one WAN port in that case.

In Figure 43, it is presented an example of a 4-port SDIN switch based
on OVS, including Quagga for the interconnection with external domains with
the configuration already explained in Section 6.1.2, and also integrating the
Monitoring agent as a new Linux module to be activated. This agent is logically
connected to the Linux Bridges used in the WAN ports; in this case, as there
are two WAN ports, it is connected to the two Linux Bridges depicted.

89

6 EVALUATION AND DEMONSTRATION OF INTENT-BASED ORCHESTRATION
CAPABILITIES IN REAL SCENARIOS

Monitoring .
agent Quagga oVvS 7 Linux modules

] ge-w-1-1 ge-w-1-2

: | | - Logical interfaces
I ge-w-2-1 ge-w-2-2
|
|

ge-1-1-3 ge-1-1-4 .
- Linux Bridges

' Physicalinterfaces

WAN ports LAN or TRUNK ports

Figure 43: Update of the OVS-based switches to include the components needed
for the load balancing use case.

Finally, a modification needed due to a problem found during the development
phase of this feature was the fact that dual-link SDN switches whose WAN
ports belongs to the same network forward traffic based on the forwarding
table installed in the Linux kernel, even though the SDN Controller installs
the flows correctly. And, as both WAN ports belongs to the same network, it is
used only one of the interfaces for sending the traffic to the network. This
was solved with the use of iptables in the PREROUTING and OUTPUT
chains for marking the tunneling protocols used (GRE, ESP for IPsec, etc.)
with a specific key value, which is different for each link of the dual-link path.
so the traffic is forwarded for one link or another depending on the key value
afterwards. The key value can be included when defining a Connection Intent.

6.2.3. System Workflow

Before starting with the explanation of the workflow of this use case, an
example of a simple scenario will be firstly presented in order to clarify some
aspects related to the workflow itself. This can be seen in Figure 44, where there
are three branches, with one SDN switch per branch, and where there are two
branches interconnected with a dual link between switches.

SDN Branch

LE

SrcXIP Ds:IP Src EF:ort Dst Port Monltorlng

1 I B 4 flow table

Figure 44: Example of traffic flows captured in a scenario with dual link between
switches.

90

6 EVALUATION AND DEMONSTRATION OF INTENT-BASED ORCHESTRATION
CAPABILITIES IN REAL SCENARIOS

Note that a Monitoring flow table is presented at the bottom of the picture,
describing an already established traffic flow between the hosts from branches X
and Z in both senses of communication. The first thing to have in mind is that
this table is only managed by switches with dual links, so the SDN switch Z
will not require the Monitoring agent on it.

This information is gathered by Alviu by doing a continuous polling, every
so often, to the SDN switches with Monitoring agents installed. From this
point, the load balancing workflow is started, as presented in Figure 45:

SDN domain

SDN switches
with dual link

The Mdnitoring Module in the SDN Controller performs a continuous polling ofiflows
+

Controller Orchestrator

| 1. Collect flows recorded
| by the Monitoring agent
2. Send flows to the Monitoring

Module with source/destination
IP/port and bandwidth measured,

——————— L

|

|

|

|

|

|

|
3. Discard repeated flows :
and flowswithanon-
significative bandwidth |
|
|

4. Redirect the flows

5. Monitor Manager extracts the
source and destination switches,
based on the source and
destination IP addresses and
provides them to the Connection
Manager module

|

|

|

|

|

|

| 6. Connection Manager calculates
| the best path between the two
! switches according to the current
: status of the weighted graph,

| updating the weights afterwards.
| Then, it replies back to the Monitor
|

|

|

|

|

|

|

|

|

)

]

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Manager with the best path
|

|

|

7. Monitor Manager generates the

Load Balancing Overlay flows to be

installed in all the dual-link switches
implied in the path

opt

if the swiych lied in the path
switch isimlied in the pa 8. Provide Load Balancing

Overlay flows to be installed

9. Install Load Balancing
Overlay flows

Figure 45: Load balancing workflow.

The full description of the messages implied in this workflow is the following:

1. The Monitoring agent of the SDN switches with dual links are continuously
collecting traffic flows if detected, registering networking information
such as the source and destination IP addresses and ports or the
bandwidth measured, which can be used afterwards by Alviu to compute
the flows related to load balancing.

2. As commented before, Alviu polls the Monitoring agent to obtain new
traffic flows. In that case, they are sent to the Monitoring Module of the
SDN Controller, using specific protocols related to monitoring purposes
(e.g. sFlow).

91

6 EVALUATION AND DEMONSTRATION OF INTENT-BASED ORCHESTRATION
CAPABILITIES IN REAL SCENARIOS

3. In the Monitoring Module, there is a process running that detects if each
flow captured is new or old, checking if it has been received previously or
not (for example, the same traffic flow could be detected in the two switches
connected by a dual link), only conserving the new ones. Also, it discards
flows whose bandwidth is not meaningful, as it could be punctual traffic
exchanged between the switches that may introduce useless flows in the SDN
switches. A threshold of 1 Kbps is usually set, as it could be considered the
”limit.°f a significant value in this kind of networks.

4. The filtered flows are then sent to the Monitor Manager module of the
SDN Orchestrator, which will act consequently. This message is replied
by the orchestrator with message (4').

5. According to the networking information received, the Monitor Manager
module is able to extract the source and destination switches implied
in each flow traffic, sending them to the Connection Manager module to
perform the calculations over the graph.

6. In this point, after calculating the best path between the two endpoints,
two cases may happen: (7) if the traffic flow involves a path in which
no dual links are present, it will be directly rejected!® and the workflow
would finish in this point, or (i7) in the best path, there are dual-link
switches involved, so it is forwarded to the Monitor Manager. First of
all, note that only one best path will be obtained because it is a weighted
graph, where the weights of each link are updated with every new load
balancing flow installed, according to a given algorithm.

In the current implementation, a Round Robin algorithm is used, so that
the first flow will use the first link between switches (this being the default
behaviour when the weights in the dual links are the same), incrementing
the value of its weight in one unit. As a result, the second flow will use
the second link, as its weigth value is less than the weigth value of the first
link, updating again its weight afterwards, and so on and so forth.

7. The Monitor Manager, after receiving the best path, generates each
Load Balancing Overlay flow to be installed in the corresponding SDN
switches with dual links present in the path, achieving that the traffic is
sent through the same link in both senses of communication.

8. Then, the data needed to generate the Load Balancing Overlay flows
(i.e. source/destination IP/port, switch identification and output port) is
sent to the SDN Controller, which replies back to this request with
message (8') to confirm that it has received the data.

9. Finally, the Load Balancing Overlay application installs the flows in
the switches with a soft timeout of 30 seconds, so the flows are deleted
after spending that time without receiving that traffic flow. This is
done to avoid wasting resources in traffic flows that may be ephemeral.

13This interaction has not been included in the workflow diagram so as not to complicate it
more.

92

6 EVALUATION AND DEMONSTRATION OF INTENT-BASED ORCHESTRATION
CAPABILITIES IN REAL SCENARIOS

6.3. Proof of Concept

The features commented in Sections 6.1 and 6.2 will be tested in a particular
testbed, showing all the capabilities that Alviu can offer to manage a set of
SDN domains with advanced configurations.

6.3.1. Testbed Setup

The testbed used for doing this proof of concept is the same than used in
Chapter 5.4.1, using an Ubuntu Server 16.04 LTS virtual machine [90], with
12 vCPU and 12 GB of RAM, deployed in a server virtualized with Prozmox [89],
which is equipped with 40 Intel(R) Xeon(R) CPU E5-2630 v4 at 2.20 GHz and 128
GB RAM. In the virtual machine, Alviu has been provisioned in a Dockerized
format, deploying both the SDN Orchestrator and the SDN Controller with
Docker containers [92].

The scenario, deployed with the Continuous Integration platform, is fully
described in Figure 46, also including the networking configuration for each
link. The topology is quite similar to the example shown in Figure 44, with three
SDN branches deployed in a star topology, each of them having only one
SDN switch and one host, and with a dual link between the switches from
branches X and Y. There are also some external domains: SDN branch X is
connected to two external domains, and SDN branch Z to another two. Note that
there are two external domains, the external domains C active and C backup,
whose IP prefixes (172.16.200.0/24) are repeated, in order to test the active-
backup configuration of IP prefixes. Moreover, the external domains A and B have
another interconnection with other external domains related to the connection
to the Internet, because the router of these domains will propagate the default
prefix. Again, as there are two domains announcing the default route, that prefix
will be received twice, acting one as active and the other one as backup. All the
routers used in both external and Internet domains have Quagga installed.

|| &

&
N \H'
24 ‘ ol \\
inmmo/zx ‘/ Network: 10.§07.0.16/28 \ Network m]]nmaz /28 M\zs

~h N 2 L2
{ 10. 10?* 10 107.0. 17 /) _\ 10. 107037
S
& Virtual N twcﬂl’ 107.0.0/16 /\

SDN Branch X SDN Branch Y SDN Branch Z

Internet Domain A (active)

Figure 46: Testbed built with the Continuous Integration environment to do the
proof of concept.

93

6 EVALUATION AND DEMONSTRATION OF INTENT-BASED ORCHESTRATION
CAPABILITIES IN REAL SCENARIOS

After presenting the scenario, the different stages of the proof of concept will
be briefly described, also showing the flow rules installed or updated on each
phase.

6.3.2. Basic Connectivity Between SDN Switches

When Branch and Connection Intents are deployed and activated (i.e.
all the entities related to each intent are marked as active), while the routers from
external domains do not establish IGP sessions with the edge SDN switches to
propagate the network prefixes, the topology will remain in a basic connectivity
status, so that the hosts of the SDIN branches can exchange traffic between
them.

This connectivity is achieved thanks to two type of flows: (i) a Default
WAN Overlay flow installed for each network from other SDN domains,
and a Per Host LAN Overlay flow to reach each host of the branch itself. For
instance, in the case of the SDN branch X, the corresponding flows are presented
in Figure 47, which is a capture from ONOS (i.e. the SDN Controller) GUI. In
this case, the traffic related to the Default WAN Overlay flows are sent through
the port number 100, which is one of the GRE port which connects branches X
and Y (because there is a dual link), and the traffic directed to the host of this
branch is managed by the Per Host LAN Ovelay flow, which sends the traffic to
the port 2 (which is a LAN port).

SELECTOR TREATMENT APP NAME

IN_PORT:7, ETH_TYPE:ipv4,

y T. fal Ica.alviu.default-wan-
IPV4_DST:10.107.0.32/28 imm[OUTPUT:100], cleared:false telca.alviu.default-wan-overlay

IN_PORT:7, ETH_TYPE:ipv4,

i UTPUT: :fal Ica.alviu.default-wan-ove
IPV4_DST:10.107.0.16/28 imm[OUTPUT:100], cleared:false telca.alviu.default-wan-overlay

imm[ETH_SRC:00:00:00:11:11:11,
ETH_DST:00:00:00:00:0A:01, telca.alviu.perhostlanoverlay
QUTPUT:2], cleared:false

IN_PORT:7, ETH_TYPE:ipvd,
IPV4_DST:10.107.0.7/32

Figure 47: Flows related to basic connectivity in the SDN switch of branch X.

6.3.3. Interconnection with External Domains

When all the Quagga modules of the routers from external domains are
activated, the workflow explained in Section 6.1.3 is then triggered, and after
reaching a convergence point, some new flows are added to each SDN switch,
as presented in Figure 48 in the case of branch X, and in Figure 49 for branch Y.
Starting with branch X (the same can be applied to branch Z), the group of
flows that can be distinguished in that moment are:

1. These group of flows are the same than presented in Figure 47, related to
the basic connectivity between SDIN branches.

2. This second group of flows are the Default WAN Overlay flows that
allows to reach the prefixes from external domains learned in other
edge SDN switches (i.e. the branch Z switch). Note that all the traffic is
sent to the port 100, so that the traffic is forwarded to branch Y.

94

6 EVALUATION AND DEMONSTRATION OF INTENT-BASED ORCHESTRATION
CAPABILITIES IN REAL SCENARIOS

3. Then, this group of flows represents the Transit Overlay flows to reach
the prefixes from external domains directly attached to this switch, so
the output is a TRUNK port (in this case, the same port, number 4, is
used for both cases).

4. Finally, as a default route is announced, an Internet Overlay flow is
installed. Note that the traffic allowed to reach the Internet can only
come from the SDN domains, as the source IP address is matched with the
virtual network defined in the scenario, so that the traffic from external
domains cannot traverse the SDN domains to go to another external
domain which allows them to reach the Internet. This is done for security
purposes, to avoid having a SDN network dedicated exclusively to exchange
traffic with the Internet. However, in any case, this behaviour could be
changed but just removing the source IP address match in the flow
rule, confirming the ease of changing settings in this kind of platforms.

SELECTOR TREATMENT APP NAME
IN_PORT:7, ETH_TYPE:ipv4, IPV4_DST:10.107.0.7/32 imm[ETH*SRC:OO:OC?;JOTDFiLE;}: ué::er-;,:zf;:oo:oo:00:00:0A:o1 *telca.alviu.perhostlanoverlay
1 | in_PoRT:7, ETH_TYPE:ipv4, IPV4_DST:10.107.0.32/28 imm[OUTPUT:100], cleared:false telca.alviu.default-wan-overlay
IN_PORT:7, ETH_TYPE:ipv4, IPV4_DST:10.107.0.16/28 imm[OUTPUT:100], cleared:false telca.alviu.default-wan-overlay
IN_PORT:7, ETH_TYPE:ipv4, IPV4_DST:172.16.200.0/24 imm[OUTPUT:100], cleared:false telca.alviu.default-wan-overlay
2 IN_PORT:7, ETH_TYPE:ipvd4, IPV4_DST:172.16.20.0/24 imm[OUTPUT:100], cleared:false telca.alviu.default-wan-overlay
IN_PORT:7, ETH_TYPE:ipv4, IPv4_DST:172.16.3.0/24 imMm[OUTPUT:100], cleared:false telca.alviu.default-wan-overlay
IN_PORT:7, ETH_TYPE:ipv4, IPV4_DST:172.16.4.0/24 imm[ETH_DST:8A:C1:18:93:2B:B5, OUTPUT:4], cleared:false telca.alviu.transit-overlay
IN_PORT:7, ETH_TYPE:ipv4, IPV4_DST:172.16.2.0/24 imm[ETH_DST:8A:C1:18:93:2B:B5, OUTPUT:4], cleared:false telca.alviu.transit-overlay
4] | IN_PORT:7, ETH_TYPE:ipv4, IPV4_SRC:10.107.0.0/16 imm[OUTPUT:100], cleared:false telca.alviu.internet-overlay

Figure 48: Flows that includes the interconnection with external domains in the
SDN switch of branch X.

In the case of the switch of branch Y, the flows are slightly different, as it
is not directly connected to any external domain:

1. First of all, the flows related to basic connectivity with other SDN branches
are presented.

2. In this case, to reach all the prefixes learned from external domains,
as it is not directly connected to the external domains, a Default WAN
Overlay flow is installed for each prefix learned, specifying the GRE port
to send the traffic to the next hop in each case.

3. In the same case than in branch X, the Internet Overlay flow is defined.

95

6 EVALUATION AND DEMONSTRATION OF INTENT-BASED ORCHESTRATION
CAPABILITIES IN REAL SCENARIOS

SELECTOR TREATMENT APP NAME

Imm[ETH_SRC:00:00:00:11:11:11, ETH_DS5T:00:00:00:00:0A:02,

telca.alviu.perhostl 1
QUTPUT:2], cleared:false elca.alviu.pernostianoveriay

IN_PORT:7, ETH_TYPE:ipv4, IPV4_DST:10.107.0.17/32

1 IN_PORT:7, ETH_TYPE:ipv4, IPV4_DST:10.107.0.0/28 imm[OUTPUT:101], cleared:false telca.alviu.default-wan-overlay

IN_PORT:7, ETH_TYPE:ipv4, IPV4_DST:10.107.0.32/28 imm[OUTPUT:103], cleared:false telca.alviu.default-wan-overlay

IN_PORT:7, ETH_TYPE:ipvd, IPV4_DST:172.16.4.0/24 Imm[OUTPUT:101], cleared:talse telca.alviu.default-wan-overlay

IN_PORT:7, ETH_TYPE:ipv4, IPV4_DST:172.16.2.0/24 imm[OUTPUT:101], cleared:false telca.alviu.default-wan-overlay

2 IN_PORT:7, ETH_TYPE:ipv4, IPV4_DST:172.16.200.0/24
IN_PORT:7, ETH_TYPE:ipv4, IPV4_DS5T:172.16.3.0/24

imm[OUTPUT:103], cleared:false telca.alviu.default-wan-overlay

imm[OUTPUT:103], cleared:false telca.alviu.default-wan-overlay

IN_PORT:7, ETH_TYPE:ipv4, IPV4_DST:172.16.20.0/24 imm[OUTPUT:103], cleared:false telca.alviu.default-wan-overlay

cleared:false

telca.alviu.internet-overlay

3| IN_PORT:7, ETH_TYPE:ipv4, IPV4_SRC:10.107.0.0/16 immOUTPUT:103],

Figure 49: Flows that includes the interconnection with external domains in the

SDN switch of branch Y.

Finally, it may happen that a prefix is no longer announced, removing the
related flows from the switches consequently. And, if these prefixes are repeated
in the scenario, the workflow presented in Figure 41 will be then started, updating
the status of these prefixes to active and installing the new flows in the
switches.

For example, if Quagga modules from the external domain C active and the
Internet domain A are stopped, then the prefixes learned from the external domain
C backup and the Internet domain B, respectively, will be marked as active, and
the new flows will be then installed. This change is reflected in Figure 50 for the
case of the switch of branch X, where the IP prefix 172.16.200.0/24 and the
default route are now reached through the TRUNK port, so that the first one
is modeled with a Transit Overlay flow, and the second one is still an Internet
Overlay flow, but including the change of the destination M AC address
with the edge router’s one.

SELECTOR

IN_PORT:7, ETH_TYPE:ipv4, IPV4_D5T:10.107.0.7/32

IN_PORT:7, ETH_TYPE:ipv4, IPV4_DST:10.107.0.32/28
IN_PORT:7, ETH_TYPE:ipv4, IPV4_DST:10.107.0.16/28

TREATMENT

imm[ETH_SRC:00:00:00:11:11:11, ETH_DST:00:00:00:00:0A:01,

QUTPUT:2], cleared:false
imm[QUTPUT:100], cleared:false
imm[QUTPUT:100], cleared:false

APP NAME

telca.alviu.perhostlanoverlay

telca.alviu.default-wan-overlay

telca.alviu.default-wan-overlay

IN_PORT:7, ETH_TYPE:ipv4, IPV4_D5T:172.16.200.0/24

imm[ETH_DST:F2:71:5D:D8:07:64, OUTPUT:4], cleared:false

telca.alviu.transit-overlay

IN_PORT:7, ETH_TYPE:ipv4, IPV4_D5T:172.16.4.0/24
IN_PORT:7, ETH_TYPE:ipv4, IPV4_DST:172.16.20.0/24
IN_PORT:7, ETH_TYPE:ipv4, IPV4_D5T:172.16.3.0/24
IN_PORT:7, ETH_TYPE:ipv4, IPV4_D5T:172.16.2.0/24

imm[ETH_DST:8A:C1:18:93:2B:B5, OUTPUT:4], cleared:false
imm[OUTPUT:100], cleared:false
ImMm[QUTPUT:100], cleared:false

imm[ETH_DST:8A:C1:18:93:2B:B5, OUTPUT:4], cleared:false

telca.alviu.transit-overlay
telca.alviu.default-wan-overlay
telca.alviu.default-wan-overlay

telca.alviu.transit-overlay

| in_PoRT:7, ETH TvPE:IpV4, IPV4_SRC:10.107.0.0/16

imm[ETH_DST:8A:C1:18:93:2B:B5, OUTPUT:4], cleared:false

telca.alviu.internet-overlay I

Figure 50: Update of the flows related to the interconnection with external
domains in the SDN switch of branch X.

6.3.4.

Testing Load Balancing Capabilities

In case of establishing traffic flows between hosts that traverse the dual

link between switches of branches X and Y (e.g. by using iperf to test it), the
load balancing workflow explained in Section 6.2.3 is then triggered, installing
the corresponding ephemeral Load Balancing Overlay flows that allows to do
the load balancing.

96

6 EVALUATION AND DEMONSTRATION OF INTENT-BASED ORCHESTRATION
CAPABILITIES IN REAL SCENARIOS

For example, Figures 51 and 52 shows some Load Balancing Overlay flows
installed in SDN switches from branches X and Y respectively, checking that
they are balanced by following a Round Robin algorithm (i.e. the number of
times that an output port is used is equally distributed), and that the flows are
paired off between switches to always use the same link in both senses of
communication (e.g. the first flow in the switch from branch X is paired off with
the third flow in the switch from branch Y).

SELECTOR TREATMENT APP NAME

IN_PORT:7, ETH_TYPE:ipv4, IP_PROTOQ:E, IPV4_SRC:10.107.0.7/32, § X .
IPV4_DST-172.16.200.2/32, TCP_SRC:20000, TCP_DST:56580 Imm[OUTPUT:100], cleared:false telca.alviu.load-balancing-overlay

IN_PORT:7, ETH_TYPE:ipv4, IP_PROTO:6, IPV4_SRC:10.107.0.7/32, . : X . .
IPVA_DST.10.107.0.37/32, TCP_SRC:30000, TCP. DST:40292 imm[OUTPUT:100], cleared:false telca.alviu.load-balancing-overlay

IN_PORT:7, ETH_TYPE:ipv4, IP_PROTO:6, IPV4_SRC:10.107.0.7/32, . . X . .
IPVA_DST10.107.0.17/32, TCP_SRC:30000, TCPDST:37236 imm[OUTPUT:104], cleared:false telca.alviu.load-balancing-overlay
LA R AL AR [AROUEES, [HE A O R E Imm[OUTPUT:104], cleared:false telca.alviu.load-balancing-overlay

IPV4_D5T:172.16.20.2/32, TCP_SRC:30000, TCP_DST:35970

Figure 51: Load Balancing Overlay flows in the switch from branch X.

SELECTOR TREATMENT APP NAME
INjﬁi:i)::?grgfép:égp;z E?;:é63;5?3??;_3;2;;0530282 imm[OUTPUT:105], cleared:false telca.alviu.load-balancing-overlay
lN_PE-E:_?D:;?BTE’Ecl;p:,gip{z E?—':éé;;:g‘igg_g;zzgggez imm[OUTPUT:105], cleared:false telca.alviu.load-balancing-overlay
IN‘PCI);J;DE;:‘;\:EEIg\;:;zp‘_rPcRchgciI;‘;%i_iijé;;:020?0282 imm[OUTPUT:101], cleared:false telca.alviu.load-balancing-overlay
IN_PORT:7, ETH_TVPE:pu, [P_PROTO:6, IPV4_5RC:10.107.0.37/32, imm[OUTPUT:101], cleared:false telca.alviu.load-balancing-overlay

IPV4_DS5T:10.107.0.7/32, TCF_SRC:40292, TCP_DST:30000

Figure 52: Load Balancing Overlay flows in the switch from branch Y.

6.3.5. Testing Network Slicing Features with Firewall and QoS Policies

Finally, some value-added capabilities can be added with the definition of
the Policy Intents, which can be related to the achievement of network slicing
objectives (e.g. guarantee a given throughput for a traffic flow, isolate traffic flows
between them, etc.).

In this case, two examples will be shown. The first one is related to the
firewalling capabilities of Alviu. In Figure 53, some Firewall rules can be
seen, meaning that all the traffic exchanged with the network of the SDN branch
Y is rejected excepting the traffic directed to the TCP port number 30000.

SELECTOR TREATMENT APP NAME

ETH_TYPE:ipv4, IP_PROTO:6, IPV4_DST:10.107.0.16/28, imm[ETH_SRC:00:00:00:11:11:11, ETH_DST:00:00:00:22:22:22,

telca.alviu.firewall
TCP_SRC:30000 QUTPUT:8], cleared:false

ETH_TYPE:ipv4, IP_PROTO:6, IPV4_SRC:10.107.0.16/28, imm{ETH_SRC:00:00:00:11:11:11, ETH_DST:00:00:00:22:22:22, N
telca.alviu firewall

TCP_DST:30000 QUTPUT:8], cleared:false
ETH_TYPE:ipv4, IPV4_SRC:10.107.0.16/28 imm[NOACTION], cleared:false telca.alviu.firewall
ETH_TYPE:ipv4, IPV4_DST:10.107.0.16/28 imm[NOACTION], cleared:false telca.alviu firewall

Figure 53: Example of firewall rules installed in the switch of branch Y.

97

6 EVALUATION AND DEMONSTRATION OF INTENT-BASED ORCHESTRATION
CAPABILITIES IN REAL SCENARIOS

And secondly, a QoS example is also presented for branch Y. In Figure 54,
it can be seen that the traffic exchanged with the network of the SDN branch Y
using the TCP port number 30000 is tagged with DSCP, which is used afterwards
by the queues configured in the OVS to guarantee a particular bandwidth to
that traffic flow, according to what it has been defined in the Policy Intents.

SELECTOR TREATMENT APP NAME
ETH_TYPE:ipv4, IP_DSCP:0, IP_PROTO:6, IPV4_SRC:10.107.0.16/28, o _) i S _
TCP_DST:30000 imm[IP_DSCP:6, QUEUE{queueld=0}, OUTPUT:6], cleared:false telca.alviu.qos-overlay:qos
ETH_TYPE:ipv4, IP_DSCP:0, IP_PROTO:6, IPV4_DST:10.107.0.16/28 =
= = i : = . SCP: =0} T 3 ared:fal . 1.qos-overlay:
TCP_SRC:30000 imm[IP_DSCP:6, QUEUE{queueld=0}, OUTPUT:g], cleared:false telca.alviu.qos-overlay:qos
ETH_TYPE:ipv4, IP_DSCP:0 imm[IP_DSCP:6, OUTPUT:6], cleared:false telca.alviu.gos-overlay:default

Figure 54: Example of QoS rules installed in the switch of branch Y.

6.4. Summary

This Chapter is understood as an application to all the general topics
presented in Chapter 5 regarding Alviu, confirming that this orchestration
solution is flexible enough to be able to achieve the integration of specific use
cases, with different purposes.

Specifically, two use cases have been fully described in this Chapter, from
the need each of them tries to cover to the workflow followed by the platform to
achieve the desired configuration, also including some technical specifications
about the internal design of the SDN switches to fulfill these requirements.

These two cases are, in summary, the interconnection with legacy, external
domains, which is one of the most relevant features that Alviu implements,
and being complemented by the load balancing service between switches
interconnected by more than one connection.

Finally, to confirm that the workflow has been correctly implemented in
Alviu, a proof of concept has been fully described, including both use cases and
other ones related to other features of Alviu (i.e. implementation of policies).

98

Part 3. New Virtualization Techniques

99

Integration of the Serverless
Paradigm within 5G Networks

The fifth-generation (5G) of mobile networks will tackle the current and
future trends of data consumption while fulfilling stringent requirements on
delay, reliability, and throughput, among others. In order to provide customized
services that efficiently meet these requirements, mobile networking is adopting
two key trends from computer science, which are softwarization and
modularization. The first one is the ability to operate fully-fledged
networks through software components, while the second one consists of
defining and instantiating re-usable and highly focused Virtual Network
Functions (VNF), which can be eventually interconnected with orchestration
solutions such as Alviu, already presented in Chapters 5 and 6. Thanks to these,
network providers can move away from highly specialized hardware solutions
and benefit from building deployments based on general-purpose hardware
architecture, running re-usable software components.

The adoption of softwarization and modularization by the mobile networ-
king community provides significant benefits; such as flexibility, improved
resource efficiency or commoditization, eventually enabling the network
slicing paradigm [111]. Furthermore, the availability of solutions, both com-
mercial and open-source, implementing these two technologies, are also increa-
sing, which is caused by the relative maturity of these technologies related to
the Cloud Computing success.

Despite this, this transition towards softwarization and modularization also
implies a non-negligible cost, e.g. the management overhead or the re-
design of certain functions that now run as software components instead
of as hardware implementations [112]. Moreover, in terms of projects and
implementations available in the mobile networking ecosystem, it is true
that its evolution is going late compared to the Cloud Computing ecosystem,
in which there are already technologies adapted to this trend.

This is the case of the serverless architectures, also known as Function as
a Service (FaaS), a novel paradigm that appeared a few years ago supporting

101

7 INTEGRATION OF THE SERVERLESS PARADIGM WITHIN 5G NETWORKS

an extremely liquid approach to scalability and resource usage [52][113].
In fact, with this approach, the software is decomposed into its minimum
building blocks (i.e. functions), maximizing scalability, flexibility and
resource efficiency, being this last topic of paramount importance in the multi-
tenant scenarios envisioned in 5G. This way, a tenant would be able to create
“on-demand” calls to specific platform- and server-independent functions that
are then executed by an infrastructure provider. This flexibility also allows to
easily reallocate the functions along the infrastructure if required in order
to optimize the overall system’s consumption, using monitoring solutions
such as the one presented in Section 3 to constantly check the performance of
these functions and to trigger their reallocation.

As a result, this Chapter delves into the serverless paradigm applied to
mobile architectures, merging the new trends on the Cloud Computing
evolution into the mobile networking community. Apart from extending
the main characteristics of this new technology, it will be also considered its
integration into a well-known platform related to 5G networks, which is the
Monitoring platform already presented in Section 3, then discussing the lessons
learned from this process.

The main topics that will be discussed in this Chapter are the following:

= As a first step, Section 7.1 presents the need for serverless computing
as a key candidate technology for the next generation of Network
Function Virtualization (NFV), also discussing the advantages and
challenges introduced by this approach.

= Then, Section 7.2 introduces the usage of the serverless paradigm in
the Monitoring platform already presented in Section 3, describing the
transition from the original implementation to a full serverless-based
platform.

= Taking into account the new serverless implementation of the Monitoring
platform, Section 7.3 validates its correct behaviour in a testbed which
uses some of the tools related to the serverless paradigm, presented in
Section 2.3.

= And finally, Section 7.4 summarizes and concludes the work related to
this introduction of the serverless paradigm.

7.1. Serverless Mobile Architectures’ Overview

In this Section, the transition towards a serverless mobile network
architecture will be analyzed, introducing the concept firstly and then discussing
the advantages and the challenges to address to achieve this evolution.

7.1.1. Concept

To describe the serverless mobile network architectures, Radio Access
Network (RAN) functions will be used as examples, as they provide the
most difficult scenario for serverless architecture given their tight execution

102

7 INTEGRATION OF THE SERVERLESS PARADIGM WITHIN 5G NETWORKS

constraints. This way, in Figure 55, the evolution of the different architectures
to support a mobile service from the RAN perspective is reflected.

Flow
Application

ontrol
- g I
g$_$ Core MAc °J$ ﬁ
Acoess A (c-plane) ‘ Decoding F
or I _

Gig ‘- [[ercodepaseno)
m Terminal PHY j er encode_pdsch()
- oy (Coecode_pracho)

Distributed Access
(u-plane)

j

j

o—
6_

Centralized Access

]

Monolithic Modular Microservices Serverless

Figure 55: Mobile network architecture evolution.

In this case, four architectures can be distinguished:

= Firstly, the leftmost subfigure depicts the traditional monolithic paradigm
(e.g. 4G networks), where functions are implemented in specialized pieces
of equipment. In this case, software and hardware are tightly coupled,
and it is not uncommon that different functions are indissolubility associated
to the same piece of equipment, e.g. the Serving Gateway (S-GW) and Packet
data network Gateway (P-GW).

= The next subfigure shows a modular network architecture, represented by
the Cloud-RAN (C-RAN) paradigm, where some control functiona-
lity traditionally associated with the antenna (i.e. the scheduling algorithm)
is re-located to a central server. This change constitutes a shift from the
monolithic approach, with some functions “released” from their tradi-
tional association to monolithic pieces of hardware. These functions
are now logically different pieces of software, whose execution can be
placed in different parts of the network.

s In the case of the microservices architecture, it pushes the modular
paradigm further by decomposing the building blocks into sub-
modules. Note that this is a logical division and that the actual
implementation of the architecture needs to accommodate based
on specific use-case requirements, thus eventually resulting in fewer
or more pieces of software. For the case of the RAN, this results
in the protocol stack now being logically divided into physical layer
processing, decoding, encoding, MAC, flow control, etc., each of them
running in an independent execution environment and connected
through synchronization APIs. This allows an easier scaling over a
finer resource assignment strategy, which eventually leads to better
resource utilization. Furthermore, some very recent proposals are pushing
for microservice-based core network functions [114], showing that this
increased modularity in the VNF design is catching momentum.

= And finally, the desired serverless mobile architecture would be composed
by atomic functions that can run independently on a Cloud infrastruc-
ture. This independence contrasts with the tight coupling across functions

103

7 INTEGRATION OF THE SERVERLESS PARADIGM WITHIN 5G NETWORKS

in the other architectures, with strict timing considerations between modu-
les. In a serverless approach, functions are dis-aggregated from the main
scheduling logic and executed in the most appropriate server availa-
ble. As Figure 55 illustrates, for the case of User Plane Functions envisioned,
for instance, the decoding of different Modulation and Coding Scheme could
be made by different functions that could run in different executors, provided
that some “loose synchronization” is guaranteed.

7.1.2. Advantages

Introducing the serverless operation brings several advantages to the network
operation. These are mostly related to the cost efficiency of the resources needed
to provide a given network service; that is, the heavy load caused by tasks such
as, for example, baseband processing, can be pulverized into atomic operations
that can, in turn, be dynamically orchestrated (i.e. scaled in and out) with a
very precise match to the real load.

In particular, based on the reasoning introduced in [52], the following
advantages of serverless mobile networking are detected:

= No server management: in the serverless paradigm, the functionality
carried out by a VNF is broken into very fine execution environments
(i.e. functions) that do not need to directly undergo into the classic
lifecycle management (instantiation, run-time and decommissioning), but
rather be scaled according to the real load and with a very fast pace in
a “message broker” fashion. By moving this complexity to the network
orchestration, this allows increasing the commodification of the network
with a clear separation between the infrastructure and the services
orchestrated therein.

= No idling: operators usually provision the network based on the peak
load. This is very inefficient at all network layers; at the access level,
needless to say, but also at more centralized levels in which VMs or containers
may be underused or even idling in trough loads. With the serverless
paradigm, execution engines are spawned and operated just when and
where they are needed. This is key for minimizing resource wastage in
the network operation.

» Liquid scalability: this is achieved by providing the highest modulari-
zation level. As a result, specific functions of a VNF can be scaled
according to the real demand, avoiding the scaling of the full VNF instead,
and achieving the liquid scalability depicted in Figure 56.

104

7 INTEGRATION OF THE SERVERLESS PARADIGM WITHIN 5G NETWORKS

Cost

== Monolithic

e \/NF
Modular VNF

- Serverless

Demand

Figure 56: Representation of the liquid scalability.

As a reference for this concept, in [50], the cost in terms of resource
overhead of deploying and operating the infrastructure needed to
support multi-service networks was measured. In that study, it was showed
that the efficiency (i.e. the number of resources used by a not multi-tenant
network compared to a multi-tenant one) was very low (15%) for edge
resources (e.g. spectrum, antennas) and only slightly better (65 %) when
considering core resources (e.g. CPU in a Cloud data center). The study
also showed that only with a very dynamic network reconfiguration
it is possible to improve these figures up to 60 % and 90 %, respectively.
So, achieving the finest granularity (the analysis of [50] is performed at
byte level), such as the one envisioned by the serverless paradigm, will allow
achieving such extreme gains in terms of resource utilization.

Continuous deployment: with NFV based on serverless, the DevOps
paradigm (which has been recently proposed for the network operation as
well) is brought to an extreme level. Developers can update just very
specific parts of the code (i.e. the functions) instead of fully-fledged
VNFs, thus reducing the time to deploy new functionalities.

Pay-per-use network: although the pricing model behind the network
slicing paradigm is not clear yet, it is to be expected that, at least for
the software part, it will follow a classic approach in which tenants are
charged on the number of CPUs, the amount of memory and bandwidth
used. With a serverless approach, instead, tenants can be charged on
a specific usage basis (i.e. number of times and duration of each
function), allowing for a richer pricing model.

Customization: current mobile network technology provides only limi-
ted customization. For example, the currently envisioned resource models
in 3GPP [115] target the Network Slice as a Service (NSaaS) paradigm,
which is the telecommunication counterpart of the well-known Software as
a Service (SaaS) paradigm employed in the Cloud Computing world. Under
this model, service providers (or tenants) are allowed to select, from an
operator Network Slice portfolio, some available templates (e.g. Enhan-
ced Mobile Broadband). However, this provides limited customizability to

105

7 INTEGRATION OF THE SERVERLESS PARADIGM WITHIN 5G NETWORKS

tenants, as the network provider still handles most of the management
part. This effort may be released with the serverless approach, providing a
higher customization with new function-based applications adapted
to different environments.

= New markets: in addition to the advantages in terms of the cost-
effectiveness of the system, a new mobile networking paradigm based on a
serverless architecture would also introduce and strengthen new markets.
Currently, the lack of a technical solution for very high customizability
has the side effect of hindering the adoption of new business models.
However, the adoption of a technology enabling such customization
would foster its adoption.

7.1.3. Challenges to Address

To achieve the above advantages, the serverless paradigm needs to deal with
the following challenges:

= New VNFs: the current way of implementing VNFs is still very
bound to the traditional way of implementing network functions.
Current solutions do not embrace modularization: many commercial products
are softwarized but very bounded to the hardware platform, while
open-source initiatives are practically mere translations of hardware
functionality into software modules. To adopt the serverless approach,
the way in which VNFs are designed needs to be changed, trying to
improve the speed execution while minimizing the number of resources
needed for their operation. For example, in the case of the RAN, as the radio
functions are the most resource-consuming ones (considering resources of
all kinds: spectrum, transport network, and computational resources [116]),
the transition towards high modularity will be especially beneficial for such
functions.

= Scalable interconnections: for the execution of such challenging VINF's,
a new environment with minimal overhead is also required. This kind
of environments needs to cope with highly-dynamic deployments with
a larger number of software components (for each tenant, slice, and
service, there might be multiple software functions). For example, from
the mobile data consumption point of view, one of the objectives to
be fulfilled is to achieve the fastest data plane possible, even though the
original virtualization platforms were not designed with this goal in mind. To
address this issue, apart from using platforms relying on technologies such
as SDN or NFV to interconnect VNFs (e.g. Alviu, already presented in
Chapters 5 and 6), the most common approach to achieve high performance
has been kernel bypassing, through technologies such as DPDK [117] and
SR-IOV, but this makes the management of the VNF very machine-
dependent, so it is only valid for scenarios with a relatively small
number of VNFs. A possible solution to avoid this limitation is, for
example, to integrate the data path back into the kernel with tools

106

7 INTEGRATION OF THE SERVERLESS PARADIGM WITHIN 5G NETWORKS

like enhanced Berkeley Packet Filters (eBPFs) [118]. These are pieces of
code that can be dynamically injected into the kernel at run-time through
a programmable interface, which allow the VNFs’ management running on
top of the kernel holistically, controlling all the aspects such as their CPU,
memory, etc. in a unified way.

= Precise orchestration algorithms: the serverless paradigm aims at the
most efficient service provisioning, by accurately adjusting the
resources deployed at any point in time to the actual demand. To
benefit from this paradigm, it is essential to accurately estimate the
demand required by a service and to forecast its envisioned resource
consumption, to boost the multiplexing gains. To support this type
of management, two main building blocks are required: (i) technical
solutions to support flexible and fast resource re-orchestration at
the finest granularity, and (ii) Big Data techniques that operate on
historical data and anticipate future trends. The former should be
achieved with the first two challenges (i.e. the use of functions instead
of VMs, deployed in an environment with minimal overhead for being
able to scale), while the latter requires the design of new techniques.
For example, data-driven techniques, empowered with deep learning
solutions!?, can be used to accurately characterize the future demand
trends for a given service, this supporting a proactive, efficiency-
driven and fine-grained orchestration of the network [120]. In this
way, solutions like the one presented in Section 4.2.2, which described the
integration between the Monitoring platform from Chapter 3 and the Data
Analytics Framework proposed in [3], may fit in this approach.

7.2. Introducing Serverless Techniques in the Monitoring
Platform

To fully describe the implications of moving to the serverless paradigm,
the 5G EVE Monitoring platform will be used as an example of a 5G-related
system that is liable to be transformed into serverless in some of its main
building blocks.

In this way, the challenges to address by the serverless paradigm proposed
in Section 7.1.3 will be present in this transition towards a serverless design
and implementation, taking into account the necessity of new VINF's working in
an scalable environment with precise orchestration algorithms to use the
compute resources available in an effective way.

7.2.1. Problems Found in the Legacy Architecture

As a summary, the 5G EVE Monitoring platform, just as described
in Section 3.2, was designed as a modular architecture, according to the
classification proposed in Section 7.1.1. As a result, two main building blocks

14 These technologies are currently being investigated by ETSI ENI [119] from the architectural
point of view.

107

7 INTEGRATION OF THE SERVERLESS PARADIGM WITHIN 5G NETWORKS

were defined: the Data Collection Manager (Figure 5) and the Data
Collection and Storage-Data Visualization (Figure 6), with the objective of
managing the implementation of the publish-subscribe delivery system and
the monitoring data collection, indexing and visualization mechanisms,
respectively.

To support these functionalities, a set of handlers were defined in both
components, denoted as Python logic in both cases. These pieces of code are
in charge of managing the lifecycle of the topics related to the metrics and
KPIs to be monitored in a particular experiment, triggering action such as
the creation of a topic in Apache Kafka and Apache Kafka, or the building of a
Kibana dashboard for a given topic.

Although these handlers are not hard to understand in terms of workflow, it
is true that they are somehow attached to the deployment in a single server,
so that the transition towards a serverless approach cannot be directly applied,
as there exist some limitations in the current implementation that, in case of
not being reviewed and redesigned properly, they would prevent the platform from
evolving to serverless effectively.

Due to this, the transition towards serverless is planned in two stages:
first of all, transforming both components (i.e. DCM and DCS-DV) to fit in
a microservices architecture (third architecture presented in 7.1.1), identifying
the core functions executed on each Python logic that interact between them
as a chain, and implementing them as REST-based services. In this way, the
identification of the service function chain that describes the concatenated
operations that are executed sequentially to obtain the desired results will be
fully described in terms of these REST services.

After this, these services will be used as base to build the serverless functions
that would finally transform the Monitoring platform in a serverless-based
architecture (fourth and final architecture presented in 7.1.1.

7.2.2. Transformation from Legacy to Microservices Architecture

In this first stage, some atomic functions present on each Python logic from
both the DCM and DCS-DV are extracted from them, being then modeled and
implemented as REST services, exposing a REST API to be accessed from
the different components involved in the monitoring workflow.

In the case of the Data Collection Manager, whose new architecture
based on a microservice’s approach is presented in Figure 57, three new
functions have been modeled as REST-based services: (i) createKafkaTopic,
which implies the creation of topics in Kafka, (i7) deleteKafkaTopic, related
to the deletion of topics in Kafka, and (i1i) listKafkaTopics, an auxiliary
module that allows to check if a given topic already exists or not in Kafka. All
these modules are handled by the so-called DCM Topic LCM, which is the
simplified version of the Python logic present in the legacy architecture,
being reduced in terms of functionality and complexity due to this decoupling
exercise.

108

7 INTEGRATION OF THE SERVERLESS PARADIGM WITHIN 5G NETWORKS

I DCS-DV I

=Y, 5G EVE Portal RAV
DCM REST 8091 9092
Subscription/ Receive data from
withdrawal of metrics and KPls
topics
P Apache 9092
Subscribe metrics
P Kafka % kafka. Publish KPls
REST, -
gg,-| createKafkaTopic I—T -
REST 8090 DCM Topic | ges deleteKafkaToni | clzjiir Apache
Tomie fo LCM s200] C€'ELERATKA OPIC egordination Zoolieeper
REST N : i 1
gﬂslgg listKafkaTopics |77 : lﬁ gou
S A S dla ©
i 9092 i
: PUBTish metrics i

i 5G EVE Interworking Layer
i Site facilities

Sitel | Siten | !
v v
Apache Apache
Kafka Kafka

kafka. Bkaifka,

Figure 57: Data Collection Manager microservices architecture.

For the Data Collection and Storage-Data Visualization component,
however, only one REST-based module has been identified: the kafkaCon-
sumer module, which creates a Python-based Kafka consumer listening to
the topic created in the platform, and whose function is to trigger the creation
of the corresponding Kibana dashboard when the first message is received
in the topic, so that the dashboard is only created when there is data available in
the topic.

Apart from this, the Python logic has also been transformed into a simpler
component, identified as DCS Topic LCM , and Logstash counts now with a
specific module, called Pipeline manager, which manages the creation and
deletion of Logstash pipelines, function that was executed by the DCS Python
logic in the legacy architecture. All these changes and updates are reflected in
Figure 58:

109

7 INTEGRATION OF THE SERVERLESS PARADIGM WITHIN 5G NETWORKS

| Portal GUI |

il s T i
; DCS I DV I
. REST| "
I d‘f 8080 I 1
=’ .
B g REST -
I Java| Dashboard’s =1 Kibana 1
| handler .
@ K kibana I
1 BC PRSI SEEN asp |
- || kafkaConsumer || = -
I PostgreSQlL Elasticsearch I
DB "
. gs; ? = elasticsearch I
I Psycopg uy loBstash
) - S
DCS Topic LCM REST 8191 1 e e | LOgstash I |
I 9092 Configure pipelines - .
9 |Apply configuration| {9092
" Receive dgta from REST 8091 a PEY oML Receive data from I
1 metrics and KPls Subscriptionjwithdrawal of topics metrics and KPIs .
L e B e e —
‘ 5G EVE Portal
5G EVE Interworking Layer

| DCM |

Figure 58: Data Collection and Storage-Data Visualization microservices
architecture.

Now that the Monitoring microservices architecture has been presented, it
is worth to review how the monitoring workflow changes to fit in this
new approach, distinguishing between the topic creation and topic deletion
workflow, which are the two main operations that involves the Monitoring
platform in terms of functions’” automation.

The first case, related to the topic creation workflow, is fully described in
Figure 59:

External components
DCM Topic listKafka createKafka Apache ocsTopic W n
L™ Topics Topic L™ s s eare manager
T T 1 T T
|
1

Pipeline W\ - consumer [P2M002rd’s M kibana
handler
T

7. Topic
creation

T
| | | | |
1 1 1 1 !
for each topic | | |]] !
y 2. Checkiif topic; 3. List topics | | | | | |
exists andfind | | | | | |
requested | | | | | |
le— topic ! ! ! ! ! !
t t t t
Topkeexits i | | I I I I
= 4 Topic exists | | | | | |
X | | | | | |
5'. Discard | | | | | |
topic | | | | | |
| | | | | | |
I I | | I |
I				

9. Create index
10. Index |
creation |

| |
11. Create Logdtash pipeline 12. Pipeling 14. Consumer

| creation | creation
13. Create Khfka consumer | Waiting for
T

the first

message

j 15. Update database

infornfation

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| not exist
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

]
|
|
|
Notexist 4. Topic does i
9
|
|
|
I
]
|
|
|
|
|
|
|
|
|
T
|
|
|
|
|
|
|
|
|
|
|
|
|

|
T
|
|
]]
) | I |
fl%’g&;&;g'ﬁdﬂﬂ' | | | |18, Create |
| | | | | 17. Create dashboard | 19
} } } } } dashboard object | pchboard
| | | | | object
| | | | |] creation
} } } } } 22. Finished l21. Upda*e database
! | | | | | inforfnation
I | | I I 23.Close | I
| | | | | + consumer ! !
| | | | | t

Figure 59: Topic creation workflow for the Monitoring microservices architecture.

110

7 INTEGRATION OF THE SERVERLESS PARADIGM WITHIN 5G NETWORKS

The full description of the messages is the following:

1.

10.
11.

12.

13.

14.

The topics to be created in the platform are received in the DCM from the
ELM component. This data is handled by the DCM Topic LCM.

The DCM Topic LCM check, for each topic, if the topic already exists
in the platform, checking if it needs to be created or not. This checking is
requested to the listKafkaTopics module.

The listKafkaTopics module list the topics present in the system and
checks if the requested topic is contained in that list. It may happen that
the topic already exists, so that it replies back to the DCM Topic
LCM (message 4’), and this component automatically discards the topic
because it is already present in the platform (message 5’).

The typical case is that the topic does not exist, message that is sent from
listKafkaTopics to the DCM Topic LCM .

As the topic is not present in the system, the DCM Topic LCM requests
to the createKafkaTopic module its creation.

. createKafkaTopic invokes the specific commands to create the topic

in Apache Kafka.

ZooKeeper receives the instructions sent by createKafkaTopic and then
creates the topic.

In parallel, the DCM Topic LCM send the information related to the
topic to the DCS-DV| specifically to the DCS Topic LCM component.

The first operation triggered by the DCS Topic LCM is the creation
of the related Elasticsearch index, to filter the information received in
Logstash and to offer it to Kibana.

FElasticsearch receives the request and creates the index.

After this, the DCS Topic LCM requests the creation of the correspon-
ding Logstash pipeline, which enables the process in Logstash that will
listen to the corresponding Kafka topic, will pre-process the data recei-
ved and will serve it to the proper Elasticsearch index already configured.
This request is sent to the Pipeline manager.

The Pipeline manager present in the Logstash component applies the
pipeline configuration, creating it as a result.

Finally, the DCS Topic LCM requests the creation of the Kafka
consumer that will be listening to the topic until the first message
arrives, so that the Kibana dashboard is created. This is requested to
the kafkaConsumer module.

This module creates the consumer and waits for the reception of the
first message in the topic.

111

7 INTEGRATION OF THE SERVERLESS PARADIGM WITHIN 5G NETWORKS

15.

16.

17.

18.
19.

20.

21.

22.

23.

The DCS Topic LCM saves some internal information on database
to maintain the system status.

After processing all the topics received by the ELM, the DCM Topic
LCM informs to the ELM the status of each topic requested (i.e. if each
of them has been created or not).

In parallel, when the first message is received for a given topic,
the kafkaConsumer module triggers the creation of the corresponding
Kibana dashboard, sending the request to the Dashboard’s handler
component.

This handler requests the creation of the dashboard’s object to Kibana.

Kibana creates the object and replies back with the information
needed to build the URL to be served to external components.

Kibana indicates that it has finished the creation of the dashboard’s
object.

The Dashboard’s handler saves this data into the database.

Finally, the handler indicates to the kafkaConsumer that it has finished
the creation of the dashboard.

Consequently, the kafkaConsumer closes the Kafka consumer created
before.

At this point, the system would be ready to process the monitoring data
received in the platform and would serve the values received with the proper
Kibana dashboards.

In the case of the topic deletion workflow, triggered when a given
experiment is finished and starts to be decommissioned from the platform,
it is presented in Figure 60:

112

7 INTEGRATION OF THE SERVERLESS PARADIGM WITHIN 5G NETWORKS

External components DCM

LM DCM Topic ||stKeifka deletelfafka DCS Topic Pipeline Dashboard's Kibana Elasticsearch
LCM TD?ICS TOPIC ZooKeeper Lcm manager handler
|

1. Receive list of topic:

for each topic

3, List mpu\;
andfind |
requested

<+ topic

exists

Topic exists

4'. Topic does
Notexist <

~ Tnot exist — |
5'. Discard |
topic |

Exist

|
|
t
|
|
|
|
|
|
|
|
|

T
I

1

|

|

|

I

|

t

|

I

|

|

|

|

1

|

|

6. Delete topic_ j
- I

|
|

7. Deleting
topic
9. Delete

Logstash
pipeline

8. Send topic information
|

T
|
1
|
|
|
|
|
t
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|

10. De\etlr‘ng
pipelinel
11. Schedlle removal of }
Kibana dgshboards and |

Elasticgearch index |

12. Updbte database |

- infdrmation 1

]

|

|

1
|
|
|
|
|
|
|
|
|
!
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
I
|
|
|
T

T
|
|
|
|
|
|
|
+
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
T
T
|

673 Topics deleted/not

deleted 15. Delete

|

|
14. Deletd dashboard dashboard |

| object
18. Update database
__________ infodmation

|

| 21, Deleting
| ! ﬁ\ndex

| |

] T

|
|
|
|
|
|
|
|
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
I
|
|
|
I
|
|
|
|
|

Figure 60: Topic deletion workflow for the Monitoring microservices architecture.

The full description of the messages is the following:

1. The topics to be deleted in the platform are received in the DCM from
the ELM component. This data is handled by the DCM Topic LCM.

2. The DCM Topic LCM check, for each topic, if the topic already exists
in the platform, checking if it needs to be deleted or not. This checking is
requested to the listKafkaTopics module.

3. The lhistKafkaTopics module list the topics present in the system and
checks if the requested topic is contained in that list. It may happen that
the topic does not exist, so that it replies back to the DCM Topic
LCM (message 4’), and this component automatically discards the topic
because it is not present in the platform (message 5’).

4. The typical case is that the topic exists, message that is sent from
listKafkaTopics to the DCM Topic LCM .

5. As the topic is present in the system, the DCM Topic LCM requests to
the deleteKafkaTopic module its deletion.

6. deleteKafkaTopic invokes the specific commands to delete the topic in
Apache Kafka.

7. ZooKeeper receives the instructions sent by deleteKafkaTopic and
then deletes the topic.

113

7 INTEGRATION OF THE SERVERLESS PARADIGM WITHIN 5G NETWORKS

10.

11.

12.

13.

14.

15.
16.

17.

18.
19.

20.

21

In parallel, the DCM Topic LCM send the information related to the
topic to the DCS-DV| specifically to the DCS Topic LCM component.

Firstly, the DCS Topic LCM requests the deletion of the Logstash
pipeline to the Pipeline manager.

The Pipeline manager present in the Logstash component removes the
Logstash pipeline requested.

As the monitoring data has a retention time, it cannot be deleted
directly. For this reason, the removal of the data present in the platform
(i.e. the data saved in the FElasticsearch index and the Kibana dashboard
that presents it through the GUI) is scheduled for after the retention time.

The DCS Topic LCM saves some internal information on database
to maintain the system status.

After processing all the topics received by the ELM, the DCM Topic
LCM informs to the ELM the status of each topic requested (i.e. if each
of them has been deleted or not).

In parallel, when the timeout expires (i.e. the retention time has expired),
the DCS Topic LCM requests the deletion of the Kibana dashboard
to the Dashboard’s handler.

This handler requests the deletion of the dashboard’s object to Kibana.
Kibana deletes the object.

Kibana indicates that it has finished the deletion of the dashboard’s
object.

The Dashboard’s handler removes this data into the database.

Finally, the handler indicates to the DCS Topic LCM that it has
finished the deletion of the dashboard.

Then, the DCS Topic LCM requests the deletion of the FElasticsearch
index to Elasticsearch.

Elasticsearch manages to remove the index.

7.2.3. Transformation from Microservices to Serverless Architecture

Taking into consideration the building of the microservices architecture of
the Monitoring platform already presented in Section 7.2.2, the second stage
consist on taking the REST-based services identified, together with the two
Topic LCM present in the architecture, and modeling them as serverless
functions managed by OpenFaaS [121], a platform already presented in the state
of the art in Section 2.3. This transformation can be seen in Figure 61, marking
the serverless part in orange:

114

7 INTEGRATION OF THE SERVERLESS PARADIGM WITHIN 5G NETWORKS

| Portal GUI |

e h o n o e s e s = n = e Rt -
I [bcs : ov| |
1 REST| -
. & 8080 : 1
I = T S— :
. Java| Dashboard’s RE;I Kibana |
1 | handler 1 - -
: i PR
I Posigrs REST .
. PostgreSQL 9200 Elasticsearch !
! wy l0BStash !
! 1
I REST I
- *Configure pipelines .
! —-lREST kafkaConsumer | : 1
I = : 1
IV 3 5G EVE Portal RAV
REST DCM s0d2
f“l?"“f . Receive data from
opics info .
(DFEM Open Faas : metrics and KPIs
Topic LCM N
function) .
- Cocmrosicicm || “fans
DCM Topic LCM |: Subscribe metrics
P : Kafka §g kafka. Publish KPls
createKafkaTopic I_T 281
: " Cluster Apache
— " deleteKafkaTopic [: [«o™®r) 750Keeper
. e E : =
openiass listkafkaTopics || ! iﬁ _
- H ZooKeeper
A T i
! PUblish metrics |
. 5G EVE Interworking Layer
| 1 Site facilities
Site 1 ; Site n f
v v
Apache Apache
Kafka Kafka

&kafka.

Figure 61: Serverless architecture of the Monitoring platform.

Consequently, the workflows change considerably, as the OpenFaaS
platform becomes the central component of the serverless implementation,
exposing the interfaces needed to reach each serverless function. So now,
when a serverless function has to be invoked, the entity that requests the service
needs to contact OpenFaaS, which will be in charge of managing the lifecycle of
the serverless function, thus instantiating the resources needed to execute
that function, and then releasing them when it finishes its execution.

This will be checked with the topic creation and deletion workflows.
Starting with the first one, it is presented in Figure 62:

115

7 INTEGRATION OF THE SERVERLESS PARADIGM WITHIN 5G NETWORKS

30. U; pda{te database
infopmation

I
32. Close

****** consumer

,,,,,,,, 33. Taskfinished _ _ _ _ _ _

External components DCM
ipeli Dashboard" 1
T L T T T T
1. Receive list of topics | | | | \
| 2. Invoke DCM BEMTopic | | | | |
1 Topc T ™ | em 1 [[[|
| — T | | | | i
| T T T T
| foraseh tople 3. Check if topic exists | | | | I
| a | | | | |
| 4, Invoke listKafkaTopics listkafka ! ! ! ! !
! Topics | | | | |
i T 5 L\s(topusi i i i i
| andfind | | | | |
I requested | I I | |
| topic | | | | |
1 H H H L |
\ Topic exists 6'. Topic exists & task | | | | |
| finished _ _ _ M _ _ _ | | | | |
| 7'. Topic exists g I | | | ! !
\ _ L. 1OPICeXISts_ 8 m\mm‘ | | | \ \
\ topic | \ \ \ | |
| 9'. Task finished | I I I | I
vl =T —== | | | | | !
| Notexist 6. Topic does not exist & | | | | |
I task finished I I I | |
| <—————————— - | | | | |
| 7. Topic does not exist | | | | |
| I | I | l
| |
| N createKafka i i i | |
| Topic I I | I I
—ope 4o
i l Creats 11. Topic | | i i
: . ‘ | |
‘ ¢ 12 Taskfinished _ topic creation \ \ \ ‘
| ! | | | | |
| 3, Send topic | | | | |
I format - | I
| [nrormation 1 14. Invoke DCS Topic LCM l DCS Topic l l | | | | | |
| | | —LCM__ | | | |
| I I 15. C | I I |
5. Create index | H
! ! ! 16. Index !
! ! ! creation ! ! !
| | | | I |
\ | \ 17. Create Logsjash pipeline 18, pivelin] |
| | | | ‘ - Pipeling | |
| |_19. Create Kafka consumer | | creation | |
|] T | | | |
\ | \ 20. Update datpbase | | |
! | 21, Task finished | informatioh | | |
(R Y e B St B B | | | | |
! 122, Invoke kafkaConsumer | ! ! | |
l ; i =‘ kafkaConsumer l l \ \
| | | | | | |
| I | 23. Consbimer creation. | | !
: | : Waiting w:nm first mu«msg}* : :
| | | | | I
| 1 1 U 1 T |
| | | | | |
I _24. Topics created/not j I First message received (or each topic) T T
I 25_Topics created/ M 2t T sk finished ! 1 27. create |
not created } 26. Creale dashhoard 28
|
|
I
|
|
|
|
|
A
|

|
1
]
|
I
|
T
|
I
|
|
31. Finished
T
|
]
1
I

I
I
|
I

Figure 62: Topic creation workflow for the Monitoring serverless architecture.

The full description of the messages is the following:

1. The topics to be created in the platform are received by OpenFaaS from
the ELM component.

2. OpenFaaS invokes the DCM Topic LCM to handle this request.

3. The DCM Topic LCM check, for each topic, if the topic already exists
in the platform, checking if it needs to be created or not. This checking is
requested to OpenFaaS.

4. OpenFaaS invokes listKafkaTopics to handle this request.

5. The listKafkaTopics module list the topics present in the system and
checks if the requested topic is contained in that list. It may happen that
the topic already exists, so that it replies back to OpenFaaS (message
6’), also indicating that it has finished its execution, so OpenFaaS
decommissions it. Then, it forwards the response to the DCM Topic

116

7 INTEGRATION OF THE SERVERLESS PARADIGM WITHIN 5G NETWORKS

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

LCM (message 7’), and this component automatically discards the topic
because it is already present in the platform (message 8’), also informing to
OpenFaaS that it has finished its execution (message 9’).

The typical case is that the topic does not exist, message that is sent
from listKafkaTopics to OpenFaaS. 1t also indicates that it has finished
its execution, so OpenFaaS decomissions it.

OpenFaaS forwards the response to the DCM Topic LCM .

As the topic is not present in the system, the DCM Topic LCM requests
to OpenFaasS its creation.

OpenFaaS invokes createKafkaTopic to handle this request.

createKafkaTopic invokes the specific commands to create the topic
in Apache Kafka.

ZooKeeper receives the instructions sent by createKafkaTopic and then
creates the topic.

createKafkaTopic indicates to OpenFaaS that it has finished its
execution, so OpenFaaS decomissions it.

In parallel, the DCM Topic LCM send the information related to the
topic to the OpenFaasS, to be received in the DCS-DV.

OpenFaaS invokes the DCS Topic LCM to handle this request.

The first operation triggered by the DCS Topic LCM is the creation of
the related Elasticsearch index.

FElasticsearch receives the request and creates the index.

After this, the DCS Topic LCM requests the creation of the correspon-
ding Logstash pipeline. This request is sent to the Pipeline manager.

The Pipeline manager present in the Logstash component applies the
pipeline configuration, creating it as a result.

Finally, the DCS Topic LCM requests the creation of the Kafka
consumer that will be listening to the topic until the first message

arrives, so that the Kibana dashboard is created. This is requested to
OpenFaaS.

In parallel, the DCS Topic LCM saves some internal information on
database to maintain the system status.

The DCS Topic LCM indicates to OpenFaaS that it has finished its
execution, so OpenFaaS decomissions it.

After receiving message 19, OpenFaaS invokes kafkaConsumer to handle
this request.

117

7 INTEGRATION OF THE SERVERLESS PARADIGM WITHIN 5G NETWORKS

23.

24.

25.
26.

27.
28.

29.

30.

31.

32.

33.

This module creates the consumer and waits for the reception of the
first message in the topic. As it has not finished its execution, it does not
contact OpenFaaS for being decommissioned.

After processing all the topics received by the ELM, the DCM Topic
LCM informs to OpenFaaS the status of each topic requested (i.e. if
each of them has been created or not). It also indicates to OpenFaaS that
it has finished its execution, so OpenFaaS decomissions it.

OpenFaaS forwards the response to the ELIM.

In parallel, when the first message is received for a given topic,
the kafkaConsumer module triggers the creation of the corresponding
Kibana dashboard, sending the request to the Dashboard’s handler
component.

This handler requests the creation of the dashboard’s object to Kibana.

Kibana creates the object and replies back with the information
needed to build the URL to be served to external components.

Kibana indicates that it has finished the creation of the dashboard’s
object.

The Dashboard’s handler saves this data into the database.

Finally, the handler indicates to the kafkaConsumer that it has finished
the creation of the dashboard.

Consequently, the kafkaConsumer closes the Kafka consumer created
before.

kafkaConsumer indicates to OpenFaaS that it has finished its
execution, so OpenFaaS decomissions it.

In the same way, the updated topic deletion workflow can be seen in Figure

63:

118

7 INTEGRATION OF THE SERVERLESS PARADIGM WITHIN 5G NETWORKS

External components DCM
Apache Pipeline Dashboard's : "
ELM OpenFaas Kibana
s
|

1. Receive st of topi

2 ‘L',T::Jw DM BemTopic
v Lcm
T

““““ 3. Check if topic exists
< :

4, Invoke listKafkaTopics »| listKafka
Topics
T

5. List topics
and find
requested

L« topic

|
|
|
T
|
|
|
|
|
|
|
|
|
6'. Topic does not exist & |
|
|
|
|
|
|
|
|
|
|
|
|
|
|

task finished

7'. Topic does not exist. 8'. Discard !
I |

to
| Jtopic |
9'. Task finished |
ST T T |

o[defeteKafka
Topic o
I —— > 1. Deleting
topic topic

12, Taskfinished _

| —13. Send topic
information

14. Invoke DCS Topic LCM DCS Topic
Lcm
T
15. Delete
Logstash 16. Deleting
pipeline ~ pipeline

17. Schedule Femoval of
e ‘ Kibana dashHoards and
Elasticsearth index
‘ 18. Update dgtabase
informatjon

1
'

Timeout expires (for each topic)

T T	
' '	
T T I	

_19. Topics deleted/not
20_Topics deleted/ WS é|eted & task finished

| 22.Delete |
not deleted

I
dashboard g dashboard |

—21-Dalats 23. Deletihg

25. Update database |

infojmation }

! 2 ! o1 28 Deleting
T T T .

I I I E index

t t t

| |

_ — — 29 Taskfinished _ _ _ _ _ _ _ _ _ _ _ _

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<
|
|
|
|
|
|
|
|
|
|
|
|

S

Figure 63: Topic deletion workflow for the Monitoring serverless architecture.

The full description of the messages is the following;:

1. The topics to be deleted in the platform are received by OpenFaaS from

the ELM component.
OpenFaaS invokes the DCM Topic LCM to handle this request.

The DCM Topic LCM check, for each topic, if the topic already exists
in the platform, checking if it needs to be deleted or not. This checking is
requested to OpenFaasS.

OpenFaasS invokes listKafkaTopics to handle this request.

The listKafkaTopics module list the topics present in the system and checks
if the requested topic is contained in that list. It may happen that the
topic does not exist, so that it replies back to OpenFaaS (message
6’), also indicating that it has finished its execution, so OpenFaaS
decommissions it. Then, it forwards the response to the DCM Topic
LCM (message 7’), and this component automatically discards the topic
because it is not present in the platform (message 8), also informing to
OpenFaaS that it has finished its execution (message 9').

119

7 INTEGRATION OF THE SERVERLESS PARADIGM WITHIN 5G NETWORKS

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

The typical case is that the topic exists, message that is sent from
listKafkaTopics to OpenFaasS. It also indicates that it has finished its
execution, so OpenFaaS decomissions it.

OpenFaaS forwards the response to the DCM Topic LCM .

As the topic is present in the system, the DCM Topic LCM requests
to OpenFaasS its deletion.

OpenFaaS invokes deleteKafkaTopic to handle this request.

deleteKafkaTopic invokes the specific commands to delete the topic
in Apache Kafka.

ZooKeeper receives the instructions sent by deleteKafkaTopic and
then deletes the topic.

deleteKafkaTopic indicates to OpenFaaS that it has finished its
execution, so OpenFaaS decomissions it.

In parallel, the DCM Topic LCM send the information related to the
topic to the OpenFaasS, to be received in the DCS-DV.

OpenFaaS invokes the DCS Topic LCM to handle this request.

Firstly, the DCS Topic LCM requests the deletion of the Logstash
pipeline to the Pipeline manager.

The Pipeline manager present in the Logstash component removes the
Logstash pipeline requested.

As the monitoring data has a retention time, it cannot be deleted
directly. For this reason, the removal of the data present in the platform
(i.e. the data saved in the Elasticsearch index and the Kibana dashboard
that presents it through the GUI) is scheduled for after the retention
time.

The DCS Topic LCM saves some internal information on database
to maintain the system status.

After processing all the topics received by the ELM, the DCM Topic
LCM informs to OpenFaaS the status of each topic requested (i.e. if
each of them has been created or not). It also indicates to OpenFaaS that
it has finished its execution, so OpenFaaS decomissions it.

OpenFaaS forwards the response to the ELM.

In parallel, when the timeout expires (i.e. the retention time has also
expired), the DCS Topic LCM requests the deletion of the Kibana
dashboard to the Dashboard’s handler.

This handler requests the deletion of the dashboard’s object to Kibana.

120

7 INTEGRATION OF THE SERVERLESS PARADIGM WITHIN 5G NETWORKS

23. Kibana deletes the object.

24. Kibana indicates that it has finished the deletion of the dashboard’s
object.

25. The Dashboard’s handler removes this data into the database.

26. Finally, the handler indicates to the DCS Topic LCM that it has
finished the deletion of the dashboard.

27. Then, the DCS Topic LCM requests the deletion of the Elasticsearch
index to Elasticsearch.

28. Elasticsearch manages to remove the index.

29. The DCS Topic LCM indicates to OpenFaaS that it has finished its
execution, so OpenFaaS decomissions it.

7.3. Workflow’s Validation

To validate the serverless architecture and the workflows presented in
Section 7.2.3, a specific testbed has been built for this purpose. It consists of an
Ubuntu Server 16.04 LTS virtual machine [90], with 12 vCPU and 12 GB
of RAM, deployed in a server virtualized with Proxmoxz [89], which is equipped
with 40 Intel(R) Xeon(R) CPU E5-2630 v4 at 2.20 GHz and 128 GB RAM. For
deploying the Monitoring platform, K3s [103] has been used to orchestrate
the containerized components®’, integrating OpenFaaS for the deployment
of the serverless functions.

The components deployed in this testbed can be checked in Figure 64:

kubernetes
: Kibana + Logstash +
port o _ _BOMt:] Dashboard’s Elasticsearch) I_g :
8080 8080:| handler + DB Pipeline manager | :
(ext.) (im.)§ :
: DCS-DV
gort -1 Y S o
28080 £ 7 hRatka |: &
: \
:] Apache Apache
Subscribi
ubseriver Kafka ZooKeeper
O R pem e
Publisher Additional }
components :

Figure 64: Testbed for validating the Monitoring serverless architecture.

15The images of these components can be found in [104].

121

7 INTEGRATION OF THE SERVERLESS PARADIGM WITHIN 5G NETWORKS

As it can be seen, the topic creation and deletion workflows are triggered
by sending the corresponding REST request to OpenFaasS, that triggers the
creation of the DCM Topic LCM and, then, the consecutive operations
already described in Section 7.2.3.

Apart from this, the testbed also counts with a Kafka publisher to provide
data to the topics created, managed by Apache Kafka and ZooKeeper instances.
A Kafka subscriber is also present for debugging purposes. On top of all, the
Elastic Stack is built, also including additional features such as the Pipeline
manager (directly implemented in the Logstash container) and the Dashboard’s
handler (included in the Kibana container, together with the database instance).

7.4. Summary

Summing up the contributions provided in this Chapter, the serverless
paradigm has been introduced within the field of 5G networks, ranging
from general information about the concept, advantages and challenges
related to this new technology, to its integration into a well-known 5G-related
platform, such as the Monitoring platform that is object under study in this
thesis.

In this platform, a two-stage process was defined to properly define the
serverless approach, starting with a first transformation to a microservices
architecture, then evolving it to achieve the serverless architecture. In this
process, it was also targeted the challenges related to the serverless paradigm
already showed in Section 7.1.3, as new VNF's (i.e. new serverless functions)
has been created for this purposes, being managed and orchestrated by a
serverless-related component such as OpenFaaS.

As a result, the system becomes more efficient in terms of resource
consumption, as the serverless functions only use compute resources when
they are executed, and it also implies saving money if the infrastructure is
running in a Cloud provider that applies a pay-per-use model. However, it has
the drawback of counting with a more complicated workflow to achieve this,
probably resulting in a higher execution time of the overall workflow.

Finally, the workflows have been validated in a specific testbed. Note that
some performance tests are missed in this Chapter, but this is because this
topic will be further analyzed in the next Chapter 8.

122

Evaluation of the Monitoring
Platform Deployment Based on
Different Virtualization Techniques

In Chapter 7, the serverless paradigm was introduced in the context of
5G networks, remarking its characteristics and main advantages. This new
trend in the field of virtualization techniques allows to adjust the amount of
resources allocated for a given workload with a finer level of granularity,
achieving a better performance profile by using functions that are triggered
only when needed.

Nevertheless, some aspects related to the real performance of the
serverless architectures are still open, such as the comparison with
other virtualization techniques, in order to confirm whether the serverless
approach is really more efficient in terms of resource consumpion, or also
the verification that not only serverless functions, but also standard
components executed by using serverless technologies, achieve a better
performance profile.

With these topics in mind, this Chapter presents a full performance
evaluation of the Monitoring platform, with the main objetive of comparing
different virtualization techniques between them in order to position the
serverless paradigm in the state of the art. For this purpose, the same
procedure followed in Chapters 3 and 4 will be applied for doing these
tests, i.e. building a specific testbed for each virtualization technique and
executing a set of experiments in the Monitoring platform, then extracting
useful performance parameters such as the batch write latency or the I/0O
message rate, already explained in these previous Chapters.

Being more precise, the virtualization techniques under study are the
following: (1) the case of not using virtualization, so physical servers are directly
used, (2) virtualization based on KVM, (3) containerization with Docker, (4)
automatic deployment of containers with Kubernetes, and (5) the usage of Kata
Containers with Firecracker or QEMU as hypervisors, being Kata and

123

8 EVALUATION OF THE MONITORING PLATFORM DEPLOYMENT BASED ON
DIFFERENT VIRTUALIZATION TECHNIQUES

Firecracker two of the serverless technologies already presented in the state
of the art, in Section 2.3.
To to this, the following structure of sections is proposed:

» First of all, Section 8.1 specifies the testbed used for the set of tests
proposed in this Chapter, describing the servers used and also the
deployments for each virtualization technique under study.

= Then, Section 8.2 presents the test cases to be performed, differentiating
between a single server deployment and a scenario in which horizontal
scaling techniques are applied to check if the results, in terms of
performance parameters, can be improved.

= Section 8.3 details the first set of test cases related to the single server
performance evaluation, evaluating the CPU consumption, batch
write latency and I/O message rate on each scenario proposed.

= On the other hand, Section 8.4 introduces the horizontal scaling
performance evaluation for the case of the Kubernetes scenario,
comparing the results obtained with the single server case.

= Finally, Section 8.5 summarizes and concludes.

8.1. Testbed Setup

8.1.1. Servers’ Description

For this evaluation process, two servers located in the University of
Perugia, based on Ubuntu Server 20.04 [90], have been used. Their hardware
specifications are fully described in Table 2:

Table 2: Specification of the servers used in the testbed.

Server name \ Tardis Saul

CPU Intel(R) Xeon(R) CPU E5- Intel(R) Xeon(R) CPU E5-
2640 v4 @ 2.40 GHz 2650 v3 @ 2.30 GHz

RAM 128 GB @ 2133 MT/s 64 GB @ 2133 MT/s

Disk 280 GB (145 MB/s write 280 GB (145 MB/s write
speed) speed)

Network 1x10 Gbps, 4x1 Gbps 1x10 Gbps, 4x1 Gbps

interfaces

Each server has the following utilities installed:
» Tardis:

e KVM [122] for server’s virtualization, allowing to deploy virtual
machines on the physical server.

124

8 EVALUATION OF THE MONITORING PLATFORM DEPLOYMENT BASED ON
DIFFERENT VIRTUALIZATION TECHNIQUES

e Docker [92] for container virtualization, using runc [123] as
runtime.

e MicroK8s [121], a Kubernetes minimal production version,
using containerd [125] as runtime.

e Kata Containers [120] as container runtime for the evaluation of
serverless tools, used in combination with Docker and also using
either Firecracker [127] or QEMU [128] as hypervisors.

e The image of the Data Collection Manager component from the
Monitoring platform, using [78] for the deployment in physical and
virtualized environments and the images provided in [104] for the
containerized environments (i.e. Docker, Kubernetes and Kata). The
main subcomponents used from the DCM for the tests were Kafka
and ZooKeeper.

e A CPU collector script based on the mpstat command.
= Saul:

e A Kafka publisher based on Sangrenel [91], for obtaining the
performance metrics under study (i.e. batch write latency and
I/O message rate).

Note that the time in both servers was synchronized by using the NTP
protocol. And finally, although the CPU model of each server is slightly
different, they do not present a big difference in terms of performance,
according to the study performed on [129].

8.1.2. Testbed Specification for each Virtualization Technique

Despite having the same distribution of tools and components on
each server for all the deployments evaluated in this study, there are some
particularities on each of them that must be mentioned, at least related to the
configuration applied on Tardis, as Saul remains in the same status for all the
testbeds evaluated (it only contains the Kafka publisher script, which is the same
for all cases).

Before starting with the description of the testbeds, note that no limits
will be imposed to the allocation of hardware resources for the tools used
during the tests. This means that the Monitoring platform can make use of all
the resources available on the servers without constraints.

Having said this, the base scenario would the physical testbed, using di-
rectly both Tardis and Saul servers without any virtualization technique.
In this case, Kafka and ZooKeeper are directly installed on Tardis and
configured as Linux services. This configuration can be seen in Figure 65:

125

8 EVALUATION OF THE MONITORING PLATFORM DEPLOYMENT BASED ON
DIFFERENT VIRTUALIZATION TECHNIQUES

Tardis NTP reference Saul NTP

CPU collector

Publisher
ZooKeeper
Kafka (Kafka mgﬁt) (Sangrenel)
4 A
v v

Figure 65: Physical testbed for the evaluation of the Monitoring platform.

The second scenario is the virtual testbed, presented in Figure 66, using
KVM in Tardis to deploy Kafka and ZooKeeper in a specific Ubuntu
virtual machine'®. This VM is synchronized against Tardis to properly
configure the time with NTP. Moreover, for enabling the connectivity
between the VM and Saul, some iptables and UF W rules based on the
following guide [130] were also applied on Tardis.

Tardis NTP reference Saul NTP

CPU collector

VM in KVM NTP
Publisher
ZooKeeper
Kafka (Kafka mggt) (Sangrenel)
A 4
L / v

Figure 66: Virtual testbed for the evaluation of the Monitoring platform.

The third scenario is the Docker testbed, using runc as container
runtime (the default one), in which a Kafka and a ZooKeeper container are
deployed in Tardis, exposing the required ports to be accessed from Saul.
This testbed is depicted in Figure 67:

16The disk used for the VM, based on the qcow2 technology, was configured with the
writeback mode for the cache, and also using the metadata property for the preallocation
parameter.

126

8 EVALUATION OF THE MONITORING PLATFORM DEPLOYMENT BASED ON
DIFFERENT VIRTUALIZATION TECHNIQUES

Tardis NTP reference Saul NTP

CPU collector

Docker
Publisher
ZooKeeper
Kafka (Kafka mggt) (Sangrenel)
/'Y 4
 / v

Figure 67: Docker (runc) testbed for the evaluation of the Monitoring platform.

The fourth scenario is the Kubernetes testbed, using containerd as
runtime (also the default one), deploying a Kafka and a ZooKeeper pod
in Tardis, and also exposing the required ports for the access from Saul.
The testbed is reflected in Figure 68:

Tardis NTP reference Saul NTP

CPU collector

Kubernetes & containerd

Kafka ZooKeeper
(Kafka mgmt)

Publisher

(Sangrenel)

4 &
v v

Figure 68: Kubernetes (containerd) testbed for the evaluation of the Monitoring
platform.

And finally, the fifth scenario is the Kata testbed, showed in Figure 69,
which is similar to the Docker testbed, but using a customized runtime that
can be either Kata+ Firecracker or Kata+QEMU .

127

8 EVALUATION OF THE MONITORING PLATFORM DEPLOYMENT BASED ON
DIFFERENT VIRTUALIZATION TECHNIQUES

Tardis NTP reference Saul NTP

CPU collector

Docker + Kata + Firecracker/QEMU
(Kafka mgmt) (Sangrenel)
) 4
v ¥

Figure 69: Kata (Firecracker/QEMU) testbed for the evaluation of the
Monitoring platform.

8.2. Test Cases’ Description

In general terms, the same assumptions commented on Section 3.3.1
also apply to this evaluation process, having a maximum number of
six experiments running simultaneously on the Monitoring platform,
considering that one experiment implies the creation of 20 topics in the
system, with a concurrent publication rate of approximately 102,4 Mbps.

Delving into the particular tests to be executed on each testbed, they consist
on the execution of an experiment in the Monitoring platform, publishing
data in Kafka at a given data rate (depending on the number of topics present
in the platform) with Sangrenel. Two types of tests are carried out:

» Single server tests (reported in Section 8.3): this set of tests implies the
execution of tests with a single instance of Apache Kafka running in
the Monitoring platform. This is the configuration that have been used in all
the tests reported in this memory until now.

» Horizontal scaling tests (reported in Section 8.4): this configuration is an
extension of the previous one, in which it is also tested the case of having
two Kafka instances running in parallel, processing simultaneously
the traffic received by the platform. The idea is to compare the
performance achieved in this configuration with the one obtained in the
single server case. These tests were only performed in the Kubernetes
testbed, as it is currently the more mature technology that enables the
orchestration of multiple instances of the same service.

Regarding the parameters that allow to fully define the tests, this is the main
information to have in mind about it:

= Design parameters: they are related to input data to the system in
order to configure properly the Monitoring platform for the tests. We
can distinguish between:

128

8 EVALUATION OF THE MONITORING PLATFORM DEPLOYMENT BASED ON
DIFFERENT VIRTUALIZATION TECHNIQUES

e Fixed:

o Message size: for each experiment, there will be 8 topics
managing 100 B messages, 8 topics managing 1 KB messages,
2 topics managing 100 KB messages and 2 topics managing
1 MB messages. The graphs reported in the next sections are
related to the 100 B messages.

o Test duration: 5 minutes.

o Number of test repetitions: 10 repetitions.

e Variable:

o Number of topics: 20 topics per experiment, varying from 1
to 6 experiments. This parameter determines the throughput
received by the Monitoring platform (around 102,4 Mbps per
experiment).

= Performance parameters: these are the parameters measured during
the execution of the tests, which can be:

e CPU consumption: measured on Tardis server with a CPU
collector based on the mpstat command. For having similar
results on all testbeds, all the tools that are not going to be used
for a particular testbed must be turned off (e.g. the virtual machine
with Kafka and ZooKeeper only applies to the virtual testbed, but not
in the other scenarios).

e Batch write latency: the time spent until receiving an ACK
message from the Kafka broker.

e I/0 message rate: the received throughput divided by the
publication rate.

8.3. Single Server Performance Evaluation

For the first set of tests executed on each testbed, in which only one Kafka
broker was present, the following results were obtained, in terms of the different
performance parameters defined in Section 8.2:

= In the case of the CPU consumption, whose results for all testbeds can
be found in Figure 70, the saturation effect observed in Chapters 3 and
4 was present. This means that the CPU consumption increases its
value when increasing the number of experiments deployed until
reaching a hard limit (i.e. the saturation point), obtaining around 27 %
for the physical, virtual, Docker and Kubernetes testbeds, and 6-8 % for
both Kata testbeds. Comparing all the scenarios, the following tendencies
are observed:

e The physical, Docker and Kubernetes testbeds present a similar
tendency!’, starting with a value of 8-10% for one experiment

Tn the case of the analysis made on Chapters 3 and 4, in which containers were also used
within virtual machines, the results were similar to the virtual testbed presented in this analysis.

129

8 EVALUATION OF THE MONITORING PLATFORM DEPLOYMENT BASED ON
DIFFERENT VIRTUALIZATION TECHNIQUES

and reaching the hard limit between 3 and 4 experiments deployed
in the system.

e The virtual scenario has a higher consumption profile at the
beginning, as it saturates sooner (with 2 experiments), but it
eventually reaches the same values than the previous case.

e On the other hand, both Kata options saturate much sooner,
with a lower throughput received (i.e. less than 102,4 Mbps). As
a result, the CPU consumption remains constant with a lower
value compared to the other scenarios, making also an impact on the
other parameters under study.

27
26
25
24
23
22
21
320

Experiment

CPU consumption (¥

O=_2NWARUONODOO-_2NWAUOION®O©

1 experiment @
102,4 Mbps/exp
2 experiment @
102,4 Mbps/exp
3 experiment @
102,4 Mbps/exp
4 experiment @
102,4 Mbps/exp
5 experiment @
102,4 Mbps/exp
6 experiment @
102,4 Mbps/exp

Testbed . Physical . Docker (runc) . Kata (Firecracker)
. Virtual . Kubernetes (containerd) . Kata (QEMU)

Figure 70: CPU consumption evolution for all the testbeds of the Monitoring
platform (100 B messages).

» The batch write latency, whose related results are presented in Figure 71,
also increases its value when the number of experiments deployed
becomes higher. For this parameter, three different trends are also
observed, but with different implications compared to the CPU
consumption:

e Again. the best results are observed for the physical, Docker and
Kubernetes testbeds, with a batch write latency value lower than
3 ms in the worst case (i.e. with 6 experiments deployed).

This happened because containers adapt their performance and consumption to the environment
in which they are deployed.

130

8 EVALUATION OF THE MONITORING PLATFORM DEPLOYMENT BASED ON
DIFFERENT VIRTUALIZATION TECHNIQUES

e In the second place, it comes the virtual testbed, and also the
Kata+ Firecracker scenario, with one order of magnitude more
than the previous case (around 40 ms in the worst case). This
happens because the hypervisor’s access to disk is different than
with containers (and obviously with a direct access to the disk, which
is the case of the physical scenario), as containers share resources
with the host (i.e. directly the physical server).

e Finally, the worst results were obtained for the Kata+QEMU
scenario, having another order of magnitude more compared
to the previous case (around 200 ms in the worst case) due to a
heavy packet loss process experienced, as it will be observed in the
analysis of the I/O message rate. According to these results, it seems
that the capabilities offered by Firecracker, with similar features
than KVM to manage the access to disk, allows Kata Containers
to achieve a better performance profile, and that is not the case
for QEMU , which is the default hypervisor used with Kata.

S SN

Batch write latency (ms)
SNWBUNIDNOHOO-NWEBNDNOOO =
coB8E3BIBESBLE3338883

1 experiment @
102,4 Mbps/exp
2 experiment @
102,4 Mbps/exp
3 experiment @
102,4 Mbps/exp
4 experiment @

102,4 Mbps/exp
5 experiment @

102,4 Mbps/exp
6 experiment @

102,4 Mbps/exp

. Experiment
[}
E30
7
g2
278
=15
8
=
258
£00
©
g3 83 g3 83 23 o
3y 3N 3y R 3y 3y
- o ™ < o ©
Experiment
Testbed Physical — Docker (runc) Kata (Firecracker)
Virtual — Kubernetes (containerd) Kata (QEMU)

Figure 71: (Top) Batch write latency evolution for all the testbeds of the
Monitoring platform, (bottom) also detailing the results for the testbeds with
lower values (100 B messages).

= And finally, the evolution of the I/O message rate, according to the
results presented on Figure 72, also depends on the saturation effect
experienced in Kafka: when it appears, packets start to be lost, causing a
lower I/O message rate when increasing the number of experiments

131

8 EVALUATION OF THE MONITORING PLATFORM DEPLOYMENT BASED ON

DIFFERENT VIRTUALIZATION TECHNIQUES

1.00
0.95
0.90
0.85
0.80
0.75
0.70

° 0.65

© 0.60
%o.ss
@ 0.50
g 0.45

O 0.40

=035
0.30
0.25
0.20
0.15
0.10
0.05
0.00

executed (i.e. the throughput received by the platform). In this way, the
three tendencies observed for the CPU consumption are also repeated
here with a clear correlation between results:

e First of all, the physical, Docker and Kubernetes testbeds present

the same tendency and the highest values possible, with an I/0O
message rate of around 0,75 in the worst case (Docker testbed with
6 experiments deployed). According to the moment in which the I/O
message rate starts to fall, it is confirmed that the saturation
point seems to be between 3 and 4 experiments deployed for all
cases.

Then, it comes the virtual testbed, in which the saturation point is
produced with 2 experiments, as commented in the CPU consumption
analysis, and achieving a value of around 0,25 in the worst case. This
trend is, in fact, the one observed in the analysis done in Chapters 3
and 4, as containers were used in a VM as host.

And finally, both Kata options have a poor performance, starting
with around 0,65 (QEMU) and 0,5 (Firecracker) for 1 experiment
and falling to less than 0,2 for 6 experiments.

1 experiment @
102,4 Mbps/exp
2 experiment @
102,4 Mbps/exp
3 experiment @
102,4 Mbps/exp
4 experiment @

102,4 Mbps/exp
5 experiment @

102,4 Mbps/exp
6 experiment @

102,4 Mbps/exp

Experiment
Physical — Docker (runc, Kata (Firecracker
Testbed | " fune) ¢)
Virtual — Kubernetes (containerd) Kata (QEMU)

Figure 72: 1/O message rate evolution for all the testbeds of the Monitoring
platform (100 B messages).

To conclude with this analysis, and also to understand what is really
happening on the Kata testbed, it is interesting to analyze if, according to

132

8 EVALUATION OF THE MONITORING PLATFORM DEPLOYMENT BASED ON
DIFFERENT VIRTUALIZATION TECHNIQUES

what it is expected after checking the other testbeds, the saturation point is
achieved for a throughput lower than 102,4 Mbps for the Kata testbed. For
this purpose, a new set of tests was executed by creating experiments with 1,
5, 10 and 15 topics, and dividing the total throughput of one experiment
(i.e. 102,4 Mbps) on these topics (e.g. the experiment with 1 topic would imply
a total throughput of 5,12 Mbps.

After executing the results, the same three performance parameters were
analyzed, observing the following:

= For the CPU consumption, depicted in Figure 73, it is observed that it
increases its value until reaching a limit of around 6 % for 10 topics,
so that the saturation point may be between 5 and 10 topics.

1 5 10 15 20

Topics

CPU consumption (%)
OCO00O_2 22 ANNNNNWWRWWWARRRARAOUIOOUIODDODNNNN~N®

oNvhomoMPOIPONROIOONROIDONROPONAOIDONMNRDDONRDO

Testbed . Kata (Firecracker) . Kata (QEMU)

Figure 73: CPU consumption evolution for the Kata testbeds with a workload
lower than 1 experiment (100 B messages).

= In the case of the batch write latency, observed in Figure 74, the
minimum value obtained is 1 ms for 1 topic, and reaching 3 ms for 10
topics (which was the highest value observed for the physical, Docker
and Kubernetes testbeds in the worst case). This means that these
serverless technologies are not really good at I/O performance, also
taking into account that Kafka requires a high disk performance, so this
would be the worst scenario possible to analyze the performance of these
tools.

Moreover, from 10 topics in advance (i.e. after reaching the saturation
point), the slope of the curve related to the Kata+QFEMU testbed starts

133

8 EVALUATION OF THE MONITORING PLATFORM DEPLOYMENT BASED ON
DIFFERENT VIRTUALIZATION TECHNIQUES

to be greater, according to what was commented before (i.e. Firecracker
seems to manage better the resources’ usage).

Batch write latency (ms)
~
(9]

1 5 10 15 20
Topics

Testbed Kata (Firecracker) — Kata (QEMU)

Figure 74: Batch write latency evolution for the Kata testbeds with a workload
lower than 1 experiment (100 B messages).

» And finishing with the I/O message rate, presented in Figure 75, it is
clear that the Kafka saturation point is achieved between 5 and 10
topics, as the I/O message rate is 1 for 5 topics, and it starts falling
in the next case evaluated. Kata+ Firecracker has a deeper fall at the
beginning, but as observed on Figure 72, the results for Kata+QEMU
become worse when increasing the number of experiments deployed.

134

8 EVALUATION OF THE MONITORING PLATFORM DEPLOYMENT BASED ON
DIFFERENT VIRTUALIZATION TECHNIQUES

1.00
0.95
0.90
0.85
0.80
075
0.70
0.65

2060

o
© 055
S
® 0.50
8
go4s

Q.40
0.35
0.30
0.25
0.20
015
0.10
0.05
0.00

1 5 10 15 20
Topics

Testbed Kata (Firecracker) — Kata (QEMU)

Figure 75: 1/O message rate evolution for the Kata testbeds with a workload
lower than 1 experiment (100 B messages).

8.4. Horizontal Scaling Performance Evaluation

8.4.1. Update of the Testbed Specification

In order to execute the tests related to the horizontal scaling case on the
Kubernetes testbed, it has to be updated beforehand, in order to allow the
presence of more than one Kafka broker in the scenario. This enhancement
is presented in Figure 76, in which the only difference between this case and the one
presented on Figure 68 is that two Kafka brokers are depicted now, achieved
by using Kubernetes services and deployments instead of pods, so that
Kubernetes is able to automatically manage the number of Kafka instances
running on the platform (in this case, limited by two).

Tardis NTP reference Saul NTP

CPU collector

Kubernetes & containerd .
[Kafka | [Zookeeper Publisher
[Kafka | (Kafka mgmt) (Sangrenel)
) 4
v ¥

Figure 76: CPU consumption evolution for the Kubernetes testbed with two
Kafka brokers (100 B messages).

135

8 EVALUATION OF THE MONITORING PLATFORM DEPLOYMENT BASED ON
DIFFERENT VIRTUALIZATION TECHNIQUES

8.4.2. Results Obtained

For the test cases, the same procedure explained on Section 8.2 were
followed, obtaining the following results:

= In the case of the CPU consumption, showed on Figure 77, it was
expected to have a higher value, as there were two Kafka containers
running instead of one, having the theoretical limit of the double value.
However, the result for two brokers never reaches the double value and
it always increases its value, meaning that the saturation point was
achieved for the worst case (or it was even not reached, directly).

28 ' ' i

Experiment

Brokers || 1 [2

X o

== a2 N NN
o ® O N

CPU consumption (%)
S

N
o N

o N B O

1 experiment @
102,4 Mbps/exp
2 experiment @
102,4 Mbps/exp
3 experiment @
102,4 Mbps/exp
4 experiment @
102,4 Mbps/exp
5 experiment @
102,4 Mbps/exp
6 experiment @
102,4 Mbps/exp

Figure 77: CPU consumption evolution for the Kubernetes testbed with two
Kafka brokers (100 B messages).

= In the case of the batch write latency, presented in Figure 78, the values
obtained for the two-broker scenario are always lower than the single-
broker case, also with a lower slope. In fact, for the worst case, the
latency is reduced to the half approximately, achieving around 1 ms.

136

8 EVALUATION OF THE MONITORING PLATFORM DEPLOYMENT BASED ON
DIFFERENT VIRTUALIZATION TECHNIQUES

Batch write latency (ms)

COOOOOOOOOO0OOOOOO0O0.

DO ANINWWD RUINIDD N~N00OO OO S IINWL B R UINID D N0
STCTIONOENONOTNOTNOUONONOTNOUNONONONOTNONONONONOTO

1 experiment @
102,4 Mbps/exp
2 experiment @
102,4 Mbps/exp
3 experiment @
102,4 Mbps/exp
4 experiment @
102,4 Mbps/exp
5 experiment @
102,4 Mbps/exp
6 experiment @
102,4 Mbps/exp

Experiment

Brokers 1— 2

Figure 78: Batch write latency evolution for the Kubernetes testbed with two
Kafka brokers (100 B messages).

» And finally, Figure 79 depicts the I/O message rate evolution, which
is clearly constant for the two-broker scenario, validating that the
saturation point is not reached before the worst case analyzed and
achieving, consequently, a better system’s performance by including
horizontal scaling capabilities.

1.00
095
0.90
085
0.80
0.75
0.70
0.65

2

T 0.60
2055
& 050

3

2045

0 040

=
035
0.30
025
0.20
0.15
0.10
0.05
0.00

1 experiment @
102,4 Mbps/exp
2 experiment @
102,4 Mbps/exp
3 experiment @
102,4 Mbps/exp
4 experiment @
102,4 Mbps/exp
5 experiment @
102,4 Mbps/exp
6 experiment @
102,4 Mbps/exp

Experiment

Brokers 1— 2

Figure 79: I/O message rate evolution for the Kubernetes testbed with two Kafka
brokers (100 B messages).

137

8 EVALUATION OF THE MONITORING PLATFORM DEPLOYMENT BASED ON
DIFFERENT VIRTUALIZATION TECHNIQUES

8.5. Summary

This Chapter has analyzed in depth a set of testbeds related to the
Monitoring platform, in which different virtualization techniques have
been applied, in order to check the performance obtained on each option,
with the main objective of positioning the serverless-related testbeds (i.e.
Kata+QEMU and Kata+Firecracker) in the state of the art and validating it
suitability for this kind of scenarios.

From this analysis, it can be concluded that the different testbeds can be
classified in three groups, according to the results obtained: in the first group,
it appears the physical, Docker and Kubernetes testbeds, which have a
similar performance profile!® and the best results, making sense to use
containers over physical servers for lightweight software.

The second group is mainly composed by the virtual testbed, offering a
worse performance (probably due to not having direct access to the host’s
resources), but with reasonable values to use it in production environments.

And in third place, the results for both Kata testbeds, compared with
the others, were the worst ones, going to scenarios with less than 20 topics
to confirm that these technologies are working properly. As a result, there are
clear evidences that, based on the issues reported and the problems found during
the tests, it can be supposed that the serverless technology is not mature yet
for using it in real, production environments.

Of course, this evidence cannot be extrapolated at all for all cases from the
results obtained, but this can be done, at least, for the testing process followed.
And also, it is expected that the technology will be optimized somehow in the
near future, maybe in the topics analyzed on this Chapter or in others, eventually
allowing then to achieve a better performance profile.

Finally, preliminary horizontal scaling techniques in the Kubernetes
testbed have also been analyzed, confirming that the performance profile
improves considerably (e.g. the I/O message rate for the scenario evaluated
was maintained to 1 for all experiments evaluated) and that could be a candidate
for the extension and improvement of the platform in future releases.

IBRemember that Docker and Kubernetes testbeds are in this position due to the fact that the
host is directly the physical server and not a VM.

138

Conclusions and Future Work

To summarize the different topics analyzed over this thesis, the main
conclusions related to each topic, together with the future work which we
expect that will result in a single solution that integrates all the technologies,
platforms and services, will be described.

9.1. Conclusions

First of all, starting with the topic related to the Monitoring of Network
Slices, the work presented in terms of the Monitoring platform evaluated,
together with its extension to fit in Beyond 5G scenarios, has resulted in
a system capable of managing multiple streams of data with a flexible and
adaptable architecture, based on the publish-subscribe paradigm, which
has been evaluated in terms of some performance parameters, validating its
suitability for multi-site and multi-stakeholder scenarios.

Moreover, this solution has been tested and validated in a real deployment
in the 5G EVE platform, showing that the system workflow behaves
correctly when instantiating an experiment in the platform. This aspect is
important to confirm that the Monitoring system not only works correctly in a test
environment, but it is also ready to be integrated in realistic environments,
which can be even based on Edge deployments, as reflected in Chapter 4.

Continuing with the Orchestration of 5G Transport Networks topic, the
main contribution that has been provided in this work is the definition
of a full SD-WAN orchestration solution, which is capable of managing
different SDN-based scenarios presenting different configurations that are
usual in enterprise and academic networks, also presenting specific use cases
and their complete workflow.

To get to this point, firstly, the modeling of the network infrastructure
has been addressed, so as to allow the introduction of the network intents. The
definition of these intents, in terms of the so-called Network Intent Descriptors,
has been another relevant contribution to the IBN state of the art, followed
by Alviu’s modular architecture, which has been designed to properly manage

139

9 CONCLUSIONS AND FUTURE WORK

the intent-based networking capabilities applied over SD-WAN scenarios.
This platform has been evaluated to confirm the system scalability in terms
of the deployment time spent by Alviu to achieve intent’s fulfillment, as the
measured deployment time depends linearly (and not exponentially) on the
number of branches present in the scenario.

Despite the promising features offered by Alviu, it also presents some
limitations, mainly related to its maturity in a market that is growing more
and more. For instance, while Alviu allows the integration between SDIN and
external domains, this is limited to specific deployments, e.¢g. when only
having one endpoint in each branch. However, this is not what we have in
real environments, where the same external domain may be connected
to several edge SDN switches for offering a fault-tolerant service.

Finally, regarding the New Virtualization Techniques topic, our contribu-
tion is driven by the fact that the Cloud Computing technology has already
identified solutions for a more efficient service provisioning through the mi-
croservices and the serverless paradigms, while the mobile networking
community is lagging, still implementing solutions based on Network Fun-
ction Virtualization.

In this way, the introduction of the serverless paradigm into the mobile net-
work stack implementation could be the key to find the best trade-off between
service customization and resource efficiency with the implementation of a
really flexible solution. However, several research questions have to be solved
before successfully introducing this paradigm: new VINF's shall be designed to
exploit this paradigm, the underlying infrastructure needs to be prepared,
and novel orchestration frameworks, possibly based on machine learning, are
required.

These challenges have been addressed with the design, implementation
and testing of the Monitoring platform based on the serverless paradigm,
also analyzing the performance level that can be achieved with the techno-
logies currently available in the state of the art, compared with other
virtualization and containerization techniques.

From this evaluation process, it can be concluded that there is still a long way
to improve the performance of the serverless techniques evaluated, as poor
results were obtained after evaluating the performance parameters under
study. It seems, in fact, that Kata Containers are having problems in the access
to disk, a capability which is highly required by Kafka to work properly.
In fact, this issue has been already covered in the state of the art, with studies
like [131] pointing out that Kata Containers are not really efficient in terms of
memory consumption and speed, but it provides a secure environment to
run containers in multi-tenant environments.

9.2. Future Work

Building on the results obtained during the evaluation process performed
for each topic under study in this thesis, several subjects for future research
can be addressed to enhance the capabilities offered for all the technologies
analyzed over this document, also taking into account their evolution towards

140

9 CONCLUSIONS AND FUTURE WORK

a final integration of all the technologies into a complete solution for 5G
networks, bringing together all the topics studied.

First of all, knowing that the evaluation process in all cases has been based on
synthetic data (i.e. generated by testing scripts), it is desirable to repeat the
experiments with real data in order to confirm the results obtained. This
change may require the adaptation of the technologies used to fit in the
requirements expected for these experiments. For example:

= In the case of the Monitoring platform, even though the system has
been validated in a real deployment in the 5G EVE platform, a real
implementation that operates in Edge environments is still missing.
In any case, the components needed to perform that deployment have
already been developed and are publicly available [104], so it would be
just a matter of finding a proper use case that may need this functionality
in order to perform and test the integration in a real case.

= In Alviu, considering its flexibility to implement new capabilities in a
relatively simple way, its introduction in other network architectures
could be considered; such as mobile networks, where 5G is currently
enabling the introduction of a wide ecosystem of software and Cloud-
native technologies. This way, examples like [132], where SDN is used
in a 5G dense multi-infrastructure provider, are now possible with the
technologies available.

= In the the case of a serverless platform based on Kata Containers, as it
has been showed in Section 8.3 that it has the lowest service capacity of
all the technologies studied, it may requre a queuing system to avoid the
packet loss or the deployment of more containers to scale the platform,
as proposed for the Kubernetes testbed. Nevertheless, the problem of the
maturity of the technology and the suitability of using serverless
techniques over really critical components (such as Kafka) will still be
there.

In some particular cases, it is also interesting to consider extending the
testing plan to be carried out, trying to cover potential features that
may be interesting for real deployments. This is the case, for example, of
the integration between the Monitoring platform and the Data Analytics
Framework presented on Chapter 4.2.2, in order to evaluate a real Monitoring
system combining Artificial Intelligence (AI) and Machine Learning
(ML) techniques in order to improve the system scalability process, thus
being able to allocate new compute resources based on the information
extracted and analyzed from the network. This last topic is really useful for
the implementation of serverless functions, as they are quite flexible to be
allocated wherever they are required.

The usage of AI/ML techniques can also fit in Alviu, not only managing
a programmable network, but also providing intelligence to it based on the
current status of the network infrastructure and the forecasts made by
these technologies. One example of this is [133], where Machine Learning modules

141

9 CONCLUSIONS AND FUTURE WORK

are introduced to ensure the automation and self-assurance of the designed
Intent-Based Orchestration platform.

Moreover, with regards to the serverless technologies under study in
Chapter 8, note that the performance evaluation done only evaluates Kafka
and ZooKeeper, but it skips the analysis of the serverless functions proposed
for the Monitoring platform in Section 7.2.3. By including these functions in the
performance evaluation study, it could be possible to compare some time-
related metrics in different scenarios involving the serverless functions, e.g.
with warm or cold start deployments. These metrics may be, for example,
the setup time (i.e. time spent to properly deploy the resources needed
in a specific moment) or the execution time (i.e. time spent to perform
the complete monitoring workflow). Moreover, the impact on resource’s
isolation may be also helpful for guaranteeing the Network Slices’ SLAs
created in this kind of environments.

Another topic for future work is the alignment with standardization ef-
forts. For example, the Monitoring framework can be useful for filling specific
gaps in 3GPP standards for certain 5G value-added functionalities, so that
it can be easily integrated as a complementary module in those cases, with the
goal of evolving the Monitoring platform towards a multi-purpose framework.
This is motivated by the way that Network Functions’ (NFs) Service-based
interfaces (SBIs) expose their services in the 5G Core Control Plane,
based on publish-subscribe mechanisms [55]. Some examples detected and
under tracking are the following: (i) data collection framework for data retrieval
from Application Functions (AFs) to be processed by the Network Data
Analytics Functionality (NWDAF) for enabling Network Automation
processes [1341] (which has been partially covered with the inclusion of the AI-
driven Data Analytics framework from [3]), or (i7) inclusion of the publish-
subscribe messaging pattern in the communication between management
service producers and consumers in a Management and Orchestration
(MANO) architecture, being an approach similar to the use of the ”subscribe-
notify” paradigm proposed in [15].

Apart from that example, there are also other active initiatives, such as
the ETSI-NFV MANO platform for the management and orchestration
of network functions deployed in a given infrastructure. In that case, the
Monitoring platform may help in the collection of metrics from different
sources (infrastructure, VNFSs, etc.) to easily deliver them to the entities
interested in that data. Between these entities, Alviu could be placed, extending
its capabilities in order not to only be able to manage the networking
configuration, but it could also control the lifecycle of the infrastructure
in a virtualized environment, creating or deleting instances depending on system’s
workload.

Finally, in addition to introducing new features to widen the use cases,
other future research lines are related to the introduction of new technolo-
gies and paradigms to enhance the user experience and the performance
of the system. Taking Alviu as example of this; in the first case, the focus is
set on the evolution of intent definition towards a human-based language,
where the intent could be defined in terms of understandable sentences that

142

9 CONCLUSIONS AND FUTURE WORK

are eventually translated into operations and configurations to be managed
by the orchestrator. Current solutions like [135], which introduces the Intent-
Based Network Modeling (NEMO) language, are possible models to follow, with
the objective of leveraging SDN and IBN to the next level, with the so-
called Human-Defined Networking; where information and interactions
are provided by the network managers (i.e. the human part of the network)
instead of being strictly software-dependent or even hardware-dependent [1306].

143

Examples of Descriptors

A.1. General Configuration Descriptor

The structure of the General Configuration Descriptors is the following:

= regions: list of regions that will be present in the scenario managed by
Alviu. The parameters that define a region are:

e id: unique identification for the region.
e name: name of the region.

e controller: specification of the controller used in this region,
including the following attributes:

o type: type of controller used, mainly ONOS.

o werston: version of the controller used.

o nodes: list of nodes that are used to build the controller, so
that it can be configured in standalone mode (in case of using
only one node) or in cluster mode (if there are several nodes). To
describe each node, the following parameters must be provided: &p
(the TP address of the controller node) and description (of the
node).

s virtual-networks: list of virtual networks that will be present in the
scenario managed by Alviu. The parameters that define a virtual network
are:

e id: unique identification for the virtual network.
e name: name of the virtual network.
e ip_prefix: IP prefix of the network, in CIDR format.

e gateway: IP address of the gateway for this virtual network, being
typically a pointer to the SDN Controller.

A possible example of this descriptor is the following:

145

10

11

12

13

14

15

16

17

18

19

20

A EXAMPLES OF DESCRIPTORS

Code 2: General Configuration Descriptor example.

{
"regions": [{
"id": "A",
"name": "A",
"controller": {
"type": "ONOS",
"version": "1.12.0",
"nodes": [{
"ip": "10.10.10.50",
"description": "ONOS",
]
3
11,
"virtual -networks": [{
"id": "virtual .network.spain",
"name": "Virtual Network Spain",
"ip_prefix": "10.107.0.0/16",
"gateway": "10.107.0.1"
3]
+

146

A EXAMPLES OF DESCRIPTORS

A.2. Branch Intent Descriptor

The structure of the Branch Intent Descriptors is the following:

= branch: general data related to the branch to be defined. As a result,
to declare N branches in the scenario, N Branch Intent Descriptors will be
needed. The parameters that are included in this field are the following:

1d: unique identification for the branch.
name: name of the branch.

region: identification of the region (and related SDN Controllers)
to which this branch have to be attached. The definition of the region is
done in a different descriptor related to general configuration of Alviu;
including, among others, the type of controller used (e.g. ONOS), its
version and the IP addresses exposed to Alviu and to the branches. An
example of region configuration can be found in Annex A.1.

» switches: list of the physical SDIN switches that belongs to the branch.
The parameters that can be configured are:

1d: unique identification for the switch.
name: name of the switch.
branch: identification of the branch to which this switch belongs.

ip_mgt: management IP address of the switch, reachable from the
SDN Controller that manages the corresponding branch.

port: TCP port to establish a reverse SSH tunnel between the
SDN Controller and the SDN switch for configuration purposes.

user: user name for the reverse SSH tunnel authentication.
password: password for the reverse SSH tunnel authentication.

product_uuid: unique UUID of the switch, for zero-touch deployment
activation of the switch during the on-boarding phase.

location: physical location of the switch, which can be used to fix
the position of the switch in the network diagram presented through
the Alviu’s GUI. To define this, the following attributes are used:

o latitude: latitude related to the location, in Decimal Degrees
format.

o longitude: longitude related to the location, in Decimal Degrees
format.

» virtual-switches: indicates the virtual switches (mainly implemented

with Open vSwitches) that have to be deployed in a given switch, needing at
least one to work properly. The attributes that allow to configure an OVS

are:

1d: unique identification for the virtual switch.

147

A EXAMPLES OF DESCRIPTORS

switch: identification of the switch to which this virtual switch
belongs.

name: name of the virtual switch.

type: virtual switch classification, which can be WAN (if the virtual
switch only manages WAN traffic), LAN (the same but for LAN traffic)
or both (if it manages WAN and LAN traffic).

ports: the list of ports that belongs to the virtual switch, which can
be physical ports of the switch in which the virtual switch is deployed,
or specific-purpose virtual ports (e.g. to have a loopback interface for
a service that may need it). The following fields have to be provided
to fully define a port:

o wnterface: name of the port interface.
o type: type of traffic that the port will handle, including WAN
traffic, LAN traffic or connections with switches from external

domains, using legacy protocols for that purpose. This last type
of traffic is called TRUNK within Alviu’s scope.

= networks: the list of networks managed by the branch, characterized by
the following parameters:

id: unique identification for the network.
name: name of the virtual switch.
ip_prefix: network IP address, in CIDR format.

virtual network: identification of the virtual network to which this
network belongs. The definition of the virtual network, in the same
way that the region, is done in a different descriptor related to general
configuration of Alviu; but it mainly includes the IP prefix of the virtual
network. An example of virtual network configuration can be found in
Annex A.1.

dhcp: configuration to be provided to the DHCP module from the
SDN Controller to automatically provide network configuration to
the virtual switches. If defined, the attributes that have to be
provided are:

o virtual_switch: identification of the virtual switch to which this
network belongs.

o ports: the list of ports of the virtual switch, identified by the
interface name, where the network is present.

o static_ips: a list of static MAC-IP mapping, used for cases
where some hosts must have a specific IP address. Each element of
the list must have the mac and the ip address.

= igp-speakers: modules that interacts with external domains that are

present in the scenario to be managed. In this case, a IGP speaker is defined
for each switch of the branch that is connected to one or several external
domains (i.e. although a switch is connected to N external domains, only

148

© oo ~ =] w - w [-

= R = e
w [- o

—
'S

A EXAMPLES OF DESCRIPTORS

one IGP speaker is declared). The parameters that characterizes each IGP
speaker are:

id: unique identification for the IGP speaker.

mac: MAC address used by the IGP speaker for the communication
with the external domains.

= transit-points: the transit points related to a given IGP speaker that

may interact with external domains in case of receiving IGP traffic from
them. The attributes that have to be provided are:

id: unique identification for the transit point.
name: name of the transit point.

igp-speaker: identification of the IGP speaker to which this transit
point belongs.

virtual_switch: identification of the virtual switch to which this
transit point belongs.

port: the port of the virtual switch, identified by the interface name,
where the transit point is present. The port type must be TRUNK.

ip: the IP address used by the IGP speaker for the communication to
the external domain in the interface defined above.

ip_prefix: the network, in CIDR format, used for the connection
between the IGP speaker and the external domain.

igp-context: information related to the type of IGP connection to
be established with the external domain, including:
o proto: IGP protocol used (e.g. OSPF or BGP).

o id: identificator to be used by the IGP protocol (e.g. area in
OSPF, AS in BGP).

A possible example of this descriptor is the following:

Code 3: Branch Intent Descriptor example.

{

"branch": {
"id": "spain.madrid",
"name": "Madrid",
"region": "A",

T,

"switches": [{
"id": "spain.madrid.switch",
"name": "Madrid Switch",
"branch": "spain.madrid",
"ip_mgt": "10.10.10.100",
"port": 30000,
"user": "user",
"password": "changeme",

149

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

A EXAMPLES OF DESCRIPTORS

"product_uuid": "A19044A5-14D3-E841-B9BB-87B2244G5013"

"location": {
"latitude": 40.4167,
"longitude": -3.70325
3
1
"virtual -switches": [{
"id": "spain.madrid.switch.wan",
"switch": "spain.madrid.switch",
"name": "Madrid",
"type": "BOTH",
"ports": [{
"interface": "ge-1/1/1",
"type": "WAN"
P, L
"interface": "ge-1/1/2",
"type": "TRUNK"
P
"interface": "ge-1/1/3",
"type": "LAN"
IR
"interface": "ge-1/1/4",
"type": "LAN"
3
]
W
"networks": [{
"id": "spain.madrid.switch.wan.A.network",
"name": "Madrid Network A",
"ip_prefix": "10.107.0.16/28",
"virtual_network": "virtual.network.spain"
"dhep": {

"virtual_switch": "spain.madrid.switch.wan",

"ports": [{
"interface": "ge-1/1/3"
1,
"static_ips": [{
"mac": "00:00:00:00:0a:01",
"ip": "10.107.0.17"
H
}
Tl
"igp-speakers": [{
"id": "speaker",
"mac": "da:00:00:00:00:01"
Al

"transit-points": [{

"id": "spain.madrid.switch.transit.network",

"name": "Spain Transit Network",
"igp-speaker": "speaker',

150

-

65

66

67

68

69

70

71

72

73

74

75

76

A EXAMPLES OF DESCRIPTORS

3]

"virtual_switch":

"port": {

"interface": "ge-1/1/2"
e
"ip": "172.16.1.1",

"ip_prefix": "172.16.1.0/24",
"igp-context": {

"proto": "OSPF",

"id": 0

151

"spain.madrid.switch.wan",

- w M)

© oo ~ =] w

10

11

12

13

14

15

16

17

18

19

20

21

A EXAMPLES OF DESCRIPTORS

A.3. Connection Intent Descriptor

{

The structure of the Connection Intent Descriptors is the following:

= connections: list of connection intents to be declared simultaneously,
with the objective of connecting two switches by using a tunneling
mechanism. The parameters that define a connection are:

e id: unique identification for the connection.
e name: name of the connection.

e type: tunneling protocol used for building the connection (e.g.
GRE).

e first_switch/second_switch: these two entities describes the two
endpoints of the connection, characterized by the following attribu-
tes:

o 1d: identification of the switch.

o key: attribute that allows to configure a tag to mark the packets
that are sent through this logical tunnel, mechanism that is used
for load balancing purposes.

o interface: name of the WAN port of the switch used for
establishing the tunnel.

o ﬂ IP address of the switch to be used in the tunnel.
o mac: MAC address of the switch to be used in the tunnel.

A possible example of this descriptor is the following:

Code 4: Connection Intent Descriptor example.

connections": [{
"id": "spain.madrid.barcelona",
"name": "Connection Madrid Barcelona",
"type": "GRE",
"first_switch":{
"id": "spain.madrid.switch",
"key": "1",
"interface": "ge-1/1/1",
"ip": "92.90.100.134",
"mac": "00:00:01:22:22:01",
I
"second_switch":{
"id": "spain.barcelona.switch",
"key": "1",
"interface": "ge-1/1/1",
"ip": "92.90.100.147",
"marc": "00:00:01:22:22:02",
}
}]

152

A EXAMPLES OF DESCRIPTORS

A.4. Policy Intent Descriptor

The structure of the Policy Intent Descriptors is the following:

s firewall-rules: list of firewall rules to be declared in specific networks.

The attributes that can be defined are:

1d: unique identification for the firewall rule.

networks: list of networks in which this firewall rule is going to be
applied. For this purpose, the identification value of the corresponding
networks is used.

action: action to apply to the traffic that matches the firewall rule
(e.g. ALLOW or DENY).

priority: the priority of the rule (e.g. LOW, HIGH), which serves to
order the rules. In case of having several rules with the same priority,
the deployment time is used to order them.

ipProto: transport protocol (e.g. TCP and UDP) that matches the
rule.

srcPort: source port that matches the rule, for inbound traffic.

dstPort: destination port that matches the rule, for outbound
traffic.

traffic: type of traffic that matches the rule (e.g. INBOUND,
OUTBOUND or BOTH). Depending on its value, srcPort, dstPort or
both must be defined.

s dns-filtering-rules: list of DNS filtering rules to be declared in specific

networks. The attributes that can be defined are:

= JoOs-

1d: unique identification for the DNS filtering rule.

networks: list of networks in which this DNS filtering rule is
going to be applied. For this purpose, the identification value of the
corresponding networks is used.

blacklistUrl: URL to which the DNS filtering rule will be applied (e.g.
www.facebook.com). This attribute marks the URL as blacklisted.

whitelistDomains: list of networks, in CIDR format, in which the
traffic from/to the blacklisted URL is allowed.

rules: list of QoS rules to be declared for specific networks. The

attributes that can be defined are:

id: unique identification for the QoS rule.

networks: list of networks in which this QoS rule is going to be
applied. For this purpose, the identification value of the corresponding
networks is used.

name: name to identify the QoS rule.

153

A EXAMPLES OF DESCRIPTORS

wetght: value between 1 and 7 that serves to order the QoS rules in
case a traffic flow matches several QoS rules. A higher value means more
importance. In case of matching rules with the same weight value, the
most specific one is applied.

dscp: DCSP tag to be applied to the traffic flow that matches the
QoS rule, so that it can be redirected to a specific QoS queue in the
switches that belong to the network in which the rule is applied.

minRate: if specified, it fixes the minimum data rate for the traffic
that matches the rule.

mazxRate: if specified, it fixes the maximum data rate for the traffic
that matches the rule.

traffic_classifier: finally, this attribute specifies the traffic flow
information that matches with this rule. It is codified in the following
way:

o ethType: it indicates the layer-3 protocol used (e.g. IPv4).

o ipProto: it is the transport protocol used (e.g. TCP or UDP).
o #pSrc: it references the source IP address, in CIDR format.

o tpDst: it references the destination IP address, in CIDR format.
o srcPort: it references the source port.

o dstPort: it references the destination port.

A possible example of this descriptor is the following:

Code 5: Policy Intent Descriptor example.

{

"firewall-rules": [{
"id": "allow.http.traffic.inbound",
"networks": ["spain.madrid.switch.wan.A.network"],
"action": "ALLOW",
"priority": "LOW",
"ipProto": "TCP",
"srcPort": "80",
"traffic": "INBOUND"

P
"id": "allow.http.traffic.outbound",
"networks": ["spain.madrid.switch.wan.A.network"],
"action": "ALLOW",
"priority": "LOW",
"ipProto": "TCP",
"dstPort": "80",
"traffic": "OUTBOUND"

31,

"dns-filtering-rules": [{
"id": "block.facebook",
"networks": "spain.madrid.switch.wan.A.network",
"blacklistUrl": "www.facebook.com",

154

23

24

25

26

27

28

29

30

31

32

33

34

36

37

38

39

40

41

A EXAMPLES OF DESCRIPTORS

"whitelistDomains":

["10.107.0.17/32"]

Rl
"gos-rules": [{
"id": "qo",
"networks": ["spain.madrid.switch.wan.A.network"],
"name": "Limit outbound HTTP traffic to 1 Mbps",
"weight": 9,
"dscp": 21,
"maxRate": 1000000,
"traffic_classifier":{
"ethType": "IPv4",
"ipProto": "TCP",
"ipSrc": "10.107.0.17/32",
"ipDst": "0.0.0.0/0",
"srcPort": "ALL",
"dstPort": "80",
+
]
+

155

REFERENCES

References

1]

[11]

M. Gramaglia, V. Sciancalepore, F. J. Fernandez-Maestro, R. Perez,
P. Serrano, and A. Banchs, “Experimenting with SRv6: a Tunneling
Protocol supporting Network Slicing in 5G and beyond,” in 2020 IEEE
25th International Workshop on Computer Aided Modeling and Design of
Communication Links and Networks (CAMAD), 2020, pp. 1-6.

R. Perez, J. Garcia-Reinoso, A. Zabala, P. Serrano, and A. Banchs, “A
Monitoring Framework for Multi-Site 5G Platforms,” in 2020 FEuropean
Conference on Networks and Communications (EuCNC), 2020, pp. 52-56.

D. Bega, M. Gramaglia, R. Perez, M. Fiore, A. Banchs, and X. Costa-Perez,
“Al-Based Autonomous Control, Management, and Orchestration in 5G:
From Standards to Algorithms,” IEEE Network, vol. 34, no. 6, pp. 14-20,
2020.

M. Gramaglia, P. Serrano, A. Banchs, G. Garcia-Aviles, A. Garcia-Saavedra,
and R. Perez, “The case for serverless mobile networking,” in 2020 IFIP
Networking Conference (Networking), 2020, pp. 779-784.

W. Nakimuli, G. Landi, R. Perez, M. Pergolesi, M. Molla, C. Ntogkas,
G. Garcia-Aviles, J. Garcia-Reinoso, M. Femminella, P. Serrano, F. Lombar-
do, J. Rodriguez, G. Reali, and S. Salsano, “Automatic deployment, execu-
tion and analysis of 5G experiments using the 5G EVE platform,” in 2020
IEEFE 3rd 5G World Forum (5GWF), 2020, pp. 372-377.

R. Perez, J. Garcia-Reinoso, A. Zabala, P. Serrano, and A. Banchs, “A
Distributed Framework Based on Publish-Subscribe to Monitor Beyond
5G Networks,” in EURASIP Journal on Wireless Communications and
Networking, 2020.

R. Perez, A. Zabala, and A. Banchs, “Alviu: An Intent-Based SD-WAN
Orchestrator of Network Slices for Enterprise Networks,” in 2021 IEEE
7th International Conference on Network Softwarization (NetSoft) (NetSoft
2021), 2021.

“5G EVE,” https://www.bg-eve.eu/, last accessed: 11 January 2021.

Telcaria Ideas S.L., “Alviu Brochure,” Feb. 2018. [Online]. Available:
https://www.telcaria.com/docs/sd-wan/Alviu_Brochure.pdf

M. Gupta, R. Legouable, M. M. Rosello, M. Cecchi, J. R. Alonso, M. Lorenzo,
E. Kosmatos, M. R. Boldi, and G. Carrozzo, “The 5G EVE End-to-End 5G
Facility for Extensive Trials,” in 2019 IEEFE International Conference on
Communications Workshops (ICC Workshops). 1EEE, 2019, pp. 1-5.

5G EVE, “5G EVE end to end reference architecture for vertical industries
and core applications,” Deliverable D1.3, Dec. 2019. [Online]. Available:
https://doi.org/10.5281/zenodo.3628333

157

https://www.5g-eve.eu/
https://www.telcaria.com/docs/sd-wan/Alviu_Brochure.pdf
https://doi.org/10.5281/zenodo.3628333

REFERENCES

[12]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

C. Papagianni, J. Mangues-Bafalluy, P. Bermudez, S. Barmpounakis, D. De
Vleeschauwer, J. Brenes, E. Zeydan, C. Casetti, C. Guimaraes, P. Murillo,
A. Garcia-Saavedra, D. Corujo, and T. Pepe, “5Growth: Al-driven 5G
for Automation in Vertical Industries,” in 2020 Furopean Conference on
Networks and Communications (EuCNC), 2020, pp. 17-22.

A. de la Oliva, X. Li, X. Costa-Perez, C. J. Bernardos, P. Bertin, P. lovanna,
T. Deiss, J. Mangues, A. Mourad, C. Casetti, J. E. Gonzalez, and A. Azcorra,
“5G-TRANSFORMER: Slicing and Orchestrating Transport Networks for
Industry Verticals,” IFEE Communications Magazine, vol. 56, no. 8, pp.
78-84, 2018.

3GPP, “Architecture Enhancements for 5G System (5GS) to Support
Network Data Analytics Services (Release 16),” TS 23.288 v16.1.0, Jun.
2019. [Online|. Available: https://www.3gpp.org/DynaReport/23288.htm

——, “Management and orchestration; Architecture framework,” T'S 28.533,
v16.2.0, Dec. 2019. [Online]. Available: https://www.3gpp.org/DynaReport/
28533.htm

O-RAN Alliance, “O-RAN: Towards an Open and Smart RAN,” White
Paper, Oct. 2018.

ETSI, “Network Transformation; (Orchestration, Network and Service
Management Framework),” White Paper No. 32, Oct. 2019.

3GPP, “Study on integration of Open Network Automation
Platform (ONAP) and 3GPP management for 5G networks
(Release 16),” TR 28.890 v16.0.0, Mar. 2019. [Online]. Available:
https://www.3gpp.org/DynaReport/28890.htm

A. Javed, K. Heljanko, A. Buda, and K. Framling, “CEFIoT: A fault-tolerant
[oT architecture for edge and cloud,” in 2018 IEEE 4th World Forum on
Internet of Things (WF-IoT), 2018, pp. 813-818.

C. Martin, D. Garrido, M. Diaz, and B. Rubio, “From the Edge to the Cloud:
Enabling Reliable IoT Applications,” in 2019 7th International Conference
on Future Internet of Things and Cloud (FiCloud), 2019, pp. 17-22.

Q. Yuan, X. Ji, H. Tang, and W. You, “Toward Latency-Optimal Placement
and Autoscaling of Monitoring Functions in MEC,” IFEE Access, vol. 8, pp.
41649-41 658, 2020.

D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azo-
dolmolky, and S. Uhlig, “Software-Defined Networking: A Comprehensive
Survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14-76, 2015.

F. Bannour, S. Souihi, and A. Mellouk, “Distributed SDN Control: Survey,
Taxonomy, and Challenges,” IEEE Communications Surveys Tutorials,
vol. 20, no. 1, pp. 333-354, 2018.

158

https://www.3gpp.org/DynaReport/23288.htm
https://www.3gpp.org/DynaReport/28533.htm
https://www.3gpp.org/DynaReport/28533.htm
https://www.3gpp.org/DynaReport/28890.htm

REFERENCES

[24]

[25]

28]

[29]

[30]

[31]

32]

[33]

[34]

L. Le, B. P. Lin, L. Tung, and D. Sinh, “SDN/NFV, Machine Learning, and
Big Data Driven Network Slicing for 5G,” in 2018 IEEE 5G World Forum
(5GWF), 2018, pp. 20-25.

R. Trivisonno, R. Guerzoni, I. Vaishnavi, and D. Soldani, “SDN-based
5G mobile networks: architecture, functions, procedures and backward

compatibility,” Transactions on Emerging Telecommunications Technologies,
vol. 26, no. 1, pp. 82-92, 2015.

X. Costa-Perez, A. Garcia-Saavedra, X. Li, T. Deiss, A. de la Oliva,
A. di Giglio, P. Tovanna, and A. Moored, “5G-Crosshaul: An SDN/NFV
Integrated Fronthaul/Backhaul Transport Network Architecture,” [EEE
Wireless Communications, vol. 24, no. 1, pp. 38-45, 2017.

P. Neves, R. Calé, M. Costa, G. Gaspar, J. Alcaraz-Calero, . Wang,
J. Nightingale, G. Bernini, G. Carrozzo, Angel Valdivieso, L. J. Garcfa
Villalba, M. Barros, A. Gravas, J. Santos, R. Maia, and R. Preto,
“Future mode of operations for 5G — The SELFNET approach enabled by
SDN/NFV,” Computer Standards & Interfaces, vol. 54, pp. 229 — 246, 2017,
sl: Standardization SDN&NFEV.

Cisco, “Cisco Annual Internet Report (2018-2023) White Paper,” Mar. 2020.
[Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/
executive-perspectives/annual-internet-report /white-paper-c11-741490.
html

“AT&T Works With VMware to Combine SD-WAN, 5G Capabilities,”
Feb 25 2019, verizon Communications Inc; AT&T Inc; Copyright - ©
2019 Global Data Point. All Rights Reserved. Provided by SyndiGate
Media Inc. (Syndigate.info); Last update - 2019-02-25. [Online]. Available:
https:/ /search.proquest.com/docview/21855190067accountid=14501

G. Pujolle, “Fabric, SD-WAN, vCPE, vRAN, vEPC,” in Software Networks:
Virtualization, SDN, 5G, and Security, 2nd ed. Wiley, 2020, pp. 33-50.

Gartner, “Gartner Magic Quadrant for WAN Edge Infrastructure,”
Nov. 2019. [Online]. Available: https://www.gartner.com/en/documents/
3975600/ magic-quadrant-for-wan-edge-infrastructure

J. Casey, “Who are the 20 top/best SD-WAN providers &
vendors?” Sep. 2020. [Online]. Available: https://www.netify.co.uk/
learning /top-best-sd-wan-providers-vendors

N. Rickard and A. Lerner, “Gartner’s 2018 Strategic Roadmap for
Networking,” May 2018. [Online]. Available: https://www.gartner.com/en/
documents/3873650/2018-strategic-roadmap-for-networking

L. Pang, C. Yang, D. Chen, Y. Song, and M. Guizani, “A Survey on Intent-
Driven Networks,” IFEE Access, vol. 8, pp. 2286222 873, 2020.

159

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://search.proquest.com/docview/2185519006?accountid=14501
https://www.gartner.com/en/documents/3975600/magic-quadrant-for-wan-edge-infrastructure
https://www.gartner.com/en/documents/3975600/magic-quadrant-for-wan-edge-infrastructure
https://www.netify.co.uk/learning/top-best-sd-wan-providers-vendors
https://www.netify.co.uk/learning/top-best-sd-wan-providers-vendors
https://www.gartner.com/en/documents/3873650/2018-strategic-roadmap-for-networking
https://www.gartner.com/en/documents/3873650/2018-strategic-roadmap-for-networking

REFERENCES

[35]

[36]

[42]

[43]

[44]

ONF, “Intent NBI — Definition and Principles,” ONF TR-523, Oct. 2016.
[Online|. Available: https://www.opennetworking.org/wp-content /uploads/
2014/10/TR~523_Intent_Definition_Principles.pdf

P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz,
B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar, “ONOS: Towards
an Open, Distributed SDN OS,” in Proceedings of the Third Workshop on
Hot Topics in Software Defined Networking, ser. HotSDN 14, 2014, p. 1-6.

M. Pham and D. B. Hoang, “SDN applications - The intent-based
Northbound Interface realisation for extended applications,” in 2016 IEEE
NetSoft Conference and Workshops (NetSoft), 2016, pp. 372-377.

ONOS, “ONOS Intent Framework,” May 2016. [Online]. Available:
https://wiki.onosproject.org/display /ONOS /Intent+Framework

Y. Han, J. Li, D. Hoang, J. Yoo, and J. W. Hong, “An intent-based network
virtualization platform for SDN,” in 2016 12th International Conference on
Network and Service Management (CNSM), 2016, pp. 353-358.

T. Irfan, R. Hakimi, A. C. Risdianto, and E. Mulyana, “ONOS Intent Path
Forwarding using Dijkstra Algorithm,” in 2019 International Conference on
FElectrical Engineering and Informatics (ICEEI), 2019, pp. 549-554.

D. Sanvito, D. Moro, M. Gulli, I. Filippini, A. Capone, and A. Campanella,
“ONOS Intent Monitor and Reroute service: enabling plug play routing
logic,” in 2018 4th IEEE Conference on Network Softwarization and
Workshops (NetSoft), 2018, pp. 272-276.

P. Lin, J. Bi, S. Wolff, Y. Wang, A. Xu, Z. Chen, H. Hu, and Y. Lin, “A
west-east bridge based SDN inter-domain testbed,” IEEE Communications
Magazine, vol. 53, no. 2, pp. 190-197, 2015.

F. X. A. Wibowo and M. A. Gregory, “Software Defined Networking proper-
ties in multi-domain networks,” in 2016 26th International Telecommunica-
tion Networks and Applications Conference (ITNAC), 2016, pp. 95-100.

——, “Multi-domain Software Defined Network Provisioning,” in 2018 28th
International Telecommunication Networks and Applications Conference

(ITNAC), 2018, pp. 1-7.

S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Holzle,
S. Stuart, and A. Vahdat, “B4: Experience with a Globally
Deployed Software Defined WAN.,” in Proceedings of the ACM
SIGCOMM Conference, Hong Kong, China, 2013. [Online]. Available:
http://cseweb.ucsd.edu/~vahdat /papers/b4-sigcomm13.pdf

L. He, X. Zhang, Z. Cheng, and Y. Jiang, “Design and implementation of
SDN/IP hybrid space information network prototype,” in 2016 IEEE/CIC
International Conference on Communications in China (ICCC Workshops),
2016, pp. 1-6.

160

https://www.opennetworking.org/wp-content/uploads/2014/10/TR-523_Intent_Definition_Principles.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/TR-523_Intent_Definition_Principles.pdf
https://wiki.onosproject.org/display/ONOS/Intent+Framework
http://cseweb.ucsd.edu/~vahdat/papers/b4-sigcomm13.pdf

REFERENCES

[47]

48]

[49]

[50]

P. Jakma and D. Lamparter, “Introduction to the quagga routing suite,”
IEEE Network, vol. 28, no. 2, pp. 42-48, 2014.

A. Rego, S. Sendra, J. M. Jimenez, and J. Lloret, “OSPF routing protocol
performance in Software Defined Networks,” in 2017 Fourth International
Conference on Software Defined Systems (SDS), 2017, pp. 131-136.

H. Nakayama, T. Mori, S. Ueno, Y. Watanabe, and T. Hayashi, “An
implementation model and solutions for stepwise introduction of SDN,” in

The 16th Asia-Pacific Network Operations and Management Symposium,
2014, pp. 1-4.

C. Marquez, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez,
“How Should I Slice My Network? A Multi-Service Empirical Evaluation of
Resource Sharing Efficiency,” in Proceedings of 24th ACM MobiCom 2018,
2018.

A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices Architecture
Enables DevOps: Migration to a Cloud-Native Architecture,” IEEFE Softwa-
re, vol. 33, no. 3, pp. 42-52, May 2016.

P. Aditya, I. E. Akkus, A. Beck, R. Chen, V. Hilt, I. Rimac, K. Satzke, and
M. Stein, “Will Serverless Computing Revolutionize NFV?” Proceedings of
the IEEFE, vol. 107, no. 4, pp. 667-678, Apr. 2019.

M. Condoluci and T. Mahmoodi, “Softwarization and virtualization in 5G
mobile networks: Benefits, trends and challenges,” Computer Networks, vol.
146, pp. 65-84, Dec. 2018.

3GPP, “NG-RAN; Architecture description,” TS 38.401, v15.7.0, Jan. 2020.
[Online]. Available: https://www.3gpp.org/DynaReport/38401.htm

——, “System architecture for the 5G System (5GS),” TS 23.501, v16.3.0,
Sep. 2019. [Online|. Available: https://www.3gpp.org/DynaReport/23501.
htm

T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On
Multi-Access Edge Computing: A Survey of the Emerging 5G Network Edge
Cloud Architecture and Orchestration,” IEEE Communications Surveys
Tutorials, vol. 19, no. 3, pp. 1657-1681, Sep. 2017.

P. Aditya, 1. E. Akkus, A. Beck, R. Chen, V. Hilt, I. Rimac, K. Satzke, and
M. Stein, “Will Serverless Computing Revolutionize NFV?” Proceedings of
the IEEFE, vol. 107, no. 4, pp. 667678, 2019.

[. Baldini, P. C. Castro, K. S. Chang, P. Cheng, S. J. Fink, V. Ishakian,
N. Mitchell, V. Muthusamy, R. M. Rabbah, A. Slominski, and P. Suter,

“Serverless Computing: Current Trends and Open Problems,” CoRR, vol.
abs/1706.03178, 2017. [Online|. Available: http://arxiv.org/abs/1706.03178

161

https://www.3gpp.org/DynaReport/38401.htm
https://www.3gpp.org/DynaReport/23501.htm
https://www.3gpp.org/DynaReport/23501.htm
http://arxiv.org/abs/1706.03178

REFERENCES

[59]

[60]

[65]

[66]

[67]

[68]

S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Serverless Computation
with OpenLambda,” in 8th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 16). Denver, CO: USENIX Association, Jun. 2016.

I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya,
and V. Hilt, “SAND: Towards High-Performance Serverless Computing,” in
2018 USENIX Annual Technical Conference (USENIX ATC 18). Boston,
MA: USENIX Association, Jul. 2018, pp. 923-935.

E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. Arpaci-Dusseau,
and R. Arpaci-Dusseau, “SOCK: Rapid Task Provisioning with Serverless-
Optimized Containers,” in 2018 USENIX Annual Technical Conference
(USENIX ATC 18). Boston, MA: USENIX Association, Jul. 2018, pp.
57-70.

K. Kritikos and P. Skrzypek, “A Review of Serverless Frameworks,” in
2018 IEEE/ACM International Conference on Utility and Cloud Computing
Companion (UCC Companion), 2018, pp. 161-168.

S. K. Mohanty, G. Premsankar, and M. di Francesco, “An Evaluation of
Open Source Serverless Computing Frameworks,” in 2018 IEEFE Internatio-
nal Conference on Cloud Computing Technology and Science (CloudCom),
2018, pp. 115-120.

A. Randazzo and 1. Tinnirello, “Kata Containers: An Emerging Architecture
for Enabling MEC Services in Fast and Secure Way,” in 2019 Sixth
International Conference on Internet of Things: Systems, Management and
Security (I0TSMS), 2019, pp. 209-214.

A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer, P. Piwonka,
and D.-M. Popa, “Firecracker: Lightweight Virtualization for Serverless
Applications,” in 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20). Santa Clara, CA: USENIX Association,
Feb. 2020, pp. 419-434.

S. E. Elayoubi, M. Fallgren, P. Spapis, G. Zimmermann, D. Martin-Sacristan,
C. Yang, S. Jeux, P. Agyapong, L. Campoy, Y. Qi et al., “5G service
requirements and operational use cases: Analysis and METIS II vision,”
in 2016 European Conference on Networks and Communications (EuCNC).
[EEE, 2016, pp. 158-162.

X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Network slicing
in 5G: Survey and challenges,” IFEE Communications Magazine, vol. 55,
no. 5, pp. 94-100, 2017.

5G EVE, “Requirements definition and analysis from participant
vertical industries,” Deliverable D1.1, Oct. 2018. [Online]. Available:
https://doi.org/10.5281/zenodo.3530391

162

https://doi.org/10.5281/zenodo.3530391

REFERENCES

[69]

[70]

[77]

78]

[79]
[80]

[81]

[82]

[83]

——, “Second implementation of the interworking reference model,”
Deliverable D3.4, Jun. 2020. [Online]. Available: https://doi.org/10.5281/
zenodo.3946323

J. Garcia-Reinoso, M. M. Rosell6, E. Kosmatos, G. Landi, G. Bernini,
R. Legouable, L. M. Contreras, M. Lorenzo, K. Trichias, and M. Gupta,
“The 5G EVE Multi-site Experimental Architecture and Experimentation
Workflow,” in 2019 IEEE 2nd 5G World Forum (5GWF). 1EEE, 2019, pp.
335-340.

5G EVE, “Interworking Reference Model,” Deliverable D3.2, Jun. 2019.
[Online|. Available: https://doi.org/10.5281/zenodo.3625689

“Apache Kafka,” https://kafka.apache.org/, last accessed: 11 January 2021.

P. Sommer, F. Schellroth, M. Fischer, and J. Schlechtendahl, “Message-
oriented Middleware for Industrial Production Systems,” in 2018 IEEFE 14th

International Conference on Automation Science and Engineering (CASE),
Munich, 2018, pp. 1217-1223.

5G EVE, “First implementation of the interworking reference
model,” Deliverable D3.3, Oct. 2019. [Online]. Available: https:
//doi.org/10.5281 /zenodo.3628179

L. Magnoni, “Modern Messaging for Distributed Sytems,” Journal of
Physics: Conference Series, vol. 608, p. 012038, May 2015.

“Apache ZooKeeper,” https://zookeeper.apache.org/, last accessed: 11
January 2021.

5G EVE, “6G EVE WP3 DCM Handler,” Jul 2020. [Online|. Available:
https://github.com/5GEVE/5geve-wp3-dem-handler

——, “5G EVE WP3 DCM Deployment,” Jul 2020. [Online]. Available:
https://github.com/5GEVE/5geve-wp3-dem-deployment

“Beats,” https://www.elastic.co/beats/, last accessed: 11 January 2021.

“ELK Stack,” https://www.elastic.co/what-is/elk-stack, last accessed: 11
January 2021.

5G EVE, “Experimentation tools and VNF repository,” Deliverable D4.1,
Oct. 2019. [Online]. Available: https://doi.org/10.5281 /zenodo.3628201

——, “First version of the experimental portal and service
handbook,” Deliverable D4.2, Dec. 2019. [Online]. Available:
https://doi.org/10.5281 /zenodo.3628316

——, “Report on benchmarking of new features and on the experimental
portal (2nd version),” Deliverable D4.4, Jun. 2020. [Online]. Available:
https://doi.org/10.5281 /zenodo.3946283

163

https://doi.org/10.5281/zenodo.3946323
https://doi.org/10.5281/zenodo.3946323
https://doi.org/10.5281/zenodo.3625689
https://kafka.apache.org/
https://doi.org/10.5281/zenodo.3628179
https://doi.org/10.5281/zenodo.3628179
https://zookeeper.apache.org/
https://github.com/5GEVE/5geve-wp3-dcm-handler
https://github.com/5GEVE/5geve-wp3-dcm-deployment
https://www.elastic.co/beats/
https://www.elastic.co/what-is/elk-stack
https://doi.org/10.5281/zenodo.3628201
https://doi.org/10.5281/zenodo.3628316
https://doi.org/10.5281/zenodo.3946283

REFERENCES

[84]

[85]

[87]

[33]

[95]

— G EVE WP4 DCS Signalling Topic Handler,”
Jul 2020. [Online]. Available: https://github.com/5GEVE/
bgeve-wp4-dcs-signalling-topic-handler

— G EVE WP4 DCS Kibana Dashboards Generator,”
Jul 2020. [Online]. Available: https://github.com/5GEVE/
Sgeve-wp4-dcs-kibana-dashboards-generator

— “5G EVE WP4 DCS Kibana Dashboards Handler,”
Jul 2020. [Online]. Available: https://github.com/5GEVE/
Sgeve-wp4-dcs-kibana-dashboards-handler

——, “6G EVE WP4 DCS-DV Deployment,” Jul 2020. [Online]. Available:
https://github.com/5GEVE/5geve-wp4-dcs-dv-deployment

B. Nogales, 1. Vidal, D. R. Lopez, J. Rodriguez, J. Garcia-Reinoso,
and A. Azcorra, “Design and Deployment of an Open Management
and Orchestration Platform for Multi-Site NFV Experimentation,” IFEE
Communications Magazine, vol. 57, no. 1, pp. 20-27, 2019.

“Proxmox,” https://www.proxmox.com/en/, last accessed: 11 January 2021.
“Ubuntu,” https://ubuntu.com/, last accessed: 11 January 2021.

J. Alquiza, “Sangrenel,” Mar 2020. [Online]. Available: https:
//github.com/jamiealquiza/sangrenel

“Docker,” https://www.docker.com/, last accessed: 11 January 2021.

5G EVE, “5G EVE WP4 Monitoring Dockerized Environment,”
Mar 2020. [Online]. Available: https://github.com/5GEVE/
Sgeve-wp4-monitoring-dockerized-env

P. Dobbelaere and K. S. Esmaili, “Kafka versus RabbitMQ: A Comparative
Study of Two Industry Reference Publish/Subscribe Implementations:
Industry Paper,” in Proceedings of the 11th ACM International Conference
on Distributed and Event-Based Systems, ser. DEBS 17. New York, NY,
USA: Association for Computing Machinery, 2017, p. 227-238.

M. Femminella, M. Pergolesi, and G. Reali, “Simplification of the design,
deployment, and testing of 5G vertical services,” in NOMS 2020 - 2020
IEEE/IFIP Network Operations and Management Symposium, 2020, pp. 1-
7.

5G EVE, “Models for vertical descriptor adaptation,” Deliverable D4.3,
Apr. 2020. [Online]. Available: https://www.5g-eve.eu/wp-content /uploads/
2020/05/5geve-deliverabled4.3-final.pdf

V. Ziegler, T. Wild, M. Uusitalo, H. Flinck, V. Raisanen, and K. Hatonen,
“Stratification of 5G evolution and Beyond 5G,” in 2019 IEEFE 2nd 5G World
Forum (5GWF), 2019, pp. 329-334.

164

https://github.com/5GEVE/5geve-wp4-dcs-signalling-topic-handler
https://github.com/5GEVE/5geve-wp4-dcs-signalling-topic-handler
https://github.com/5GEVE/5geve-wp4-dcs-kibana-dashboards-generator
https://github.com/5GEVE/5geve-wp4-dcs-kibana-dashboards-generator
https://github.com/5GEVE/5geve-wp4-dcs-kibana-dashboards-handler
https://github.com/5GEVE/5geve-wp4-dcs-kibana-dashboards-handler
https://github.com/5GEVE/5geve-wp4-dcs-dv-deployment
https://www.proxmox.com/en/
https://ubuntu.com/
https://github.com/jamiealquiza/sangrenel
https://github.com/jamiealquiza/sangrenel
https://www.docker.com/
https://github.com/5GEVE/5geve-wp4-monitoring-dockerized-env
https://github.com/5GEVE/5geve-wp4-monitoring-dockerized-env
https://www.5g-eve.eu/wp-content/uploads/2020/05/5geve-deliverabled4.3-final.pdf
https://www.5g-eve.eu/wp-content/uploads/2020/05/5geve-deliverabled4.3-final.pdf

REFERENCES

[98]

[99]

[100]

101]

102]

[103]
[104]

105]
[106]

107]
[108]

109

[110]

A. Ghosh, A. Maeder, M. Baker, and D. Chandramouli, “5G Evolution: A
View on 5G Cellular Technology Beyond 3GPP Release 15,” IEEE Access,
vol. 7, pp. 127639127651, 2019.

[. Tomkos, D. Klonidis, E. Pikasis, and S. Theodoridis, “Toward the 6G
Network Era: Opportunities and Challenges,” I'T Professional, vol. 22, no. 1,
pp. 3438, 2020.

G. Wikstrom, J. Peisa, P. Rugeland, N. Johansson, S. Parkvall, M. Girnyk,
G. Mildh, and I. L. Da Silva, “Challenges and Technologies for 6G,” in 2020
2nd 6G Wireless Summit (6G SUMMIT), 2020, pp. 1-5.

S. Wang, T. Sun, H. Yang, X. Duan, and L. Lu, “6G Network: Towards
a Distributed and Autonomous System,” in 2020 2nd 6G Wireless Summit
(6G SUMMIT), 2020, pp. 1-5.

3GPP, “Architecture enhancements for 5G System (5GS) to support
network data analytics services,” TS 23.288, v16.1.0, Sep. 2019. [Online].
Available: https://www.3gpp.org/DynaReport/23288.htm

“K3s,” https://k3s.io/, last accessed: 11 January 2021.

5G EVE, “6G EVE Monitoring Dockerized Environment,” Oct 2020.
[Online|. Available: https://github.com/5GEVE /monitoring_dockerized
environment

“Python,” hhttps://www.python.org/, last accessed: 11 January 2021.
Apache Kafka, “Allow consumers to fetch from clo-
sest replica,” KIP-392, Nov. 2019. [Online]. Availa-

ble: https://cwiki.apache.org/confluence/display /KAFKA /KIP-392%3A+
Allow+consumers+to-+fetch+from-+-closest+replica

“Node.js,” https://nodejs.org/en/, last accessed: 11 January 2021.

F. Z. Yousaf, M. Bredel, S. Schaller, and F. Schneider, “NFV and SDN—Key
Technology Enablers for 5G Networks,” IEEE Journal on Selected Areas in
Communications, vol. 35, no. 11, pp. 24682478, 2017.

B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado, “The
Design and Implementation of Open vSwitch,” 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI ’15), pp. 117-130,
2015.

M. Jiménez, “Extension and evaluation of a SDN orchestration system
with multi-table functionalities in ASICs,” FEnd of Degree Project for
the Undergraduate Degree in Telecommunication Technology Engineering.
University of Seville, 2020.

165

https://www.3gpp.org/DynaReport/23288.htm
https://k3s.io/
https://github.com/5GEVE/monitoring_dockerized_environment
https://github.com/5GEVE/monitoring_dockerized_environment
hhttps://www.python.org/
https://cwiki.apache.org/confluence/display/KAFKA/KIP-392%3A+Allow+consumers+to+fetch+from+closest+replica
https://cwiki.apache.org/confluence/display/KAFKA/KIP-392%3A+Allow+consumers+to+fetch+from+closest+replica
https://nodejs.org/en/

REFERENCES

[111]

[112]

[113]

114]

[115]

[116]

[117)
18]

[119]

[120]

[121]
122]

[123]

P. Rost, C. Mannweiler, D. S. Michalopoulos, C. Sartori, V. Sciancalepore,
N. Sastry, O. Holland, S. Tayade, B. Han, D. Bega, D. Aziz, and H. Bakker,
“Network Slicing to Enable Scalability and Flexibility in 5G Mobile
Networks,” IEEE Communications Magazine, vol. 55, no. 5, pp. 72-79, May
2017.

D. M. Gutierrez-Estevez, M. Gramaglia, A. de Domenico, N. di Pietro,
S. Khatibi, K. Shah, D. Tsolkas, P. Arnold, and P. Serrano, “The path
towards resource elasticity for 5G network architecture,” in IEEFE WCNCW,
Apr. 2018, pp. 214-219.

I. Sarrigiannis, K. Ramantas, E. Kartsakli, P. Mekikis, A. Antonopoulos,
and C. Verikoukis, “Online VNF Lifecycle Management in a MEC-enabled
5G IoT Architecture,” IEEE Internet of Things Journal, pp. 1-1, 2019.

V. Nagendra, A. Bhattacharya, A. Gandhi, and S. R. Das, “MMLite: A
Scalable and Resource Efficient Control Plane for Next Generation Cellular
Packet Core,” in Proceedings of the 2019 ACM Symposium on SDN Research,
ser. SOSR '19. New York, NY, USA: Association for Computing Machinery,
2019, p. 69-83.

3GPP, “Management and orchestration; Provisioning,” TS 28.531, v15.2.0,
Mar. 2019. [Online]. Available: https://www.3gpp.org/DynaReport/28531.
htm

D. Bega, A. Banchs, M. Gramaglia, X. Costa-Pérez, and P. Rost, “CARES:
Computation-Aware Scheduling in Virtualized Radio Access Networks,”
IEEE Transactions on Wireless Communications, vol. 17, no. 12, pp. 7993—
8006, Dec. 2018.

“DPDK,” https://www.dpdk.org/, last accessed: 11 January 2021.

Cilium, “BPF and XDP Reference Guide,” 2020. [Online|. Available:
https://cilium.readthedocs.io/en/latest /bpf/

Y. Wang et al., “Network Management and Orchestration Using Artificial
Intelligence: Overview of ETSI ENI,” [EEE Communications Standards
Magazine, vol. 2, no. 4, pp. 5865, Dec. 2018.

D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez, “DeepCog;:
Cognitive Network Management in Sliced 5G Networks with Deep Learning,”
in IEEE INFOCOM 2019 - IEEE Conference on Computer Communications,
Apr. 2019, pp. 280-288.

“OpenFaaS,” https://www.openfaas.com/, last accessed: 11 January 2021.

“KVM,” https://www.linux-kvm.org/page/Main_Page, last accessed: 11
January 2021.

“runc,” https://github.com/opencontainers/runc, last accessed: 11 January
2021.

166

https://www.3gpp.org/DynaReport/28531.htm
https://www.3gpp.org/DynaReport/28531.htm
https://www.dpdk.org/
https://cilium.readthedocs.io/en/latest/bpf/
https://www.openfaas.com/
https://www.linux-kvm.org/page/Main_Page
https://github.com/opencontainers/runc

REFERENCES

[124]
[125]
126]

[127]

128]
[129]

[130]

[131]

[132]

[133]

134]

[135]

[136]

“MicroK8s,” https://microk8s.io/, last accessed: 11 January 2021.
“containerd,” https://containerd.io/, last accessed: 11 January 2021.

“Kata Containers,” https://katacontainers.io/, last accessed: 11 January
2021.

“Firecracker,” https://firecracker-microvm.github.io/, last accessed: 11 Ja-
nuary 2021.

“QEMU,” https://www.qemu.org/, last accessed: 11 January 2021.

“Xeon comparison UniPG,” https://gist.github.com/TheWall89/
01688a7f448d8403da7798bcdf0185bc, last accessed: 11 January 2021.

Vivek Gite, “KVM forward ports to guests VM with UFW on
Linux,” Aug. 2020. [Online]. Available: https://www.cyberciti.biz/faq/
kvm-forward-ports-to-guests-vm-with-ufw-on-linux/

V. Aggarwal and B. Thangaraju, “Performance Analysis of Virtualisation
Technologies in NFV and Edge Deployments,” in 2020 IEEE International
Conference on FElectronics, Computing and Communication Technologies
(CONECCT), 2020, pp. 1-5.

J. Lun and D. Grace, “Software defined network for multi-tenancy resource
sharing in backhaul networks,” in 2015 IEEE Wireless Communications and
Networking Conference Workshops (WCNCW), 2015, pp. 1-5.

T. A. Khan, A. Mehmood, J. J. Diaz Ravera, A. Muhammad, K. Abbas,
and W. Song, “Intent-Based Orchestration of Network Slices and Resource
Assurance using Machine Learning,” in NOMS 2020 - 2020 IEEE/IFIP
Network Operations and Management Symposium, 2020, pp. 1-2.

3GPP, “Study of Enablers for Network Automation for 5G,” TR 23.791,
v16.2.0, Jun 2019. [Online]. Available: https://www.3gpp.org/DynaReport/
23791.htm

Y. Tsuzaki and Y. Okabe, “Reactive configuration updating for Intent-Based
Networking,” in 2017 International Conference on Information Networking
(ICOIN), 2017, pp. 97-102.

E. Rojas, “From Software-Defined to Human-Defined Networking: Challen-
ges and Opportunities,” IEFE Network, vol. 32, no. 1, pp. 179-185, 2018.

167

https://microk8s.io/
https://containerd.io/
https://katacontainers.io/
https://firecracker-microvm.github.io/
https://www.qemu.org/
https://gist.github.com/TheWall89/01688a7f448d8403da7798bcdf0185bc
https://gist.github.com/TheWall89/01688a7f448d8403da7798bcdf0185bc
https://www.cyberciti.biz/faq/kvm-forward-ports-to-guests-vm-with-ufw-on-linux/
https://www.cyberciti.biz/faq/kvm-forward-ports-to-guests-vm-with-ufw-on-linux/
https://www.3gpp.org/DynaReport/23791.htm
https://www.3gpp.org/DynaReport/23791.htm

	Acknowledgements
	Published and Submitted Content
	Other Research Merits
	Resumen
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms and Abbreviations
	Introduction
	5G Networks Characterization
	Summary of Thesis Contributions
	Thesis Overview

	Related Work
	Monitoring Architectures in 5G and Beyond 5G Networks
	Orchestration Solutions in SD-WAN and 5G Networks
	Orchestration of SD-WAN Networks
	Intent-Based Networking
	Integration with Legacy Networks

	Virtualization Mechanisms in 5G Networks
	Evolution of Cloud Computing
	Evolution of Mobile Networking
	Introducing the Serverless Paradigm

	Part 1. Monitoring of Network Slices
	An Adaptable Monitoring Framework for 5G Environments
	System Design
	System Requirements
	Proposed Architecture

	Implementation Based on the Publish-Subscribe Paradigm
	Performance Evaluation
	System Assumptions
	Testbed Setup
	Preliminary Evaluation Process for a Single-Topic Experiment
	Performance Impact Assessment for Simultaneous Multi-Topic Experiments

	Demonstration of the Platform in a Real Case Scenario
	Experiment Design, Definition and Preparation
	Experiment Execution and Results Analysis

	Summary

	Towards a Distributed Monitoring Framework for Beyond 5G Networks
	New System Requirements
	Revision of the System Design and Implementation
	Adaptation of the Architecture
	Extensions to the Architecture
	Implementation Update

	Performance Evaluation
	Testbed Setup
	Singe-Broker Experiments
	System Scalability Validation
	Multi-Broker Experiments

	Summary

	Part 2. Orchestration of 5G Transport Networks
	Novel Network Orchestration Techniques Based on SDN and Intent-Based Capabilities
	Network Infrastructure Model
	Alviu Orchestrator's Architecture
	Intent-Based Networking Characterization
	Alviu Specification

	Intent States Management
	States Specification
	States Workflow

	Performance Evaluation
	Testbed Setup
	Deployment Time Evaluation

	Summary

	Evaluation and Demonstration of Intent-Based Orchestration Capabilities in Real Scenarios
	Interconnection with External IGP Domains
	Use Case Overview
	Integration of Quagga in OVS-based Switches
	System Workflow

	Load Balancing with Dual Link Between SDN Switches
	Use Case Overview
	Updates Needed in OVS-based Switches
	System Workflow

	Proof of Concept
	Testbed Setup
	Basic Connectivity Between SDN Switches
	Interconnection with External Domains
	Testing Load Balancing Capabilities
	Testing Network Slicing Features with Firewall and QoS Policies

	Summary

	Part 3. New Virtualization Techniques
	Integration of the Serverless Paradigm within 5G Networks
	Serverless Mobile Architectures' Overview
	Concept
	Advantages
	Challenges to Address

	Introducing Serverless Techniques in the Monitoring Platform
	Problems Found in the Legacy Architecture
	Transformation from Legacy to Microservices Architecture
	Transformation from Microservices to Serverless Architecture

	Workflow's Validation
	Summary

	Evaluation of the Monitoring Platform Deployment Based on Different Virtualization Techniques
	Testbed Setup
	Servers' Description
	Testbed Specification for each Virtualization Technique

	Test Cases' Description
	Single Server Performance Evaluation
	Horizontal Scaling Performance Evaluation
	Update of the Testbed Specification
	Results Obtained

	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendices
	Examples of Descriptors
	General Configuration Descriptor
	Branch Intent Descriptor
	Connection Intent Descriptor
	Policy Intent Descriptor

	References

