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Abstract

Multivariate characteristics of risk processes are of high interest to academic actuaries. In such models, the probability of
ruin is obtained not only by considering initial reservesu but also the severity of ruiny and the surplus before ruinx. This
ruin probability can be expressed using an integral equation that can be efficiently solved using the Gaver–Stehfest method
of inverting Laplace transforms. This approach can be considered to be an alternative to recursive methods previously used
in actuarial literature.
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1. Introduction

Let us consider the classical risk process in continuous time{Zt }t≥0 with Uk claim sizes and premiumc per time
unit,

Zt = u + ct −
Nt∑

k=1

Uk,

whereu is the initial reserves andNt the total number of claims up to timet following an homogeneous Poisson
process of parameterλ > 0. Let B denote the distribution function of claim sizesUk with meanµ−1 andc =
λµ−1(1 + θ), whereθ is the premium loading factor.

Let us now defineτ = inf {t > 0 : Zt < 0} as the ruin time andY = −Zτ as the deficit at ruin time or severity
of ruin and(X + u) = Zτ− as the surplus just before the ruin(X > 0).

The probability of ultimate ruin with initial reservesu, parameterλ and severity of ruin less thany and surplus
less thanx + u is defined,

P {τ < ∞, X ≤ x, Y ≤ y} = 9x,y(u).
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We will now use the results obtained by Dufresne and Gerber (1988) and a similar renewal argument as in Frey
and Schmidt (1996) and Gerber et al. (1987) in order to express the former probability with the following defective
renewal equation:

9x,y(u) = λ

c
Fx,y(u) + λ

c

∫ u

0
9x,y(u − w)dG(w), (1.1)

whereG(w) = ∫ w

0 (1 − B(z))dz, g(w) = 1 − B(w) and

Fx,y(w) =
∫ w+x

w

(B(z + y) − B(z)) dz =
∫ w+x

w

(g(z) − g(z + y)) dz (1.2)

for x ∈ (0, ∞) andy ∈ (0, ∞).
The result used by Frey and Schmidt (1996), expression (10), is just a particular case of the former approach

when the premium loading factor is defined as

θ = 1 − λµ−1

λµ−1
, θ > 0. (1.3)

Since the early 1980s, many methods have been developed in order to approximate9x,y(u) (specially some
particular interesting cases such asx = ∞ and/ory = ∞). They were based on a discretization of some aspect of
the risk process and derived recursive expressions; see for example Dickson (1989), Dickson et al. (1995), Goovaerts
and De Vylder (1984), Panjer (1986), Panjer and Wang (1993), Ramsay (1992b) and Ramsay and Usábel (1997).
Panjer and Wang (1993) describe the conditions under which these recursions are stable.

Though some of these recursive approaches may be able to determine9x,y(u) to any desired degree of accuracy,
they are not suitable for heavy-tailed distributions, such as the Pareto or lognormal distribution for two reasons,
citing Ramsay and Usábel (1997):
• To achieve a reasonable degree of accuracy, the interval of discretization must be at most one unit of the mean

in length. If we standardize the unit of currency such thatµ−1 = 1, then to obtain9x,y(10) we must recursively
estimate every intermediate unit point9x,y(u) for k = 0, 1,2, . . . , 9,10. This may be acceptable if we need
only small values ofu; however, for large values ofu, sayu = 500 units, this method can be slow. For the Pareto,
9x,y(500) is not insignificant.

• The quadrature rules inherent in the recursive schemes are usually of low order. This further reduces its accuracy
and its rate of convergence. To improve accuracy, the intervals of discretization are made even smaller. This
substantially increases the number of intermediate calculations required, making the process of finding9x,y(u)

slower.
Before the shift to recursive methods explained in the last paragraph, the problem of ruin in the Collective Risk
Theory had been extensively treated in actuarial literature using integral transforms in the restricted case when
y = ∞, x = ∞; therefore not contemplating the multivariate case.

Since the paper by Sparre Andersen in 1955 many authors developed approximations for the ruin probabil-
ity using Laplace–Stieltjes transforms. Cramér (1995) used the Wiener–Höpf method for the classical case and
Thorin (1970, 1971, 1973, 1977) introduced the generalization when epochs of claims form a renewal process.
Thorin and Wikstad (1973), Wikstad (1971, 1977) used Piessens (1969) inversion method of the Laplace trans-
forms and Bohman (1971, 1974, 1975), focussed on inversions of Fourier transforms and Seal (1971, 1974) dealt
with both Laplace and Fourier numerical inversions. Seal (1977) obtained an interesting result for the classical
case and exponential claim size distribution using the Bromwich–Mellin inversion formula for Laplace trans-
forms. As cited, numerical illustrations obtained using this methodology were based on Laplace transforms in-
version techniques due to Piessens (1969) and Piessens and Branders (1971), in which complex analysis is
involved. For other interesting work in actuarial literature using inversion of Laplace transforms see Covens
et al. (1979).
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To our knowledge, this methodology has not been tested either in the context of approximating multivariate ruin
probabilities or using Laplace transform inversion techniques involving only the evaluation of real numbers.

The objective of this paper is to present an alternative method of evaluating9x,y (u), multivariate ruin probability
in the classical case, based on the Gaver–Stehfest (GS) method of inverting Laplace transforms. We will show that
this method used with classical standard computer languages (Pascal, FORTRAN,C++) or mathematical assistants
(MapleV, Mathematica or MathLab) can lead to very efficient approximations for the multivariate ultimate ruin
probability.

The defective Volterra integral equation of the second kind ((1.1)) will then be solved numerically using the
Laplace transform approach. In Section 2, Laplace transform of the multivariate ruin probability,L(s, 9x,y (u)), is
studied and expressed as a function of the Laplace transform of the claim size distribution. In Section 3, we will
introduce Gaver–Stehfest method of inverting Laplace transforms. This method is based on generating samples using
generalized delta functions and accelerating the convergence using an extrapolation technique. Some interesting
features concerning this method are discussed in Section 4. In Section 5, we deal with the actual use of GS method.
Finally, in Section 6 we will include numerical illustrations showing that this method may be considered a very
good alternative to recursive methods.

2. Laplace transforms approach

We will introduce now the so-called Laplace transform operator of a general functionξ(w) with support in the
non-negative real axis,

L(s, ξ(w)) =
∫ ∞

0
e−swξ(w) dw, Re(s) > 0 (2.1)

applying it to (Eq (1.1)) and using the properties of Laplace transform we can get

L(s, 9x,y(u)) = λ

c
L(s, Fx,y(u)) + λ

c
L(s, 9x,y(u))L(s, g(x))

and finally,

L(s, 9x,y(u)) =
(

λ
c

)
L(s, Fx,y(u))

1 − (
λ
c

)
L(s, g(u))

, Re(s) > 0. (2.2)

Using a basic property of Laplace transforms,

L(s, Fx,y(u)) =
∫ ∞

0
e−su

∫ u+x

u

(g(z) − g(y + z)) dz dw = L(s, F
′
x,y(u)) + Fx,y(0)

s
, (2.3)

where

Fx,y(0) =
∫ x

0
(g(z) − g(y + z)) dz, x > 0.

Leibniz’s differentiation theorem leads to

F
′
x,y(u)) = g(u + x) − g(u + x + y) + g(u + y) − g(u) (2.4)

and

L(s, F
′
x,y(u)) = L(s, g(u + x)) − L(s, g(u + x + y)) + L(s, g(u + y)) − L(s, g(u)),
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where

L(s, g(u + a)) =
∫ ∞

0
e−sug(u + a)du =

∫ ∞

0
e−su(1 − B(u + a))du = 1

s
− L(s, B(u + a))

= 1 − B(a) − L(s, b(u + a))

s
. (2.5)

After some arrangements we can get the following expressions and relations:

L(s, 9x,y(u)) =
(

1

s

)(
µ−1 − L(s, g(u))

µ−1(1 + θ) − L(s, g(u))

)
−
(

1

s

)(∫∞
0 g(y + z)dz − L(s, g(u + y))

µ−1(1 + θ) − L(s, g(u))

)

−
(

1

s

)(∫∞
x

g(z)dz − L(s, g(u + x))

µ−1(1 + θ) − L(s, g(u))

)
+
(

1

s

)(∫∞
x

g(y + z)dz − L(s, g(u + x + y))

µ−1(1 + θ) − L(s, g(u))

)
,

(2.6)

L(s, 9∞,∞(u)) =
(

1

s

)(
µ−1 − L(s, g(u))

µ−1(1 + θ) − L(s, g(u))

)
, (2.7)

L(s, 9∞,y(u)) = L(s, 9∞,∞(u)) −
(

1

s

)(∫∞
0 g(y + z)dz − L(s, g(u + y))

µ−1(1 + θ) − L(s, g(u))

)
, (2.8)

L(s, 9x,∞(u)) = L(s, 9∞,∞(u)) −
(

1

s

)(∫∞
x

g(z)dz − L(s, g(u + x))

µ−1(1 + θ) − L(s, g(u))

)
, (2.9)

L(s, 9x,y(u)) = L(s, 9∞,y(u)) + L(s, 9x,∞(u)) − L(s, 9∞,∞(u))

+
(

1

s

)(∫∞
x

g(y + z)dz − L(s, g(u + x + y))

µ−1(1 + θ) − L(s, g(u))

)
. (2.10)

3. Gaver–Stehfest method

Once the expression of the Laplace transform is obtained, we will use the Gaver–Stehfest (GS) method to
approximate the value of the multivariate ruin probability function.

Following Davies and Martin (1979), Gaver–Stehfest method can be classified in the context of numerical
inversion procedures as a method which computes a sample,

In(t) =
∫ ∞

0
δn(t, u)ξ(u) du,

where the functionsδn(t, u) form a delta convergent sequence in the sense of Gelfand and Shilov (1964) which
means that they have the property thatIn(t) tends toξ(t) with increasingn. Gaver (1966) used the following family
of generalized delta functions:

δn(t, u) =
(

ln(2)

t

)(
(2n)!

n!(n − 1)!

)(
1 − e−ln(2)tu

)n

e−nln(2)tu

and the family of convergent approximations can be expressed,

In(t) =
(

ln(2)

t

)(
(2n)!

n!(n − 1)!

) n∑
i=0

n

i
(−1)iL

(
(n + i) ln(2)

t
, ξ(t)

)
.
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Gaver also proved the asymptotic expansion

In(t) ∼ ξ(t) + α1

n
+ α2

n2
+ · · ·

and used extrapolation to the limit to speed up the convergence.
Nevertheless, the most useful extrapolation formula has been derived by Stehfest (1970) leading to the formula

9x,y (u) = 9N
x,y (u) + (−1)N/2+1 α(

N
2

)
!

+ o

(
1(
N
2

)
!

)
(3.1)

and the approximation of orderN is

9x,y (u) ' 9N
x,y (u) = z

N∑
n=1

kN
n L(nz, 9x,y(u)), (3.2)

where

z = ln (2)

u

and

kN
n = (−1)n+N2

Min(n,N/2)∑
i=[(n+1)/2]

i(N/2)(2i)!(
N
2 − i

)
!i ! (i − 1)! (n − i)! (2i − n)!

. (3.3)

Stehfest (1970) also proved that the magnitude of the error is of order((N/2)!)−1.
We should also mention, citing Davies and Martin (1979), that Gaver–Stehfest method is a particular example of

a general class of methods proposed by Zakian (1969).

4. Some interesting features about Gaver–Stehfest method

To our knowledge, the only use of Gaver–Stehfest method in actuarial literature is due to Dalpatadu et al. (1996)
in the context of approximating the distribution of the total loss of a portfolio. The conclusion reached by these
authors is that inverting Laplace transforms via GS method is shown to be a better approach than the recursive
methods based on Panjer’s recursive algorithm, extensively used in actuarial literature.

Let us state these remarks about the Gaver–Stehfest method:
• The use of Gaver–Stehfest is guaranteed to lead to very good approximations when the unknown function

9x,y (u) is smooth in the sense that it has no discontinuities, salient points, sharp peaks or rapid oscillations,
avoiding the study of complex analysis features as poles or abscissa of convergence or asymptotic behavior of
the Laplace transform function, see Davies and Martin (1979). Multivariate ruin probability functions9x,y (u)

can be considered as smooth in the terms mentioned above.
• Computational execution times are highly reliable in the case of Gaver–Stehfest method for two reasons. First,

compared with other methods of inversion and for the sameN (for a complete information see Davies and Martin
(1979), Table VI) we can say that GS method is about 50 times faster than methods based on Laguerre polynomials,
206 times than methods based on Chebyshev polynomials or 628 times than methods based on Fourier series
approach. Second, the last statement is emphasized by the fact thatN should not be very large in order to get a
very acceptable good accuracy (as we will show later in the numerical illustrations). As a result, methods based
on Chebyshev polynomials and Fourier transforms with accelerating convergence cannot be recommended due
to their significant disadvantage in terms of computational efficiency.
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• Methods based on the use of Laguerre polynomials by Piessens and Branders (1971) and Weeks (1966), together
with those that use Chebyshev polynomials and Fourier transforms, are the only ones that could be considered,
in general terms, more accurate than GS method in the comparative study by (Davies and Martin, 1979). Never-
theless, we should be cautious when considering the conclusions made by these authors. They only considered
approximations for small values of the argument of the original function (actually 15 was the largest figure
considered).
When approximating9x,y (u) using Laguerre (or other families of orthogonal polynomials based methods)

with large values ofu, we found unstable behaviors or very slow convergence. It is important to state that when
approximating ruin probabilities using heavy-tailed distributions of the claim size the use of large values ofu is
significant. Seal (1975) already claimed that Laguerre series cannot be recommended as a practical method of
numerical inversion of Laplace transform.

5. Practical use of the Gaver–Stehfest method

From Eq. (3.2)

9x,y (u) ' 9N
x,y (u) = z

N∑
n=1

kN
n L(n, z, 9x,y(u)); z = ln(2)

u

it is easy to deduce that the weights used in the GS method,kN
n obtained using (3.3), are independent of the initial

reserves or ruin function considered and we just need to evaluate the Laplace transform of the function considered
N times.

The main disadvantage of GS method is the increasing magnitude of the weights of the approximations,kN
n , n =

1,2, . . . , N , as Nincreases, as we show in Table 1. However, we should also mention that this is not at all a
comparative handicap compared with the methods based on orthogonal polynomials because the same problem
arises. An exception could be considered the method by Piessens and Branders (1971), but although the weights
remain small in magnitude, the values of polynomials become also very large for increasing values of the initial
reservesu.

Classical programming languages such as Pascal or Fortran can usually work with about 20 significant digits (see
for example Turbo Pascal Programmer’s guide). As a consequence, if we want to achieve a degree of accuracy of

Table 1

N Max
{
kN
n

}N
n=1

2 2
4 26
6 810
8 18 730

10 375911.6
12 0.7 × 107

14 0.1 × 109

16 0.3 × 1010

18 0.7 × 1011

20 0.1 × 1013

22 0.3 × 1014

24 0.7 × 1015

26 0.1 × 1017

28 0.3 × 1018

30 0.8 × 1019
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about 8 or 9 significant digits, the maximumN that we could consider when approximating ought to be around 18 or
20 so that we can perform the operations involved in expression (3.2) with enough significant digits that guarantee
that rounding off errors will not make the algorithm unstable due to substraction of nearly equal numbers.

Nevertheless, most commercial FORTRAN 77 or 90 PC implementations offer as an extension the typeReal*16
allowing operations with around 30 significant digits. Moreover, arbitrary precision subroutines are a common and
extensively used item in computer libraries such as GNU MP, see Bailey (1993, 1995). One can easily obtain (and
implement) these practical and fast subroutines with just a free downloading at http://www.swox.com/gmp. Similar
features can be also found forC++ interfaces. In this context of arbitrary precision, the advantages of using GS
compared to other numerical techniques are fully displayed, mainly due to the convergence rate of the method
((N/2)!)−1.

For those actuaries who are not familiar with computer programming and not very much concerned with execution
times, the method recommended in this work to approximate multivariate ultimate ruin probabilities can be very
easily implemented using mathematical assistants such as Maple V or Mathematica or MathLab. These programs,
known and used by any actuarial student, allow also either arbitrary or very high (over 100 s.d.) precision.

6. Numerical examples

This approach was tested for Pareto and Log-Normal claim sizes distributions. Expressions (2.6)–(2.9) were used
in the intermediate steps. Evaluation of integrals involving Pareto distribution were made using the exponential
integral (see for example Gradshteyn and Ryzhik (1994), formula 3.353.2). Log-normal integrals expressions were
approximated numerically using Clenshaw–Curtis quadrature routine.

Initially only 20 significant digits were considered in the calculations and, in order not to make the algorithm
unstable, as mentioned in the former section,N = 18. Results are displayed in Tables 2 and 4 . These tables
include approximations of the multivariate ruin probability9x,y(u) rounded to the 5th decimal place. Beside these

figures, in brackets, the magnitude expressed in negative powers of 10 of the difference
∣∣∣920

x,y (u) − 918
x,y (u)

∣∣∣; in

other words, the number of precision digits, expressed in absolute terms, obtained with approximation918
x,y (u).

Calculations were performed using Maple V, release 4 showing a precision of 8–9 digits.
Later, for Pareto claim sizes, the number of significant digits involved in the calculations were raised up to 50

and subsequently the approximations contemplated were finer,N=40. As shown in Table 3, approximations then
showed 15–19 precision digits.

Table 2

Pareto claim sizeB(x) = 1 −
(

λ

λ + x

)λ+1

x > 0

λ = 1 θ = 0.1 N = 18 Digits = 20

x = ∞ u = 20 u = 100 u = 200 u = 500

y = 1 0.07999(9) 0.01295(9) 0.00360(9) 0.00047(9)
y = 5 0.21135(9) 0.03595(9) 0.01014(8) 0.00135(9)
y = 10 0.28218(9) 0.05070(9) 0.01456(8) 0.00197(9)
y = ∞ 0.49814(9) 0.16486(9) 0.07632(8) 0.02513(8)

x = 10 u = 10 u = 50 u = 100 u = 500

y = 1 0.11406(8) 0.02852(9) 0.01067(9) 0.00037(9)
y = 5 0.27189(9) 0.06952(9) 0.02588(9) 0.00088(9)
y = 10 0.33478(8) 0.08829(9) 0.03287(9) 0.00110(8)
y = ∞ 0.41336(9) 0.12717(9) 0.05070(9) 0.00197(9)
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Table3

Pareto claim sizeB(x) = 1 −
(

λ

λ + x

)λ+1

, x > 0

λ = 1 θ = 0.1 N = 40 Digits = 50

Magnitude order of
∣∣∣940

x,y(u) − 938
x,y(u)

∣∣∣ in negative powers of 10

x = ∞ u = 20 u = 100 u = 200 u = 500

y = 1 16 17 16 16
y = 5 16 16 16 16
y = 10 17 15 15 16
y = ∞ 17 19 17 15

x = 10 u = 10 u = 50 u = 100 u = 500

y = 1 15 16 16 16
y = 5 16 16 15 16
y = 10 16 15 15 16
y = ∞ 16 16 15 16

Table 4

Log-normal claims sizeB(x) = 1 − 8

(
ln(x) − µ

σ

)
, x > 0

µ = −1.62 σ = 1.8 θ = 0.1 N = 18 Digits = 20

x = ∞ u = 20 u = 100 u = 200

y = 1 0.06067(9) 0.02008(8) 0.00891(9)
y = 5 0.19888(9) 0.06808(9) 0.03037(9)
y = 10 0.29586(8) 0.10512(9) 0.04723(9)
y = ∞ 0.65669(9) 0.34395(9) 0.18812(9)

x = 30 u = 2 u = 10 u = 20

y = 1 0.15640(9) 0.07988(9) 0.05604(9)
y = 5 0.41392(9) 0.24630(9) 0.17751(9)
y = 10 0.53423(9) 0.34741(9) 0.25694(8)
y = ∞ 0.72652(9) 0.56780(9) 0.46429(9)

Results can be compared with those in Dickson and Waters (1992), Ramsay (1992a,b) and Ramsay and Usábel
(1997) where appropriate.

7. Concluding comments

The two most important features of the method presented are that the weights of formula (3.2),kN
n , n =

1,2, . . . , N are independent of the claim size distribution or initial reserves considered and that the Laplace
transform of the multivariate ultimate ruin probability ought to be evaluated only in the real axis.

The comparative advantage of GS algorithm with respect recursive methods, or other Laplace inversion techniques,
is the outstanding reduction of computation time, specially when dealing with heavy-tailed claim size distibutions
and large initial reserves. As it is shown in the numerical illustrations, only 18 evaluations of the Laplace transform of
the multivariate ruin probability function are necessary to attain 8–9 absolute precision digits performing calculations
with 20 significant digits (see Tables 2 and 4).
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The weights just mentioned above are also the cause of the main weakness of this approach: the magnitude ofkN
n

increases approximately linearly in powers of 10 with increasing values ofN, as shown in Table 1, becoming unstable
when greater values ofN are taken into account and the arithmetical precision is not increased at the same time.

However, the use of 30 or more significant digits in classical programs such as FORTRAN, using eitherReal*16
type or arbitrary precision subroutines, is a common feature in programming (see Section 5). Also computer math-
ematical assistants based on symbolic algebra and extensively used in actuarial teaching (Maple V or Mathematica
or MathLab) allow almost arbitrary precision. In this context, a broader range of values of parameterN can be used,
obtaining very fast approximations with a degree of accuracy only attained with extremely huge computation times
by recursive methods (see Table 3). Using Gaver–Stehfest Laplace transform inversion technique, the fact of per-
forming calculations with more significant digits is clearly rewarded generously with a very fast rate of convergence
O((N/2)!)−1.

We can finally conclude that this technique used in approximating multivariate ultimate ruin probabilities, for
the reasons stated above, can be considered very efficient in terms of computation times, simple, robust and of fast
convergence.
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