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Abstract

We present a general result on the convergence to an equilibrium of a class of dynamic adjustment procedures —
which includes gradient systems and best reply dynamics as special cases — when there are two players and strategy
sets are one dimensional. We also show that there are no restrictions on the form of the gradient or best reply
dynamics, even under strong restrictions on the functional form of both demand and costs. This implies that we can
construct examples with three players where the above dynamical procedures yield chaotic behavior.
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1. Introduction

The origins of the theory of dynamic stability in imperfectly competitive economies can be
traced to Cournot (1897). He defined what in modern terms is called the best reply dynamics
and conjectured that, in the case of oligopoly with homogeneous goods, an equilibrium would
be reached asymptotically. The modern literature has pursued two different approaches to the
study of best reply dynamics, based on discrete time and on continuous time, respectively.
Contributions in the former framework are Friedman (1977), Moulin (1982), Lippman et al.
(1987), Vives (1990) and Milgrom and Roberts (1990). Their results imply that under some
(strong) assumptions, best reply dynamics (and mild variations of it) converge asymptotically
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to an equilibrium. A fulfilled expectations variation of best reply dynamics, initially proposed
by Maskin and Tirole (1987), has been studied by Dana and Montrucchio (1986, 1987) for the
case of two players. They found that in general the possibility of chaotic behavior cannot be
precluded. In the continuous time framework and assuming differential adjustments, Hahn
(1962) and Okuguchi (1964) showed that with a homogeneous produce, strategic substitution
(i.e. the best reply function of any player is decreasing in the strategy of competitors) and an
additional condition on the slopes of the inverse demand and marginal cost functions, the best
reply dynamics converges asymptotically to the (unique) Cournot equilibrium. In a general
equilibrium model, Negishi (1961) proved convergence of a related dynamic system (see also
Hirsch and Smale, 1974, pp. 265-273; Gaunersdorfer and Hofbauer, 1994). One advantage of
the continuous approach over the discrete time approach is that any possible instabilities of
the system are not linked to overshooting phenomena, a type of instability that is important
but which may be better considered separately.

We attempt to answer the following question. What can be said about stability in continuous
time that does not depend on special assumptions (beyond that strategy sets are one
dimensional) about the underlying economy? In fact, we study this matter for gradient
dynamics (see Arrow et al., 1958) which, for the theory that concerns us, can be shown to
include the results on best reply dynamics as a special case. We first tackle the case of two
players. By adapting an argument of Keenan and Rader (1985), based on Liouville’s theorem,’
we are able to show that, if the strategy space is one dimensional, then convergence of a class
of dynamic processes that includes gradient and best reply dynamics systems obtains with
considerable generality (Proposition 1). We then move to a deeper investigation into the
properties of the functional form of gradient and best reply dynamics in oligopoly models. Our
next result shows that this functional form is essentially arbitrary, even under strong a priori
restrictions on the shape of the demand and cost functions. Specifically, assuming that firms are
price-setters we show that any list of n arbitrary functions can be rationalized as gradient
dynamics of » firms with zero costs (or, in general, identical and constant marginal costs) and
a system of demand functions with a negative dominant diagonal Jacobian (Proposition 2). An
identical result can be proved for the case of best reply dynamics (Proposition 3). Similar
results hold when firms are quantity-setters. Propositions 2 and 3 are reminiscent of the results
obtained by Sonnenschein (1972), Mantel (1974), and Debreu (1974) on the characterization
of excess demand functions in the perfectly competitive case (or of Boldrin and Montrucchio,
1986, for equilibrium dynamics decision rules). However, we should emphasize that our
results (like those of Boldrin and Montrucchio) are obtained under restrictions on the class of
allowable demand and cost functions which, for the perfectly competitive case, would imply
that the equilibrium is unique and globally tatonement stable. A corollary of these results is
that we can find an economy with three identical firms with constant marginal costs and a
system of demand functions with a negative dominant diagonal Jacobian such that its gradient
(or best reply) dynamics yield chaotic behavior.

' This mathematical result has also been used in evolutionary game theory, see, for example, Hofbauer and
Sigmund (1988).



2. The model

There are n players. Each player i has a one-dimensional strategy set S, = [a,, b,] CR , with

a typical element s;. Let S = X[_, S,. As is customary, for any / we also express the strategies
profiles s€ S as s = (s;,5_;).

In this paper we are concerned with autonomous dynamical systems of the following form:
§;=G(s), i=1,2,...,n, (1)

or, in a more compact notation:
§=G(s) . (2)

An equilibrium of (1) is an s* € S such that G(s*) = 0. let DG(s) be the Jacobian of G(-),
evaluated at s, and Tr(DG(s)) the trace of DG(s), i.e. the sum of all the diagonal elements.
We assume the following properties:

(D) G,(*) is a continuously differentiable function, for every i.
(N) Tr(DG(s)) is negative for all s € S.
(B) For every s €S and i we have: if s, =a,, then G,(s) =0; if 5, = b,, then G,(s) <0.

Two natural examples (for a suitable choice of a, and b,) the satisfy properties (D), (N) and
(B) are:

(1) Best reply dynamics: s, = w,(BRF,(s_;) —s,), m; >0, for every i, where BRF,(-) stands
for the (smooth) best reply function of player i and g, is the speed of adjustment of strategy i.

(2) Gradient dynamics: s, = w,(dus)/ds;), w; >0, for every i, where u,(s) is the utility
payoff of player i, assumed differentiably strictly concave in its own strategy, s,. Notice that
best reply dynamics is observationally indistinguishable from the gradient dynamics generated
by the ‘fictitious’ utility function &,(s) = s,BRF,(s_,) —s./2 since di;(s)/ds, = BRF(s_,) —s,.

Finally, assume the following regularity condition:

(T) The determinant of DG(s), denoted by |DG(s)|, is non-vanishing at any equilibrium
s*.

Let ¢,(5) be the position of system (1) at time ¢ as a function of s, an initial point in §. We
call ¢(5) a trajectory. We are now ready to prove our first result:

*The hypothesis that strategy sets are one dimensional when combined with an assumption that best replies are
unique is akin to a requirement of single peakedness in payoff functions (see Krishna, 1992) for the use of single
peakedness in the analysis of adjustment dynamics in games.



Proposition 1. If n =2, then, under the hypotheses made, any trajectory ¢,(s) converges to
some equilibrium.

Proof. To keep things simple we take the boundary condition to hold strictly. Let Vol E
denote the volume (area in our case) of any region E C S. By Liouville’s theorem (see Arnold,
1973, p. 198; a nice and self-contained proof of the Liouville theorem can be found in Keenan
and Rader, 1985, pp. 467-468) the fact that Tr(DG(s)) <0 implies that G contracts the
volume, i.e. for any region E C S with Vol E >0 and for any >0 we have that Vol(¢,(E)) <
Vol E.

Now suppose that from some initial point § the trajectory ¢,(§) does not converge to an
equilibrium. The situation must then be as in Fig. 1. That is, the trajectory spirals around a
limit set which is formed by a finite number of M (possible M = 0) equilibria, s, . . . , s,,, with
§, = 5§y, and of trajectories, w,, . . ., @y, such that u, connects s, with s, , (if M =0, then the
limit set is a limit cycle; see Lefschetz, 1946, p. 172). Under the above conditions the limit set
contains a (topological) circle (it may contain more) for which its interior E is invariant and
has Vol E>0 (see Fig. 1). Hence, for t>0, Vol(¢,(E)) =Vol E, which contradicts the
hypothesis. 0O

Our assumptions are compatible with multiple equilibria. Notice, however, that (N)
imposes a restriction on the nature of these equilibria: if G(s) =0, then s is either a sink (if
|IDG(s)| >0) or a saddle (if [DG(s)| <0), but never a source. Thus Fig. 2 offers a simple
representation of the dynamics generated by (1).

Consider for a moment the gradient dynamics. If we were dealing with a zero-sum game,

Si b, (3)

Fig. 1.



Fig. 2.

that is, if u,(s) + u,(s) = 0 for all s €S, then it is known that under our hypothesis (including,
among these, the concavity of payoff functions with respect to own strategies) there is a single
equilibrium, which is a globally convergent saddle (see Arrow et al., 1958). Thus, for the
special case of one-dimensional strategies, Proposition 1 can be viewed as a generalization of
the convergence part of this classical result.

Next we present a general method that allows us to find the economy that generates a given
dynamical system. In fact, to show that our results do not merely reproduce those of
Sonnenschein (1972), Mantel (1972) and Debreu (1974) on the characterization of excess
demand functions, we construct such an economy from a very restricted set of economies.

Definition. The set of nice economies (NE in what follows) is composed of economies
displaying the following characteristics:

(1) There are n firms that produce a differentiated product each from a unique, non-
produced input (e.g. labor).

(2) Firms have identical and constant marginal costs.

(3) The system of demand functions has a negative dominant diagonal, i.e. if X,(p) is the
demand function of good i, for all p >>0 we have that (8X,(p)/dp,) <0 and |(8X,(p)/dp,)| >
Lo loXx(p)lop)l,i=1,...,n

We remark that any economy that belongs to the set NE has a unique and globally stable
Walrasian equilibrium (see, for example, Arrow and Hahn, 1971). However, when oligopolis-
tic competition is the relevant solution concept, the situation is dramatically different, as is
made clear by the following proposition.

Proposition 2. Let p,=G,(pys-- - Pis---»Pn), With p,€Ja, b;] (@,>0),i=1,....n, bea
given differentiable dynamical system with dG,/dp; <O for all i. Then there exists an economy
from the set NE which generates the above equations as a gradient system.

Proof. We assume costs to be zero (a similar construction to the one below applies if costs

were required to be positive). Let us consider G{(p,, ..., p;,- ., p,)- For a given p_; this
function is integrable in p;. Let F(p,, ..., Py, P,)= j'f,_" G(s, p_;) ds. Then the demand
function for firm i is X, = (Fp,---» Pi»- - - » Pn) T b)/p;, where b>0. Notice that taking b

large enough, demand is positive for every price and the dominant diagonal property holds
since ¥, 9X,(p)/dp, is bounded and independent of b, but (3.X( p)/ap;) depends monotoni-
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cally on b and is as large, as we wish. Finally, profits for firm i are = =X,p, =
F(p,,....pi....p,) +b. Clearly, dm(p)/op,=G{p,.....pir...,p,). O

The next proposition considers best reply dynamics.

Proposition 3. Let p,=f(p_,)—p;, with p,€la,,b;] (a,>0), i=1,...,n, be a given dif-
ferentiable dynamical system. Then there exists an economy from the set NE which generates the
above equations as best reply dynamics.

Proof. Using the construction given in the proof of Proposition 2 for a system of demand
functions of the form X;=f(p_,) — p,/2 + b/p, produces the desired result. O

Propositions 2 and 3 can be proved for the case of quantity-setting firms with straight-
forward modifications. An implication of Propositions 2 and 3 is that in the case of three firms
we can find gradient (or best reply) dynamical systems such that they yield chaotic behavior
(e.g. Lorenz’s equations; see Guckenheimer and Holmes, 1983, p. 93ff.). Details can be
obtained from the authors on request.
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