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INTRODUCTION

1.1 MOTIVATION

Real crystal lattices are not perfect. They have defects such as
dislocations, vacancies, and cracks that control the mechanical
properties of materials, including crystal plasticity, creep, fatigue,
ductility, brittleness, hardness and friction. Crystal growth, ra-
diation damage of materials, and their optical and electronic
properties are also strongly affected by defects, particularly dislo-
cations.

Why is it so important to understand the behavior of defects
in crystal lattices? An accurate description of defect dynamics
may help to optimize the design and manufacture of important
nanoelectronic devices such as those based on self-assembled
quantum dots [2, 3] or superlattices [4]. Moreover, assessing how
and under which conditions dislocations nucleate may become an
essential issue, since they act as scattering centers, degrading
charge transport properties in opto-electronic devices. But at the
present time, even the homogeneous nucleation of dislocations is
not completely understood. While there is a widespread feeling
that it is related to some bifurcation occurring once a dislocation-
free state becomes unstable, no precise analysis and calculation of
this bifurcation has been reported [5, 6].

Think of another example: to build up a superlattice, heteroepi-
taxial structures of alternate slices of semiconductors having
different lattice spacings are grown. But layers with quite differ-
ent lattice parameters do not fit seamlessly! This typically results in
the formation of misfit dislocations at the interfaces that separate
different materials. Therefore, it is crucial to compute threshold
values for the formation of dislocations in many important ex-
periments: the critical shear stress for homogeneous nucleation
of dislocations, the critical thickness of a thin film (and also the
critical discrepancy between their lattice constants -the critical
misfit-) in heteroepitaxial growth for interfacial misfit dislocations



formation, the critical stresses leading to dislocation nucleation
from cracks or from nanoindentor tips, and so on.

The goal of this thesis is to provide some insight in the afore-
mentioned issues. But, tackling these problems is not simple!
Dislocations may affect phenomena such as the strength of ma-
terials occurring over many different scales of length and time
and the properties at each scale are influenced by the others. At
the present time there are different attempts to bridge the gaps
between disparate scales by using detailed microscopic calcula-
tions such as molecular dynamics in small regions near defect
cores and linear elasticity in the far field [7, 8, 9]. In this thesis,
we have chosen to model dislocation dynamics at the nanoscale
by versions of discrete elasticity that become the proper linear
anisotropic elasticity of cubic crystals in the far field and allow
motion of dislocations in a natural manner. One important ad-
vantage of these models is that they are amenable to analysis
using bifurcation theory and numerical continuation methods.
We have used these methods to study very simple scalar versions
of discrete elasticity models for two-dimensional edge disloca-
tions. Within these limitations, we have analyzed homogeneous
nucleation of dislocations in sheared materials, misfit disloca-
tions, nanoindentations and cracks. The simplicity of the models
allows us to find a more precise picture of these phenomena that
may be useful in the nanoscale. Whether these models can be
used as part of multiscale/multiphysics calculations at larger
scales, remains as a challenging task for future work.

1.2 WHAT IS A DISLOCATION?

An example of an edge dislocation in a square lattice is shown
in Fig. 1. The atoms shown in the plot belong to the z = 0 plane,
and the system may be easily extended to its corresponding three-
dimensional simple cubic lattice by repetition of the represented
atoms in subsequent z = k planes, k being any integer. What
does the distortion shown in Fig. 1 consist of? A simple way to
construct this dislocation is to insert an extra half-plane of atoms
(the extra-half column shown in dashed red line) in the crystal.
The edge of this half-plane (i.e., the z axis) is the dislocation line of
this edge dislocation, and it is usually represented in the plots by
the symbol T, which is oriented along to the extra-half column
direction (note that in Fig. 1 it is inverted, so we have the symbol
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Figure 1. Burgers circuit encircling an edge dislocation with Burgers
vector b = (1,0,0).

1 in red at the end of the dashed line). Near the dislocation line,
the lattice is greatly distorted but, as we move away from this
core region, the planes of atoms fit almost regularly. The Burgers
vector b measures the magnitude of the distortion caused by the
dislocation. The simplest way to compute it for edge dislocations,
is to count the number of extra half planes that have been added.
In Fig. 1, just one half plane has been added, so b = (+1,0,0),
where the plus sign means that we have chosen the addition of
upper half-planes to count as positive Burgers vectors.

It is useful to define a dislocation line unit vector, ¢. In Fig.
1, & = (0,0,1) is perpendicular to the represented xy plane of
atoms, lying along the z direction. There are different types of
dislocations which may be classified according to the relative
orientation of b and ¢:

* b1¢ for edge dislocations (Fig. 1),
* b || ¢ for screw dislocations (Fig. 7),

¢ any other relative orientations of b and ¢ corresponds to
mixed dislocations.

A way to compute the Burgers vector of any type of dislocation
is to form the so-called Burgers circuit of lattice points around the
dislocation line (see Fig. 1). Let us firstly consider the undistorted
lattice, in which a closed circuit is chosen comprising a sequence



i = 1,..,N of vectors Ax; whose sum is zero. These vectors
connect neighboring atoms and (in the perfect lattice case) are
lattice vectors, so that Y, Ax; = 0. Let us then consider the
distorted lattice and follow again the sequence i = 1,.., N of
vectors Ax; that connect neighboring atoms, trying to complete
the circuit followed in the previous case. If the Burgers circuit
encloses any dislocation, the vectors Ax; are not perfect lattice
vectors any more, and the resulting gap b which is missing to
complete a closed circuit is defined to be the total Burgers vector
of the dislocations which are present within the region delimited
by the chosen circuit. Therefore,

Y Axj+b=0. (1.1)
i=1,.,N

When a Burgers circuit encloses several dislocations, the resulting
Burgers vector is the sum of those corresponding to each of the
enclosed dislocations. In Fig. 1, we have b = (1,0, 0), as explained
before.

To define the Burgers vector more precisely, we follow Ref. [16].
Let the dislocation line point outside the page (the positive z axis)
and let the circuit be oriented counter-clockwise, following the
right-hand rule [14]. Let 7y be an arbitrary lattice point which
we take as the initial point of the circuit, and let v;,i =1,...,N
be vectors of length equal to one lattice period comprising the
Burgers circuit in the undistorted lattice, such that Ef\; v; =
0. Each v; € {(1,0),(—1,0),(0,1),(0,—1)}. The points of the
Burgers circuit in the distorted lattice are such that r; is the
lattice point closest to r;_1 4+ v;. A circuit that does not enclose
a dislocation line ends at the initial point, ry = rp. A circuit
containing a dislocation line is not closed, and we define the
Burgers vector as [8]

N
b=ry—ro=Y Au, Auj=ri— (ri_1+0). (1.2)
i=1

In our example, b = (1,0,0), one period in the positive x direc-
tion.

The Burgers vector is the same for any deformation of the
Burgers circuit as long as a dislocation line is not crossed during



the deformation process. If n dislocation lines merge at a lattice
point and we take their directions to flow out of the common
point, then conservation of the Burgers vector implies by 4 ... +
b, = 0.

At low temperature, the motion of an edge dislocation such as
that shown in Fig. 1 takes place along the glide plane, this plane
is formed by the dislocation line and the Burger vector (the xz
plane in Fig. 1).

There are many interesting introductory reviews and text-
books on dislocations. For having a first glance, the webpage
of Foell [10] may be of interest. A text-book introducing basic im-
portant concepts in a clear manner is the one written by Hull and
Bacon [11]. Classical references are the book written by Nabarro
[12] and the one by Landau and Lifshitz [13]. The text written by
Hirth and Lothe [14] might be one of the most complete reference
books on dislocations.

1.3 DIFFERENT DISLOCATION THEORIES

Since initiated by Volterra in 1905 within a continuum mechanics
description, the theoretical study of dislocations has already been
an active area of research for a whole century. In this section,
existing theories of dislocations are presented following the books
by Bulatov and Cai [8] and by Mura [15], and the paper by Bonilla
and Carpio [16]:

First-principles and atomistic calculations (Sec. 1.3.1).

Continuum mechanics descriptions (Sec. 1.3.2).

Classical theory of eigendistortions (Sec. 1.3.3).

Dislocation-line tracking methods (Sec. 1.3.4).

The Peierls-Nabarro model (Sec. 1.3.5).

Discrete models approaches (Sec. 1.3.6).

The work described in this thesis fits within the last category in
the previous list: discrete models of dislocations are formulated,
analyzed and applied to different situations.



1.3.1  First-principles and atomistic calculations

Describing dislocations requires an accurate description of the
atoms which are present in the crystal lattice and their dynamics.
First-principles calculations such as density functional theory
(DFT) are widely considered as a reference to provide information
or validate other models that work at larger scales.

A more simplified description is provided by molecular dy-
namics (MD), which does not describe what happens inside the
atoms, but only their interactions through an empirical potential
¢, and the electron density, p.(r). The embedded-atom model
(EAM) potential for a system having atoms at positions r; is:

V({rj}) = _Z'¢(|ri_”j|)+zp(pi)r (1.3)
i,j,i<j i
pi = Y pe(|ri—rjl). (1.4)
7

This potential is widely used for metals [8]. It is a sum of two-
body potentials and a so-called glue-potential density term, which
contains an embedding function F that represents the energy
needed to embed the atom i into an environment having electron
density p.(r).

The procedure in MD consists of integrating the Newton equa-
tions of motion for all the atoms in a sample:

m@ __9% (1.5)
T g

Improvements as the Modified EAM (MEAM) [17] (which
includes angular dependence in the density term) and subse-
quent approaches, as well as many algorithmic optimization
techniques, have set MD as a well-established technique for sim-
ulation creation and motion of dislocations, crack propagation,
nanoindentations, and even protein folding. However, MD has
several drawbacks:



¢ Potentials need to be fit to empirical data or first-principles
calculations, which is not always possible to be done accu-
rately.

¢ Great limitations in the time and length scales that may be
described, due to the huge computational cost. Algorithms
to update lists of neighboring atoms, for instance, must be
run at every time-step.

¢ The information provided from the simulations might be
difficult to extract or analyze.

1.3.2 Continuum mechanics

As mentioned, the theoretical study of dislocations was initi-
ated by Volterra in 1905. The continuum mechanics approach
consists of using the Navier equations of linear elasticity with
singular source terms supported on dislocation lines. For a static
dislocation in an isotropic medium, these equations are [14, 13]:

Au + %ZVVdIVM =bx gér, (16)

in which u, b, ¢, and v are the displacement vector from a lattice
site, the Burgers vector, the unit tangent vector to the dislocation
line I and the Poisson ratio, respectively. The displacement vector
has a jump discontinuity of magnitude |b| at a branch cut which,
for the edge dislocation of Fig. 1, is the positive x axis:

%Vu -dx =D, (1.7)

where the integral is over any closed Burgers circuit ¢ encircling
the dislocation line. Note that 1.7 is the continuum version of 1.2.
The circuit orientation determines the sign of b. Then the gradient
of u and the stress have a singularity along the dislocation line:
they are inversely proportional to the distance to the line, 1/7.
This unphysical behavior indicates that modeling a dislocation by
1.6 is a reasonable approximation of the elastic stress and strain
at the far field of a dislocation, but this description breaks down
at the dislocation core, near the origin. Moreover, elasticity gives
no information about the motion of dislocations.



1.3.3 Classical theory of eigendistortions

The theory of eigendistortions explained in Mura’s book [15] is
widely used in plasticity. Instead of adding delta sources to the
Navier equations, dislocations are included considering that the
gradient of the displacement vector (the distortion tensor) is a
sum of elastic and plastic distortions:

aui *
a; Bij + Bij, (1.8)

with no source. The equations of motion are found from the
stress-strain relation 0j; = ¢;jx B

2 du 2 )
pii; — o, <Cijklaxll<> = —aTCj(Cijklﬁkl), (1.9)

where 11 = du/dt. For constant p, the solution of this equation is

aG;;
ui(x,t) = — /cﬂmnﬁ*mn(x’, t' ax] (x —x',t —t)dx'dt, (1.10)
I
. %Gy
pGim  — cz’jklm(x/t) = Oim0(x)(t), (1.11)

where the elastic Green function satisfies the previous equation
for t > 0 in R® and Gy, = 0 if t < 0. Further details are given in
chapter 6 of Ref. [15].

The trouble with the classical theory is that the information on
dislocation density and flux (or dislocation velocity) should be
known in advance. Alternatively, equations for these magnitudes
should be postulated. See for example the Boltzmann-like kinetic
equations of Groma and Bak¢ [18]. Other recent approaches are
the phasefield model [19] and the level set method, which is able
to describe dislocation climb and cross-slip [20].



1.3.4 Dislocation-line tracking methods

A different approach to track the simultaneous evolution of a
large number of dislocations in a continuum is to divide a given
dislocation network into small straight segments (each having its
own Burgers vector) and to consider their energies, forces acting
on them, empirical dislocation velocity depending on the acting
force, and mechanisms of dislocation creation [21, 22, 23, 24, 8].
The resulting theory can be used to numerically simulate and
discuss more complex situations involving billions of dislocation
segments.

1.3.5 The Peierls-Nabarro model

How to eliminate the singularity of the elastic strain at the origin?
Since crystal lattices are discrete systems, the most obvious way
is to consider an atomistic or discrete descriptions (See Secs.
1.3.1 and 1.3.6, respectively). However, there are non-atomistic
models that eliminate the singularity without having to consider
the crystal lattice as a regularization of elasticity. Among them,
the Peierls-Nabarro (PN) is widely used. This model solves the
equations of linear elasticity for a configuration with a straight
dislocation such as that in Fig. 1. Here we consider only this
one-dimensional situation with Burgers vector b directed along
the positive x axis. There is a cut at the positive x axis such that
u(x) = uy(x) —u_(x) is the relative displacement (the disregistry)
across the cut plane. In a Volterra dislocation, u(x) is the step
function bf(x), equal to b if x > 0 and zero otherwise. The
disregistry density is pgis(x) = du/dx = bd(x). In the PN model,
Q4is is a smooth function and the force on the dislocation due to
the elastic stress can be calculated to be the left hand side of the
following equilibrium equation defining the model [8]

B b

p * pgis(x') ., Um . (27;u(x)
270 =) ) x—x dx 5 sin . (1.12)

Here yu and U are the shear modulus and the energy per unit area
of the cut plane, respectively. The right hand side of 1.12 is the
force acting on the atoms as a result of having rigidly displaced
the upper half of the crystal a distance u(x) over the lower half.



This force is a b-periodic function of u and comes from the misfit
potential:

() = 5 [1-cos (34)]. (113)

A v(u(x)) profile may be much more complex than the simple
sine form shown here. An accurate calculation of these energies
may be obtained from ab initio calculations such as DFT. Calcu-
lating y(u(x)) becomes a much more complex task when the
displacement vector x is spanned not only along one dimension
as in the original PN approach, but over the two-dimensions
along which two rigid blocks of a three-dimensional material
may be shifted one with respect to the other. A two-dimensional
-surface, which is also called Generalized Stacking-Fault (GSF)
energy, results.

Peierls presented in 1940 [25] the following simple analytical
solution of Eq. 1.12:

x b B ub?
i) 1= 42U —v)’ (1.14)

in which d can be interpreted as the width of the dislocation
core (actually, his original paper [25] was entitled The Size of a
Dislocation). In Eq. 1.14, the stress field of this dislocation along
the x axis is proportional to x/(x? + d?), and the singularity at
x = 0 has been removed.

With exception of the discrete relative displacement u(x) =
u4(x) —u_(x), the PN approach provides a continuum descrip-
tion, so it does not take into account the discrete nature of the
crystal lattice. It does not describe properly the motion of dislo-
cations and the existence of threshold stresses that are needed to
start moving a dislocation (the so-called Peierls stress). Different
modifications have improved the model, without changing its
hybrid nature, that an atomistic force in the right hand side of
Eq. 1.12 is balanced with the continuum response of the elastic
medium on the left hand side of this equation. The ideas which
are present in the PN approach pave the way to a discrete model
description of dislocations.
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1.3.6  Discrete models

Frenkel and Kontorova (FK) proposed in 1938 the first discrete
approach to describe a model of interconnected harmonic springs
in a periodic potential, which may be created by a fixed substrate.
The displacements u; have the following equations of motion
[26, 12]:

d®u; Um . (2mu;
mﬁ = x(Uip1 — 2u; +uj_q1) — -, sin < 5 l> . (1.15)

Considering a static dislocation, the equations describing the
model are those in Eq. 1.12, where u has been replaced in the
right hand side by u;, i being an integer. The left hand side in
Eq. 1.12 now becomes proportional to the discrete term (141 —
2u; + u;_1). Dislocations are kink solutions of these equations
[12], but the distortion (u;+1 — ;) decays exponentially far from
the dislocation core, not as 1/i as the elastic far field of a true
dislocation does. This unrealistic exponential decay remains in
related models such as the discrete models of crystal growth
by Frank and van der Merwe [27]. Other discrete models such
as the Suzuki model of moving screw dislocations in terms of
sliding chains [28] and the Landau-Kovalev-Kondratiuk model
of interacting atomic chains (IAC) for edge dislocations [29]
change the FK model so as to achieve algebraic decay of the
distortion far from dislocation cores. They are all related to the
FK model of idealized springs on a periodic substrate and are
limited to simplified geometries. Moreover, these models are
related to discretizations of linear elasticity by finite differences. A
more recent discrete mechanics approach, found in Refs. [30, 31],
is related to finite elements discretizations of elasticity. It uses
algebraic topology to formulate discrete models consistent with
empirical potentials.

The IAC model has been used in this thesis. It is simple, yet able
to describe basic phenomena such as depinning of dislocations
at the Peierls stress [32]. The IAC model of edge dislocations
considers displacement vectors with a single non-zero component
(u;j(t),0,0) (in two space dimensions). The equations are [29]:

d?u; ; du; ;
dtzl,] + d;/] = (Wit1 —2u; +uiq)

—A [sin(u;j — ujjy1) +sin(uij—uij1)],  (1.16)
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where, for simplicity, the atomic masses and the interatomic
distances are assumed to be equal to unity. Here 7 is the di-
mensionless friction coefficient, and the dimensionless parameter
A characterizes the amplitude of interaction between atoms of
neighboring chains. The following Hamiltonian corresponds to
Eq. 1.16:

1 (du\> 1
H=3 )3 ( d;]> 5 Y (i — i) +
1,] L]
+A 2 [1 — COS(MZ',]' — Mi,j+1>] . (1.17)

i,j

Linearizing the right hand side of Eq. 1.16, the following contin-
uum limit is obtained for the continuum displacement u(x,y):

o%u ou 9% u  d*u ou
a2t T e A T aa tagre ~ M 19

where the coordinate y has been rescaled as y* = A~!/2y. The
static continuum case satisfies the harmonic equation Au = 0.

More complete models should recover anisotropic linear elas-
ticity far from defect cores and yet allow dislocation glide. A
simple way to achieve this is presented by Carpio and Bonilla in
Ref. [33]: redefine the gradient of the displacement vector in the
strain tensor as a nonlinear periodic function of the correspond-
ing finite differences that restores the translation invariance of
the crystal and allows sliding of atomic chains as a dislocation
moves. Far from defect cores differences become differentials and
linear elasticity is recovered. In Ref. [33], this idea is applied to
simple cubic (SC), body centered cubic (BCC) and face centered
cubic (FCC) crystals with one-atom basis. The resulting equations
describe static and moving-edge and screw dislocations, includ-
ing their cores and profiles, and can be used to study interaction
of dislocations. Extensions of these models to cubic crystals with
two-atom basis and addition of damping and fluctuations can be
found in Chapter 2 of this thesis.

1.4 RESULTS OBTAINED IN THIS THESIS

Chapter 2 presents the formulation of our models:

12



¢ We formulate the models given in Ref. [33], and generalize
them adding dissipation and fluctuation effects.

* We propose new models for FCC crystals having a two-
atoms basis, such as Si or GaAs.

e We illustrate the case of static dislocations in a GaAs lattice,
both for a 60° dislocation and a pure screw one.

The work presented in chapter 2 has been published in Refs.
[34, 35, 36]

Chapter 3 contains the central results of this thesis. It consid-
ers homogeneous nucleation of dislocations in sheared, initially
dislocation-free, crystals. This is an important problem retained
to be crucial in interpreting experiments related to incipient plas-
ticity at the nanoscale. An important tool we use is bifurcation
theory from the dislocation-free stationary state. Stationary solu-
tions whose atom profile displays dislocations issue forth from
this state, typically as subcritical bifurcations. For overdamped dy-
namics, several of these solutions may be simultaneously stable,
and ramping the applied shear stress with different characteristic
times we may attain different multistable solutions at the same
final stress. For undamped dynamics, stable solutions are not
asymptotically stable. Results from this chapter will appear in
forthcoming publications [37, 38].

Chapters 4 and 5 contain applications of simple discrete mod-
els to understant misfit dislocations, generation of dislocation
in crack tips and in nanoindentations. In chapter 4, the InAs/-
GaAs (110) heteroepitaxy is modeled using 2D discrete elasticity
and an algorithm to relabel atoms finding their actual neighbors,
without having to use periodic functions of displacement dif-
ferences as in chapter 3. Relabeling avoids some limitations of
periodic functions and a fixed computational grid discussed in
Appendix A. Firstly, coherent and dislocated energy densities are
calculated as a function of the thin film thickness. Secondly, the
critical thickness for the presence of interfacial misfit dislocations
is calculated, in good agreement with the experimental value.
Finally, the critical misfit is studied with a simplified scalar elas-
ticity model in a region close to the interface, showing that the
system becomes linearly unstable for this threshold value. The
work in chapter 4 will appear in a forthcoming publication [39].

In chapter 5, possible applications to model dislocation nucle-
ation in crack formation and nanoindentation experiments are

13



investigated. We show that simple scalar two dimensional models
reproduce an elementary ductile behavior around crack tips and
basic dislocation nucleation mechanisms in simple indentation
tests.

Chapter 6 contains the conclusions of this thesis. Appendix
A is concerned with the periodic functions of the displacement
differences: their usefulness is illustrated by a simple example
and their definitions are provided, as well as a discussion on the
different problems in which it might be convenient either using
them or a relabeling algorithm. Appendix B presents additional
results on homogeneous nucleation of dislocations. Appendix C
is devoted to technical matters related to numerical continuation
methods. Appendix D contains a summary of the thesis written
in Spanish.
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FORMULATION OF DISCRETE MODELS FOR
DISLOCATION DYNAMICS IN CRYSTAL
LATTICES

2.1 OUTLINE

Discrete models of dislocations in cubic crystal lattices having
one or two atoms per unit cell are presented in this chapter.
These models have the standard linear anisotropic elasticity as
their continuum limit and their main ingredients are the elastic
stiffness constants of the material and a dimensionless periodic
function that restores the translation invariance of the crystal and
influences the dislocation size. For these models, conservative and
damped equations of motion are proposed. In the latter case, the
entropy production and thermodynamic forces are calculated and
fluctuation terms obeying the fluctuation-dissipation theorem are
added. Numerical simulations illustrate static perfect screw and
60° dislocations for GaAs and Si. The ideas contained in App. A
might be helpful to understand this chapter.

2.2 INTRODUCTION

Discrete model of dislocations and their motion in cubic crystals
with a one atom basis have been previously proposed [33]. In
this chapter, we present an extension of this previous theory to
treat crystals with two-atom basis in their primitive cells (such as
the diamond and zinc-blende structures of silicon and gallium
arsenide, respectively). Moreover, we explain how to include
dissipation in the dynamics of the model and how to consider
the effect of fluctuations by using the ideas of fluctuating hy-
drodynamics [40, 41, 42]. Our model covers length scales in the
nanometer range. In principle, to make contact with existing
mesoscopic theories [43, 44, 45], one should define a dislocation
density tensor and coarse grain over length scales up to hundreds
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of nanometers. This is outside the scope of the present work.

The main ingredients entering our discrete model are the elastic
stiffness constants of the material and a dimensionless periodic
function that restores the translation invariance of the crystal and
influences the dislocation size. To be precise, consider a simple
cubic symmetry with one atom per lattice point. Firstly, we dis-
cretize space along the primitive vectors defining the unit cell
of the crystal x = (x,y,z) = (I, m,n)a, in which a is the length
of the primitive cubic cell, and I, m and n are integer numbers.
Secondly, we replace the gradient of the displacement vector
ii(x,y,z,t) = au;(l,m,n;t) (u;(l,m,n;t) is a nondimensional vec-
tor) in the strain energy density by an appropriate periodic func-
tion of the discrete gradient, g(D]-Jrui): We shall define the discrete
distortion tensor as

v} = g(Df uy), (2.1)
D u;i(L,m,n;t) = £ [w;(1 £1,m,n;t) —u;(1,m,n; t)], (2.2)

etc., where g(x) is a periodic function of period one satisfying
g(x) ~ x as x — 0. The strain energy density for the discrete
model is obtained by substituting the strain tensor in the usual
strain energy density:

1
W = Scijeijex, (2:3)
Cn—-C
Cijkt = C12 650k + % (ikdj1 + 0udjk)
5y + 1l
H (ljzl] — 61i61j61k011 — 62i6262k 021 (2.4)
—53i53j53k531) , (2.5)
H =2Cy +Cpp — Cpy, (2.6)
1. o 8(Dfu) +g(Difuy)
eij = 5 ( P 4wy = — o (27)

(sum over repeated indices is assumed). Here A = Cip, u = (Cq1 —
C12)/2 are the usual Lamé coefficients if H = 0 and therefore the
crystal is isotropic. Summing over all lattice sites, we obtain the
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potential energy of the crystal:

V({u;}) = a® Y. W(l,m,n;t), (2.8)

I,m,n

in which we have considered the strain energy deensity to be a
function of the point W(u) = W(l,m,n;t), (I, m,n) = (x,y,z)/a.
Next, we find the equations of motion with or without dissipation
by the usual methods of classical mechanics. For conservative
dynamics:

4 gy L 9V({ur})
pa”ii;(I,m,n;t) = 2 Fu () (2.9)
or, equivalently (see Section 2.3)[33],
pa*ii; = ) D; g 8 (D ui) (D uy)], (2.10)

ikl

Here ii; = 9%u;/9t* and the displacement vector is dimensionless,
so that both sides of Eq. (2.10) have units of force per unit area.
Let us now restore dimensional units to Equation (2.10), so that
ij(x,y,z) = auj(x/a,y/a,z/a), then let a — 0, use Eq. (2.10)
and that ¢(x) ~ x as x — 0. Then we obtain the usual Cauchy
equations of linear elasticity:

0%il;

I diy
P o2 2 aix] <C1]kl axl> ’ (2-11)

provided the components of the distortion tensor are very small.
Far from the core of a defect, the discrete gradient approaches
the continuous one. Then, provided the slope ¢’(0) is one in
the appropriate units, the spatially discrete equations of motion
become those of the anisotropic elasticity.

The periodic function g(x) ensures that sliding a plane of atoms
an integer number of times the lattice distance a parallel to a
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primitive direction does not change the potential energy of the
crystal. In this chapter, we choose

X if —a<x<ug,

g(x) = (2.12)
— (x_l/z) fa<x<1-—a.

a—1/2

which is periodically extended outside the interval (—«, 1 — «) for
agiven a € (0,1/2) and has period one. The parameter « controls
the asymmetry of ¢(x), which in turn determines the size of the
dislocation core and the Peierls stress needed for a dislocation
to start moving [33]. As « increases, so does the Peierls stress,
whereas both the core size and the mobility of defects decrease.
High values of «a result in very narrow cores and large Peierls
stresses. Note that there are many possible ways to choose g(x).
We define a whole family of functions in App. A.

The rest of this chapter is organized as follows. In Section 2.3,
we review the derivation of the governing equations with con-
servative dynamics for simple cubic symmetry, and give the nu-
merical constructions of screw and edge dislocations. We use the
well known screw and edge dislocations for anisotropic elasticity
to set up the boundary conditions far from the dislocation core
and the initial conditions in overdamped equations of motion.
Numerical solution of these equations yields the static dislocation
configuration of our discrete elasticity model. In Section 2.4 we
include dissipation and fluctuations in the equations of motion.
Dissipation is described by a Rayleigh dissipative function that
is a quadratic functional of the strain rate tensor, which, in turn,
depends on the discrete distorsion tensor. Since the distortion
tensor (containing finite differences of the displacement vector)
and its rate are larger near the core of defects, we expect that
dissipation will be stronger near the core of a moving dislo-
cation than at its far field. Fluctuations are introduced via the
fluctuation-dissipation theorem and they should be stronger near
the core of moving dislocations. An extension of our ideas to
crystals with more complicated symmetries requires formulating
our equations in non-orthogonal coordinates, which is explained
in Section 2.5. The equations of motion for two-atom bases are
obtained in Section 2.6 and the corresponding screw and 60°
perfect dislocations are calculated for diamond and zinc-blende
structures. Section 2.7 contains our conclusions.
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2.3 CONSERVATIVE EQUATIONS OF MOTION FOR A SIMPLE
CUBIC LATTICE

In this Section, we shall derive the equations of motion (2.10) for
the conservative dynamics given by (2.9). Firstly, let us notice that

oW aiw ae]-k
ou;(l,m,n;t) Bejkaui(l,m,n;t)
o 9[g(Dj ux) + g(Dg w))]
2 u;(l,m,n;t)

B(D]*uk)
ou;(l,m,n;t) |’

Oik

+g’(D,ju]-) (2.13)

where W is a function of the point (I, m’,n’), and we have used
the definition of stress tensor:

U--—a—w (2.14)
ij = aeij, 14

and its symmetry, 0;; = 0j;. Now, we have

d

+ I T, _
s m ) (DY u(l',m',n'; t)]

= ik (0141 — 1) OOy, (2.15)

and similar expressions for j = 2,3. By using (2.13) - (2.15), we
obtain

0 o
aui(lrm,n;t) Z W(Zrm,n,t)_

! 1 44/
U'm' n

=—)_D; [0y g' (D} us)]. (2.16)
j
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In this expression, no sum is intended over the subscript i, so
that we have abandoned the Einstein convention and explicitly in-
cluded a sum over j. Therefore Eq. (2.9) for conservative dynamics
becomes

pa’ii; = Y. D; [0ij8' (D} ui)], (2.17)
j

which yields Eq. (2.10). Except for the factor g’ (D]-Jrui), these
equations are discretized versions of the usual ones in elasticity
[13].

2.3.1 Static dislocations of the discrete model

To find the dislocation solutions of our model, we need the sta-
tionary solution of the anisotropic elasticity equations at zero
applied stress corresponding to the same type of dislocation.
In all cases, the procedure to obtain numerically the disloca-
tion from the discrete model is the same. We first solve the sta-
tionary equations of elasticity with appropriate singular source
terms to obtain the dimensional displacement vector @(x,y,z) =
(t1(x,y,2),12(x,y,2),1i3(x,y,z)) of the static dislocation under
zero applied stress. This displacement vector yields the far field of
the corresponding dislocation for the discrete model, which is
the nondimensional displacement vector:

UL, m,n) = @ ((I+d1)a, (m—;—éz)a, (n+53)a). (2.18)

Here 0 < é; < 1,1 =1,2,3, are chosen so that the singularity at
x =y = z = 0 does not coincide with a lattice point. For a sc
crystal, it is often convenient to select the center of a unit cell,
0; = 1/2. We use the nondimensional static displacement vector
U(l,m,n) defined by (2.18) in the boundary and initial conditions
for the discrete equations of motion.

Take for example, a pure screw dislocation along the z axis
with Burgers vector b = (0,0,b) has a displacement vector
@i = (0,0,13(x,y)) with #3(x,y) = b (27) ' tan~!(y/x) [12]. The
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discrete equation for the z component of the nondimensional dis-
placement u3z(l, m;t) is:

pa*iis = Cay{D;[g(D;us) g (D; u3)]
+D; [g(D5 u3) &' (D u3)]}. (2.19)

Numerical solutions of Eq. (2.19) show that a static screw disloca-
tion moves if an applied shear stress surpasses the static Peierls
stress, |F| < Fc, but that a moving dislocation continues doing
so until the applied shear stress falls below a lower threshold F;
(dynamic Peierls stress); see Ref. [32] for a similar situation for
edge dislocations. To find the static solution of this equation cor-
responding to a screw dislocation, we could minimize an energy
functional. However, it is more efficient to solve the following
overdamped equation:

Bz = Cu{Dy[g(D;u3)g (Dius)]
+D; [g(D5 us) §'(Dy u3)]}. (2.20)

The stationary solutions of Egs. (2.19) and (2.20) are the same,
but the solutions of (2.20) relax rapidly to the stationary solu-
tions if we choose appropriately the damping coefficient 8. We
solve Eq. (2.20) with initial condition usz(l,m;0) = Us(l,m) =
b (2ma) ' tan~'[(m + 1/2)/(I + 1/2)] (corresponding to &; =
1/2), and with boundary conditions us(l,m;t) = Us(l,m) + Fm
at the upper and lower boundaries of our lattice. At the lateral
boundaries, we use zero-flux Neumann boundary conditions.
Here F is an applied dimensionless stress with |F| < F (the
dimensional stress is Cy4F). For this small stress, the solution of
Eq. (2.20) relaxes to a static screw dislocation u3 (I, m) with the
desired far field. Figure 3 of Ref. [33] shows the helical struc-
ture adopted by the deformed lattice (I, m, n + uz(l,m)) for an
asymmetric piecewise linear g(x) as in Eq. (2.11). The numerical
solution shows that moving a dislocation requires that we should
have ¢’ (D].*ug) < 0 (with either j = 1 or 2) at its core [32], which
is harder to achieve as « increases. A discusion of the changes
in the size of the dislocation core and the Peierls stress due to
can be found in Sec. A.1.2 of App. A. Using the same technique,
stationary planar edge dislocations for an isotropic sc material
have been constructed and a variety of dipole and loops of edge
dislocations have been numerically found [33].
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2.4 DISSIPATIVE EQUATIONS OF MOTION AND
FLUCTUATIONS

2.4.1  Equations of motion including dissipation

Overdamped dynamics obtained by replacing the time differen-
tial of the displacement vector instead of the inertial term in the
equation of motion (2.10) is not too realistic. Instead, we can add
dissipation to the equations of motion by considering a quadratic
dissipative function with cubic symmetry:

2 \én oo
R = (5—3n>2”+ne?k+

+%(éik — 61101:01x — €2202:00x — 63303103 ) (2.21)

For an isotropic body, we have v = 0 and then { and 7 are the
usual viscosities; see Eq. (34.5) in Ref. [13]. The viscous part of
the stress tensor is the symmetric tensor

oR

ik = = = NikimCim, (2.22)
aeik

1 2
ikt = 5 <§ - 377> OikOim + g (0i10km + GimOkr)

010 0i, 0
+1 Oi1%km + OimOki _ 51:61k61161m (2.23)
2 2
— 0202k 02102 — 53i53k53153m> ~ (2.24)

In the cubic case, the viscosity tensor 77, is determined by the
three scalar quantities ¢, # and y. For isotropic sc crystals, 7 = 0.
Similarly to Eq. (2.16), we can show that

)

e Pl ol — 15 o/ (D
o (1, m, n; t) L R m',nst) 2.Dj [2ig' (D} ui)], (2:25)

I'm' n j
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is minus the dissipative force acting on u;. Then the equation of
motion including dissipation becomes

oa” ii; ZD (07 +Zij) & (D;“ui)]. (2.26)

In the isotropic case and taking the continuum limit a — 0, Egs.
(2.26) with (2.22) and (2.24) yield the viscous Navier’s equations
for isotropic elasticity [13]:

9% . _ ot
e yAu+(/\+y)V(V-u)+;7A§+

+ (C+ g) \Y (V 8;;) . (2.27)

2.4.2  Entropy production and fluctuations

Fluctuations may be included in our formulation by using the
ideas of Fluctuating Hydrodynamics [40, 41]. We need to find the
entropy production and write it as sum of generalized forces and
fluxes. Then both the forces and the fluxes are identified. The
linear relations between forces and fluxes then yield the correla-
tions of the fluctuating quantities to be added to the equations of
motion.

To find the production of entropy, we need to derive a few

formulas. Multiplying the conservative equations of motion for
the model (2.17) by 1; and summing, we obtain

Z [Z u? +W(l,m,n; t)] =0, (2.28)

after some algebra. Provided viscous terms are included in the
equation of motion, as in Eq. (2.26), we find

(2.29)

Z [Z u? + W(l,m,n;t)
ZZul (2 g ( D u)].  (2.30)

Lmn i,j
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Let D;¢ = ¢ — ¢, where ¢ = ¢(I,m, n) is a function of the point
(I,m,n). (Then ¢~ = ¢(I —1,m,n) for j = 1, and so on). We have
yD; ¢ =D (yp) — ¢ D; ¢, and

Y. ¢Di¢ = Y} D (yp)— ) ¢ Djy=

I,mn I,mn I,mn
= ) Di(p¢) - Ech]-*w, (2.31)
ILmn Imn

after a trivial relabelling of indices. Using this formula, Eq. (2.30)
becomes

£ {4 [ )

— ZD; [LZ,‘ Zij g’(Dfui)] } =
ij
=-Y ZZi]'g’(D;rui) (D} i)
Immn i,j
=—)_ ) %iéj (2.32)

Lmn i,j

where the symmetry of the viscous stress tensor has been used
to derive the last equality. Eq. (2.32) describes the production of
internal energy due to viscous processes.

If the temperature is not homogeneous, we need to replace the
strain energy density to leading order by the elastic Helmholtz
free energy density:

1
F(w;T) = Fo(T) — (T — To)aijei; + 5 CijliCijexi; (2.33)

in which the symmetric tensor a;; describes anisotropic thermal
expansion and sum over repeated indices is again implied [13].
Here the material is undeformed at temperature Tj in the absence
of external forces and we assume that the temperature change
(T — Tp) which accompanies thermoelastic deformation is small
(linear thermoelasticity). The stress tensor is now

0ij = cijen — aij(T — To), (2.34)
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which should be inserted in the equations of motion (2.17) or
(2.26). The entropy density is S(w; T) = —dFy/dT + w;je;; if we
ignore the temperature dependence of the elastic constants. Heat
conduction is governed by the equation T9S/dt = —dq;/9x;, i.e.,

oT aelj aql _ oT
pc of + i) o ox;’ qi = —Kijj Tx] (2.35)

Here c is the specific heat of the solid and «;; is the symmetric
thermal conductivity tensor. These equations become

pac T+ aw;iT g’(D;“ui) D;“L'ti = —-D;Q; (2.36)
D;’T
Qi = —Kjj P (2.37)

after discretizing. Eq. (2.32) can be rewritten as

Y {c[lit [Z ‘O;ZLIZ.Z +W(l,m, n;t)] (2.38)

I,m,n
_ZD— Zu.z.. /(D+u-)—% —
j / i 8 L a -

--Y ¥ (Zzl, éij — DaQ‘) . (2.39)

Lmn j

The right side of this equation is related to the specific entropy
(entropy per unit mass) s by

paT— aZZl]eU ZD].’Q]'. (2.40)
)

This can be written as

ds 1
Par EZ”T ZaTD Q=

o _Qj
= 221] T +ZQ ]ZD] 11'1]—’/ (2.41)
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and summing over all points, we find the entropy production:

Qi
I aT

Z”SZU T + ZQJ

AESE:

=)

I,m,n

(2.42)

This means that the generalized forces associated to the gen-
eralized velocities ¥;; and Q; are —a’¢;;/T and —a? D].Jr(l/ T),
respectively. Eqs. Z;; = 77;jué, and Q; = (Tz/a)Kl]DJr(l/T) then
imply that the kinetic coefficients associated to %;; and Q; are
kBTﬂZ]lm/ a° and kBTZKl]/ a°, respectively. Followmg Onsager’s
ideas as used in Fluctuating Hydrodynamics [40, 41, 42], we con-
clude that the equations of motion including thermoelastic effects,
dissipation and zero-mean fluctuations are as follows

pa*ii; = ZDj_[(‘Tij +Zij +si7) §' (D ui)], (2.43)
j

(sij) =0,
(sij(1,m,m; t)sgp(I',m 1 t')) =

= kT 51888 — 1), (2.44)

, _ 1 _
peT+T ) ;g (D u;) D ity = - Y D (Qi+&), (2.45)
i :

(¢i) =0,
<§i(lr m, n;t)é’j(l,/ m,/ 7’1/,‘ tl)> =

Kii + K;
= kBTz u 511/(5mm’5nn’ (S(t —t ) (246)

with oj; given by (2.34). In principle, fluctuations can be included
in boundary conditions by using the nonequilibrium fluctuating
hydrodynamics formalism as explained in [46] and in [47] for the
case of semiconductor interfaces. In crystals with cubic symmetry,
the elastic constants and the viscosity tensor are given by Egs. (2.5)
and (2.24), respectively. The thermal conductivity and thermal
expansion tensors are isotropic, x;; = kd;j, a;j = ad;;. Note that the
correlations of s;; in (2.44) and of ¢; in (2.46) are proportional to
1/a%, which becomes 6(x — x’) in the continuum limit as a2 — 0.

Note that in our model, dissipation and fluctuations affect all
atoms of the cubic lattice although we would expect from phys-
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ical considerations that dissipation and fluctuations should be
more pronounced near the core of moving dislocations, as they
are directly related to the motion of the atomic constituents in
the core vicinity. However our model should also fulfill these
expectations. Why? Dissipation is described by a Rayleigh dis-
sipative function that is a quadratic functional of the strain rate
tensor, which, in turn, depends on the discrete distorsion ten-
sor. Since the distortion tensor (containing finite differences of
the displacement vector) and its rate are larger near the core
of defects, we expect that dissipation will be stronger near the
core of a moving dislocation than at its far field. Fluctuations
are introduced via the fluctuation-dissipation theorem and they
should also be stronger near the core of moving dislocations.

2.5 MODELS OF FCC AND BCC CRYSTALS WITH ONE ATOM
PER LATTICE SITE

In this Section, we explain how to extend our discrete models
of dislocations to fcc or bec crystal symmetry, assuming that we
have one atom per lattice site [33]. For fcc or bce crystals, the
primitive vectors of the unit cell are not orthogonal. To find a
discrete model for these crystals, we should start by writing the
strain energy density in a non-orthogonal vector basis, a1, a5, a3,
instead of the usual orthonormal vector basis ¢1, €5, e3 determined
by the cube sides. Let x; denote coordinates in the basis ¢;, and
let x; denote coordinates in the basis 4;. Notice that the x; have
dimensions of length while the xl/- are dimensionless. The matrix
7T = (ay,a2,a3) whose columns are the coordinates of the new
basis vectors in terms of the old orthonormal basis can be used
to change coordinates as follows:

xp =T 'xj, xi = Tyjx). (2.47)
Similarly, the displacement vectors in both basis are related by

up = T,7 'y, ;= Tyuj, (2.48)
and partial derivatives obey

) 0o 0 1 0
aTc; = ,Z;iach' Fr ,];i YR (2.49)
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Note that #} and x/ are nondimensional while %; and x; have
dimensions of length. By using these equations, the strain energy
density W = (1/2)ciximeixern can be written as

1 omag 1, oulou,
W= = ¢yt O = U TP ‘
2 Ciilm ox; 0xy 2 Crspg x} 0x; (2.50)

where the new elastic constants are:
/ -1 -1
Crspg = Cijlm,];r,Z;]' ,];plfqm . (2.51)

Notice that the elastic constants have the same dimensions in
both the orthogonal and the non-orthogonal basis. To obtain a
discrete model, we shall consider that the dimensionless displace-
ment vector #; depends on dimensionless coordinates x! that are
integer numbers u} = u}(l,m,n;t). As in Section 2.3, we replace
the distortion tensor (gradient of the displacement vector in the

non-orthogonal basis) by a periodic function of the correspond-
)
i
periodic function with ¢’(0) = 1 and period 1. The discretized
strain energy density is

ing forward difference, w,”’ = g(D;ruf). As in Eq. (2.12), g is a

1
W0, m,13) = 3 ey (DS 1)) $(D;f ) (252

The elastic constants c;qu in (2.51) can be calculated in terms of
the Voigt stiffness constants for a cubic crystal, Ci;, Cy4 and Cyp,
which determine the tensor of elastic constants (2.5). The elastic
energy can be obtained from Eq. (2.52) for W by means of Egs.

(2.8). Then the conservative equations of motion (2.9) are

A B |

Z —

P = i e qur

which, together with Egs. (2.8) and (2.52), yield

o%u! U
% atzl = Zq LTqu D] [g'(D;'u;,) C;]rsg(D:—u;)] (253)
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This equation becomes (2.10) for orthogonal coordinates, ’];q’l =
51'11 / a.

To add dissipation and fluctuations to these equations, we
need to replace c,;, &(D5uy) by ¢, .&(Dfu;) — o, (T — To) +
q;jrsg’(Djui) Dful + s;j, in which n;jrs is related to the viscosity
tensor (2.24) in the same way as c;}jrs
The random stress tensor s; ; has zero mean and correlation given

is related to c¢;jj, by (2.51).

by (2.44) with the modified viscosity tensor r/z{jab instead of the
viscosity tensor (2.24). The heat conduction equations are

/

oT )ty oyt Ot
pc — + T ;g (Dj u;) D =

ot J V0ot
&l
=D; (Kij;“T + al> , (2.54)
(¢i) =0,

(Ci(L,mm )G (U, m' ;1)) =
/ /

K.+ K
= kBT2 % 011 O Oy O(t — t/)/ (2.55)
11
K;q = 7;91. 1771] Kij/ (256)

1 -1 -1
Wy = 5 (LT + T T ) (2:57)
Note that the both the original and the modified tensors a;; and
ki are symmetric.

Once we have derived the equations of motion, stationary
dislocations can be calculated by first finding the corresponding
solution to the equations of anisotropic elasticity and using it to
set up initial and boundary conditions for overdamped equations
of motion. For fcc and bcce crystals, screw and edge dislocations
have been constructed in Ref. [33].

2.6 MODELS FOR DIAMOND AND ZINCBLENDE STRUCTURES

Silicon and gallium arsenide are semiconductors of great im-
portance for industry that crystalize in the face centered cubic
(fcc) system. Crystals of these materials can be described as a fcc
Bravais lattice with a basis of two atoms per site, which constitute
a diamond structure for Si and a zincblende structure for GaAs
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[48]. When growing layers of these materials, defects are very
important because they act as nucleation sites, and have to be
eliminated after the growth process has ceased. Among defects,
dislocations and misfit dislocations are often observed [49, 11].
Thus, it is desirable to have an economic description of these
defects and their dynamics in terms of control parameters such
as temperature [50]. A molecular dynamics description is very
costly if we need to couple atomic details in the nanoscale to
a mesoscopic description in larger scales that are important in
the growth process [51]. In this Section, we extend the previous
models for cubic crystals with an atom per lattice site to crystals
having two atoms per site (extension to crystals with more than
two atoms per site is straightforward). Having two or more atoms
per site introduces new features that are better explained revisit-
ing the classic Born-von Karman work on vibrations of a linear
diatomic chain [52]. We shall show how to obtain the wave equa-
tion for acoustic phonons in the elastic limit, directly from the
equations for the diatomic chain. A similar calculation allows us
in Subsection 2.6.2 to obtain the Cauchy equations for anisotropic
elasticity in the continuum limit of our discrete models, which
are constructed with the aim of having exactly this property. Sub-
section 2.6.3 shows how to calculate static dislocations for GaAs
and Si.

2.6.1  Continuum limit for the linear diatomic chain

Vi—1 U U U4
— —~ —
OO MO @

a a/2

Figure 2. Linear diatomic chain comprising alternatively atoms of
masses Mj and My whose equilibrium positions are sepa-

rated a distance a/2.

We shall consider a diatomic chain comprising alternatively
atoms of masses M; and M, whose equilibrium positions are
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separated a distance a/2. The atoms are restricted to move only
along the length of the chain. Their displacement with respect
to their equilibrium positions will be denoted by au; and av,
respectively, in which [ is the cell index, and #; and v; are di-
mensionless. If ¢ is the quadratic potential of interaction between
neighboring atoms, the equations of motion for the diatomic
chain are [52]

Myii; = %[cp'((vl—ul)a%—a/Z)
—¢/((—v1)a+a/2)| =
= ¢"(a/2) [(v1 —w) — (u —v1)], (2.58)
Mys; = %[cp/((um —v)a+a/2)
—¢/((o —ul)a—i—a/Z)} -
= ¢"(a/2) [(w1 — o) — (v — wy)]. (2.59)

If we assume that the solutions of these equations are plane
waves,

u = uei (27'[}71—wt), v = Vei (27‘[;71—wt)’ (2.60)

the following dispersion relation is obtained

2 ¢9"(a/2)
YT MM,

(Ml + Mz) +

:F\/(Ml + M)2 — 4M; M, sin® |,  (2.61)

in which the minus (resp., plus) sign corresponds to the acoustic
(resp., optic) branch of the dispersion relation [52]. Moreover, the
corresponding amplitude ratio for the acoustic branch is

- = ,  (2.62)
(M — Ma) — /(M + Ma)? — 4M; My sin? 7

u —My (14e¢"2)
4
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with a similar formula for the optical branch [52]. In the long
wavelength limit, # — 0, the acoustic vibrations satisfy

2
u = v, ”” (2.63)
B 4)// 11/2 az
c = (M1+M2 (2.64)
M+ M ¢ a/2
P = 71[1 2, 5—72 . (2.65)

In these equations, E and p are the Young modulus and the linear
mass density, respectively [52]. In the limit as # — 0, each cell
comprising two atoms moves rigidly with a phase velocity ¢ and
a wave number 27177/ a.

The continuum limit of the diatomic chain equations recovers
the acoustic vibrations only. In this limit, / — oo and a — 0, with
fixed x = la. Furthermore,

au(t) = d(lat) =1ii(x, 1), (2.66)
av(t) = i (la+5,1) :ﬁ(x+gj). (2.67)

If we now add Egs. (2.58) and (2.59) divide by a4, and use (2.67)
to approximate the result, we obtain the following wave equation
in the continuum limit:

o . 0%

provided p and E are given by Eq. (2.65). The wave speed c is
then given by Eq. (2.64). Equation (2.68) is the elastic continuum
limit of the diatomic chain equations, which does not contain optical
vibrations.

2.6.2  Discrete model for a fcc lattice with a two-atom basis

We shall now propose a discrete model for a fcc lattice with a
basis comprising two atoms, of masses M; and M, respectively.
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Although this model is much more complicated to describe, the
key ideas to show that it is compatible with anisotropic elasticity
are the same as in Subsection 2.6.1 for the diatomic chain.

The main ideas needed to write a model for this crystal struc-
ture are the following:

1. Write the strain energy corresponding to a fcc crystal in a
non-orthogonal basis with axes given by the usual primitive
directions of the fcc Bravais lattice.

2. Write the corresponding strain energy for a fcc crystal with
two atoms per lattice site.

3. Restore the periodicity of the crystal by defining the discrete
distortion tensor as a periodic function (with period 1) of
the discrete gradient of the displacement vector.

4. Define the potential energy of the crystal as the strain en-
ergy times the volume of the unit cell summed over all
lattice sites. Then write down the equations of motion for
the displacement vectors at each site.

5. Check that the continuum limit of the model yields the
usual anisotropic elasticity.

We shall now carry out this program, which is an extension of
that presented in Section 2.5 for a fcc lattice with a single atom
per site; see also Ref. [33]. The primitive vectors of the fcc lattice
are

m:g(O,l,l), ay=5(1,0,1), a3=5(110), (2.69)

NS
NS

in terms of the usual orthonormal vector basis e;, e, ez deter-
mined by the cube. From these vectors, we determine the matrix
7;j to change coordinates as in (2.47) and (2.48). In the continuum
limit, the strain energy is given by (2.50) with elastic constants
given by (2.51) and (2.5).

Once we have written the strain energy of a fcc crystal in
the non-orthogonal basis spanned by the primitive vectors, we
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Figure 3. Relevant vectors joining lattice points that are needed to
discretize the displacement field in a zincblende lattice. All co-
ordinates are expressed in the non-orthogonal basis spanned
by the primitive vectors a;, a2, and a3. (a) The basis of a
unit cell placed at R' = (I, m, n) comprises one atom of mass
M, with displacement vector #;(R’;t) and one atom of mass
M, and displacement vector v}(R" + A’;t). (b) Discrete gra-
dients involving lattice points closest to R’ (resp. R’ + A’)
are backward differences from R’ + A’ (resp., forward differ-
ences from R’) along the primitive directions: D; vj(R' + A'; #),
(resp., D;rug(R’;t)), i,j = 1,2,3. (c) The auxiliary vectors b,
satisfy al + bl = A',i=1,2,3.

can introduce our discrete model. We shall consider a fcc lattice
with a two-atom basis. In equilibrium, atoms with mass M; will
be placed at the lattice sites, so that their displacement vectors
will depend on integer numbers and time: u] = u}(l,m,n;t). In
equilibrium, atoms with mass M, will be placed at the sites of a
fcc lattice which, in the orthonormal basis ¢;, is rigidly displaced
by a vector A = (a/4,a/4,a/4) with respect to the first fcc lattice;
see Fig. 8. In terms of the non-orthogonal basis a;, the vector
(a/4,a/4,a/4) becomes A = (1/4,1/4,1/4).

We should define discrete differences of a displacement vector
so that a discrete difference become the corresponding partial
derivative in the continuum limit. This requirement can be satis-
fied in more than one way using different neighbors of a given
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Figure 4. Another perspective in a zincblende lattice in which vectors b/

and A’ are shown. Only some atoms are depicted. a; 4 b} = A’.

lattice point. We shall select only two neighbors of a lattice point
for this purpose, using that the nearest neighbors of an atom with
mass M; are atoms with mass M, and viceversa. Fig. 8 shows
that each atom with mass M; (resp., M») is linked to its four
nearest neighbors having mass M, (resp., M) by A’, b} = A" —a!
(resp., —4, —b;). Thus the nearest neighbors of an atom with dis-
placement vector v}(R’ + A’; t) have displacement vectors u}(R’; t)
and u}(R" + a;;t), with j = 1,2,3, and the nearest neighbors of
an atom with displacement vector u}(R’; t) have displacement
vectors v}(R' + A’;t) and v}(R' + A" — a]’.; t), with j = 1,2,3. These
facts motivate our definition of discrete differences of a displace-
ment vector. See also Fig. 4.

Let us define the standard forward and backward difference
operators along the primitive directions as

DI f(R") = £[f(R" £ aj) — f(R')]. (2.70)

Then 01(]2) (R'+A;t) = D]*u;(R’ ;1) is the discrete gradient of the
displacement vector v;(R" + A’;t) which involves lattice points
closest to R’ + A/, whereas Ql(jl)(R’;t) = Dj_vg(R’ + A;t) is the
discrete gradient of the displacement vector u}(R’; f) which in-

volves lattice points closest to R’. The distortion tensor of our
discrete model at the cell R’ could be defined as a weighted
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average of g(Qf].l)) and g(ijz)), in which g(x) is a period-one
periodic function such that g(x) ~ x as x — 0. For simplicity, we
shall adopt equal weights in our definition:

g (D;u;(R';t)) +g (D]fv;(R' + A’;t))

w! (R';t) = 2

(2.71)

Obviously, this is reasonable for materials such as Si having
a diamond structure, and also in the case of atoms of similar
size for materials with zincblende structure. In the continuum
limit 4 — 0, the distortion tensor tends to the gradient of the
displacement vector:

: 7
0 O

i 87; (2.72)

In practice, the period-one function g should be fitted to exper-
imental or molecular dynamics data, such as the Peierls stress
needed for a dislocation to move; see Fig. 1 of Ref. [33] for the
variation of the Peierls stress as a function of the parameter con-
trolling the shape of a piecewise linear function g. The positive
potential energy of the crystal will therefore be

a3 1 B i
V=T ) gOspl8(Dy) +8(Ds 0] [8(Dy ) + 8(Dy v)].

IL,mn

(2.73)

Here a®/4 is the volume spanned by the three primitive vectors.

The conservative equations of motion are

o%u’ 110V

M =5 =T, 1%1@- (2.74)
9%v! 40V

My =5 =T 1%1@' (2.75)
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Using Eq. (2.73), these equations become

4 M, azlxl; .
a3 o2
1

= 3 Ty ' Ty Dj {cs ' (D} 1) [8(D5 0)) + 8 (DS )1}, (276)

4.M2 az’(); .
ad o
1, 4 . .
= 1 T ' Tpq' D {cpjrs §'(Dj 0}) [8(DJ 117) + (D5 93)1}- (277)

If M; = M, (the case of Si), this system of equations is invariant
under the symmetry: u}(R’) < —v/(R" 4+ A’). To obtain the con-
tinuum limit, we add Egs. (2.76) and (2.77), take into account the
continuum limit (2.72), and use Egs. (2.47) to revert to the dimen-
sional orthogonal coordinates. Then the resulting equations are
those of anisotropic elasticity:

0% 0 oil,
P o2 aixj <Cijrs axs> : (278)

In this equation, the mass density p is the sum of the masses in
the primitive cell divided by the volume thereof:

a3/4 * '79

Fluctuations and dissipation can be added to these equations
in the same way as for the models with one-atom basis. The
derivation of these equations in non-orthogonal coordinates fol-
lows those in Sections 2.3 and 2.4, but using the following energy
instead of (2.30):

d
s

I,m,n

2
. 1
[Z‘z’ (£76) + & S0 (0| -
i ] rspq

= Y. Y ulD; [Z¢'(Dful)].  (2.80)

Lmn i,j
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In particular, (2.42) also holds in non-orthogonal coordinates,
which then yields the same formulas for the fluctuations as in
orthogonal coordinates. For a zincblende structure, the governing
equations including dissipation and fluctuations are:

oT T, b 2 -
pe 5 + 3 (07 D G+ (D7 o) D 51 ) =

=D; <K DT+ CI) (2.81)

l] j
(¢i) =0,
(Eilm &, m' n'; 1)) = (2.82)
2 K+ Kji

= kgT p (5”/5 ! Ot 5(t — ) (283)
4M, *u! 1
—5 5 = 5 T Ty D log + Ty +5,18'(Df )}, (2.89)
3 atzl =57, 7, Df{[(fl’qj—i—Z;,j%—s;,j] g’(D]. v,)},  (2.85)
<S;j> =0,

<s§j(l, m,n;t)sy, (I',m',n';t)) =

/
Mijab

+7u ..
= kBTaE’»Ylm](Sll’(smm’(Snn’ 5(t - t/)/ (2.86)

o / / Y Y
(ij - ijabeab - “pj(T o TU)/ ij - Upjabeab' (287)

together with (2.57). In these equations, ¢/, = (w, S wb ) /2 s
the symmetric part of the distortion tensor (2.71).

2.6.3 Dislocations in Si and GaAs

Siand GaAs crystals are face-centred cubic with two atoms per lat-
tice site, one at (0,0,0) and the other one at A = (1/4,1/4,1/4).
Both atoms are identical in Si (diamond structure), whereas they
are different in GaAs: one atom is gallium and the other arsenic
(zincblende structure). Each atom is tetrahedrally bonded to four
nearest-neighbors, and the shortest lattice vector (110)/2 links a
second neighbor pair, as shown in Figure 9. The covalent bond
between two atoms is strongly localized and directional, and this
feature strongly affects the characteristics of dislocations. In turn,
dislocations influence both mechanical and electrical properties
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of these semiconductors [11, 14]. In this Section, we shall con-
struct straight dislocations for Si and GaAs using their elastic
stiffnesses and a method for calculating their strain field.

Figure 5. Relevant directions in a fcc lattice with a two-atom basis.

Perfect dislocations have Burgers vectors b = (110)/2 (the
same as in the case of fcc lattices with a one-atom basis) and slip
on the close packed {111} planes having normal vector n. Their
dislocation line vectors , usually lie along (110) directions, form-
ing 60° (perfect 60° dislocations) or 0° (perfect screw dislocations)
with respect to the Burgers vector.

We will now construct a perfect screw and a perfect 60° disloca-
tion for GaAs lattice, both having Burgers vector b = (1,0,1) /2.
Gliding dislocations having this Burgers vector will leave behind
a perfect crystal, since it is a primitive vector of the lattice [11].
For Si the same construction can be used.

The tensor of elastic constants is given by (2.5) in terms of the
Voigt elastic stiffnesses C;; and the degree of anisotropy H of (2.6).
We use the following values of the Voigt stiffnesses measured in
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units of 10°Pa at room temperature (T = 298 K) [53]:

C11 = 165.6, C12 = 63.98, C44 = 79.51, for Si; (288)
C11 = 118.8, C12 = 53.8, C44 = 58.9, for GaAs. (289)

Between 200 K and 800 K, these constants decrease linearly
with increasing temperature, so that —Ci; 1 dCl-j /dT =~ 104K,
i,j =1,2,3, [54, 55, 56]. Such small corrections could be straight-
forwardly included in our calculations, modifying minimally our
results.

To calculate the elastic far field of any stationary straight dis-
location, we shall follow the method explained in Chapter 13 of
Hirth and Lothe’s book [14]. Firstly, we determine an orthonor-
mal coordinate system e}, e}, ¢j with ef = —¢ parallel to the
dislocation line and ¢} = n being the unitary vector normal to
the glide plane. In terms of the new basis, the elastic displacement
field (uf,u},uf) depends only on x{ and on x7.

Secondly, we calculate the elastic constants in the reference
1oL L.
system ey, e,, e3:

3

"L

Cijr = Cijk1 — H
n=

(Sinsjnsknsln - 5in5jn5kn51n)~ (2'90)
1

Here the rows of the orthogonal matrix S = (¢f, ¢}, e5)" are the
coordinates of the ¢/”’s in the old orthonormal basis e;, e, e3. In
the new reference system, the Burgers vector has coordinates
b// b// b//

( 1,%2/,%3 )

Thirdly, the displacement vector (uf,u4,u%) is calculated as
follows:

¢ Select three roots p1, p2, p3 with positive imaginary part out
of each pair of complex conjugate roots of the polynomial

det[a(p)] = 0, ai(p) = ciis + (Cliga + Ciar)P + CiopaP™
e For each n = 1,2,3 find an eigenvector Ay (n) associated to
the zero eigenvalue for the matrix a;(py).

e Solve ReY,_; A;(n)D(n) = b}, and Reys_; Y3_;(clhy +
chopn)Ar(n)D(n) = 0, in which i = 1,2,3, for the imagi-
nary and real parts of D(1),D(2),D(3).
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e Fork=1,2,3,u =Re[—5% Y5 | Ac(n)D(n) In(x} + puxy)].

271 ~n

Lastly, we can calculate the displacement vector u; in the non-
orthogonal basis a; from u}'.

For the perfect 60° dislocation, we have

(1,1,2), (2.91)

(-1,-1,1), (2.92)

SR
|6} (o)}

eé’ = 7(_111/0)/ (2.93)

N

and the resulting dislocation is depicted in Fig. 6.

For the pure screw dislocation, we have

1

ei’ = %(—11—211)/ (2.94)
1

eg = ﬁ(—l,l,l), (2-95)
1

ey = \—ﬁ(—l,o,—l), (2.96)

and the resulting dislocation can be observed in Fig. 7.

2.7 CONCLUSIONS

We have proposed discrete models describing defects in crystal
structures whose continuum limit is the standard linear anisotropic
elasticity. The main ingredients entering the models are the elastic
stiffness constants of the material and a dimensionless periodic
function that restores the translation invariance of the crystal
(and together with the elastic constants determines the disloca-
tion size). For simple cubic crystals, their equations of motion
with conservative or damped dynamics (including fluctuations
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according as in Fluctuating Hydrodynamics) are derived. For
fcc and bee metals, the primitive vectors along which the crystal
is translationally invariant are not orthogonal. Similar discrete
models and equations of motion are found by writing the strain
energy density and the equations of motion in non-orthogonal
coordinates. In these later cases, we can determine numerically
stationary perfect edge and screw dislocations. We have also
extended our discrete models to the case of fcc lattices with a
two-atom basis, which includes important applications such as Si
and GaAs crystals. For GaAs, we have calculated numerically two
perfect dislocations which may be used to calculate the structure
and motion of similar dislocations under stress as explained in
Ref. [33]. Similarly to the case of the linear diatomic chain in
which there are acoustic and optical branches of the dispersion
relation, we expect that the dynamics of the discrete models with
two-atom bases are richer than their continuum limits.
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Figure 6. Displacement field in a GaAs lattice created by a perfect 60°
dislocation of Burgers vector b = (1,0,1)/2. (a) Reference
cubic cell with its eight atoms. (b) One layer of a perfect
undistorted lattice. (c) The same layer distorted by a perfect
60° dislocation. Panels (d), (e) and (f) correspond to (a), (b)
and (c), respectively but we have depicted only two atoms per

reference cubic cell.
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Figure 7. Displacement field in a GaAs lattice created by a perfect screw

44

dislocation of Burgers vector b = (1,0,1)/2. (a) Reference
cubic cell with its eight atoms. (b) One layer of cubic cells nor-
mal to the Burgers vector for a perfect undistorted lattice. (c)
The same layer distorted by a perfect screw dislocation. Panels
(d), (e) and (f) correspond to (a), (b) and (c), respectively but
we have depicted only two atoms per reference cubic cell.



A BIFURCATION ANALYSIS IN HOMOGENEOUS
NUCLEATION

3.1 OUTLINE

When a two-dimensional crystal described by a dissipative dis-
crete elasticity model is sheared beyond a critical stress F = F,
the strained dislocation-free state becomes unstable via a sub-
critical pitchfork bifurcation. Numerical continuation shows that
configurations containing two or four edge dislocations become
simultaneously stable in appropriate stress ranges. Selecting a
fixed final applied stress Fy > F., these stable configurations may
be reached by setting F = Fst/t, during different time intervals
t,. At a certain time after f,, one or two dipoles are nucleated,
split, and the resulting two edge dislocations move in opposite
directions to the sample boundary. The critical stress for nucle-
ation F. is larger than the critical stress for dipole depinning. This
explains why nucleated dipoles always split. In Sec. 3.2 we ana-
lyze the homogeneous nucleation of dislocation dipoles, whereas
in Sec. 3.3 their splitting is studied.

3.2 HOMOGENEOUS NUCLEATION OF DISLOCATIONS
AS BIFURCATIONS IN A DISCRETE ELASTICITY MODEL

3.2.1 Introduction

Homogeneous nucleation of dislocations is observed in differ-
ent processes such as nanoindentation experiments [57, 58], het-
eroepitaxial crystal growth [59, 60] and indentation experiments
in colloidal crystals [61] or soap bubble raft models [62]. Ho-
mogeneous nucleation of dislocations occurs in a perfect crystal
and is therefore expected to have a much higher activation en-
ergy than heterogeneous nucleation at defect sites such as step
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edges. Different types of calculations have been used to interpret
homogeneous nucleation of dislocations in different situations,
ranging from atomistic simulations to continuum mechanics in-
terpretations or combinations thereof [6]. In all cases, a reliable
nucleation criterion is needed to capture the nature of nucleated
defects and the time and place at which such defects appear.

Experimental studies often use ad hoc criteria such as the crit-
ical resolved shear stress (CRSS) [57]. To use this criterion, the
critical stress for nucleation has to be related to the applied force
by other means, such as the Hertz contact theory in nanoindenta-
tion experiments [63, 57]. Moreover, the critical stress itself has
to be calibrated independently and it cannot be a fixed value.
Instead, the ideal shear stress for nucleation may depend strongly
on the other stress components, not just on the shear stress com-
ponent acting on the plane, as shown by density functional theory
[64]. Zhu et al [5] use numerical simulations to argue that CRSS
predicts nucleation of dislocations only in an approximate man-
ner. However, some numerical simulations suggest that the CRSS
is a reliable tool to predict motion of dislocations, but may not be
reliable to predict nucleation. Instead, these authors minimize a
scalar A formed by contracting a tensor L;ji; = Ciji + Tjdj with
wikjwik;, where T; is the internal Cauchy stress and the plane
wave w;e'*'* is assumed to be the local displacement vector. Mini-
mization is done over all unit vectors w and k for each point of
the computational domain. In turn, the elastic constants and the
position dependent internal stress are calculated from atomistic
simulations or from finite element calculations and the Cauchy-
Born hypothesis to figure the motion of atoms [5]. Instability and
nucleation according to the A criterion occur at those points at
times at which A first vanishes.

While there is a widespread feeling that homogeneous nu-
cleation of dislocations is related to some bifurcation occurring
once the instability starts, no precise analysis and calculation of
this bifurcation has been reported [5, 6]. In this letter, we tackle
homogeneous nucleation of dislocations as a bifurcation problem
in discrete elasticity. Discrete elasticity models of dislocations in
cubic crystals [33, 34] describe dislocation cores in a natural way,
their equations are asymptotic to the correct anisotropic elasticity
far from defect cores and have been used to analyze dislocation
depinning and motion at the Peierls stress in a precise manner

[32].
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3.2.2  The model

We consider a simple 2D discrete elasticity model that may
describe homogeneous nucleation of edge dislocations and is
amenable to detailed analysis. We consider a 2D simple cubic
lattice with lattice constant normalized to 1, lattice points labelled
by indexes (i,j),i = 1,.., Ny and j = 1,..., Ny, and displacement
vector (u;;,0,0). At the boundary, a shear strain F is applied,
so that the displacement u;; for j = 1, N, and for i = 1, Ny is
F[j — (N, +1)/2]. When the system is homogeneously deformed,
F is also the dimensionless shear stress. The components of the
displacement vector in the y and z directions are ignored. u;
obeys the following nondimensional equations:

82141',]' aui,]-
m—ap +p 5 Wil T 2uij+uiq,
+A Qo (uijr1 — i) + galtij1 — tif)]. (3.1)

Here A = C44/Cy1 for cubic crystals® with elastic constants Cy1,
C12, Cys. Selecting a nondimensional time scale Cy1t/ (pyI?) — ¢,
we have B = 1, u = Cy1/(pl?y?), where v, p and I are a fric-
tion coefficient with units of frequency, the mass density and
the dimensional lattice constant, respectively. The nondimen-
sional displacement vector is measured in units of /. The over-
damped case corresponds to y = 0. On the other hand, selecting
a nondimensional time scale C{{%t/(Ip'/?) — t, we have u = 1,
B = Ivy/p/Ci1. Then the conservative case corresponds to § = 0.

The nonlinear function g, is periodic, with period equal to the
space lattice and g/, (0) = 1. We have used in our simulations the
continuous one-parameter family of periodic functions

20 o3 X :
20 gin (X —a<x<

()= = s%n (B » %f a<x<a, (3.2
;"‘sm(%i:l/2>, fa<x<1-—ua,

with 0 < & < 1/2 and period 1. The parameter a controls the
asymmetry of g,, which in turn determines the size of the dislo-
cation core and the Peierls stress needed for a dislocation to start

We have made numerical tests in the range 0.1 < A < 1. For many cubic
materials, 0.3 < A < 0.5.
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Figure 8. Bifurcation diagram showing only the primary stationary
branches issuing from the homogeneous solution BRO. At
F., branches BR1 and BR2 appear as a subcritical pitchfork
bifurcation from BRO (see the insets). In all cases, solid lines
correspond to stable solutions, dashed lines to unstable so-
lutions, limit points are marked as triangles and bifurcation

points as circles.

moving [33] (See App. A). In the symmetric case « = 1/4, (3.2) is
the interacting atomic chains model [65], which is a simplification
of the discrete elasticity models described in Ref. [33] and in Ch.
2 of this thesis.

3.2.3 Results

We consider the overdamped case, m = 0, § = 1 with A = 0.3071
(corresponding to tungsten), « = 0.2. In the unstressed crystal
configuration F = 0, a given initial condition evolves exponen-
tially fast to a stable homogeneous dislocation-free stationary
state BRO. As we select larger and larger positive stresses, the
homogeneous stationary configuration is strained but continues
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to be stable and dislocation-free until a critical stress F; is reached.
At F. a subcritical pitchfork bifurcation occurs, as the global bi-
furcation diagram in Fig. 8 shows. The bifurcation diagram of the
I? norm of the displacement vector versus F has been calculated
using the AUTO program of numerical continuation of solu-
tions [1]. We do not show here the complete bifurcation diagram,
which is rather complex with many bifurcation points issuing
from different stationary solution branches, most of which are
unstable. Note in Fig. 8 that only two primary branches bifurcate
from BRO at F = F, = 0.219317. As we will explain later, these
branches are the main equilibrium solutions found in dynamical
simulations in which stress values F = 0.22 are reached. These
branches start being unstable for F close to F. but become stable
after limit points (BR1 exactly after the limit point, BR2 becomes
stable after a secondary bifurcation point with F > Fj,), giving
rise to intervals were several stationary solutions are simultane-
ously stable and, as we will see later, can be reached according to
the stress history.

Consider the stable parts of BR1 and BR2:

* BR1 has two stable parts: one with larger norm than that
of BRO, the other with smaller norm. The configuration of
the solutions in the stable part of BR1 with norm larger
than that of BRO contains two edge dislocations of opposite
Burgers vectors that originate from the splitting of one dipole
at y = 0; see Fig. 9 (a). The configurations corresponding
to the lower part of BR1 (||u||gr1 < ||u||Bro, larger values
of F in the diagram) contains four additional edge disloca-
tions originating in the splitting of two additional dipoles
appearing at y = &5.

¢ Similar to BR1, BR2 has two stable parts with norms larger
and smaller than that of BRO, respectively. The configura-
tions corresponding to the upper part of BR2 have four
edge dislocations with Burgers vectors (£1,0,0) originat-
ing from the splitting of two dipoles at y = +1; Fig. 9(b).
The configurations corresponding to the lower part of BR2
contain four additional edge dislocations originating from
the splitting of two additional dipoles at y = £5.

Not shown in Fig. 8, there is a third branch BR3 with stable
configurations ||u||prs < ||u||gro for a certain interval of stresses
close to F,. We find it with the dynamical experiments that will be
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Figure 9. Configurations of the stationary solutions (a) BR1, (b) BR2, at
Fy = 0.22. The crosses represent the positions of the bound-
ary atoms which are fixed by the shear boundary condition.
Panels (b) and (d) in Fig. 10 show the strain field associated

to configurations (a) and (b), respectively.

described later, but it turned out to be quite elusive: we were not
able to capture it using AUTO in all the simulations we did with
different parameter values and lattice sizes. Fortunately, we found
it with AUTO in the case presented in App. B and depicted in Fig.
30. This branch appears as a supercritical pitchfork bifurcation
from the already unstable BRO and its stable part contains four
edge dislocations with opposite Burgers vectors originating from
the splitting of two dipoles at the boundaries: y = £5. Note that BRO,
BR1 and BR2 have 0, 1 and 2 dislocation dipoles, respectively. The
third bifurcated branch that we find, BR3 has two dipoles, so our
with our notation we count the branches that we find and not
dislocation dipoles any more.

We have found ranges of F at which two or more stationary
solutions are simultaneously stable. Let F; be a stress slightly
larger than the critical value F. in Fig. 8. We would expect to
evolve to a solution in BR1, BR2 or BR3 depending on the way
we stress the sample. Can we find a practical selection rule to attain
these different stable solutions by reaching a final stress Fy in different
way?

One way to proceed is to start from the stable stationary con-
figuration BRO at F = 0. We then increase F to a small value AF,
use the configuration BRO for F = 0 as initial condition, solve
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(3-3) and find the corresponding stable stationary configuration.
Repeating this procedure, we follow BRO until F. and for F > F.
we obtain the configuration BR2 at the corresponding value of
F. Can we obtain other configurations doing things differently?
The answer is yes. Suppose that we want to explore the stable
stationary configurations at a stress Fy = 0.22 slightly larger than
F. = 0.219317. Starting with BRO at F = 0, we turn in the stress
according to a linear law: F(t) = ct H(t, —t) + FfH(t — t,), where
¢ = F¢/t;, t, is the ramping time and H (x) is the Heaviside unit
step function. Same as in other multistable systems [66], the final
configuration is either BR1, BR2 or BR3 depending on the final
stress and the ramping time. See Table 1. At the time dislocations

are nucleated, the displacement vector departs significantly from
BRO.

Final Ramping time, {, Nucleation height, y Branch
stress, Ff

0.2200 t, > 87 +1 BR2
0.2200 82 <t <86 0 BR1
0.2200 t, <81 +5 BR3
0.2247 t, > 325 +3 BR4
0.2247 175 < t, <300 0 BR1
0.2247 120 < t, <150 +1 BR2
0.2247 t, <115 +5 BR3

Table 1. Results obtained for a 10x10 lattice with A = 0.3071 and
« = 0.2. The final stress Fy, and the ramping time t,, determine
the height y at which the dislocation dipoles are nucleated.
Only the branches BR1 and BR2 are depicted in the bifurcation
diagram in Fig. 8.

Fig. 10 shows several snapshots of the strain component 2e1, =
Su(uij11 — u; ;) taken after the stress has reached its final value
Fr and u; ; is evolving towards its final stationary configuration.
A depression of the strain e at the sample center indicates nu-
cleation of a dislocation dipole. At later times, this dipole is split
in two edge dislocations of opposite Burgers vector that move
towards the boundaries in opposite directions. The final configu-
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Figure 10. Four snapshots of the strain 2¢j, at times (a) 1491.7 and
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(b) 1864.4 for the evolution towards BR1 at ramping time
t, = 86 (c = 0.0026), and at times (c) 2051.7 and (d) 2206.7
for the evolution towards BR2 at ramping time f, = 1000
(c =22 x107*). Fy = 0.22. Panels (a) and (b) in Fig 9 show
the configurations corresponding to panels (b) and (d), resp.,

shown here.



ration is BR1. Similarly, for longer ramping times, two dislocation
dipoles are nucleated, each splits into two edge dislocations with
opposite Burgers vectors that then move towards the boundaries
in opposite directions. The final result is BR2. It is interesting to
observe that, at the time dipoles are nucleated, the strain compo-
nents for the respective snapshots are very close to those of the
unstable parts of the stationary solution branches BR1 and BR2.
If we follow the unstable branch of BR1 backwards from the limit
point for F;; ~ 0.11 to the critical stress F., we observe that its
strain e has a depression at the center of the sample correspond-
ing to dipole nucleation for F; < F < F, but this depression
becomes less and less observable as we approach F.. Similarly,
the unstable part of BR2 from its limit point Fj, ~ 0.17 to F.
first exhibits two symmetric depressions near the center of the
sample corresponding to nucleation of two dipoles. Then these
depressions diminish until the configuration of the unstable part
of BR2 becomes very similar to that of BR1 as F approaches F..
This is as it should be for BR1 and BR2 merge at F; in a subcritical
pitchfork bifurcation. Near F,, BR1 and BR2 differ from BRO by
+ f ;. Here f &< \/F. — F and ;; is the eigenvector correspond-
ing to Ag(F;) = 0. It is interesting to observe how the components
of this eigenvector present opposite sign for alternate rows of
their corresponding lattice sites, ; ;1; ;11 < 0, maintaining the
same sign along the same row, ¢;;i;x > 0. Regions in which
dislocations may nucleate are then located in between rows j and
j+1 for which ¢; ;1 — ¥; ; is maximum (y = 0, +2, for BR1) or
minimum (y = +1, £3, for BR2). These differences are higher at
the center of the sample: only one dipole is generated in BR1 (at
y = 0) and, correspondingly, two in BR2 (at y = £1).

The system in Egs. 3.1 may be linearized about the homoge-
neous solution BRO for any value of F. At F = 0, all the eigenval-
ues are negative, and the following sequence indicates at which
values of F a new eigenvalue becomes positive:

0.219317 = F,
0.220562,
0.222889,
0.226785,

The first value Fy = 0.220000 in Table 1 is right above the critical
F. = 0.219317, whereas for Fy = 0.224700 there are already three
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positive eigenvalues of the Jacobian matrix. This seems to be the
reason why a richer spectrum of attraction basins is observed:
in this example, a new branch BR4 having dipoles at y = £3 in
found in the dynamical simulations (see Table 1).

We have presented numerical solutions corresponding to a
10x10 lattice. We have observed that the value of F, and the
type of the primary bifurcation do not change if we increase
the computational domain. While for small samples we have
F. > a, for increasing sizes of the domains we observe F. — «.
The branches acquire more limit points and similar slope to the
one of BR0O, many of them remaining really close to it. In some
cases?, the pitchfork bifurcation at F; is supercritical, but both
bifurcating branches have a limit point for a slightly higher stress
and become unstable along decreasing values of F, repeating
a similar pattern to the one described before. For « = 0.1 and
small samples3, the pitchfork bifurcation remained supercritical,
giving rise to stable branches spanned along increasing values
of F. However, for larger samples and the same value of «, the
pitchfork bifurcation at F, was again subcritical*. For « = 0.4 and
a 10x1o0 lattice, the branches BR1 and BR2 contain a number of
additional limit points and secondary bifurcations, but still have
stable parts. Varying A in our simulations did not change much
the resulting values of F..

The reflection symmetry with respect to the horizontal axis
in the middle of the crystal is typical for lattices with an odd
number N, of atom rows. Therefore each branch in the bifur-
cation diagram using the /> norm of the displacement vector
corresponds to two different solution branches with the same
norm and symmetric configurations. For example, if we find in
one branch a dislocation at height +y with Burgers vector b = +1,
the other branch will have at —y a dislocation with b = —1.

In Appendix B, we show bifurcation diagrams corresponding
to different parameters. While BR1 and BR2 persist in samples
of different size, the location of secondary bifurcation and limit
points and the configurations for secondary solution branches
depend on the size and shape of the crystal.

Now what are the effects of inertia? The bifurcation diagram
corresponding to stationary solutions is still the same as pre-

2 « = 0.2, in a 10x40 lattice.

@

a = 0.1, in 6x6 and 8x8 lattices.
a = 0.1, in 10x10 and 14x14 lattice.
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sented here. However, the stability character of the solutions
changes. In the conservative case m = 1, « = 0, stable solutions
are no longer asymptotically stable. Linearizing (3.3) about a
stable solution, we find a problem with purely imaginary eigen-
values. Therefore these solutions are centers: small disturbances
about them give rise to small permanent oscillations about them.
The linearized problem about unstable solutions has pairs of
positive and negative eigenvalues and therefore these solutions
are saddle-centers in general.

What have we learned about an instability and dislocation
nucleation criterion from our bifurcation study? Clearly F. marks
the instability of the homogeneous solution branch BR0O and dis-
locations are nucleated at stress values more or less close to .,
although the fact that the bifurcation is subcritical makes it im-
portant to determine the stresses at which the solution branches
BR1 and BR2 become stable. This cannot be done by simple linear
stability calculations: instead numerical continuation algorithms
such as AUTO have to be employed. F, is characterized as the
stress value at which the largest eigenvalue of the linear eigen-
value problem about BRO becomes zero. As it is well-known, we
can determine the largest eigenvalue by solving the minimization
problem of a quadratic functional Yijki @ijLijk1Pk, over the class
of square summable vectors ¢; ;. The relation of this problem to
the A criterion remains unclear. In the present case of a perfect
lattice under shear, the CRSS criterion does not seem relevant.

3.3 CRITICAL STRESS FOR SPLITTING DISLOCATION DIPOLES

3.3.1 Introduction

In this section, we insert a dislocation dipole as initial condition
in our problem, and then impose increasing shear strain F in
the boundary. At a certain critical value, F 4;,, the dislocation
dipole starts to split. We find this critical value to be an order
of magnitude lower than the previous one calculated for dislo-
cation nucleation (Sec. 3.2), which explains why in that case the
dislocation dipoles were always observed to split once they were
nucleated.
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3.3.2 The Model

As in the previous section, we use the following equations:

82141',]‘ au,‘,j
M—nt B = i1 — 2Uij + Ui,
+A [ga(uiji1 — i) + &atij1 — Uij)], (33)

where m = 0, « = 025, B = 1, A = 1. The study of F.,uc
presented in the previous Sec. 3.2 uses A = 0.3071, which cor-
responds to tungsten. A similar nucleation study is reproduced
for A = 1 in Sec. B.2 of App. B. Dislocation cores when A =1
are narrower. This allows to perform numerical simulations in
small lattices reducing the interaction with the boundaries. When
A = 0.3071, cores are wider and the lattices have to be enlarged,
increasing the computational cost. For comparing the order of
magnitude between Ee aip and F_,c we choose A = 1.

3.3.3 Initial and boundary conditions

In this section we explain how we use as initial and boundary
conditions the static field of two opposite edge dislocations that
form the dipole. We add an extra shear strain field F at the bound-
ary and look for the critical value F_ 4;, at which the dipole starts
to split. We maintain the static elastic field of the dislocations
centered at their original positions (to which the external shear
F is added) as boundary condition, in spite the fact that they
have started to move. This does not alter noticeably the value we
obtain for F4;,, and results in the dislocations moving step by
step for increasing F towards the boundaries. To have dislocations
moving all at once to the boundaries, the elastic field used in
the boundary conditions would need to be updated, so as to be
centered in the actual location of the dislocations. Since we are
interested in comparing F4;, and F e and the former is not
really affected by the boundary conditions that we choose, we
just keep the original elastic far field of the dislocations centered
in the original position at the beginning.

Given a perfect N, x N, grid of atoms with lattice spacing
normalized to unity, it is possible to rigidly displace all of them
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to positions (x,y) such that any of the atoms are located at the
origin. It is possible then to insert an edge dislocation centered at
the origin of coordinates having Burgers vector b, by using the
following well known displacement fields [12]:

— i -1(Y xy
Uiooa(xy) = o7 [t”” (5)+ -2t | B
b 1—2v x2 —+ yz
V[(O,O);b](x/y) = o [ — 4(1—v) In < ) > +
2
¥
+2(1 —v)(x2+y2) |’ (3-5)

along the x and y directions, respectively. Here v is the Poisson ra-
tio (for tungsten, v = 0.278). The subscript [(0,0); b] indicates that
a dislocation of Burgers vector b has been located at (x4, 1) =
(0,0). The displacement fields U, )4 (X, Y), V](xyy.)) (X, y) Te-
sulting from placing an edge dislocation at any coordinates
(x4,y4) are computed substituting x — x —x;and y — y — y, in
the right-hand side of Egs. 3.4 and 3.5. In the example presented
here we set initial conditions as follows:

u(to) = Uy + Ui, -1)-1) (3.6)
v(to)) = Vg + Via,-1)-1) (3-7)

so we have two opposite-sign (b = +1, —1) edge dislocations
located at (1,+1), (1, —1) which constitute a dislocation dipole
that is centered at (1,0) (See Fig. 11 (a)). Here we used vector
notation for u = u; ; (resp., v = v;;), and correspondingly for U
(resp., V).

The reduced scalar model Eq. 3.3 neglects vertical displace-
ments. Thus, the vector field 3.4-3.5 simplifies and must be re-
placed by

b .
Ugoow (x,y) = 5-tan 1( ! ) (58)

which solves the scalar elasticity equations for the displacements
with the singularity corresponding to an edge dislocation located
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at (0,0). The initial condition is then

u(to) = U1y + Uja,—1);-1)- (3.9)

Concerning the boundary conditions, we proceed similarly as
in Sec. 3.2: An external shear strain F is applied, so the additional
term F [j — (N, +1)/2] is added to the displacement 3.9 of atoms
(i,j) with j = 1,N, or i = 1, N,. Atoms in the boundary remain
fixed, having the corresponding displacement associated to the
shear strain F in addition to the far field of both dislocations, as
indicated.

3.3.4 Methodology and Results

We implement a numerical continuation algorithm (see Appendix
C) for a sequence of values of F (See Fig. 11). In Fig. 12, we plot
the distance AX between the dislocations in the x direction for
increasing F. To compute it, we count the integer number of
lattice spacings that exist in between the dislocations forming
the dipole. We linearize system 3.3 about the corresponding
stationary solution u*(F) and find the eigenvalues A(F) of the
corresponding Jacobian matrix, J(u*(F)). We plot Ay (F) in Fig.
13. When performing numerical relaxation, the right hand side
terms of Egs. 3.3 where never greater than 10713 in absolute value
for the equilibrium configurations that we found.

We observe:

e For F < 0.025, the distance (in the x direction) between the
dislocations is zero: they are vertically aligned.

e F = 0.025 (label (a) in Figs. 11, 12, 13) is the last value of
F recorded before A,,,x becomes positive. We may approx-
imate F4;, by 0.025. For F < F.ip, Amax < 0 is found for
a sequence of configurations in which the dipole remains
stable at its initial position.

e For slighly larger values of F, we observe the dislocations
finding equilibrium separation distances of AX = 2,4. As
an example, observe label (b) in Figs. 11, 12.
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* The dislocations glide and are trapped at the boundaries of
the domain (maximum separation between them, AX = 16)
for F > 0.045. The first of this configurations is marked
with label (c) in Figs. 11, 12.

In nucleation simulations with A = 1 and a« = 0.25, we obtain
Fenue = 0.258 (see Sec. B.2). We actually find F ,c > «, regardless
of the value of A. For large lattices, we observe F; ,;,c — a.

In our dipole experiment, we have F_ 4, = 0.025 = «/10. So
we observe that the threshold for depinning the dislocations
comprised by a dipole is an order of magnitude lower than the
critical value for nucleation. This explains why in nucleation
experiments the nucleated dipoles are immediately split and
migrate to the boundaries once they are nucleated.

3.4 CONCLUSIONS

We have analyzed homogeneous nucleation of dislocation dipoles
and dipole splitting when a 2D sample is acted upon by an
external shear field F. We used a simple discrete elasticity model.

In the first section (3.2), we find that under shear stress, the ho-
mogeneous dislocation-free stationary solution becomes lineally
unstable at a critical stress F. ;.. At this stress two stationary
branches bifurcate subcritically from it forming a pitchfork bi-
furcation. Consider overdamped dynamics first. One of these
branches (far from the bifurcation point) becomes stable and its
configuration corresponds to nucleation of a dislocation dipole,
splitting thereof and motion of the resulting edge dislocations
with opposite Burgers vectors to opposite sites in the sample
boundary. The other branch eventually becomes stable too and
its configuration corresponds to nucleation and splitting of two
dislocation dipoles, that give rise to four edge dislocations. To
obtain different stable branches that coexist at the same value
of a supercritical stress, ramping the stress over a time period
of variable duration is used. Slow ramping leads to the final
configuration with four dislocations, whereas appropriately fast
ramping leads to the stationary configuration with only two edge
dislocations. This bifurcation picture seems to describe larger
lattices and it describes the stationary solutions even if inertia is
added.
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Figure 11. Positions and strain components 2¢1, and e of relaxed

equilibrium configurations found by numerical continuation

0.045. The

distance AX that separates the dislocations is depicted in Fig.

= 0.044, (c) F

0.025, (b) F

for (a) Fo4ip

12, the labels of which correspond to the snapshots shown

in this plot.

60



()

12 E

10 1

T (b)

o oo & & -

1 1 1 1 1 1 1 1 1 1
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
F

Figure 12. Separation AX of the dislocations in the x direction as a
function of the external parameter F. Each dot represents
an equilibrium configuration. Labels (a), (b), (c) mark data
points corresponding to the configurations depicted in Fig.

11.

In the second section (3.3), we calculate a critical value F_ 4;,
that gives rise to an instability after which the dipole starts to
split. For large enough F, dislocations migrate to the sides of the
domain. We compare the critical value for dipole splitting F. 4;, to
the one obtained for nucleation, F. .. We find these values to be
of different order of magnitude: F, 4, ~ 0.1a < Fuuc ~ a. This
explains why in nucleation experiments the nucleated dipoles
are immediately split and migrate to the boundaries once they
are nucleated. Both threshold values are parametrized by «, the
parameter in the periodic g,(x) functions (see Appendix A).
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sponding to the linearized system in Ecs. 3.3 as a function
of the external strain field F. Label (a) marks the last value
F = 0.025 found with A, < 0.
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APPLICATION TO MISFIT DISLOCATIONS IN
HETEROEPITAXIAL SYSTEMS

4.1 OUTLINE

This chapter is concerned with the concepts of critical thickness
and critical misfit in heteroepitaxial systems. In the first section, a
two-dimensional discrete elasticity model is used to compute the
critical thickness at which interfacial pure edge dislocations are
energetically preferred to form in the InAs/GaAs(110) heteroepi-
taxial system. The calculated critical thickness of six monolayers,
is fairly close to the measured value in experiments, five. In the
second section, we use a simple scalar discrete elasticity model to
illustrate the concept of critical misfit in a substrate-film interface.

4.2 CRITICAL THICKNESS FOR MISFIT DISLOCATION
FORMATION IN INAS/GAAS(110) HETEROEPITAXY

4.2.1 Introduction

Heteroepitaxial growth of InAs on GaAs(110) [67] has been exam-
ined in detail using different techniques, including scanning tun-
neling microscopy (STM) and transmission electron microscopy
(TEM). The strain relief mechanisms depend strongly on the ori-
entation of the substrate over which layers are being grown. In
the case of a (110) substrate, growth of the InAs film occurs in
three different stages, depending on the film thickness, hy:

* 1 < hy < 3 monolayers (ML). A uniform network of very
small 1 ML high InAs islands is formed.

e 3<h £ < 200 ML. The islands formed during the first stage
coalesce and the film grows layer by layer so that no three-
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dimensional (3D) structures on top of the last layer are
created. Early on, for 3 < hy <5 ML, an array of pure edge
misfit dislocations (90° MDs) is formed at the interface, and
it induces a lattice distortion that is visible at the surface.
The dislocation lines have the [100] direction, whereas their
Burgers vectors lay along the [110] direction. This stage is
called the [110]-relaxed stage.

* hg > 200 ML. The [001] direction is also relaxed by an array
of 60° MDs directed along [110]. This array is perpendic-
ular to the previous one, and thus a complete dislocation
network has been formed at the interface [68].

In this section, we consider the second stage of film growth.
According to experiments [69, 70], the first interfacial disloca-
tions are found for h = 3 ML, and a complete array of 90° MD
has been formed when #} ., ~ 5 ML. By using energy argu-
ments and a discrete elasticity model of heteroepitaxial growth
in InAs/GaAs(110), we compute the critical film thickness h
necessary to create the MD array. We find h = 6 ML.

4.2.2  The model

We model atoms on a plane perpendicular to the dislocation
lines (parallel along [001]) that contains the Burgers vector of
MDs (along [110]). Each layer of the resulting 2D square lattice
comprises two layers of the 3D zincblende structure of the ma-
terial. We choose the slice of InAs/GaAs (110) so that indium
atoms are grown on a Ga substrate, both on square lattices that
have different lattice constants. Cartesian axes on our 2D lattice
will be chosen along [110] and [110], as indicated in Fig. 14. The
elastic constants and the lattice constant referred to these axes are
related to those in the [100] direction according to the formulas
(cf. Eq. 13-43in [14], H = 2CELOO} + CPZOO} = CEOO} is the anisotropy
factor):

cltoh = oy gy, (4.1)
dlz?m = M _Hyo, (4.2)
CEQO} = ™ _Hyo, (4.3)
g0 — 100 /5 (4.4)
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Figure 14. Extracting a plane of atoms from the three-dimensional (3D)
zincblende lattice results in a two-dimensional (2D) square
lattice. Each layer of the 2D lattice represents 2 ML of the

real crystal.

Table 2. Elastic constants in 10° N/m? and lattice parameters in A

corresponding to the (100) direction.

100 100 100
oy

InAs 83 45.0 395 6.05
GaAs 118 535 59.0 5.65

Our computational domain comprises M layers: layers 1, ..., p,
correspond to the substrate, and layers p 41, ..., M, to the film.
Each computational layer represents two physical monolayers, as
shown in Fig. 14. A cell in the square lattice, labeled by indices
(1,m), contains one atom located at coordinates x;(I,m;t),i =1,2
at time . The side of a square cell containing a substrate atom is
a(l,m)=a- (m < p),anditisa(l,m) = a™ for a cell containing a
film atom (m > p). The lattice misfitise = (a™ —a~)/a™ = 7%.

In our model, we consider a discrete energy V ({x;(l,m;t)}),

1
V= IZa3(l,m)W(l, mit) = 3 Yo a(Lm)cijsViiVis,  (4.5)

Lm,i,jr,s

65



Table 3. Elastic constants in 10° N/m? and lattice parameters in A

corresponding to the [110] direction.

110 110 110 i
Cgl | Ciz } Cz[14 | al110)

InAs Cj; =10350 Cj,=2450 Cj =19.00 a* =428
GaAs Cj; =14475 C;,=2675 Cp =3225 a =400

in which the strain energy density W depends on the tensor of
elastic constants ¢;j»s and on displacement differences that become
du;/dx; in the continuum limit (u; is the displacement field):

_ D xi(l,m; t) du;

Vi = g <a(l,m) -1~ aTc," (4.6)
D x;(1,m;t) ou:

Vij g <u(l,m> ax;’ i ], (4-7)

i,j = 1,2. Here D x;(I,m;t) = x;(I +1,m;t) — x;(I,m;t) and
DS xi(I,m;t) = x;(I,m + 1;t) — x;(I,m;t) and g(x) ~ x for small
x. Note that the x; are absolute coordinates, not displacements
from equilibrium positions. The atoms at the top layer do not
have any other ones above them, so that D;r xi(I, M; t) = 0, which
represents a free surface boundary condition. In the continuum
limit, W agrees with anisotropic linear elasticity:

_ CY (oup\?  CY [duz)?
W(l,m;t) — > <8x1> +5 %,

duy 0 C* /9 oup \ 2
pon 2ot 44< 2 ”1> . (4.8)

2 9x10x, ' 2

2 \ox T om

Here « = —, + depending on whether cell (I, m) belongs to the
substrate (m < p) or to the film (m > p), respectively.

4.2.3  Methodology

The potential energy V yields a force —dV /dx; on the atom lo-
cated at x; and Newton’s second law provides the equations of
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motion for our model. Local equilibrium configurations can be
found from stationary solutions or from energy minima. It is com-
putationally more efficient to seek for stationary configurations
of the equations of motion by solving the overdamped equations:

dx;(l,m; t) 1%

dt = _axl‘(l, m; t)/ 1= 1/2/ (49)

where B = 1 is the damping coefficient. The relaxation method
starts from an initial guess {x;(I,m;ty)} and Egs. 4.9 are solved
until a stationary configuration {x;(I,m;t)} is reached. Then its
energy density is the corresponding energy V in Eq. 4.5 divided by
the sample volume. We will compare the energy densities of the
coherent (i.e., without dislocations) and dislocated configurations.

Initial conditions are chosen as close as possible to a stationary
solution to which the system is observed to relax. The substrate
is set so as to have its equilibrium lattice constant 2~ as bond
length. In the coherent configuration, epilayer atoms are set to
be vertically aligned to those in the substrate, and they have
their own lattice spacing a™ in the dislocated configuration. The
difference between the substrate and film lattice constants causes
the formation of a MD array at the interface. At both sides of the
domain boundary conditions are periodic, atoms in the substrate
lower layer (m = 1) do not move, and the top layer is a free
surface; cf. section 4.2.2.

To ensure that the depressions at surfaces are found right above
dislocation cores, we need to relabel atoms in dislocated configu-
rations. The right hand side of Egs. 4.9 includes the coordinates
of first and second neighbors of the atom (I, m). These neighbors
determine a stencil of dependence, which may be updated. When
dislocations are present at the interface, we compute the lists of
neighbors, upper-neighbor(l) and lower-neighbor(l), for atoms at
layers p and p + 1, respectively. The upper neighbor of a given
atom (I, p) will be that minimizing

|x1 (upper-neighbor(1), p 4+ 1;t) — x1(1, p; t)|. (4.10)

Similarly, an atom (I, p 4+ 1) will find its first neighbor at the layer
p by minimizing

|x1(1, p + 1;t) — x1 (lower-neighbor(1), p; t)|. (4.11)
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This allows to update the stencil of dependence. The correspond-
ing change in the energy V is introduced by redefining the gra-
dients at layer p: DS x;(I, p;t) = x;(upper-neighbor(l), p + 1;t) —
x;i(I, p; t). The critical thickness h;ﬁ is the minimum number of film
layers for which the dislocated configuration has lower stationary
energy density than the coherent one. Recall that each compu-
tational layer in hispp represents 2ML of the 3D crystal (Figs. 14
and 15). In our simulations, we inserted 8 dislocations (N, = 121
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Figure 15. Partial view of (a) coherent and (b) dislocated relaxed con-
figurations with ¢»(x) = tan~!(7x) /7. The arrows point
towards the valleys formed above dislocation core regions.

Three computational layers hi¢,p = 3 represent six 3D MLs.

columns of atoms for the substrate, only 113 for the film) and 15
substrate layers. This value is similar to the inter-dislocation dis-
tance, hence the substrate may be considered infinitely extended.
No dependence of /} on the system size was observed.
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4.2.4 Results

Fig. 16 shows our results. We inserted two different functions: the
first one, ¢1(x) = x, is purely linear, and g»(x) = tan~!(7x) /7,
is anharmonic. The simulations with both functions yield qualita-
tively similar results: the energy density of the dislocated config-
uration increases as the epilayer thickness increases, whereas the
energy density of the coherent configuration decreases. Besides,
in the relaxed dislocated configurations (see Fig. 15), valleys
are formed above the dislocation lines, in agreement with the
experimental observations.

In the linear case, the energy density of the dislocated config-
uration is lower than that of the coherent one starting from a
critical thickness hj;,ZD,l = 5, that corresponds to hj*f,1 = 10 ML.
For the other function, we have hj‘,ZD,Z = 3, h},z = 6 ML. The
latter is closer to the experimental value, h*/ exp ™ 5, as shown in

Fig. 15(b).

4.3 CRITICAL MISFIT FOR DISLOCATION FORMATION AT THE
SUBSTRATE-FILM INTERFACE

4.3.1 Introduction

In this section, we present a very simple example that evidences
the existence of a critical misfit €., above which the defect-free
configuration becomes unstable and interfacial misfit dislocations
are formed.

4.3.2 The model

We will restrict the analysis to a 2D region that comprises a part
of the substrate-film interface. Atoms (I, m) will be assumed to
move only along the x direction and their displacements will be
x(1,m)
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Figure 16. Energy density vs film thickness for (a) the linear case,

¢1(x) = x, and (b) for g>(x) = tan~!(7x) /.

We have the following set of equations:

ﬁax(la:nt) = x(I+1,m;t) = 2x(l,m;t) + x(I = 1,m; )

+A{ Gue [X(Lm+1;) — x(1,m))

+8ue(x(l,m—1) —x(I,m)] } (4.12)

Here, € = 0 for atoms in the substrate (m =1, ...,p) and € > 0
for those in the film (m = p +1,..., Ny). In the interface, we will
compute g0 [x(I,p+1) — x(I, p)]. A particular material should
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be modeled inserting A = Cy4/Cy; but, for simplicity, we take
A =1 and choose a« = 0.25, B = 1. So we are presenting a very
simple example in which all the discrepancy between substrate
and film relies on the difference in their lattice parameters.

4.3.3 Methodology and Results

We will proceed to perform numerical continuation as explained
in Appendix C, taking the misfit € as the continuation parameter.
The sequence will be g = 0 < €1 < ... < €. < €5, s0 x*(€;)
will be the corresponding relaxed equilibrium configurations and
J(x*(€;)) the Jacobian matrix of the system 4.12 linearized about

x* (61').

How do we set initial and boundary conditions? We set x*(ep =
0) as a perfect lattice with period one. All atoms in the boundary
have fixed positions, and are represented by crosses in Fig. 18.
For any misfit, the lower row of substrate atoms has unity lattice
spacing, whereas the upper row of film atoms has lattice spacing
1+ €. Left and right sides of the domain are located in imaginary
straight lines of slopes that scale as —e~! and e}, respectively.
These conditions do not capture any surface effect, they just
describe the interface in the bulk of a hetereoepitaxial system.

We consider the critical €, to be the last negative A« (€e.) that
we find (g; is the maximum eigenvalue of J(x*(¢;)); see Fig. 17). A
further value €,, > €. is used to illustrate that dislocations form at
the interface. In this case, there is no physical increase of € and no
intention to model dislocation nucleation, but just to demonstrate
that the system becomes unstable at a critical misfit, e.. In this
example, we find e, = 0.137865 and illustrate the presence of
dislocations for ¢, = 0.137866.

Fig. 18 shows the presence of two edge dislocations at the center
of the lattice, separated by 9 lattice spacings. Those dislocation
nucleate near the boundary, at locations where the eigenvector
associated to the zero eigenvalue attains its largest values. Then,
they migrate to the interior of the crystal and stop when an
equilibrium distance between them is reached. The final location
of the dislocations is better appreciated in Figure 18 (b)-(c), where
the discrete strains are visualized. The pattern does not change
qualitatively by increasing the size of the lattice. The critical
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misfits €, and €, increase with the size, in such a way that a barrier
of equidistant dislocations is not formed with this procedure.
Only two dislocations are generated as a result of a boundary
instability at the edges of the lattice.

Nucleation of dislocations is strongly sensitive to the way loads
are applied on lattices. Notice that in real heteroepitaxial growth,
the misfit between the upper and the lower lattices is fixed. This
fact forces the formation of a barrier of dislocations separated
by an equilibrium distance determined directly by the misfit
(~ 1/€). We conjecture that the critical height at which the barrier
is formed might be found by a bifurcation analysis with respect
to the height of the upper layer, similar to the one we have
performed for the misfits with fixed height, but keeping the
misfit fixed and varying the height instead. This would provide
an analytical basis for the studies carried out in the previous
section by energy methods.

-0.02 q

-0.04f 1

max

< _0.06f B

-0.08 >

0 0.05 0.1 0.15

Figure 17. Maximum eigenvalue A« (€) of the Jacobian matrix J(x*(€))
associated to the linearized system about the corresponding

stationary solution, u*(e).
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Figure 18. (a) Atomic positions and strain components (b) 2e;, =
gu(l,m+1)—u(l,m)], and (c) ey1 = u(l +1,m) —u(l,m),
for the dislocated configuration found at e = 0.137866 > ..

4.4 CONCLUSIONS

We have presented results concerned with critical values for the
film thickness and misfit in a heteroepitaxial system.

In the first part of this chapter, we used a simple 2D discrete
elasticity model to compute the critical thickness at which it is
energetically preferred for the InAs/GaAs(110) heteroepitaxial
system to form interfacial pure edge dislocations. Despite its
simplicity, the model provides qualitatively correct critical thick-
ness (6 ML to experimentally observed 5ML), and coherent and
dislocated energy densities as functions of film thickness.
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In the second part, we show by linear stability analysis of a 2D
scalar elasticity model, that the defect free-interface is no longer
stable after a critical value of the misfit. We are currently devising
a procedure to perform a similar stability analysis with respect
to the height of the layers for a fixed misfit. This would provide
an analytical basis for the energy studies carried out in the first
part of this chapter.
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APPLICATION TO CRACKS AND
NANOINDENTATIONS

5.1 OUTLINE

In this chapter possible applications to model dislocation nucle-
ation in crack formation and nanoindentation experiments are
investigated. We show that simple scalar two dimensional mod-
els reproduce an elementary ductile behavior around the tip of
cracks and basic nucleation mechanisms in simple indentation
tests.

5.2 CRACK: TYPE I

5.2.1 The model

A really simple model for the openning of a crack is presented
in this section. Let us consider a 2D rectangular computational
grid of atoms labeled withi =1,.., Ny and j = 1,..., Ny with a
crack placed at the center of the upper half, as in Figure 19. We
seek to gradually open the crack by numerical continuation (see
App. C). The opening of the crack scales with F, since F~! is the
slope of the right-hand side of the crack. Due to the symmetry
of the problem with respect to i = py, we mat restrict our com-
putational model to the right half of the domain, by imposing
adequate boundary conditions in the artificial boundary. Our
computational grid is formed by atoms with indices i = py, ..., N
and j = 1, ..., Nf(i) which is actually the right-hand half of the do-
main shown in Fig. 21 in next section (5.3), where we will model
the whole domain, i = 1,.., Ny. We have defined a list N(i)
indicating which is the highest atom for each column i meeting
the crack. They define the crack wall. For example: N¢(px) = py
(crack tip), Nf(pz) = N,.
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Figure 19. Simple model of a type I crack, in which only the right-hand
half of it is modeled due to the symmetry of the problem.
The atoms aligned below the crack tip are assumed to remain
fixed, as well as those in the bottom layer. The opening of
the crack is proportional to the parameter F, which fixes
the positions of those atoms forming the upper boundary.
The opening F of the crack is prescribed. A Neumann-type
boundary condition is imposed at the right-hand side of the

domain.

The atoms will be assumed to move only in the x direction,
having displacements u;; which are governed by the equations:

aui,]-
p ot

Wiy1,j — 22U+ U1+

+A g (uijr1 — tij) + &ulthij—1 — uij)](5.1)

where B = 1 is the damping coefficient, and we also have &« = 0.25
and A = 1. The use of overdamped dynamics is a numerical trick
to reach the equilibrium configurations to which the system re-
laxes for long simulation times (the so-called 'relaxation” method).
It is computationally simpler than solving a nonlinear stationary
system and then checking the stability of the solutions.
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5.2.2  Boundary conditions

See Figs. 19 and 20:

¢ We just model atoms i = py, ..., Ny.

* Atom (py, py) is at the crack tip; we locate it at the origin
of coordinates in Fig. 20.

* We prescribe the opening of the crack in the x direction
by the external parameter F, so that u, ; = (j —py) - F
when j > py and u;; = 0 and u;n, = (Ny — py) - F when
1 <i < N,. Bottom and top layers are fixed according to
the crack opening.

¢ Finally, the column of atoms below the crack tip, 1 < j <
py will have fixed u, ; = 0. These atoms maintain the
symmetry of the problem, remaining aligned at x = 0, and
constitute the left hand side boundary of our problem (see
Fig. 20).

¢ An extra column of virtual atoms are set to have u Nyt1j =
un,,j, so they act as a Neumann boundary condition.

Initial conditions for the numerical continuation algorithm are
as follows: for j < p, atoms form a perfect undistorted lattice
with u;; = 0; atoms above them with j > p, are displaced
according to the homogenous deformation, u;; = (j — py) - F. As
the crack opening F is increased (i.e., the slope F~! of the crack
wall decreased), so is the tensional stress in the x direction.

In this very simple way, we prescribe the opening of a crack
and observe how the inner atoms accommodate the induced
stress and adjust in order to reach equilibrium configurations.

5.2.3 Methodology and Results

We use F as a numerical continuation parameter (see Appendix
C), in order to compute subsequent equilibrium configurations
for increasing crack widths that scale proportionally to F.
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Figure 20. Atomic positions and strain field components 2¢1, and ey
corresponding to equilibrium configurations found by nu-
merical continuation for increasing openings of the crack:
(a) F, = 0.13, (b) F = 0.14 and (c) F = 0.34. While (a) is
still defect-free, in (b) a dislocation already has nucleated,
remaining close to the crack tip until a new dislocation is
generated at F = 0.27. Then, it is slightly shifted in the along
the +x axis, due to the repulsion between equal-sign disloca-
tions. The last configuration (c) shows a dislocation dipole at
y = 5.5 that seems to have been homogeneously nucleated.

Fig. 20 shows the final configuration for F = 0.34. What do we
observe when increasing F from zero?

* Firstly, a defect-free stage in which the strain field is con-
centrated at the crack tip.

¢ When a critical stress F, = 0.13 is surpassed, the first dis-
location is formed (for F = 0.14). This dislocation remains
rather close to the crack tip, even though the crack width is

further increased.

e At F = 0.27, a second dislocation is nucleated at the crack
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Figure 21. Simple model of a type II crack. The external parameter F
controls the strength of the tension/compression stress field.
N¢(i) is an auxiliary list of atoms that belong to the faces of
the crack.

tip and remains close to it, so the first one is slightly shifted
in the +x direction.

¢ At F = 0.34 a dislocation dipole is nucleated in the upper
part of the domain. Its nucleation would be induced by the
stress field due to the crack and the existing dislocations at
its tip. It seems to be have been homogeneously nucleated
when observed in the equilibrium configuration of Fig. chs-
crack-i, and its dislocations migrate gradually to the left and
right-hand sides of the domain when F is further increased.

5.3 CRACK: TYPE II

5.3.1 The model

A type II crack may be modeled by the simplified picture shown
in Fig. 21. We consider a system of dimensions Ny X Ny. Atoms
are labeled as (i, j). Some of them are missing between columns
p1 and py, due to the presence of a crack. The atom initially
located at the crack tip is (px, py). The walls of the crack initially
form 90°, and we have py = (N, —1)/2. We define a list N¢(i)
indicating which is the highest atom for each column i meeting
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the crack. They define the crack wall. For example: N¢(p1) = Ny,
N¢(px) = py, Nf(p2) = Ny

The components of the displacement vector in the x and z
directions are ignored. Only the vertical component of the dis-
placement v; ; is considered, obeying the following overdamped
equations:

dvi,]-
;= Vi 20j+vij-1 + Alga(viq1; —vij)
—8u(vij —vi-1)].  (52)
Recalling the discrete differences D7 ﬁ =+ [Uf - U{] and Dzivf =

+ [vgjEl - v{:], the system 5.2 is rewritten as:

d?)i,]'

i Dy v;j — Dy v;; + A[g(D vij) — 8a(Dy vij)]. (5.3)

5.3.2 Boundary conditions

Atoms in the boundary of the computational domain, will have
the following prescribed values for the discrete differences, which
will be substituted in their corresponding equations of motion

5-3:

* Left side: D; vy; = 0.
* Right side: Dy vy, ; = 0.

* Left-hand side of the top layer: (1 < i < p1): Dy v;n, = F.
Here F is a non-dimensional force that pulls upwardly this
side of the sample.

* Right hand-side of the top layer: (p <i < Ny): Dy v;n, =
—F. Now F is the force pushing downwardly this side of
the sample.

o Left-hand side face of the crack (p1 <i < px): Dy v; n () =
0, Dfrvi,Nf(i) =0.

e Crack tip: Dy vy, 5, = 0.
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* Right hand-side face of the crack (px < i < pp): DS Vi N (i) =
O, Dl_vl',Nf(l') =0.
* Bottom layer of the domain: D, v;1 = v;;. This would be

equivalent to have an extra row of fixed atoms below the
sample (at y = 0).

5.3.3 Methodology and Results
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Figure 22. Equilibrium configurations of a type II crack obtained by
numerical continuation for increasing values of the force
field: (a) Fr = 0.11 is still defect-free, whereas for (b) F = 0.12
an edge dislocation has been nucleated. The final relaxed
configuration shows that the dislocation finds its equilibrium

position some distance apart from the crack tip.

We use a sequence F; < F, < ... < F, using F as numerical con-
tinuation (see Appendix C) parameter. We monitor the following
components of the distortion tensor:

® €2 = Ujj+1 — Uij,

81



1 X 2 i
I} I} ! | ;

J l\\i i/

A f(l) \ /

Ny‘ ooooooo...\;/...ooooooo
000000000000 0000000
C0000000ODODODODOOO0O00C 000
00000 00O0OO0ODO0O0OOD0O0O0O00 000
0000000000000 00O000O0O0
0000000000000 00000O0C0
0000000000000 000000C0

lF co0000000000000000C00O0O0
1 1 1 1 1 :L

1 X 2 X

Figure 23. Modeling of a nanoindentation experiment. The force field
f(i) scales with the numerical continuation parameter F,

reaching its maximum f(py) = F right above the atom
(P2, Ny).

* 2e1p = gu(0Viy1j — Vi)

Here « = 0.25, go25(x) = sin(27tx)/(27r) and A = 1.

We find a single dislocation being nucleated at the crack tip for
F = 0.12 > F. = 0.11. Configurations of the system are shown for
both equilibrium configurations. Therefore, we found a critical
value F,. Incresing the deformation stress above this value, results
in dislocation generation. We actually continued the experiment
and found a sequence of dislocations following the first one. They
do not remain close to the crack tip but travel to the bulk of the
material, where they are finally found to be in equilibrium.
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5.4 NANOINDENTATION

5.4.1

The model

Let us consider a Ny x N, domain of atoms with vertical displace-
ments v; ; obeying the following equations:

dvl‘,]'
dt

= Dy v;; — Dy vij+ A[ga(Dy vij) — ga(Dy vif)]. (5.4)

5.4.2 Boundary conditions

We set the boundary conditions of this problem as follows (see
Fig. 23):

Left-hand side: D; v1,; = 0.
Right-hand side: D;“ on,,j = 0.
Left-hand-side of the top layer: (1 <i < p1): Dy v;n, = 0.

Right-hand-side of the top layer: (p2 <i < Ny): Dy o;n, =
0.

Bottom layer of the domain: D, v;; = v;1. This would be
equivalent to have an extra row of fixed atoms below the
sample (at y = 0).

Central atoms (p; < i < p;) are pushed downwards ac-
cording to: Dy v, = —f(i), where f(i) is a dimensionless
piece-wise linear force field that simulates the effect of a
nanoindentation tip in that region.

The force field f(i) is defined as (see Fig. 23):

f(p1) =025-F,
f(p1+1)=050-F,
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where p; 43 = p, = p» — 3, and F is an external parameter that
controls the intensity of the applied force.

5.4.3 Methodology and Results

We use F as a numerical continuation parameter (see. Appendix
C) following a sequence Fy < ... < F; < ... < F. < ... and monitor

* en =011 — VL],
* 2e1p = gu(viy1,; — i, ),

_ =1 yP2 )
d 5 - 7 lepl vl,Nyl

for each equilibrium configuration. Here ¢ is the nanoindentation
penetration depth into the sample. § is computed averaging the
height of those atoms (seven, in this case) on which the force field
is acting. Weuse A =1, « = 0.25.

Fig. 24 shows F versus ¢ in our simulations. Even though our
model assumes the crystal lattice to be square and A = 1, we
find a behavior already observed in nanoindentation experiments
[57, 71]. The curve F versus J presents a sequence of jumps
corresponding to nucleation of dislocations.

We find first a fairly linear deformation. At F, = 0.4 (6; =
3.771), we observe a transition to other regime which could be fit
to a 63/2 rule (dashed red line in Fig. 24):

F—F =004-(6—6)%? (5.5)
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Figure 24. Applied force versus penetration depth: general view and

zoom in the first critical region. We find a fairly linear initial
stage for F < F;, followed by a second stage F; < F < F,
that can be fit to a 6/2 rule (red dashed line, see Eq. 5.5)
and does not present any qualitative change in the system
configurations with respect to the first stage, since both are
defect-free. In a third stage F > F;, we observe dislocation
loops nucleation. The increasing number of dislocation loops
that are found at F > F; are shown for each equilibrium
configuration in the inset, beginning with (a) 0 at F. = 0.51
and continuing with (b) 1 dipole at F = 0.52. These configu-
rations are depicted in panels (a) and (b) of Fig. 25. Here we
measure the penetration depth in units of the lattice parame-
ter. In spite of the different scales, this plot is similar to the

experimental one found in Fig. 1 of Ref. [57].
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similar (but not necessarily related) to the one found in Fig. 1
of Ref. [57]. In this experiment, two different regimes are found:
firstly, a 6%/2 rule fits a defect-free stage; secondly, dislocations are
formed at discontinuities (horizontals jumps). Due to the different
scales, one single experimental discontinuity would correspond
to the whole region that we show in the inset of Fig. 24.

Increasing the force to F = 0.52 > F, = 0.51 results in the
creation of a dislocation loop that comprises two dislocations that
are nucleated at both sides of the nanoindentation tip and then
travel reaching an equilibrium location some distance apart from
the stress field created by the tip. The creation of this loop results
in a discontinuity the F(é) plot (a fairly horizontal jump), which
is observed right after F..

This study is just an attempt to gain some insight into this prob-
lem. A model allowing for vertical an horizontal displacements
would be required to account for other dislocation configura-
tions. However, a bifurcation analysis of this simple scalar model
should yield a characterization of the threshold for nucleation
and provide information on other possible configurations. More
sophisticated approaches would be needed to handle a bigger
sample with more dislocations.

5.5 CONCLUSIONS

We have presented simple examples of the application of a dis-
crete scalar elasticity model to describe nucleation of edge dislo-
cations in cracks of type I and II, and also in a nanoindentation
experiment.

In the type I crack, we observed that after a certain opening of
the crack, edge dislocations are nucleated at is tip. For a larger
crack width, we seem to observe homogeneous nucleation of a
dislocation dipole induced by the stress fields that are present,
the dislocations of which gradually migrate to the boundaries of
the domain for larger openings of the crack.

For the type II crack, we found an edge dislocation nucleated
at its tip, which travels some distance apart from the crack tip

and remains at equilibrium in the bulk of the sample.

Finally, we computed the critical value of the nanoindentation
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0.51 and (b) F = 0.52, correspond-

to the data sets having the same labels in Fig. 24. In the

continuation for (a) F,

mg

latter, two dislocations have been nucleated at both sides

of the nanoindentation tip, forming a dislocation loop that

finds its equilibrium location some distance apart from the

stress field generated by the tip.
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load after which dislocation loops are generated, each one com-
prising two dislocations that are nucleated at both sides of the tip.
These edge dislocations travel inward into the bulk of the sample,
finding an equilibrium location some distance apart from the
stress field generated by the tip. Monitoring the applied external
force against the nanoindentation penetration depth shows in
principle good qualitative agreement with experiments, at least
for the stage in which dislocation loops are being generated.
This may suggest that the simple model presented in this section
might be refined in order find quantitative agreement.
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CONCLUSIONS AND FUTURE WORK

In this thesis, we have formulated, analyzed and applied discrete
models of dislocations in crystal lattices. Our main original results
and conclusions are as follows.

In Chapter 2, we have generalized the discrete elasticity model
of Ref. [33] for dislocations in cubic crystals in several directions.
Firstly, we have shown how to treat fcc crystal lattices with a
two-atom basis, such as those of silicon (diamond structure)
and gallium arsenide (zincblende structure). Secondly, we have
considered dissipative dynamics, thermal effects and fluctuations
following the ideas of fluctuating hydrodynamics. Thirdly, we
have illustrated perfect 60° and screw dislocations for fcc crystal
lattices with two-atom basis.

In Chapter 3, we have studied homogeneous nucleation of
edge dislocations in a sheared crystal lattice as the applied shear
increases. We have used a much simpler model of scalar elas-
ticity in two space dimensions: an overdamped IAC model [72]
which is a caricature of the models in Chapter 2: the displace-
ment vector has only one non-zero component (that along the x
axis): (uij, 0,0), the distortion tensor has only two non-zero com-
ponents, D u and g,(D5 u), and the derivatives of the periodic
function g, are dropped from the equations of motion. With these
constraints the possible edge dislocations have Burgers vectors
parallel to the x axis. The simplicity of the model allows a de-
tailed study of bifurcations from the dislocation-free stationary
configuration of the sheared lattice by using the AUTO program
of numerical continuation. We have found multistable stationary
configurations containing two or four edge dislocations for cer-
tain ranges of the applied shear stress. These solution branches
issue from the dislocation-free solution branch via subcritical
pitchfork bifurcations. Furthermore, we have been able to select
these stable solutions by connecting the shear from zero stress
to its final value according to a linear function of time that acts
during a certain ramping time. Depending on the ramping time,
numerical solution of the model shows that either one or two
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edge dislocation dipoles are nucleated and split into dislocations
with opposite Burgers vectors that then move to the lattice edges.
We have also calculated the critical threshold of shear stress for
dipole splitting to be one order of magnitude below the one for
nucleation.

In Chapter 4, we have considered the problem of the appear-
ance of dislocations in the InAs/GaAs(110) heteroepitaxy. This
system was described by a two-dimensional discrete elasticity
model without periodic functions. Instead, an algorithm to rela-
bel atoms and calculate first neighbors was used. With this model,
we have calculated the coherent and dislocated energy densities
as functions of the thin film thickness. We have also calculated the
critical thickness for the presence of interfacial misfit dislocations,
in good agreement with the experimental value. By changing the
misfit, we have shown by a simplified interface model that the
system becomes linearly unstable for a certain critical misfit.

In Chapter 5, we have studied how dislocations may be gen-
erated near cracks and nanoindentors. We have used simplified
scalar elasticity models adapted to the geometry of the problem
at hand and solved them numerically. We have found that a crack
of type I presents a critical opening width for which dislocations
start nucleating at the crack tip and then remain close to it. For
a crack of type II, when the external shear stress surpasses a
critical value, a dislocation is nucleated at the crack tip and then
travels to a certain distance apart from it. A nanoindentation
experiment has been modeled so that the indentor penetrates
in a two-dimensional sample with a certain dimensionless force
that acts as a control parameter. When this force surpasses a
critical value, a dislocation loop is nucleated at the sides of the
indentor tip. Then the loop travels some distance apart from the
indentor. The indentor force-penetration plot that we obtain has
some resemblance with those measured in real experiments.

This thesis has shown how dislocations can be described by
simple discrete elasticity models and ascertained how disloca-
tions, dislocation dipoles and loops can be nucleated in different
contexts. A lot of work can be done in the future work following
the path open here. A possible list of future tasks is:

1. Extend the models in Chapter 2 to other crystal symmetries.

2. Study the effects of inertia on the homogeneous nucleation
of dislocations in a sheared crystal. Clearly the stationary

90



solutions obtained in Chapter 3 are still solutions of the
problem even if the dynamics is conservative. However,
the stability of solutions will be different and oscillatory
solutions about the stationary ones may appear and be im-
portant. The mechanisms to select different stable solutions
will be different in the conservative case and it would be
interesting to study the role of the energy as given by the
initial conditions.

. In the case of a heteroepitaxy considered in Chapter 4, de-
velop an analytical theory of the critical thickness and pos-
sible bifurcations involving the appearance of dislocations.
Considering the successful agreement with experiments
that has been obtained, the discrete approach presented
could be coupled with models describing island dynamics
at larger scales [51].

. Use numerical continuation of bifurcations to study the
problems considered in Chapter 5, nanoindentation and
dislocations generated at crack tips. Extend these studies to
more realistic two and three-dimensional models.
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THE PERIODIC FUNCTIONS IN THE DISCRETE
MODELS

In this appendix we define the periodic functions which are
used throughout the thesis to define the discrete gradients in
the discrete elasticity models. We present a simple example of
homogeneous shear to illustrate how these functions restore the
translational invariance of the lattice. The experienced reader
interested in definitions may skip it and go directly to Sec. A.2.

A.1 A PERIODIC LATTICE POTENTIAL

A.1.1  Discretization of the strain energy

Let us consider a two-dimensional crystal extended along the
xy plane. In a continuum elasticity description, the strain energy
density W depends on the displacement vector (u,v):

1 ou 2 v 2
W=3tn [(ax> *(ay>

o,
128x8y

C44 0v Ju 2

where C;1, Cqo, and Cyy are the usual elastic constants.
Let us look for a discrete version of this energy. We have atoms

labeled with indices (i, j) and displacements (u;,v; ;). Using the
discrete differences D f;; = fi11, — fij and DJ fi; = fijs1— fi,
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for any f; ;, we define the following discrete strain energy:

2 2

Cu Dy u; ]’> D;v;;
ZZ]:{ 2 a a
Dy D, v

+Qﬂ<agtz+

2
C Do Diu;
=g (1a ”]> +g <2a ]>] } (A.2)

T
where 7 is the lattice spacing and g(x) ~ x for small x. Note that
Eq. A.2 recovers the continuum limit in Eq. A.1 asa — 0:

Dfu ou DS u ou
g<a>Nax’ g<a>N8y' (A3)

and similarly for the v components. Notice that in Ch. 2 we
normalize the discrete displacements u;;/a — u;; to the lattice
parameter, so Eq.A.2 is rewritten in terms of g(D;rui).

A.1.2 A periodic potential in homogeneous shear

Let us consider now a simple system comprising only two
chains of atoms extended along the x direction, such thati =1, ..., Ny
and j = 1,2. When the upper chain is displaced rigidly a distance
x with respect to the lower one, the following energy results:

V(x) = N Hg(ap, (A0)

since D;r ujp = x for all i = 1,.., Ny and any other discrete
difference in Eq. A.2 vanishes. In more complex examples, the
strain energy depends on many variables, but this case shows
the importance of plotting ¢(x)? versus x. This plot provides
a first insight into the influence of g(x) in the energy profile
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Figure 26. A system comprising only two chains of atoms spanned
along the x direction, such thati =1,.., Ny and j = 1,2. The
upper chain (j = 2) is displaced rigidly a distance x with

respect to the lower one

arising from a relative displacement’ of two chains of atoms.
The resulting energy profile V(x) ~ g(x)? is the lattice potential
associated to the shear displacement, x. Since V(x) must have
the lattice periodicity a = 1, we define functions with period
one, gx(x) = gu(x +1). Fig. 27 shows plots corresponding to
functions g, (x) whose definition is given in Sec. A.2.1. In this
section, we are interested in having a first insight into how the
lattice potential shown in Eq. A.4 depends on 2«, which is the
width of the positive-slope regions of g, (x).

Note that & = 0.25 corresponds to

Qo025(x) = sin(27mx)/(27), (A.5)

as shown in Fig. 27 (a). It is observed that ¢(x)? has minima not
only at integer values of x, but also at semi-integer ones, which
might correspond to actual potential curves (see Eq. 8-40 and Fig.
8-9 (b) in Ref. [14]).

The functions g,(x) may be calibrated to fit different atomic-
bond strengths. Note the wide potential wells at integer values of

This relative displacement is performed along a periodic (i.e., primitive) direc-

tion.

95



0.03 B
-~ L4 4 N ’ ~ 2 ’
2 002 ‘1 e 0 RN T i
%o.25) N T T T
001§ ,‘ ‘! ‘\ ! ‘\ II V! ‘( A N
ol e v/ w P [ ! v W
-2 -1.5 -1 -0.5 0 05 1 15 2
(b) 02
GoaX) O
-0.2 ! 1
-2 -1.5 -1 -0.5 0 0.5 1 15 2
. - -~ oyt Yo - -~
, 0.06 ’,|:\ ,”s‘ 'a"\ l,|l|\\
go 4()() 0.04 r P LA T [ ' ! )
B S R Y T A T YL Y
F] 1 A} \ \ u [
ok i s W -7 i 4 - n
-2 -1.5 -1 -0.5 0 0.5 1 15 2
(C) 0.15 ; ‘
0.1
9p4(X) 005
0
-0.05 ‘ ‘
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x 107°
4 I~ ¢ ‘\\ P "‘ ,f ™~ P .
2 \ A f 4 P (B : !
1 A3 1
901(X) ol ' LY 4 1 “ ’ 1 ! 1 I' 1 ! M L4 !
| ! ! " ' v ! N ) ' 1 ’ Wi
! s A W ' A} "
Y e ] AW ! A4 I Ve .
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 27. (see Ch. 5)

x and the high barriers obtained for « = 0.4 (Fig. 27 (b)), whereas
for & = 0.1 these valleys are narrower and the barriers are lower
(Fig. 27 (c)). Perfect lattice configurations correspond to integer
values of x, and are easier to be reached for higher values of
«. In the other hand, non-perfect lattice configurations which
correspond to semi-integer values of x, are easier to be found for
lower values of a.

Concerning the motion of dislocations, the parameter « de-
termines the size of the dislocation core and the Peierls stress
needed for a dislocation to start moving [33]. As « increases, so
does the Peierls stress, whereas both the core size and the mo-
bility of defects decrease. High values of a result in very narrow

96



cores and large Peierls stresses.

A.2 DEFINITIONS

A.2.1  Sinusoidal functions

Let us define the periodic function gy e(x) = gue(x + 1+ €) with
0 <a<1/2and 0 < € < 1 as the periodic extension of

Sue(x) =
2 96in (ftg), e+ sx<ali+e),
(A.6)
&ﬁsm(gﬁj}f), a(l+e) <x<(1-a)-(1+e),

in subsequent intervals ((—a+p) - (1+€),(1—a+p)-(1+¢€)),
(p being any integer). The derivative of this function is the corre-
sponding periodic extension of:

She(X) =

Cos (20((7?_(‘_6)) , —a(l+e€) <x<a(l+e),

(A7)
HER) s at+e Sxs(-w)-(+e).

14 T
a—1/2 €OS <7 ‘

We use g (x) in problems concerned with heteroepitaxial growth,
where there are two different lattice spacings: the substrate with
lattice constant equal to one, and the film whose lattice param-
eter is 1 + € . We use g,0(x) to define the gradients within the
substrate and g, (x) within the epilayer. See Sec. 4.3 in Ch. 4.

In cases where there is only one type of material, its lattice
spacing is normalized to unity and we use a simplified notation:

8 (%) = Que=0(X),  &u(X) = gue—o(¥). (A.8)
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As an example, go.25(x) = sin(27x)/(27), g(45(x) = cos(27mx).
We are merely extending the definition of sinusoidal functions.
See Fig. 27. Note that the functions we define are ¢*, so the
resulting models in which they are used are suitable for analysis
and in principle well-behaved in numerical schemes.

A.2.2  Piecewise linear functions

It is possible to define also a piecewise linear set of functions as:

X if —a <x<u,

Sa(x) = (A.9)
— (x:%%) fa<x<1-—a.

14

These functions recover g,(x)? profiles similar to those of the
sinusoidal functions, but now they give rise to a sequence of
quadratic wells. The piecewise linear g,(x) have positive slope
in regions whose width is 2«. This fact allows us to compare the
definitions in Egs. A.g and those in A.6 easily. See comment on
other definitions?.

A.2.3  Non-periodic functions

In Sec. 4.2 of Ch. 4, a relabeling algorithm is used and no periodic
functions are needed. We use two different functions: g (x) = x,
which is purely linear, and g»(x) = tan~!(7rx)/ 7, is not har-
monic.

The reader interested in definitions of the piecewise linear functions in Refs.
[33, 34] should note that agefs. 33, 341 = 1/2 — &pesis- This is due to the fact that
in those references, 2agefs. [33, 34] i the width of those regions having negative

slope.
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A.3 DISSCUSSION: ADVANTAGES AND LIMITATIONS

Any discrete model presents advantages and limitations. In the
following, we analyze the advantages (Sec. A.3.1) of the discrete
elasticity models using periodic functions, then explain why we
needed to introduce relabeling of atoms due to the limitations of
the periodic-functions approach (Sec. A.3.2) and discuss which
of these models might be convenient depending on the purposes
to be achieved (Sec. A.3.3).

A.3.1  Periodic functions: advantages

The main reason to use periodic functions was illustrated with
the previous example in homogeneous shear (Sec. A.1): when two
chains of atoms are rigidly displaced with respect to one another,
a periodic strain energy profile is recovered. Defining the dis-
crete gradients as a periodic function of the discrete differences,
g(Dj*ui), accounts for that. As already mentioned, the defini-
tions we present (Egs. A.6) may be fit to different atomic-bond
strengths.

Let us illustrate the advantage of using periodic functions in
Sec. 3.2 of Ch. 3.

Observe panel (b) in Fig. 10 of Ch. 3, in which the strain
field component has been defined as 2e12 = gu (441 — ;). This
definition was introduced in order to have consistency with the
dynamical system of equations

821/[1',]' aui,]-
s TP = iy — it Ui

+A [ga(u,-,]-H — Mi/]') —+ g,x(ui,]-,l — ui,]-)]. (A.10)

m

In Ch. 3, we defined the discrete strain components as 2ej; =
Su (Ui jr1 — u; ;). What would the usual discrete elasticity strain field
2e1 = ujj1 — u;j have looked like? The answer is shown in Fig.
28 (b). It is clear that the usual discrete elasticity definition does
not describe correctly the strain fields. While in panel (b) the
strain field is affected uniformly in a wide range in the x axis,
in panel (c) our definition for 2ej, accurately localizes the spots

99



where dislocations are present. In between them, the strain field is
close to zero, which corresponds to regions where a fairly perfect
lattice is found. This represents a great advantage: in panel (a) we
have to interpret the information and draw by hand the T and
1 symbols where we find the dislocations, but in panel (c) we
immediately see their location. So we may run our simulations
and identify spots in the ej» plot where nucleation might take
place.

Another advantage of using continuous functions in system
A.10 is related to avoiding atomic relabeling. On the one hand,
this may become a problem when several dislocations are present
in the system, as will be discussed in Sec. A.3.2. On the other
hand, if we agree on panel (c) in Fig. 28 being a good represen-
tation of the strain field of the configuration shown in panel (a),
then we acknowledge system A.10 as a good approximation for
describing the dynamics in our lattice. Since no atomic relabelling
is performed, the computational grid remains unchanged and
the dynamical system is the same during all the simulation. This
means that instabilities, bifurcations and topological transitions can
be analyzed in a precise manner, as we did for the first time in the
homogeneous nucleation problem [37]. This certainly represents
an advantage of this discrete elasticity approach.

Figure 28. Three representations corresponding to the same relaxed
configuration: (a) Atomic positions corresponding to the dis-
placement field u;, and strain component (b) 2e15 = 141 —
u; i in usual discrete elasticity and (c) 2e12 = g (Ui 41 — Ui )
using Eq. A.6. Parameters: A = 0.3071, « = 0.2 and final
shear strain at the boundary Fy = 0.22 reached after a ramp-
ing time interval ¢, = 85 (see Ch. 4).
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A.3.2  Periodic functions: limitations

In Ch. 4 no periodic functions are used and a relabeling algorithm
is implemented. In Ch. 4 it is mentioned that this is done in
order to ensure the surface depressions to be found right above
the corresponding dislocation which induces the strain field.
What would had happened if periodic functions had been used?
Maintaining the computational grid unchanged, results in leaving
as computational neighbors atoms that are already far apart. In
principle, this would still allow the system to recover minima
of the strain energy density in regions where a perfect lattice is
found, but may cause shifts of information of the order of the total
Burgers vector.

See Fig. 29. An example of heteroepitaxial growth is shown, in
which five layers of epilayer have been deposited onto a substrate.
Even though the Ge/Si heteroepitaxy typically forms mountains,
for illustrative purposes we inserted the lattice constants of Ge
and Si assuming that a layer by layer growth takes place in a
square lattice. Anyhow, the important issue is that the epilayer
has 4% larger lattice constant than the substrate.

Arrows (a) and (b) in Fig. 29 point towards the valleys which
are induced by the buried dislocations. At the interface, atoms
close to the dislocation core which are computational neighbors
are highlighted in black color. What do we mean here by com-
putational neighbors? Look at atoms in black below label (a).
Let their displacements be u(a, p) for the one in the substrate
and u(a, p+ 1) for the one in the thin film. The computational
grid is a Ny x N, square lattice, so atoms (a,p) and (a,p +1)
are vertically connected whenever a vertical discrete difference
DSu(a,p) = u(a,p+1) —u(a,p) is computed. In the case of
these two atoms, they may be considered as vertically aligned
below arrow (a) with an error of at most one lattice period. The
actual core structure of an edge dislocation does not require that
these atoms be aligned, since two atoms of the film should lie
above three atoms of the substrate, roughly speaking. The subtle
issue is to compute the largest error that we are doing when
assuming that D is a vertical discrete difference. We observe this
error to be at most of the order of the Burgers vector b ~ 1. We
could trust the dislocation core found below arrow (a) as a good
approximation.
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Figure 29. Heteroepitaxial system with 4% misfit (¢ = 0.04) described
by periodic functions. As opposed to the results shown in Fig.
15 (Sec. 4.2 in Ch. 4), the valleys (a) and (b) formed on top the
dislocations are not vertically aligned with them. This is due
to the fact that the computational grid remains unchanged:
atoms colored in black are computational neighbors. The
shifts of information at the interface are smaller than ~ 1
and ~ 2 lattice periods below arrows (a) and (b), respectively.
The upper bound for these shifts of information is the total

Burgers vector, b = 2.

In the case of arrow (b), it points towards atom (b,p + 1),
which is not right above atom (b, p). So the valley observed in
the surface below arrow (b) is not vertically aligned on top of
the dislocation core (b, p) atom in the substrate. In this case, tak-
ing Dy u(b,p) = u(b,p+1) — u(b, p) as a vertical difference is a
stronger assumption. The error of assuming atoms (b, p 4+ 1) and
(b, p) to be vertically aligned (as they are in the computational
grid) results in a shift of the physical information of at most two
lattice periods, which is the total Burgers vector of the system.

A more clear way to understand this idea is to look at the
atoms at the right boundary in the sample: the one belonging to
the substrate (Ny, p) is found at x ~ 47, while the one in the film
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is at x ~ 49. There is a gap in their x coordinates of around two
lattice positions, so the fact that they remain as computational
neighbors results in Dy u(Ny, p) = u(Ny, p 4+ 1) — u(Ny, p) not
being an actual vertical discrete difference, so the assumption of
it recovering the continuum gradient du /dy is not really accurate
at the interface.

These issues are efficiently handled in Sec. 4.2 of Ch. 4 by doing
a careful relabeling of the atoms, ensuring that computational
neighbors are actual neighbors in the crystal lattice. An accurate
description is achieved, recovering the appropriate qualitative
behavior and good quantitative agreement with the experimental
critical thickness measured in the InAs/GaAs(110) heteroepitax-
ial system. We modeled 8, 16,24 and even 32 dislocations finding
the valleys right on top of the dislocation cores.

In Sec. 4.3 of Ch. 4, we use again the periodic-functions ap-
proach in order to have a dynamical system that remains un-
changed and allows us to perform a linear stability analysis and
find the critical misfit for which the defect-free system becomes
unstable.

A.3.3 What model should be chosen?

Hopefully, the advantages and limitations in the models used
throughout this thesis could help the interested reader to choose
a convenient model for his/her own use:

* Discrete elasticity models using periodic functions:

— The computational grid and the dynamical system re-
main unchanged: bifurcation analysis is possible, but
shifts of information scaling with the total Burgers vec-
tor may represent a limitation for increasing number
of dislocations.

— These models have been proven useful to model nu-
cleation of dislocations efficiently. There is no need of
a priori knowledge of the location where dislocations
may nucleate, since nucleation is precisely the output
phenomenon found in the simulations.

* Discrete elasticity models with relabeling algorithms:
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— An accurate description of the strain fields is obtained,

regardless of the number of dislocations. Atoms which
are neighbors in the crystal are also neighbors in the
computational grid.

The dislocations must be set a priori in the system,
with special attention to areas where slip may take
place, in order to develop an algorithm to update the
first neighbors stencil of dependencies in the computa-
tional grid.

No nucleation process can be observed as a natural
output, and no stability analysis seems to be possible,
since the dynamical system would change when slip
of atoms takes place.



ADDITIONAL RESULTS ON NUCLEATION

B.1 BIFURCATION DIAGRAM FOR « = (0.4 AND
A = 0.3071 IN A 6X6 LATTICE

We present here the results found for « = 0.4, A = 0.3071 in a 6x6
lattice, where F, = 0.402701. See the bifurcation diagram shown
in Fig. 30. Here we depict three branches. Their unstable parts
usually have depressions in the e;; strain component similar to
those observed in dynamical simulations where dipoles are being
formed.

Consider their stable parts:

¢ BRI has two stable parts: one with larger norm than that
of BRO, the other with smaller norm. The configuration of
the solutions in the stable part of BR1 with norm larger
than that of BRO contains two edge dislocations of opposite
Burgers vectors that originate from the splitting of one dipole
at y = 0. The configurations corresponding to the lower part
of BR1 (||u||gr1 < ||u||Bro, larger values of F in the diagram)
contains four additional edge dislocations originating in
the splitting of two additional dipoles appearing at y = +3.

¢ Similar to BR1, BR2 has two stable parts with norms larger
and smaller than that of BRO, respectively. The configu-
rations corresponding to the upper part of BR2 have four
edge dislocations with Burgers vectors (£1,0,0) originating
from the splitting of two dipoles at y = £1. The configura-
tions corresponding to the lower part of BR2 contain four
additional edge dislocations originating from the splitting
of two additional dipoles at y = £3.

¢ The main stable part of BR3 has norm smaller than BRO and
contains two edge dislocations of opposite Burgers vectors
that originate from the splitting of two dipoles at y = £3; see
Fig. 31.
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Figure 30. (a) Bifurcation diagram showing the stationary branches
BR1, BR2 and BR3, which have dislocation dipoles at y = 0,
y = £1 and y = =£3, respectively. The stable parts of BR1
and BR2 which have />-norm smaller than ||u||gro have also
dipoles at y = £3. (b) A closer view showing BR1 and BR2
issuing from F. = 0.4027 and BR3 issuing from the third
bifurcation point found in BRO at F = 0.4042. In all cases,
solid lines correspond to stable solutions, dashed lines to
unstable solutions and bifurcation points are marked as

squares.

Table 4 shows our results in the ramping experiments. There is
no intermediate ramping time ¢, giving rise to BR1 configurations.
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Figure 31. Equilibrium configuration for F = 0.40778 corresponding
to the stable part of branch BR3 found in Fig. 30 for a 6x6
lattice with A = 0.3071 and « = 0.4. The dipoles are formed
at y = %3 and they are split: they comprise dislocations
which find equilibrium locations at the sides of the domain.

Only BR2 and BR3 were found in our dynamical experiments.
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Final Ramping time, f, Nucleation height, y Branch

stress, Ff

0.402701 t, > 645 +1 BR2
0.402701 t, < 640 +3 BR3
0.402705 t, > 645 +1 BR2
0.402705 t, <640 +3 BR3
0.403500 t, > 811.5 +1 BR2
0.403500 t, < 811.0 +3 BR3
0.402900 t, > 675.6145 +1 BR2
0.402900 t, < 675.6144 +3 BR3

Table 4. Results obtained for a 6x6 lattice with A = 0.3071 and « = 0.4.
The final stress Ff, and the ramping time t,, determine the
height y at which the dislocation dipoles are nucleated. As
opposed to the results shown in Table 1 for the « = 0.4 case
in a 10x10 lattice, here we find no t, giving rise to a BR1

configuration.

B.2 SECONDARY BRANCHES FOR « = 025 AND A=1 IN A
6Xx6 LATTICE

In this case we show two secondary branches SBR1 and SBR2
which bifurcate from BR2. They are stable in certain stress ranges
as shown in Fig. 32 (b). Actually, each of these lines represent two
solution branches having the same /> norm. In their stable ranges,
the configurations of SBR1 and SBR2 exhibit two and four edge
dislocations originating from splitting of one and two dipoles,
respectively. The configurations of SBR1 mimic those of BR1, but
their two edge dislocations are not centered: they are shifted
upwards (for one of the solution branches having the same norm)
and downwards (for the other solution branch). A reflection
from the horizontal axis crossing the lattice center transforms
one configuration in the other. In the case of SBR2, there are
only two narrow ranges of F in which the stationary solutions
are stable. The range closer to the upper part of branch BR2 is
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similar to that described before for SBR1, but now there are four
edge dislocations instead of two. The other range with smaller
values of F produces configurations that are more curious: while
two edge dislocations have moved to the boundaries in opposite
directions, the other two dislocations form either a dipole or a
dislocation loop inside the lattice, depending on which of the two
solutions with the same /? norm is considered. It turns out that
the strain fields of these two solutions have opposite signs at each
lattice point.

The main branches BR1 and BR2 and the results obtained in the
overdamped dynamics experiments are similar to those explained
in Ch. 3 for the 10x10 lattice with A = 0.3071 and a = 0.2, as Fig.
33 shows. In panels (a) and (d), we include snapshots of the early
stages. The critical shear here is F, = 0.258295.
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Figure 32. (a) Bifurcation diagram showing only the primary station-
ary branches issuing from the homogeneous solution BRO.
At F;, branches BR1 and BR2 appear as a subcritical pitch-
fork bifurcation from BRO (see the insets). (b) Bifurcation
diagram in which BR1 has been omitted and secondary bi-
furcation branches SBR1 and SBR2 issuing from BR2 are
shown. Zooms near the bifurcation points are shown in the
insets. In all cases, solid lines correspond to stable solutions,
dashed lines to unstable solutions, limit points are marked as
triangles and bifurcation points as circles. Parameter values
are: A=1,a =0.25.
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Figure 33. Dipole nucleation in overdamped dynamics for a 6x6 lattice
with A = 1 and a = 0.25. Upper panel from left to right:
Snapshots of the strain 2eq; at times (a) 280.8, (b) 282.9, (c)
377.8 for the evolution towards BR1 with ramping time t, =
85 (c = 3.047 x 10~3). Lower panel from left to right: Same at
times (a) 302.4, (b) 304.7, (c) 393.0 for the evolution towards
BR2 with ramping time t, = 100 (c = 2.59 x 107%). F; =
0.259.
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NUMERICAL CONTINUATION

The numerical continuation technique which is widely used
throughout this thesis is explained in this appendix.

Let us consider the following N-dimensional dynamical system
for the vector u(t):

d
d%‘ = f(u; F), (C.1)

in which F is a constant parameter.

We want to study the linear stability of the stationary solutions
of the system C.1 for different values of F. Starting with a given
fixed value F = F, for which the system has a linearly stable
stationary solution u*(Fy), we set an initial condition u(ty), and
then solve:

du
E = f(u; FO)/ (CZ)

u(to) = up. (C3)

This system evolves until a stationary configuration u(te) —
u*(Fy) is reached”.

We find the Jacobian matrix J(u*(F)) of the system C.2-C.3
linearized about the stationary solution u*(F) and calculate its
eigenvalues. The linear stability of u*(Fy) depends on the sign of
the maximum eigenvalue, Ayqx(Fp) (or the maximum real part, in
case of complex eigenvalues). Configurations u*(F) are linearly
stable when A, (Fy) < 0, and unstable if Ay, > 0.

We use the same letter for the general u(t) and the relaxed u*(F), since the

asterisk tells the difference.
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Starting with Fy, we follow a sequence Fp < F; < ... < F,,
firstly inserting u*(Fy) as initial condition for a new problem
with F = F,

du
- = f(u; Fy), (C4)

u(t)) = u*(k), (C5)

and solving the subsequent problems for increasing values of F.
When do we stop? We monitor A (F) and identify the critical
value F, for which A, (F:) = 0. We can also perform one more
step for F, > F;, in order to observe the new configuration
reached by the system after the instability.

In order to proceed numerically, F. may be taken as that F
whose corresponding A« (F) more closely approaches zero from
negative values. Other possibility is to perform the numerical
continuation without analyzing the linearized system, in order to
get a faster but more superficial impression about the dependence
of the stationary solutions on F.
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RESUMEN EN ESPANOL

D.1 INTRODUCCION

La comprensiéon del comportamiento de los defectos presentes
en las redes cristalinas es esencial para el disefio y fabricaciéon
de dispositivos nanoelectrénicos porque afectan fuertemente sus
propiedades electrénicas, Opticas y magnéticas. Asimismo, de-
fectos como las dislocaciones son esenciales para el proceso de
crecimiento de estructuras heteroepitaxiales, para entender la
propagacion de fisuras o en experimentos de nanoindentacion
que tratan de aclarar el comienzo de la plasticidad.

En la presente tesis doctoral se formulan modelos discretos
de dislocaciones en redes cristalinas del sistema ctibico (simple,
centrado en las caras o centrado en el cuerpo, con la posibilidad
de incluir una base de varios 4&tomos en cada nodo de la red) que
recuperan la elasticidad lineal anisotrépa en su limite continuo.
En la tesis se analiza la nucleacién homogénea de dislocationes
en un cristal bidimensional sujeto a tensiones de cizalladura y
se concluye que los estados con dislocaciones aparecen como
bifurcaciones subcriticas del estado estacionario sin dislocaciones.
Las ramas bifurcadas multiestables se calculan por métodos de
continuacién numérica y se estudia su seleccion mediante ramp-
ing de la tension de cizalla. También se calculan valores criticos
para la formacién de dislocaciones en sistemas heteroepitaxiales,
asi como en fisuras y experimentos de nanoindentacién.

A continuacién se resume el contenido de los capitulos 2, 3, 4 y
5 de la tesis explicando las aportaciones originales del trabajo, la
metodologia empleada y las conclusiones alcanzadas. Por tltimo,
se explican las lineas de trabajo futuro que se abren a raiz del
trabajo presentado en esta memoria.
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D.2 RESUMEN DEL CAPITULO 2

D.2.1 Aportaciones originales

En el capitulo 2, se generalizan los modelos de elasticidad discreta
de la Ref. [33] para cristales con simetria ctbica en diversos
sentidos:

¢ Se proponen modelos para describir cristales fcc cuya base
conste de dos atomos, como es el caso del silicio (estructura
de diamante) y del arseniuro de galio (estructura de cinc-
blenda).

¢ Se formulan dichos modelos considerando dindmica disi-
pativa, efectos térmicos y fluctuaciones.

* Se define una familia de funciones sinusoidales (Apéndice
A) que permiten calibrar la dureza de los enlaces y son
C*, siendo aptas para el andlisis matematico y la imple-
mentacion numérica.

* Se construyen dislocaciones perfectas de 60° y en hélice
para redes fcc con una base de dos atomos (GaAs).

* De igual forma que en el caso de la cadena lineal diatomica,
en cuya relaciéon de dispersion aparecen ramas acusticas y
Opticas, se espera que la dindmica de los modelos discretos
propuestos para cristales con una base de dos atomos aporte
mayor informacién que sus limites continuos.

D.2.2 Metodologia

Los modelos discretos [33] se basan en la sustitucién de los gra-
dientes en la expresién de la energia eldstica por una funcién
periddica de las diferencias discretas expresadas en las coorde-
nadas primitvas. Asi, se aprovecha la periodicidad de la red
a lo largo de estas coordenadas para que la funcién periddica
reestablezca los minimos de la energia eldstica cada vez que una
cadena de atomos se desplace un ntimero entero de veces a lo
largo de una direccién primitiva (A). Por otro lado, se insertan las
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constantes eldsticas que permiten recuperar la elasticidad lineal
anisotrépa como limite continuo de estos modelos.

La formulacién de los modelos discretos para las estructuras de
cinc-blenda y diamante se desarrolla definiendo las diferencias
discretas atendiendo a la geometria de la red. Se introducen
vectores auxiliares que conectan los 4tomos de las dos redes fcc
que conforman el cristal. El tensor de deformaciones es definido
en cada nodo de la red promediando las diferencias discretas
asociadas a los dos d4tomos que conforman la celda unidad del
cristal.

La disipacién se afiade a los modelos considerando una fun-
cién cuadratica disipativa con simetria ctbica. En cuanto a las
fluctuaciones, se incluyen recurriendo a las ideas provenientes
de la hidrodindmica [40, 41]. Se calcula la producciéon de en-
tropia como la suma generalizada de fuerzas y flujos. Entonces
se identifican fuerzas y flujos y las relaciones lineales entre ellos
conllevan las correlaciones de las magnitudes fluctuantes que
deben afiadirse a las ecuaciones del movimiento.

Se define en el apéndice A un nuevo conjunto de funciones si-
nusoidales g, que permiten calibrar la dureza de los enlaces
atémicos. Al igual que en las funciones lineales a trozos, el
pardmetro « determina el tamafio del ntcleo de las dislocaciones
y la barrera de Peierls necesaria para poner una dislocacién en
movimiento. La tensioén de Peierls aumenta con «, mientras que
el tamafio del nicleo y la movilidad de las dislocaciones decrecen.
Valores altos de a conllevan ntcleos de dislocacién estrechos y
barreras de Peierls altas [33, 34]. Las nuevas funciones son C®,
resultando aptas para el andlisis matemaético y la implementaciéon
numérica.

D.3 RESUMEN DEL CAPI{TULO 3

D.3.1 Aportaciones originales

¢ Al aplicar una deformacién de cizalla a un cristal descrito
en dos dimensiones por un modelo de elasticidad escalar,
distintas configuraciones de equilibrio bifurcan respecto de
la rama que corresponde a la deformacién homogénea. Una
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bifurcacion pitchfork subcritica tiene lugar para un valor
critico F = F. de la tensién aplicada.

¢ La continuacién numérica de soluciones estacionarias mues-
tra que las ramas que bifurcan de la principal en F. corre-
sponden a configuraciones en las que se han nucleado dos
o cuatro dislocaciones.

* Seleccionando un valor final de la tension aplicada Fy > F,
el sistema puede evolucionar hasta una u otra configuracion
aplicando una tension F = Fy t/t, durante diferentes inter-
valos de tiempo t,. Transcurrido cierto tiempo tras t,, se
nuclean uno o dos dipolos y las dislocaciones de que se
componen viajan en sentidos opuestos hacia las paredes
del dominio computacional.

* La tension critica F4;, necesaria para separar las disloca-
ciones de un dipolo insertado como condicién inicial es
E4ip ~ /10, un orden de magnitud por debajo del valor
critico ~ & obtenido para la nucleacion. El pardmetro a es
el definido para las funciones g, (Ap. A). Esto explica por
qué los dipolos al nuclearse se disgregan inmediatamente,
viajando sus dislocaciones en direcciones opuestas segtn el
signo de su vector de Burgers.

D.3.2 Metodologia

Se utiliza el programa AUTO para la continuacién numérica
de soluciones [1]. Ello permite la elaboracién de un diagrama
de bifurcacién en el que se representa la norma I frente a la
deformacién aplicada en la frontera del sistema. Se representan
las diferentes ramas encontradas en el diagrama, hallandose que
las dos ramas principales emergentes como inestables del primer
punto critico corresponden a dipolos de dislocaciones nucleados
en las regiones centrales del dominio. Se presentan experimentos
de dindmica sobreamortiguada con distintas rampas en cuanto al
aumento en el tiempo de la tensién de cizalladura, observandose
que para un mismo valor final de la tensiéon de cizalladura el
sistema puede evolucionar a distintas configuraciones finales.

El valor critico de la tensién de nucleacién E. se halla también
mediante el procedimiento de continuacién numérica descrito en
el Ap. C, coincidiendo con el valor hallado con AUTO.
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Se analiza el autovector i asociado al autovalor A,y (F;) =0,
encontrandose que sus componentes son mayores para regiones
centradas en la muestra. El estudio de las componentes de dicho
vector permite identificar que las ramas nacen como +4 o —¢, lo
cual determina, tras otras bifurcaciones que sufren estas ramas,
la formacién de uno o dos dipolos, respectivamente.

En un nuevo experimento, estableciendo un dipolo de dislo-
caciones como condicién inicial, se calcula el valor de la tension
critica F 4, necesaria para separar sus dislocaciones. La condi-
cién inicial es el campo lejano de deformacién usual simplificado
al caso que cumple las ecuaciones de la elasticidad escalar. A
dicho campo se le afiade el valor adicional de la deformacién F
en la frontera, que se mantiene fijo en cada simulacién. Relajando
al equilibrio sucesivos valores crecientes de F, se halla el valor
critico Fe g ~ a/10.

En el Apéndice B se muestra un estudio mas detallado sobre
una tercera rama estacionaria a la que se llega en los experimen-
tos de dindmica sobreamortiguada para f, menores. Asimismo,
se muestra un ejemplo en el que se estudian algunas ramas
secundarias.

D.4 RESUMEN DEL cAPiTULO 4

D.4.1 Aportaciones originales

¢ Se presenta un modelo de elasticidad discreta en dos dimen-
siones capaz de describir el campo de deformaciones en la
superficie del sistema heteroepitaxial InAs/GaAs(110).

¢ Se calcula con dicho modelo las densidades de energia
elastica correspondientes a la configuracién del sistema con
dislocaciones y sin ellas, calculando un valor del espesor
critico de la pelicula delgada muy préximo al experimental.

¢ Se ilustra el concepto de discrepancia critica (misfit critico)
entre los pardmetros de red del sustrato y de la pelicula cre-
cida sobre el mismo, mediante argumentos de estabilidad
lineal.

119



D.4.2 Metodologia

En primer lugar, se explican las diferentes etapas del crecimiento
InAs/GaAs(110). En la primera parte del capitulo, se modela
la segunda etapa, correspondiente a un grosor de entre 3 y 100
monocapas. Puesto que el crecimiento es capa a capa, no es
necesario tener en cuenta efectos de reconstrucciones ni otros
accidentes en la superficie. Mediante una rotacién de coorde-
nadas, se logra seleccionar un plano representativo que simpli-
fica extraordinariamente el problema, reduciéndolo a dos redes
cuadradas con distinto parametro de red, una de In crecida sobre
otra de Ga. Se consideran los desplazamientos de los 4tomos en
las dos dimensiones contenidas en el plano que conforma el do-
minio seleccionado. Se definen los gradientes discretos siguiedo
la metodologia expuesta en el capitulo 1, pero en este caso no se
utilizan funciones periddicas, sino que se recurre a un algoritmo
que actualiza las listas de primeros y segundos vecinos. De esta
manera, se evita mantener como vecinos en la malla computa-
cional a aquellos d&tomos cuyas posiciones quedan alejadas (Ap.
A). Esto es importante para asegurar que los valles superficiales
debidos al campo de deformacién creados por las dislocaciones
se observen verticalmente alineados sobre las mismas, tal y como
ocurre en el experimento de referencia [69]. Se imponen como
condicién inicial configuraciones con distinto ntimero de capas,
las cuales se relajan al equilibrio mediante una dindmica so-
breamortiguada (es entonces cuando se forman los valles sobre
las dislocaciones), y se calcula la energfa resultante del sistema.
Dicho proceso se realiza para las configuraciones con y sin dislo-
caciones, y la comparacién de energias permite dilucidar cudl es
energéticamente més favorable.

Dicha metodologia tiene éxito tanto a nivel cualitativo como
cuantitativo:

* Las densidad de energia del sistema con dislocaciones dis-
minuye para un ntmero creciente de capas crecidas sobre
el sustrato, mientras que la energia del sistema sin defectos
aumenta.

* Se recupera con buena aproximacién el valor del espesor
critico experimental.

En la segunda parte del capitulo, se utiliza un modelo simplifi-
cado con desplazamientos horizontales (elasticidad escalar) y con
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condiciones de frontera fijas, para modelar la intercara que separa
el sustrato y la pelicula. Se aumenta gradualmente la discrepancia
entre los parametros de red (el misfit), mediante continuacion
numérica (Ap. C). En andlisis de la estabilidad lineal del sistema
muestra la existencia de un valor critico del misfit para el que el
sistema sin defectos se torna inestable. Para misfits mayores que
el critico, el sistema forma dislocaciones en la intercara.

D.5 RESUMEN DEL CAPITULO 5

D.5.1 Aportaciones originales

En este capitulo, se describen mediante modelos simplificados
de elasticidad escalar la nucleacién de dislocaciones generadas
en fisuras y en experimentos de nanoindentacion. Dichos mod-
elos se adaptan a la geometria concreta de cada problema y
permiten describir dislocaciones en arista (tipo edge) en dominios
bidimensionales. La resolucién numérica muestra los siguientes
resultados:

¢ Para una fisura de tipo I se encuentra una apertura critica a
partir de la cual se generan dislocaciones en su vértice, las
cuales permanecen cerca del mismo.

* En la fisura tipo II existe un valor critico de la tensién
aplicada que genera una dislocacién en su vértice, la cual
viaja alejandose cierta distancia del mismo.

¢ Un modelo sencillo de nanoindentacién se obtiene intro-
duciendo una fuerza externa que simula el efecto del nanoin-
dentador y acttia como parametro de control. Cuando la
fuerza sobrepasa cierto valor critico, se nuclea un lazo (loop)
con dislocaciones en los bordes de la punta. Dicho lazo
encuentra su posicién de equilibrio alejandose cierta dis-
tancia del nanoindentador. Pese a la sencillez del modelo,
la grafica que muestra la profundidad de penetracion en
funcién de la fuerza aplicada tiene cierto parecido con las
observadas en experimentos reales.
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D.5.2 Metodologia

Los modelos propuestos en este capitulo consideran una tinica
direccion a lo largo de la cual los 4tomos pueden desplazarse, ya
sean con desplazamientos horizontales (1) o verticales (v). Las
condiciones de contorno se establecen con d4tomos fijos (condi-
ciones tipo Dirichlet) o con gradientes g, (D]*ui) prescritos (condi-
ciones tipo Neumann).

La fisura tipo I se modela aprovechando la simetria respecto al
eje vertical al que pertenece el vértice de la misma (Fig. 20). S6lo
la mitad derecha del dominio interviene en el modelo, siendo la
otra mitad la imagen especular respecto del eje de simetria. Ello
define un dominio computacional cuyos d4tomos en la frontera
quedan fijos segtn la apertura de la fisura. La pared derecha del
dominio tiene condiciones tipo Neumann, D; u = 0. La apertura
critica de la fisura a la que se forma la primera dislocacion se
halla mediante continuacién numérica (Ap. C).

La fisura tipo Il impone una deformacién de cizalla (Fig. 21), de
intensidad F. Los atomos de las paredes de la fisura constituyen
una superficie libre, D v = 0 y aquellos en las paredes laterales
cumplen D v = 0 (pared derecha) y D; v = 0 pared izquierda.
Los dtomos en la frontera inferior permanecen fijos. La tensiéon
critica a la que se forma la primera dislocacién se halla mediante
continuacién numérica.

En la nanoindentacién se consideran desplazamientos verti-
cales, v. Las fronteras izquierda y derecha cumplen D;v =0y
D v = 0, repectivamente, al igual que la fisura tipo II. Asimismo,
los atomos en la frontera inferior permanecen fijos. Tenemos
igualmente una superficie libre con D3 v = 0, salvo para los ato-
mos i localizados bajo el indentador, que cumplen Dy v; = —f(i)
y estdn sometidos al campo de fuerza externa f(i). Se hallan
configuraciones de equilibrio para valores crecientes de f(i) me-
diante continuacién numérica y se representa la gréafica de la
fuerza frente a la profundidad de penetracién del indentador.
Alcanzado cierto valor critico de la fuerza, se produce una discon-
tinuidad en dicha gréfica, que corresponde a la generacién de un
primer lazo. Este lazo estd formado por dos dislocaciones nucle-
adas en los lados de la punta del indentador, las cuales se alejan
del campo de tensiones hasta alcanzar su posicién de equilibrio
(Fig. 25). Continuando el proceso, se observa que las sucesivas
discontinuidades en la gréfica fuerza-penetracién corresponden
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a la nucleacién de sucesivos lazos, los cuales también se alejan
de la punta del nanoindentador. La grafica resultante (Fig. 24) es
similar a la encontrada en experimentos (Fig. 1 en Ref. [57]).

D.66 CONCLUSIONES Y TRABAJO FUTURO

En la presente tesis doctoral se han formulado, analizado y apli-
cado modelos discretos de dislocaciones. Se ha estudiado la
nucleacién de dislocaciones, dipolos y lazos en diferentes contex-
tos mediante modelos sencillos de elasticidad discreta. Siguiendo
el trabajo presentado en esta memoria, se abren muchas posibili-
dades de trabajos futuros:

1. Extender los modelos del capitulo 2 a otras estructuras
cristalinas.

2. Estudiar los efectos de la inercia en la nucleacién homogénea
de dislocaciones en cristales deformados mediante cizalla.
Las soluciones estacionarias encontradas en el capitulo 3
son las mismas para el caso de dindmica conservativa. Sin
embargo, la estabilidad de las soluciones es diferente y las
diferentes soluciones que oscilan en torno a las estacionar-
ias pueden jugar un papel fundamental. Los métodos para
obtener las diferentes soluciones estables serdn diferentes
y seria interesante estudiar la influencia de los diferentes
valores de la energia que pueden establecerse en las condi-
ciones iniciales.

3. En el caso de los sistemas heteroepitaxiales descritos en
el Cap. 4, seria interesante desarrollar una teoria analitica
que describa el espesor critico y las posibles bifurcaciones
asociadas a la nucleacién de dislocaciones. Dado el acuerdo
obtenido con los valores experimentales, la descripcién pre-
sentada pudiera acoplarse con otros modelos que describen
la dindmica superficial de islas a mayor escala [51].

4. Analizar mediante la continuacion numérica de bifurca-
ciones los problemas descritos en el capitulo 5. Seria in-
teresante formular y analizar modelos de fisuras y nanoin-
dentaciones més realistas en dos y tres dimensiones.
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