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1. INTRODUCTION
Consider the linear regression model
E[T|X] = X’B a.s. (1.1)

where (T,X) is an RxR’-valued random variable such that E|T|<® and B is an
RP-vector of unknown parameters. Suppose that we do not observe the variable T

but instead we observe
Z = min(C,T) and & = I(T<C), (1.2)

where C is an R-valued random variable and I(A) denotes the indicator function
of event A. This is referred to as the linear regression model with
randomly-right censored data and stochastic regressors. T and C are usually
termed, respectively, the survival time and the censoring variable. This
chapter deals with estimation of B based on a random sample ((zl,al,xl),
I1sisn) when the distribution function of the error term ¢ ® T - EI[T|X] is of

unknown functional form.

The linear regression model with randomly-right censored data appeared as
an alternative to the proportional hazards model introduced by Cox (1972)2. In
practice, the linear model (1.1) has been used to analyse censored data in the
context of survival times in medical trials; T denotes the survival time
(usually in logarithms) of a patient and X is a vector of individual
characteristics. Censorship appears because patients often survive beyond the
end of the trial or are dropped from the study for other reasons; see

Kalbfleisch and Prentice (1980) for examples. In econometrics, this model is

The contlinuous verslon of the proportlional hazards model specifies
Fr(t|x)/(-F (t|x))™" = ‘A(t)exp(x'B}, where f (.|x) and F'(.|x) denote tne
underlying conditional density and distribution function of T | X=x,
respectively. Estimation procedures in this modet and applications may be

found, for example, In Kalbflelsch and Prentice (1980).




of interest, in many situations, when analysing duration of unemployment
spells (see, for example, Heckman and Singer 1984) or the timing and spacing

of births (see, for example, Heckman and Walker 1990).

During the past 18 years, different estimation procedures have been
suggested in this model when no assumption on the distribution function of the
error term is made. Most of these procedures are based on the well-known
Kaplan-Meier (KM) estimator of the distribution function (Kaplan and Meier
1958). Miller (1976) and Buckley and James (1979) proposed iterative
estimators for the simple linear regression model when the regressor is
non-random. The former may be also used in multiple regression with random
regressors but the latter, which also assumes that the censoring variable is
non-random, depends crucially on these assumptions. Koul et al. (1981) and
Leurgans (1987) proposed procedures which do not require any iteration scheme.
Both estimators may be used with fixed or random regressors but it is
necessary to assume equal censoring for all observations, that is, the
distribution function G of C|X=x‘ is the same for all i (G, = G, Isisn),
Chatterjee and McLeish (1986) discussed a method termed the linear attribute
method. Gonzalez-Manteiga and Cadarso-Suarez (1991, 1994) proposed procedures
based on prior nonparametric estimation of the regression function for random

and non-random regressors, respectively.

The objective of this chapter is to propose and compare various
estimation procedures when regressors are stochastic and when G: is not
necessarily the same for all observations, that 1is, unequal censoring.
Specifically, we analyse six estimation procedures. Three of them are new, at
the best of our knowledge. These three procedures result from combining
methods which are known to produce accurate estimates with equal censoring
(Buckley and James 1979, Koul et al. 1981 and Leurgans 1987) with Kkernel
nonparametric estimates of Gl. The three other procedures which we consider in
this chapter have already appeared in the literature (Miller 1976, Chatter jee
and McLeish 1986 and Gonzalez-Manteiga and Cadarso-Suarez 1991) and may be
used in this context of random regressors and unequal censoring with no
modification (the first one and the second one were not specifically designed
for this stochastic-regressors model, but may be straightforwardly adapted to
it).




In Section 2 we first describe briefly the well-known Kaplan-Meier and
kernel conditional estimators. The methodological contribution of this chapter
is contained in Sections 2.2 to 2.4, where we describe the three new
estimation procedures. For completeness, we also present the three other
estimators to be compared. In Section 3 we carry out an extensive simulation
study in order to examine the performance of all described estimators. In
Section 4 conclusions on the usefulness of the proposed procedures are drawn.

Proofs are confined to an appendix.
2. ESTIMATION PROCEDURES
2.1. Kaplan-Meijer estimator and other related estimators

The key component of the three procedures we propose is the kernel-conditional
KM estimator (see Beran 1981 or Dabrowska -1987, 1989), which combines KM
weights and kernel nonparametric weights to yield a censored-data-set based
estimate of the conditional distribution function. First of all, let us

describe briefly the KM and the kernel-conditional KM estimatesa.

Given a random sample {(z‘,al), 1sisn}, where Z‘ = min(T‘.Ci) and 6‘=
I(T1<Ci)’ denote FT(t) and G(t) the distribution functions of T and C,
respectively, Hi(t) E P(2>t,5=1) and Hz(t) E P(Z>t) (these are usually

referred to as subsurvival functions). It is assumed that
T and C are independent random variables, and (2.1
V teR, 1 - F'(t) > 0 and 1 - G(t) > O. (2.2)

They are both standard assumptions. (2.1) is an identifiability condition,
whereas (2.2) is necessary to obtain equation (2.4) below. The latter
assumption is not very restrictive in practice, because T wusually denotes

survival time (often in logarithms) of an individual. The cumulative hazard

3Tl':e following description is adapted from Kalbfleisch and Prentice (1980) and
Dabrowska (1989).




function associated with F T(.) is then defined as
t T 1, T
At) = J (1 - Fl(s-))"ar(s), (2.3)
[

where, for any real function UR —R,

U(s-) = Lim U(s+h).
0 -

It is possible to relate F'(.) and the subsurvival functions Hl(.) and Hz(‘)'

since the following relations hold:

Fi(t) =1 - (1 - d\(s)), (2.4)
t 1

At) = - J (H (s-))"'aH (s), (2.5)
® 2 1

Notice that, by (2.1), Hz(t) = (I-FT(t))(I-G(t)). which is greater than O by
(2.2). As Z and & are observable, it is possible to estimate the subsurvival

functions Hl( .) and Hz( .) by their sample counterparts,
- -1 A -1

H(t) = I(Z>t, 8 =1), t) = >t),

l() n ZJ( | J1) Hz() n Z:JI(ZJ )

where, hereafter, all summations run from 1 to n unless otherwise specified
and I(A) denotes the indicator function of event A. Now, replacing Hl(.),
Hz(') by fll(.), flz(.) in (2.5) we obtain an estimate A of the cumulative
hazard function, which is referred to as Aalen-Nelson estimate (Aalen 1978,
Nelson 1972); and replacing A by A in (2.4) we obtain the Kaplan-Meier (KM)
estimate of FT(.), which will be denoted as f’:M(.) (Kaplan and Meier 1958).
When there are no ties among the observations of Z, the KM estimate may be

expressed as

7 (t)
L1(z>Z) ] !

2T n
F (t)=1-1 ——
KM Jsxl Z'I(z'zzj)

where 7J(t) = I(ZJSt, GJ=1) and, hereafter, we arbitrarily define 0/0 to be 0
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and 0o to be 1.

f‘:M(t) is a non-decreasing right-continuous function which takes values
on [0,1]. Furthermore, let us denote Z(n) = max(Zl,...,Zn). Then, the KM

estimate satisfies that
T
= = H 2.6
i'm(t) 1etzZ  and ajsz V J such that zJ z,, (2.6)

T
hence, if there is a censored observation j such that ZJ=Z(n) then I-i‘m(t) >
0 for all t.

Susarla and Van Ryzin (1980) introduced the following variant of the KM

estimator,

¥ (t)
1+ LIZ>Z) ] !

2T n
F_(t) = 1-
sV J-l[1+ E'I(Zszzj)

They proved that this estimator has the same asymptotic properties as I:"IM( .
It was introduced because it satisfies that I-Iiv(t) > 0 for all t, a property
which allows us to consider log(!-l:'sv(t)) (see Section 2.3 below). Note that,
when there are no ties among the observations of Z, f:v( .) is equal to the KM
estimate which we would obtain if we had n+l1 observations, consisting of the
original sample plus an observation (Z“+ ’6n+1) such that znﬂzz(n) and

d§ =0.

n+l

1

Let us now consider the case when there are regressors in the model.
Suppose that our random sample consists of {(zl,al,xl), Isisn}, where Z’ and
6l are as before. It is now assumed that

T|X=x and C|X=x are independent random variables almost surely, 2.7)

VxeR® and V teR, 1 - F'(t|x) > 0 and 1 - G(t]|x) > 0. (2.8)

where FT(.|x) and G(.|x) denote now the conditional distribution functions of
T|X=x and G|X=x, respectively. If we denote Hl(.lx), Hz(.lx) and A(.|x) the




conditional subsurvival functions and cumulative hazard function, respectively
(these are defined in a similar way to Hl(.). Hz(') and A(.)), then similar
equations to (2.3), (2.4) and (2.5) also hold. In order to obtain a similar
estimate to the KM estimate, we now estimate Hl(.|x), I-Iz(.|x) using

nonparametric kernel weights. Thus, for a given xe€R’, let us denote
Bm(x) = K((Xs-x)/h)/(zjl((( Xj-x)/h)) (2.9)

for a certain kernel function K&R® — R, and a sequence h = hn of smoothing

values. We define now
P -1 -1
A (t|x) = "L 1ZDt, 8=1B, (x), A (t|x) ® "L HZ>LB, ().

Then, the kernel-conditional KM estimate of the distribution function FT(t|x)
of T|X=x is

T PN
Fo(t]x) =1 -7 _(1- dis|x)),

where, now,
t ~ 1 ~
Act|x) = - I (H (s-|x))"dH (s]x).
-]

The estimates ?‘T(.|x) and f\(.|x) have been studied, among others, by
Beran (1981) and Dabrowska (1987, 1989). As before, when there are no ties

among the observations of Z, we may rewrite F Ic( t|x) as

7J(t)
Y I(Z >Z)B (x)
s s ) ns (2.10)

T n

F__(t]x) =17, _

ke "‘[21(2 2Z)B (x)
s 8 ) ns

We will assume that the kernel function K and the sequence of smoothing

values hn satisfy that
K(0)>0, K(u)=0 ¥ ue(-1,1)P, IK(u)du=1, IuJK( u)du=0, Isjsp, (2.11)

h — 0, nh: —_ o, nh:“ — 0, as n — . (2.12)
n
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Assumptions (2.11) and (2.12) are introciuced in order to make sure that
F‘:C( .|x) satisfies the weak and strong uniform consistency properties derived
in Dabrowska (1989). If we let hn = Mn™® for some w0, M>0, then (2.12) holds
if and only if a« € (1/( p+4)",1/p), that is, the smoothing value must converge
to O faster than the optimal smoothing value h°P' in nonparametric estimation
(which satisfies h::pt = Mn /%), i
As before, we will also consider the following variant of the

kernel-conditional KM estimator,

7 (1)
K(0)+F, 1(Z >Z DK((X ~x)/h)]

FT (t]x) = 1
KS J=1
K(O)'*E'I(Zszzj)K((X'-x)/h)

As K(0)>0, this estimate satisfies that I-f'xs(t|x)>0. On the other hand, when
there are no ties among the observations of Z, f:s(t|x) coincides with the
kernel-conditional KM estimate which we would obtain if we had n+l
observations: the original sample plus an observation (zm,aw,xm) such

that Z =2 8 =0and X = x.
n+l n+l n+l

(n)’

We derive now three procedures to estimate B in (1.1). Our procedures
adapt those introduced by Buckley and James (1979), Koul et al. (1981) and
Leurgans (1987).

2.2. Estimators based on Buckley and James procedure

2.2.1. Buckley and James procedure in the equal censoring model.

Buckley and James (1979) assume that {(xl,cl), 1sisn} are fixed variables’.

Thus, equation (1.1) becomes

Tl = x;B + cl Isisn.

4Throughout this chapter we use capltal Jetters to denote random variables and
small letters to denote fixed non-random varlables.

~




They also assume that €, ...n € are independent and identically distributed
(i.i.d.) random variables with distribution function Fe. and exploit the

following linear relationship,
lE‘[cSlZl + (I-Bl)Hl] = x;B. (2.13)

where, if 8 = 0 then H = E[T||T|>c1] = x;B + Elcl|el>cl-x;B]. and if & =1
then H , may be arbitrarily defined. Note that if GI = 0 then P(T1>C|)>o and
the expectation in Hl is well-defined. The idea behind the Buckley-James
estimator is to replace, when 61 = 0, the unknown value E[el|el>cl-x;B] by a
KM estimator. Specifically, let EJ = ZJ—x JBO be estimated residuals obtained
from an initial estimate Bo of B. It is possible to construct with them a KM

estimate F‘:M(ﬁo) of the distribution function F(.). We can estimate H , by

) ZJeJI(eJ>cl-x:Bo)wJ(Bo)
H = x'B8 + - - - . (2.14)
ZJI(CJ>C|-X|BO)WJ(BO)

where wj(éo) denotes the size of the jump in EJ of the KM estimate F :M(éo).
Now it is possible to obtain 21 = GlZI + (1-61)H|' Equation (2.13) suggests
that we could obtain a good estimate of B applying the least squares (LS)
procedure to the data set {(Z ,xl), i=l,...,n}). This is precisely the
Buckley-James estimator, B° = {lelx;)'l):lxlzl. Of course, iteration is
possible and it may improve the performance of the estimate. Buckley and James

(1979) suggest to use the LS estimate for all observations as initial value

a

Bo:

Buckley and James (1979) do not establish the asymptotic properties of
their estimator. James and Smith (1984) studied its weak consistency assuming,
among other conditions, that regressors and censoring variables are all
non-random. Ritov (1990) and Lai and Ying (1991) proposed meodified
Buckley-James estimators and established their asymptotic properties using
stochastic integral representations of their modified estimators. We do not
follow their approach here. Instead, we will transform relation (2.13) to
permit random censorship and discuss how we can use the resulting equalities

to obtain estimates of B.




2.2.2. Buckley and James procedure in the unequal censoring model.

Given xe RP, let 'I'x and Cx denote the conditional random variables T|X=x
and C|X=x, respectively and FT(.|x), G(.|x) their distribution functions.
There are two useful expressions which can be looked upon as generalisations

of (2.13). On the one hand, given xeR® such that P(stTx)>0, denote
J(x) = EIT_|C sT ],
X X X

and J(x) may be arbitrarily defined if x is such that P(stTx)=0 (for example
J(x) = 0 if P(stTx)=0). Under certain conditions it can be shown (see
Proposition 2 in the appendix) that

E[3Z + (1-8)J(X)|X=x] = x’B. (2.15)
This is the most obvious way to generalise (2.13). We must now estimate J(Xl)
for those i such that CISTI. First of all, following Buckley and James
procedure, if we also assume that the error term in (1.1) satisfies

€ E T - X’'B is independent of the regressors set X. (2.16)

We prove in the appendix (Proposition 3) that if x is such that P(stTx)>O,
then

IsG(s+x'B|x)ch(s) IsG(s+x'B|x)dF€(s)
J(x) = x’B+ = x'B+ . (2.17)
P(C ST ) IG(s+x'B|x)dF€(s)
X x

With an initial estimate Bo’ we can construct F:M(Bo) as before. Additionally,
we can reverse the roles of € and T and estimate G(u|x) using a
kernel-conditional KM estimate &xc(u|x) as defined above. We can then consider

T.c G

)55 l((:(t:“'l>:c'130|.>c)vv“(130)

(2.18)

IVx) = x'l§o + —— ~ —
ZJGKC(CJﬂc B°|x)wJ(Bo)




where Wj(éo) is as defined in (2.14). Observe that this estimate depends on an
initial value éo and on a smoothing value h. As before, it is possible to
obtain the transformed data set {(Zille), t=1,...,n}, where 2:”= <‘SlZl +

( 1-6}):7“)(){1). and construct the LS estimate

A~

BJ Y- (1)
B, ={LXX) }';,xlzl . (2.19)

Again, iteration is possible. We will use the LS estimate for the whole sample

as initial value éo'

We can estimate J(x) in an entirely different way without using any
initial estimate of B. We prove in the appendix (Proposition 1) that if x is
such that P(stTx)>0, then J(x) can be also written as

J'uc(u |x)dFT (u|x)
J(x) = . (2.20)
J.G(u|x)dFT(u|x)

We can estimate directly G(u|x) and FT(u|x) from the original data set with
kernel-conditional Kaplan-Meier estimates F‘:c(.|x) and &Ic(.|x) and introduce
them into (2.20) to obtain

P T a »*
o Iucxc(u|x)dec(u | x) ijjGKC(zj |x)wJ
JY(x) = , (2.21)

~ T a »*
(&g cCuloraby culx L6, (2, |00w]

where now w: denotes the size of the jump of F Ic( .|x) in Z. As before, we can
now apply the LS procedure to the transformed data set {(2:23}(‘), t=1,...,n},
where 2:2)= BlZl + (1-—6‘)3(2)(){‘) and obtain ﬁw whose expression is like the
right-hand expression in (2.19), replacing 2:" by 2:2).

Another equality which is a generalisation of (2.13) in our context may
be obtained as follows: for (t,x)eRxR’ such that P(tSTx)>O, denote L(t,x) =
E[Tx|tsTx] and, as before, L(t,x) may be arbitrarily defined if P(tsTx)=0.

Then, we prove in the appendix (Proposition 5) that under certain conditions

10




E[8Z + (1-3)L(Z,X)|X=x] = x'B. (2.22)

If we want to use this expression in order to get an estimator of B, we must
estimate the unknown values L(Zl,Xl) for those { such that ClsTl. Note that
(Proposition 4 in the appendix) if (t,x) is such that P( tsTx)>0, then

IUI(tSU)dFT(le) IuI(tSU)dFT(u|x)
L(t,x) = = . (2.23)
P(tsT ) [rctsurarTcux
x

As before, we can replace FT(.|x) by its kernel-conditional KM estimate

AT .
FKC( .}x) and obtain

) L.Z I(tsZ )w
L(t,x) = ) ) d

*
s
zJI(t ZJ)wJ

* Py
where wJ is as defined in (2.21). Again, we can define 2:3)= 612‘ +

( 1-61)1:( Z‘|X‘) and obtain EEJ applying LS to the transformed data set.

To sum up, we have obtained three different estimates for B by adapting
Buckley and James procedure to our model. The first one depends on an initial
estimate éo and a smoothing value h; the second and the third ones depend on a
smoothing value h but not on any initial estimate. In Section 3 we will

examine and compare the performance of these estimates.
2.3. Estimator based on Koul, Susarla and Van Ryzin’s procedure

Koul et al. (1981) assume that regressors are non-random and the distribution
function of the censoring variable (Jl is the same for all observations. They

exploit the relation
E[3Z (1-G(Z))'] = x'B, (2.24)

where G denotes the distribution function of Cl, which is assumed to satisfy

1-G(t) > 0 for all t. Then, they replace the unknown quantity I-G(Z‘) by

11




1-&SV(ZI), where &Sv(t) is as defined above reversing the roles of € and T
{that is to say, considering as wuncensored those observations satisfying
ClsTl). A trimming function, trimming out large Z values, is also introduced.
This trimming is necessary because the explosive behaviour of the asymptotic
variance of G(t) for large t might worsen dramatically the performance of the
estimate. Koul et al. (1981) prove that, under certain regularity conditions,
this estimate is consistent and asymptotically normal. However, in simulation
studies and empirical applications it seems to perform very poorly (see Miller
and Halpern 1982, Leurgans 1987, Heller and Simonoff 1990 and
Gonzalez-Manteiga and Cadarso-Suarez 1991).

In our model, (2.24) may be transformed to yield (see Proposition 6 in

the appendix),
E[52(1-G(Z| X)) | X=x] = x'B (2.25)

where now G( .|x) denotes the distribution function of C|X=x, which is assumed
to satisfy (2.8). In view of (2.25), we are motivated to define 2': =
6121(1-61(3(21'}(1»_1’ where 6Ks(.|x) is as defined above reversing, again, the
roles of € and T. As mentioned above, we use &KS( .|x) rather than f;Kc(.]x)
because the former satisfies I1-G S(t|x) > 0 for all t. The corresponding LS
estimate is B* = {zlxlx;zl}"zlxlzlzl where I = I(leM) for a sequence M ® M_
of trimming values, The asymptotic behaviour of this estimate is discussed in

Section 3.
2.4, Estimator based on Synthetic Data

Leurgans (1987) introduced the use of synthetic data in the estimation of
linear regression models with random censoring. We discuss here how this

procedure is implemented in our model.

The synthetic data procedure arises by generalising a well-known property
of classical least-squares estimation. In a linear regression model like
(1.1), given neN and bele, let Un be a discrete uniform random variable with

support {1, ..., n}, independent of (TJ,XJ). 1sjsn. Define

12




€ = LU =jXT -X'b).

Thus, §nb is a random variable which is equal to TJ—X;b with probability n
(1sj=n). Denote Q = {X1=xl, «» X =x }. The distribution function of gnb|nn
is H_ (t|Q) = n'lszljr(t'bb'xJ) = n'lszj(t'b(b-B)'xJ). where FI(.) and Fj(.)
denote the distribution functions of 7'J|J(Jxr=xJ and cJ|XJ=xJ, respectively. If

we assume that the error term in (1.1) satisfies that
E[cz|x] = ole (0,») a.s., (2.26)
2 _ 2 _ayen-t P\ e
then E[Enb|9n] = ¢° + (b-B)(n ijjxj)(b g8), and

; 2 - . [,2
B = argm:n E[Enb|nn] argm:n Jt dHnb(t|Qn). (2.27)

Now, if we replace in Hnb(t|Qn) the unknown quantities F.Jr(t'bb'xj) by their
najve estimates I(Tjst'bb'x J) we obtain finb(ﬂnn). If in (2.27) we replace
Hnb(.|nn) by Flnb(.|nn) we obtain B = argmin n'lzj(TJ-b'XJ)z. which is
precisely the OLS estimator. In the presence of random censorship, the natural
way to generalise this property is as follows: as before, let G(.|x) denote
the distribution function of C|X=x; suppose that (2.7) and (2.16) hold. If we
denote GJ( J=G( .|xJ), then

-] » -
Hnb(tlnn) =1-n XJP(TJ>t+b XJlQn)'-

= 1 - UL PZt0X | )/(1-G (t+b'x ). (2.28)

With our random sample {(zl,al,xl), 1sisn}, a naive estimate for
P(ZJ>t+b’XJ|Qn) is I(Zj>t+b’xj), and we can estimate GJ( .) using a
kernel-conditional KM estimate &xc( .|xJ) = &J(.) (considering as uncensored
those observations for which we observe Cl, i.e., those observations such that
d = 0). Replacing P(ZJ>t+b’XJ|Qn) and Gj(t+b’xj) by these estimates in the

1
last expression of (2.28) we obtain

= . ’
B tln)=1-n 2Jﬁnj(t+b x),

where finj(u) E I(ZJ>u)/(1-&J(u)). Observe that finj(u) is a well-defined

13




function: 1- G(u) O »uz Z » I(Zj>u) =0 » flnj(u) = 0. The natural way

to generalise OLS estimation is to define
ASD , 2,s -1 'y 12
B~ = argmin Jt dHnb(t|Qn) = argmin -n ZJ(u-b XJ) dﬁnj(u). (2.29)
b b

Let us analyse I?nj. This is a step-function whose discontinuity points are
(Z) v ¥, where $& (Z : 3=0, Z<Z). Flnj(u) is 1 until its first
discontinuity point, non-decreasing in ('°°'ZJ) and 0 in [Zj,co). For j#i,
denote wj(t) the size of the jump up of I‘-\InJ in Zl (wj(t) will be zero if tt?J)

and WJ the size of the jump down of Flnj in ZJ. Then, (2.29) may be rewritten
as

2SD -1 ' V2 _ ey )2
B = argmin n ZJ{WJ(ZJ b XJ) ZwaJ(U(Zl b XJ) ). (2.30)

When there are no ties among the observations of Z, it is possible to obtain a
simple expression for (2.30). Taking into account that (2.10) holds, algebraic

manipulation in (2.30) shows (see appendix) that

A 2SD
= {LX X,/ zjx oo (2.31)

where X W denotes the observation which corresponds to Z(J)' which is the jth

order statistic of the Z’s and the "synthetic data" Z are defined as

*SD

2y 2" lw (iXZ, ) (2.32)

(l 1)
where Z = 0, WJ( 1) = 1 and for Kisjsn

I( 5k=0)
, (2.33)

WD = 1-1[ 14 Bn(k)(x(,l)) ]
J nk:l ZJ\ )

gz k+an( s )(X(J)

and now B ( x)=K((X m-x)/h)/{JK( (X U)—x)/h).
The expression (2.32) which we have obtained is more complicated than the
expression deduced by Leurgans (1987) in the context of non-random regressors

and equal censoring for all observations. However, the relation between the
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original data and the synthetic data is the same: if no times are censored,
WJ( i) is identically equal to 1 and the synthetic data equal the original
data; when there are censored observations, the gaps between consecutive

observed times are magnified (see Leurgans 1987).

It has not been established yet under what conditions éSD is a consistent
estimate of B. Leurgans (1987) proved that her estimator (whose expression is
simpler than (2.32) because their assumptions are more restrictive) is
consistent and asymptotically normal when it is used to analyse the difference
between two means, but its consistency was not discussed in general linear
regression models. In Section 3 we will examine the performance of ESD in

various special models.
2.5. Other estimators

In this section we present three other estimation procedur’es which can be
implemented in our model. They have been already introduced by Miller (1976),
Chatterjee and McLeish (1986) and Gonzalez-Manteiga and Cadarso-Suarez (1991).
They will be referred to as "Miller estimator", "Linear Attribute Method (LAM)

Estimator” and "Gonzalez-Manteiga and Cadarso-Suarez (GC) Estimator"”.
2.5.1. Miller estimator.

It is well-known that in the linear regression model (1.1)

B = argmin [uzde(u) (2.34)
b

where, for beRP, F° denotes the distribution function of the random variable
T-X’b. In the absence of censorship, the OLS estimator is obtained by
replacing in (2.34) the unknown distribution function F° by the empirical
distribution function of T-X’b constructed from the sample. When censorship is
present, F° may be replaced by its KM estimator; thus we would obtain what
Miller (1976) termed "Kaplan-Meier LS estimator”,
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~AKM-0LS

" \2
B argmin ZJWJ( bX ZJ—XJb) ,

b

where wl(b) denotes the size of the jump in ZI-X;b of the KM estimate f‘:M.
This procedure is not useful in practice because the resulting optimization
problem is so involved that numerical computation of the estimate becomes
extremely difficult. Miller suggested a procedure to circumvent this
difficulty when the error terms are supposed to be i.i.d. He suggested to
obtain estimated residuals with an initial estimate Bo of B; then, it is
possible to construct with them a KM estimate F :M(BO) of the distribution

function of the error term FS(.). Now we can consider
A M1 2 2
= i -X’b N

B argmbn ZJWJ(BO)(ZJ | )

where wj(ﬁo) is as defined in (2.14). This estimator is usually referred to as

AKM-0OLS

Miller estimator; it is much easier to compute than B . Miller suggested

to use the OLS estimate for the uncensored data as initial value Bo'

Obviously, iteration is possible and it may improve the performance of
the estimate. Though Miller proposed this method for the fixed regressors
model, his estimator is also applicable to our stochastic regressors context:
observe that, in order to justify the expression for Bm it is not necessary
to assume that X or C are fixed non-random variables or that the distribution

functions of C|)('=x1 are all the same.

Due to the complexity of the optimization problem which has to be solved
to obtain ﬁm, conditions under which this estimate is consistent have not
been established yet. In simulations, it seems to perform adequately in fixed
regressors models in which the censoring pattern is generated in a realistic
way (see Miller and Halpern 1982, or Heller and Simonoff 1990). However, it is

possible to produce examples in which ﬁm is not consistent (see Miller 1976).
2.5.2. Linear Attribute Method (LAM) estimator.

This method was first proposed by Chatterjee and McLeish (1986); it is also

iterative. Suppose we have an initial estimate éo (they suggest to use the OLS
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estimate for the whole sample as an initial value). Chatterjee and Mcleish
proposed to estimate B applying OLS to the transformed data set {(Z::,Xl),
Isisn}, where Z(l: = 6121 + (I-Gl)max(zl,x;éo). This estimate, which we will
denote BLAM, seems reasonable. When ¢Sl = 0, we do not know the value of Tl.
but we do know that Tl>Zl; therefore, we will replace the unknown value Tl by
the fitted value X;éo if the latter is greater than Zl; otherwise we will
simply replace Tl by Zl. Again, iteration is possible.

Chatterjee and McLeish (1986) do not study the asymptotic properties of
this estimate when the distribution function of the error term is unspecified.
Heller and Simonoff (1990) propose a "modified linear attribute method (MLAM)
estimator”, but they do not give a proper justification for their
modification, so we will not consider it here. Neither did they discuss the
consistency of the LAM or MLAM estimators. We will examine the performance of

the LAM estimator in Section 3.
2.5.3. Gonzalez-Manteiga and Cadarso-Suarez (GC) estimator.

Gonzalez-Manteiga and Cadarso-Suarez (1991) proposed an estimator of B based
on prior nonparametric estimation of the regression function. We may obtain
the expression for the GC estimator by generalising the procedure proposed by
Koul et al. (1981) in a different way to the one we discussed in Section 2.3,
although Gonzalez-Manteiga and Cadarso-Suarez (1991) did not originally deduce

their estimator in this way.

Let us denote «(38,Z,X) = ¢SZ(1-G(Z|X))-l and m(x) = E[a(G,Z,X)|X=x]. From
(2.25) we know that m(x) = x’B; hence, E[(m(X)-X'B)Z] = 0 and, under

regularity conditions,

B = argmin E[(m(X)-X'b)*]. (2.35)
b

The right-hand expression in (2.35) cannot be directly estimated by its sample
analog because m(.) is unknown. This problem may be solved in two steps:
first, observe that m(.) is a conditional expectation, so it could be
estimated using any standard nonparametric procedure if af.,.,.) were known;

then, «f(.,.,.) is not known because we ignore G(.|x), but we may replace this
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quantity by a Kkernel-conditional KM estimate 5KC(.|x). Thus, let us define
(8,2,X) = 82(1-& (z|X))") and

m(x) = ¥ a(8 ,Z ,X)B_(X), (2.36)
$ $ S ns

where an(') is as defined in (2.9)5. In view of (2.35) we are motivated to

consider
8% = argmin n'lZJ(r?t(XJ)-X;b)z,
b

which is to say, écc is the estimate we obtain applying the OLS procedure to
the transformed data set {(m(X J).X J), 1s j=n}.

Gonzalez-Manteiga and Cadarso-Suarez (1991) give no proof of _the
consistency or asymptotic normality of EGC. However, in Gonzalez-Manteiga and
Cadarso-Suarez (1994) a similar estimator to Bcc is introduced in the context
of non-random regressors and its asymptotic properties are established. It is
expected that EGC behaves in a similar way as the estimator which is discussed

in Gonzalez-Manteiga and Cadarso-Suarez (1994).
3. SIMULATION STUDY

We have generated observations from six different models and computed the
various estimators which have been described in Section 2. On generating
models we have tried to cover as wide a variety of situations as possible.
Specifically, models have been selected in such a way that it is possible to
analyse the influence on all estimators of the following characteristics: the
distribution function of the censoring variable; the coefficient of
determination Rz; and the degree of censorship (DC), that is, the proportion

of censored observations in the sample.

In Models 1-4, (g.,c)" ~ N((0,0)’,ozzz), X ~ N(0,1) and X is independent
of (e‘,ez)'. Additionally, T = Bx+ Bzx t e, C=q9+ X2 te, where sz 2, Bz=

5
Observe that the smoothing valueA used In (2.36) Is not necessarlly the same
as the smoothlng value used to compute GKC(Z|X)'
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1 in all models and,

Model I: 5 =2, o =1 (DC = 50%; R® = 0.5).
Model 2: 7 =4; o =1 (DC = 8%  R® = 0.5).
Model 3: ¥ = 2.5; o° = 0.25; (DC = 24%; R = 0.8).
Model 4: y = 4; ol = 4 (DC = 24%; R® = 0.2).

In Model 5, (el,ez)', X and T are as before with ¢° = 1 and C is
independent of the former and uniformly distributed in (0,6). Finally, Model 6
is a multiple regression model. In this case we have T= Bl-f Ble-f 33x2+ €
with Bl= 2, Bz= Ba= 1, C= 2+ Xl-f X2+ €, and (Xl,Xz,el,ez) ~ N(O,I‘). Thus,

1

Model S: ol = 1 (DC = 24%; R% = 0.5).

2

Model 6: ol =1 (DC = 50%; R% = 2/3).

We wish to study both the finite-sample properties and the asymptotic
behaviour of all estimators. Hence, we have considered two different sample
sizes: n=50 and n=400. There were 1000 replications for each simulation run

ABJ

when n=50; when n=400 there were 500 replications except for é:", é:", BC and

BGC ~-for these estimates we only run 100 replications.

In Section 2 we have discussed the following estimators: B
éx, BSD, ém, BLAM and éGC. Three of these estimators (3:", B
require an initial estimate: é:" and éLAM were computed using as éo the OLS
estimate for the whole sample; ém was computed in two different ways: in
ém-A we used as éo the OLS estimate for the uncensored sample and in ém'B we
used as initial estimate éx, computed using the trimming value M and the
smoothing value hl which are specified below. All nonparametric estimates have
been computed using the univariate Epanechnikov kernel (see Section 2.3.4) as
kernel function (in Model 6 the kernel function we used was the product of two
univariate Epanechnikov kernels). Five of the estimators (3';". é:", 32", éx
and Bsn) required the use of a smoothing value h; in all cases three different
h were used: h = 3n~V4, h = en”* and h, = 1000. The latter amounts to the
same thing as if we considered G‘ = G and estimated this function with a KM

estimate rather than with a kernel-conditional KM estimate. The values hl and
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h2 have been selected inspecting the performance of the nonparametric

. . . -1/4
estimates in a small number of simulated data; we use n

because this rate
of convergence satisfies all assumptions in Dabrowska (1989) (note that the
usual rate n° does not satisfy the assumption required in Corollary 2.2.iii
of this paper). One of the estimators (écc) requires the use of two smoothing

* ~
values (hA,hB) = h", where h* is used to compute Gm(.|x) and h® is used to

compute m(X) as defined in (2.36); as before, we used three different h*: h?,
A LA B -1/4 B -1/4 .B _
hz' h3 are the same as hl, hz. ha above, and hl = 2n =, h2 = 3n , ha =

4n'l/4. Finally, éx requires the use of a trimming value; as Koul et al.

(1981) suggest we used M = 3( log(n))ys.

In Tables 1-5 we report the bias and variance (VAR) of the estimates of
the intercept (Bl) and slope (Bz). The columns labelled "MSE" contain 10000 x
{MSE(él) + MSE(éz)) (MSE denotes Mean Squared Error). In Table 6 we report
corresponding results for Model 6; note that in this Model the slope is
(32,63); in this table the column labelled "MSE" contains 10000 x {MSE(él) +
MSE(éz) + MSE(és)), and the columns labelled "Slope-Bias" and “"Slope-VAR"
contain {IBias(éz)l + IBias(és)I)/Z and {VAR(éz) + VAR(és))/Z, respectively.

The main conclusion from the results in Tables 1-6 is that ﬁi" and BSD are
the preferred estimators. In fact, comparison of all estimators from the point

of view of mean squared error provides the following ranking,

Group 1: éaj. ésn;
Group 2: ﬁeJ. ém;
Group 3: I§EJ; 3Gc;
Group 4: éx.

where the estimators in Group i are preferable to those in Group j whenever

i<j, regardless of the characteristics of the simulated model. Observe that
ALAM

B

estimator.

is not included in this ranking -we discuss below the behaviour of this

In most models, ésn

performs slightly better than éi". but the behaviour
of the former depends heavily on the smoothing value, whereas the choice of
this value is not so crucial when using éi". If we look further into Tables
1-6, when comparing éSD and ﬁi" we observe that the former is generally more

biased than the latter when estimating the slope coefficient, but éSD is less
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biased than é:" when estimating the intercept coefficient. However, this does
not seem to imply that é:" behaves better than ésn in multiple regression (see
Table 6), because the higher bias of ésn for the slope coefficients is
compensated by a lower variance of this estimate for the intercept

coefficient.

The two other estimators which have been introduced following Buckley and
James’s procedure (ﬁ:”, ﬁz") perform worse than é:” in all models, and the
difference between the latter and the two others is remarkable under a high
degree of censorship is high (Models 1 and 6). In fact, this is not a
surprising feature of the estimators, because ﬁ:J uses more information from
data (it requires the use of an initial value), and in the models we simulated

the information provided by this previous estimation was accurate.

Miller estimator performs almost as well as those in Group 1 only when
the degree of censorship is low (Models 2 and 3). The main advantage of this
estimate is that it requires no selection of smoothing value. Moreover, the
results in our simulation are very similar irrespective of the initial value
which was used. Another advantage of Miller estimator is that it is

computationally much cheaper than the others.

The estimator introduced by Gonzalez-Manteiga and Cadarso-Suarez (ﬁcc)
and the estimator based on Koul, Susarla and Van Ryzin’s procedure (ﬁx)
perform very poorly when the sample size is n=50; when the sample size is
n=400 their behaviour is closer to that of the other estimators. Their main
drawback is that they both are based on the equation E[8Z(1-G(Z |X))'1|X=x] =
x’B, and, hence, their properties depend crucially on the estimation of
(1-G(Z|X))'l; in practice, this value is very poorly estimated and, as a
result, écc and ﬁx do not perform well. The behaviour of the former is usually
better than the behaviour of the latter because in the former there is a
second process of smoothing which partly reduces the negative effects which
the poor estimate of (1-G(Z |X))'l causes. In fact, in some cases (Models 2, 4
and 6) écc performs almost as well as Miller estimator. As écc depends on two
smoothing values, it is likely that its performance improves with data-driven
bandwidths and, then, be comparable to those who appear as better in our

previous ranking.
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The estimator based on the linear attribute method (éLAM) seems to

perform well when the degree of censorship is low (especially in Model 2) but
very badly otherwise, It is easy to explain the results which we have obtained
for this estimator. We must just take into account that BLAM slightly modifies
the OLS estimator. In Models i-4 and 6, the OLS procedure yields a consistent
estimate for the slope, but an inconsistent estimate for the intercept. And
the bigger the degree of censorship, the greater the difference between B and
the limit in probability of its OLS estimate. The estimator BLAM simply
reduces the negative effects of censorship, but does not remove them, that is
to say, the corresponding estimator of the intercept is less biased than the
OLS estimator but not consistent. In Table 2 (very low degree of censorship)
we observe that BLAM is actually the best estimate when n=40, but the bias of
the estimate of the intercept does not converge to 0. In Tables 1, 3, 4 and 6
we observe again that this is an unbiased estimate of the slope but a biased
estimated of the intercept (exactly the same as the OLS estimator), and the
bigger the degree of censorship the worse BLAM performs (again, the same as
the OLS estimator). Finally, in Model 5 both the slope and the intercept
estimates are biased and their bias does not converge to O because neither the
OLS estimate for the intercept nor the OLS estimate for the slope are
consistent. To sum up, the linear attribute method can be advisable for a
practitioner as an easy~to-compute procedure which produces estimates which
are close to the true parameters when the degree of censorship is low {what is
not a surprise because the higher the degree of censorship, the more serious
is the problem of inconsistency); but it cannot be seriously taken into

account because it does not produce consistent estimates.

The results of our Monte Carlo experiment also provide the following

further information:

(a) All methods are more effective under a stronger regression model, but

this feature does not affect the relative behaviour of the estimators.
(b) As expected, all methods are more effective when the degree of
censorship is small. And, except for ELAM, this feature of the underlying

model does not affect either the relative behaviour of the estimates.
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(c) When censoring is equal for all observations (Model 5), the four
procedures designed for wunequal censoring (all except the linear attribute
method and Miller’s estimator) continue to perform adequately. However, if
censoring is unequal for all observations (Models 1-4 and 6) and this fact is
ignored, then the performance of the estimates may worsen dramatically (see,
for instance, the bad performance of ésn when the smoothing value is ha' that
is, when it was not taken into account that G(.|x) varies with x). Therefore,
it seems highly advisable to use a method which permits for unequal censoring

when the researcher is not sure of the equal censoring assumption.

(d) In multiple regression models all estimators worsen their behaviour,

but, again, their relative performance remains unchanged.
4. CONCLUDING REMARKS

The objective of this chapter is to propose estimation procedures in the
semiparametric linear regression model with censored data and stochastic
regressors. Specifically, two important assumptions made in the literature on
the topic have been relaxed: we do not consider that regressors are fixed
non-random variables, and we do not consider, either, that the distribution
function of the censoring variable is the same for all observations ("equal
censoring”). The former assumption does not affect the estimation procedures,
but the latter does influence the behaviour of the estimators. We have shown
that combining kernel-conditional KM estimators with previous techniques, the
resulting estimators perform much better than the original ones. And this fact
is meaningful because the assumption of equal censoring is not very realistic
in practice. In most situations where these models apply (for example, the
Stanford heart transplant program data contained in Miller and Halpern 1982,
or the survival times of two groups of cancer patients contained in Leurgans
1987) it is unreasonable to assume that censoring is not affected by the
characteristics of individuals. As our simulations show, inferences based on

this false assumption may be entirely wr‘ongb, producing invalid results (see,

bLeurgam (1987), aware that the unequal censoring assumption is
unreasonable In her examples, proposed to group ‘data and then apply the
synthetic data  procedure. In fact, the procedure we propose in section
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for example, the estimate obtained with Koul et al. procedure in Leurgans
1987, Table 1). The alternatives proposed in this chapter seem to provide good

results.

Our study confirms some previous results. It was already known that in
the model with equal censoring for all observations the estimator based on
Koul, Susarla and Van Ryzin's procedure performs badly (see, for instance, the
first example provided by Leurgans 1987), whereas the estimator based on
Buckley and James’s procedure seems to be the preferred one (see Heller and
Simonoff 1990). But our conclusions are beyond this. Our results show that it
is necessary take into account the possibility of unequal censoring among
observations and we describe how estimation can be performed in this
situation. Under equal censoring, the new estimators permitting for unequal
censoring produce results which are comparable to those obtained with
estimators designed for equal censoring (see Table S5), but the converse is not

true.

However, it must not be forgotten that we have made no attempt to analyse
the influence of the smoothing value (bandwidth). Further research is required
on the problem of optimal selection of this value in this model. Our results
might be affected by this selection because most of the procedures we have
studied require a smoothing value. The performance of estimates may improve

with data-driven bandwidths.

APPENDIX.~ Proof's

Proposition 1.- If E|T|<w, (1.2), (2.7) hold and xeR® is such that P(C ST )>0,
then (2.20) holds.

PROOF: Given seR, P(T ss|C_sT ) = y (s)/P(C_ST_ ), where
X X X X X X

V()= II(uss){II(VSu)dG(V|x))dFT(u|x) = [rtuss)ccul 0 w0,

2.3 generalises this procedure In a less nalve way.
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On the other hand,
P( CxSTx) = I{II( vsu)dG(v|x))dF Te u|x) = IG( u|x)dFT( u|x).
Thus, with the notation introduced in Section 2.2,
Juawx(u) JuG(u]x)dFT(u|x)

J(x) = E[T_|C.sT ] = - . .
X X X
Pcc,sT ) [eculx)dFT(ulx)
X X

Proposition 2.- With the same conditions as in previous proposition, if also
(1.1) holds, then (2.15) holds.
PROOF: Given (a,b) € RxR, denote f(a,b) = a x I(a<b). Then 8Z = f(T,C).

As E|T|<o and 8Z s T a.s., we can obtain

E[3Z|X=x] = E[f(T,C)|X=x] = J(Jf(u.v)dG(v|x))dFT(u|x) =

Iu{JI(u<v)dG(v|x))dFT(u|x) = Iu(I—G(ulx))dFT(u | x). (A.1)

On the other hand, E[(1-8)J(X)|X=x] = J(x) x P(stTx), and both factors were

obtained in proposition 1. Hence,
E[(1-8)J(X)|X=x] = JuG(u|x)dFT(u|x). (A.2)

Now, (2.15) follows from (A.1), (A.2) and (1.1). ]

Proposition 3.- With the same conditions as in previous proposition, if also
(2.16) holds, then (2.17) holds.

PROOF: From (1.1) and (2.16) we deduce that F'(u|x) = F(u-x’). Thus,
this proposition follows from proposition 1 if we simply make the change of

variable s=u-x’B. ]

Proposition 4.- If E|T|<w, (1.2) holds and (t,x)eRxR’ is such that P(tSTx)>0,
then (2.23) holds.

PROOF: Given seR, P(szs|tsTx) = ¢‘x(s)/P(t$Tx), where ¢tx(s) E
II(t<uSS)dFT(u|x). Thus, with the notation introduced in Section 2.2,




udp, (u) JuI(tSu)dFT(u|x)
L(t,x) = EIT |tsT ] = - .
P(tsTx) II(tsu)dFT(u|x)

Proposition S5.- With the same conditions as in previous proposition, if also

(1.1) and (2.7) hold and x is such that E[(1-8)|L(C,X)||X=x]<w, then (2.22)

holds.

PROOF: Given (a,b,c) € RxRxRP, denote g(a,b,c) ®= L(b,c) x I(bsa).

(1-8)L(Z,X) = g(T,C,X). As E[|g(T,C,X)||X=x]<w, we can obtain
E[(I-G)L(Z.X)|X=x] = E[g(T.C.X)|X=x] =

= [(JewvoarTcu]xaeex) = (Lot [rvmswarTw| e .

By (2.23), L(v,x)(II(vsu)dFT(u|x)} = JUI(VSU)dFT(le). Hence,
ELG-8)LZ,X)| X=x] = [([ulvewaF T ))deev|) =
[ut[rovmwace | eaF ] = [uscu|xaF | x)

Now, (2.22) follows from (A.1), (A.3) and (1.1).

Proposition 6.- If (1.1), (1.2), (2.7), (2.8) hold
E[IT|(1-G(T| X)) | X=x]<w, then (2.25) holds.

PROOF: For (a,b,c)e RxRxRP, denote h(a,b,c)= a(1-G(a|c))-l>< I(a<b).

82(1-G(Z|X)™'= h(T,C,X). As E[T|(1-G(T| X)) | X=x]<w,
E[|h(T,C,X)||X=x]<w; hence, we can obtain

E[8Z(1-G(Z| X))} | X=x] = EINT,C.X)|X=x] =
= [([ncuv.xacev|enarT e = [u-aaul o™ [1ucwasv| oiar w] .
Now, JI(u<v)dG(v|x) = 1-G(u|x). Hence, this expression implies that
E[5Z(1-G(Z| X)) | X=x] = IudFT(v|x) = x'B,

where the last equality holds by (1.1).
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Proposition 7.- With the notation introduced in Section 2.4, if there are no
ties among the observations of Z then (2.31) holds.

PROOF: Let us consider the ordered sample ((zm,am,x m)), where the
new order in the sample is such that Z “)<...<Z(n). If now WU) denotes the
size of the jump down of M in Z(J) and, for i<j, wm(i) denotes the size

n())

h . a ~ o . ,
of the jump up of Hn(J) in Zm (HnU) is defined as HnJ replacing (ZJ SJ,XJ)

by (ZU),GU),X U)))’ then the summation in (2.30) may be rewritten as
, 2_ s 2
LW (20X ) o W (X2, 0% )} =

= LW, zm W, oK | )-zwmzmbx }::lwm(z)zm

-1 s p -1 »
- Z‘LIW(J)(L)b Xt 2):"=lwm(t)z WX (A.4)

As H U)( .) is a step-function whose value is 1 until its first discontinuity

point and O in [Z(j)’") and their discontinuity points are contained in the
set (Zm, voes ZU)). then

_ il by o
WJ) Zl=lwm(1) 1 (A.5)

Let us define WJ(I) & 1 and, for Kisj, Wj(i) S Zl‘(:wm(k). (We will
prove below that this expression coincides with (2.33)). Thus, W(J)(l) =

WJ(HI)-WJ(U, and, by (A.5), WJ(J) =W, Taking this into account, (A.4)

may be transformed as follows:

2
= ’ - b’ -
(a.4) = LW Z ”) + X ) W Z X

- LW (1) wa»zm 2b’x, I (W ()W (i0)Z ) =

=

2

-l 2 , _
= LD W 0Z;, - DLW (DZF ¢ X )

» - -1 /.
- 2b xmrz’ Wz, z;‘ﬂwj(uvzm}). (A.6)

Now, if we denote Z(o) E 0 and rearrange terms, (A.6) becomes

, 2_
(A.6) = ()::lwm(zm RN o Y

- 2o'X [T, W (IXZ -2 )1} =

~ 2 2 ’ ’ SD
- Zj(ﬁﬂwj(txz(l) Z(:-n)+ ® xu)) 2b X(J)Z(J)
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=P +Q(b),
n n

where { (b) = z(zm xm) and P = );{):: Waxz(” 1y (2(”) 3
Obviously, as Pn does not depend on b,

~SD A SD ., 2

g% = argmtt,n (ﬁ‘n +Q (b)) argrntt,n EJ(Z(J) b X(J)) (A.7)

Now, (2.31) follows straightforwardly from (A.7). It only remains to prove
that the expression for the weights W( i) defined above coincides with the
right~hand expression in (2.33). As WJ( i) = 1 + w (k), from the

=1 ()
definition of W(J)( k) we deduce that

ww=Hh 2z )= Gy Zo !Xy »! (A.8)

Now, (2.33) follows from (A.8) and (2.10). ]
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TABLE 1

Monte Carlo Results for Model] 1

31

n=50 n=400
Intercept Slope Intercept Slope
Estim.| Bias| VAR| Bias| VAR|MSE'| Bias| VAR| Bias| VAR|MSE'
h |-.151|.035|-.017|.019| 776|-.076|.005|-.008|.003| 144
BY’ h, |-.172|.036|-.050|.020| 881|-.078|.005|-.021|.003| 151
h, |-.180(.037|-.060|.020| 925|-.113|.005|-.024|.003| 213
h |-.285|.027|-.144(.030|1597|-.142|.005|-.091|.004| 374
é:’ h,|-.182|.035|-.363|.022|2219|-.123|.005|-.112|.004| 367
h,|--141|.046|-.501|.024|3414|-.156|.009|-.407|.021|2200
h |--187|.050|-.227|.062|1982|-.097|.007|-.122|.011| 423
ég’ h,| .027|.076|-.356|.059|2622| .024|.007|-.157|.013| 452
h,| .087|.096|-.424|.051|3342|-.053|.008|-.225|.012| 734
h |-.537|.077|-.123|.108|4884|-.322|.015|-.060|.016|1384
B |n,|--320|.121| .414|.341|7352|-.263|.016| .344|.032|2354
h,|-.123|.212| .813|.768| --?| .154|.045(1.355|.261| --7
h |-.097|.026| .121|.028| 785|-.049|.004| .068|.004| 143
gsP h,| .088|.041| .526|.071|3996| .010|.005| .314|.006|1127
h,| -264|.074| .857|.171 --2| .329|.012| .965|.034| --2
i |A |--203|.046|-.002|.048| 1344(-.073|.007| .000|.013| 253
" B |-.238|.045| .010|.045|1470|-.085|.008| .025|.010| 261
- |-.408|.015| .000|.016|1981|-.398|.002| .005|.002|1625
h: -.471|.076|-.215|.091|4344|-.126|.011|-.057|.014| 452
Boc h: -.324|.100|-.138|.201|4245|-.087|.013| .189|.018| 754
h: -.216|.130| .259|.329|5732|-.032|.019| .856|.204|9584
'MSE ®= 10000 x (Mss(él)+uss(éz))
2The corresponding value is greater than 9999




TABLE 2

Monte Carlo Results for Model 2

n=50 n=400
Intercept Slope Intercept Slope
Estim.| Bias| VAR| Bias| VAR|MSE'| Bias| VAR| Bias| VAR|MSE'®
h |-.020|.020|-.006|.022| 431|-.006|.002| .000|.002| 46
é:’ h,|-.026|.021|-.012|.022| 438(-.008|.002|-.003|.002| 49
h, |-.029|.020|-.015|.023| 441|-.009|.002|-.007|.003| 58
h |-.028|.021|-.033|.024| 474|-.012|.002|-.021|.003| 63
é:’ h,|-.003|.022|-.054|.023| 475| .002|.003|-.035|.003| 70
h, | .006|.022|-.076|.023| 537| .016|.002|-.078|.002| 111
h |-.035|.024|-.044|.026| 531|-.017|.003|-.031|.003| 73
ég’ h | .000|.025|-.055|.027| 550| .001|.003|-.042|.003| 78
h,| .009|.026|-.064|.028| 584| .007|.003|-.051|.002| 86
h |-.137|.025|-.071|.039| 883|-.055|.003|-.010|.003| 93
X h,|-.097|.026| .036|.053| 902|-.050|.003| .076|.004| 147
h,|--066|.030| .099 .068|1118| .011|.003| .232|.008| 654
h |-.010|.020| .009|.021| 420|-.007|.002| .006|.002| 47
gs?P h,| .011/.022| .052|.023| 477| .000|.002| .030|.002| 57
h,| -030|.024| .086|.026| 579| .030|.003| .089(.003| 144
ui|A |--027|.022| .015|.022| 451|-.008|.003| .000|.003| 52
" B |-.032|.021| .010|.023| 451|-.008|.003| .001|.003| 53
B“*™ |-.046|.018|-.002|.020| 404|-.045|.002| .000|.002| 63
h’: -.080|.025(-.092|.023| 631|-.039|.003|-.035|.003| 81
BCC h: -.047|.024|-.083|.027| 598|-.002|.003|-.038|.003| 74
h: -.028|.026|-.159|.034| 854|-.014|.003|-.142|.005| 283

'use ® 10000 x (Ms:(él)ms:(éz))
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TABLE 3

Monte Carlo Results for Model 3

n=50 n=400
Intercept Slope Intercept Slope
Estim.| Bias| VAR| Bias| VAR|MSE'| Bias| VAR| Bias| VAR|MSE'®
h |-.036|.005|-.009|.005| 120(-.018|.001|-.003|.001| 18
B:’ h,|-.054|.005|-.017|.005| 137|-.025|.001|-.008|.001| 26
h,|-.058|.005|-.020|.005| 141|-.024|.001|-.011|.001| 27
h |-.021|.006|-.067|.012| 233|-.017|.001|-.025|.001| 29
é:’ h,| .045|.008|-.165|.011| 486| .028|.001|-.091|.001| 110
h,| -072|.011|-.233|.017| 874| .061|.002|-.204|.002| 494
h |-.008|.010|-.095|.022| 418|-.007|.002|-.086|.002| 114
éz’ h,| -086(.015(-.140|.027| 685| .024|.002|-.088|.002| 123
h,| -120|.019|-.174 .029| 924| .073|.002|-.141|.002| 292
h |-.212|.020| .012|.040|1046|-.147|.002| .006|.003| 266
B* |n,|-.050|.026| .360|.099|2568|-.092|.002| .252|.005| 784
h,|-.057|.042| .565|.179|5435| .146|.005| .334|.027|1583
h |-.004|.005| .041|.006| 131|-.009(.001| .020|.001| 18
- h,| .092|.009| .188|.013| 654| .035|.001| .101|.001| 133
h,| -164|.016| .308|.027|1647| .170|.002| .319|.003|1364
w1 |A |--034|.006| .005|.007| 141|-.011|.001| .000|.001| 19
° B |-.044|.006|-.007|.007| 150|-.013|.001|-.002|.001| 19
g-*™ |-.076|.004|-.002|.005| 142|-.076|.001| .000|.001| 67
h: -.150|.015|-.090|.024| 686|-.087|.002|-.041|.002| 132
Bec h: -.057|.014| .087|.042| 666|-.041|.002|-.038|.003| 81
h: -.031|.020| .081|.086|1116|-.017|.004|-.121|.009| 279

'MsE & 10000 x (MSE(él)+MSE(32))
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TABLE 4

Monte Carlo Results for Model 4

n=50 n=400
Intercept Slope Intercept Slope
Estim.| Bias| VAR| Bias| VAR|MSE'| Bias| VAR| Bias| VAR|MSE'
h |-.095|.093|-.014|.082|1836(-.043|.011|-.023|.010| 230
éi’ h,|--106|.093|-.043|.083| 1886|-.052|.011|-.027|.010| 244
h,|--112|.093|-.055|.084|1921|-.056|.011(-.039|.010| 256
h |-.198(.085|-.071|.080|2089|-.097|.009|-.032|.010| 294
és’ h,|-.157|.084|-.173|.070| 2087|-.091|.009|-.064(.010| 313
h,|--143|.088|-.241|.072|2382|-.090|.011|-.227|.011| 817
h |--151|.108|-.105|.099| 2407 |-.084|.017|-.057|.016| 433
Bz’ h,|-.065|.112|-.155|.090|2305|-.044|.017-.063|.016| 389
h,|--046|.116|-.180|.089|2394|-.041|.017|-.112|.015| 462
h |-.567|.091|-.306|.107 |6140|-.291|.013(-.155|.014|1360
Bx h,|--516].099|-.154|.151|5387|-.278|.013|-.015|.018| 1085
h,|--478|.109|-.058|.192|5336|-.210|.015| .265|.032|1606
h |-.059|.086| .050|.085|1774|-.029|.011| .029|.012| 244
BSP h,| .000|.095| .209|.104|2423|-.012|.011| .133|.012| 415
h,| .051|.104| .319|.128|3361| .066|.013| .349|.017|1561
wi|A |--135|.097|-.002|.117 | 2324|-.053|.014| .013|.018| 343
° B |-.161|.107| .059|.117|2539|-.060|.013| .060|.020| 404
LA™ - 310|.071|-.001|.069|2355|-.309|.008| .007|.009|1129
h: -.279|.117|-.135|.100|3121|-.121|.011| .041|.011| 383
gec h: -.190|.130|-.020|.132|2987|-.089|.012| .017|.010| 302
h: -.146|.138|-.025|.161|3209|-.081|.014| .122|.026| 614

'MSE ® 10000 x (Mss(ﬁl)+msz(§2))
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TABLE 5

Monte Carlo Results for Model 5

n=50 n=400
Intercept Slope Intercept Slope
Estim.| Bias| VAR| Bias| VAR|MSE! Bias| VAR| Bias| VAR MSEl
h |-.081|.028|-.127|.026| 769|-.035|.003|-.060|.003| 112
éi’ h,|-.079|.028|-.129|.026| 767|-.033|.003|-.060|.003| 107
h,|-.079|.028|-.129|.026| 765|-.033|.003|-.061|.003| 106
h |-.148(.030|-.193|.037|1260|-.068|.003|-.084|.004| 187
é:’ h,|--156|.029|-.269|.024|1501|-.071|.003|-.093|.003| 194
h,|--166|.030|-.318|.025| 1839|-.072|.003|-.097|.003| 203
h |-.108|.040|-.196|.050|1402|-.041|.003|-.082|.006| 159
éz’ h,|-.080(.039|-.225|.036|1327|-.038|.004|-.095|.006| 158
h,|-.078|.041|-.254|.036|1479|-.034|.004|-.096|.005| 193
h |-.242|.056|-.293|.098|2982|-.099|.006|-.150|.010| 482
B* |n,|-.176|.058|-.233|.151|2945|-.066|.006|-.112|.016| 378
h |-.157|.062|-.216|.189|3216|-.051|.006|-.090|.026| 429
h |-.041|.030|-.068|.035| 710|-.019|.003|-.031|.004| 84
5P h,|-.017|.031|-.034 .054| 870|-.010|.004|-.015|.006| 93
h |-.011].032|-.024|.067| 998|-.006|.004|-.007|.009| 124
1| A |--062|.030|-.086 .041| 827|-.026|.003|-.096|.004| 172
° B |-.041|.032|-.088|.033| 747|-.022|.003|-.091|.004| 163
B "M |- .284|.023|-.189|.026|1652|-.287|.003|-.179|.003|1199
h’: -.192|.054|-.319|.071|2634|-.033|.005|-.151|.006| 349
Bec h: _.130|.053|-.346|.091| 2810|-.021|.005|-.140].008| 330
h: -.108|.055|-.425|.090|3374|-.008|.005|-.162|.009| 403

'MSE ® 10000 x (Msz(él)msz(éz))
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TABLE 6

Monte Carlo Results for Model 6

n=50 n=400
Intercept Slope Intercept Slope
Estim.| Bias| VAR| Bias| VAR|MSE'| Bias| VAR| Bias| VAR|MSE'®
h |-.166|.044| .035|.022|1188|-.136|.005| .021|.004| 279
Bi’ h,|-.193|.044| .025|.020|1239|-.154|.005| .019|.004| 330
h,|--206|.044| .024|.021|1289|-.158|.005| .019|.004| 343
h |--309|.041| .200|.047|3106(-.151|.005| .111|.009| 491
B:’ h,|-.094|.055| .370|.031|4034|-.078|.005| .142|.007| 382
h,|-.030|.080| .511|.036|6756|-.041|.017| .410|.021|2078
h |--263|.073| .286|.073|4525|-.129|.005| .134|.013| 526
Bz’ h,| -172|.121| .356|.072|5492| .080|.006| .151|.013| 482
h,| -272|.165| .420|.063|7244| .211|.009| .280|.011|1429
h |-.441|.046| .235|.060|4703|-.270|.005| .114|.007|1174
¥ h,|-.261|.063| .028|.110|3527|-.161|.005| .074|.010| 622
h,|-.158|.085| .291|.165|6093| .079|.011| .416|.030|4234
h |-.160|.025| .082|.024|1114|-.113(.003| .044|.003| 254
BSP h,| .197|.056| .490|.061|7056| .043|.004| .274|.005|1656
h,| -505|.124| .866|.195 --%| .s566|.016| .942|.032| --?
| A |--217[.051| .000|.047|1916|-.078|.008| .005|.011| 363
° B |-.270|.046| .029|.052|2242|-.103|.008| .030|.012| a4z
BLAM |- .407|.017| .002|.016|2152|-.401|.002| .001|.002|1663
hT -.354|.077| .209|.080|4497|-.162|.004| .092|.006| 591
Boc h: -.290|.081| .058|.129|4298|-.151|.004| .029|.007| 425
h: -.082|.215| .224|.530|9928| .040|.009| .406|.039|4183

lMss E 10000 X (MSE(Bl)#MSE(Bz

2
The

corr

esponding value

)+uss(éa))

ls greater than 9999
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