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1. INTRODUCTION 

Consider the linear regression model 

ElT 1XI • X'f3 a.s. O.I) 

where (T,X) is an IRxlRP-valued random variable such that ElT I<CD and f3 is an 

IRP-vector of unknown parameters. Suppose that we do not observe the variable T 

but instead we observe 

Z = mi.n(C,T) and a = I(T<C) , 0.2) 

where C is an IR-valued random variable and I(A) denotes the indicator function 

of event A. This is referred to as the linear regression model with 

randomly-right censored data and stochastic regressors. T and C are usually 

termed, respectively, the survival time and the censoring variable. This 

chapter deals with estimation of f3 based on a random sample {(Z,a ,X ),
I I I 

l:Si.:sn} when the distribution function of the error term c • T - ElTI Xl is of 

unknown functional form. 

The linear regression model with randomly-right censored data appeared as 

an alternative to the proportional hazards model introduced by Cox (972)2. In 

practice, the linear model 0. I) has been used to analyse censored data in the 

context of survival times in medical trials; T denotes the survival time 

(usually in logarithms) of a patient and X is a vector of individual 

characteristics. Censorship appears because patients often survive beyond the 

end of the trial or are dropped from the study for other reasons; see 

Kalbfleisch and Prentice (980) for examples. In econometrics, this model is 

2
The continuous veralon of the 

[T(t Ix)/(l-FT(t 1x»-I = 'Mt)exp{x'f3), 
proportional hazards model 

where [T( .1 X) and FT( .1 x) 
specifies 

denote the 

underlylne conditional density and distribution function of TIX=x, 
respectively. Estimation procedures In this model and applications may be 

found, for example, In Kalbflelsch and Prentlce ()980). 

1� 



of interest, in many situations, when .analysing duration of unemployment 

spells (see, for example, Heckman and Singer 1984) or the timing and spacing 

of births (see, for example, Heckman and Walker 1990). 

During the past 18 years, different estimation procedures have been 

suggested in this model when no assumption on the distribution function of the 

error term is made. Most of these procedures are based on the well-known 

Kaplan-Meier (KM) estimator of the distribution function (Kaplan and Meier 

1958). Miller (976) and Buckley and James (1979) proposed iterative 

estimators for the simple linear regression model when the regressor is 

non-random. The former may be also used in multiple regression with random 

regressors but the latter, which also assumes that the censoring variable is 

non-random, depends crucially on these assumptions. Koul et a1. (981) and 

Leurgans (987) proposed procedures which do not require any iteration scheme. 

Both estimators may be used with fixed or random regressors but it is 

necessary to assume equal censoring for all observations, that is, the 

distribution function C of Cl X=x is the same for all L (C = C, l~{~n). 
1 I I 

Chatterjee and McLeish (1986) discussed a method termed the linear attribute 

method. Gonzalez-Manteiga and Cadarso-Suarez 0991, 1994) proposed procedures 

based on prior nonparametric estimation of the regression function for random 

and non-random regressors, respectively. 

The objective of this chapter is to propose and compare various 

estimation procedures when regressors are stochastic and when Cl is not 

necessarily the same for all observations, that is, unequal censoring. 

Specifically, we analyse six estimation procedures. Three of them are new, at 

the best of our knowledge. These three procedures result from combining 

methods which are known to produce accurate estimates with equal censoring 

(Buckley and James 1979, Koul et a1. 1981 and Leurgans 1987) with kernel 

nonparametric estimates of Cl' The three other procedures which we consider in 

this chapter have already appeared in the literature (Miller 1976, Chatterjee 

and McLeish 1986 and Gonzalez-Manteiga and Cadarso-Suarez 1991) and may be 

used in this context of random regressors and unequal censoring with no 

modification (the first one and the second one were not specifically designed 

for this stochastic-regressors model, but may be straightforwardly adapted to 

it). 
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In Section 2 we first describe briefly the well-known Kaplan-Meier and 

kernel conditional estimators. The methodological contribution of this chapter 

is contained in Sections 2.2 to 2.4, where we describe the three new 

estimation procedures. For completeness, we also present the three other 

estimators to be compared. In Section 3 we carry out an e)Ctensive simulation 

study in order to examine the performance of all described estimators. In 

Section 4 conclusions on the usefulness of the proposed procedures are drawn. 

Proofs are confined to an appendix. 

2. ESTIMATION PROCEDURES 

2.1. KapIan-Meier estimator and other related estimators 

The key component of the three procedures we propose is the kernel-conditional 

KM estimator (see Beran 1981 or Dabrowska· 1987, 1989), which combines KM 

weights and kernel nonparametric weights to yield a censored-data-set based 

estimate of the conditional distribution function. First of all, let us 

describe briefly the KM and the kernel-conditional KM estimates3
• 

Given a random sample {(Z,c5), lsisn}, where Z mi.n(T ,e ) and 15 =I: 
I I I I I I 

UT <e), denote FT(t) and C(t) the distribution functions of T and e,
1 I 

respectively, H (t) • NZ>t,c5=1) and H (t) • NZ>t) (these are usually
I 2 

referred to as subsurvival functions). It is assumed that 

T and e are independent random variables, and (2.1) 

'V telR, 1 - F
T
(t) > 0 and 1 - C(t) > o. (2.2) 

They are both standard assumptions. (2.1) is an identifiability condition, 

whereas (2.2) is necessary to obtain equation (2.4) below. The latter 

assumption is not very restrictive in practice, because T usually denotes 

survival time (often in logarithms) of an individual. The cumulative hazard 

3
The followlng delcrlptlon I1 adapted from Kalbflellch and Prentlce (1980) and 

Dabrowlka (1989). 
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function� associated with FT
(.) is then defined as 

t 

Nt) • J(1 - FT(s-»-ldFT(s),� (2.3) 
CIlI 

where, for any real function U:R--+IR, 

U(s-) •� Urn U(s+h). 
triO ­

FTIt is possible to relate (.) and the subsurvival functions H (.) and H (.),
1 2 

since the following relations hold: 

t 

Nt) ... - J(H (s-»-ldH (s), (2.5)
2 1 

CIlI 

Notice that, by (2.1), H (t) ... O-F
T
(t»(l-G(t», which is greater than 0 by

2 

(2.2), As 2 and IS are observable, it is possible to estimate the subsurvival 

functions H (.) and H (.) by their sample counterparts,
1 2 

iI (t) = n-1r 1(2 >t, IS =1>, iI (t) = n-1r 1(2 >t), 
1 J J J 2 J J 

where, hereafter, all summations run from 1 to n unless otherwise specified 

and 1(A) denotes the indicator function of event A. Now, replacing H (.),
1 

H (.) by iI (.), iI (.) in (2.5) we obtain an estimate A of the cumulative 
2 1 2 

hazard function, which is referred to as Aalen-Nelson estimate (Aalen 1978, 

Nelson 1972);� and replacing A by A in (2.4) we obtain the Kaplan-Meier (KM) 
T AT

estimate of F (.), which will be denoted as FKM(') (Kaplan and Meier 1958). 

When there are no ties among the observations of 2, the KM estimate may be 

expressed as 

.,. (t) 

E1(2 >2) ] J
FT (t) ... 1 _ nn B B J , 

KM J=l [ r 1(2 it2 ) 
B B J 

where .,. (t)
J 

• 1(2 :st,
J 

IS =1> 
J 

and, hereafter, we arbitrarily define % to be 0 
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and 0° to be 1. 

FT (t) is a non-decreasing right-continuous function which takes values 
KM 

on [0,11. Furthermore, let us denote Z = max(Z ,...,Z). Then, the KM 
(n) 1 n 

estimate satisfies that 

FT (t)=l .. t~Z and a =1 v j such that Z =Z( ); (2.6)
KM (n) J J n 

hence, if there is a censored observation j such that Z =Z then 1-FT 
et) >J (n) KM 

o for all t. 

Susarla and Van Ryzin (980) introduced the following variant of the KM 

estimator, 

r et) 
1+ r UZ >Z ) ] J 

FT (t) E 1-nn 
I. J • 

sv J=l [ 1+ r UZ ~Z ) 
• I J 

They proved that this estimator has the same asymptotic properties as FT (.).
KM 

It was introduced because it satisfies that 1-tT et) > 0 for all t, a property
sv 

which allows us to consider logO-F et» (see Section 2.3 below). Note that,
sv 

when there are no ties among the observations of Z, FT (.) is equal to the KM 
sv 

estimate which we would obtain if we had n+1 observations, consisting of the 

original sample plus an observation (Z ,a ) such that Z ~Z and 
n+l n+l n+l (n) 

c3 = O. 
n+l 

Let us now consider the case when there are regressors in the model. 

Suppose that our random sample consists of ((Z,a,X), l s tsn}, where ZI and 
1 1 1 

a are as before. It is now assumed that 
1 

TIX=x and CIX=x are independent random variables almost surely, (2.7) 

VxelRP and V telR, 1 - FT(tlx) > 0 and 1 - Getlx) > O. (2.8) 

where FT(.lx) and G(.lx) denote now the conditional distribution functions of 

TIX=x and GIX=x, respectively. If we denote H/.\x), H/.lx) and M.lx) the 
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conditional subsurvival functions and cumulative hazard function, respectively 

(these are defined in a similar way to H (.), H (.) and M.»), then similar 
1 Z 

equations to (2.3), (2.4) and (2.5) also hold. In order to obtain a similar 

estimate to the KM estimate, we now estimate H/.I x), H/.I x) using 

nonparametric kernel weights. Thus, for a given xelRP
• let us denote 

for a certain kernel function K:RP ~ R, and a sequence h • h of smoothing 
n 

values. We define now 

H (tlx) • n-1r I(Z >t, a =1)B (x), H (tlx) • n-1r I(Z >t)B (x).
1 J J J nJ Z J J nJ 

Then, the kernel-conditional KM estimate of the distribution function FT(t Ix) 

of rlx=x is 

FT (tlx) • 1- rr:s (1 - dAcslx»,
KC 8 t 

where, now, 

t 
1 

Actlx) • - J(H/s-lx)r dH/slx). 
co 

The estimates FT(.lx) and Ac.lx) have been studied, among others, by 

Beran (1981) and Dabrowska (1987, 1989). As before, when there are no ties 

"'Tamong the observations of Z, we may rewrite FK/tI)x as 

r(t)r UZ >Z)B (X)] J 
t T (tlx) = l-rrn a a J ns • (2.10) 

KC J=l[ r UZ ~Z)B (X) 
a • J na 

We will assume that the kernel function K and the sequence of smoothing 

values h satisfy that 
n 

K(O)>O. K(u)=O 'f/ ue(-l.ll. JK(u)du=l. Ju/(u)du=O. l:Sj:Sp. (2.11) 

4h ~ O. nhP -4 co, nhP+ ~ O. as n ~ co. (2.12) 
n n n 
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----------------------------

Assumptions (2.11) and (2.12) are introduced in order to make sure that 

t T (.1 x) satisfies the weak and strong uniform consistency properties derived
KC 

in Dabrowska (989). If we let h = Mn-ex for some a>O, M>O, then (2.12) holds 
n 

if and only if Cl E OI(p+4)-l,llp), that is, the smoothing value must converge 
opt

to 0 faster than the optimal smoothing value h in nonparametric estimation 
• •• 0 t -l/( +4) n(WhICh satIsfIes h p = Mn p ). 

n 

As before, we wilJ also consider the foJJowing variant of the 

kernel-conditional KM estimator, 

'1 (t) 
K(O)+L 1(2 >2 )K((X -X)lh)] J 

t T (t Ix) • I-nn s s J s . 
[KS J=l K(O)+L 1(2 ~2 )K(( X -x)lh) 

s s J s 

As K(O»O, this estimate satisfies that I-t (t Ix)>O. On the other hand, when 
KS 

there are no ties among the observations of 2, t T 
(t Ix) coincides with the 

KS 

kernel-conditional KM estimate which we would obtain if we had n+l 

observations: the original sample plus an observation (2 ,~ ,X ) such
n+l n+l n+l 

that 2 ~2 ~ = 0 and X = X.n+l (n)' n+l n+l 

We derive now three procedures to estimate f3 in O.I). Our procedures 

adapt those introduced by Buckley and James (979), Koul et al. 098I) and 

Leurgans (987), 

2.2. Estimators based on Buckley and James procedure 

2.2.1. Buckley and James procedure in the equal censoring model. 

Buckley and James (979) assume that ((x,c), l$i$nJ are fixed variables
4

• 
I I 

Thus, equation 0. I) becomes 

T = x'Q + £ l$t$n.
I It-' I 

4 Throughout this chapter we use capital letters to denote random variables and 
small letters to denote fixed non-random varIables. 
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They also assume that E:, ... , E: are independent and identically distributed 
1 n 

(LLd.) random variables with distribution function FE:, and exploit the 

following linear relationship, 

El~ z + (1-~ )H 1 .. x'{3, (2.13)
1 1 1 1 1 

where, if ~ .. 0 then H • ElT IT >c 1 .. x'{3 + EI£ 1£ >c -x'{31, and if ~ .. 1 
1 1 III 1 1111 1 

then H may be arbitrarily defined. Note that if ~ .. 0 then NT >c)>O and 
1 1 1 1 

the expectation in H is well-defined. The idea behind the Buckley-James
1 

estimator is to replace, when ~ .. 0, the unknown value El£ 1£ >c -x'{31 by a 
1 1 1 1 1 

KM estimator. Specifically, let c • Z -x 8 be estimated residuals obtained
J J 1 0 

from an initial estimate ~ of {3. It is possible to construct with them a KM o 
estimate FE: (~ ) of the distribution function F£(.). We can estimate H by

KM 0 1 

I: £ 1(£ >c -x'~ )w (~ )
jJ J 110 J 0 

H • x'~ + ----------- (2.14)
1 1 0 I: 1(£ >c -x'~ )w (~ )

J j 110 J 0 

where w (~ ) denotes the size of the Jump in c of the KM estimate FE: (~ ).
j 0 J KM 0 

Now it is possible to obtain Z = ~ Z + (1-~)H. Equation (2.13) suggests
1 1 1 1 1 

that we could obtain a good estimate of {3 applying the least squares (LS) 

procedure to the data set ((Z ,x ), f.=l, ...,n}. This is precisely the 
1 I 

• {3ABJ (I: ,}-II: Z.. Of ...Buckley-James estimator, .. x x x course, Iteration IS 
1 1 1 1 1 l' 

possible and it may improve the performance of the estimate. Buckley and James 

(1979) suggest to use the LS estimate for all observations as initial value 

Buckley and James (1979) do not establish the asymptotic properties of 

their estimator. James and Smith (1984) studied its weak consistency assuming, 

among other conditions, that regressors and censoring variables are all 

non-random. Ritov (1990) and Lai and Ying (1990 proposed modified 

Buckley-James estimators and established their asymptotic properties using 

stochastic integral representations of their modified estimators. We do not 

follow their approach here. Instead, we will transform relation (2.13) to 

permit random censorship and discuss how we can use the resulting equaiities 

to obtain estimates of {3. 
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2.2.2.� Buckley and James procedure in the unequal censoring model. 

Given xe IRP
, let T and C denote the conditional random variables T IX=x 

x x 
and CIX=x, respectively and FT(.lx), G(.\x) their distribution functions. 

There are two useful expressions which can be looked upon as generalisations 

of (2.13). On the one hand, given xelRP such that NC sT )>0, denote 
x x 

J(x)� • ElT IC sT 1,
x x x 

and J(x) may be arbitrarily defined if x is such that NC sT )=0 (for example
x x 

J(x) = 0 if NC sT )=0). Under certain conditions it can be shown (see 
x x 

Proposition 2 in the appendix) that 

El~Z + O-~)J(X)I X=xl = x'(3. (2.15) 

This is the most obvious way to generalise (2.13). We must now estimate J(X)
1 

for those i such that C sT. First of all, following Buckley and James 
I I 

procedure, if we also assume that the error term in 0.1) satisfies 

(; E T - X'(3 is independent of the regressors set X. (2.16) 

We prove in the appendix (Proposition 3) that if x is such that P(C sT »0,
x x 

then 

IsG(s+x' (31 x )dF(;(s) IsG(s+x' (31 x )dF(;(s) 

J(x) = x'(3+ = x'(3+ --------- (2.17) 

P(C sT ) 
x� x 

~	 (; ~ 

With� an initial estimate (30' we can construct F ((3) as before. Additionally,
KM 0 

we can reverse the roles of C and T and estimate G(ulx) using a 

kernel-conditional KM estimate G (u Ix) as defined above. We can then consider 
KC 

rc� G (c +x'~ Ix)w(~)
J J KC J 0 J 0 

j(I)(x) • x'~ + ----------­ (2.18) 
o� r G (c +x'~ Ix)w (~ )

J KC J 0 J 0 

9 
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where w (~ ) is as defined in (2.14). Observe that this estimate depends on an
J 0 

initial value ~o and on a smoothing value h. As before, it is possible to 

obtain the transformed data set {(Z( 1 ~X), L=l,•••,n}, where ZO )= a 2 + 
... (1) I I I l 1 

(I-a)J (X), and construct the LS estimate 
1 I 

• f\' X X'rl~ X ZU>. (2.19)
'''1 I I "1 1 I 

Again, iteration is possible. We will use the LS estimate for the whole sample 

as initial value ~ . o 

We can estimate J(x) in an entirely different way without using any 

initial estimate of {3. We prove in the appendix (Proposition 0 that if x is 

such that P(C :SoT »0, then J(x) can be also written as 
x x 

JUG(uIX)dFT(ulx) 

J(x) = (2.20) 

JG(UIX)dFT(U\X) 

We can estimate directly G(ulx) and FT(ulx) from the original data set with 

kernel-conditional Kaplan-Meier estimates F~/.I x) and a~/.I x) and introduce 

them into (2.20) to obtain 

J�ua (u Ix )dFT (u Ix) I: 2 a (2 Ix)w'"�
KC KC J J KC J JJ(Z)(x) = _ 

= (2.20 

a (uIX)dFT (ulx) I: a (2 Ix)w'"
J KC KC J KC J J 

where now w'" denotes the size of the jump of FT (.1 x) in 2. As before, we can� 
J KC J (2)� 

now apply the LS procedure to the transformed data set {(Z I ,XI)' L=l,...,n},� 

where Z(2)= a 2 + (I-a )J(2)(X) and obtain ~BJ whose expression is like the 
I I I I I ( ) B (2) 

right-hand expression in (2.19), replacing ZI1 by ZI . 

Another equality which is a generalisation of (2.13) in our context may 

be obtained as follows: for (t,X)ElRxIRP such that P(tsT )>0, denote Ut,x) • 
x 

ElT ItsT 1 and, as before, Ut,x) may be arbitrarily defined if P(tsT )=0. 
x x x 

Then, we prove in the appendix (Proposition 5) that under certain conditions 
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£[6Z + (1-6)L(Z,X)IX=x] = x'(3. (2.22) 

If we want to use this expression in order to get an estimator of (3, we must 

estimate the unknown values UZ,X) for those t such that C sT . Note that 
I I I I 

(Proposition 4 in the appendix) if (t,x) is such that P(tsT )>0, then 
x 

Ut,x) =--------- (2.23) 

As before, we can replace FT(.1 x) by its kernel-conditional KM estimate 

FT (.Ix) and obtain
KC 

L(t,x) E 

where w.... is as defined in (2.20. Again, we can define 2(3)= 6 Z + 
J I I I 

(1-6 )i.(z IX ) and obtain ~BJ applying LS to the transformed data set. 
I I I C 

To sum up, we have obtained three different estimates for (3 by adapting 

Buckley and James procedure to our model. The first one depends on an initial 

estimate ~ and a smoothing value h; the second and the third ones depend on a o 
smoothing value h but not on any initial estimate. In Section 3 we will 

examine and compare the performance of these estimates. 

2.3. Estimator based on Koul, Susarla and Van Ryzin's procedure 

Koul et al. (1980 assume that regressors are non-random and the distribution 

function of the censoring variable Cl is the same for all observations. They 

exploit the relation 

£[6 Z (1-G(Z ))-1] ... x'(3, (2.24)
1 1 I I 

where G denotes the distribution function of Cl' which is assumed to satisfy 

l-G(t) > 0 for all t. Then, they replace the unknown quantity l-G(ZI) by 

11 



I-G (Z), where GSy(t) is as defined above reversing the roles of C and TSy I 

(that is to say, considering as uncensored those observations satisfying 

C :sT). A trimming function, trimming out large Z values, is also introduced. 
I I 

This trimming is necessary because the explosive behaviour of the asymptotic 

variance of C(t) for large t might worsen dramatically the performance of the 

estimate. Koul et al. 0980 prove that, under certain regularity conditions, 

this estimate is consistent and asymptotically normal. However, in simulation 

studies and empirical applications it seems to perform very poorly (see Miller 

and Halpern 1982, Leurgans 1987, Heller and Simonoff 1990 and 

Gonzalez-Manteiga and Cadarso-Suarez 1991). 

In our model, (2.24) may be transformed to yield (see Proposition 6 in 

the appendix), 

(2.25) 

where now GCI x) denotes the distribution function of Cl X=x, which is assumed 

to satisfy (2.8). In view of (2.25), we are motivated to define ZK = 
1 

~ Z O-C (Z IX ))-1, where C (.1 x) is as defined above reversing, again, the 
I I KS I I KS 

roles of C and T. As mentioned above, we use CK/.lx) rather than CK/.lx) 
because the former satisfies 1-C (t Ix) > 0 for all t. The corresponding LS 

S 
"'K -1 ... /estimate is f3 := lL X X'I} rX Z I where I = UZ :SM) for a sequence M • M 

11111111 I I n 

of trimming values. The asymptotic behaviour of this estimate is discussed in 

Section 3. 

2.4. Estimator based on Synthetic Data 

Leurgans (987) introduced the use of synthetic data in the estimation of 

linear regression models with random censoring. We discuss here how this 

procedure is implemented in our model. 

The synthetic data procedure arises by generalising a well-known property 

of classical least-squares estimation. In a linear regression model like 

0.0, given nelN and belRk
, let U be a discrete uniform random variable with 

n 

support {l, ..., n}, independent of (Tj'X/ ls Js n. Define 

12 



~ E r I(U =J)(T -X'b).
nb J n J J 

Thus, ~ is a random variable which is equal to T -X'b with probability n -I 
nb J J 

(1:SJ:sn). Denote 0 • {X =x, •••, X =x}. The distribution function of ~ 10 
n I Inn nb n 

is H (tIO) = n-IrFT(t+b'x) = n-1rF£:(t+(b-IV'x), where FT(.) and F£:(.)
nb n J J J J J J J J 

denote the distribution functions of T 1X =x and £: IX =x, respectively. If 
J J J J J J 

we assume that the error term in 0.1) satisfies that 

El£:
2 

Xl = tr 
2
E (0,00) a.s., (2.26)1 

2 I 1 2 -Ithen El~ 0 = tr + (b-f3)'(n r x x' )(b-f3), and 
nb n J J J 

f3 =argmin El~2 10 1 • argmin Jt2
dH (t I0 ). (2.27)

nb n nb n 
b b 

Now, if we replace in H (t I0) the unknown quantities FT(t+b'x) by their 
nb n J J 

naive estimates I(T :st+b'X) we obtain H (t I0). If in (2.27) we replace
J J nb n 

H (.10) by H (.10) we obtain ~ = argmin n-Ir (T -b'X )2, which is 
nb n nb n b J J J 

precisely the OLS estimator. In the presence of random censorship, the natural 

way to generalise this property is as follows: as before, let G(.I x) denote 

the distribution function of CIX=x; suppose that (2.7) and (2.16) hold. If we 

denote Gr) E G(.lx/ then 

H (tIO) = 1 - n-Ir NT >t+b'X 10 ) = 
nb n J J J n 

= 1 - n-IrNZ >t+b'X 10 )I(l-G (t+b'x ». (2.28)
J J J n J J 

With our random sample {(Z ,a ,X), l:si:sn} , a naive estimate for 
I I I 

NZ/t+b'X IOn) is I(Z/t+b'x/, and we can estimate Gr) using a 
J

kernel-conditional KM estimate GK/.I x/ • Gr) (considering as uncensored 

those observations for which we observe Cl' Le., those observations such that 

a = 0). Replacing NZ >t+b'X 10) and G (t+b'x) by these estimates in the 
I J J n J J 

last expression of (2.28) we obtain 

H (t10) = 1 - n-IrH (t+b'x), 
. nb n J nJ J 

where H (u) lE I(Z >u)I(l-G (u». Observe that H (u) is a well-defined 
nJ J J nJ 
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function: 1-G (u) = 0 .. U it: Z .. 1(Z >u) = 0 .. H (u) = o. The natural way
J (n) J. nJ 

to generalise OLS estimation is to define 

1~so E argmin Jt2dH (tIC)" argmLn -n- rJ(U-b'X idH (u). (2.29)
nb n� J nJ 

b� b 

Let us analyse H
nJ

. This is a step-function whose discontinuity points are 

lZJ} v 'J' where , E lZ a cO, Z <Z J. H (u) is 1 until its first
J 1 1 IJ nJ 

discontinuity point, non-decreasing in (-fIJ,Z/ and 0 in (Ztoo). For j:t;i, 

denote w (0 the size of the jump up of iI in Z (wa) will be zero if Lf'l)
J nJ 1 J J 

and W the size of the jump down of iI in Z. Then, (2.29) may be rewritten
J nJ J 

as 

(2.30) 

When there are no ties among the observations of Z, it is possible to obtain a 

simple expression for (2.30>' Taking into account that (2.10) holds, algebraic 

manipulation in (2.30) shows (see appendix) that 

~so l~ X X' rl~ X Zso� (2.30= L.J (]) (J) L.J (]) (J)' 

where X denotes the observation which corresponds to Z(J)' which is the Jth 
(])� .... so 

order statistic of the Z's and the "synthetic data" Z(j) are defined as 

(2.32) 

where Z E 0, W(1) = 1 and for 1<iS j S n 
(0) J 

1(a =0)
B (X ) 

W(O E nl-1[1+ n(k) ] k� (2.33)(j)� , 
J� k=l ~ B (X) 

s-k+l n(s) (j) 

and now B (x)=K«X -x)/h)!I: K«X( -x)/h).
n(s) (s) J J) 

The expression (2.32) which we have obtained is more complicated than the 

expression deduced by Leurgans (987) in the context of non-random regressors 

and equal censoring for all observations. However, the relation between the 
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original data and the synthetic data is the same: if no times are censored, 

W (i.) is identically equal to 1 and the synthetic data equal the original
J 

data; when there are censored observations, the gaps between consecutive 

observed times are magnified (see Leurgans 1987). 

It has not been established yet under what conditions ~SD is a consistent 

estimate of f3. Leurgans (987) proved that her estimator (whose expression is 

simpler than (2.32) because their assumptions are more restrictive) is 

consistent and asymptotically normal when it is used to analyse the difference 

between two means, but its consistency was not discussed in general linear 

regression models. In Section 3 we will examine the performance of ~SD in 

various special models. 

2.5. Other estimators 

In this section we present three other estimation procedures which can be 

implemented in our model. They have been already introduced by Miller (1976), 

Chatterjee and McLeish (986) and Gonzalez-Manteiga and Cadarso-Suarez (1991). 

They will be referred to as "Miller estimator", "Linear Attribute Method (LAM) 

Estimator" and "Gonzalez-Manteiga and Cadarso-Suarez (GC) Estimator". 

2.5.1. Miller estimator. 

It is well-known that in the linear regression model 0.1) 

J
2 b

f3 .. argm~n u dF (u) (2.34) 

Fbwhere, for bEIRP, denotes the distribution function of the random variable 

T-X'b. In the absence of censorship, the OLS estimator is obtained by 

Fbreplacing in (2.34) the unknown distribution function by the empirical 

distribution function of T-X'b constructed from the sample. When censorship is 

present, Fb may be replaced by its KM estimator; thus we would obtain what 

Miller (976) termed "Kaplan-Meier LS estimator", 

IS 



~KM-OLS = argmin I: w (b)(2 -x'bl, 
b J J J J 

where w (b) denotes the size of the jump in 2 -X'b of the KM estimate t b 
• 

I I I KM 

This procedure is not useful in practice because the resulting optimization 

problem is so involved that numerical computation of the estimate becomes 

extremely difficult. Miller suggested a procedure to circumvent this 

difficulty when the error terms are supposed to be LLd. He suggested to 

obtain estimated residuals with an initial estimate ~0 of 13; then, it is 
~£ A

possible to construct with them a KM estimate ,. Ki13o) of the distribution 

function of the error term F£(.). Now we can consider 

AMI A 213 = argmin I: w (13 )(2 -X'b) , 
b J J 0 J J 

where w/~o) is as defined in (2.14). This estimator is usually referred to as 

Miller estimator; it is much easier to compute than ~KM-OLS. Miller suggested 

to use the OLS estimate for the uncensored data as initial value ~ . o 

Obviously, iteration is possible and it may improve the performance of 

the estimate. Though Miller proposed this method for the fixed regressors 

model, his estimator is also applicable to our stochastic regressors context: 

observe that, in order to justify the expression for ~MI it is not necessary 

to assume that X or C are fixed non-random variables or that the distribution 

functions of Cl X=x are all the same. 
1 

Due to the complexity of the optimization problem which has to be solved 

to obtain ~MI, conditions under which this estimate is consistent have not 

been established yet. In simulations, it seems to perform adequately in fixed 

regressors models in which the censoring pattern is generated in a realistic 

way (see Miller and Halpern 1982, or HelIer and Simonoff 1990). However, it is 

possible to produce examples in which ~MI is not consistent (see Miller 1976). 

2.5.2. Linear Attribute Method (LAM) estimator. 

This method was first proposed by Chatterjee and McLeish (986); it is also 

iterative. Suppose we have an initial estimate ~O (they suggest to use the OLS 
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estimate for the whole sample as an initial value). Chatterjee and McLeish 
Cproposed to estimate {3 applying OLS to the transformed data set ((Z,X),
1 I 

lSi,sn), where ZC := ~ Z + (1-~ )max(Z ,X'~). This estimate, which we will 
1 11 I 110

Al.AM
denote (3 ,seems reasonable. When ~ := 0, we do not know the value of T,

I I 

but we do know that T >Z; therefore, we will replace the unknown value T by
I I I 

the fitted value X'~ if the latter is greater than Z; otherwise we will 
I 0 I 

simply replace T by ZI' Again, iteration is possible.
I 

Chatterjee and McLeish (986) do not study the asymptotic properties of 

this estimate when the distribution function of the error term is unspecified. 

Heller and Simonoff (1990) propose a "modified linear attribute method (MLAM) 

estimator", but they do not give a proper justification for their 

modification, so we will not consider it here. Neither did they discuss the 

consistency of the LAM or MLAM estimators. We will examine the performance of 

the LAM estimator in Section 3. 

2.5.3. Gonzalez-Manteiga and Cadarso-Suarez (GC) estimator. 

Gonzalez-Manteiga and Cadarso-Suarez (991) proposed an estimator of (3 based 

on prior nonparametric estimation of the regression function. We may obtain 

the expression for the GC estimator by generalising the procedure proposed by 

Koul et al. (981) in a different way to the one we discussed in Section 2.3, 

although Gonzalez-Manteiga and Cadarso-Suarez (991) did not originally deduce 

their estimator in this way. 

Let us denote a.(~,Z,X) := ~Z(1-G(ZIX))-l and m(x) := E('l(~,Z,X)I X=xl. From 

(2.25) we know that m(x) = x'{3; hence, E[(m(X)-X'{3ll = 0 and, under 

regularity conditions, 

(3 := argmLn E[(m(X)-X'bll. (2.35) 
b 

The right-hand expression in (2.35) cannot be directly estimated by its sample 

analog because m(.) is unknown. This problem may be solved in two steps: 

first, observe that m(.) is a conditional expectation, so it could be 

estimated using any standard nonparametric procedure if 'l(.,.,.) were known; 

then, 'l(.,.,.) is not known because we ignore G(.I x), but we may replace this 
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quantity by a kernel-conditional KM estimate (; (.1 x). Thus, let us define
KC 

«(o,Z,X) = oZ(7-(; (ZIX»-I) and 
KC 

m(X) I: E«(0 ,Z ,X)B (X), (2.36) 
s s s ns 

where B (.) is as defined in (2.9)5. In view of (2.35) we are motivated to 
ns 

consider 

AGC ~ A 2
f3 I: argmLn n E(m(X )-X'b) , 

b J J J 

h . f3AGC i h· b i I· h d 

the transformed data set ((m(X ),X), l$J$n}. 

whIC· IS to say, s t e estImate we 0 ta n app ymg t e OLS proce ure to 

J J 

Gonzalez-Manteiga and Cadarso-Suarez (991) give no proof of. the 

consistency or asymptotic normality of ~Gc. However, in Gonzalez-Manteiga and 

Cadarso-Suarez (994) a similar estimator to ~GC is introduced in the context 

of non-random regressors and its asymptotic properties are established. It is 

expected that ~GC behaves in a similar way as the estimator which is discussed 

in Gonzalez-Manteiga and Cadarso-Suarez (994). 

3. SIMULATION STUDY 

We have generated observations from six different models and computed the 

various estimators which have been described in Section 2. On generating 

models we have tried to cover as wide a variety of situations as possible. 

Specifically, models have been selected in such a way that it is possible to 

analyse the influence on all estimators of the following characteristics: the 

distribution function of the censoring variable; the coefficient of 

R2determination ; and the degree of censorship (DC), that is, the proportion 

of censored observations in the sample. 

In Models 1-4, (£,£)' - N((O,O)',rll), X - N(O,V and X is independent
122 

of (£ ,£ )'. Additionally, T I: f3 + f3 X + £1' C I: r + X + £ where f3 = 2, f3 = 
12 12 22 1 2 

S
Observe that the smoothll\& value used In (2.36) Is not necessarily the same 

as the smoothIng value uud to compute (;K/Z IX). 
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---------------------------

1 in all models and, 

Model 1: r = 2; (J' 
2 = 1; (DC = 50%: R

2 = 0.5). 

Model 2: r = 4; (J' 
2 = 1; (DC = 8%: R

2 = 0.5). 

Model 3: r = 2.5: (J' 
2 =0.25: (DC = 24%: R

2 = 0.8). 

Model 4: r = 4: (J' 
2 

(DC = 24%: R
2 

• 0.2).• 4: 

In ModelS, (f:,f: )', X and T are as before with (J'2 = 1 and C is 
I 2 

independent of the former and uniformly distributed in (0,6). Finally, Model 6 

is a multiple regression model. In this case we have T= 13 + 13 X + 13 X + f: ,
1 2 I 3 2 1

with 13 = 2, 13 = 13 • 1 C= 2+ X + X + f: and (X ,X ,f: ,f: )' - N(O,1 ). Thus,
I 23' 122 1212 4 

ModelS: (J' 
2 = 1; (DC = 24%; R2 = 0.5). 

Model 6: (J' 
2 = 1; (DC • 50%; R

2 = 2/3). 

We wish to study both the finite-sample properties and the asymptotic 

behaviour of all estimators. Hence, we have considered two different sample 

sizes: n=50 and n=400. There were 1000 replications for each simulation run 
"BJ "BJ "BJwhen n=50; when n=400 there were 500 repl ications except for 13 , 13 , 13 and

A B C 
~GC -for these estimates we only run 100 replications. 

"BJ "BJ "BJIn Section 2 we have discussed the following estimators: 13A' f3 , f3 ,
B c 

"K "SD "MI "LAM "GC "BJ "LAM f3"MI)13, 13 , 13 , 13 and 13 • Three of these estimators (13 , 13 and 
A 

. . 't' 1 t' t f3"BJ d f3"LAM d' 13" h OLSreqUIre an 101 la es Ima e: an were compute us109 as t e 
A 0 

estimate for the whole sample; 13"MI was computed in two different ways: in 
"MI-A " "MI-B13 we used as 13 the OLS estimate for the uncensored sample and in 13 we o 
used as initial estimate ~K, computed using the trimming value M and the 

smoothing value h which are specified below. All nonparametric estimates have 
1 

been computed using the univariate Epanechnikov kernel (see Section 2.3.4) as 

kernel function (in Model 6 the kernel function we used was the product of two 
• • • ). • "BJ "BJ "BJ "Kumvarlate Epanechmkov kernels. Five of the estimators (13 , 13 , 13 , 13 

A B C 

and ~SD) required the use of a smoothing value h; in all cases three different 
-1/4 -1/4

h were used: h = 3n • h· 8n and h • 1000. The latter amounts to the 
I 2 3 

same thing as if we considered G • G and estimated this function with a KM 
I 

estimate rather than with a kernel-conditional KM estimate. The values hand 
I 
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h have been selected inspecting the performance of the nonparametric
2 

-1/4estimates in a small number of simulated data; we use n because this rate 

of convergence satisfies all assumptions in Dabrowska (1989) (note that the 

usual rate n-
1
/ 

S 
does not satisfy the assumption required in Corollary 2.2.iii 

of this paper). One of the estimators (~Gc) requires the use of two smoothing 
AA B 11 A� B

values (h ,h )� • h , w"'ere h is used to compute G (.\ x) and h is used to 
KM 11 

compute m(X) as defined in (2.36); as before, we used three different h : hA, 
A A B -1/4 B -1/4 B 1

h ,h are the same as h, h, h above, and h • 2n ,h • 3n ,h = 
2 _ /43 K 1 2 3� 1 2 3A 

4n 1 • Finally, (3 requires the use of a trimming value: as Koul et al. 

(1981) suggest we used M = 3(log(n»2IS. 

In Tables 1-5 we report the bias and variance (VAR) of the estimates of 

the intercept «(3) and slope «(3). The columns labelled "MSE" contain 10000 x 
1 2 

(MSE(~) + MSE(~)} (MSE denotes Mean Squared Error). In Table 6 we report
1 2 

corresponding results for Model 6; note that in this Model the slope is 

«(3 ,(3); in this table the column labelled "MSE" contains 1ססoo x (MSE(~) + 
2 3 1 

MSE(~) + MSE(~ )}, and the columns labelled "Slope-Bias" and "Slope-VAR"
2 3 

contain f1Bias(~2)1 + IBias(~3)I}/2 and (VAR(~2) + VAR(~3)}/2, respectively. 

The main conclusion from the results in Tables 1-6 is that ~BJ and ~SD are 
A 

the preferred estimators. In fact, comparison of all estimators from the point 

of view of mean squared error provides the following ranking, 
ABJ ASD

Group 1:� (3,(3 ;� 
AAJ AMI�

Group 2:� (3,(3; 
ABJ AGC

Group 3:� (3c : (3 ;� 
AK�

Group 4:� (3, 

where the estimators in Group L are preferable to those in Group j whenever 

i<j, regardless of the characteristics of the simulated model. Observe that 

~LAM is not included in this ranking -we discuss below the behaviour of this 

estimator. 

In most models, ~SD performs slightly better than ~BJ, but the behaviour 
A 

of the former depends heavily on the smoothing value, whereas the choice of 

this value is not so crucial when using ~BJ. If we look further into Tables 
A 

ASD ABJ
1-6, when comparing (3 and (3 we observe that the former is generally more 

A 

biased than the latter when estimating the slope coefficient, but ~SD is less 
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biased than ~BJ when estimating the intercept coefficient. However, this does 
A 

not seem to imply that ~BJ behaves better than ~SD in multiple regression (see
A 

Table 6), because the higher bias of ~SD for the slope coefficients is 

compensated by a lower variance of this estimate for the intercept 

coefficient. 

The two other estimators which have been introduced following Buckley and 
"'BJ "'BJ "'BJJames's procedure ({3 , (3 ) perform worse than {3 in all models, and the 

B C A 

difference between the latter and the two others is remarkable under a high 

degree of censorship is high (Models 1 and 6). In fact, this is not a 

surprising feature of the estimators, because ~BJ uses more information from 
A 

data (it requires the use of an initial value), and in the models we simulated 

the information provided by this previous estimation was accurate. 

Miller estimator performs almost as well as those in Group 1 only when 

the degree of censorship is low (Models 2 and 3). The main advantage of this 

estimate is that it requires no selection of smoothing value. Moreover, the 

results in our simulation are very similar irrespective of the initial value 

which was used. Another advantage of Miller estimator is that it is 

computationally much cheaper than the others. 

• ("'Gc)The estimator introduced by Gonzalez-ManteIga and Cadarso-Suarez {3 
"'Kand the estimator based on Koul, Susarla and Van Ryzin's procedure ({3) 

perform very poorly when the sample size is n=50; when the sample size is 

n=400 their behaviour is closer to that of the other estimators. Their main 

drawback is that they both are based on the equation E[~ZO-G(ZIX))-IIX=xJ = 
x'{3, and, hence, their properties depend crucially on the estimation of 

O-G(ZI X))-I; in practice, this value is very poorly estimated and, as a 
"'GC "'K •result, {3 and {3 do not perform well. The behavIour of the former is usually 

better than the behaviour of the latter because in the former there is a 

second process of smoothing which partly reduces the negative effects which 

the poor estimate of O-G(Z\X))-I causes. In fact, in some cases (Models 2, 4 
"'GC • • "'GCand 6) {3 performs almost as well as MIller estImator. As {3 depends on two 

smoothing values, it is likely that its performance improves with data-driven 

bandwidths and, then, be comparable to those who appear as better in our 

previous ranking. 
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The estimator based on the linear attribute method (~LAM) seems to 

perform well when the degree of censorship is low (especially in Model 2) but 

very badly otherwise. It is easy to explain the results which we have obtained 

for this estimator. We must just take into account that ~LAM slightly modifies 

the OLS estimator. In Models 1-4 and 6, t~.e OLS procedure yields a consistent 

estimate for the slope, but an inconsistent estimate for the intercept. And 

the bigger the degree of censorship, the greater the difference between f3 and 
1 

the limit in probability of its OLS estimate. The estimator ~LAM simply 

reduces the negative effects of censorship, but does not remove them, that is 

to say, the corresponding estimator of the intercept is less biased than the 

OLS estimator but not consistent. In Table 2 (very low degree of censorship) 

we observe that ~LAM is actually the best estimate when n-4O, but the bias of 

the estimate of the intercept does not converge to O. In Tables I, 3, 4 and 6 

we observe again that this is an unbiased estimate of the slope but a biased 

estimated of the intercept (exactly the same as the OLS estimator), and the 

bigger the degree of censorship the worse ~LAM performs (again, the same as 

the OLS estimator). Finally, in Model 5 both the slope and the intercept 

estimates are biased and their bias does not converge to 0 because neither the 

OLS estimate for the intercept nor the OLS estimate for the slope are 

consistent. To sum up, the linear attribute method can be advisable for a 

practitioner as an easy-to-compute procedure which produces estimates which 

are close to the true parameters when the degree of censorship is low (what is 

not a surprise because the higher the degree of censorship, the more serious 

is the problem of inconsistency); but it cannot be seriously taken into 

account because it does not produce consistent estimates. 

The results of our Monte Carlo experiment also provide the following 

further information: 

(a) All methods are more effective under a stronger regression model, but 

this feature does not affect the relative behaviour of the estimators. 

(b) As expected, all methods are more effective when the degree of 

censorship is small. And, except for ~LAM, this feature of the underlying 

model does not affect either the relative behaviour of the estimates. 
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(c) When censoring is equal for all observations (Model 5), the four 

procedures designed for unequal censoring (all except the linear attribute 

method and Miller's estimator) continue to perform adequately. However, if 

censoring is unequal for all observations (Models 1-4 and 6) and this fact is 

ignored, the~ the performance of the estimates may worsen dramatically (see, 

· h d "SDf or Instance, t e ba performance of f3 when the smoothing value is h , that 
3 

is, when it was not taken into account that G(.lx) varies with x). Therefore, 

it seems highly advisable to use a method which permits for unequal censoring 

when the researcher is not sure of the equal censoring assumption. 

(d) In multiple regression models all estimators worsen their behaviour, 

but, again, their relative performance remains unchanged. 

4. CONCLUDING REMARKS 

The objective of this chapter is to propose estimation procedures in the 

semiparametric linear regression model with censored data and stochastic 

regressors. Specifically, two important assumptions made in the literature on 

the topic have been relaxed: we do not consider that regressors are fixed 

non-random variables, and we do not consider, either, that the distribution 

function of the censoring variable is the same for all observations ("equal 

censoring"). The former assumption does not affect the estimation procedures, 

but the latter does influence the behaviour of the estimators. We have shown 

that combining kernel-conditional KM estimators with previous techniques, the 

resulting estimators perform much better than the original ones. And this fact 

is meaningful because the assumption of equal censoring is not very realistic 

in practice. In most situations where these models apply (for example, the 

Stanford heart transplant program data contained in Miller and Halpern 1982, 

or the survival times of two groups of cancer patients contained in Leurgans 

1987) it is unreasonable to assume that censoring is not affected by the 

characteristics of individuals. As our simulations show, inferences based on 

this false assumption may be entirely wrong", producing invalid results (see, 

Leur&ans (1987), aware that the unequal censorln, assumptlon Is"
unreasonable In her examples, proposed to &roup data and then apply the 

synthetic data procedure. In fact, the procedure we propose In section 
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for example, the estimate obtained with Koul et al. procedure in Leurgans 

1987. Table 0. The alternatives proposed in this chapter seem to provide good 

results. 

Our stUdy confirms some previous results. It was already known that in 

the model with equal censoring for all observations the estimator based on 

Koul, Susarla and Van Ryzin's procedure performs badly (see. for instance. the 

first example provided by Leurgans 1987). whereas the estimator based on 

Buckley and James's procedure seems to be the preferred one (see Heller and 

Simonoff 1990). But our conclusions are beyond this. Our results show that it 

is necessary take into account the possibility of unequal censoring among 

observations and we describe how estimation can be performed in this 

situation. Under equal censoring. the new estimators permitting for unequal 

censoring produce results which are comparable to those obtained with 

estimators designed for equal censoring (see Table 5). but the converse is not 

true. 

However. it must not be forgotten that we have made no attempt to analyse 

the influence of the smoothing value (bandwidth). Further research is required 

on the problem of optimal selection of this value in this model. Our results 

might be affected by this selection because most of the procedures we have 

studied require a smoothing value. The performance of estimates may improve 

with data-driven bandwidths. 

APPENDIX.- Proofs 

Proposition 1.- If ElT I<00. (1.2). (2.7) hold and xelRP is such that NC sT )>0,
x x 

then (2.20) holds. 

PROOF: Given selR. P(T ss IC sT ) = l/J (s)IP(C sT ). where 
x x x x x x 

2.3 &eneral1ses thIs procedure In a less naIve way. 
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On the other hand, 

Thus, with the notation introduced in Section 2.2, 

Iua~x(u) IUG(UIX)dFT(UIX) 

J(x) .. ElT IC $T 1 .. = •x x x 
P(C $T) IG(ulx)dFT(ulx)

x x 

Proposition 2.- With the same conditions as in previous proposition, if also 

0.0� holds, then (2.15) holds. 

PROOF: Given (a,b) e IRxlR, denote !(a,b) - a x Ua<b). Then az .. !(T,C). 

As ElT I<co and az s T a.s., we can obtain 

TElazl X=xl =El!(T,C) IX=xl =I{I !(u,v)dG(v Ix)}dF (u Ix) = 

I U{IUU<V)dG(V Ix)}dFT(u Ix) = I u(1-G(u Ix»dFT(u Ix). (A.O 

On the other hand, El(1-a)J(X)IX=xl .. J(x) x NC $T ), and both factors were 
x x 

obtained in proposition 1. Hence, 

(A.2) 

Now, (2.15) follows from (A.O, (A.2) and 0.0. • 

Proposition 3.- With the same conditions as in previous proposition, if also 

(2.16) holds, then (2.17) holds. 

PROOF: From 0.0 and (2.16) we deduce that FT(ulx) .. F£(u-x'I3). Thus, 

this proposition follows from proposition 1 if we simply make the change of 

variable s=u-x'l3. • 

Proposition 4.- If EITI<co, (1.2) holds and (t,x)elRxIRP is such that P(tST )>0,
x 

then� (2.23) holds. 

PROOF: Given selR, NT $slt$T) = rp (s)/P(t$T), where rp (s) E 
x x tx x tx

TI Ut<U$s)dF (u Ix). Thus, with the notation introduced in Section 2.2, 
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JUdtp (u)
tx 

Ut,x) = ElT It$T ] = = 
x x • 

Proposition 5.- With the same conditions as in previous proposition, if also 

0.0 and (2.7) hold and x is such that El(1-lS) IUC,X) 1I X=X]<CIO, then (2.22) 

holds. 

PROOF: Given (a,b,e) E RxlRxlR P, denote g(a,b,e) - Ub,e) x I(bsa). Then 

O-lS)UZ,X) = g(T,C,X). As El Ig(T,C,X) 11 X=X]<CIO, we can obtain 

ElO-lS)UZ,X)IX=x] - Elg(T,C,X)IX=x] = 

= J(Jg(U,V,X)dFT(ulx)}dG(vlx) =JUv,x)(JI(V$U)dFT(ulx)}dG(vlx). 

By (2.23), UV,X)(JI(V$U)dFT(ulx)} - JUI(V$U)dFT(ulx). Hence, 

ElO-lS)UZ,X)IX=x] = J(JUI(V$U)dFT(ulx)}dG(vlx) = 

JU(JI(V$U)dG(vl x)}dFT(u Ix) = J uG(u I x)dFT(u I x) (A.3) 

Now, (2.22) follows from (A.O, (A.3) and 0.0. • 
Proposition 6.- If (1.0, 0.2), (2.7), (2.8) hold and 

El IT I(1-G(T IX»-ll X=X]<CIO, then (2.25) holds. 

PROOF: For (a,b,e)e IRxlRxlRP, denote h(a,b,e)- aO-G(a Ie»-lx I(a<b). Then 

lSZO-G(Zlx)-l= h(T,C,X). As ElITIO-G(TIX»-lIX-x]<CIO, then 

El Ih(T,C,X) 11 X=X]<CIO; hence, we can obtain 

EllSZO-G(Zlx»-lIX=x] = Elh(T,C,X)IX=x] ..� 

T T�
= J (Jh(u,v,x)dG(v Ix)}dF (u Ix) = J u(1-G(u I x»-l(JI(u<v)dG(v Ix)}dF (u 1x). 

Now, JI(U<V)dG(vlx) = l-G(ulx). Hence, this expression implies that 

EllSZO-G(ZIX»-lIX=x} .. JUdFT(vlx) - x'{3, 

where the last equality holds by (1.0. • 
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Proposition 7.- With the notation introduced in Section 2.4, if there are no 

ties among the observations of Z then (2.30 holds. 

PROOF: Let us consider the ordered sample ((Z(I),c3(1),X(I))' where the 

new order in the sample is such that Z( <",<Z()' If now W( denotes the 
1) n� j) 

size of the jump down of il in Z and, for i<j, w (0 denotes the size
n{j) (j) (j) 

of the jump up of H () in Z() (H ) is defined as H replacing (Z,c3,X)
n j 1 n{j nj j j j 

by (Z{j),c3{j),X{j»)' then the summation in (2.30) may be rewritten as 

r/W(/Z(j)-b'X(j»2- ~:~W{j)(()(Z(I)-b'x(j)l} = 

= r/W{j)Z~ j)+ W{j/b'X(j) )2_ 2W{j)Z{j)b'X(j)- ~:~W(P(i)Z~ll-

- r::~W{j/i)b'X{j)+ 2~::W{j/OZ(I)b'X{j)} (AA) 

As H ( (.) is a step-function whose value is 1 until its first discontinuity
n j) 

point and 0 in [Z{j)'IlO) and their discontinuity points are contained in the 

set (Z , •.•, Z ), then 
(I) (j) 

W - r j 
- I W (0 = 1.� (A.S)

(j)� 1=1 (j) 

1 lLet us define W0) E 1 and, for 1<i~J, W(0 E 1 + r - w (k). (We will 
j J ~=I (j) 

prove below that this expression coincides with (2.33». Thus, wo/i) = 
W (i+1)-W (0, and, by (A.S),� W (j) = Wo)' Taking this into account, (AA)j j j 
may be transformed as follows: 

(AA) - ~ (W Z2 + (b'X l - 2W Z b'X ­
- L-j (j) (j) (j ) (j) (j) (j) 

- ~-I(W (i+I)- W (l»Z2 + 2b'X� ~-I(W (l+1)-W (i»Z( ) = 
1=1 J J (I) (J) 1=1 J J 1l 

= r (~ W (OZ2 - ~-IW (l+1)Z Z + (b'X l-
J 1=1 j (1 ) 1=1 j 0) (J ) 

- 2b'X ~ W (OZ - ~j-lW (i+1)Z n. (A.6)
(j) 1=1 J (I) Lt=1 J (I)� 

Now, if we denote Z E 0 and rearrange terms, (A.6) becomes� 
(0) 

(A.6) = r ri W (()(Z2 _Zz� ) + (b'X )2_
j 1=1 j (1 ) (1-11 (j ) 

- 2b'X{j)~=IW/i)(ZU)-ZU_1l)JJ = 

=r ~ W (()(Z2 _Z2 )+ (b'X l- 2b'X ZSD) = 
jlLt.1 J (1) 0-11 (j) (j) (J) 
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=P + Q(b), 
n n 

where Q (b) E I: (ZSD -b'X l and P • I: nJ \lI (l)(Z2 _Z2 ) - (ZSD lJ. 
n J (J) (J) n J't,=1 J ( II ( 1-I ) (J) 

Obviously, as P does not depend on b, 
n 

"SD ~.. 4SD 2 
~ • argmi.n (r + Q (b» • argmi.n I: (L. -b'X ) (A.7)

b n n b J ( J) (J) 

Now, (2.31) follows straightforwardly from (A.7). It only remains to prove 

that the expression for the weights W(0 defined above coincides with the 
J 

right-hand expression in (2.33). As W/O .. 1 + ~::W(/k), from the 

definition of w(J/k) we deduce that 

(A.8) 

Now, (2.33) follows from (A.8) and (2.10). • 
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TABLE 1� 

Monte Carlo Results for Model 1� 

n=50 n=400 

Intercept Slope Intercept Slope 

Estim. Bias VAR Bias VAR MSE 1 Bias VAR Bias VAR MSE 1 

h -.151 .035 -.017 .019 776 -.076 .005 -.008 .003 144 
1 

"BJ
f3 A 

h -. 172 .036 -.050 .020 881 -.078 .005 -.021 .003 151
2 

h -.180 .037 -.060 .020 925 -.113 .005 -.024 .003 213
3 

h -.285 .027 -.144 .030 1597 -.142 .005 -.091 .004 374 
1 

"BJ
f3 B 

h -.182 .035 -.363 .022 2219 - .123 .005 -. 112 .004 367
2 

h -. 141 .046 -.501 .024 3414 -.156 .009 -.407 .021 2200 
3 

h -.187 .050 -.227 .062 1982 -.097 .007 -. 122 .011 423 
1 

"BJ
f3 h .027 .076 -.356 .059 2622 .024 .007 -.157 .013 452 

c 2 

h .087 .096 -.424 .051 3342 -.053 .008 -.225 .012 734 
3 

h -.537 .077 -.123 .108 4884 -.322 .015 -.060 .016 1384 
1 

f3
"K h -.320 . 121 .414 .341 7352 -.263 .016 .344 .032 2354 

2 

h -.123 .212 .813 .768 -- 2 .154 .045 1.355 .261 -- 2 

3 

h -.097 .026 .121 .028 785 -.049 .004 .068 .004 143 
1� 

.. SD�
f3 h .088 .041 .526 .071 3996 .010 .005 .314 .006 1127 

2 

h .264 .074 .857 .171 -- 2 .329 .012 .965 .034 -- 2 

3 

A -.203 .046 -.002 .048 1344 -.073 .007 .000 .013 253 
" ••tI
f3 

B -.238 .045 .010 .045 1470 -.085 .008 .025 .010 261 

"LAM -.408 .015 .000 .016 1981 -.398 .002 .005 .002 1625f3 
., 

h -.471 .076 -.215 .091 4344 -.126 .011 -.057 .014 452 
1 

f3
"GC 

h 
., 
2 

-.324 .100 -. 138 .201 4245 -.087 .013 .189 .018 754 
., 

h -.216 .130 .259 .329 5732 -.032 .019 .856 .204 9584 
3 

I MSE lE 10000 x (MSE(~ )+MSE(~ ))
1 2 

2 
The correapondlnc value la creater than 9999 
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TABLE 2 

Monte Carlo Results for Model 2 

n=50� n=400 

Intercept S lope Intercept Slope 

Est im. Bias VAR Bias VAR MSE 1 
Bias VAR Bias VAR MSE 1 

h -.020 .020 -.006 .022 431 -.006 .002 .000 .002 46 
1 

~ BJ
f3� h -.026 .021 -.012 .022 438 -.008 .002 -.003 .002 49

A� 2 

h -.029 .020 -.015 .023 441 -.009 .002 -.007 .003 58
3 

h -.028 .021 -.033 .024 474 -.012 .002 -.021 .003 63
1 

~ BJ
f3� h -.003 .022 - .054 .023 475 .002 .003 -.035 .003 70 s� 2 

h� .006 .022 -.076 .023 537 .016 .002 -.078 .002 111
3 

h -.035 .024 -.044 .026 531 -.017 .003 -.031 .003 73 
1 

~ BJ
f3� h .000 .025 -.055 .027 550 .001 .003 -.042 .003 78 c� 2 

h� .009 .026 -.064 .028 584 .007 .003 -.051 .002 86 
3 

h - .137 .025 -.071 .039 883 -.055 .003 -.010 .003 93 
1 

f3 
~K	 

h -.097 .026 .036 .053 902 -.050 .003 .076 .004 147 
2 

h -.066 .030 .099 .068 1118 .011 .003 .232 .008 654 
3 

h -.010 .020 .009 .021 420 -.007 .002 .006 .002 47 
1 

~SD	 
h .011 .022 .052 .023 477 .000 .002 .030 .002 57f3 2 

h� .030 .024 .086 .026 579 .030 .003 .089 .003 144 
3 

A -.027 .022 .015 .022 451 -.008 .003 .000 .003 52 
~MI 

f3 
B -.032 .021 .010 .023 451 -.008 .003 .001 .003 53 

~LAM -.046 .018 -.002 .020 404 -.045 .002 .000 .002 63 

h 
if 

-.080 .025 -.092 .023 631 -.039 .003 -.035 .003 81 
1� 

~ GC if� 

f3� h 
2 

-.047 .024 -.083 .027 598 -.002 .003 -.038 .003 74 

h 
if 

-.028 .026 -.159 .034 854 -.014 .003 - .142 .005 283 
3 

1 MS E� • 10000 x (M S E (~ ) + MS E ( ~ ))
1 2 
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TABLE 3 

Monte Carlo Results for Model 3 

n=50 n=400 

Intercept Slope Intercept Slope 

Estim. Bias VAR Bias VAR MSE 1 Bias VAR Bias VAR MSE 1 

h -.036 .005 -.009 .005 120 -.018 .001 -.003 .001 18
1� 

"BJ� 
h -.054 .005 -.017 .005 137 -.025 .001 -.008 .001 26(3A z 
h -.058 .005 - .020 .005 141 - .024 .001 -.011 .001 27

3 

h -.021 .006 -.067 .012 233 -.017 .001 -.025 .001 29 
1� 

"BJ� h .045 .008 - . 165 .011 486 .028 .001 -.091 .001 110(3B z 

h .072 .011 -.233 .017 874 .061 .002 -.204 .002 494 
3 

h - .008 .010 -.095 .022 418 - .C07 .002 -.086 .002 114 
1� 

"BJ� h .086 .015 -.140 .027 685 .024 .002 -.088 .002 123(3c z 

h .120 .019 -.174 .029 924 .073 .002 - .141 .002 292 
3 

h -.212 .020 .012 .040 1046 - .147 .002 .006 .003 266 
1� 

.... K� 
(3 h -.050 .026 .360 .099 2568 -.092 .002 .252 .005 784 z 

h - .057 .042 .565 .179 5435 .146 .005 .334 .027 1583 
3 

h -.004 .005 .041 .006 131 -.009 .001 .020 .001 18 
1 

(3
"SD 

h .092 .009 .188 .013 654 .035 .001 .101 .001 133 z 

h .164 .016 .308 .027 1647 .170 .002 .319 .003 1364 
3 

A -.034 .006 .005 .007 141 -.011 .001 .000 .001 19 
"MI
(3 

.B -.044 .006 -.007 .007 150 -.013 .001 -.002 .001 19 

"LAM -.076 .004 -.002 .005 142 -.076 .001 .000 .001 67(3 

h * - .150 .015 -.090 .024 686 -.087 .002 -.041 .002 132 
1� 

"GC�
(3 h * -.057 .014 .087 .042 666 -.041 .002 -.038 .003 81 

z 

h * -.031 .020 .081 .086 1116 -.017 .004 -.121 .009 279 
3 

1 MSEEl 0 000 x (tot S E (~ ) +MS E ( ~ » 
1 z 

33 



----------------------------

TABLE ..� 

Monte Carlo Results for Model ..� 

n=50 n=400 

Intercept Slope Intercept Slope� 

Estim. Bias VAR Bias VAR MSE 1 Bias VAR Bias VAR MSE 
1� 

h 
1 

-.095 .093 -.014 .082 1836 -.043 .011 -.023 .010 230 

ABJ 
(3A h 

2 
-.106 .093 -.043 .083 1886 -.052 .011 -.027 .010 244 

h 
3 

-.112 .093 -.055 .084 1921 - .056 .011 -.039 .010 256 

h 
1 

-. 198 .085 -.071 .080 2089 -.097 .009 -.032 .010 294 
.' ABJ 

(3B h 
2 

-.157 .084 -.173 .070 2087 -.091 .009 -.064 .010 313 

h 
3 

-.143 .088 -.241 .072 2382 -.090 .011 -.227 .011 817 

h -.151 .108 - .105 .099 2407 -.084 .017 - .057 .016 433 
1 

ABJ 
(3c h 

2 
-.065 .112 - .155 .090 2305 -.044 .017 -.063 .016 389 

h 
3 

-.046 · 116 - .180 .089 2394 - .041 .017 -.112 .015 462 

h -.567 .091 -.306 .107 6140 -.291 .013 - .155 .014 1360 
1 

AK 
(3 h 

2 
-.516 .099 - .154 .151 5387 -.278 .013 -.015 .018 1085 

h 
3 

-.478 .109 -.058 .192 5336 -.210 .015 .265 .032 1606 

h -.059 .086 .050 .085 1774 -.029 .011 .029 .012 244 
1 

ASD 
(3 h 

2 
.000 .095 .209 .104 2423 -.012 .011 .133 .012 415 

h .051 .104 .319 .128 3361 .066 .013 .349 .017 1561 
3 

At.U A -.135 .097 -.002 . 117 2324 - .053 .014 .013 .018 343 
(3 

B -. 161 · 107 .059 . 117 2539 -.060 .013 .060 .020 404 

ALAM 
(3 -.310 .071 -.001 .069 2355 -.309 .008 .007 .009 1129 

11 
h 

1 
-.279 · 117 - .135 .100 3121 -.121 .011 .041 .011 383 

AGC 
(3 

11 
h 

2 
-.190 .130 -.020 .132 2987 -.089 .012 .017 .010 302 

11 
h -. 146 .138 -.025 .161 3209 -.081 .014 .122 .026 614 

3 

1MS EEl 0 000 x {M S E (~ ) + MS E ( ~ 
1 2 

)} 
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TABLE 5 

Monte Carlo Results for Model 5 

n=50 n=400 

Intercept Slope Int erc ept Slope 
»" 

Est im. Bias VAR Bias VAR MSE 1 Bias VAR Bias VAR MSE 1 

h -.081 .028 -.127 .026 769 -.035 .003 -.060 .003 112 
1� 

ABJ� 
h -.079 .028 -. 129 .026 767 -.033 .003 -.060 .003 107(3A 2 

h -.079 .028 -.129 .026 765 -.033 .003 -.061 .003 106 
3 

h -.148 .030 -. 193 .037 1260 -.068 .003 -.084 .004 187 
1� 

ABJ� 
h - .156 .029 -.269 .024 1501 -.071 .003 -.093 .003 194(3B 2 

h -.166 .030 -.318 .025 1839 -.072 .003 -.097 .003 203 
3 

h -.108 .040 -.196 .050 1402 -.041 .003 -.082 .006 159 
1� 

ABJ� 
h -.080 .039 -.225 .036 1327 -.038 .004 -.095 .006 158(3c 2 

h -.078 .041 -.254 .036 1479 -.034 .004 -.096 .005 193 
3 

h -.242 .056 -.293 .098 2982 -.099 .006 - .150 .010 482 
1 

(3
AK 

h -.176 .058 -.233 .151 2945 -.066 .006 -.112 .016 378 
2 

h -.157 .062 -.216 .189 3216 -.051 .006 -.090 .026 429 
3 

h -.041 .030 -.068 .035 710 -.019 .003 -.031 .004 84 
1 

(3
ASD 

h -.017 .031 -.034 .054 870 -.010 .004 -.015 .006 93 
2 

h -.011 .032 -.024 .067 998 -.006 .004 -.007 .009 124 
3 

A -.062 .030 -.086 .041 827 -.026 .003 -.096 .004 172
At.U 
(3 

B -.041 .032 -.088 .033 747 -.022 .003 -.091 .004 163 

(3
ALAM -.284 .023 - . 189 .026 1652 -.287 .003 -.179 .003 1199 

h 
1# 

-.192 .054 -.319 .071 2634 -.033 .005 -.151 .006 349 
1� 

AGC 1#� 
(3 h -.130 .053 -.346 .091 2810 -.021 .005 -.140 .008 330 

2 

h 
1# 

-.108 .055 -.425 .090 3374 -.008 .005 - .162 .009 403 
3 

1MSEEl 0 0 0 0 x (M S E (~ ) + MS E ( ~ » 
1 2 
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TABLE 6 

Monte Carlo Results for Model 6 

n=50 n=400 

Intercept Slope Intercept S lope 

Estim. Bias VAR Bias VAR MSE 1 Bias VAR Bias VAR MSE 1 

h -.166 .044 .035 .022 1188 -.136 .005 .021 .004 279
1 

"BJ
f3 A 

h -.193 .044 .025 .020 1239 -.154 .005 .019 .004 330
2 

h -.206 .044 .024 .021 1289 -.158 .005 .019 .004 343
3 

h -.309 .041 .200 .047 3106 -. 151 .005 · 111 .009 491 
1 

"BJ
f3 B 

h -.094 .055 .370 .031 4034 -.078 .005 · 142 .007 382 
2 

h -.030 .080 .511 .036 6756 -.041 .017 .410 .021 2078 
3 

h -.263 .073 .286 .073 4525 - :129 .005 · 134 .013 526 
1 

"BJ
f3 h .172 .121 .356 .072 5492 .080 .006 · 151 .013 482 c 2 

h .272 .165 .420 .063 7244 .211 .009 .280 .011 1429 
3 

h -.441 .046 .235 .060 4703 -.270 .005 · 114 .007 1174 
1 

f3 
~K 

h -.261 .063 .028 .110 3527 -. 161 .005 .074 .010 622 
2 

h -.158 .085 .291 .165 6093 .079 .011 .416 .030 4234 
3 

h -. 160 .025 .082 .024 1114 -.113 .003 .044 .003 254 
1 

~SD h .197 .056 .490 .061 7056 .043 .004 .274 .005 1656 
2 

h .505 .124 .866 .195 -- 2 .566 .016 .942 .032 -- 2 

3 

A -.217 .051 .000 .047 1916 -.078 .008 .005 .011 363 
"t.u
f3 

B -.270 .046 .029 .052 2242 -.103 .008 .030 .012 442 

"LAM -.407 .017 .002 .016 2152 -.401 .002 .001 .002 1663f3 

h * -.354 .077 .209 .080 4497 -.162 .004 .092 .006 591 
1 

f3
"GC h * -.290 .081 .058 .129 4298 -. 151 .004 .029 .007 425 

'2 

h * -.082 .215 .224 .530 9928 .040 .009 .406 .039 4183 
3 

1MSEEl 0 000 x (M S E (~ ) +MS E (~ ) + M SE (~ » 
1 2 3 

2 
The correspondlne value Is ereater than qqqq� 
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