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Abstract We study the magnetotransport under terahertz radiation in high
mobility two-dimensional electron systems. We focus on the irradiation by
bichromatic and multichromatic terahertz sources. We study the strong mod-
ulation of the Shubnikov-de Haas oscillations at sufficient terahertz radiation
power. We obtain that the origin of the modulation is the interference between
the average advanced distance by the scattered electrons between irradiated
Landau states, and the available initial density of states at a certain magnetic
field. In the case of multifrequency illumination we obtain that with the ap-
propriate frequencies the irradiated magnetoresistance can almost be lead to
a zero resistance states regime even at moderate radiation power.

Keywords Magnetoresistance · Terahertz · two-dimensional electrons

1 Introduction

The effect of microwave-induced magnetoresistance (Rxx) oscillations (MIRO)[1,
2] shows up in high mobility two-dimensional electron systems (2DES) when
they are illuminated with microwaves (MW) at low temperature (T ∼ 1K) and
under low magnetic fields (B) perpendicular to the 2DES. This effect turns
into zero resistance states (ZRS) at high enough radiation power (P). If MIRO
and ZRS, can be qualified as striking, it is even more remarkable that after
more than ten years of important experimental[3–25] and theoretical efforts
[26–45], their physical origin still remains controversial and far from reaching
a definite consensus among the scientists devoted to this field.

In this paper we report on a theoretical work on magnetotransport in
high mobility two-dimensional electron systems under terahertz (TH) radi-
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Fig. 1 Calculated irradiated magnetoresistance, Rxx, vs the magnetic field B for frequencies
of 300 GHz and 400 GHz and T=1K. Both panels exhibit total Rxx, with radiation-induced
resistance oscillations and Shubnikov-de Haas (SdHO) oscillations, (black curves online),
and Rxx without Shubnikov-de Haas (SdHO) oscillations, (red curves online).

ation. The interest on TH radiation comes not only from the basic physics
standpoint, TH is a very important part of the radiation spectrum from the
application point of view too. For instance, sensors for medical applications,
imaging for security purposes and large-bandwidth communications. We focus
on the interference between the radiation-induced magnetoresistance oscilla-
tions (RIRO) and the Shubnikov-de Haas (SdHO) oscillations. The terahertz
band offers the possibility of studying this interaction because both kind of
oscillations coexist in the same range of B[46,47] while MIRO tend to vanish
when the SdHO are more intense and the effects of interaction are more diffi-
cult to observe. In this scenario we study the case of bichromatic illumination
with terahertz radiation. Thus we are able to predict that the interference
effect on the Rxx profile is going to be more intense and complicated. We
also consider the situation of three simultaneous sources of terahertz radiation
where for the appropriate combination of frequencies we can achieve a Rxx
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Fig. 2 Radiation power dependence of the calculated irradiated Rxx versus B, for increasing
radiation power from to 0.1 mW to 6 mW. The subsequent curves are shifted up for clarity.

profile that approaches ZRS for a certain B. To carry out the study, we use
the radiation-driven electron orbits model [26,27]. This model was proposed to
study the effect of MIRO and ZRS [26,51–53], and according to it when a Hall
bar is illuminated, the guiding centers of the irradiated Landau states (LS)
perform a classical trajectory consisting in a harmonic motion along the direc-
tion of the current. Thus, the electron orbits move in phase and harmonically
with each other at the radiation frequency, altering the scattering conditions
and giving rise eventually to MIRO and, at higher P , ZRS.

2 Theoretical Model

In the theory of the radiation driven electron orbit model, the corresponding
time-dependent Schrödinger equation can be exactly solved and the solution
for the total wave function[26,51–53]reads: Ψn(x, t) ∝ ϕn(x − X0 − xcl(t), t),
where ϕn is the solution for the Schrödinger equation of the unforced quantum
harmonic oscillator. Thus, the obtained wave function representing the LS is
the same as the one of the standard quantum harmonic oscillator where the
guiding center of the LS, X0 without radiation, is displaced by xcl(t). xcl(t)
is the classical solution of a negatively charged, forced and damped, harmonic
oscillator[54,55],

xcl(t) =
−eEo

m∗
√
(w2

c − w2)2 + γ4
cos(wt− β)

= −A cos(wt− β) (1)
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where E0 is the amplitude of the radiation electric field and β is a phase
constant. β is the phase difference between the radiation-driven guiding cen-
ter and the driving radiation. γ is a phenomenologically-introduced damping
factor for the interaction of electrons with the lattice ions giving rise to the
emission of acoustic phonons. For high-mobility 2DES[56], β → π

2 , then, the
time-dependent guiding center is, X(t) = X0 + xcl(t) = X0 − A sinwt. This
physically implies that the orbit guiding centers oscillate harmonically at the
radiation frequency, w.

To calculate the longitudinal conductivity σxx in the 2DES we use the
Boltzmann transport theory. With this theory and within the relaxation time
approximation, σxx is given by the following equation[57,58]:

σxx = 2e2
∫ ∞

0

dEρi(E)(∆X)2WI

(
−df(E)

dE

)
(2)

being E the energy and ρi(E) the density of initial LS. WI is the remote
charged impurity scattering rate, given, according to the Fermi’s Golden Rule,
by WI = 2π

h̄ | < Ψf |Vs|Ψi > |2δ(Ef − Ei), where Ei and Ef are the energies
of the initial and final LS. Ψi and Ψf are the wave functions corresponding to
the initial and final LS respectively. Vs is the scattering potential for charged
impurities[57], ∆X is the average distance advanced by the electron between
orbits in every scattering jump in the x direction and is given by[56], ∆X =
∆X0 −A sin(2π w

wc
). ∆X0 is the advanced distance without radiation.

After some algebra we get to an expression for σxx[58–60]:

σxx =
2e2m∗

πh̄2 (∆X)2WI

[
1 +

2Xs

sinh(Xs)
e−

πΓ
h̄wc cos

(
2πEF

h̄wc

)]
(3)

where Xs = 2π2kBT
h̄wc

, Γ is the Landau level width and EF the Fermi energy.
To find the expression for Rxx we use the well-known tensorial relation Rxx =

σxx

σ2
xx+σ2

xy
≃ σxx

σ2
xy
, where σxy ≃ nee

B , ne being the electron density, and σxx ≪
σxy. Finally, the complete expression of Rxx reads:

Rxx =
2e2m∗

πh̄2

(
B

nee

)2

WI

[
∆X0 −A sin

(
2π

w

wc

)]2 [
1 +

2Xs

sinh(Xs)
e−

πΓ
h̄wc cos

(
2πEF

h̄wc

)]
(4)

With this expression we want to stand out the terms that are going to be re-
sponsible of the interference between radiation-induced resistance oscillations
(RIRO), first bracket, and the SdHO, second bracket.

3 Results and discussion.

The simulations that we present in this paper are based on a set of parameters
given by m∗ = 0.067 for the GaAs effective mass, ne = 3 × 1011cm−2 for the
electron density, T = 1K for the temperature and Γ = 10−5 eV for the LL
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Fig. 3 a) Calculated irradiated magnetoresistance, Rxx, vs the magnetic field B for frequen-
cies of 300 GHz and 400 GHz. Total Rxx with radiation-induced resistance oscillations and
Shubnikov-de Haas (SdHO) oscillations, (black curves online), and Rxx without Shubnikov-
de Haas (SdHO) oscillations or Rxx,RIRO, (red curves online). b) Same frequencies as in a),
calculated irradiated Rxx (black color online), Rxx without SdHO, (Rxx,RIRO) (red color
on line), and the difference of both, δRxx (blue color online) vs w/wc. Total Rxx curve is
shifted up for clarity. It is observed the rise of beats, more clearly in the case of Rxx,RIRO.

width. For the latter we have considered a constant value, i.e., independent of
B, that is a rather good approximation for low values of B, as in our case.

Figure 1 exhibits irradiated Rxx vs B for 300 GHz in the upper panel
and 400 GHz in the lower panel. For both panels we represent the total Rxx

(black curves online) and the averaged out Rxx (without SdHO, red curves
online), in order to stand out only the effect of RIRO. Then, we can see intense
RIRO in the TH regime that clearly fulfill for both frequencies the periodicity
in B−1 and the 1/4-cycle phase shift of the oscillations minima, (w/wc =
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5/4, 9/4, 13/4...). Besides, it is interesting to observe with the TH regime, how
the radiation induced oscillations overlap with the more rapidly varying with
the magnetic field SdHO giving rise to a strong modulation of the latter. This
modulation is explained, according to our model, by the interference effect
between the harmonic terms showing up in Eq. 4. Thus, this effect is mainly
dependent on the radiation frequency and on the Fermi energy or electron
density.

In Fig. 2, we present the P dependence of the TH irradiated Rxx versus B
for increasing P , from to 0.1 mW to 6 mW. We observe that RIRO’s ampli-
tude increases with P . This can be straightforward explained according to our
model since the radiation electric field E0 shows up in the numerator of the
amplitude of RIRO, A. The most interesting effect can be observed around
B = 0.6 T. In this region we obtain the evolution of SdHO as a function of
increasing P . As in experiment[49,50], the SdHO vanish as Rxx tends to zero.
In other words, we obtain the suppression of SdHO in the region of radiation-
induced zero resistance states. According to our model this is because this
region corresponds to a situation where the advanced distance ∆X → 0, mak-
ing smaller and smaller the obtained Rxx, including resistance background and
SdHO.

We consider now the magnetoresistance of the 2DES irradiated by two
different sources with different frequencies of the TH band. In the framework
of our model is relatively simple to extend the theory to two or more differ-
ent radiation frequencies[61–63]. This is a consequence of the application of
the superposition principle. The latter is, in turn, a consequence of the linear
characteristic of the equation of the driven and damped classical oscillator.
Then if we add two or more radiation sources to the system the displacement
of the driven LL guiding center will be equal to the sum of the correspond-
ing individual solutions. We would expect for Rxx a much richer and more
complex profile since we would have more independent sources of interference.
And the more frequencies are included the more elaborated profile would be
obtained. It is straightforward to get to an expression for Rxx in the case of a
multifrequency scenario:

Rxx ∝

[
∆X0 −

∑
i

[
A sin

(
2π

wi

wc

)]]2 [
1 +

2Xs

sinh(Xs)
e−

πΓ
h̄wc cos

(
2πEF

h̄wc

)]
(5)

In Fig. 3 we exhibit calculated magnetoresistance for the irradiation by two
simultaneous sources of different frequencies: 300 and 400 GHz. For this specific
case Rxx can be expressed as:

Rxx ∝
[
∆X0 −

[
A1 sin

(
2π

w1

wc

)
+A2 sin

(
2π

w2

wc

)]]2
×
[
1 +

2Xs

sinh(Xs)
e−

πΓ
h̄wc cos

(
2πEF

h̄wc

)]
(6)
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Fig. 4 a) Calculated irradiated magnetoresistance vs the magnetic field B for frequencies
of 300,400 and 500 GHz in the upper panel and 300,500 and 700 GHz in the lower one.
Total Rxx with radiation-induced resistance oscillations and Shubnikov-de Haas (SdHO)
oscillations, (black curves online), and Rxx without Shubnikov-de Haas (SdHO) oscillations
(red curves online).

In Fig, 3a we plot irradiated magnetoresistance vs B for the two cases of
total Rxx ( black color online) and Rxx without SdHO or Rxx,RIRO (red color
online). For low B we can slightly observe the rise of beats. This effect is more
clearly plotted in Fig. 3b where we exhibit calculated results of irradiated
Rxx (black color online), Rxx,RIRO (red color on line), and the difference of
both, δRxx (blue color online), vs w/wc. The Rxx curve has been shifted up
for clarity in order to spot the presence of beats in Rxx,RIRO. The latter
shows clear beats that are a signature of the strong interference produced
by the simultaneous irradiation with two independent TH-frequencies. This
theoretical prediction of a very rich interference Rxx profile with the presence
of beats, would confirm in a future experiment the oscillating nature of the LS
being driven by radiation.

In Fig. 4 we present the calculated irradiated magnetoresistance, Rxx, vs
magnetic field B for simultaneous irradiation of three different sources of TH
radiation of frequencies of 300 GHz, 400 GHz and 500 GHz in the upper panel
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and 300 GHz, 500 GHz and 700 GHz in the lower one. We observe a more
intense and complicated modulation of Rxx with radiation-induced resistance
oscillations and Shubnikov-de Haas (SdHO) oscillations, (black curves online),
and Rxx without Shubnikov-de Haas (SdHO) oscillations, (red curves online).
We expected this outcome but the more interesting result takes place in the
lower panel at B ≃ (0.5− 0.6) T. We observe that Rxx → 0 or approaches to
ZRS with the appropriate combination of TH frequencies without increasing
the radiation power.

4 Conclusions

In summary, we have reported on a theoretical work on magnetotransport un-
der terahertz radiation with high mobility two-dimensional electron systems.
We have focused on the interaction between the obtained radiation-induced
magnetoresistance oscillations and the Shubnikov-de Haas oscillations. We
study the strong modulation of the Shubnikov-de Haas oscillations at high
enough TH radiation power. We have applied the radiation-driven electron or-
bits model and according to it the physical origin is the interference between
the average advanced distance due to scattering between driven-Landau states,
(radiation-induced resistance oscillations), and the available initial density of
Landau states, (Shubnikov-de Haas oscillations). We have extended the the-
ory to two or more frequencies of the TH band. Thus we have predicted an
even stronger irradiated magnetoresistance profile with the rise of beats. This
would confirm the oscillating nature of irradiated LS which will reveal a new
way of interaction radiation-matter. Another remarkable results is that with
the correct selection of TH frequencies due to the interference effect we can
obtain regimes of Rxx close to ZRS.
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The effect of microwave-induced magnetoresistance (Rxx) oscillations (MIRO)[1,
2] shows up in high mobility two-dimensional electron systems (2DES) when
they are illuminated with microwaves (MW) at low temperature (T ∼ 1K) and
under low magnetic fields (B) perpendicular to the 2DES. This effect turns
into zero resistance states (ZRS) at high enough radiation power (P). If MIRO
and ZRS, can be qualified as striking, it is even more remarkable that after
more than ten years of important experimental[3–25] and theoretical efforts
[26–45], their physical origin still remains controversial and far from reaching
a definite consensus among the scientists devoted to this field.
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Fig. 1 Calculated irradiated magnetoresistance, Rxx, vs the magnetic field B for frequencies
of 300 GHz and 400 GHz and T=1K. Both panels exhibit total Rxx, with radiation-induced
resistance oscillations and Shubnikov-de Haas (SdHO) oscillations, (black curves online),
and Rxx without Shubnikov-de Haas (SdHO) oscillations, (red curves online).

ation. The interest on TH radiation comes not only from the basic physics
standpoint, TH is a very important part of the radiation spectrum from the
application point of view too. For instance, sensors for medical applications,
imaging for security purposes and large-bandwidth communications. We focus
on the interference between the radiation-induced magnetoresistance oscilla-
tions (RIRO) and the Shubnikov-de Haas (SdHO) oscillations. The terahertz
band offers the possibility of studying this interaction because both kind of
oscillations coexist in the same range of B[46,47] while MIRO tend to vanish
when the SdHO are more intense and the effects of interaction are more diffi-
cult to observe. In this scenario we study the case of bichromatic illumination
with terahertz radiation. Thus we are able to predict that the interference
effect on the Rxx profile is going to be more intense and complicated. We
also consider the situation of three simultaneous sources of terahertz radiation
where for the appropriate combination of frequencies we can achieve a Rxx
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Fig. 2 Radiation power dependence of the calculated irradiated Rxx versus B, for increasing
radiation power from to 0.1 mW to 6 mW. The subsequent curves are shifted up for clarity.

profile that approaches ZRS for a certain B. To carry out the study, we use
the radiation-driven electron orbits model [26,27]. This model was proposed to
study the effect of MIRO and ZRS [26,51–53], and according to it when a Hall
bar is illuminated, the guiding centers of the irradiated Landau states (LS)
perform a classical trajectory consisting in a harmonic motion along the direc-
tion of the current. Thus, the electron orbits move in phase and harmonically
with each other at the radiation frequency, altering the scattering conditions
and giving rise eventually to MIRO and, at higher P , ZRS.

2 Theoretical Model

In the theory of the radiation driven electron orbit model, the corresponding
time-dependent Schrödinger equation can be exactly solved and the solution
for the total wave function[26,51–53]reads: Ψn(x, t) ∝ ϕn(x − X0 − xcl(t), t),
where ϕn is the solution for the Schrödinger equation of the unforced quantum
harmonic oscillator. Thus, the obtained wave function representing the LS is
the same as the one of the standard quantum harmonic oscillator where the
guiding center of the LS, X0 without radiation, is displaced by xcl(t). xcl(t)
is the classical solution of a negatively charged, forced and damped, harmonic
oscillator[54,55],

xcl(t) =
−eEo

m∗
√
(w2

c − w2)2 + γ4
cos(wt− β)

= −A cos(wt− β) (1)
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where E0 is the amplitude of the radiation electric field and β is a phase
constant. β is the phase difference between the radiation-driven guiding cen-
ter and the driving radiation. γ is a phenomenologically-introduced damping
factor for the interaction of electrons with the lattice ions giving rise to the
emission of acoustic phonons. For high-mobility 2DES[56], β → π

2 , then, the
time-dependent guiding center is, X(t) = X0 + xcl(t) = X0 − A sinwt. This
physically implies that the orbit guiding centers oscillate harmonically at the
radiation frequency, w.

To calculate the longitudinal conductivity σxx in the 2DES we use the
Boltzmann transport theory. With this theory and within the relaxation time
approximation, σxx is given by the following equation[57,58]:

σxx = 2e2
∫ ∞

0

dEρi(E)(∆X)2WI

(
−df(E)

dE

)
(2)

being E the energy and ρi(E) the density of initial LS. WI is the remote
charged impurity scattering rate, given, according to the Fermi’s Golden Rule,
by WI = 2π

h̄ | < Ψf |Vs|Ψi > |2δ(Ef − Ei), where Ei and Ef are the energies
of the initial and final LS. Ψi and Ψf are the wave functions corresponding to
the initial and final LS respectively. Vs is the scattering potential for charged
impurities[57], ∆X is the average distance advanced by the electron between
orbits in every scattering jump in the x direction and is given by[56], ∆X =
∆X0 −A sin(2π w

wc
). ∆X0 is the advanced distance without radiation.

After some algebra we get to an expression for σxx[58–60]:

σxx =
2e2m∗

πh̄2 (∆X)2WI

[
1 +

2Xs

sinh(Xs)
e−

πΓ
h̄wc cos

(
2πEF

h̄wc

)]
(3)

where Xs = 2π2kBT
h̄wc

, Γ is the Landau level width and EF the Fermi energy.
To find the expression for Rxx we use the well-known tensorial relation Rxx =

σxx

σ2
xx+σ2

xy
≃ σxx

σ2
xy
, where σxy ≃ nee

B , ne being the electron density, and σxx ≪
σxy. Finally, the complete expression of Rxx reads:

Rxx =
2e2m∗

πh̄2

(
B

nee

)2

WI

[
∆X0 −A sin

(
2π

w

wc

)]2 [
1 +

2Xs

sinh(Xs)
e−

πΓ
h̄wc cos

(
2πEF

h̄wc

)]
(4)

With this expression we want to stand out the terms that are going to be re-
sponsible of the interference between radiation-induced resistance oscillations
(RIRO), first bracket, and the SdHO, second bracket.

3 Results and discussion.

The simulations that we present in this paper are based on a set of parameters
given by m∗ = 0.067 for the GaAs effective mass, ne = 3 × 1011cm−2 for the
electron density, T = 1K for the temperature and Γ = 10−5 eV for the LL
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Fig. 3 a) Calculated irradiated magnetoresistance, Rxx, vs the magnetic field B for frequen-
cies of 300 GHz and 400 GHz. Total Rxx with radiation-induced resistance oscillations and
Shubnikov-de Haas (SdHO) oscillations, (black curves online), and Rxx without Shubnikov-
de Haas (SdHO) oscillations or Rxx,RIRO, (red curves online). b) Same frequencies as in a),
calculated irradiated Rxx (black color online), Rxx without SdHO, (Rxx,RIRO) (red color
on line), and the difference of both, δRxx (blue color online) vs w/wc. Total Rxx curve is
shifted up for clarity. It is observed the rise of beats, more clearly in the case of Rxx,RIRO.

width. For the latter we have considered a constant value, i.e., independent of
B, that is a rather good approximation for low values of B, as in our case.

Figure 1 exhibits irradiated Rxx vs B for 300 GHz in the upper panel
and 400 GHz in the lower panel. For both panels we represent the total Rxx

(black curves online) and the averaged out Rxx (without SdHO, red curves
online), in order to stand out only the effect of RIRO. Then, we can see intense
RIRO in the TH regime that clearly fulfill for both frequencies the periodicity
in B−1 and the 1/4-cycle phase shift of the oscillations minima, (w/wc =
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5/4, 9/4, 13/4...). Besides, it is interesting to observe with the TH regime, how
the radiation induced oscillations overlap with the more rapidly varying with
the magnetic field SdHO giving rise to a strong modulation of the latter. This
modulation is explained, according to our model, by the interference effect
between the harmonic terms showing up in Eq. 4. Thus, this effect is mainly
dependent on the radiation frequency and on the Fermi energy or electron
density.

In Fig. 2, we present the P dependence of the TH irradiated Rxx versus B
for increasing P , from to 0.1 mW to 6 mW. We observe that RIRO’s ampli-
tude increases with P . This can be straightforward explained according to our
model since the radiation electric field E0 shows up in the numerator of the
amplitude of RIRO, A. The most interesting effect can be observed around
B = 0.6 T. In this region we obtain the evolution of SdHO as a function of
increasing P . As in experiment[49,50], the SdHO vanish as Rxx tends to zero.
In other words, we obtain the suppression of SdHO in the region of radiation-
induced zero resistance states. According to our model this is because this
region corresponds to a situation where the advanced distance ∆X → 0, mak-
ing smaller and smaller the obtained Rxx, including resistance background and
SdHO.

We consider now the magnetoresistance of the 2DES irradiated by two
different sources with different frequencies of the TH band. In the framework
of our model is relatively simple to extend the theory to two or more differ-
ent radiation frequencies[61–63]. This is a consequence of the application of
the superposition principle. The latter is, in turn, a consequence of the linear
characteristic of the equation of the driven and damped classical oscillator.
Then if we add two or more radiation sources to the system the displacement
of the driven LL guiding center will be equal to the sum of the correspond-
ing individual solutions. We would expect for Rxx a much richer and more
complex profile since we would have more independent sources of interference.
And the more frequencies are included the more elaborated profile would be
obtained. It is straightforward to get to an expression for Rxx in the case of a
multifrequency scenario:

Rxx ∝

[
∆X0 −

∑
i

[
A sin

(
2π

wi

wc

)]]2 [
1 +

2Xs

sinh(Xs)
e−

πΓ
h̄wc cos

(
2πEF

h̄wc

)]
(5)

In Fig. 3 we exhibit calculated magnetoresistance for the irradiation by two
simultaneous sources of different frequencies: 300 and 400 GHz. For this specific
case Rxx can be expressed as:

Rxx ∝
[
∆X0 −

[
A1 sin

(
2π

w1

wc

)
+A2 sin

(
2π

w2

wc

)]]2
×
[
1 +

2Xs

sinh(Xs)
e−

πΓ
h̄wc cos

(
2πEF

h̄wc

)]
(6)
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Fig. 4 a) Calculated irradiated magnetoresistance vs the magnetic field B for frequencies
of 300,400 and 500 GHz in the upper panel and 300,500 and 700 GHz in the lower one.
Total Rxx with radiation-induced resistance oscillations and Shubnikov-de Haas (SdHO)
oscillations, (black curves online), and Rxx without Shubnikov-de Haas (SdHO) oscillations
(red curves online).

In Fig, 3a we plot irradiated magnetoresistance vs B for the two cases of
total Rxx ( black color online) and Rxx without SdHO or Rxx,RIRO (red color
online). For low B we can slightly observe the rise of beats. This effect is more
clearly plotted in Fig. 3b where we exhibit calculated results of irradiated
Rxx (black color online), Rxx,RIRO (red color on line), and the difference of
both, δRxx (blue color online), vs w/wc. The Rxx curve has been shifted up
for clarity in order to spot the presence of beats in Rxx,RIRO. The latter
shows clear beats that are a signature of the strong interference produced
by the simultaneous irradiation with two independent TH-frequencies. This
theoretical prediction of a very rich interference Rxx profile with the presence
of beats, would confirm in a future experiment the oscillating nature of the LS
being driven by radiation.

In Fig. 4 we present the calculated irradiated magnetoresistance, Rxx, vs
magnetic field B for simultaneous irradiation of three different sources of TH
radiation of frequencies of 300 GHz, 400 GHz and 500 GHz in the upper panel
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8 Jesus Iñarrea

and 300 GHz, 500 GHz and 700 GHz in the lower one. We observe a more
intense and complicated modulation of Rxx with radiation-induced resistance
oscillations and Shubnikov-de Haas (SdHO) oscillations, (black curves online),
and Rxx without Shubnikov-de Haas (SdHO) oscillations, (red curves online).
We expected this outcome but the more interesting result takes place in the
lower panel at B ≃ (0.5− 0.6) T. We observe that Rxx → 0 or approaches to
ZRS with the appropriate combination of TH frequencies without increasing
the radiation power.

4 Conclusions

In summary, we have reported on a theoretical work on magnetotransport un-
der terahertz radiation with high mobility two-dimensional electron systems.
We have focused on the interaction between the obtained radiation-induced
magnetoresistance oscillations and the Shubnikov-de Haas oscillations. We
study the strong modulation of the Shubnikov-de Haas oscillations at high
enough TH radiation power. We have applied the radiation-driven electron or-
bits model and according to it the physical origin is the interference between
the average advanced distance due to scattering between driven-Landau states,
(radiation-induced resistance oscillations), and the available initial density of
Landau states, (Shubnikov-de Haas oscillations). We have extended the the-
ory to two or more frequencies of the TH band. Thus we have predicted an
even stronger irradiated magnetoresistance profile with the rise of beats. This
would confirm the oscillating nature of irradiated LS which will reveal a new
way of interaction radiation-matter. Another remarkable results is that with
the correct selection of TH frequencies due to the interference effect we can
obtain regimes of Rxx close to ZRS.
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