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Abstract

Literature on immunization has shown that an immunized portfolio is a
maxmin portfolio, but the opposite is not necessarily true.. In models where
immunization is not feasible, in addition to matching duration, many strate-
gies has been proposed, i.e., minimizing dispersion measures M? or N, to in-
clude a maturity matching bond, etc. However, in these models the maxmin
portfolios have never been computed, and it seems that the proposed strate-
gies are halfway between a matching duration and a maxmin portfolio.

In this paper we shall show that maxmin portfolios are characterized by
saddle point conditions and from them an algorithm is given to compute
the maxmin portfolios. Our model is specialized on the very general set
of shocks from which the dispersion measures M? and N have been devel-
oped. We shall show that by minimizing the dispersion measure, subject to
matching duration, and by computing the maxmin portfolio both are only
equivalent strategies if we work with zero coupon bonds. We shall compute
the maxmin portfolios with examples using coupon bonds, and from them,
two new strategies will be proposed.







I. Introduction

Several authors have studied maxmin portfolios in financial immunization
theory. The concept was introduced initially by Bierwag and Khang (1979)
revealing that maxmin portfolios guarantee the largest amount of money after
an additive shock on the interest rates. Bierwag and Khang (1979), Khang
(1983) and Prisman (1986) have proved in different models, and under differ-
ent assumptions on the shocks on interest rates, that immunized portfolios
are always maxmin ones, and are also matching duration portfolios.

In a recent paper, Balbds and Ibafiez (1995) show that the opposite fails
in models for which total immunization is not possible. Furthermore, in these
models, besides a matching duration, many strategies have been proposed.
For instance, Fong and Vasicek (1984) (see also Montrucchio and Peccati
(1991)) show that the M? measure gives us a bound on the possible cap-
ital losses after a shock, and therefore, this dispersion measure should be
minimized. Another dispersion measure (which should also be minimized) is
given in Balbds and Ibafiez (1995). Bierwag et al. (1993) and others show
that the strategy that works best empirically is including a maturity match-
ing bond. Prisman and Shores (1988) propose to minimize other dispersion
measures without matching duration.

However, in these models the maxmin portfolio has been never computed,
and it seems that these proposed strategies (defined for example as ”Risk
Minimizing Strategies for Portfolio Immunization”, Fong and Vasicek (1984))
are halfway between a matching duration and a maxmin portfolio. Moreover,
in these models, Balbds and Ibdiiez (1995) prove that a maxmin portfolio
always exist and that both concepts, maxmin and immunized are equivalent
only if the latter can be found. Therefore we have that the concept of maxmin
portfolio clearly extends and generalizes the concept of the immunized one
beyond more general models. All these precedents show that studing and
computing the maxmin portfolio is not only a new work and a important
task by themselves, but is closely related to some puzzles in this literature,
and therefore form the object of the present paper.

In this paper we follow the model of Balbds and Ibdfiez (1995) where,
amongst other things, they prove the existence of maxmin portfolios amongst
bonds under three very general assumptions. We begin the paper by extend-
ing the existence results amongst bonds up to a convex subset of feasible
portfolios, with a finite number of extreme points, e.g., matching duration




portfolios. Then, following an very common approach in game theory, we
show that maxmin portfolios are characterized by saddle point conditions,
and therefore, by means of an equations system. This system is non-linear
and more difficult to solve than the one that usually appears in game the-
ory. Furthermore, the system cannot be solved with a linear program and
consequently, an algorithm is developed, which leads to the maxmin bond
portfolio.

The model is specialized on the set of shocks from which the dispersion
measures M? (Fong and Vasicek (1984)) and N (Balbés and Ibfiez (1995))
are developed. The sets of shocks have bounded derivative and have bounded
variations between two arbitrary instants, respectively. Both set of shocks
are very general and they allow almost any change on the instantaneous
forward interest rates. We show that the four strategies by minimizing both
dispersion measures or computing the maxmin strategies are equivalent, only
if we work with zero coupon bonds.

Finally, we compute the maxmin portfolio in two examples for both sets
of shocks with coupon bonds, amongst bonds and also amongst matching du-
ration portfolios because this is the classical immunization result, see Fisher
and Weil (1971). By computing the maxmin portfolio we also obtain the
worst shock and the guaranteed value of this portfolio. These two values can
be very interesting to the investor. \We compute the maxmin portfolio for
many values for parameter A, to see the path of the maxmin portfolio. As
a consequence of the results obtained and from the theoretical advantages
of the bounded shocks, two new strategies are proposed for the shocks of
Balbés and Ibafniez (1995). First, estimating the parameter A and computing

~ the maxmin portfolio amongst bonds, which is theoretically the best strat-

egy. Second, estimating the parameter A and computing the maxmin portfo-
lio amongst matching duration portfolios, because these portfolios work well
empirically and do not depend very much on parameter A.

The paper’s outline is the following. The second section establishes the
set of hypotheses, and from them, the existence of maxmin portfolios is
proved in a general context. The third section is devoted to characterizing
the maxmin portfolios by means of saddle point conditions. The fourth one
compares the maxmin portfolio with the one obtained if we apply other pro-
posed strategies, and in particular, if we minimize some dispersion measures.
In the Fifth section we solve the maxmin portfolio under two examples with
coupon bonds, by applying a previously developed algorithm. Finally, the
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last section points out the most important conclusions.

II. Existence of Maxmin Portfolios

In this section we will follow the notation introduced in Balbéds and Ibéfiez
(1995). Let [0,T] be a time interval being ¢ = 0 the present moment. Let
us consider n default free and option free bonds with maturity less or equal
than T, and with prices P, P,,---, P, respectively. Let K be the set of
admissible shocks on the interest rate, K being a subset of the vector space
of real valued functions defined on [0, 7.

Let m, (0 < m < T') represent the investor planning period, and the real
valued functionals

Vi:K—-R :1=1,2,---,n

be such that Vi(k) (where k € K is any admissible shock) is the i-th bond
value at time m if shock k takes place.

In Balbds and Ibdfez (1995) were assumed the following three hypotheses:
H1: K is a convex set.
H2: V;is a convex functional forz =1,2,--- n.
H3: Vi(k) >0fori=1,..,n and for any k € K.
These assumptions are quite simple and clear.

Let C' > 0 be the total amount to invest, and let ¢ = (g1, g2, *+,qn) be
a vector such that ¢;, 7 = 1,2, -+, n, represents the number of units of the
i-th bond that the investor is going to buy. The constraints

YgP=C, ¢>20i=1,.,n (1)
=1

are clear, and we will represent by @ the set of portfolios ¢ such that expres-
sion (1) holds.
The functional

Vg b = > Vit )

gives us the value for time m of portfolio ¢ if the k shock takes place, and it
is linear in the ¢ variable and convex in the k one.




Let us define the guaranteed amount by portfolio ¢ as follows

V(g) = Inf{V(q,k); k € K}
We will say that ¢* is a maxmin portfolio in Q if it solves the program

Yreg” j oo

Now we will introduce the concept of maxmin portfolio in any convex
closed subset of Q.

If Q" is a convex closed subset of @ then ¢* is a maxmin portfolio in Q*
if it solves

Maz V(q)
N PQ”
Let us point out that if ¢’ is maxmin in @ and ¢* is maxmin in Q* then the
inequality
V(g) < V()

could hold, that is, the guaranteed amount by portfolios in @ could be bigger
than the guaranteed amount in @*. Balbds and Ibdnez (1995) show that
program (PQ) always has a solution, i.e., there always exists a maxmin

portfolio. Now we are interested in generalizing the latter result to convex
subset @* with a finite number of extreme points.

Theorem 2.1. If Q* has a finite number of extreme points, then program
(PQ*) has a solution, i.e., there always exists a maxmin portfolio ¢* € Q*.

Proof. See the Appendix. a

The interest of the latter result would be clearer if we consider the set Q*
as the set of feasible portfolios with a duration equal to the investor planning
period. This is the classical strategy for immunizing a bond portfolio against
additive shocks. If the shocks are continuously differentiable (as in Fong and
Vasicek (1984)) then an immunized portfolio does not exist, but there are
maxmin portfolios in @ and also in Q*. We have an analogous situation if we
consider integrable and bounded shocks (as in Balbas and Ibéafiez (1995)).




III. The Saddle Point Conditions

Once we know that maxmin portfolios do exist, we will study the general
conditions for characterizing them in practical situations. If we carefully
analyze the proof of theorem 2.1, we will obtain that for a portfolio ¢* maxmin

in Q*
V(g") = Inf{U(k); k€ K}C (3)

where U is the real valued functional given in (25). Therefore, if we consider
the minimization program

Y o

and k* € K is its solution, then

V(g") = U(k")C (4)
The functional U may be also given by
V(g k ]
U(k) = Maz (LY, g g7) (5

since for a fixed shock k, V is linear in the ¢ variable and then its maximun
must be attained in an extreme point of @*. Therefore, (4) may be written
as

Maz Inf Vig, k) = Inf Maz Vg, k) (6)

{¢€ @} {ke K} {ke K} {qe @}
The latter equality is well known in game theory, characterizes the existence
of saddle points for two persons zero sum games. This fact may be applied

in immunization theory to obtain the maxmin portfolios by means of saddle
point conditions.

Definiton 3.1. We will say that a pair (¢*,k*) € @* x K is a saddle
point of functional V in @* x K if for any portfolio ¢ € @* and for any
admissible shock k£ € K we have

V(g, k") S V(¢", k) S V(q', k)
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Prisman (1986) shows that a portfolio ¢ is immunized if and only if (g,0)is a
saddle point of V. The following result may be considered as an extension of
Prisman’s (1986), and may be applied in models for which total immunization
is not possible.

Theorem 3.2. Given a portfolio ¢* € Q and a shock k* € K, then q* is
maxmin in @" and k* solves (PK)! if and only if (¢*, k*) is a saddle point of
VinQ* x K.

Proof. See the Appendix?. O

Let us introduce a system of equations to characterize the saddle points
of V(g,k) in @* x K. To do this, we are going to consider that the set
{q¢',¢% - --,q'} of extreme points of Q* is known, and therefore, portfolios
in Q" are given by their linear convex combinations. We are also going to
assume, that set K is included in a normed space, that all its points are
interior, and that functionals Vi, V;,---,V, are Gateaux differentiable (see
Luenberger (1968)).

It may be easily proved that (¢*, k) is a saddle point of V if and only if

l
q* — Za:qz
=1 |
and
l
der=1 (7)
=]

of[V(¢, k™) — Maz{V(¢',k*); j=1,---,}]=0 i={1,---,1} (8)
o 20 i={1,---,1} : (9)
V(g k)

. 9V _
a; 81{: e =0 | (10)

=1

where the derivative in equation (10) is the Gateaux differential of functional
V with respect to its k variable evaluated in k£ = k* (see Balbds and Ibéfiez
(1995)). As it will be shown, this are only the partial derivatives with respect
to the shock parameters when working with reasonable kind of shocks.

To prove equations (7) to (10) let us point out that if (¢*, k*) is a saddle
point then (10) clearly follows from V(¢*,k) > V(¢*,k*), (7) and (9) are
obvious, and (8) is due to V' (¢*, k*) > V(q, k*) and for a linear program, any




maximum is a linear convex combination of points which are extremes and
maximums.

Conversely, if the system of equations holds, then in order to prove that
(¢*, k*) is a saddle point we only have to bear in mind that the necessary opti-
mality conditions for convex minimization programs (or linear maximization
programs) are also sufficient.

IV. Is Minimizing the Dispersion Measures equivalent to looking
for Maxmin Portfolios?

Following the usual assumptions in immunization, let us consider that the

g portfolio pays a continuous coupon ¢(t) (0 <t < T). If g(s) (0<s <T)

represents the instantaneous forward interest rates and k(s) is a shock on
g(s), then the ¢ portfolio value at time m is given by

Vi k) = [ " (t)exp [ (o) + K(s))ds] d (11)

Denoting the capitalization rate between 0 and m by

R =exp [/Omg(s)ds] (12)

and the coupon present value by

c(t,0) = c(t)exp [— [)t g(s)ds] (13)

we have?

V(g, k) = R/OT e(t, 00z | [ (s)ds] at (14)

Many dispersion measures have been introduced by the literature (see for
instance Alexander and Resnick (1985)) but perhaps only two allow us to
bound the possible capital losses after a shock on the interest rates. These
measures are given by




and
c(¢,0).

" T
N=./(; Im—tl"—CT—dt

and were defined in FV and BI respectively*.

In this section we will consider the set of shocks for FV and BI since they
are very general (FV only assumes shocks with a bounded derivative and
BI works with bounded shocks) and, as already mentioned, possible capital
losses may be measured. By working with these two kinds of shocks, our
purpose is to compare the final result for the investor if he or she follows one
of the four following strategies in choosing the portfolio.

a) Look for the maxmin portfolio in the FV case.

b) Look for the maxmin portfolio in the BI case.

b) Minimize the dispersion measure M2,

¢) Minimize the dispersion measure N.

Let us analyze two different situations. First, it will be proved that if we
work with pure discount bonds, then options a), b), ¢) or d) lead to the same
solution (the same final portfolio). However, in the general case (that is, if
we consider coupon bonds) then a), b), ¢) or d) are far from being equivalent,
as will be shown in some examples.

Let us consider that we are in the FV case. Then, any shock k(s) is
continuously differentiable and there exists a constant A such that

i?gx\ for 0<s<T.
s

Then, if we define the worst shocks k*(s) by
k*(s) = Ao+ A(s —m) (15)

being Ap = k(m), it clearly follows from the mean value theorem (see also
BI) that

k(s)

s) 2
k(s) <

k*(s) if s<m
k*(s) if s>m } (16)

From (14) and (16) we obtain

Vg, k) > V(q,k") (17)
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for any portfolio ¢, and therefore
U(k) > U(k) (18)

being U the functional introduced in (25). Since U is a convex functional (it is
the maximun of a finite number of convex functionals as stated by expression
(3)), in order to prove that program (PK) has an interior solution, it is
sufficient to show that U(k*) — 400 if Ay = 400 or Ay = —oc0. This may be
easily proved if we take into account (14) and (15) to evaluate V(q, k*), and
also amongst the n feasible bonds there is at least one coupon paid before m
and another paid after m.

By analogy, in the BI case, there exists a constant A such that
| k(sy) — k(sg) [€A for 01 <5y <T

and therefore, given a shock k(s), one can find a real number Ay (see BI)
such that

k(s)Z/\o—AifSSm} (19)

k(s) <X+ 35 if s>m

The worst shocks now are given by the step function

o _ /\0'—A if5_<_m
"(s)"{xﬁé it s>m (20)

and following the ideas in the latter case, it may be easily proved that pro-

gram (PK) also has an interior solution in this case. Hence, the results of the
second section can be applied to both cases, either FV shocks or BI shocks.

A. The case of pure discount bonds

Proposition 4.1. Let us assume that the n considered bonds are pure
discount bonds, and let ¢* € @) be a feasible portfolio. Then, the four follow-
ing conditions are equivalent.

1) ¢* is maximin in @ if we consider the F'V shocks.

ii) ¢* is maximin in @ if we consider the BI shocks.

iii) ¢* solves the program

Mian}
qEQ"
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where M? represents the FV dispersion measure and Q* is the set of matching
duration portfolios in Q.
iv) ¢* solves the program

MmN}
qgeEQ”

where N represents the BI dispersion measure and Q* is the same as iii).
Proof. See the Appendix. a

If Ty < T;--+- < T, represents the maturity of the n considered bonds
and if T; # m for ¢ = 1,.--,n, we show in the proof that the ¢* portfolio
satisfying any of these four conditions has a duration equal to m, there are
only two bonds in ¢, and these two bonds have a couple (T}, T;) of maturities
such that T; < m < Tj, T; is the largest maturity amongst the ones smaller
than m, and Tj is the smallest maturity amongst the ones greater than m.

The surprising result derived from Proposition 4.1 is that amongst zero
coupon bonds the maxmin portfolio always has a duration equal to the in-
vestor planning period. From this, it is clear that some strategies proposed
in Prisman and Shores (1988) as alternative strategies to the one proposed
by FV (1984) are not very reasonable, since the F'V strategy is the maxmin
strategy.

B. The case of coupon bonds

If the bonds pay coupons the situation is quite different, and maxmin
portfolios must be determined by equations (7) to (10). It may be difficult
in practice to solve this system of equations, since we have to simultaneously
determine shock £* and the extreme portfolios weights. In any case the
system becomes far easier if we know the shock £*.

We will now present an algorithm to find the maxmin portfolios for both
BI shocks and FV shocks. As has already been stated, U(k) is a convex
functional which can be analyzed by means of real function U(Xo)® for which
we always have an interior global minimum Aj. Once we know the set
{¢*,¢*,--+,¢'} of extreme points of @* (or Q) we can evaluate U(Xo) by

U(Xo) = Max{_wo_) . M
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To calculate A\j we start at an initial value A\g(1) and consider the sequence
Ao(1), 20(2), X0(3), - -+,

where Ag(7 4+ 1) = A(z) + s being s > 0 the step. This setp may be taken as
small as necessary.

Then we consider the sequence

where U(Xo(7)) is given by (21).

Since U is a convex function, A§ will be determined when the secuence
(22) begins to increase.

Once we have \Aj, the maxmin portfolio may be easily determined from
the system of equations (7) to (10).

V. Solving maxmin portfolio in some examples

We are going to apply the latter algorithm to solve a simulation model
which tests how maxmin portfolios and the ones minimizing the dispersion
measures work out in practice. The algorithm has been applied by taking
the step s = 1078,

We will take an investor planning period of five years, m = 5, along the
line of empirical studies on immunization, see Bierwag et al. (1993). We will
assume a plane term structure on the interest rates, r = 10%, to make it
easier.

Let us consider the set of coupon bonds presented in Table 1 and denote
by @, (respectively Q) the set of feasible portfolios (see (1)) (respectively,
the set of feasible portfolios which do not contain bond number thirteen). The
first column in Table 1 is the bond number, the second one is its maturity, the
third is the coupon (as a percentage), the fourth is the coupon periodicity (in
months), the fifth is the bond duration, in years, the sixth is its M? measure,
and the last one is its N measure.

In Table 2 (respectively 3) we give the extreme points of Q7 (respectively
@3), which are the set of portfolios in @, (@Q,) matching duration. The first
column is the portfolio number, the second is the first bond in the portfolio,
the third is the second bond in the portfolio, the fourth is the first bond
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percentage and the last columns are their M? and N dispersion measures.
The portfolios are arranged according to their N measure.

By applying the algorithm, we have solved the five following questions,
and the results are given in Tables (4) to (11).
i) The maxmin portfolios in @y, @2, @7, @3-
i1) The weights of the different bonds (or portfolios) in the maxmin strategy.
i1i) The worst shock, i.e., number 3.
iv) The value at m guaranteed by the maxmin portfolio as a percentage with
respect to the promised amount.
v) The maxmin portfolio duration.

Let us remark that in order to choose the set of bonds we have taken
into account the empirical result revealed by in Bierwag et al. (1993). They
empirically show that the best immunization strategy is matching duration
but including a maturity matching bond. This strategy is better than a bullet
or a barbell matching duration strategies, a maturity matching strategy and
the FV strategy. At the time the work was carried out the N measure had
not been developed. :

The reason for studying two different situations, (i.e. working with or
without bond number thirteen) is that this bond must play an important
role in immunization strategies. In fact, its maturity is exactly five years,
which means (according to Bierwag et al. (1993) result) that this bond will
probably be in the "best strategy”. On the other hand, this bond pays
the lowest coupon (only 9% per year) which will be useful to minimize the
dispersion measures. The remaining bonds can be considered very normal
bonds found in the market. The differences amongst them arise from their
maturities, and from their periodicity in paying the coupons (one or two
coupons per year).

A. The FV and the BI shocks.

Now we point out three arguments given in BI about the advantages of
the BI shocks over the FV shocks.

First, the bounded shocks have a theoretical argument in their favor with
respect to the FV shocks. In the bounded shocks the parameter A can be
understood as a volatility measure, as how much the shocks on the forward
instantaneous interest rates can differ between two instants, and this param-
eter can be estimated. On the other hand, the FV shocks parameter which
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is a derivative, has a more complex economic meaning and it is more difficult
to estimate.

Second, shocks with a bounded derivative are also bounded but the op-
posite is false. Shocks with small variations could have a very big derivative.
Then, we have that bounded shocks include the Fong and Vasicek shocks but
the opposite is false.

Finally, the worst shocks on the term structure of interest rates, in the
FV situation are very unreal, because they imply very big values when ¢ is
far from m, see BI.

B. The Risk Immunization Measures M? and N.

Before starting the maxmin portfolio analysis, we can spend some time
discussing measures M? and N.

An initial result that we can observe in table 2 is that the portfolio min-
imizing the N measure includes a maturity matching bond (bond number
13). If we work without the bond number 13 (see table 3) then we obtain six
portfolios with almost the same N measure and portfolios number 3,5 and
6 (which include a maturity matching bond) have a N measure very close
to the minimum value of this dispersion measure. On the other hand, the -
portfolio with the minimum M? measure, is far from including a maturity
matching bond.

The reason why portfolio 1 in table 2 has the mininum N but a very high
M? could be the following. Bond thirteen has a lower duration and therefore,
the portfolio must invest more money in another bond to match the duration
with m. Since M? is a quadratic dispersion measure, the second bond makes
it increase a lot, while the N measure does not grow as fast in this second
bond. Portfolio number 4 has the minimum M? because it is composed by
60% of bond number nine (which has a maturity of six years, a duration close
five years, and not large M?).

Likewise, in Table 1 regarding the first twelve bonds, we observe that
the second (or eigth) bonds, which are maturity matching bonds, have an
N measure which is approximately half of the adjacent bonds, the first and
third (or seventh and neinth). These bonds mature upon four or six years
respectively. There is a drastic reduction in the dispersion of the second (or
eigth) bond when using N measure. This reduction is the greatest between
each pair of consecutive bonds. However, if we use M? measure, we can
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see that the reduction is not as large. Moreover, the said reduction is the
smallest between each pair of consecutive bonds.

It is seems that there exists a closer relation between a maturity matching
bond and the BI strategy than between a maturity matching bond and the
FV strategy.

Let us now analyze results obtained on the maxmin portfolio.

C. Maxmin Portfolio amongst bonds.

In all the situations considered (FV shocks, BI shocks, working with or
without bond number thirteen) we can see in Tables 4,5,8 and 9 the maxmin
portfolio paths. We think these paths are very robust since they do not seem
to depend on the considered bonds nor on the plane term structure (r=10%)
initially taken. When parameter A is big enough, the maxmin portfolio is
almost composed only by a maturity matching bond. However, there is
always little percentage invested in a bond with a maturity bigger than five
years in order to avoid a shock (A — —o0) which implies that the value of
the porfolio would be nothing at m. If A decreases, the percentage invested
in the maturity matching bond also decreases and the portfolio duration
increases. This duration is always smaller than five years, because the bonds
pay their coupon before they pay their principal. When A closes to zero the
maxmin portfolio converges to the minimum M? (for FV shocks) or to nearly
the minimum N (for BI shocks).

Regarding BI shocks, we can see in Table 4 that the maxmin portfolio is
always composed by the same bonds (12 and 13) and only the percentage of
bonds in the portfolio changes. In Table 5, when parameter ) is lower than
0.11 then the maxmin portfolio is not unique. Bonds 8 or 9 combined with
bonds 10,11 or 12 also make a maxmin portfolio, although only one solution
appears in Table 5. For FV shocks, in Tables 8 and 9, we can see that the
maxmin portfolio does not follow such a robust path. There is a value for
parameter A from which a maturity matching bond appears in the maxmin
portfolio. Then, it seems there is more coherence in the results obtained with
BI shocks than with FV shocks. The maturity matching bond that appears
in all the tables is the bond with the lowest annual coupon. ’

The presence of a maturity matching bond is very clear because if A takes
big values, then the worst shocks are big and the principal paid by this bond
is completely riskfree.
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We can see that the six month coupon bonds do not appear in the maxmin
porfolio, ceteris paribus, these bonds have more dispersion than the annual
coupon bonds.

The path for the worst shock, independent of the type of shocks, is also
very easy to understand. If X grows, then the rate invested in the maturity
matching bond or in bond number 9 also grows. Therefore, the duration of
the maxmin portfolio decreases, which implies that the worst shock will be
a lower interest rate.

So, from the results of Table 4 and 5 and the theoretical advantages of
BI shocks we propose the following strategy. The investor must estimate pa-
rameter A for BI shocks and compute the maxmin portfolio for the estimated
parameter and for the set of feasible bonds. This strategy could include a
maturity matching bond.

D. Maxmin portfolio among matching duration portfolios

The reasons for looking for the maxmin portfolio among matching dura-
tion portfolios are clear if we remember that a matching duration portfolio is
the classical result for immunization (Fisher and Weil (1971)). Also, parallel
changes on the interest rates are a strong proportion of the total change as
shown empirically by Litterman and Scheinkman (1991). Finally, we con-
sider the more recent empirical study on immunization by Bierwag et al.
(1993). Five of the six strategies that they empirically test to see which is
the best strategy for immunization have a duration equal to m, and the sixth
one, a maturity matching strategy, has a lower duration and has the worst
empirical behaviour. Bierwag et al. (1993) show that the best immunization
strategy consists of a matching duration and including a maturity matching
bond. This strategy is better than a barbell, bullet or FV strategy®.

Regarding BI shocks we can observe in tables 6 and 7 that the maxmin
portfolio is independent of parameter A (which is a very interesting property).
This portfolio includes a maturity matching bond with the lowest annual
coupon at the greatest percentage. So, an alternative strategy to the above
mentioned one may be to estimate paramater A for BI shocks and to compute
the maxmin portfolio amongst the duration matching portfolios. When there
are several portfolios minimizing the N measure (see table 3, portfolios 1 to
6), this strategy would allow to select one of these portfolios for a small
parameter A. This strategy could be consistent with the empirical result of
Bierwag et al. (1993).
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When we consider FV shocks, the maxmin portfolio minimizes the M?
for small values for parameter A. When parameter A is large enough, we
can see in tables 10 and 11 that the maxmin portfolio contains the solution
for the maxmin portfolio for BI shocks (tables 6 and 7) which increases
proportionally to A.

It is worth emphasizing that the value guaranteed by the maxmin portfo-
lio amongst matching duration portfolios (for reasonable values for parameter
A) is very close to the value guaranteed by the maxmin portfolio amongst
bonds. However, those portfolios do not seem to depend too much on pa-
rameter A for both FV and BI shocks.

Finally, some maxmin portfolios have associated worst shocks which lead
to negative interest rates. This is a very undesirable property of the model.
But we think that it is not that important because negative interest rates
only appear when A is very large, which is not very reasonable for both
FV and BI shocks. If we prevented the worst shock in zero from avoiding
negative interest rates, the maxmin portfolio and its guaranteed value would
change only slightly. Then, from a qualitative point of view, things would
not change. We also assume that the interest rates can go to +00 or —co
to easily prove that there is an interior global minimum, but the theory
developed in the first and the second section is general enough to analyze
more complicated situations.

V1. Conclusions

We have shown that when it is not possible to immunize a bond portfolio,
we can still find a maxmin portfolio. Moreover, if we want to match the
portfolio duration, to immunize against additive shocks, we could still find a
maxmin portfolio among these duration matching portfolios.

Once the existence of maxmin portfolios has been proved we characterize
them by means of a saddle point condition and also by means of an equation
system.

We have analyzed the strategy of minimizing the risk immunization mea-
sures (M? and N) and the maxmin strategy for both bounded shocks and
shocks with a bounded derivative. We have proved that these strategies are
only equivalent when we consider pure discount bonds. Minimizing disper-
sion measures is equivalent to minimizing the worst shock effect, for each set
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of shocks considered. If we consider coupon bonds, then the strategies for
minimizing dispersion measures are not maxmin strategies since they solve
different programs. We have also given an algorithm For FV shocks and BI
shocks in order to find the maxmin portfolios. The worst shock may also be
obtained from these programs.

With two examples (two sets of bonds) we have computed the maxmin
portfolio amongst bonds, amongst matching duration portfolios and for both
FV shocks and BI shocks.

For BI shocks the parameter A has a sound economic meaning. It can be
understood as the volatility of interest rates. From looking at the maxmin
portfolio amongst bonds (tables 4 and 5) we have suggested to estimate
parameter A and to compute the maxmin portfolio. This is theoreticaly, in
our point of view, the best strategy for immunization. This strategy has a
duration slightly lower than m and could be empirically tested.

If we wishs to immunize against additive shocks, then an alternative strat-
egy is to estimate parameter A for BI shocks, and to compute the maxmin
portfolio amongst the duration matching portfolios. This strategy could be
an alternative strategy for minimizing the N measure and it could be consis-
tent with the empirical results of Bierwag et al. (1993).

Once we have computed the maxmin portfolio and the worst shock, it is
easy to compute how much money may be lost. This is another interesting
property of this model.

The FV shocks have a disadvantage, which is the meaning of the param-
eter A. Is a large or a small number for A reasonable? With F'V shocks, and
for a small A the maxmin portfolio, amongst bonds or amongst matching du-
ration portfolios and the portfolio with the minimum M2, may be obtained
by buying the same bonds. If A increases, a maturity matching bond appears
in the maxmin portfolio, and its percentage increases with A.
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Appendix

Proof of Theorem 2.1. Let {g',¢?%,---,q'} be the set of extreme points in
Q*. Then the functionals V(¢',k) ¢ = 1---,1 are convex and positive in the
k variable. Therefore the hypotheses H2 and H3 still hold and we are under
the assumptions of Lemma 1.1 in Balbds and Ibafiez (1995) which proves the
existence of a riskless shadow asset that guarantees a return yo.

Since Q™ is the convex hull of {g',¢?%,---,¢'}, then given any ¢ € Q* one
can find A1, Ag, -+, A, non negative real numbers such that

!
g = Y ag
=1
!
1 = Y (24)
1=1

Let us consider the functional

U(k) = Maz {2~ (q B =100 (25)
and let ‘
po = Inf{U(k); k € K} (26)
Clearly pg > 0 and we are going to prove that
V(g) < u5C (27)

holds for any ¢ € Q™.
For any k£ € K we have that

k)=i:a,- qk<CZaU = CU(k)

=1

and therefore
Vig) = Inf{V(q,k); k€ K} < Inf{U(k); k € K}C = u3C.

It follows from (27), that if we can find a portfolio ¢* in Q* such that V(¢*) =
poC then ¢* will be maxmin in Q* and the theorem will be proved. To find
this ¢*, let us remark that for any k € K we have

U(k) 2 g
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and therefore, since U(k) is given by (25) there exist 7 € {1,---,{} (which
depends of k) such that

Now, the existence of ¢* trivially follows from Lemma 1.1 of Balbds and
Ibdnez (1995). D

Proof of Theorem 3.2. Let us assume that ¢” is a maxmin portfolio in
@~ and that k™ solves (PK). Then we have from (8) that V(¢*) = U(k*)C.

For any ¢’ portfolio in @* we have

V(¢ k") < Maz{V(q,k"); ¢ € Q"} =U(F")C =
=V(¢") = Inf{V(q", k) k€ K} < V(q, k)

Furthermore, for any &’ admissible shock

V(g", k') > Inf{V(q",k); ke K} =V(¢") =
= U(F)C = Maa{V(g, k); g€ @} > V(") k")

Conversely, let us assume that (¢*, k*) is a saddle point and let us prove that
¢~ is maxmin. Since V(¢ k*) < V(q", k) for any k € K we have that

V(g") = V(g™ k")
and ¢ will be maxmin if we show that V(q) < V(¢*,k*) for any ¢ € Q*.
This is true since

Vig) = Inf{V(q,k); ke K} <V(q, k") < V(¢ k")

Let us finally prove that k* solves (PK). Since V(q,k*) < V(g*, k*) for any
g € Q™ we have that

Vig, k)
k)= ———
o) = 1T
and k* will solve (PK) if we show that U(k) > % for any k£ € K. But
Vg, k) Vig k) | V(g k)
Uk)=M ; > > . O
(k) = Moz (V&H), g gy » VI 5 VI,
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Proof of Proposition 4.1. Let us consider that the n bonds have their
maturity at instants 7y < T, -+ < T, respectively and that the n bonds pay
one monetary unit at maturity. The proposition is obvious if there exists a
bond 7 such that T; = m since the solution for the four programs is to invest
capital C in this bond.

Let us assume that T; #m fori =1,--- n.

If we assume that condition ii) holds, then, as has been stated, the min-
imums of functional U are attained in shocks k*(s) with the form given in
(20). There, A > 0 is constant and therefore the shock is given by A\g. In
order to achieve an easier notation we indentify the shock with A, and since
all the bonds are pure discount bonds, (14) becomes in this case

V@Ad=03w4%m—ﬂ%élm—ﬂ4 (28)

and therefore

Vg, A
WU20) _ CR eap|o(m-T) =5 m =T | (m=T) (29

dXo 2
where ¢', (i = 1,+++,n) is any extreme point of set @, and clearly, it consists

of a portfolio which has invested capital C in the i-th bond. If

!
¢ = ai¢
i=1

is the maximin portfolio, conditions (7) to (10) must hold, and then, from
(28) and (29) we obtain

h
Za; =1 (30)
=1

A
do(m —T;) — 3 | m — T; | has its maximum in j for j =1,---, A(31)

a:ZO 2={1aah}

h
Y ai(m—-T)=0 (32)
=1

where we have assumed that the portfolios ¢',- - -, ¢" are the only ones in the

maxmin portfolio, again in order to achieve easier notation.
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Expressions (30) and (32) imply that the maxmin portfolio ¢* is a match-
ing duration portfolio, t.e., ¢* € Q*.

Since ¢* has a duration equal to m and none of the bonds has m maturity,
at least two bonds (i and j) must be in the maxmin portfolio, and the
following inequality must hold T; < m < Tj.

We have from (31)

A A
dolm=T) = 5 |m=Ti [= o(m ~T}) = 5 | m = T; |

from where the worst shock will be
\o_ AGm-T;~T)
°T AT, -T))

and therefore

Nlm=T) = § | m— Ty |= g=s(m = T)(T; = m)

since this expression has to be maxima (see (31)), it will be proved that a
maxmin portfolio only has two bonds, if we prove that

(m-T)T; —-m) .

F(THT1)= T. — T 27J=17aha27£.7 (33)
3 1
only has one minimum.
Clearly

oF _ _[Li=m]* _,

or,  |T;-T:

OF [m-T; 2>0

or; |T;-T

and F increases with T; and decreases with T;. Given that T; < m < T; the
minimum is attained at the point (T3, T;) closest to m.

By analogy, if we assume that i) holds, then following the ideas in the
latter case, the worst shock will be given by
/\(2777. - Tj - T,)
2

Xy =
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and the only two bonds in the maxmim portfolio will be obtained by mini-
mizing the expression
A

E(m —T)(T; — m) subject to T; < m < Tj.

Therefore, the maxmin portfolio will be the one computed in the latter case.

Let us assume that iv) holds.
Let oy, ay, -+, a, be the percentages invested in bonds 1,2, -+, n respec-
tively and clearly ¢* solves the following program

n
Min Y o [m—T; |
i=1
subject to >, ol =m
S o =1
%20 i=1n

Since the program is linear, the minimum must be attained at an extreme
point. On the other hand the basic feasible solutions {extreme points) have
only two non-zero variables (there are two constraints), the first constraint
shows that the two bonds in the solution must have maturities smaller and
greater than m respectively. If o; and a; (T; < m < T}) are non zero in the
solution, then

aTi+a;T;=m
ai+aj=1

from where

2(m — T)(T; —m)
T, - T

ai [m—Ti|+a; [m-T;|=

and it has already been proved that the latter expression becomes minima
when the couple (T;,T;) is as near as possible to m.

If we assume that iii) holds we obtain the same solution ¢* in an analogous
way. a
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Footnotes

'From now on, if k* solves (PK) it is called the "worst shock”.

*We are going to show the proof although it is very similar to the very
well known proof in game theory.

3We observe that having defined V (g, k) as in (11) the Hyphotesis H4 of
Balbas and Ibdfiez (1995) holds, which says that V;(0) = RP;, i = 1,---,n.

“From now on, FV and BI will mean Fong and Vasicek (1984) and Balbas
and Ibafiez (1995) respectively.

SU(Xo) represents the number denoted by U(k) in the second section.

éPrisman and Tian (1994) in an empirical work on the effects of taxes
on immunization point out that there is no theory underyliyng the strat-
egy proposed by Bierwag et al. (1993), and consequently, there are no
guidelines regarding the weight of such bond in the portfolio.
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Table 1: Set of Bonds

Bond Maturity | coupon coupon Duration M? N

number || (years) in % | (monthly) | (years)
1 4 5 6 3.39029 | 3.78821 | 1.60970
2 5 5 6 4.04855 | 3.12539 | 0.95144
3 6 5 6 4.64453 | 3.71997 | 1.55018
4 7 5 6 5.18397 | 5.34059 | 2.09212
5 8 5 6 5.67211 | 7.78769 | 2.58253
6 9 5 6 6.11372 | 10.8897 | 3.02620
7 4 10 12 3.48232 | 3.27130 | 1.51767
8 5 10 12 4,16101 | 2.59822 | 0.83898
9 6 10 12 4.77597 | 3.22315 | 1.45880
10 7 10 12 5.33285 | 4.90932 | 2.02011
11 8 10 12 5.83689 | 7.45157 | 2.52818
12 9 10 12 6.29287 | 10.6728 | 2.98782
13 | 5 ] 9 12 | 4.21496 | 2.43114 | 0.78503 |
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Table 2: Matching-duration Portfolios, Q}.

| number [ 1th bond | 2th bond |% (1th) | M2 | N |

1

O OO N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12
11

RO R N RO N R R N DR WWRWRWRWNO R WSO N U0 WD 0 O S

13
13
13
10
11
10
12
11
12
13
9

9

10
13
8

11
10

37.77
48.40
70.22
59.77
78.88
28.40
85.23
49.93
60.64
41.34
16.74
24.99
25.91
53.87
42.96
46.79
48.35
54.90
55.52
57.60
70.18
81.01
78.43
82.01
34.10
16.20
65.40
75.80
41.39
53.92
17.98
17.13
89.18
10.25
35.54
34.20
69.30
29.45
46.00
44.54
57.67
40.89

5.544
4.861
4.171
3.901
4.116
4.252
4.323
5.027
5.775
5.928
4.507
4.364
4.446
5.316
6.160
5.427
4.334
4.385
5.479
6.325
4.832
4.788
5.219
4.847
4.787
4.981
5.127
5.454
5.857
6.702
4.614
4.717
5.116
5.181
5.965
6.198
6.401
6.609
7.268
7.606
7.665
7.985

1.617
1.628
1.652
1.684
1.684
1.684
1.684
1.684
1.684
1.711
1.721
1.739
1.743
1.753
1.778
1.790
1.792
1.806
1.807
1.814
1.841
1.843
1.860
1.866
1.907
1.907
1.907
1.907
1.907
1.907
1.929
1.949
2.030
2.042
2.169
2.214
2.255
2.295
2.311
2.373
2.387
2.446
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Table 3: Matching-duration Portfolios, Q3.

| number || 1th bond | 2th bond I % (1th) | M? | N l
1 9 10 59.77 3.901 | 1.6846132
2 9 11 78.88 4.116 | 1.6846172
3 8 10 28.40 4.252 | 1.6846198
4 9 12 85.23 4.323 | 1.6846211
3 8 11 49.93 5.027 | 1.6846342
6 8 12 60.64 5.775 | 1.6846482
7 6 9 16.74 4,507 | 1.7212876
8 5 9 24.99 4.364 | 1.7397250
9 2 10 25.91 4.446 | 1.7431487
10 6 8 42.96 6.160 | 1.7787185
11 2 11 46.79 5.427 | 1.7903170
12 3 10 48.35 4.334 | 1.7928698
13 4 9 54.90 4.385 | 1.8065498
14 3 8 55.52 5.479 | 1.8070234
15 2 12 57.60 6.325 | 1.8147429
16 3 11 70.18 4.832 | 1.8417463
17 3 12 78.43 5.219 | 1.8602143
18 4 8 82.01 4.847 | 1.8667515
19 3 4 34.10 4.787 | 1.9072982
20 2 4 16.20 4,981 | 1.9072993
21 3 ) 65.40 5.127 | 1.9073001
22 3 6 75.80 5.454 | 1.9073020
23 2 3 41.39 5.857 | 1.9073042
24 2 6 53.92 6.702 | 1.9073090
25 7 10 17.98 4.614 | 1.9297429
26 1 10 17.13 4,717 | 1.9497946
27 4 7 89.18 5.116 | 2.0300177
28 1 4 10.25 5.181 | 2.0426442
29 7 11 35.54 5.965 | 2.1690124
30 1 11 34.20 6.198 | 2.2140047
31 5 7 69.30 6.401 | 2.2556923
32 1 5 29.45 6.609 | 2.2959836
33 7 12 46.00 7.268 | 2.3115433
34 1 12 44.54 7.606 | 2.3739805
35 6 7 57.67 7.665 | 2.3877217
36 1 6 40.89 7.985 | 2.4469345
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Table 4: Maxmin Portfolios among bonds
BI shocks. Set of bonds Q.
A [ 1thbond | 2thbond [ % (1th) [ A5 [ % value [ duration |

0.001 12 13 36.9774 1-0.0005 | 99.9192 T 4.9833"
0.002 12 13 36.8506 | -0.0010 | 99.8388 | 4.9806
0.004 12 13 36.5985 | -0.0021 | 99.6786 | 4.9754
0.006 12 13 36.3484 | -0.0031 | 99.5195 | 4.9702
0.008 12 13 36.1004 | -0.0042 { 99.3615 | 4.9651
0.010 12 13 35.8544 | -0.0052 | 99.2045 | 4.9599
0.012 12 13 35.6103 [ -0.0063 | 99.0485 | 4.9549
0.014 12 13 35.3683 | -0.0074 | 98.8935 | 4.9498
0.016 12 13 35.1281 | -0.0084 | 98.7395 | 4.9448
0.018 12 13 34.8900 | -0.0095 | 98.5866 | 4.9399
0.020 12 13 34.6537 | -0.0105 | 98.4346 | 4.9350
0.022 12 13 34.4193 | -0.0116 | 98.2836 | 4.9301
0.024 12 13 34.1868 | -0.0126 | 98.1336 | 4.9253
0.026 12 13 33.9561 | -0.0137 | 97.9845 | 4.9205
0.028 12 13 33.7273 | -0.0148 | 97.8365 | 4.9157
0.030 12 13 33.5004 | -0.0158 | 97.6894 | 4.9110
0.032 12 13 33.2752 | -0.0169 | 97.5432 | 4.9063
0.034 12 13 33.0518 | -0.0179 | 97.3980 | 4.9017
0.036 12 13 32.8302 | -0.0190 | 97.2537 | 4.8971
0.038 12 13 32.6103 | -0.0200 | 97.1103 | 4.8925
0.040 12 13 32.3922 | -0.0211 | 96.9679 | 4.8880
0.042 12 13 32.1758 | -0.0221 | 96.8264 | 4.8835
0.044 12 13 31.9611 | -0.0232 | 96.6858 | 4.8790
0.046 12 13 31.7481 | -0.0242 | 96.5461 | 4.8746
0.048 12 13 31.5368 | -0.0253 | 96.4072 | 4.8702
0.050 12 13 31.3272 | -0.0263 | 96.2693 | 4.8659
0.060 12 13 30.3033 | -0.0316 | 95.5928 | 4.8446
0.070 12 13 29.3186 | -0.0368 | 94.9375 | 4.8241
0.080 12 13 28.3716 | -0.0421 | 94.3027 | 4.8045
0.090 12 13 27.4603 | -0.0473 | 93.6877 | 4.7855
0.100 12 13 26.5834 | -0.0525 | 93.0917 | 4.7673
0.110 12 13 25.7392 | -0.0577 | 92.5140 | 4.7498
0.120 12 13 24,9264 | -0.0629 | 91.9541 | 4.7329
0.130 12 13 24.1437 | -0.0681 | 91.4113 | 4.7166
0.140 12 13 23.3897 | -0.0733 | 90.8849 | 4.7009
0.150 12 13 22.6632 | -0.0785 | 90.3745 | 4.6858
0.160 12 13 21.9631 | -0.0837 | 89.8795 | 4.6713
0.170 12 13 21.2883 | -0.0889 | 89.3992 | 4.6573
0.180 12 13 20.6377 | -0.0940 | 88.9334 | 4.6438
0.190 12 13 20.0103 | -0.0992 | 88.4813 | 4.6307
0.200 12 13 19.4052 | -0.1044 | 88.0426 | 4.6181
0.250 12 13 16.6839 1-0.I301 [ 86.0341 | 4.5616
0.300 12 13 14.4005 | -0.1557 | 84.2983 | 4.5141
0.350 12 13 12.4765 | -0.1813 | 82.7930 | 4.4742
0.400 12 13 10.8490 | -0.2067 | 81.4833 | 4.4404
0.450 12 13 9.46736 | -0.2322 | 80.3400 | 4.4116
0.500 12 13 8.29019 | -0.2575 | 79.3388 | 4.3872
0.550 12 13 7.28392 | -0.2828 | 78.4593 | 4.3663
0.600 12 13 6.42096 | -0.3081 | 77.6842 | 4.3483
0.650 12 13 5.67854 | -0.3334 | 76.9990 | 4.3329
0.700 12 13 5.03784 | -0.3586 | 76.3914 | 4.3196
0.750 12 13 4.48324 | -0.3838 | 75.8510 | 4.3081
0.800 12 13 4.00172 | -0.4089 | 75.3690 | 4.2981
0.850 12 13 3.58240 | -0.4341 | 74.9379 | 4.2894
0.900 12 13 3.21617 | -0.4592 | 74.5511 | 4.2817
0.950 12 13 2.89539 | -0.4844 | 74.2031 | 4.2751
1.0 12 13 2.61358 | -0.5095 | 73.8893 | 4.2692
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Table 5: Maxmin Portfolios among bonds
BI shocks. Set of bonds @Q,.
A T 1thbond [2thbond [ % (1th) | A5 [ % value [ duration |

0.001 10 9 39.8212 [ -0.0005 [ 99.9159 T 4.9977
0.002 10 9 39.3521 | -0.0010 | 99.8320 | 4.9951
0.004 10 9 38.4190 | -0.0020 | 99.6651 | 4.9899
0.006 10 9 37.4922 | -0.0030 | 99.4993 | 4.9847
0.008 10 9 36.5718 | -0.0040 | 99.3344 | 4.9796
0.010 10 9 35.6577 [ -0.0050 | 99.1706 | 4.9745
0.012 10 9 34.7498 | -0.0060 | 99.0079 | 4.9694
0.014 10 9 33.8482 | -0.0070 | 98.8461 | 4.9644
0.016 10 9 32.9528 | -0.0080 | 98.6853 | 4.9594
0.018 10 9 32.0635 | -0.0090 | 98.5255 | 4.9545
0.020 10 9 31.1803 | -0.0100 | 98.3667 | 4.9496
0.022 10 9 30.3031 | -0.0110 | 98.2089 | 4.9447
0.024 10 9 29.4319 | -0.0120 | 98.0521 | 4.9398
0.026 10 9 28.5667 | -0.0130 | 97.8962 | 4.9350
0.028 10 9 27.7074 | -0.0141 | 97.7413 | 4.9302
0.030 10 9 26.8540 | -0.0151 | 97.5874 | 4.9255
0.032 10 9 26.0064 | -0.0161 | 97.4344 | 4.9207
0.034 10 9 25.1646 | -0.0171 | 97.2823 | 4.9161
0.036 10 9 24,3285 | -0.0181 | 97.1312 | 4.9114
0.038 10 9 23.4981 | -0.0191 | 96.9810 | 4.9068
0.040 10 9 22.6734 | -0.0201 | 96.8317 | 4.9022
0.042 10 9 21.8542 | -0.0211 | 96.6834 | 4.8976
0.044 10 9 21.0407 | -0.0221 | 96.5359 | 4.8931
0.046 10 9 20.2327 | -0.0231 | 96.3894 | 4.8886
0.048 10 9 19.4302 | -0.0241 | 96.2438 | 4.8841
0.050 10 9 18.6331 | -0.0251 | 96.0990 | 4.8797
0.060 10 9 14,7284 1-0.0302 ] 95.3885 | 4.8579
0.070 10 9 10.9541 | -0.0352 | 94.6993 | 4.8369
0.080 10 9 73.0585 | -0.0402 | 94.0308 | 4.8166
0.090 10 9 37.7896 | -0.0453 | 93.3824 | 4.7970
0.100 10 9 36.9186 | -0.0503 | 92.7533 | 4.7780
0.110 9 8 97.3620 | -0.0553 | 92.1429 | 4.7597
0.120 9 8 94.4887 | -0.0603 | 91.5505 | 4.7420
0.130 9 8 91.7097 | -0.0654 | 90.9757 | 4.7249
0.140 9 8 89.0219 | -0.0704 | 90.4177 | 4.7084
0.150 9 8 86.4220 | -0.0754 | 89.8761 | 4.6924
0.160 9 8 83.9070 | -0.0805 | 89.3503 | 4.6770
0.170 9 8 81.4739 | -0.0855 | 88.8398 | 4.6620
0.180 9 8 79.1198 | -0.0905 | 88.3442 | 4.6475
0.190 9 8 76.8420 | -0.0955 | 87.8628 | 4.6335
0.200 9 8 74.6378 | -0.1005 | 87.3953 | 4.6200
0.250 9 3 04.6355 | -0.1256 | 85.2503 | 4.5584
0.300 9 8 56.1283 | -0.1507 | 83.3907 | 4.5061
0.350 9 8 48.8776 | -0.1758 | 81.7738 | 4.4615
0.400 9 8 42.6846 | -0.2009 | 80.3640 | 4.4235
0.450 9 8 37.3831 | -0.2259 | 79.1312 | 4.3909
0.500 9 8 32.8347 | -0.2510 | 78.0502 | 4.3629
0.550 9 8 28.9233 | -0.2760 | 77.0994 | 4.3388
0.600 9 8 25.5517 | -0.3011 | 76.2607 | 4.3181
0.650 9 8 22.6384 | -0.3261 | 75.5188 | 4.3002
0.700 9 8 20.1148 | -0.3511 | 74.8605 | 4.2847
0.750 9 8 17.9233 | -0.3762 | 74.2749 | 4.2712
0.800 9 8 16.0153 | -0.4012 | 73.7524 | 4.2595
0.850 9 8 14.3499 | -0.4262 | 73.2848 | 4.2492
0.900 9 8 12.8925 | -0.4512 | 72.8654 | 4.2403
0.950 9 8 11.6136 | -0.4762 | 72.4880 | 4.2324

1.0 9 8 10.4886 | -0.5013 | 72.1477 | 4.2255
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Table 6: Maxmin Portfolios among duration-matching portfolios.
BI shocks. Set of portfolios Q5.
[ A T 1thportf. [ 2th portf. [% (1thY | A5 [ % value |

0.001 I 1 100. -.00004 T 99.9192
0.002 1 1 100. -.00009 | 99.8385
0.004 1 1 100. -.00019 | 99.6776
0.006 1 1 100. -.00029 | 99.5172
0.008 1 1 100. -.00038 | 99.3574
0.010 1 1 100. -.00048 | 99.1982
0.012 1 1 100. -.00058 | 99.0394
0.014 1 1 100. -.00068 | 98.8812
0.016 1 1 100. -.00077 | 98.7236
0.018 1 1 100. -.00087 | 98.5664
0.020 1 1 100. -.00097 | 98.4098
0.022 1 1 100. -.00107 | 98.2538
0.024 1 1 100. -.00116 | 98.0982
0.026 1 1 100. -.00126 | 97.9432
0.028 1 1 100. -.00136 | 97.7887
0.030 1 1 100. -.00146 | 97.6348
0.032 1 1 100. -.00156 | 97.4813
0.034 1 1 100. -.00166 | 97.3284
0.036 1 1 100. -.00175 | 97.1760
0.038 1 1 100. -.00185 | 97.0241
0.040 1 1 100. -.00195 | 96.8727
0.042 1 1 100. -.00205 | 96.7218
0.044 1 1 100. -.00215 | 96.5715
0.046 1 1 100. -.00225 | 96.4216
0.048 1 1 100. -.00235 | 96.2723
0.050 1 1 100. -.00245 | 96.1234
0.060 1 1 100. -.00295 | 95.3867
0.070 1 1 100. -.00345 | 94.6623
0.080 1 1 100. -.00396 | 93.9499
0.090 1 1 100. -.00446 | 93.2495
0.100 1 1 100. -.00498 | 92.5607
0.110 1 1 100. -.00549 | 91.8834
0.120 1 1 100. -.00601 | 91.2174
0.130 1 1 100. -.00653 | 90.5624
0.140 1 1 100. -.00705 | 89.9182
0.150 1 1 100. -.00757 | 89.2848
0.160 1 1 100. -.00810 | 88.6618
0.170 1 1 100. -.00864 | 88.0491
0.180 1 1 100. -.00917 | 87.4465
0.190 1 1 100. -.00971 | 86.8539
0.200 1 1 100. -.01025 | 86.2709
0.250 1 1 100. -.0I300 [ 83.4968
0.300 1 1 100. -.01583 | 80.9418
0.350 1 1 100. -.01874 | 78.5873
0.400 1 1 100. -.02173 | 76.4164
0.450 1 1 100. -.02481 | 74.4136
0.500 1 1 100. -.02797 | 72.5647
0.550 1 1 100. - | -.03122 | 70.8568
0.600 1 1 100. -.03455 | 69.2782
0.650 1 1 100. -.03797 | 67.8182
0.700 1 1 100. -.04148 | 66.4669
0.750 1 1 100. -.04508 | 65.2154
0.800 1 1 100. -.04878 | 64.0556
0.850 1 1 100. -.05256 | 62.9800
0.900 1 1 100. -.05644 | 61.9818
0.950 1 1 100. -.06042 | 61.0547

1.0 1 1 100. -.06448 | 60.1930
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Table 7: Maxmin Portfolios among duration-matching portfolios.

BI shocks. Set of portfolios Q3.

[ A [ 1th portf. [ 2th portf. [ % (1th) [ A5 | % value |
001 6 6 100. -.00004 T 99.9158
0.002 6 6 100. -.00009 | 99.8318
0.004 6 6 100. -.00019 | 99.6642
0.006 6 6 100. -.00029 | 99.4971
0.008 6 6 100. -.00038 | 99.3306
0.010 6 6 100. -.00048 | 99.1647
0.012 6 6 100. -.00058 | 98.9994
0.014 6 6 100. -.00068 | 98.8346
0.016 6 6 100. -.00077 | 98.6704
0.018 6 6 100. -.00087 | 98.5067
0.020 6 6 100. -.00097 | 98.3436
0.022 6 6 100. -.00107 | 98.1810
0.024 6 6 100. -.00116 | 98.0190
0.026 6 6 100. -.00126 | 97.8575
0.028 6 6 100. -.00136 | 97.6966
0.030 6 6 100. -.00146 | 97.5362
0.032 6 6 100. -.00156 | 97.3764
0.034 6 6 100. -.00166 | 97.2171
0.036 6 6 100. -.00175 | 97.0583
0.038 6 6 100. -.00185 | 96.9001
0.040 6 6 100. -.00195 | 96.7424
0.042 6 6 100. -.00205 | 96.5852
0.044 6 6 100. -.00215 | 96.4286
0.046 6 6 100. -.00225 | 96.2725
0.048 6 6 100. -.00235 | 96.1169
0.050 6 6 100. -.00245 | 95.9619
0.060 6 6 100. -.00295 | 95.1944
0.070 6 6 100. -.00345 | 94.4398
0.080 6 6 100. -.00396 | 93.6978
0.090 6 6 100. -.00446 | 92.9682
0.100 6 6 100. -.00498 | 92.2507
0.110 6 6 100. -.00549 | 91.5451
0.120 6 6 100. -.00601 | 90.8513
0.130 6 6 100. -.00653 | 90.1690
0.140 6 6 100. -.00705 | 89.4981
0.150 6 6 100. -.00757 | 88.8382
0.160 6 6 100. -.00810 | 88.1893
0.170 6 6 100. -.00864 | 87.5510
0.180 6 6 100. -.00917 | 86.9233
0.190 6 6 100. -.00971 | 86.3060
0.200 6 6 100. -.01025 | 85.6988
250 i} (¢ 100. -.01300 | 82.3090
0.300 6 6 100. -.01583 | 80.1475
0.350 6 6 100. -.01874 | 77.6949
0.400 6 6 100. -.02173 | 75.4335
0.450 6 6 100. -.02481 | 73.3472
0.500 6 6 100. -.02797 | 71.4213
0.550 6 6 100. -.03122 | 69.6422
0.600 6 6 100. -.03455 | 67.9978
0.650 6 6 100. -.03797 | 66.4769
0.700 6 6 100. -.04148 | 65.0693
0.750 6 6 100. -.04508 | 63.7657
0.800 6 6 100. -.04878 | 62.5576
0.850 6 6 100. -.05256 | 61.4371
0.900 6 6 100. -.05644 | 60.3973
0.950 6 6 100. -.06042 | 59.4316
1.0 6 6 100. -.06448 | 58.5340
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Table 8: Maxmin Portfolios among bonds
FV shocks. Set of bonds ;.
A [[1th bond | 2th bond | % (1th) | Af [ % value [ duration |

0.001 10 9 38.6416 [ -.00I51 [ 99.8063 T 4.9911
0.002 10 9 37.0122 | -.00302 | 99.6154 | 4.9820
0.004 10 9 33.8142 | -.00605 | 99.2417 | 4.9642
0.006 10 9 30.6958 | -.00908 | 98.8787 | 4.9469
0.008 10 9 27.6548 | -.01210 | 98.5262 | 4.9299
0.010 10 9 24,6890 | -.01513 | 98.1838 | 4.9134
0.012 10 9 21.7965 | -.01815 | 97.8514 | 4.8973
0.014 10 9 18.9753 | -.02118 | 97.5287 | 4.8816
0.016 10 9 16.2235 | -.02420 | 97.2155 | 4.8663
0.018 10 9 13.5392 | -.02722 | 96.9115 | 4.8513
0.020 10 9 10.9206 | -.03025 | 96.6166 | 4.8367
0.022 10 9 8.36603 | -.03327 | 96.3306 | 4.8225
0.024 10 9 5.87367 | -.03629 | 96.0532 | 4.8086
0.026 10 9 3.44193 | -.03931 | 95.7843 | 4.7951
0.028 10 9 1.06918 | -.04233 | 95.5237 | 4.7819
0.030 9 9 100. -.04251 | 95.2701 | 4.7759
0.032 9 9 100. -.04028 | 95.0182 | 4.7759
0.034 9 9 100. -.03806 | 94.7674 | 4.7759
0.036 9 9 100. -.03584 | 94.5175 | 4.7759
0.038 9 9 100. -.03362 | 94.2687 | 4.7759
0.040 9 9 100. -.03140 | 94.0209 | 4.7759
0.042 9 9 100. -.02919 | 93.7740 | 4.7759
0.044 9 13 98.9017 | -.02949 | 93.5290 | 4.7698
0.046 9 13 97.4048 | -.03077 | 93.2877 | 4.7614
0.048 9 13 95.9394 | -.03205 | 93.0503 | 4.7531
0.050 9 13 94.5048 | -.03332 | 92.8167 | 4.7451
0.060 9 13 87.7642 | -.03960 | 91.7026 | 4.7073
0.070 9 13 81.6788 | -.04579 | 90.6722 | 4.6731
0.080 9 13 76.1695 | -.05189 | 89.7176 | 4.6422
0.090 9 13 71.1687 | -.05790 | 88.8319 | 4.6142
0.100 9 13 66.6184 | -.06385 | 88.0087 | 4.5887
0.110 9 13 62.4687 | -.06973 | 87.2425 | 4.5654
0.120 9 13 58.6763 | -.07555 | 86.5284 | 4.5441
0.130 9 13 55.2033 | -.08131 | 85.8618 | 4.5246
0.140 9 13 52.0169 | -.08702 | 85.2387 | 4.5067
0.150 9 13 49.0880 | -.09269 | 84.6555 | 4.4903
0.160 9 13 46.3911 | -.09831 | 84.1090 | 4.4752
0.170 9 13 43.9038 | -.10390 | 83.5961 | 4.4612
0.180 9 13 41.6060 | -.10945 | 83.1141 | 4.4483
0.190 9 13 39.4801 | -.11497 | 82.6608 | 4.4364
0.200 9 13 37.5103 | -.12045 | 82.2337 | 4.4254
0.250 9 13 29.5569 [ -.14751 | 80.429T | 4.3807
0.300 9 13 23.9067 | -.17408 | 79.0458 | 4.3490
0.350 9 13 19.7715 | -.20031 | 77.9581 | 4.3258
0.400 9 13 16.6626 | -.22631 | 77.0830 | 4.3084
0.450 9 13 14.2682 | -.25212 | 76.3648 | 4.2950
0.500 9 13 12.3832 | -.27780 | 75.7647 | 4.2844
0.550 9 13 10.8700 | -.30337 | 75.2555 | 4.2759
0.600 9 13 9.63413 | -.32887 | 74.8179 | 4.2690
0.650 9 13 8.60899 | -.35430 | 74.4373 | 4.2632
0.700 9 13 7.74710 | -.37968 | 74.1030 | 4.2584
0.750 9 13 7.01377 | -.40501 | 73.8070 | 4.2543
0.800 9 13 6.38321 | -.43031 | 73.5428 | 4.2507
0.850 9 13 5.83594 | -.45558 | 73.3055 | 4.2477
0.900 9 13 5.35702 | -.48082 | 73.0912 | 4.2450
0.950 9 13 4.93482 | -.50604 | 72.8966 | 4.2426

1.0 9 13 4.56015 | -.53124 | 72.7191 | 4.2405

32




Table 9: Maxmin Portfolios among bonds
FV shocks. Set of bonds Q,.
A [ 1th bond [ 2th bond [% (1th) [ A5 [ % value [ duration |

0.001 10 9 38.6416 [ -.00I51 7 99.8063 T 4.991
0.002 10 9 37.0122 | -.00302 | 99.6154 | 4.9820
0.004 10 9 33.8142 | -.00605 | 99.2417 | 4.9642
0.006 10 9 30.6958 | -.00908 | 98.8787 | 4.9469
0.008 10 9 27.6548 | -.01210 | 98.5262 | 4.9299
0.010 10 9 24.6890 | -.01513 | 98.1838 | 4.9134
0.012 10 9 21.7965 | -.01815 | 97.8514 | 4.8973
0.014 10 9 18.9753 | -.02118 | 97.5287 | 4.8816
0.016 10 9 16.2235 | -.02420 | 97.2155 | 4.8663
0.018 10 9 13.5392 | -.02722 | 96.9115 | 4.8513
0.020 10 9 10.9206 | -.03025 | 96.6166 | 4.8367
0.022 10 9 8.36603 | -.03327 | 96.3306 | 4.8225
0.024 10 9 5.87367 | -.03629 | 96.0532 | 4.8086
0.026 10 9 3.44193 | -.03931 | 95.7843 | 4.7951
0.028 10 9 1.06918 | -.04233 | 95.5237 | 4.7819
0.030 9 9 100. -.0425]1 | 95.2701 | 4.7759
0.032 9 9 100. -.04028 | 95.0182 | 4.7759
0.034 9 9 100. -.03806 | 94.7674 | 4.7759
0.036 9 9 100. -.03584 | 94.5175 | 4.7759
0.038 9 9 100. -.03362 | 94.2687 | 4.7759
0.040 9 9 100. -.03140 | 94.0209 | 4.7759
0.042 9 9 100. -.02919 | 93.7740 | 4.7759
0.044 9 9 100. -.02698 | 93.5282 | 4.7759
0.046 9 9 100. -.02477 | 93.2833 | 4.7759
0.048 9 8 99.3094 | -.02432 | 93.0398 | 4.7717
0.050 9 8 98.0602 | -.02533 | 92.7995 | 4.7640
0.060 9 8 92.1045 | -.03039 [ 91.6481 | 4.7274
0.070 9 8 86.6030 | -.03544 | 90.5751 | 4.6935
0.080 9 8 81.5172 | -.04048 | 89.5742 | 4.6623
0.090 9 8 76.8121 | -.04553 | 88.6398 | 4.6333
0.100 9 8 72.4560 | -.05057 | 87.7665 | 4.6065
0.110 9 8 68.4197 | -.05561 | 86.9495 | 4.5817
0.120 9 8 64.6767 | -.06064 | 86.1845 | 4.5587
0.130 9 8 61.2031 | -.06568 | 85.4674 | 4.5373
0.140 9 8 87.9766 | -.07071 | 84.7945 | 4.5175
0.150 9 8 54.9774 | -.07574 | 84.1626 | 4.4991
0.160 9 8 52.1870 | -.08077 | 83.5685 | 4.4819
0.170 9 8 49.5887 | -.08579 | 83.0094 | 4.4659
0.180 9 8 47.1673 | -.09082 | 82.4827 | 4.4510
0.190 9 8 44,9086 | -.09584 | 81.9860 | 4.4371
0.200 9 8 42.8001 | -.10086 | 81.5172 | 4.4242
0.250 9 8 34.1318 1 -.12596 | 79.5264 | 4.3709
0.300 9 8 27.8234 | -.15103 | 77.9913 | 4.3321
0.350 9 8 23.1291 | -.17609 | 76.7803 | 4.3032
0.400 9 8 19.5591 | -.20113 | 75.8044 | 4.2812
0.450 9 8 16.7871 | -.22617 | 75.0028 | 4.2642
0.500 9 8 14.5924 | -.25120 | 74.3330 | 4.2507
0.550 9 8 12.8233 | -.27623 | 73.7649 | 4.2398
0.600 9 8 11.3740 | -.30125 | 73.2768 | 4.2309
0.650 9 8 10.1692 | -.32627 | 72.8526 | 4.2235
0.700 9 8 9.15476 | -.35129 | 72.4803 | 4.2173
0.750 9 8 8.29052 | -.37630 | 72.1507 | 4.2120
0.800 9 8 7.54673 | -.40132 | 71.8568 | 4.2074
0.850 9 8 6.90076 | -.42633 | 71.5930 | 4.2034
0.900 9 8 6.33517 | -.45134 | 71.3549 | 4.1999
0.950 9 8 5.83637 | -.47635 | 71.1388 | 4.1969
1.0 9 8 5.39360 | -.50136 | 70.9418 | 4.1941
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Table 10: Maxmin Portfolios among duration-matching portfolios.
FV shocks. Set of portfolios Q7.
[ X T 1th portf. [ 2th portf. [ % (1thY ] X% [ % value

0.001 4 4 100. 00085 | 99.8052
0.002 4 4 100. .00170 | 99.6110
0.004 4 4 100. .00341 | 99.2245
0.006 4 4 100. .00512 | 98.8404
0.008 4 4 100. .00682 | 98.4587
0.010 4 4 100. .00852 | 98.0793
0.012 4 4 100. .01022 | 97.7023
0.014 4 4 100. 01192 | 97.3276
0.016 4 4 100. 01362 | 96.9553
0.018 4 4 100. 01531 | 96.5852
0.020 4 4 100. 01700 | 96.2174
0.022 4 4 100. 01869 | 95.8519
0.024 4 4 100. .02038 | 95.4887
0.026 4 4 100. 02207 | 95.1277
0.028 4 4 100. 02375 | 94.7689
0.030 4 4 100. 02544 | 94.4123
0.032 4 4 100. 02712 | 94.0579
0.034 4 4 100. .02880 | 93.7056
0.036 4 4 100. .03047 | 93.3556
0.038 4 4 100. 03215 | 93.0076
0.040 4 4 100. .03382 | 92.6618
0.042 4 4 100. 03549 | 92.3181
0.044 4 4 100. 03716 | 91.9765
0.046 4 4 100. .03883 | 91.6370
0.048 4 4 100. .04049 | 91.2995
0.050 4 4 100. .04216 | 90.9641
0.060 4 4 100. 05044 | 89.3173
0.070 4 4 100. .05867 | 87.7197
0.080 4 4 100. .06685 | 86.1694
0.090 4 4 100. 07497 | 84.6649
0.100 4 4 100. 08305 | 83.2046
0.110 4 7 74.9576 | .08372 | 81.7944
0.120 4 7 27.3614 | .07632 | 80.4794
0.130 7 7 100. .07403 | 79.2619
0.140 7 7 100. .08100 | 78.0996
0.150 7 7 100. .08812 | 76.9793
0.160 7 7 100. .09537 | 75.8983
0.170 7 7 100. 10273 | 74.8540
0.180 7 7 100. 11020 | 73.8442
0.190 7 7 100. 11776 | 72.8666
0.200 7 1 97.3069 | .12100 | 71.9211
0.230 [ I (1.4077 | .10388 [ 67.8691
0.300 7 1 54.0713 | .08447 | 64.7538
0.350 7 1 42.0529 | .06355 | 62.3297
0.400 7 1 33.4502 | .04158 | 60.4157
0.450 7 1 27.1071 | .01886 | 58.8805
0.500 7 1 22.3003 | -.00439 | 57.6298
0.550 7 1 18.5660 | -.02805 | 56.5955
0.600 7 1 15.5995 | -.05200 | 55.7283
0.650 7 1 13.1966 | -.07617 | 54.9917
0.700 7 1 11.2170 | -.10050 | 54.3588
0.750 7 1 9.56230 | -.12496 | 53.8094
0.800 7 1 8.16191 | -.14952 | 53.3278
0.850 7 1 6.96415 | -.17414 | 52.9023
0.900 7 1 5.93036 | -.19882 | 52.5234
0.950 7 1 5.03104 | -.22355 | 52.1839

1.0 7 1 4.24330 | -.24830 | 51.8778
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Table 11: Maxmin Portfolios among duration-matching portfolios.

FV shocks. Set of portfolios Q3.

[ A J1thbond [2thbond [ % (tK) ] A5 T % value ]
001 1 1 100. .00085 T 99.805
0.002 1 1 100. .00170 | 99.6110
0.004 1 1 100. 00341 | 99.2245
0.006 1 1 100. .00512 | 98.8404
0.008 1 1 100. .00682 | 98.4587
0.010 1 1 100. .00852 | 98.0793
0.012 1 1 100. 01022 | 97.7023
0.014 1 1 100. 01192 | 97.3276
0.016 1 1 100. 01362 | 96.9553
0.018 1 1 100. 01531 | 96.5852
0.020 1 1 100. 01700 | 96.2174
0.022 1 1 100. .01869 | 95.8519
0.024 1 1 100. .02038 | 95.4887
0.026 1 1 100. 02207 | 95.1277
0.028 1 1 100. 02375 | 94.7689
0.030 1 1 100. 02544 | 94.4123
0.032 1 1 100. 02712 | 94.0579
0.034 1 1 100. .02880 | 93.7056
0.036 1 1 100. 03047 | 93.3556
0.038 1 1 100. 03215 | 93.0076
0.040 1 1 100. 03382 | 92.6618
0.042 1 1 100. .03549 | 92.3181
0.044 1 1 100. .03716 | 91.9765
0.046 1 1 100. 03883 | 91.6370
0.048 1 1 100. 04049 | 91.2995
0.050 1 1 100. 04216 | 90.9641
0.060 1 1 100. .05044 1 89.3173
0.070 1 1 100. 05867 | 87.7197
0.080 1 1 100. 06685 | 86.1694
0.090 1 1 100. 07497 | 84.6649
0.100 1 1 100. .08305 | 83.2046
0.110 1 4 74.5761 | .08372 | 81.7944
0.120 1 4 27.6143 | .07632 | 80.4794
0.130 4 4 100. 07403 | 79.2619
0.140 4 4 100. .08100 | 78.0996
0.150 4 4 100. 08812 | 76.9793
0.160 4 4 100. .09537 | 75.8983
0.170 4 4 100. .10273 | 74.8540
0.180 4 4 100. .11020 | 73.8442
0.190 4 4 100. A1776 | 72.8666
0.200 4 4 100. 12541 | 71.9193
0.230 4 6 89.8112 | .14296 | 67.6174
0.300 4 6 69.5939 | .12617 | 64.2043
0.350 4 6 54.9612 | .10725 | 61.5334
0.400 4 6 44,1790 | .08684 | 59.4181
0.450 4 6 36.0764 | .06538 | 57.7192
0.500 4 6 29.8635 | .04315 | 56.3346
0.550 4 6 25.0046 | .02035 | 55.1898
0.600 4 6 21.1332 | -.00286 | 54.2303
0.650 4 6 17.9957 | -.02640 | 53.4158
0.700 4 6 15.4137 | -.05018 | 52.7165
0.750 4 6 13.2599 | -.07416 | 52.1098
0.800 4 6 11.4416 | -.09828 | 51.5785
0.850 4 6 9.89074 | -.12252 | 51.1094
0.900 4 6 8.55564 | -.14686 | 50.6921
0.950 4 6 7.39708 | -.17127 | 50.3185
1.0 4 6 6.38452 | -.19575 | 49.9819
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