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Abstract

In this thesis we study the computation and evaluation of density forecasts under model

uncertainty in time series univariate models. First, we analyze the effects of uncertainty on

density forecasts of linear univariate ARMA models. We consider three specific sources of

uncertainty: parameter estimation, error distribution and lag order. For moderate sample sizes,

as those usually encountered in practice, the most important source of uncertainty is the error

distribution. We consider alternative procedures proposed to deal with each of these sources

of uncertainty and compare their finite sample properties by Monte Carlo experiments. In par-

ticular, we analyze asymptotic, Bayesian and bootstrap procedures, including some very recent

procedures which have not been previously compared in the literature. Second, we propose an

extension of the Generalized Autocontour (G-ACR) tests of González-Rivera and Sun (2015) for

one-step-ahead dynamic specifications of conditional densities in-sample and of forecast densities

out-of-sample. The new tests are based on probability integral transforms (PITs) computed from

bootstrap conditional densities that incorporate the parameter uncertainty without assuming any

particular forecast error density. Consequently, the parametric specification of the conditional

moments can be tested without relying on any particular error distribution. We show that the

asymptotic distributions of the bootstrapped G-ACR (BG-ACR) tests are well approximated using

standard asymptotic distributions. Furthermore, the proposed tests are easy to implement and are

accompanied by graphical tools which provide suggestions about the potential misspecification.

The results are illustrated by testing the dynamic specification of the Heterogenous autoregressive

(HAR) model when fitted to the popular U.S. volatility index VIX.
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Resumen

En esta tesis estudiamos la construcción y evaluación de densidades de previsión bajo

incertidumbre de modelo en modelos de series temporales univariantes. Primero, analizamos

los efectos de la incertidumbre en las densidades de previsión de modelos ARMA univariantes

lineales. Consideramos tres fuentes especı́ficas de incertidumbre: estimación de los parámet-

ros, distribución de los errores y la orden del desfase. Para muestras de tamaño moderado,

como aquellas que se encuentran normalmente en la práctica, la fuente más importante de

incertidumbre es la de la distribución de los errores. Consideramos procedimientos alternativos

propuestos para tratar cada una de esas fuentes de incertidumbre y comparamos sus propiedades

para muestras finitas por medio de experimentos de Monte Carlo. En particular, analizamos

procedimientos asintóticos, Bayesianos y de bootstrap, incluyendo algunos procedimientos muy

recientes los cuales no han sido previamente comparados en la literatura. Segundo, proponemos

una extensión del test Generalized Autocontour (G-ARC) de González-Rivera and Sun (2015)

para las especificaciones dinámicas de un-paso-adelante de densidades condicionadas in-sample

y densidades de predicción out-of-sample. Los nuevos tests están basados en la transformación

de probabilidad integral (PITs) calculados por medio de densidades condicionadas de boostrap

que incorporan la incertidumbre de parámetros sin asumir ninguna densidad particular del error

de predicción. Como consecuencia, la especificacin paramétrica de los momentos condicionados

puede ser testeada sin basarse en ninguna distribución particular del error. Demostramos que las

distribuciones de los tests de boostrap G-ARC (BG-ACR) están bien aproximadas cuando usando

distribuciones asintóticas estándar. Además, los tests propuestos son fáciles de implementar

y están acompañados por herramientas gráficas, las cuáles proveen recomendaciones sobre la
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posible mala especificación del modelo. Los resultados son ilustrados testeando la especificación

dinámica del modelo autorregresivo hetereogéneo (HAR) cuando se ajusta al popular ı́ndice de

volatilidad norteamericano VIX.
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Chapter 1

Introduction

Forecasting is of great importance for economic decision-making. Government institutions

and regulatory authorities places considerable weight on the forecasts of major economic

variables when taking policy decisions, and firms also rely on forecasting to manage their

inventory and production. The literature has traditionally focused on production and evaluation

of point forecasts, but recently, the focus has moved to obtain density forecasts of a variable of

interest, since it represents a complete characterization of the uncertainty associated with the

forecast, as opposed to a point forecast, which provides no information about the uncertainty of

the prediction. The topic of forecast densities has received increasing attention in the economics

and finance agenda; see Tay and Wallis (2000) for a survey. There is a clear need to use

forecast intervals or forecast densities when setting macroeconomic policies and when managing

financial risk in the insurance and banking institutions. A famous example of density forecasting

in macroeconomics is the fan chart of inflation and gross domestic product (DGP) published

quarterly by the Bank of England. The Bank of England publishes its forecasts of inflation and

output growth as probability distributions, known as fan charts, rather than single forecasts,

emphasizing the inevitable uncertainty around the outlook of the economy; see Clements and

Smith (2000) for other examples of density forecasting in macroeconomics. Also, monetary policy

decisions currently rely on judgemental probabilistic assessments; see, for example, Garratt et al.

1
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(2014). In finance, one example of the interest of density forecasts is the construction of value

at risks measures which are used to assess the amount of capital at risk from small probability

events, such as catastrophes in insurance markets or monetary shocks that have large impact on

interest rates; see Duffie and Pan (1997) and Berkowitz (2001) for further discussion. Another

example of density forecasts within the finance context, is related with the maximization of

the expected utility of an investor who is choosing an optimal asset allocation of stocks and

bonds. In this case, there is a need to model the joint distribution of the assets; see Guidolin

and Timmermann (2006).

With density forecasting spreading in applied econometrics and given its importance for

taking economic and finance decisions, it is crucial to develop reliable techniques to construct

and evaluate them. In this thesis, the focus is on the construction and evaluation of density

forecasts based on time series models which are used to forecast the future evolution of a given

variable observed during a particular period of time. Within the context of time series models,

we only consider univariate and parametric models. Obviously, there is a large interest in

multivariate and/or nonparametric forecasting. However, we need to reduce the context of the

thesis within feasible bounds. This thesis contributes to the density forecasting literature in two

different directions. First, in chapter 2, we analyze how different sources of uncertainty affect

the construction of forecasting densities. The second contribution, in chapter 3, deals with the

evaluation of forecasting densities.

1.1. Forecast densities and uncertainty

The standard theory of time series forecasting density is based on assuming that the model

is known. Even assuming that there is a true model, it is rarely, if ever, the case that such model

will be known a priori and there is no guarantee that it will be selected as the best fit to the

data. Consequently, there is a question about how model uncertainty will affect the accuracy of

forecasts; see, for example, Chatfield (1996, 2000). Chatfield (1996), for instance, describes the
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problems faced in the case of neglecting model uncertainty and shows with some examples that

forecast intervals can be too narrow. Model uncertainty has also very important implications

when forecasts are used in decision making process. For example, in the context of economic

problems, Onatski and Stock (2002) and Onatski and Williams (2003) show that monetary policy

may perform poorly when faced with a different error distribution or with slight variations of the

model. Furthermore, neglecting model uncertainty can lead to big failures in risk management of

derivatives; see, for example, Avramov (2006), Cont (2006), Schrimpf (2010) and Boucher et al.

(2014). In the first part of this thesis, we shed light on the computation of density forecasts

of univariate models ARMA models under model uncertainty, since this class of models has

been wider used through the years as a forecasting tool, and is the basis of many fundamental

ideas in time-series. We consider three sources of uncertainty: parameter, error distribution

and lag order. Apart of studying the impact of the above uncertainties on the forecasts of

ARMA models, we also provide a survey of all procedures of the literature developed with the

aim of incorporating those uncertainties in the forecasts of ARMA models. For the parameter

uncertainty, asymptotic methods are usually designed to incorporate it. However, they usually

assume that the error distribution and lag order are known; see, for example, Yamamoto (1976)

and Fuller and Hasza (1981). Alternatively, Hansen (2006) proposes an asymptotic procedure

to construct forecast intervals that do not assume any particular error distribution. Bayesian

methods, on their turn, incorporate naturally the parameter uncertainty through the construction

of the parameter posterior distributions and they can also be designed to incorporate the lag order

uncertainty. However, to be computationally feasible, Bayesian methods require to assume that

the error distribution in known; see, for example, Monahan (1983), Le et al. (1996) and Ehlers

and Brooks (2008). Alternatively, nonparametric Bayesian mixture procedures do not rely any

error distribution assumption; see, for example, the proposal of Tang and Ghosal (2007). Finally,

bootstrap procedures are able to incorporate all the uncertainties cited above; see for example,

Kilian (1998a,b), Alonso et al. (2004, 2006) and Pascual et al. (2001, 2004) and Manzan and Zerom

(2008), for instance, propose a non-parametric bootstrap procedure that does not assume any
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particular specification of the conditional moments.

1.2. Evaluating forecast densities

Apart of the importance of incorporating model uncertainty in forecasts, is the issue of how

to test the correct specification of a conditional forecast density where model uncertainty is

present. Appropriate tests should take into account that the forecast conditional distribution if

often unknown and the specification of conditional moments is also unknown and has estimated

parameters. Many tests available in the literature are based on testing a joint hypothesis of

uniformity and independence of the probability integral transforms (PITs), which are applicable

regardless of the particular users loss function. Among the tests, the most popular is due to

Diebold et al. (1998); see also Berkowitz (2001) and Chen and Fan (2004) for extensions. However,

none of these tests that check uniformity and independence take, into account parameter

uncertainty. Instead of testing for independence and uniformity of PITS, González-Rivera et al.

(2011) and González-Rivera and Yoldas (2012) propose autocontour (ACR) tests to evaluate the

adequacy of conditional forecast densities. The ACR test, which can be applied to primitive series

and model residuals. The ACR test explicitly accounts for parameter uncertainty. However, it

assumes a parametric time-invariant function of the forecast density and cannot be implemented

to multivariate forecast densities. To overcome these problems, González-Rivera and Sun (2015)

propose the generalized autocontour (G-ACR) test, that is based on PITs instead of original

observations or model residuals as in the case of the ACR test. Being based on autocontours, there

is a graphical visualization aspect that is very helpful for guiding the modelling. Furthermore, it

permits to focus on different areas of the conditional density in order to assess those regions of

interest. However, like the other tests it still requires the specification of conditional density in

order to compute the PITs, and there are applications in which the density does not have a closed

form solution, as for example, multi-step predictive densities in non-linear or non-Gaussian

models.
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Therefore, in the third chapter, we propose an extension of the Generalized Autocontour

(G-ACR) tests (Gonzalez-Rivera and Sun, 2015) for one-step-ahead dynamic specifications of

conditional densities (in-sample) and of forecast densities (out-of-sample). The new tests are

based on probability integral transforms (PITs) computed from bootstrap conditional densities

that incorporate the parameter uncertainty without assuming any particular forecast error

density. The new tests will allow us to focus on testing the parametric specification of the

conditional moments without relying on any particular error distribution.

1.3. Organization of the thesis

The second chapter of this thesis studies the impact of model uncertainty on univariate

ARMA models. As model uncertainty, we consider parameter, error distribution and lag order

uncertainties. In order to deal with those uncertainties, we provide a complete study of all

procedures that co-exist in literature developed with the aim of incorporating those uncertainties

in the forecasts of ARMA models. In particular, we analyze asymptotic, Bayesian and bootstrap

procedures, including some very recent procedures which have not been previously compared in

the literature. We show the disadvantages and advantages of each procedure by the comparison

of their finite sample performances in Monte Carlo simulations.

The third chapter of this thesis proposes an extension of the G-ACR test for dynamic

specifications of a density model that do not rely on any particular assumption on the error

distribution and take into account parameter uncertainty. Such test will be very useful in

applications in which the density does not have a closed-form solution, as for example, multi-step

predictive densities in non-linear or non-Gaussian models. Moreover, it provides a graphical

device that suggests the potential misspecication of the fitted model, allowing to disentangle

whether the misspecification comes from the functional form or from the assumed density. We

show by Monte Carlo simulations that the proposed test has good finite properties.

Finally, in the fourth chapter, we provide a summary of the main contributions of the thesis
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along with lines of future research.



Chapter 2

Uncertainty and density forecasts of

ARMA models: Comparison of

asymptotic, Bayesian and bootstrap

procedures

2.1. Introduction

The time series forecasting literature has traditionally focused on point forecasts. However,

many aspects of the decision making process require making forecasts of an uncertain future.

Consequently, forecasts ought to be probabilistic in nature, taking the form of probability

distributions over future events; see, for example, Tay and Wallis (2000), Timmermann (2000),

Greenspan (2004), Elliott and Timmermann (2008), Gneiting (2008) and Manzan and Zerom

(2013) who discuss several issues related with density forecasts in economics and finance, and

Chatfield (1993) and Christoffersen (1998), who stress the importance of interval forecasts for

decision makers. Analytic construction of density forecasts has historically required restrictive

7
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and sometimes dubious assumptions, such as no parameter and/or model uncertainty and

Gaussian innovations. However, in practice, any forecast model is an approximation to the data

generating process (DGP); see the discussions by Wallis (1989), Onatski and Stock (2002) and

Jordá et al. (2014). Furthermore, even if the model is correctly specified and time invariant, its

parameters need to be estimated. Finally, density forecasts often rely on assumptions about the

error distribution that might not be good approximations to the data distribution.

Model uncertainty may have important implications when forecasts are used in decision

making processes; see Granger and Machina (2006). For example, in the context of economic

problems, Draper (1995) shows that ignoring model uncertainty can seriously underestimate the

uncertainty in forecasting oil prices, leading to forecast intervals that are too narrow. Onatski

and Stock (2002) and Onatski and Williams (2003) show that monetary policy may perform

poorly when faced with a different error distribution or with slight variations of the model.

Onatski and Williams (2003) conclude that uncertainty about the parameters and the lag structure

have the largest effects, whereas uncertainty about the serial correlation of the errors has minor

effects. Brock et al. (2007) also explore ways to integrate model uncertainty into monetary policy

evaluation. Finally, some spectacular failures in risk management have also emphasized the

consequences of neglecting model uncertainty in the context of financial models; see, for example,

Avramov (2006), Cont (2006), Schrimpf (2010) and Boucher et al. (2014).

In this chapter, we analyze the effects of uncertainty on the construction of densities in the

context of forecast univariate ARMA models. We show that the most important distortions when

constructing the densities using traditional methods appear in the context of short run forecasting

when the forecast errors have a non-Normal distribution. We also compare the finite sample

performance of the main alternative asymptotic, Bayesian and bootstrap procedures proposed to

construct forecast densities that incorporate these uncertainties. Asymptotic methods are usually

designed to incorporate the parameter uncertainty assuming a given error distribution and a

given model specification; see, for example, Yamamoto (1976) and Fuller and Hasza (1981) for

early references. More recently, Hansen (2006) proposes an asymptotic procedure to construct
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forecast intervals that does not rely on a particular assumption about the error distribution.

In the context of Bayesian methods, several authors propose incorporating the parameter and

lag order uncertainties using procedures based, for instance, on Bayesian Model Averaging

or Reversible Jump Markov Chain Monte Carlo, which usually assume that the true model is

within the model set considered; see Draper (1995) for an example of the use of Bayesian Model

Averaging in economic problems. In order to be computationally feasible, Bayesian methods

often assume a known error distribution, usually Gaussianity; see, for example, Monahan (1983),

Le et al. (1996) and Ehlers and Brooks (2008). Alternatively, nonparametric Bayesian mixture

procedures relax the distributional assumption; see, for instance, the proposal by Tang and Ghosal

(2007). Nevertheless, Bayesian methods are often computationally intensive and time demanding.

A competitive alternative to compute forecast densities that incorporate simultaneously the

parameter, error distribution and lag order uncertainties is based on bootstrap procedures; see

for example, Kilian (1998a,b), Alonso et al. (2004, 2006), Pascual et al. (2001, 2004) and Manzan

and Zerom (2008). The latter authors propose a non-parametric bootstrap technique that does not

assume any particular specification of the conditional moments.

We show that asymptotic methods provide reliable density forecasts only in large sample

sizes and with known error distribution. On the other hand, Bayesian procedures provide very

accurate density forecasts in small sample sizes, but require the correct error distribution and a

large computational effort. It is also difficult to make them to take into account simultaneously

all the uncertainties. As a simple alternative, the Bootstrap is able to provide reliable forecasts,

regardless of the sample size and the error distribution.

The rest of the chapter is organized as follows. Section 2.2 introduces notation by describing

the traditional construction of forecast densities and intervals in the context of univariate linear

ARMA models. It also analyzes the effects of the uncertainties involved in the estimation of

ARMA models on the forecast densities. Section 2.3 is devoted to the asymptotic, Bayesian

and bootstrap procedures designed to incorporate these uncertainties in the forecasts of ARMA

models, and finally, Section 2.4 concludes the chapter.
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2.2. FORECAST UNCERTAINTY IN THE CONTEXT OF UNIVARIATE LINEAR ARMA

MODELS

2.2. Forecast uncertainty in the context of univariate linear ARMA

models

In this section, we introduce notation by describing the traditional procedure to construct

forecast densities in the context of univariate linear ARMA models. The sources of uncertainty

and their effects on forecast densities are also described.

2.2.1. Known error distribution, model specification and parameters

Consider the following ARMA(p, q) model

(1− φ1L− ...− φpLp)yt = µ+ (1− θ1L− ...− θqLq)εt, (2.1)

where yt is the observation of the series of interest at time t, L is the lag operator, such that

Liyt = yt−i, for i=1,2,..., and εt is a strict white noise process with distribution Fε and variance

σ2ε . The polynomials φ(L) = (1 − φ1L − ... − φpLp) and θ(L) = (1 − θ1L − ... − θqLq) have all

their roots outside the unit circle and no common roots between them. The autoregressive and

moving average orders are p and q, respectively. Note that if εt is Gaussian, the polynomial θ(L)

is not identifiable using second order moments, unless the invertibility assumption is imposed.

However, for non-Gaussian errors, model (2.1) becomes identifiable on the basis of higher-order

moments; see, for example, Breidt and Hsu (2005) and Hsu and Breidt (2009). The invertibility

assumption in the non-Gaussian case is entirely artificial and removing it leads to a broad class of

useful models. However, in this chapter, we assume invertibility.

If the loss function is quadratic1 and the objective is to predict yT+h given the information

available at time T for h > 0, then the point forecast with minimum mean square forecast error

(MSFE) is given by the conditional mean, denoted by yT+h|T = E(yT+h|y1, .., yT ); see Granger

1When the loss function is non-quadratic, constructing forecasts using the conditional mean is inappropriate, since
the mean of the predictive distribution is not optimal as a point predictor; see Granger (1969), Christoffersen and
Diebold (1997), Granger and Pesaran (2000a,b), Patton and Timmermann (2007a,b) and Gneiting (2011) for prediction
problems involving asymmetric loss functions.
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(1969). For the ARMA model in (2.1) with Gaussian errors and/or the MA parameters satisfying

the invertibility condition, the conditional mean is a linear function of {y1, ..., yT }; see Rosenbaltt

(2000).2 Then, given the information observed up to time T and assuming that the errors are

observable within the sample period and have a Gaussian distribution, the h-step-ahead forecast

density of yT+h, for h = 1, 2, ..., is given by

yT+h|y1, ..., yT ∼ N(yT+h|T ,MSFE(eT+h|T )), (2.2)

where yT+h|T can be obtained recursively from

(1− φ1L− ...− φpLp)yT+h|T = µ+ (1− θ1L− . . .− θqLq)εT+h|T , (2.3)

where εT+j|T = 0 for j > 0 and εT+j|T = εT+j and yT+j|T = yT+j for j ≤ 0. MSFE(eT+h|T ) is

the mean square forecast error of the h-step-ahead forecast error, eT+h|T = yT+h − yT+h|T , which

is given by

MSFE(eT+h|T ) = σ2ε

h−1∑
i=0

ψ2
i , (2.4)

where ψ0=1 and ψi, i=1,2,..., are the coefficients of the Wald representation of (2.1). The

corresponding (1− α)% forecast intervals are given by

yT+h|T ± zα/2(MSFE(eT+h|T ))1/2, (2.5)

where zα/2 is the 1 − α/2 quantile of the standard Normal distribution; see Granger et al. (1989)

for a clear description of the construction of forecast intervals.

However, if the errors have a known but non-Gaussian distribution, then explicit expressions

of the conditional forecast density can only be obtained for h = 1. When h > 1, there are not

analytical expressions of the density. In this case, the forecast densities can be approximated by

2See Breidt and Hsu (2005) and Lanne et al. (2012) for forecasting in the context of non-invertible non-Gaussian MA
models.
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simulating eT+h|T using the true parameters and the forecast intervals are given by

[
yT+h|T + pα/2(MSFE(eT+h|T ))1/2, yT+h|T + p1−α/2(MSFE(eT+h|T ))1/2

]
, (2.6)

where pi is the ith percentile of the known error distribution when h = 1 and of the simulated

distribution of eT+h|T when h > 1.

The construction of forecast densities described above requires the unrealistic assumption of

a known forecast model, i.e, without parameter and/or lag order uncertainty and with a known

error distribution. However, in practice, the forecast model is an approximation to the true DGP.

Next, we revise the effects of neglecting the parameter, the error distribution and the lag order

uncertainties on the construction of standard forecast densities and intervals.

2.2.2. Parameter uncertainty

Consider that the error distribution and the lag orders are known. When the parameters

are unknown, the h-step-ahead forecast of yT+h is obtained from equation (2.3) with the true

parameters substituted by consistent estimates. In particular, in this chapter, we consider the

Quasi-Maximum Likelihood (QML) estimator obtained by maximizing the Gaussian Likelihood.

Hannan (1973) establishes the consistency and asymptotic Normality of the QML estimator when

the model is stationary and invertible with finite second order moment and does not have a

constant; see also Yao and Brockwell (1988) for a direct proof.3 Recently, Bao (2016a) considers the

ARMA model with a constant and derives a compact analytical representation of the asymptotic

covariance matrix of the QML estimator. Note that, if there is not a MA part, the QML estimator

reduces to Least Squares (LS). It is well known that in finite samples the LS estimator is biased;

see, among others, Shaman and Stine (1988), Kiviet and Phillips (1994), Patterson (2000) and

Ledolter (2009). For example, in an AR(1) model, the bias tends to shrink the LS estimator toward

zero, with larger bias when the autoregressive coefficient is larger in absolute value. Ledolter

3Hsu and Breidt (2009) propose an exact ML estimator that does not require invertibility; see also Lii and Rosenblatt
(1992, 1996), Huang and Pawitan (2000) and Gospodinov and Ng (2015) for alternative estimators.
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(2009) shows that the effect of bias on point forecasts is small. However, when h > 1, it affects

the coverage of forecast intervals since forecast intervals become too narrow. The coverage is

improved when bias-adjusted estimates of the autoregressive parameter are used. Kim and

Durmaz (2012), who describe alternative bias-correction procedures, show that substantial gains

of correcting for bias can be obtained when the true AR model is very persistent and/or the

forecast horizon is fairly short. The results about biases of the QML estimator when the model

contains a MA component are much more scarce. Some examples regarding simple MA(1) models

are Tanaka (1984) and Cordeiro and Klein (1994) who derive the approximated bias of the QML

estimator under the data assumption of Normality. Other examples are Bao and Ullah (2007) that

consider the case when the data is not Normal, but restrict it to a zero mean MA(1) model, and

Demos and Kyriakopoulou (2013) that derive the bias of the QML estimator for a MA(1) model

with a known or unknown intercept. More recently, Bao et al. (2014) derive the approximated bias

of the QML estimator of the parameters in an invertible MA(1) model with a possible non-zero

mean and non-Normal distributed errors. They show that the feasible multi-step-ahead forecasts

are unbiased under any non-Normal distribution while the one-step-ahead forecast is unbiased

under symmetric distributions. Finally, results for general ARMA(p,q) models are given by Bao

(2016b).

In practice, the forecast density of yT+h is obtained as in (2.2) with the unknown parameters

involved in yT+h|T and MSFE(eT+h|T ) substituted by the corresponding QML estimates cor-

rected by bias. Denote by ŷT+h|T and M̂SFE(eT+h|T ) the point forecast and estimated MSFE,

respectively. The latter is not the MSFE of ŷT+h|T , which is given by

MSFE(ŷT+h|T ) = MSFE(eT+h|T ) + ET [(yT+h|T − ŷT+h|T )2], (2.7)

where the last term, which is of order O(T−1), depends on the mean square error (MSE) of the

parameter estimator; see Fuller (1996). To illustrate the effect of the underestimation of the MSFE

of ŷT+h|T on the forecast densities, when it is obtained by M̂SFE(eT+h|T ), we carry out Monte
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Carlo experiments based on R = 1000 replicates generated by two AR models. The first DGP

is given by an AR(1) model with parameters µ = 0, φ = 0.8 and σ2ε = 1. The second DGP is a

persistent AR(2) model with parameters µ = 0, φ1 = 0.6, φ2 = 0.3 and σ2ε = 1. The disturbances

are either Gaussian, Student-5 or χ2
(5). For each replicate, the parameters are estimated by LS and

corrected from bias. The bias correction is carried out using the procedure proposed by Orcutt

and Winokur (1969) with the expression of Shaman and Stine (1988) and Stine and Shaman (1989)

for the first order bias of the LS estimator of an AR model of known and finite order; see Patterson

(2000) and Kim (2004) for implementations of this procedure.It is important to note that the bias

correction can push estimates into the non-stationarity region, mainly when the model is highly

persistent. Consequently, the stationarity correction proposed by Kilian (1998b) is implemented.4

Then, the estimated conditional forecast densities are computed, for h =1, 6 and 12, as in (2.2)

when the errors are Gaussian or by simulation when they are not Gaussian and h >1, using

ŷT+h|T and M̂SFE(eT+h|T ). These densities, denoted as EST, are constructed assuming that both

the lag-order and the error distribution are known; see Table 2.1 for a summary of all procedures

considered in this chapter to construct density and interval forecasts, their acronyms, properties

and some references. We also obtain the corresponding 80% and 95% forecast intervals. Finally,

for each replicate, we generate 1000 values of yT+h, and construct their empirical forecast density

and count how many of these values lie inside the EST intervals. Table 2.2 reports the Monte

Carlo averages and standard deviations of the Mallows Distances (MD) proposed by Mallows

(1972) between the empirical and EST h-step-ahead forecast densities when the DGP is the AR(2)

model; see Czado and Munk (1998) and Levina and Bickel (2001) for some properties of the MD

distance and Lopes et al. (2013) and Fresoli et al. (2015) for applications of the MD in the context

of Gaussian and non-Gaussian VARFIMA(0,d,0) and VAR models, respectively.5 It is shown that,

4Alternatively, Kim et al. (2010) propose a stationarity correction based on the stable spectral factorization of Poskitt
and Salau (1993).

5The MD is computed as follows. Let x(1) ≤ ... ≤ x(N) and y(1) ≤ ... ≤ y(N) be ordered realizations of the random
variablesX and Y , with absolutely continuous distributions F andG, respectively. The MD between F andG is given

by MD(F,G) =

(
1
N

N∑
i=1

|x(i) − y(i)|α
)1/α

. In this chapter we use α = 1.
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as expected, regardless of the error distribution, the MDs of EST decrease with the sample size

and increase with the forecast horizon. Moreover, the averages and standard deviations of the

distances have similar magnitudes for the different error distributions considered.

We also analyze the finite sample coverages of the forecast intervals obtained by EST. Table

2.3 reports the Monte Carlo average coverages of the EST forecast intervals when the nominal

coverage is 80%. Note that, regardless of the distribution, if the sample size is T=50, the empirical

coverages of EST are around 77%, slightly smaller than the nominal level. The undercoverage is

slighly larger for non-Gaussian distributions. However, if the sample size is T=100 or larger, the

coverage rates are very close to the nominal level. Consequently, the parameter uncertainty is not

an important issue when constructing forecast intervals as far as the sample size is moderate or

large.6

6The results for the AR(1) model and 95% nominal coverages are similar and are reported in Tables A.1 and A.3 of
Appendix A.
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Table 2.2: Monte Carlo averages and standard deviations (in parenthesis) of MD distances between the estimated and
true forecast densities for model yt = 0.6yt−1 + 0.3yt−2 + εt with σ2

ε=1.

Panel A: Gaussian T=50 T=100 T=300
h=1 h=6 h=12 h=1 h=6 h=12 h=1 h=6 h=12

EST/GAUS 0.187 0.462 0.682 0.129 0.302 0.425 0.068 0.152 0.205
(0.150) (0.447) (0.710) (0.105) (0.304) (0.456) (0.057) (0.154) (0.208)

GAUSaicc 0.255 0.517 0.698 0.168 0.336 0.452 0.079 0.162 0.215
(0.201) (0.443) (0.678) (0.163) (0.319) (0.461) (0.074) (0.156) (0.209)

Panel B: Student-5 T=50 T=100 T=300
h=1 h=6 h=12 h=1 h=6 h=12 h=1 h=6 h=12

EST 0.204 0.477 0.682 0.147 0.341 0.472 0.078 0.170 0.224
(0.182) (0.440) (0.668) (0.124) (0.347) (0.536) (0.067) (0.162) (0.216)

GAUS 0.234 0.491 0.693 0.185 0.357 0.485 0.136 0.200 0.250
(0.181) (0.443) (0.672) (0.122) (0.343) (0.532) (0.065) (0.159) (0.214)

GAUSaicc 0.290 0.541 0.704 0.216 0.391 0.509 0.144 0.212 0.264
(0.228) (0.462) (0.665) (0.162) (0.358) (0.531) (0.077) (0.167) (0.225)

Panel C: χ2
(5) T=50 T=100 T=300

h=1 h=6 h=12 h=1 h=6 h=12 h=1 h=6 h=12
EST 0.201 0.501 0.724 0.138 0.330 0.463 0.075 0.167 0.221

(0.156) (0.467) (0.754) (0.113) (0.327) (0.497) (0.054) (0.139) (0.184)

GAUS 0.290 0.537 0.750 0.248 0.377 0.495 0.217 0.241 0.277
(0.133) (0.457) (0.750) (0.087) (0.311) (0.486) (0.040) (0.120) (0.168)

GAUSaicc 0.335 0.594 0.768 0.273 0.409 0.519 0.224 0.251 0.288
(0.170) (0.464) (0.738) (0.124) (0.336) (0.505) (0.056) (0.137) (0.186)

Table 2.3: Monte Carlo averages and standard errors (in parenthesis) of coverages of the estimated forecast intervals
for model yt = 0.6yt−1 + 0.3yt−2 + εt and σ2

ε=1 with nominal coverage of 80%.

h=1 h=6 h=12
Sample size Method Coverage Coverage Coverage Coverage Coverage Coverage

below/above below/above below/above
Gaussian 80% 10%/10% 80% 10%/10% 80% 10%/10%

50 EST/GAUS 78.06 (0.05) 10.84/11.09 77.39 (0.09) 11.09/11.52 77.55 (0.11) 10.99/11.46
GAUSaicc 76.60 (0.06) 11.69/11.71 77.38 (0.10) 11.18/11.44 76.96 (0.12) 11.37/11.67

100 EST 79.00 (0.04) 10.58/10.43 78.86 (0.06) 10.61/10.53 78.97 (0.08) 10.54/10.49
GAUSaicc 78.18 (0.05) 10.95/10.87 78.72 (0.07) 10.66/10.62 78.58 (0.08) 10.69/10.73

300 EST 79.66 (0.02) 10.18/10.17 79.78 (0.03) 10.2/10.02 79.82 (0.04) 10.16/10.02
GAUSaicc 79.47 (0.02) 10.26/10.26 79.66 (0.03) 10.23/10.11 79.72 (0.05) 10.2/10.08
Student-5 h=1 h=6 h=12

50 EST 76.99 (0.07) 11.70/11.31 76.28 (0.10) 12.07/11.64 76.87 (0.12) 11.76/11.37
GAUS 81.33 (0.07) 9.50/9.16 78.02 (0.10) 11.19/10.79 78.06 (0.12) 11.15/10.78
GAUSaicc 79.74 (0.08) 10.21/10.04 77.62 (0.11) 11.16/11.22 77.30 (0.13) 11.33/11.36

100 EST 78.30 (0.05) 10.94/10.76 77.85 (0.07) 11.12/11.02 77.93 (0.09) 11.08/10.99
GAUS 82.52 (0.05) 8.82/8.66 79.49 (0.07) 10.30/10.21 79.09 (0.09) 10.50/10.42
GAUSaicc 81.59 (0.06) 9.29/9.11 79.23 (0.08) 10.56/10.21 78.72 (0.09) 10.80/10.48

300 EST 79.53 (0.03) 10.22/10.26 79.50 (0.04) 10.20/10.3 79.58 (0.05) 10.14/10.28
GAUS 83.65 (0.03) 8.15/8.19 81.11 (0.04) 9.40/9.49 80.68 (0.05) 9.58/9.74
GAUSaicc 83.35 (0.03) 8.29/8.35 80.90 (0.04) 9.49/9.61 80.47 (0.05) 9.67/9.84
χ2

(5) h=1 h=6 h=12
50 EST 77.31 (0.09) 11.68/11.01 76.45 (0.10) 11.74/11.80 76.45 (0.13) 11.66/11.88

GAUS 82.52 (0.07) 5.74/11.72 77.51 (0.10) 10.04/12.44 77.15 (0.12) 10.42/12.42
GAUSaicc 80.61 (0.09) 7.13/12.25 77.23 (0.11) 10.20/12.57 76.35 (0.13) 10.83/12.81

100 EST 78.33 (0.07) 11.13/10.53 78.17 (0.07) 11.88/10.94 78.28 (0.09) 10.77/10.93
GAUS 83.80 (0.05) 4.96/11.24 79.24 (0.07) 9.19/11.56 78.93 (0.09) 9.59/11.47
GAUSaicc 82.50 (0.07) 6.00/11.49 78.85 (0.08) 9.47/11.67 78.40 (0.09) 9.95/11.64

300 EST 79.53 (0.04) 10.32/10.13 79.48 (0.04) 10.33/10.18 79.59 (0.05) 10.23/10.17
GAUS 85.29 (0.03) 3.86/10.84 80.57 (0.04) 8.62/10.80 80.25 (0.05) 9.05/10.69
GAUSaicc 84.85 (0.04) 4.23/10.92 80.33 (0.04) 8.81/10.85 80.03 (0.05) 9.21/10.75
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2.2.3. Uncertainty about the error distribution

Traditional forecasting procedures in the context of linear time series models assume Gaussian

forecast errors. However, often, the variables under analysis do not have a Gaussian distribution;

see, for example, Li and McLeod (1988), Kilian (1998b) and Harvey and Newbold (2003) for

departures from Gaussianity in the context of economic time series. Note that when the errors

are non-Gaussian, it is not always clear which distribution should be assumed.

If the forecast densities and the corresponding intervals are constructed as in (2.2) and (2.5),

the quantile of the Normal distribution could not be appropriate any longer. Denote by GAUS the

forecast densities constructed as in (2.2) with the parameters substituted by their corresponding

QML estimates corrected from bias. Note that, when the errors are Gaussian, the EST and

GAUS procedures coincide. Table 2.2, which reports the Monte Carlo averages and standard

deviations of the MD distances, shows that, when the errors are Student-5 and χ2
(5), the distances

are larger for the GAUS than for the EST densities, especially for asymmetric errors. Moreover,

the difference between the distances of the EST and GAUS densities increases with the sample

size and decreases with h. Note that when h=12 the MDs of the GAUS densities are very similar

to those of the EST densities. For example, when the errors are χ2
(5) and T=300, the increase in the

average MD is 0.217−0.075
0.075 = 189.33% when h = 1 while the increase is 0.277−0.221

0.221 = 25.34% when

h = 12. Therefore, it seems that assuming Normal forecast errors when they are non-normal has

an important effect on the construction of forecast densities mainly when the sample size is large

and the forecast horizon is small.

The Monte Carlo averages and standard deviations of the coverage rates of the GAUS

forecast intervals are reported in Table 2.3, when the nominal coverage is 80%. In both cases,

one-step-ahead GAUS intervals have average coverages that tend to overestimate the nominal

level. The overcoverage is larger as T increases. Furthermore, when the errors follow a χ2
(5)

distribution, we observe that the coverage in the left tail is much smaller than that in the right tail.

In accordance with the results in Table 2.2, these problems decrease when h increases, that is, the
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coverages tend to the nominal level, suggesting that the effect of assuming wrongly Normality is

less important in the long term.

2.2.4. Uncertainty about the orders p and q of the ARMA process

Besides the uncertainty about the error distribution, when fitting an ARMA stationary model

to a data set, the true orders of the underlying stochastic process are often unknown and should

be determined. In practice, the model used for forecasting is chosen by using a selection criterion

and forecasts are obtained conditional on the selected model which is considered as being the

true one. The most popular selection criteria are the Akaike (1973) information criterion (AIC), its

bias-corrected version (AICC) proposed by Hurvich and Tsai (1989, 1991), which penalizes larger

models to counteract the overfitting nature of AIC, and the Bayesian information criterion (BIC)

of Schwarz (1978); see Bhansali (1993) for a review of other selection procedures. Several authors

study the effects of order misspecification on conditional forecasts. For instance, Tanaka and

Maekawa (1984), assuming Gaussian errors, derive analytically the asymptotic MSFE when the

forecasts are obtained from an AR(1) and the true model is an ARMA(1,1). For h=1, they derive

expressions for the bias and the MSFE when the wrong model is assumed and conclude that, in

this situation, the MSFE is underestimated. Davies and Newbold (1980) also show that although

a MA(1) model can be approximated arbitrarily closely by an high order AR model, the finite

sample effect of estimating additional parameters is that the forecast error variance increases.

Nevertheless, Chatfield (1996, 2000) warns about the forecast biases generated by formulating

and fitting a model to the same data. He argues that those forecasts will be over-optimistic

when the data-dependent model-selection process is ignored, leading to forecast intervals that

are generally too narrow and fail to take into account the model uncertainty. In other words, it is

expected that a model fitted to the same data used to formulate it will provide the best fit among

the alternative models; see also Clements and Hendry (1998, 2001) for a detailed taxonomy of

uncertainty applied to forecast errors in economic stationary and non-stationary time series.

In order to analyse the impact of the lag order uncertainty of an ARMA model on the density
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and interval forecasts, we carry out Monte Carlo experiments by generating replicates from the

same AR(2) model described above. In each simulation, we assume an AR(p) model and select p

using the AICC criterion with pmax = T/10 as recommended by Bhansali (1983). The parameters

of the selected model are estimated by LS and corrected from bias, and the forecast densities and

the corresponding forecast intervals are constructed assuming Gaussian errors. This procedure is

denoted as GAUSaicc.7

Table 2.2 provides the Monte Carlo MD averages and standard deviations of the GAUSaicc

densities. We observe that, regardless of the error distribution, the distances between the true

and GAUSaicc densities are larger than those obtained with the GAUS procedure and they

decrease with the sample size, as expected, since the AICC criterion is asymptotically efficient.

Furthermore, the differences between the GAUS and GAUSaicc distances decrease with the

forecast horizon.

Analysing the Monte Carlo average coverages reported in Table 2.3, we observe that the

coverages of the GAUSaicc intervals are similar to those of the EST and GAUS intervals when

the errors are Gaussian and non-Gaussian, respectively.

2.3. Procedures to incorporate the forecast uncertainties of ARMA

models

In the previous section, we have seen that the effects of parameter and lag-order uncertainties

on the forecast densities are neglegible in moderate sample sizes. However, assuming wrongly

Normality may generate important distortions mainly when forecasting in the short run. In

this section, we revise the procedures proposed in the literature to incorporate the types of

uncertainties described in the previous section and analyze their finite sample performance. We

classify them in three categories: asymptotic, Bayesian and bootstrap procedures.

7Note that the bias correction procedure of Shaman and Stine (1988) and Stine and Shaman (1989), in the case of lag
order misspecification, just holds when the order is overspecified.
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2.3.1. Asymptotic methods

To correct the biases of the MSFE caused by parameter uncertainty, many authors propose

using asymptotic approximations of the MSE of the QML estimator to compute the MSFE of

ŷT+h|T in (2.7). The derivation of the asymptotic MSFE (AMSFE) is usually based on assuming

that the sample data used to estimate the parameters are statistically independent of the data

used to construct the forecasts. Although Phillips (1979) points out that this assumption is quite

unrealistic in practical situations, Maekawa (1987) shows that the AMSFE of AR(p) processes is

the same regardless of whether the data used for parameter estimation is dependent on that used

for forecasting. The expression of the AMSFE of AR(p) models has been derived by Fuller and

Hasza (1981) who extend the results of Phillips (1979) for the AMSFE of AR(1) processes while

Ansley and Kohn (1986) extend it to state-space models. As the general ARMA model can be

formulated as a state-space model, the latter results also cover ARMA models as a special case. It

is worth noting that the above results on the AMSFE have been derived in the context of Gaussian

errors. Bao (2007) study the MSFE of the AR(1) model with non-Normal distributed errors and

shows that it coincides with the unconditional AMSFE of Box and Jenkins (1970) and Yamamoto

(1976). Bao and Zhang (2014) point out that results for AMSFE in the context of non-Normal data

are not available for MA models.

In this chapter, we consider the conditional asymptotic approximation proposed by Fuller and

Hasza (1981) and Fuller (1996). If the forecast errors are Gaussian, the conditional forecast density

of yT+h can be constructed as in (2.2) with MSFE(eT+h|T ) substituted by AMSFE(ŷT+h|T ).

Analogously, in the case of non-Gaussian errors, the distribution of yT+1|y1, ..., yT could be

approximated by the distribution assumed for the error if h=1. For h >1, the forecast distribution

of yT+h|y1, ..., yT could be simulated using the estimated parameters adjusted by bias as described

above. The estimated AMSFE is denoted by ̂AMSFE. Since the term associated to the parameter

uncertainty in the AMSFE is of order T−1, the impact of the parameter uncertainty to the MSFE

of ŷT+h|T is negligible when the sample size is relatively large. On the other hand, for a given
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sample size, the parameter uncertainty contribution increases with the forecast horizon.

The Monte Carlo results for the MD distances when the MSFE is replaced by the ̂AMSFE are

approximately identical to those reported in Table 2.2. Table 2.5 reports the MC average coverages

and standard deviations of the EST, GAUS and GAUSaicc intervals, computed with the MSFE

substituted by the ̂AMSFE and denoted by AEST, ABJ and ABJaicc, respectively. The results show

that, using the asymptotic correction, the coverages are only slighly larger than those reported in

Table 2.3 without the correction. In general, when the coverage is bellow the nominal, we obtain

coverages closer to the nominal. However, when the error distribution is non-Normal and the

forecast density is assumed to be Normal, the overcoverage is even larger than that obtained

without the asymptotic correction. Therefore, it seems that the asymptotic correction of the MSFE

is not useful to obtain forecast intervals with better coverages. Furthermore, the computation of

the AMSFE can become difficult in high order autoregressive or general ARMA models.

When constructing forecast intervals using the AMSFE, we need to assume a particular dis-

tribution for the errors. Alternatively, Hansen (2006) proposes the Simple Reference Adjustment

(SRA) procedure to construct conditional asymptotic forecast intervals.8 Unlike the asymptotic

methods described above, the SRA procedure only requires i.i.d. errors, without relying on

any particular assumption about the error distribution. The SRA intervals are based on direct

forecast autoregressions whose forecast interval endpoints depend on the sample size and the

empirical distribution of the residuals. In order to analyze the finite sample performance of the

SRA procedure when constructing forecast intervals, consider again the same AR(2) model used

in the previous Monte Carlo simulations. Table 2.5, which reports the Monte Carlo averages

and standard deviations of the coverages of the SRA forecast intervals, implemented without

estimating the lag order, shows that, regardless of the error distribution, the empirical coverages

are close to the nominal when h =1, but they decrease substantially for h = 6 and 12. We also

implement the SRA procedure after estimating the lag order and denote it by SRAaicc. Comparing

8Note that the procedure proposed by Hansen (2006) does not allow the construction of forecast densities.
Furthermore, there is no bias correction method available for direct forecast regressions.



CHAPTER 2. UNCERTAINTY AND DENSITY FORECASTS OF ARMA MODELS:
COMPARISON OF ASYMPTOTIC, BAYESIAN AND BOOTSTRAP PROCEDURES 23

the coverages of the ABJaicc and SRAaicc densities, we observe that the latter only provides

accurate coverages for h =1. The poor performance of the SRA forecast intervals in the long

run may be due to the fact that SRA is based on direct forecasts rather on iterated forecasts, as

the previous procedures are. Ing (2003) shows that when p̂ > p is fixed, the relative performance

of direct forecasts, in terms of mean square forecast error, deteriorates as the forecast horizon

increases. Similar conclusions are found by Marcellino et al. (2006) who compares iterated and

direct forecasts in macroeconomic time series. Therefore, it seems that the SRA intervals may only

be applicable to sample sizes rather large and/or short horizons. For all procedures including the

SRA, we have calculated the 95% interval coverages and the conclusions are similar.9 However,

we observe that for these two significance levels the SRA procedure often provides intervals with

lengths that are unrealistically large.

9Results are reported in Tables A.6 and A.7 of Appendix A.
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Table 2.4: Monte Carlo averages and standard deviations (in parenthesis) of MD distances between the estimated and
true forecast densities for model yt = 0.6yt−1 + 0.3yt−2 + εt with σ2

ε=1.

Panel A: Gaussian T=50 T=100 T=300
h=1 h=6 h=12 h=1 h=6 h=12 h=1 h=6 h=12

AEST/AGAUS 0.187 0.464 0.688 0.130 0.304 0.429 0.068 0.152 0.207
(0.150) (0.447) (0.711) (0.105) (0.304) (0.457) (0.057) (0.154) (0.209)

AGAUSaicc 0.255 0.522 0.706 0.168 0.338 0.456 0.079 0.162 0.216
(0.202) (0.444) (0.680) (0.163) (0.319) (0.462) (0.074) (0.156) (0.209)

BAYESN 0.193 0.406 0.561 0.139 0.280 0.363 0.092 0.177 0.225
(0.148) (0.348) (0.616) (0.094) (0.214) (0.303) (0.057) (0.132) (0.174)

BAYESL 0.264 0.430 0.451 0.241 0.386 0.416 0.144 0.243 0.273
(0.194) (0.292) (0.257) (0.181) (0.273) (0.278) (0.096) (0.171) (0.191)

BOOT 0.219 0.476 0.734 0.164 0.334 0.487 0.102 0.187 0.249
(0.131) (0.421) (0.687) (0.096) (0.297) (0.468) (0.054) (0.153 (0.215)

BOOTEX 0.251 0.494 0.710 0.190 0.351 0.494 0.110 0.197 0.259
(0.158) (0.404) (0.651) (0.132) (0.296) (0.450) (0.065) (0.154) (0.214)

BOOTNP 0.483 0.812 0.974 0.404 0.623 0.755 0.306 0.411 0.494
(0.277) (0.447) (0.552) (0.247) (0.379) (0.454) (0.219) (0.275) (0.315)

Panel B: Student-5 T=50 T=100 T=300
h=1 h=6 h=12 h=1 h=6 h=12 h=1 h=6 h=12

AEST 0.204 0.479 0.687 0.147 0.342 0.477 0.078 0.171 0.225
(0.183) (0.441) (0.670) (0.124) (0.348) (0.538) (0.067) (0.163) (0.218)

AGAUS 0.236 0.493 0.699 0.187 0.360 0.491 0.137 0.201 0.252
(0.182) (0.443) (0.673) (0.122) (0.343) (0.534) (0.066) (0.161) (0.217)

AGAUSaicc 0.291 0.546 0.713 0.217 0.394 0.515 0.145 0.213 0.266
(0.229) (0.463) (0.673) (0.162) (0.358) (0.533) (0.077) (0.169) (0.227)

BAYEST 0.197 0.376 0.513 0.146 0.287 0.375 0.097 0.178 0.221
(0.144) (0.300) (0.477) (0.094) (0.221) (0.322) (0.052) (0.118) (0.149)

BAYESN 0.234 0.411 0.546 0.181 0.312 0.400 0.138 0.196 0.237
(0.192) (0.382) (0.590) (0.114) (0.268) (0.426) (0.065) (0.145) (0.189)

BAYESL 0.305 0.424 0.443 0.263 0.391 0.413 0.180 0.262 0.287
(0.244) (0.332) (0.287) (0.184) (0.283) (0.278) (0.095) (0.187) (0.217)

BOOT 0.240 0.485 0.721 0.183 0.369 0.532 0.113 0.198 0.258
(0.160) (0.415) (0.652) (0.111) (0.333) (0.538) (0.054) (0.150) (0.213)

BOOTEX 0.270 0.505 0.706 0.211 0.390 0.533 0.122 0.208 0.266
(0.187) (0.410) (0.637) (0.139) (0.330) (0.509) (0.063) (0.152) (0.214)

BOOTNP 0.512 0.805 0.968 0.418 0.645 0.809 0.330 0.436 0.527
(0.311) (0.429) (0.507) (0.315) (0.419) (0.551) (0.210) (0.309) (0.413)

Panel C: χ2
(5) T=50 T=100 T=300

h=1 h=6 h=12 h=1 h=6 h=12 h=1 h=6 h=12
AEST 0.202 0.503 0.730 0.138 0.331 0.466 0.075 0.167 0.223

(0.156) (0.468) (0.755) (0.113) (0.328) (0.498) (0.054) (0.139) (0.185)

AGAUS 0.292 0.540 0.757 0.249 0.379 0.500 0.218 0.242 0.279
(0.134) (0.458) (0.752) (0.087) (0.311) (0.488) (0.040) (0.120) (0.169)

AGAUSaicc 0.336 0.598 0.777 0.274 0.411 0.524 0.225 0.252 0.290
(0.170) (0.468) (0.756) (0.124) (0.337) (0.507) (0.056) (0.137) (0.187)

BAYESN 0.294 0.479 0.623 0.247 0.336 0.416 0.218 0.238 0.267
(0.137) (0.391) (0.678) (0.081) (0.228) (0.341) (0.041) (0.110) (0.148)

BAYESL 0.341 0.486 0.489 0.303 0.423 0.439 0.246 0.296 0.311
(0.172) (0.327) (0.298) (0.128) (0.258) (0.263) (0.072) (0.157) (0.184)

BOOT 0.229 0.507 0.767 0.167 0.355 0.515 0.103 0.191 0.252
(0.142) (0.440) (0.730) (0.103) (0.323) (0.512) (0.050) (0.136) (0.192)

BOOTEX 0.261 0.529 0.745 0.194 0.376 0.518 0.111 0.200 0.260
(0.152) (0.431) (0.709) (0.127) (0.322) (0.496) (0.067) (0.144) (0.200)

BOOTNP 0.496 0.782 0.951 0.403 0.623 0.780 0.336 0.414 0.497
(0.284) (0.435) (0.545) (0.253) (0.393) (0.498) (0.221) (0.257) (0.309)
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Table 2.5: Monte Carlo averages and standard errors (in parenthesis) of the forecast intervals constructed by the
asymptotic procedures for model yt = 0.6yt−1 + 0.3yt−2 + εt and σ2

ε=1 with nominal coverage of 80%.

h=1 h=6 h=12
Sample size Method Coverage Coverage Coverage Coverage Coverage Coverage

below/above below/above below/above
Gaussian 80% 10%/10% 80% 10%/10% 80% 10%/10%

50 AEST/AGAUS 78.67 (0.05) 10.54/10.79 78.05 (0.09) 10.76/11.18 78.23 (0.11) 10.65/11.13
AGAUSaicc 77.16 (0.06) 11.42/11.42 78.01 (0.10) 10.88/11.11 77.53 (0.12) 11.08/11.39
SRA 79.84 (0.06) 8.98/11.18 72.32 (0.13) 12.24/15.44 64.80 (0.15) 15.69/19.51
SRAaicc 79.26 (0.07) 9.32/11.42 72.57 (0.13) 4.22 (1.25) 65.05 (0.16) 15.60/19.35

100 AEST 79.38 (0.04) 10.38/10.24 79.46 (0.06) 10.30/10.23 79.67 (0.08) 10.19/10.14
AGAUSaicc 78.61 (0.04) 10.74/10.65 79.33 (0.07) 10.36/10.31 79.26 (0.08) 10.35/10.39
SRA 79.97 (0.04) 9.56/10.47 76.96 (0.08) 11.08/11.96 73.98 (0.11) 12.40/13.62
SRAaicc 79.40 (0.05) 9.77/10.83 76.42 (0.09) 11.29/12.29 73.17 (0.12) 12.74/14.08

300 AEST 79.80 (0.02) 10.11/10.09 80.05 (0.03) 10.07/9.88 80.13 (0.05) 9.99/9.87
AGAUSaicc 79.65 (0.02) 10.18/10.17 79.94 (0.03) 10.09/9.97 80.03 (0.05) 10.04/9.92
SRA 79.97 (0.03) 9.86/10.16 79.19 (0.04) 10.37/10.44 78.63 (0.06) 10.64/10.73
SRAaicc 79.86 (0.03) 9.92/10.22 78.90 (0.04) 10.45/10.65 78.51 (0.06) 10.75/10.74
Student-5 h=1 h=6 h=12

50 AEST 77.55 (0.07) 11.42/11.03 76.88 (0.10) 11.76/11.36 77.48 (0.12) 11.44/11.08
AGAUS 81.85 (0.06) 9.24/8.90 78.58 (0.10) 10.91/10.51 78.66 (0.12) 10.83/10.50
AGAUSaicc 80.24 (0.07) 9.98/9.78 78.13 (0.11) 10.91/10.96 77.80 (0.13) 11.08/11.11
SRA 79.74 (0.07) 9.33/10.94 71.28 (0.13) 13.56/15.17 64.92 (0.16) 16.58/18.50
SRAaicc 79.25 (0.08) 9.46/11.29 71.45 (0.13) 13.13/15.42 65.27 (0.16) 16.28/18.44

100 AEST 78.62 (0.05) 10.77/10.61 78.40 (0.07) 10.86/10.74 78.61 (0.09) 10.75/10.64
AGAUS 82.81 (0.05) 8.66/8.52 80.02 (0.07) 10.05/9.93 79.76 (0.09) 10.17/10.06
AGAUSaicc 81.94 (0.06) 9.11/8.95 79.82 (0.08) 10.27/9.91 79.38 (0.09) 10.48/10.14
SRA 79.92 (0.05) 9.67/10.41 76.56 (0.09) 11.28/12.16 73.95 (0.11) 12.68/13.37
SRAaicc 79.28 (0.06) 10.01/10.71 76.31 (0.09) 11.44/12.25 73.25 (0.12) 12.93/13.82

300 AEST 79.64 (0.03) 10.16/10.20 79.75 (0.04) 10.08/10.16 79.86 (0.05) 10.00/10.14
AGAUS 83.75 (0.03) 8.09/8.14 81.34 (0.04) 9.28/9.37 80.96 (0.05) 9.45/9.59
AGAUSaicc 83.50 (0.03) 8.23/8.27 81.17 (0.04) 9.36/9.47 80.79 (0.05) 9.53/9.68
SRA 80.09 (0.03) 9.74/10.17 79.19 (0.04) 10.08/10.72 78.64 (0.06) 10.33/11.03
SRAaicc 79.97 (0.03) 9.79/10.24 79.00 (0.05) 10.29/10.71 78.38 (0.06) 10.57/11.05
χ2

(5) h=1 h=6 h=12
50 AEST 78.01 (0.09) 11.20/10.77 77.10 (0.10) 11.35/11.53 77.07 (0.13) 11.27/11.65

AGAUS 83.14 (0.07) 5.36/11.49 78.15 (0.10) 9.67/12.17 77.77 (0.13) 10.05/12.17
AGAUSaicc 81.17 (0.08) 6.77/12.05 77.79 (0.12) 9.86/12.34 76.88 (0.14) 10,52/12,60
SRA 79.78 (0.08) 9.23/10.99 71.21 (0.13) 13.45/15.34 63.78 (0.16) 17.31/18.91
SRAaicc 78.98 (0.09) 9.76/11.26 71.33 (0.13) 13.58/15.10 64.16 (0.17) 16.93/18.92

100 AEST 78.77 (0.07) 10.82/10.40 78.78 (0.07) 10.52/10.69 78.98 (0.09) 10.37/10.64
AGAUS 84.17 (0.05) 4.72/11.10 79.82 (0.07) 8.85/11.32 79.62 (0.09) 9.20/11.17
AGAUSaicc 82.96 (0.06) 5.70/11.35 79.46 (0.08) 9.11/11.42 79.08 (0.09) 9.57/11.35
SRA 79.57 (0.05) 9.98/10.45 76.15 (0.08) 11.65/12.2 73.92 (0.11) 12.87/13.21
SRAaicc 78.98 (0.07) 10.48/10.54 76.04 (0.08) 11.82/12.14 73.25 (0.12) 13.10/13.65

300 AEST 79.71 (0.04) 10.20/10.08 79.78 (0.04) 10.15/10.07 79.91 (0.05) 10.04/10.03
AGAUS 85.43 (0.03) 3.77/10.79 80.86 (0.04) 8.45/10.68 80.58 (0.05) 8.87/10.55
AGAUSaicc 85.05 (0.03) 4.09/10.85 80.65 (0.04) 8.62/10.71 80.39 (0.05) 9.01/10.59
SRA 79.86 (0.03) 9.99/10.14 78.97 (0.05) 10.54/10.49 78.55 (0.06) 10.71/10.74
SRAaicc 79.71 (0.04) 10.11/10.18 78.68 (0.05) 10.75/10.57 78.28 (0.06) 10.90/10.82

2.3.2. Bayesian forecasts

One of the earliest references using Bayesian procedures to forecast in the context of time series

models is Litterman (1979), who, in the context of Vector AR (VAR) models, describes the solution
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to the problem of overparameterization through the addition of instrumental information in the

form of Bayesian prios. Later, Monahan (1983) constructs forecast densities that take into account

parameter and lag order uncertainties using numerical integration techniques and restricting

the analysis to models with no more than two parameters, that is, p + q ≤ 2. Thompson

and Miller (1986) overcome some of the computational difficulties and simulate future paths of

time series for ARMA(p, q) models and h-steps-ahead forecasts, simulating from the predictive

distribution rather than trying to obtain its analytical form. The Bayesian forecasting procedure of

Thompson and Miller (1986) allows to assume other error distributions and they show, explicitly,

how to construct forecast densities and intervals for ARMA models; see also Geweke and

Whiteman (2006) for the principles of Bayesian forecasting. Later, Chib and Greenberg (1994)

and Marriott et al. (1996) propose MCMC samples for ARMA models which enforce stationarity

and invertibility, but they rely on Gaussian errors.

The Bayesian procedure of Thompson and Miller (1986) is illustrated by implementing it

to construct forecast intervals for the AR(2) model considered previously. When the Bayesian

procedure is implemented assuming Gaussian forecast errors, it is denoted as BAYESN while, if

the errors are assumed to be Student-ν, it is denoted as BAYEST.10 When Gaussianity is assumed,

it is well known that any diffuse prior for φ and σ2ε leads to Normal and Inverse Gamma posterior

distributions, respectively. The joint and marginal posterior distributions are obtained using

Gibbs sampler. Regarding the Student-ν case, we are not able to identify the posteriors of all

parameters and therefore the Metropolis-Hasting algorithm is implemented. Following Sahu

et al. (2003), we assume an exponential prior distribution with parameter 0.1 truncated in the

region ν > 2 for the degrees of freedom (ν) of the Student-ν.11 We run 11000 iterations for

the MCMC algorithms of BAYESN and BAYEST and save the last 1000 iterations to construct

10We did not consider χ2
(5) errors since as far as we know there is not any proposal in the literature to deal with this

distribution in the context of Bayesian forecasting.
11Alternatively, as proposed by Jacquier et al. (2004), we also consider a truncated discrete uniform prior distribution

for ν, so that ν ∼ U [3, 40]. Although using this prior we obtain similar MD distances, the coverage rates of the model
with truncated exponential prior are closer to the nominal level. Consequently, the subsequent results are based on the
truncated exponential prior.
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the forecast densities and intervals. Table 2.4 reports the Monte Carlo averages and standard

deviations of the MD distances between the Bayesian and the true forecast densities. These

distances should be compared with those of EST densities reported in Table 2.2 as in both cases

the lag order and error distribution are assumed to be known. We observe that, when the errors

are Normal, the Bayesian distances are slightly larger for h =1. However, when the forecast

horizon increase to h =6 and 12, the distances decrease. Note that their standard errors are

also smaller. Similar results are obtained when the errors are Student-5. We also compute the

Bayesian densities assuming Normality when the errors are truly Student-5 or χ2
(5). In this case,

the distances should be compared with those reported as GAUS in Table 2.2. Regardless of

whether the true distribution is Student-5 or χ2
(5), when the densities are constructed assuming

Normality, the averages and standard deviations are almost identical to those obtained by the

GAUS procedure when h=1. However, the averages and standard deviations are smaller for h=6

and 12.

Consider now the results for the coverages of the corresponding forecast intervals in Table

2.6. We observe that, if the true error distribution is known, the Bayesian procedure is able to

provide coverages closer to the nominal level than those of the asymptotic methods. On the

other hand, if we misspecify the error distribution when using the Bayesian procedure, we can

have distorted coverages for 80% intervals in the short term, as happens to the GAUS and ABJ

intervals. Furthermore, note that the overcoverage can be even larger than those of the GAUS

intervals. Finally, when the true errors are χ2
(5), the Bayesian intervals based on Gaussian errors

are asymmetric when h=1.
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Table 2.6: Monte Carlo averages and standard errors (in parenthesis) of forecast intervals constructed by the Bayesian
procedures for model yt = 0.6yt−1 + 0.3yt−2 + εt and σ2

ε=1 with nominal coverage of 80%.

h=1 h=6 h=12
Sample size Method Coverage Coverage Coverage Coverage Coverage Coverage

below/above below/above below/above
Gaussian 80% 10%/10% 80% 10%/10% 80% 10%/10%

50 BAYESN 79.70 (0.05) 10.10/10.2 79.10 (0.09) 10.29/10.62 78.35 (0.10) 10.68/10.97
BAYESL 79.94 (0.06) 9.87/10.18 76.99 (0.09) 11.33/11.68 75.29 (0.11) 12.24/12.47

100 BAYESN 79.86 (0.04) 10.17/9.96 79.68 (0.06) 10.22/10.09 79.31 (0.07) 10.35/10.34
BAYESL 79.72 (0.05) 10.28/10.01 78.09 (0.07) 11.02/10.89 76.72 (0.08) 11.64/11.64

300 BAYESN 79.81 (0.03) 10.10/10.08 79.98 (0.04) 10.05/9.967 79.88 (0.05) 10.10/10.02
BAYESL 79.87 (0.03) 10.02/10.11 79.31 (0.04) 10.36/10.32 78.81 (0.05) 10.61/10.57
Student-5 h=1 h=6 h=12

50 BAYEST 80.12 (0.06) 9.96/9.91 78.38 (0.09) 10.83/10.79 77.82 (0.11) 11.11/11.07
BAYESN 82.58 (0.06) 8.79/8.63 79.29 (0.09) 10.41/10.3 78.41 (0.11) 10.83/10.76
BAYESL 82.46 (0.07) 8.56/8.97 77.36 (0.10) 11.26/11.38 75.59 (0.11) 12.21/12.20

100 BAYEST 80.12 (0.04) 10.03/9.85 79.01 (0.06) 10.55/10.44 78.62 (0.08) 10.72/10.65
BAYESN 83.17 (0.05) 8.50/8.33 80.43 (0.07) 9.85/9.72 79.64 (0.08) 10.23/10.12
BAYESL 83.09 (0.05) 8.45/8.46 79.23 (0.07) 10.49/10.28 77.66 (0.09) 11.24/11.10

300 BAYEST 80.14 (0.03) 9.89/9.96 79.87 (0.04) 10.06/10.07 79.59 (0.05) 10.16/10.25
BAYESN 83.89 (0.03) 8.03/8.08 81.37 (0.04) 9.30/9.33 80.72 (0.05) 9.61/9.66
BAYESL 83.76 (0.03) 8.10/8.14 80.78 (0.05) 9.64/9.58 79.77 (0.05) 10.13/10.10
χ2

(5) h=1 h=6 h=12
50 BAYESN 83.77 (0.07) 5.06/11.17 79.28 (0.10) 9.04/11.68 78.12 (0.11) 9.90/11.97

BAYESL 83.50 (0.08) 5.57/10.93 76.85 (0.10) 10.61/12.54 74.92 (0.11) 11.83/13.24
100 BAYESN 84.60 (0.05) 4.53/10.87 80.18 (0.07) 8.68/11.13 79.36 (0.08) 9.42/11.22

BAYESL 83.94 (0.06) 5.32/10.73 78.42 (0.08) 9.91/11.66 77.00 (0.09) 10.87/12.14
300 BAYESN 85.37 (0.03) 3.89/10.74 80.83 (0.04) 8.47/10.7 80.29 (0.05) 9.02/10.70

BAYESL 84.97 (0.04) 4.34/10.68 80.04 (0.05) 9.11/10.85 79.20 (0.06) 9.71/11.09

The Bayesian procedures described above assume that the error distribution is known.

However, some Bayesian approaches are able to incorporate the error distribution uncertainty

in their forecasts. They are based on nonparametric Bayesian mixture of models, but their main

drawback is that they are intensive computationally and the construction of forecast intervals

and densities is not straightforward; see Tang and Ghosal (2007) for applications in the context of

autoregressive models.

Finally, some Bayesian procedures are designed to take into account the uncertainty about

the lag order of ARMA models. For example, applications of Bayesian model averaging to AR

processes are reported by Schervish and Tsay (1988) and Le et al. (1996). Other fixed-dimensional

MCMC algorithms are proposed in Barnett et al. (1996, 1997) and Huerta and West (1999). In

Barnett et al. (1996) the AR coefficients are reparameterized in terms of the partial correlation

coefficients so that the AR model can be treated as a nested model and model-order selection

is performed by associating a binary indicator variable with each coefficient, and using these
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to perform subset selection. Barnett et al. (1997) extend the procedure of Barnett et al. (1996) to

ARMA models. On the other hand, Huerta and West (1999) define a prior structure directly on the

roots of the AR characteristic polynomial and the model uncertainty is then naturally accounted

for by allowing the roots to have zero moduli. Nevertheless, in these procedures, the maximum

orders of the models are fixed and estimations are made on the saturated model, which may

lead to a parameter space of a very large dimension and, consequently, the estimation becomes

difficult. To avoid this problem, some authors propose to apply the Reversible Jump Markov

Chain Monte Carlo (RJMCMC) algorithm proposed by Green (1995) which is a generalisation

of the Metropolis Hasting algorithm that allows jumps between states of different dimensions.

It can jointly estimate the orders p and q and the parameters φ, θ and σ2ε of an ARMA model.

The lag order uncertainty is accounted for explicitly in terms of the posterior distributions of

p and q; see Troughton and Godsill (1998), Vermaak et al. (2004) and Ehlers and Brooks (2008)

for applications to AR(p) models. Alternatively, Stephens (2000) proposes a procedure based on

the simulation of a continuous time birth and death Markovian process between-model moves.

Philippe (2006) adapts such algorithm to ARMA models and denotes it as the birth and death

MCMC (BDMCMC) algorithm. Her choice is based on Brooks et al. (2003), whose numerical

results favour the BDMCMC algorithm against the RJMCMC in terms of convergence assessment

in the particular case of AR models. However, a comparison about forecast performance was not

assessed.

A standard way to deal with the lag uncertainty in macroenometrics is to include a long set

of lags and specifying that the larger the lag, the more likely, that the coefficient is to be close to

zero. For example, one can specify that the jth lag has an independent normal distribution with

zero mean and a standard deviation inversely proportional to j. The proportionality constant is a

hyperparameter that can be estimated. These ideas lead Doan et al. (1984) to propose the so-called

Minnesotan prior; see Karlsson (2013) for a survey. A related idea based on shrinkage has been

proposed by Schmidt and Makalic (2013), who adapt the Bayesian LASSO to AR models. Their

simulations show that their procedure performs well in terms of forecast errors when compared
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with a standard autoregresion order selection method and they suggest its extension to ARMA

models. Nevertheless, it worth noting that the above Bayesian methods that incorporate the

lag-order uncertainty rely on the Gaussian assumption of the errors and they are very intensive

computationally.

The procedure of Schmidt and Makalic (2013), called BAYESL, is illustrated with Monte Carlo

experiments, using pmax = T/10; see Tables 2.4 and 2.6 for the implementation of the BAYESL

procedure. As well as for the BAYESN and BAYEST procedures, we run 11000 iterations and

discard the first 10000. In Table 2.4 we observe that, when the errors are Normal, the distances

are reduced with respect to GAUSaicc if T=50 and h=6 and 12. However, for T=100 and 300,

the distances are larger. Similar results are obtained for the other two distributions considered.

Looking at the Monte Carlo results of the interval coverages in Table 2.6 we observe that BAYESL

generates coverages close to the nominal level for h=1, but as the forecast horizon increases,

BAYESL underestimates the nominal level, regardless of the error distribution. Moreover, since

BAYESL assumes Gaussianity, it presents distorted coverages as T increases for h=1 when the

errors are non-Gaussian.

Finally, we can conclude that, unlike the asymptotic methods, the Bayesian methods are able

to provide accurate forecast densities in moderate sample sizes and mainly in the short term when

the true distribution is known. The drawback is that they may demand a large computing effort

when the sample size is large. In our study, for example, the BAYEST and BAYESL procedures

take approximately 18 and 39 hours, respectively, to compute the MD values and coverage rates of

one Monte Carlo simulation of sample size T = 300; see Table 2.7 for a detailed time comparison

between Bayesian and alternative procedures.
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Table 2.7: Simulation time in hours of the most demanding procedures.

Procedure T=50 T=100 T=300
BAYESN 0.13 0.17 0.41
BAYEST 3.16 6.12 18.59
BAYESL 7.44 13.70 39.35
BOOT 0.6 0.6 1.00
BOOTEX 0.83 0.83 1.23
BOOTNP 0.42 0.83 3.55

2.3.3. Bootstrap forecasts

A simple alternative to construct forecast densities that take into account the parameter, error

distribution and lag-order uncertainties is based on bootstrap procedures. They are attractive

because they use computationally simple algorithms. The original bootstrap procedure to

obtain forecast densities is proposed by Thombs and Schucany (1990) in the context of AR(p)

models to incorporate the parameter uncertainty. Extensions of their work include Masarotto

(1990), Kabaila (1993), McCullough (1994), Breidt et al. (1995), Grigoletto (1998) and Kim (1999)

among others. Pascual et al. (2001, 2004) propose an alternative procedure that does not require

bootstrap re-sampling through the backward representation of the process and, consequently, it

can be applied to models with moving-average components. The procedure by Pascual et al.

(2001, 2004) is implemented by Clements and Taylor (2001) and Kim (2001) who apply the

bootstrap-after-bootstrap of Kilian (1998a) in order to take into account the small sample bias of

the parameter estimators to construct AR forecasts. Tanizaki et al. (2005) also provide a bootstrap

bias-correction of the LS estimator of the parameters of AR(p) models.

In this chapter, we consider the bootstrap procedure proposed by Pascual et al. (2001, 2004)

with the analytical parameter bias correction method described in Section 2.2 for an AR(p)

model, whose advantage over the bootstrap bias correction of Kilian (1998a) is its computational

efficiency; see Kim (2004) for the same bias correction procedure. This procedure is called

BOOT. In the literature, we can find other alternatives to the bootstrap parameter bias correction.

For instance, Clements and Kim (2007) show that when the process is near unit root or
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non-stationary, the parameter estimation proposed by Roy and Fuller (2001) performs better and

is computationally cheaper. Another alternative is the grid bootstrap method of Gospodinov

(2002), but it only applies to AR(1) models; see Kim and Durmaz (2012).

Analysing the Monte Carlo results of Table 2.4, we observe that when there is error distribution

uncertainty, BOOT has lower MDs than GAUS and ABJ as T increases. Regarding the coverage

rates, reported in Table 2.8, for T=50, the BOOT intervals already have coverages very close to the

nominal levels for all forecast horizons, outperforming AEST and the Bayesian procedures that

use the correct error distribution and lag-order. Note that the coverages BOOT do not decrease

with the forecast horizon. This is a result of the implemented bias correction. The gain of bias

correction can be substantial in small samples, when the AR root of the model is close to one and

when the forecast horizon is larger; see Kim (2003, 2004).

Finally, the uncertainty associated with the lag order can be incorporated by using the

endogenous lag-order bootstrap algorithm of Kilian (1998a), the sieve exogenous order bootstrap

of Alonso et al. (2004) or the moving blocks bootstrap of Alonso et al. (2006). Clements and Kim

(2007) show that incorporating the lag order selection has marginal small improvements when

the true process is highly persistent. They also warn against the use of bootstrap techniques for

highly persistent processes with non-Gaussian distributions.

We apply the sieve exogenous order bootstrap of Alonso et al. (2004) with the bias-correction

procedure described in Section 2.2, denoted here as BOOTEX. This procedure is easier to

implement than that of Alonso et al. (2006) and both procedures provide similar coverage results;

see Alonso et al. (2006). Alonso et al. (2004) find in their Monte Carlo study that their proposal

outperforms the endogenous lag-order bootstrap and provides consistent forecast intervals for

ARMA processes.

Looking at the results reported in Tables 2.4 and 2.8, we observe that the BOOTEX procedure

yields MDs and coverages very close to those obtained with BOOT, which assumes the correct

lag-order, showing a clear advantage over the asymptotic methods that incorporate only the

parameter variability in the forecasts, such as AEST, or also the error distribution in the forecast
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Table 2.8: Monte Carlo averages and standard errors (in parenthesis) of forecast intervals by the bootstrap procedures
for model yt = 0.6yt−1 + 0.3yt−2 + εt and σ2

ε=1 with nominal coverage of 80%.

h=1 h=6 h=12
Sample size Method Coverage Coverage Coverage Coverage Coverage Coverage

below/above below/above below/above
Gaussian 80% 10%/10% 80% 10%/10% 80% 10%/10%

50 BOOT 79.08 (0.06) 10.36/10.56 79.64 (0.08) 10.04/10.32 80.69 (0.10) 9.45/9.86
BOOTEX 78.60 (0.06) 10.68/10.72 80.50 (0.09) 9.67/9.83 80.95 (0.11) 9.39/9.66
BOOTNP 72.17 (0.17) 13.57/14.26 64.44 (0.15) 17.26/18.30 59.98 (0.15) 19.64/20.38

100 BOOT 79.29 (0.04) 10.37/10.34 80.06 (0.06) 9.97/9.96 80.76 (0.07) 9.62/9.62
BOOTEX 79.12 (0.05) 10.46/10.42 80.46 (0.06) 9.81/9.72 80.82 (0.08) 9.60/9.58
BOOTNP 75.77 (0.14) 12.43/11.80 69.50 (0.13) 15.23/15.28 66.63 (0.13) 16.60/16.77

300 BOOT 79.68 (0.03) 10.15/10.17 80.06 (0.04) 10.06/9.877 80.45 (0.05) 9.86/9.69
BOOTEX 79.66 (0.03) 10.18/10.16 80.12 (0.04) 9.97/9.90 80.50 (0.05) 9.78/9.72
BOOTNP 79.77 (0.10) 10.04/10.19 74.31 (0.08) 13.02/12.67 72.33 (0.07) 13.97/13.70
Student-5 h=1 h=6 h=12

50 BOOT 79.30 (0.06) 10.55/10.15 79.31 (0.09) 10.58/10.11 80.43 (0.11) 9.99/9.57
BOOTEX 79.18 (0.07) 10.61/10.21 79.75 (0.10) 10.21/10.03 80.34 (0.12) 9.92/9.74
BOOTNP 71.43 (0.18) 13.40/15.17 63.24 (0.15) 17.60/19.16 59.20 (0.15) 19.84/20.96

100 BOOT 79.62 (0.05) 10.36/10.02 79.66 (0.07) 10.20/10.14 80.24 (0.08) 9.86/9.89
BOOTEX 79.36 (0.05) 10.47/10.17 79.88 (0.07) 10.16/9.95 80.36 (0.09) 9.92/9.71
BOOTNP 76.26 (0.16) 12.09/11.65 68.19 (0.13) 16/15.81 65.00 (0.13) 17.36/17.65

300 BOOT 79.90 (0.03) 10.04/10.06 80.00 (0.04) 9.97/10.02 80.40 (0.05) 9.68/9.92
BOOTEX 79.88 (0.03) 10.03/10.09 80.13 (0.04) 9.84/10.03 80.40 (0.05) 9.718/9.88
BOOTNP 80.05 (0.12) 9.71/10.24 73.41 (0.09) 13.13/13.46 71.27 (0.09) 14.12/14.61
χ2

(5) h=1 h=6 h=12
50 BOOT 79.38 (0.08) 9.91/10.71 79.28 (0.09) 10.02/10.7 80.11 (0.11) 9.52/10.37

BOOTEX 79.40 (0.09) 9.62/10.98 80.09 (0.10) 9.37/10.54 80.10 (0.12) 9.37/10.53
BOOTNP 72.79 (0.17) 12.89/14.32 64.39 (0.14) 17.97/17.64 59.90 (0.14) 20.18/19.92

100 BOOT 79.43 (0.06) 10.21/10.37 79.65 (0.07) 9.86/10.48 80.35 (0.08) 9.49/10.16
BOOTEX 79.25 (0.07) 10.36/10.39 79.93 (0.07) 9.72/10.35 80.34 (0.09) 9.55/10.11
BOOTNP 76.43 (0.17) 10.44/13.13 68.80 (0.13) 15.63/15.58 65.53 (0.13) 17.33/17.14

300 BOOT 79.67 (0.04) 10.10/10.22 79.98 (0.04) 9.99/10.03 80.39 (0.05) 9.73/9.88
BOOTEX 79.55 (0.04) 10.25/10.19 79.97 (0.04) 10.02/10.01 80.27 (0.05) 9.85/9.88
BOOTNP 81.19 (0.12) 7.57/11.23 74.01 (0.08) 12.40/13.59 72.24 (0.08) 13.19/14.57

intervals as SRA, and over more complex methods that incorporate both parameter and lag-order

uncertainties, as the Bayesian procedures. Moreover, it is worth noting that bootstrap procedures

usually require less computational effort in comparison with Bayesian procedures. In our study,

for example, the bootstrap procedure takes approximately 1 hour for computing the MD values

and coverage rates of one Monte Carlo simulation when T=300, whereas the Bayesian procedures,

as BAYEST and BAYESL, take more than 12 hours to compute the same measures.

Alternatively, we can use forecasting methods which are not model based, such as the

nonparametric bootstrap of Manzan and Zerom (2008). Their method just requires that the time

series under analysis follows a Markovian process. Consequently, it encompasses a wide range of

relevant structures implied by various commonly used linear and non-linear models. Manzan
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and Zerom (2008) adapt the local bootstrap approach of Paparoditis and Politis (2001, 2002)

to the context of out-of-sample forecast density estimation. For one-step-ahead forecasts, their

proposed non-parametric procedure reduces to the well known conditional density estimator; see,

for example, De Gooijer and Zerom (2003). The nonparametric bootstrap of Manzan and Zerom

(2008) is denoted here as BOOTNP. It uses the nonparametric method of Diks and Manzan (2002)

to select p, but it still depends on the choice of pmax, which we have considered as pmax = T/10.

The simulation results show that BOOTNP provides the highest distances, and it is able to provide

coverages close to the nominal only for T=300 and h=1; see Manzan and Zerom (2008) who also

conclude that the performance of BOOTNP is only appropiate if T is large.

Given the good results of BOOTEX in comparison with the asymptotic and Bayesian pro-

cedures, we highlight the importance of considering resample methods for taking into account

model uncertainty when constructing density and forecast intervals.

2.4. Conclusions

In this chapter, we compare alternative procedures to construct density and interval forecasts

in the context of univariate ARMA models. We show that the most important source of uncer-

tainty when constructing density forecasts for small forecast horizons is the error distribution.

However, as the forecast horizon increases, the normal approximation of the density is more

appropriate. Consequently, the asymptotic correction of the MSFE is not useful. Furthermore,

it is only available for relatively simple ARMA models. The SRA procedure to construct

asymptotic forecast intervals is sensible for small forecast horizons but does not work for

large ones. Moreover, it requires large samples and small nominal coverages. Alternatively,

Bayesian procedures are time consuming and computationally complicated when incorporating

simultaneously parameter and lag order uncertainties without assuming a particular error

distribution. Finally, bootstrap procedures seem to be a feasible alternative if the sample size

is large and when the error distribution is unknown.



Chapter 3

A bootstrap approach for generalized
autocontour testing .....

3.1. Introduction

Density forecasting is rapidly becoming a very active and important area of research in the

analysis of economic and financial time series. The need to consider the full predictive density

has long been recognized in the related literature; see Tay and Wallis (2000) for a survey. There

are several reasons for this growing interest in density forecasting. First, complete probability

distributions over outcomes provide helpful information for making economic decisions; see

Granger and Pesaran (2000a,b). Second, density forecasts provide a characterization of forecast

uncertainty which can be useful to central banks; see Britton et al. (1998) for the fan charts of

the Bank of England and Alessi et al. (2014) for measures of economic uncertainty during the

Global Financial Crisis of the Federal Reserve Bank of New York. Soyer and Hogarth (2012)

also propose incorporating measures of uncertainty to avoid the illusion of predictability. Third,

in the presence of non-normal forecast errors, even single forecast intervals may not provide an

adequate summary of the expected future; see, for example, Lam and Veall (2002). Fourth, density

forecasts are also important in the presence of realistic economic loss functions which cannot be

reduced to the comparison of Mean Squared Forecast Errors of point forecasts; see Diebold and

Mariano (2002) and Patton and Timmermann (2007b). Furthermore, in some applications, often

35
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the object of interest is a particular quantile of the forecast distribution as, for example, when

forecasting the Value-at-Risk (VaR) of a given stock or portfolio; see Nieto and Ruiz (2016) for

a recent survey on VaR forecasting. As a consequence, in an increasing number of empirical

applications, forecast densities are obtained for macroeconomic and financial variables; see, for

example, Fair (1980), for one of the first applications of computing probability forecasts using a

macroeconomic model. Garratt et al. (2003), Giordani and Villani (2010), Jore et al. (2010), Clark

(2011), Baumeister and Kilian (2012), Clark and Ravazzolo (2015) and Ravazzolo and Rothman

(2016) are some more recent macroeconomic applications. The number of applications in the

context of financial variables is very broad covering the construction of densities for both returns

and volatilities; see, Andersen et al. (2003), Clements et al. (2008), Corradi et al. (2009), Maheu

and McCurdy (2011) and Hallam and Olmo (2013, 2014) just to mention a few applications. Note

that, in some of these applications, the forecasting densities are multivariate.

A problem often faced by forecasters is testing the correct specification of a conditional forecast

density. Appropriate tests should take into account that the forecast conditional distribution is

often unknown and the specification of conditional moments is also unknown and has estimated

parameters. Furthermore, a useful test will indicate the source of rejection of a given forecasting

model, that is, whether it is rejected because of the specification of the shape of the distribution or

because of the specification of the conditional moments.

Many tests available in the literature are based on testing a joint hypothesis of uniformity and

independence (i.i.d. U(0,1)) of the probability integral transforms (PITs), which are applicable

regardless of the particular user’s loss function. Among these tests, the most popular is due to

Diebold et al. (1998); see also Berkowitz (2001) and Chen and Fan (2004) for extensions. Intuitively,

the i.i.d. assumption of the PITs is related with the correct specification of the conditional

moments, while the U(0,1) property characterizes the correct specification of the distribution.

The PITs contain rich information on model misspecification which can be revealed by using

their histogram and autocorrelogram as suggested by Diebold et al. (1998). However, none

of these visual devices take into account the uncertainty associated with parameter estimation.
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Furthermore, it is nontrivial to develop a formal test for the joint hypothesis of independence

and uniformity of the PITs. The well-known Kolmogorov-Smirnov test, checks uniformity under

the independence assumption rather than testing both properties jointly. Consequently, it would

easily miss the non-independent alternatives when PITs have a marginal uniform distribution.

Moreover, the Kolmogorov-Smirnov test does not take into account the impact of parameter

estimation uncertainty on the asymptotic distribution of the statistic. To solve this problem, Bai

(2003) proposes a Kolmogorov-Smirnov-type test based on a martingale transformation of the

PITs whose asymptotic distribution is free from the impact of parameter estimation. However,

the test proposed by Bai (2003) only checks uniformity and, consequently, it has no asymptotic

unit power if the transformed PITs are uniform but not independent; see Corradi and Swanson

(2006). Alternatively, Hong and Li (2005) propose a nonparametric-kernel-based test with power

against violations of both independence and density functional form. Nevertheless, it depends

on the choice of a bandwidth and, consequently, it is problematic how to choose it in an empirical

context.

Instead of testing for independence and uniformity of PITs, González-Rivera et al. (2011) and

González-Rivera and Yoldas (2012) propose autocontour (ACR) tests to evaluate the adequacy of

conditional forecast densities. Relying on autocontours allows to obtain a graphical tool that can

be very helpful for guiding the modelling. Moreover, it permits to focus on different areas of the

conditional density in order to assess those regions of interest. The ACR test, which can be applied

to both original series and model residuals, has several advantages: i) it has standard convergence

rates and standard limiting distributions that deliver superior power; ii) it is computationally easy

to implement as it is based on counting processes; iii) it does not require either a transformation of

the original data or an assessment of the Kolmogorov goodness of fit; and iv) it explicitly accounts

for parameter uncertainty. Yet, it assumes a parametric time-invariant function of the forecast

density and it is complicated to implement to multivariate forecast densities. To overcome these

problems, González-Rivera and Sun (2015) propose the generalized autocontour (G-ACR) test,

that is based on PITs instead of original observations or residuals. In this way, the G-ACR
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test inherits the advantages of using PITs and of using autocontours. However it is still based

on assuming a particular specification of the conditional density in order to compute the PITs.

Therefore, when a given forecasting model is rejected, it is difficult to disentangle whether the

rejection can be attributed to the assumed functional form of the error distribution or to the

specification of the conditional moments. González-Rivera and Sun (2015) point out that the

G-ACR tests are more powerful for detecting departures from the distributional assumption than

for detecting misspecified dynamics. Furthermore, there are applications in which the density

does not have a known closed-form solution, as for example, multi-step predictive densities in

non-linear or non-Gaussian models.

In this chapter, we propose an extension of the G-ACR tests for dynamic specification of a

density model (in-sample tests) and for evaluation of forecast densities (out-of-sample tests).

Our contribution lies on computing the PITs from a bootstrapped conditional density so that

no assumption on the functional form of the forecast error density is needed1. The only

restrictions required on the error density are those needed to guarantee that the estimator of the

parameters of the conditional moments is consistent and asymptotically Normal distributed. The

bootstrap procedure allows for the incorporation of parameter uncertainty and can be extended

to multivariate systems and multi-step forecasts. We show that the asymptotic distributions

of the bootstrapped G-ACR (BG-ACR) tests are well approximated using standard asymptotic

distributions. The proposed approach is very easy to implement and particularly useful to

evaluate forecast densities when the error distribution is unknown. Furthermore, using graphical

devices, the procedure allows the identification of the source of misspecification, namely, whether,

it is the error distribution, or linear or non-linear dynamics.

The rest of the chapter is organized as follows. In section 3.2, we briefly describe the G-ACR

test. Section 3.3 contains the main contribution of this chapter with the description of the new

1Bootstrapping was also proposed by Tsay (1992) for model checking because of its flexibility. The essence of the
procedures proposed by Tsay (1992) is to obtain the empirical distribution of a specified functional via parametric
bootstrap, which then serves to compare the corresponding functional quantity. The spirit of the procedure proposed
in this chapter is very similar. However, differently from Tsay (1992), we do not assume known parameters or a known
distributional assumption of the errors.
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proposed BG-ACR tests. Their asymptotic properties and finite sample performance are also

analyzed when implemented in-sample. Section 3.4 is devoted to analyzing their out-of-sample

behavior. An empirical application to illustrate the advantages of the BG-ACR tests, when

implemented to test for the adequacy of the Heterogeneous Autoregressive (HAR) model to

obtain forecast densities of the VIX volatility index, is carried out in section 3.5. Finally, section

3.6 concludes.

3.2. The G-ACR test

In this section, we briefly describe the G-ACR test proposed by González-Rivera and Sun

(2015).

Let {yt}Tt=1 denote the random process of interest with conditional density function ft(yt|Yt−1),

where Yt−1 = (y1, ..., yt−1) is the information set available up to time t-1. Observe that the random

process yt might enjoy of very general statistical properties, e.g. heterogeneity, dependence, etc. A

conditional model is constructed by specifying a conditional mean, conditional variance or other

conditional moments of interest, and making distributional assumptions on the functional form

of ft(yt|Yt−1). Based on the conditional model, the researcher might construct a density forecast

denoted by gt(yt|Yt−1) and obtain a sequence of PITs of {yt}Tt=1 w.r.t gt(yt|Yt−1) as follows

ut =

∫ yt

−∞
gt(vt|Yt−1) dvt. (3.1)

If gt(yt|Yt−1) coincides with the true conditional density, ft(yt|Yt−1), then the sequence of PITs,

{ut}Tt=1, must be i.i.d. U(0, 1); see Rosenblatt (1952) and Diebold et al. (1998). Therefore, the null

hypothesis H0 : gt(yt|Yt−1) = ft(yt|Yt−1) is equivalent to the null hypothesis

H ′0 : {ut}Tt=1 is i.i.d. U(0, 1). (3.2)

Note that, if the forecast density coincides with the true DGP, then it is preferred by all forecasters
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regardless of their particular loss function; see Diebold et al. (1998) and Granger and Pesaran

(2000a,b). In order to compute the PIT in equation (3.1), one needs to assume a particular

distribution function for gt(yt|Yt−1). Simple tests of independence and uniformity, such as, the

Kolmogorov-Smirnov test suffer from the problems described in the introduction. Alternatively,

González-Rivera and Sun (2015) propose using autocontours to evaluate the PITs.

Define G-ACRk,αi as the set of points in the plane (ut, ut−k) such that the square with
√
αi-side

contains αi% of observations, i.e.,

G-ACRk,αi
= {B(ut, ut−k) ⊂ <2|0 ≤ ut ≤

√
αi and 0 ≤ ut−k ≤

√
αi, s.t. : ut × ut−k ≤ αi}. (3.3)

Define also the following indicator series Ik,αit :

Ik,αit = 1((ut, ut−k) ∈ G-ACRk,αi) = 1(0 ≤ ut ≤
√
αi, 0 ≤ ut−k ≤

√
αi). (3.4)

If gt(yt|Yt−1) is a consistent estimator of ft(yt|Yt−1), then Ik,αit is an asymptotically Bernoulli

MA process whose order depends on k. The sample proportion of PIT pairs (ut, ut−k) within the

G-ACRk,αi cube is given by

α̂i =

T∑
t=k+1

Ik,αit

T − k
. (3.5)

Consider the statistic tk,αi , given by

tk,αi =

√
T − k(α̂i − αi)

σαi
, (3.6)

where σ2αi = αi(1 − αi) + 2α
3/2
i (1 − α1/2

i ). González-Rivera and Sun (2015) show that under the

null hypothesis in (3.2) the tk,αi statistics in (3.6) is asymptotically standard Normal distributed.

The t-statistic in (3.6) is constructed for a single fixed autocontour, αi, and a single fixed lag, k.

However, it can be generalized to a set of lags and a fixed autocontour or to several autocontours

with a fixed lag. In the first case, for a fixed autocontour αi, define Lαi = (`1,αi , ..., `K,αi)
′ which
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is a K × 1 stacked vector with element `k,αi =
√
T − k(α̂i − αi). Under H ′0 in (3.2), L′αiΛ

−1
αi Lαi is

asymptotically χ2
K distributed, where a typical element of the asymptotic covariance matrix, Λαi ,

is given by:

λj,k =


αi(1− αi) + 2α

3/2
i (1− α1/2

i ), j = k,

4α
3/2
i (1− α1/2

i ), j 6= k.

Alternatively, for a fixed lag k, define Ck = (ck,1, ..., ck,C)′ which is a C × 1 stacked vector with

element ck,i =
√
T − k(α̂i − αi). Once more, under H ′0 in (3.2), C ′kΩ

−1
k Ck has asymptotically a χ2

C

distribution, where a typical element of the asymptotic covariance matrix, Ωk, is given by:

ωi,j =


αi(1− αi) + 2α

3/2
i (1− α1/2

i ), i = j,

αi(1− αj) + 2αiα
1/2
j (1− α1/2

j ), i < j,

αj(1− αi) + 2αjα
1/2
i (1− α1/2

i ), i > j.

If the researcher is interested in partial aspects of the densities, such as, a particular collection

of quantiles, it is more informative to examine the Lαi statistic, which incorporates information

for all desired k lags. On the other hand, if he is interested in the whole distribution, Ck collects

information on all C autocontours desired, given a fixed lag k.

The tests described above are based on a given known predictive density gt(yt|Ωt−1). How-

ever, in practice, the parameters associated with the moments of this density need to be estimated.

González-Rivera and Sun (2015) analyze the effects of parameter estimation on the asymptotic

distribution of tk,αi and, consequently, on Lαi and Ck, and conclude that the corresponding

adjustments to the asymptotic variance are model dependent, and consequently, difficult to

calculate analytically. So as to overcome this drawback, they propose a fully parametric bootstrap

procedure to approximate the asymptotic variance based on obtaining random extractions from

the known error predictive density assumed under the null hypothesis.

The G-ACR tests described above can be implemented both in-sample and out-of-sample.

González-Rivera and Sun (2015) show that when testing the out-of-sample specification, the
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importance of parameter uncertainty will depend on both the forecasting scheme and the size

of the estimation sample (T ) relative to the forecast sample (H). When, implementing the tests to

out-of-sample forecast densities, the parameter uncertainty will distort their sizes as long as the

proportion of the out-of-sample and in-sample sizes, H and T , respectively, is large. However,

under the assumption of
√
T -consistent estimators, if T −→ ∞, H −→ ∞ and H/T −→ 0 as

T −→ ∞, parameter uncertainty is asymptotic negligible, and no adjustment is needed for the

test.

Finally, note that, if any of the G-ACR tests described above rejects the null hypothesis, there

is not any indication about whether the rejection is due to an inadequate assumption about the

error distribution or because the dynamics of the model are misspecified. González-Rivera and

Sun (2015) point out that the G-ACR tests are more powerful for detecting departures from the

distributional assumption than for detecting misspecified dynamics.

3.3. In-sample bootstrap BG-ACR tests

In this section, we propose a modification of the G-ACR test which allows testing for

the specification of the conditional moments without making any particular assumption on

the conditional distribution. We also justify heuristically the asymptotic distribution of the

corresponding statistics and carry out Monte Carlo experiments to establish the finite sample

performance of the new proposed tests.

3.3.1. Bootstrap predictive densities

Consider the following parametric model for the series of interest, yt, t = 1, ..., T ,

yt = µt + σtεt, (3.7)

where µt and σ2t are the conditional mean and variance of yt, which are specified as parametric

functions of Yt−1. Finally, εt is a strict white noise process with distribution Fε, such thatE(εt) = 0
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andE(ε2t ) = 1. The parameters governing the conditional mean and variance need to be restricted

to guarantee stationarity and the conditions required for their estimator to be consistent and

asymptotically Normal. Asymptotic Normality of the parameter estimator is a requirement for

the bootstrap to be asymptotically valid for the estimation of its sample distribution; see, for

example, Hall and Yao (2003). Note that the asymptotic Normality of the estimator usually also

depends on the distribution of the errors which should also be accordingly restricted.

A particular specification of (3.7) is following the popular AR(1)-GARCH(1,1) model which

will be considered in this chapter to illustrate the proposed tests

yt = µ+ φyt−1 + at, (3.8)

at = εtσt,

σ2t = ω + αa2t−1 + βσ2t−1,

where |φ| < 1, α + β < 1, ω > 0 and α, β ≥ 0. These assumptions are required to guarantee the

stationarity of yt and the positiveness of the conditional variance.

In this chapter, we consider the Gaussian Quasi-Maximum Likelihood (QML) estimator of

the parameters of the AR(1)-GARCH(1,1) model in (3.8) obtained by maximizing the Gaussian

likelihood. Francq and Zakoian (2004) prove the strong consistency and asymptotic normality

of the QML estimator of the ARMA-GARCH model under finite fourth order moment of the

observed series.

It is worth noting that the procedure proposed in this chapter to obtain bootstrap in-sample

conditional densities and the consequent BG-ACR statistics to evaluate them, can be applied to

any other parametric specifications of the conditional mean and variance as far as a consistent

and asymptotically Normal estimator of the parameters is available; see, for example, Mika and

Saikkonen (2011) who prove the strong consistency and asymptotic normality of the Gaussian

QML estimator allowing both the conditional mean and the conditional variance to be nonlinear.

Next, we describe the bootstrap algorithm proposed to obtain in-sample one-step-ahead
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bootstrap densities of yt in the context of the AR(1)-GARCH(1,1) model in (3.8). The algorithm is

based on the residual bootstrap algorithms of Pascual et al. (2004, 2006) for linear ARMA models

and GARCH models, respectively.

In-sample bootstrap algorithm

Step 1 Obtain the residuals

Estimate the parameters of model in (3.8) by a two-step QML estimator: µ̂, φ̂, ω̂, α̂ and β̂.

Obtain the residuals ε̂t = ât
σ̂t

, t = 3, ..., T , where

ât = yt − µ̂− φ̂yt−1 (3.9)

and

σ̂2t = ω̂ + α̂â2t−1 + β̂σ̂2t−1, (3.10)

with â2 = y2 − µ̂− φ̂y1 and σ̂22 = ω̂/(1− α̂ − β̂). Denote by Fε̂ the empirical distribution of

the centered and scaled residuals.

Step 2 Bootstrap replicates of parameter estimates

For t = 3, ..., T , obtain recursively a bootstrap replicate of yt that mimics the dynamic

dependence of the original series as follows

σ
∗2(b)
t = ω̂ + α̂a

∗2(b)
t−1 + β̂σ

∗2(b)
t−1 , (3.11)

a
∗(b)
t = ε

∗(b)
t σ

∗(b)
t ,

y
∗(b)
t = µ̂+ φ̂y

∗(b)
t−1 + a

∗(b)
t , (3.12)

where a∗(b)2 = â2, σ∗2(b)2 = σ̂22 , y∗(b)2 = y2 and ε
∗(b)
t are random extractions with replacement

from Fε̂. Estimate the parameters by QML using
{
y
∗(b)
t

}T
t=3

, obtaining µ̂∗(b), φ̂∗(b), ω̂∗(b), α̂∗(b)

and β̂∗(b).
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Step 3 Obtain in-sample bootstrap one-step-ahead predictive densities

For t = 3, ..., T , obtain in-sample one-step-ahead estimates of volatilities and observations

as follows:

σ
∗∗2(b)
t = ω̂∗(b) + α̂∗(b)(yt−1 − µ̂∗(b) − φ̂∗(b)yt−2)2 + β̂∗(b)σ

∗∗2(b)
t−1 , (3.13)

y
∗∗(b)
t = µ̂∗(b) + φ̂∗(b)yt−1 + σ

∗∗(b)
t ε

∗(b)
t , (3.14)

where σ∗∗2(b)2 = ω̂∗(b)/(1 − α̂∗(b) − β̂∗(b)) and ε
∗(b)
t are random extractions with replacement

from Fε̂.

Step 4 Repeat steps 2 and 3 for b = 1, ..., B(1).

Note that in step 2, we obtain replicates of y∗t which are not conditional on {y1, ..., yt−1}.

In (3.11), σ∗2t depends on a∗2t−1 while in (3.12) y∗t depends on y∗t−1. Therefore, independent

replicates of the process are generated to estimate the parameters and to obtain an estimate of

their sample distribution. However, in step 3, the bootstrap replicates, σ∗∗2t and y∗∗t , in (3.13)

and (3.14), are obtained incorporating the parameter uncertainty through the bootstrap estimates

of the parameters but always conditional on {y1, ..., yt−1}. In this way, at each moment of time,

t = 3, ..., T , the above algorithm generates B(1) bootstrap replicates of yt conditional on Yt−1,

which incorporate the parameter uncertainty and do not rely on any specific assumption about

the distribution of εt. In order to decide the number of bootstrap replicates needed to obtain an

appropriate estimate of the predictive density, one can implement the procedure proposed by

Andrews and Buchinsky (2000). Note that the number of bootstrap replicates could be larger

when dealing with non-linear GARCH errors than when the model is linear.

In-sample PITs can be easily computed as follows

ut =
1

B(1)

B(1)∑
b=1

1(y
∗∗(b)
t < yt). (3.15)
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The corresponding indicators, Ik,αit , and sample proportions, α̂i, can be computed as in (3.4)

and (3.5), respectively. Finally, the tk,αi , Lαi andCk statistics can be calculated as explained above.

In order to illustrate how the proposed procedure works, we have generated a time series of size

T=5000 from the following homoscedastic AR(1) model:

yt = φyt−1 + εt, (3.16)

where φ = (0.5, 0.95) and εt is i.i.d. with either N(0,1) or centered and standardized Student-5

and χ2
(5) distributions. In each case, an AR(1) model is fitted to the artificial series with the

parameters estimated by QML. Then, the in-sample PITs are computed both assuming normal

errors as in González-Rivera and Sun (2015) and implementing the bootstrap algorithm described

above based on B(1) = 999 replicates; see Pascual et al. (2004, 2006) for the same number of

replicates and Horváth et al. (2004) for B(1) = 1499. Figure 3.1 plots the autocontours for αi=0.2

and 0.8 together with the pairs (ut, ut−1) for the model AR(1) with φ=0.5 and εt ∼ N(0, 1) (first

row); φ=0.5 and εt ∼Student-5 (second row); φ=0.5 and εt ∼ χ2
(5) (third row); and φ=0.95 and

εt ∼ χ2
(5) (fourth row). First of all, note that when the PITs are computed using the bootstrap

densities (first column of Figure 3.1), they are uniformly distributed on the surface regardless of

the true error distribution of the underlying DGP. Therefore, they suggest that the fitted AR(1)

model is adequate. However, when the PITs are computed as in the G-ACR procedure (second

column of Figure 3.1), they are not uniformly distributed unless the errors are Gaussian. In this

case, the model is rejected but there is not indication about whether it is rejected because of the

specification of the conditional mean or because of the assumed error distribution.
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Figure 3.1: Univariate autocontours for the estimated AR(1) model with T = 5000. ACR20%,1 corresponds to the black
box and the ACR80%,1 to the red box. The DGPs are the AR(1) model with: φ=0.5 and εt ∼ N(0, 1) (first row); φ=0.5
and εt ∼ Student-5 (second row); φ=0.5 and εt ∼ χ2

(5) (third row); and φ=0.95 and εt ∼ χ2
(5) (fourth row). The PITs

were computed using the bootstrap algorithm with B(1)=1000 (first column), or assuming Gaussian errors (second
column).
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Consider now the following three DGPs:

yt = 0.3yt−1 + 0.6yt−2 + εt. (3.17)

yt =

 0.5yt−1 + εt, for t < T/2.

1 + 0.5yt−1 + εt, for t ≥ T/2.
(3.18)

yt = 0.5yt−1 + εtσt. (3.19)

σ2t = 0.05 + 0.5ε2t−1σ
2
t−1 + 0.45σ2t−1,

with εt being an independent white noise with either N(0,1) or centered and standardized

Student-5 or χ2
(5) distributions. As above, an AR(1) model is fitted to each of the simulated series

and its parameters estimated by QML. Then the PITs are computed assuming Normal errors and

using the bootstrap procedure. Figure 3.2 plots the autocontours for αi=0.2 and 0.8 together with

the pairs (ut, ut−1) when the DGP is the AR(2) model in (3.17) with χ2
(5) errors (first row); the AR(1)

model with structural break in the mean in (3.18) with εt ∼ χ2
(5) (second row); the GARCH model

in (3.19) with Normal errors (third row); and the GARCH model in (3.19) with χ2
(5) errors (fourth

row). We can observe that, when the PITs are based on the bootstrap densities (first column

of Figure 3.2), they suggest the source of the misspecification. In the first row, when the AR(1)

model is fitted to the AR(2) series, we observe a linear relation between the PITs. In the second

row, when the DGP is the AR(1) model with a break in the mean, the PITs do not show any

particular linearity or non-linearity but they are concentrated on the top-right corner of the plot.

Finally, when the DGP is the AR(1)-GARCH(1,1) model, we observe a non-linear relation between

the PITs. Furthermore, in this last case, the autocontour plots are very similar regardless of the

error distribution of the DGP. Comparing the bootstrap-based PITs with those obtained using the

normal densities (second column of Figure 3.2), the rejection of the fitted models is also clear

although there is not an obvious indication for its source.
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Figure 3.2: Univariate autocontours for estimated AR(1) model with T=5000. ACR20%,1 corresponds to the black box
and the ACR80%,1 to the red box. The DGPs are: AR(2) with εt ∼ χ2

(5) (first row); AR(1) model with break in the mean
with εt ∼ χ2

(5) (second row); AR(1)-GARCH(1,1) model with εt ∼ N(0,1) (third row); and AR(1)-GARCH(1,1) model
with εt ∼ χ2

(5) (fourth row). The PITs were computed using the bootstrap algorithm with B(1)=1000 (first column), or
assuming Gaussian errors (second column).
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The asymptotic distributions of the tk,αi , Lαi and Ck statistics depend on the asymptotic

validity of the residual bootstrap algorithm described above. The asymptotic validity of the

residual bootstrap procedure when implemented to obtain predictive densities in the context

of linear ARMA models, has been established by Pascual et al. (2004). However, as far as

we know, there is not a formal proof of the validity of the algorithm to construct predictive

densities in the context of nonlinear GARCH models. In order to show that the algorithm is

asymptotically valid, one needs first to show that the bootstrap procedure in step 2 generates

asymptotically valid estimates of the model parameters. When implemented in GARCH models,

Hidalgo and Zaffaroni (2007) show the first order validity of θ̂∗ = (ω̂∗, α̂∗, β̂∗) for an ARCH(∞)

process characterized by a particular decay in the ARCH parameters.2 If the bootstrap procedure

were asymptotically valid for the estimation of the parameters, using the arguments in Pascual

et al. (2004) and Reeves (2005), one can establish its validity for the predictive densities and

consequently, the distribution of α̂i should be as in (3.6) with the asymptotic variance corrected

to take into account the parameter uncertainty.3

Following the suggestion of González-Rivera and Sun (2015), the variance of α̂i is approxi-

mated using a bootstrap procedure. B(2) bootstrap replicates, {y∗(b)t }Tt=1 are generated as in (3.12)

and α̂
∗(b)
i is obtained using the bootstrap series as if they were the original series. The bootstrap

variance of α̂i is given by

σ∗2αi =
1

B(2) − 1

B(2)∑
b=1

α̂∗(b)i − 1

B(2)

B(2)∑
b=1

α̂
∗(b)
i

2

, (3.20)

2Shimizu (2010, 2013, 2014) prove the consistency of the bootstrap QML estimators in the context of an
AR(1)-ARCH(1) model. However, the residual bootstrap considered by Shimizu (2010, 2013, 2014) is not exactly
the same as that considered in this chapter. All the trajectories share the same estimated conditional mean and
variance when generating bootstrap replicates to estimate the parameters. It is important to point out that Corradi and
Iglesias (2008) cast some doubts on the asymptotic validity of the residual bootstrap described in step 2. Alternatively,
they show that a block bootstrap based on resampling the likelihood as proposed by Gonçalves and White (2004) is
asymptotically valid. Therefore, in step 2 of the algorithm described above, one can consider using the block bootstrap
instead of the residual bootstrap.

3Monte Carlo results on the size distortions of the t-statistic when the asymptotic variance is computed as in (3.6)
are available in Table A.1 of Appendix B.
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and the corresponding t-statistic is

t∗αi =
(α̂i − αi)
σ∗αi

, (3.21)

which asymptotically has a N(0,1) distribution. In this chapter, results are based on B(2)=500

bootstrap replicates to compute σ∗αi ; see González-Rivera and Sun (2015). Note that the number

of replicates needed to estimate standard errors is smaller than that needed to estimate intervals;

see Efron (1987).

Obviously, the variances and covariances of the portmanteau statistics can also be computed

using the same arguments. In particular, a typical element of the covariance matrix of Lαi , say

λ∗j,k, is obtained as follows:

λ∗j,k =


σ2∗αi , if j = k,

1
B(2)−1

B(2)∑
b=1

(
α̂
∗(b)
j,i −

1
B(2)

B(2)∑
b=1

α̂
∗(b)
j,i

)(
α̂
∗(b)
k,i −

1
B(2)

B(2)∑
b=1

α̂
∗(b)
k,i

)
, if j 6= k.

(3.22)

Similarly, a typical element of the covariance matrix of Ck, say ω∗i,j , is obtained as follows:

ω∗i,j =


σ2∗αi , if i = j,

1
B(2)−1

B(2)∑
b=1

(
α̂
∗(b)
k,i −

1
B(2)

B(2)∑
b=1

α̂
∗(b)
k,i

)(
α̂
∗(b)
k,j −

1
B(2)

B(2)∑
b=1

α̂
∗(b)
k,j

)
. if i 6= j,

(3.23)

3.3.2. Monte Carlo experiments

In this section, we perform Monte Carlo simulations to assess the finite sample properties

of the proposed statistics. For the size assessment, the DPG is a linear AR(1). We consider

a model far from the non-stationary region and another one near the non-stationary region

with different error distributions. For the power assessment, we consider linear and non-linear

alternatives. The number of Monte Carlo replicates is R = 1000 and the sample size T =

50, 100, 300, 1000 and 5000. The number of bootstrap replicates is B(1) = 1000, except if

T = 5000, when we use B(1) = 2000. Finally, the number of bootstrap replicates used to compute
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the variance of α̂i, Lαi and Ck is B(2) = 500.

Studying the size

To investigate the size properties of the tests, we consider as DGP the AR(1) in equation

(3.16). For each Monte Carlo replicate, we compute the proportions α̂i, for k = 1, ..., 5, and

their bootstrap variances. Then, we compute the Monte Carlo averages and standard deviations

of α̂i, together with the averages of the bootstrap standard deviations and the percentage of

rejections of the null hypothesis when the nominal size of the test is 5%. Tables 3.1 and 3.2

report the Monte Carlo results for k=1 when φ = 0.5 and the error is Gaussian and φ = 0.95

and the errors are χ2
(5), respectively. First of all, we observe that even for the smallest sample

size of T = 50, the Monte Carlo averages of α̂i are rather close to αi and that the average of the

bootstrap standard deviations is a good approximation to the Monte Carlo standard deviation of

α̂i for moderate sample sizes. However, note that for relatively small sample sizes, the bootstrap

standard deviations tend to overestimate the empirical standard deviations of α̂i, mainly for the

largest quantiles. Consequently, the size of the t1,αi statistic is smaller than the nominal. As the

sample size increases, the percentage of rejections gets rather close to the 5% nominal level. The

conclusions are quite similar for the close-to-unit-root model with χ2
(5) errors.

We also analyze the finite sample performance of the two portmanteau tests. Table 3.3 reports

the Monte Carlo percentage of rejections of L5
αi (adding up the information of the first five lags)

and of C1 (adding information of the thirteen quantiles previously considered) for the same two

models considered in Tables 3.1 and 3.2. Looking at the results of L5
αi , we observe that, regardless

of the DGP considered, the Monte Carlo percentage of rejections is very close to the nominal size

with a tendency to overreject for the largest quantiles. On the other hand, the results of C1 show

that it rejects less than the nominal size when the sample size is not large enough. However, if the

sample size is large, the empirical size is larger than the nominal.
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Studying the power

With the purpose of studying the finite sample power of the tests, we generate replicates by

the three models in equations (3.17), (3.18) and (3.19) and fit an AR(1) model. Under the null

hypothesis, we test the correct specification of the AR(1) model without drift. The DGP in (3.17)

allows investigating the power against departures from the independence hypothesis, while the

DGP in (3.18) deals with the power against breaks in the conditional mean. Finally, the DGP in

(3.19) permits to analyze power when the second moment is misspecified.

Tables 3.4 to 3.6 report the power results of t1,αi , for each of the three DGPs. Consider first

the results reported in Tables 3.4 when the DGP is the AR(2) model. We observe that t1,αi has

high power for the intermediate autocontours around the 10%-60% levels even when the sample

size is moderately small, that is, T = 100. As the sample size increases, the power of t1,αi

approaches one. Regarding the portmanteau tests, and in particular L5
αi , we observe that its

power is similar to the power of the t1,αi test, but its rejection rates are higher; see Panel A of

Table 3.7. Furthermore, C1 also shows high power, approaching one, even when T = 300. With

respect to the DGP in (3.18), when corresponding to a break in the conditional mean, Table 3.5

shows that the power is also higher for the intermediate autocontours when the sample sizes are

small. A remark to make is that, in this case, the t1,αi test is more powerful than the corresponding

portmanteau tests of Panel B in Table 3.7. Finally, regarding the DGP in (3.19) when the series are

generated by an AR(1)-GARCH(1,1) model, we observe in Tables 3.6 and 3.7 that the power of

the t1,αi and L5
αi tests is higher in the extreme autocontours in comparison to the power reported

by the intermediate autocontours, approaching one for T = 5000. The C1 statistic also provides

power close to one, but only in large sample sizes. Overall, the results suggest that larger sample

sizes are needed to discriminate between the model under the null hypothesis and the GARCH

model in (3.19).
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3.4. Out-of-sample one-step-ahead bootstrap BG-ACR tests

In this section, we extend the procedures and tests described above to one-step-ahead

out-of-sample densities. Note that the in-sample bootstrap algorithm can be also applied to obtain

bootstrap replicates of yT+1 by implementing equations (3.13) and (3.14) for T + 1. Then, the

corresponding PIT, uT+1|T = uT+1 and the indicator Ik,αiT+1|T = Ik,αiT+1 can be computed as in (3.15).

In order to compute the proportion, it is necessary to obtain H one-step-ahead bootstrap forecast

densities. If the parameters are not reestimated each time a new observation is available, then

the in-sample algorithm can be implemented as described in section 3 with step 3 modified as

follows:

Step 3’. Obtain bootstrap one-step-ahead out-of-sample forecast densities

For h = 1, ...,H , obtain out-of-sample one-step-ahead estimates of volatilities and observations as

follows:

σ
∗∗2(b)
T+h|T+h−1 = ω̂∗(b) + α̂∗(b)(yT+h−1 − µ̂∗(b) − φ̂∗(b)yT+h−2)2 + β̂∗(b)σ

∗∗2(b)
T+h−1|T+h−2, (3.24)

y
∗∗(b)
T+h|T+h−1 = µ̂∗(b) + φ̂∗(b)yT+h−1 + σ

∗∗(b)
T+h|T+h−1ε

∗(b)
T+h,

where σ∗∗2(b)T+1|T = σ
∗∗2(b)
T+1 in (3.13) and ε∗(b)T+1 are random extractions with replacement from Fε̂.

At each moment T + h, h = 1, ...,H , we compute the out-sample one-step-ahead PITs as

follows

uT+h|T+h−1 =
1

B(1)

B(1)∑
b=1

1(y
∗∗(b)
T+h|T+h−1 < yT+h).

Using {uT+h|T+h−1}Hh=1, we compute the corresponding indicators, Ik,αiT+h, and the proportion

α̂i =

H∑
h=k+1

Ik,αiT+h

H − k
.
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Finally, the t-statistic is given by

tk,αi =

√
H − k(α̂i − αi)

σαi
,

where σ2αi is defined as (3.6). Note that σ2αi can be estimated either as in expression (3.6)

or by bootstrapping. As mentioned above, when testing the in-sample specification, ignoring

parameter uncertainty may cause severe distortions in the size of the tests. However, when

testing the out-of-sample specification, the importance of parameter uncertainty decreases as far

H/T → 0 when T →∞. Therefore, if H is small relative to T , one can compute the variance, σ2αi ,

by using the asymptotic expression.

As an illustration of the out-of-sample performance of the tests, R = 1000 replicates are

generated by the AR(1) model in expression (3.16) with φ = 0.95 and εt ∼ N(0, 1). The

model is estimated by OLS using T=50, 100, 300, 1000 and 5000 observations and H=50 and

500 out-of-sample one-step ahead densities and their corresponding PITs are obtained using the

bootstrap procedure. The variance of α̂i and the covariances in Λαi and Ωk are computed by

bootstrapping.4 Table 3.8 reports the Monte Carlo averages and standard deviations of α̂i for k=1,

together with the averages of the bootstrap standard deviations and the percentage of rejections

of the null hypothesis for different autocontours when the nominal size of the test is fixed at 5%.

Table 3.9 reports the size of the corresponding L5
αi and C1 test statistics. Table 3.8 shows that

the size of the t-test when computed for out-of-sample one-step-ahead densities is close to the

nominal as far as T is relatively large and H/T is small. Obviously, increasing H improves the

size properties of the test as far as the ratio H/T is still small; see the size results of the Lαi and

Ck tests which are reported in Table 3.9 for H=500.

4Results based on the asymptotic expression of the variances and covariances are very similar when H=50 and
T=1000 (H/T=0.05) or T=5000 (H/T=0.01). When H=500, the results are similar if T=5000 (H/T=0.1). As mentioned
above, in these cases, the parameter uncertainty is irrelevant. These results are reported in Tables A.6-A.8 of Appendix
B.
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Finally, we study the finite sample power of the out-of-sample tests. With this purpose,

R=1000 replicates are generated from the AR(2) model in (3.17) and the AR(1)-GARCH(1,1)

model in (3.19). Under the null hypothesis, we consider an AR(1) process without drift. Table

3.10 reports the power of the t1,αi test when the DGP is the AR(2) model and H=500. In this

case, the power increases when the information is accumulated either over several lags or over

several quantiles; see the powers reported in Panel A of Table 3.12. The results corresponding

to the AR(1)-GARCH(1,1) model are reported in Table 3.11 for H=500. In this case, we can

observe that the power of the t1,αi test is very low except when αi=0.01. Furthermore, Panel B of

Table 3.12 shows that the power does not increase when accumulating information over different

autocontours or over different lags. Accumulating information in this way seems to be of no help

when dealing with non-linear misspecifications.
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3.5. Empirical application: modelling VIX

There is an increasing interest in modeling and forecasting the daily forward-looking market

volatility index (VIX) from the Chicago Board Options Exchange (CBOE); see, for example,

Whaley (2000, 2009), Engle and Gallo (2006), Fernandes et al. (2014), Diebold and Yilmaz (2015a)

and Hassler et al. (2016). The VIX was originally computed as the weighted average of the implied

volatilities from eight at-the-money call and put options of the S&P100 index with an average

time to maturity of 30 days. In 2003, the VIX was entirely revised by changing the reference

index to the S&P500 index, taking into account a wide range of strike prices for the same time to

maturity and freeing its calculation from any specific option pricing model; see Whaley (2009) for

a history of the VIX and Fernandes et al. (2014) for a detailed description of the VIX calculation.

The VIX is important since it is a barometer of the overall market sentiment; see Whaley (2000,

2009) and Diebold and Yilmaz (2015b) who define it as a fear index. Furthermore, it reflects both

the stock market uncertainty and the expected premium from selling stock market variance in a

swap contract. Finally, there is an active market on VIX derivatives. The number of VIX futures

contracts traded increased dramatically from about 1 million in 2007 to about 24 million in 2012

with the largest growth occurring after 2009, likely caused by the recent financial crisis; see, for

example, Park (2016) and Song and Xiu (2016) for recent references on pricing VIX derivatives.

The recent development of volatility-based derivative products generates an interest on predictive

densities of volatility; see, for example, Corradi et al. (2009) who propose a feasible model free

estimator of the conditional predictive density of integrated volatility based on subsampling. In

the context of VIX, Konstantinidi and Skiadopoulos (2011) implement the bootstrap procedure

of Pascual et al. (2004) to obtain forecast intervals for the VIX that are then used in a trading

strategy. Konstantinidi et al. (2008) and Psaradellis and Sermpinis (2016) also compare several

specifications of the VIX for trading purposes. It is commonly accepted that the VIX display

long-memory; see, for example, Bandi and Perron (2006), Konstantinidi et al. (2008), Shimotsu

(2012), Fernandes et al. (2014) and Hassler et al. (2016). Consequently, several authors propose
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variants of the simple and easy-to-estimate approximate long-memory HAR model of Corsi (2009)

to represent and predict the VIX; see Fernandes et al. (2014), Caporin et al. (2016) and Psaradellis

and Sermpinis (2016). The HAR model is given by

yt = φ0 + φ1yt−1 + φ5ȳt−1:5 + φ10ȳt−1:10 + φ22ȳt−1:22 + φ66ȳt−1:66 + εt, (3.25)

where ȳt:i = i−1
i−1∑
j=0

yt−j and εt is an independent white noise sequence.

In this section, we analyze the series of daily log-VIX index observed from January 2,

1990 to January 15, 2003 with a total of 5807 observations; see Fernandes et al. (2014) for an

empirical analysis of the same series. Descriptive statistics of the full sample are reported in

Table 3.13. We can observe that the skewness and kurtosis are not significantly different from

the assumed values under Normality when using the correction proposed by Premaratne and

Bera (2016). However, the Jarque-Bera test clearly rejects the Normality of log-VIX. Panel (a) of

Figure 3.3 plots the time series of the log-VIX. With respect to the temporal dependence, panels

(b) and (c) of Figure 3.3 plot the correlograms of log-VIX and its squares, respectively. The

comparison of the correlations of log-VIX and (log-VIX)2 suggests the presence of conditional

heterocedasticity given that the correlations of squares are larger than those of the levels; see

the values of the sample autocorrelations reported in Table 3.13. Fernandes et al. (2014) show

that the null hypothesis of a unit-root is clearly rejected. Yet, they find strong evidence of

long-memory. 5 The pure HAR model in equation (3.25) is fitted to the full sample with the

estimated parameters reported in Table 3.14. Several residual diagnostics are reported in Table

3.13. We can observe that the distribution of the residuals is clearly non-Normal. Furthermore, the

presence of conditional heterocedasticity is also more evident than when looking at the original

log-VIX series. In-sample bootstrap conditional densities are computed as described in Section

3. Figure 3.4 plots kernel estimates of the bootstrap densities at different moments of the sample

period. We can observe that not only the location of these densities changes over time. Although,

5Note that the unit-root tests carried out by Fernandes et al. (2014) do not take into account the presence of
conditional heteroscedasticity. These tests should be modified as proposed by Choi (2015).
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in general, there is a right skewness of the distribution, this skewness is more pronounced in

some particular moments. Furthermore, we can also observe changes in the variance of the

log-VIX. After computing the PITs, they are plotted in Figure 3.5, where we can observe that

the PITs are not uniformly distributed. There is a concentration of PITs in the left and right top

corners, suggesting that conditional heteroscedasticity has not been modeled when computing

the conditional densities for log-VIX. For comparison purposes, we also plot in Figure 3.5, panel

(b), the PITs computed by the procedure of González-Rivera and Sun (2015), where the errors are

assumed to be Gaussian. We observe a concentration of points in the middle, suggesting that the

HAR model is misspecified if Gaussian errors are assumed. However, as mentioned above, there

is not indication of the source of misspecification.
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Table 3.13: Descriptive statistics

The first column corresponds to the summary statistics of the log-VIX series and the second
and third to the residuals obtained with the HAR and HAR-GARCH models, respectively.
ρk corresponds to the estimated sample autocorrelations of the log-VIX and ρ2k to the sample
correlations of its squares. k corresponds to the lag of the sample correlations. p-values are in
parenthesis.

Sample statistics Full sample HAR model residuals HAR-GARCH model residuals
Mean 2.953 0.000 0.001
Standard deviation 0.348 0.060 0.060
Skewness 0.539 0.915 0.946

(0.000) (0.000) (0.000)
Kurtosis 3.288 7.481 7.523

(0.000) (0.000) (0.000)
Jarque-Bera 300.683 5605.800 5749.000

(0.000) (0.001) (0.001)
ρ1 0.985 0.001 0.007

(0.000) (0.940) (0.584)
ρ10 0.916 0.052 0.044

(0.000) (0.016) (0.057)
ρ100 0.616 -0.002 0.014

(0.000) (0.000) (0.000)
ρ21 0.984 0.122 -0.003

(0.000) (0.000) (0.830)
ρ210 0.914 0.129 0.025

(0.000) (0.000) (0.285)
ρ2100 0.582 -0.011 0.011

(0.000) (0.000) (0.864)
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Figure 3.3: Daily log-VIX is plotted in (a). In (b) and (c) are plotted the sample autocorrelations of the levels and
squares of the log-VIX, respectively.
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Figure 3.4: In-sample bootstrap one-step-ahead densities.
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Figure 3.5: Univariate autocontours for the HAR model. In (a) the PITS are obtained with the bootstrap procedure
described in Section 3.3 and in (b) they are obtained by the procedure of González-Rivera and Sun (2015) assuming
Gaussian errors. ACR20%,1 corresponds to the black box and ACR80%,1 to the red box.
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Table 3.14: Estimation results for the log-VIX index. t-statistics in parenthesis.

HAR HAR-GARCH
Mean equation

Estimate Estimate
φ̂0 0.024 0.029

(3.325) (4.369)

φ̂1 0.873 0.883
(64.422) (65.136)

φ̂2 -0.002 -0.009
(-0.058) (-0.344)

φ̂3 0.133 0.108
(4.510) (3.605)

φ̂4 -0.030 -0.013
(-1.556) (-0.710)

φ̂5 0.016 0.022
(2.070) (2.799)

Variance equation
Estimate

ω̂ 2.784e-05
(11.057)

α̂ 0.088
(14.384)

β̂ 0.834
(71.694)

In order to test the null hypothesis about the adequacy of the HAR model to represent the

conditional densities of the log-VIX, Panel A of Table 3.15 reports sample proportions, α̂i, and

the in-sample tests t1,αi , L
5
αi and C13

1 . We observe that most of the autocontours are rejected

by the t1,αi and L5
αi test statistics. The C13

1 test, which is computed adding information of all

autocontours, rejects H0 at 1% of significance. Therefore, as suggested in Figure 3.5, the basic

HAR model is not appropriate to model the conditional densities of the daily log-VIX. Panel B

of Table 3.15 also reports the corresponding tests obtained by the procedure of González-Rivera

and Sun (2015), assuming Gaussian errors. We can see that the null is rejected by almost all

the autocontours, with the statistics being much larger than when they are computed using the

BG-ACR tests.
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Based on the information of the tests and autocontours, we incorporate conditional het-

eroscedasticity and estimate the following HAR-GARCH model:

yt = φ0 + φ1yt−1ȳt−1:5 + φ10ȳt−10:5 + φ22ȳt−1:22 + φ66ȳt−1:66 + σtεt, (3.26)

σ2t = ω + αε2t−1σ
2
t−1 + βσ2t−1.

Table 3.14 reports the estimation results. We can observe that the estimates of the parameters

of the conditional mean are very similar. Although the standard errors are different, the

conclusions on their significance is the same as in the homoscedastic model. Furthermore, the

parameters of the conditional variance equation are significative with values similar to those

encountered when the GARCH model is fitted to financial returns with α̂ being rather small and

α̂+β̂ very close to one. The residual statistics are reported in Table 3.13, where we can observe that

the sample autocorrelations of the squares of log-VIX are no longer significant. Finally, Table 3.15,

panels C and D, reports the results for the BG-ACR and G-ACR tests, respectively. We can observe

that when implementing the G-ACR, the HAR-GARCH model with Gaussian errors is still clearly

rejected. On the other hand, the number of rejections when implementing the BG-ACR tests is

much smaller than before. In particular, when looking at the results for the L5
αi , the HAR-GARCH

model is only rejected for autocontours 0.3, 0.5 and 0.6, while the basic HAR model is rejected for

eight out-of thirteen quintiles. Therefore, including the conditional heteroscedasticity leads to a

better specification if the purpose is to obtain accurate predictive densities in-sample.

3.6. Conclusions

In this chapter, we propose an extension of the G-ACR test of González-Rivera and Sun

(2015) for dynamic specification of a density model (in-sample tests) and for evaluation of

forecast densities (out-of-sample tests). Our contribution lies on computing the PITs from a

bootstrapped conditional density so that no assumption on the functional form of the density
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is needed. Furthermore, the bootstrap procedure allows for the direct incorporation of parameter

uncertainty. The proposed approach is particularly useful to evaluate forecast densities when the

error distribution is unknown. Our proposed tests have size close to the nominal and are powerful

for detecting departures from the assumed conditional density. To illustrate the usefulness of

our approach, we extend the analysis of Fernandes et al. (2014) by evaluating the adequacy of

conditional densities of the VIX daily market volatility index when computed fitting the HAR

model. Our results suggest that conditional heteroscedasticity should be taken into account for

an adequate construction of the conditional densities of the log-VIX.

In our research agenda, there are two direct extensions of the proposed BG-ACR tests that

we plan to study. First, the extension of the proposed test to multi-step predictive densities is

of great interest; see, for example, Jordà and Marcellino (2010), Staszewska-Bystrova (2011), Wolf

and Wunderli (2015) and Jordá et al. (2014) for multistep forecasts based on bootstrap. Note that

the functional form of multi-step predictive densities could be unknown or difficult to obtain even

in cases where the one-step-ahead conditional density is known. Diebold et al. (1998) propose to

partition the series of PITs into groups for which the iid uniformity is expected if the forecast

densities were indeed correct. Analyzing this extension is left for future research.

Second, given that the tests considered in this chapter are based on the information contained

in the vector of PITs which is condensed into an indicator, the tests proposed can be extended

into a multivariate framework using the multivariate bootstrap procedures of Fresoli et al. (2015)

and Fresoli and Ruiz (2016) for VARMA and multivariate GARCH models, respectively. It is also

important to note that in a multivariate context, the PITs with respect to a multivariate conditional

density are not longer independent and uniform even if the model is correctly specified; see,

for example, Chen and Hong (2014). In the context of multivariate GARCH models, Bai and

Chen (2008) propose evaluating the distribution by using the PITs of each individual component.

However, this test may miss important information on the joint distribution and, in particular,

may fail to detect misspecification in the joint dynamics.

Finally, the residual bootstrap implemented in this chapter to obtain one-step-ahead predictive
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densities can be modified in several directions. First, one can extended it to cope with lag-order

uncertainty of the ARMA lags by implementing the procedures of Kilian (1998a) and Alonso

et al. (2004, 2006). Another alternative is substituting the basic residual bootstrap implemented

in this chapter to obtain the sample distribution of the parameters by the subsampling procedure

proposed by Hall and Yao (2003). Alternatively, one can implement the block bootstrap based on

resampling the likelihood proposed by Corradi and Iglesias (2008). Although, we do not expect

the results to change qualitatively, the asymptotic validity of the bootstrap can be easier to prove

in the case of GARCH errors.
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Chapter 4

Conclusions and further research

Forecast densities has received increasing attention in the economics and finance literature

because of its importance to economic decision-making. For instance, there is a clear need to use

forecast intervals or forecast densities when setting macroeconomic policies and when managing

financial risk in the insurance and banking institutions, and firms also rely on forecasting to

manage their inventory and production. In practice, time series models are used to forecast the

future evolution of a given variable observed during a particular period of time. However, the

standard theory of time series forecasting density is based on assuming that the model is known.

Even assuming that there is a true model, it is rarely, if ever, the case that such model will be

known a priori and there is no guarantee that it will be selected as the best fit to the data. Thus

there is usually considerable uncertainty as to which model should be used and apart of this is the

question about how model uncertainty will affect the computation of forecasts and their accuracy.

Therefore, appropriate procedures for constructing and testing forecast densities should take into

account that the conditional forecast error distribution if often unknown and the specification of

conditional moments is also unknown and has estimated parameters.

In this thesis we study the construction and evaluation of density forecasts of time series

univariate models under model uncertainty. In the second chapter, we study the impact of model

uncertainty on univariate ARMA models. As model uncertainty, we consider parameter, error
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distribution and lag order uncertainties. We provide a survey of all procedures that incorporate

those uncertainties in the forecasts of ARMA models and compare their finite sample properties

by Monte Carlo experiments by computing the Mallows Distance between the true and theoretical

forecast densities and the coverage rates of each theoretical forecast interval. In particular, we

analyze asymptotic, Bayesian and bootstrap procedures.

In the third chapter, we propose an extension of the Generalized Autocontour (G-ACR)

tests (González-Rivera and Sun, 2015) for one-step-ahead dynamic specifications of conditional

densities in-sample and of forecast densities out-of-sample. The new tests are based on probability

integral transforms (PITs) computed from bootstrap conditional densities so that they incorporate

the parameter uncertainty without making specific assumptions about the forecast error distribu-

tion and it can be extended to multivariate systems and multi-step forecasts. The only restrictions

required on the error density are those that guarantee that the estimator of the parameters of the

conditional moments is consistent and asymptotically Normal distributed. Furthermore, using

graphical devices, our proposed bootstrap procedure allows the identification of the source of

misspecification, namely, whether, it is the error distribution, or the linear or non-linear dynamics.

We show by Monte Carlo simulations that the proposed test has good finite properties. The results

are illustrated by testing the dynamic specification of the HAR model when fitted to the popular

U.S. volatility index VIX.

The main contributions of this thesis can be summarized as follows:

We find through Monte Carlos simulations that for for moderate sample sizes, the parameter

and lag order uncertainties are not important. For small forecast horizons the most

important source of uncertainty in univariate ARMA models is the error distribution.

However, as the forecast horizon increases, the normal approximation of the density is more

appropriate.

We present the main alternative procedures proposed to construct forecast densities that

incorporate the model uncertainties cited above, including some very recent procedures
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which have not been previously compared in the literature. We find that asymptotic meth-

ods are able to provide reliable density forecasts only in large sample sizes and with known

error distribution; Bayesian methods are able to provide very accurate density forecasts in

small sample sizes, but they require the correct error distribution and a large computational

effort and is difficult to make them to incorporate all the uncertainties in the forecasts; and

Bootstrap procedures are able to provide accurate forecasts, regardless the sample size and

the error distribution. We find that Alonso et al. (2004)’s procedure (BOOTEX) is a simple

and effective alternative to incorporate lag order and error distribution uncertainties. Given

the good results of BOOTEX in comparison with the asymptotic and Bayesian procedures,

we highlight the importance of considering resample methods for taking into account model

uncertainty when constructing density and forecast intervals.

We provide a easy to use test for one-step-ahead predictive densities (in-sample and

out-of-sample) that do not rely on any particular assumption on the error distribution and

take into account parameter uncertainty. Furthermore, it is accompanied by a graphical

device to point the potential misspecification of the fitted model, where can disentangle

whether the misspecificaion comes from the conditional moments or from the error

distribution.

Along this survey, we encountered several gaps in the literature that could be the focus

for further research. First, in relation to the second chapter of this thesis, the bias correction

usually implemented to the ARMA parameters is based on a known and finite order. However,

in practice, the order is also unknown and, consequently, the bias correction could not be

appropriate. These corrections could also be important to be implemented in the context of

bootstrap forecasts. It could be also interesting to study the effects of model uncertainty in VAR

processes when constructing density forecasts, to extend the bootstrap procedure of Rupasinghe

and Samaranayake (2012) to vector ARFIMA models and compare it with the Bayesian procedure

proposed by Ravishanker and Ray (2002) and to study the effects of stationary transformation
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uncertainty on the forecasts of ARIMA models.

Finally, in relation to the third chapter, it would be interesting to extend our proposed

bootstrap test (BC-ACR) to multi-step predictive densities and to incorporate not only parameter

and error distribution uncertainties, but also the lag order uncertainty of the ARMA lags by

implementing the procedures of Kilian (1998a) and Alonso et al. (2004, 2006). Finally, we could

extend our tests into a multivariate framework using the multivariate bootstrap procedures of

Fresoli et al. (2015) and Fresoli and Ruiz (2016) for VARMA and multivariate GARCH models,

respectively.
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Figure A.1: Conditional forecast density of yT+h for h=1 (left panels) and h=3 (right panels) generated by the model
yt = 0.8yt−1 + εt with σ2

ε = 1, yT=-0.5 and Gaussian errors, when T=25 (first row), T=100 (second row) and T=300
(third row), together with the densities estimated by EST, AEST, BAYESN and BOOT based on a simulated time series.
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Figure A.2: Conditional forecast density of yT+h for h=1 (left panels) and h=3 (right panels) generated by the model
yt = 0.8yt−1 + εt with σ2

ε = 1, yT=-0.5 and Student-5 errors rescaled to have unit variance, when T=25 (first row),
T=100 (second row) and T=300 (third row), together with the densities estimated by EST, AEST, BAYEST, BOOT,
GAUS, AGAUS and BAYESN based on a simulated time series.
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Figure A.3: Conditional forecast density of yT+h for h=1 (left panels) and h=3 (right panels) generated by the model
yt = 0.8yt−1 + εt with yT=-0.5 and χ2

(5) errors rescaled to have zero mean and unit variance, when T=25 (first row),
T=100 (second row) and T=300 (third row), together with the densities estimated by EST, AEST, BOOT, GAUS, AGAUS
and BAYESN based on a simulated time series.
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A.2. Monte Carlo results for yt = 0.8yt−1 + εt with σ2
ε=1

Table A.1: Monte Carlo averages and standard deviations (in parenthesis) of MD distances between the estimated and
true forecast densities for model yt = 0.8yt−1 + εt with σ2

ε=1.

Panel A: Gaussian T=50 T=100 T=300
h=1 h=6 h=12 h=1 h=6 h=12 h=1 h=6 h=12

EST/GAUS 0.140 0.332 0.343 0.095 0.210 0.200 0.053 0.114 0.107
(0.123) (0.338) (0.373) (0.074) (0.183) (0.170) (0.044) (0.095) (0.081)

Panel B: Student-5 T=50 T=100 T=300
h=1 h=6 h=12 h=1 h=6 h=12 h=1 h=6 h=12

EST 0.151 0.342 0.361 0.108 0.237 0.233 0.061 0.130 0.126
(0.124) (0.345) (0.388) (0.086) (0.209) (0.206) (0.050) (0.105) (0.097)

GAUS 0.188 0.361 0.377 0.155 0.260 0.257 0.128 0.168 0.165
(0.122) (0.342) (0.387) (0.084) (0.205) (0.204) (0.053) (0.103) (0.097)

Panel C: χ2
(5) T=50 T=100 T=300

h=1 h=6 h=12 h=1 h=6 h=12 h=1 h=6 h=12
EST 0.145 0.332 0.342 0.101 0.215 0.211 0.056 0.118 0.115

(0.117) (0.351) (0.396) (0.073) (0.166) (0.159) (0.038) (0.083) (0.081)

GAUS 0.253 0.384 0.390 0.228 0.280 0.272 0.211 0.210 0.203
(0.093) (0.336) (0.380) (0.055) (0.150) (0.144) (0.031) (0.068) (0.066)

Table A.2: Monte Carlo averages and standard deviations (in parenthesis) of MD distances between the estimated and
true forecast densities for model yt = 0.8yt−1 + εt with σ2

ε=1.

Panel A: Gaussian T=50 T=100 T=300
h=1 h=6 h=12 h=1 h=6 h=12 h=1 h=6 h=12

AEST/AGAUS 0.140 0.335 0.349 0.095 0.211 0.203 0.053 0.114 0.107
(0.123) (0.340) (0.382) (0.075) (0.184) (0.173) (0.044) (0.095) (0.082)

BAYESN 0.153 0.299 0.334 0.111 0.215 0.218 0.080 0.147 0.144
(0.121) (0.244) (0.295) (0.071) (0.149) (0.146) (0.043) (0.085) (0.074)

BOOT 0.190 0.390 0.460 0.136 0.250 0.258 0.092 0.154 0.153
(0.110) (0.375) (0.455) (0.065) (0.200) (0.201) (0.040) (0.095) (0.082)

Panel B: Student-5 T=50 T=100 T=300
h=1 h=6 h=12 h=1 h=6 h=12 h=1 h=6 h=12

AEST 0.151 0.345 0.366 0.108 0.238 0.235 0.061 0.130 0.126
(0.125) (0.350) (0.399) (0.086) (0.211) (0.209) (0.050) (0.106) (0.098)

AGAUS 0.189 0.364 0.384 0.156 0.262 0.259 0.128 0.169 0.165
(0.123) (0.348) (0.398) (0.085) (0.207) (0.207) (0.053) (0.104) (0.097)

BAYEST 0.155 0.295 0.326 0.119 0.228 0.230 0.083 0.144 0.144
(0.108) (0.237) (0.294) (0.068) (0.154) (0.160) (0.038) (0.076) (0.066)

BAYESN 0.192 0.310 0.343 0.158 0.238 0.241 0.129 0.163 0.159
(0.128) (0.269) (0.340) (0.083) (0.174) (0.187) (0.054) (0.098) (0.093)

BOOT 0.205 0.397 0.476 0.154 0.273 0.288 0.101 0.163 0.163
(0.107) (0.375) (0.468) (0.073) (0.219) (0.234) (0.039) (0.099) (0.088)

Panel C: χ2
(5) T=50 T=100 T=300

h=1 h=6 h=12 h=1 h=6 h=12 h=1 h=6 h=12
AEST 0.145 0.334 0.347 0.101 0.217 0.213 0.056 0.118 0.115

(0.117) (0.354) (0.403) (0.073) (0.168) (0.162) (0.038) (0.083) (0.081)

AGAUS 0.254 0.388 0.395 0.229 0.282 0.273 0.212 0.210 0.203
(0.094) (0.340) (0.387) (0.056) (0.153) (0.148) (0.031) (0.068) (0.066)

BAYESN 0.254 0.341 0.366 0.231 0.266 0.264 0.212 0.207 0.202
(0.086) (0.248) (0.318) (0.059) (0.127) (0.130) (0.031) (0.064) (0.063)

BOOT 0.187 0.386 0.461 0.135 0.247 0.260 0.087 0.148 0.151
(0.106) (0.384) (0.472) (0.064) (0.177) (0.184) (0.033) (0.078) (0.077)
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Table A.3: Monte Carlo averages and standard errors (in parenthesis) of coverages of the estimated forecast intervals
for model yt = 0.8yt−1 + εt and σ2

ε=1 with nominal coverage of 80% and 95%.

h=1 h=6 h=12
Sample size Method Coverage Coverage Coverage Coverage Coverage Coverage

below/above below/above below/above
Gaussian 80% 10%/10% 80% 10%/10% 80% 10%/10%

50 EST/GAUS 78.04 (0.05) 11.06/10.90 77.96 (0.09) 11.12/10.92 79.14 (0.10) 10.43/10.44
100 EST/GAUS 78.95 (0.04) 10.59/10.46 78.96 (0.06) 10.66/10.38 79.49 (0.07) 10.33/10.18
300 EST/GAUS 79.66 (0.02) 10.18/10.16 79.65 (0.04) 10.26/10.09 79.80 (0.04) 10.14/10.06

Student-5 h=1 h=6 h=12
50 EST 77.98 (0.06) 11.09/10.93 78.19 (0.09) 11.01/10.80 79.43 (0.10) 10.35/10.22

GAUS 82.24 (0.06) 8.94/8.82 79.95 (0.09) 10.13/9.92 80.96 (0.10) 9.59/9.45
100 EST 79.02 (0.05) 10.63/10.34 79.20 (0.07) 10.60/10.21 79.87 (0.08) 10.17/9.96

GAUS 83.19 (0.04) 8.52/8.29 80.94 (0.06) 9.72/9.34 81.39 (0.07) 9.41/9.19
300 EST 79.76 (0.03) 10.09/10.16 79.87 (0.04) 10.09/10.03 80.06 (0.05) 9.98/9.96

GAUS 83.89 (0.03) 8.02/8.09 81.60 (0.04) 9.23/9.17 81.59 (0.04) 9.20/9.21
χ2

(5) h=1 h=6 h=12
50 EST 77.92 (0.08) 11.43/10.65 78.05 (0.09) 11.05/10.90 79.26 (0.10) 10.39/10.35

GAUS 83.24 (0.07) 5.40/11.36 79.23 (0.09) 9.25/11.52 80.25 (0.10) 8.83/10.92
100 EST 78.75 (0.06) 11.01/10.24 79.02 (0.07) 10.68/10.30 79.68 (0.08) 10.22/10.10

GAUS 84.38 (0.05) 4.66/10.96 80.24 (0.06) 8.83/10.93 80.74 (0.07) 8.60/10.66
300 EST 79.66 (0.04) 10.32/10.02 79.59 (0.04) 10.29/10.12 79.80 (0.05) 10.13/10.06

GAUS 85.51 (0.03) 3.76/10.73 80.82 (0.04) 8.43/10.75 80.87 (0.04) 8.48/10.65
h=1 h=6 h=12

Sample size Method Coverage Coverage Coverage Coverage Coverage Coverage
below/above below/above below/above

Gaussian 95% 2.5%/2.5% 95% 2.5%/2.5% 95% 2.5%/2.5%
50 EST/GAUS 93.68 (0.03) 3.20/3.12 93.15 (0.06) 3.45/3.40 93.46 (0.06) 3.26/3.28
100 EST/GAUS 94.32 (0.02) 2.87/2.82 94.09 (0.03) 2.97/2.94 94.20 (0.04) 2.91/2.89
300 EST/GAUS 94.77 (0.01) 2.62/2.61 94.71 (0.02) 2.66/2.63 94.73 (0.02) 2.64/2.63

Student-5 h=1 h=6 h=12
50 EST 93.94 (0.03) 3.06/3.01 93.51 (0.05) 3.29/3.19 93.79 (0.05) 3.11/3.11

GAUS 93.65 (0.03) 3.19/3.15 93.32 (0.05) 3.39/3.28 93.63 (0.05) 3.19/3.18
100 EST 94.48 (0.02) 2.79/2.73 94.30 (0.03) 2.91/2.79 94.40 (0.04) 2.82/2.78

GAUS 94.21 (0.02) 2.93/2.86 94.12 (0.03) 3.00/2.87 94.25 (0.04) 2.89/2.85
300 EST 94.85 (0.01) 2.57/2.58 94.83 (0.02) 2.57/2.59 94.85 (0.02) 2.56/2.59

GAUS 94.59 (0.01) 2.69/2.71 94.66 (0.02) 2.66/2.68 94.69 (0.02) 2.64/2.67
χ2

(5) h=1 h=6 h=12
50 EST 92.42 (0.06) 4.64/2.94 92.88 (0.06) 4.04/3.08 93.29 (0.06) 3.79/2.91

GAUS 94.59 (0.02) 0.13/5.28 93.66 (0.05) 1.75/4.59 93.93 (0.05) 1.80/4.26
100 EST 93.44 (0.04) 3.86/2.70 93.88 (0.04) 3.37/2.75 94.07 (0.04) 3.22/2.71

GAUS 95.00 (0.02) 0.01/4.99 94.54 (0.03) 1.28/4.19 94.60 (0.04) 1.37/4.03
300 EST 94.48 (0.02) 2.96/2.56 94.56 (0.02) 2.85/2.59 94.59 (0.03) 2.82/2.59

GAUS 95.22 (0.01) 0.00/4.78 95.09 (0.02) 0.93/3.98 95.03 (0.02) 1.07/3.91
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Table A.4: Monte Carlo averages and standard errors (in parenthesis) of coverages of the estimated forecast intervals
for model yt = 0.8yt−1 + εt and σ2

ε=1 with nominal coverage of 80%.

h=1 h=6 h=12
Sample size Method Coverage Coverage Coverage Coverage Coverage Coverage

below/above below/above below/above
Gaussian 80% 10%/10% 80% 10%/10% 80% 10%/10%

50 AEST/AGAUS 78.40 (0.05) 10.87/10.73 78.52 (0.09) 10.83/10.65 79.47 (0.10) 10.25/10.28
SRA 79.53 (0.07) 9.11/11.36 72.00 (0.12) 12.48/15.52 68.85 (0.14) 13.87/17.28
BAYESN 79.31 (0.05) 10.42/10.27 77.61 (0.08) 11.31/11.08 78.27 (0.09) 10.86/10.87
BOOT 78.47 (0.06) 10.85/10.67 79.49 (0.09) 10.33/10.18 81.39 (0.10) 9.30/9.31

100 AEST/AGAUS 79.16 (0.04) 10.48/10.36 79.30 (0.06) 10.48/10.22 79.64 (0.07) 10.25/10.11
SRA 79.73 (0.05) 9.60/10.67 76.46 (0.08) 11.26/12.28 75.92 (0.09) 11.57/12.50
BAYESN 79.62 (0.04) 10.23/10.15 78.61 (0.06) 10.84/10.55 78.86 (0.07) 10.63/10.51
BOOT 79.20 (0.04) 10.46/10.34 79.77 (0.06) 10.26/9.97 80.61 (0.07) 9.75/9.64

300 AEST/AGAUS 79.74 (0.02) 10.14/10.12 79.76 (0.04) 10.21/10.04 79.84 (0.04) 10.12/10.04
SRA 79.90 (0.03) 9.79/10.31 78.90 (0.04) 10.43/10.67 78.92 (0.05) 10.48/10.60
BAYESN 79.70 (0.03) 10.16/10.14 79.36 (0.04) 10.39/10.25 79.40 (0.04) 10.37/10.23
BOOT 79.66 (0.03) 10.13/10.22 79.82 (0.04) 10.16/10.02 80.20 (0.04) 9.94/9.87
Student-5 h=1 h=6 h=12

50 AEST 78.27 (0.06) 10.94/10.78 78.70 (0.09) 10.76/10.54 79.72 (0.10) 10.21/10.07
AGAUS 82.52 (0.06) 8.79/8.69 80.45 (0.09) 9.88/9.67 81.23 (0.10) 9.45/9.32
SRA 80.01 (0.07) 8.94/11.05 73.27 (0.12) 12.27/14.47 69.31 (0.14) 14.03/16.65
BAYEST 80.36 (0.05) 9.87/9.77 78.98 (0.08) 10.58/10.44 79.76 (0.09) 10.14/10.10
BAYESN 83.19 (0.05) 8.48/8.33 79.58 (0.09) 10.35/10.08 80.21 (0.09) 9.97/9.83
BOOT 79.42 (0.06) 10.32/10.26 80.61 (0.09) 9.74/9.64 82.51 (0.10) 8.75/8.74

100 AEST 79.20 (0.05) 10.54/10.26 79.52 (0.07) 10.43/10.05 80.00 (0.08) 10.10/9.90
AGAUS 83.35 (0.04) 8.43/8.22 81.24 (0.06) 9.56/9.20 81.52 (0.07) 9.34/9.14
SRA 80.13 (0.04) 9.63/10.24 77.15 (0.08) 10.97/11.89 76.35 (0.10) 11.60/12.04
BAYEST 80.45 (0.04) 9.85/9.70 79.58 (0.06) 10.34/10.08 80.07 (0.07) 10.03/9.90
BAYESN 83.70 (0.04) 8.28/8.02 80.61 (0.06) 9.84/9.55 80.86 (0.07) 9.66/9.48
BOOT 79.71 (0.04) 10.25/10.04 80.67 (0.06) 9.87/9.45 81.54 (0.07) 9.36/9.10

300 AEST 79.82 (0.03) 10.06/10.13 79.98 (0.04) 10.05/9.98 80.09 (0.05) 9.97/9.94
AGAUS 83.94 (0.03) 7.99/8.06 81.69 (0.04) 9.19/9.12 81.62 (0.04) 9.19/9.19
SRA 79.97 (0.03) 9.80/10.23 79.23 (0.04) 10.25/10.52 79.14 (0.05) 10.44/10.42
BAYEST 80.26 (0.03) 9.79/9.95 79.90 (0.04) 10.08/10.02 80.04 (0.04) 9.95/10.01
BAYESN 83.95 (0.03) 8.01/8.04 81.36 (0.04) 9.35/9.29 81.24 (0.04) 9.38/9.38
BOOT 79.83 (0.03) 10.07/10.10 80.41 (0.04) 9.85/9.73 80.63 (0.04) 9.70/9.67
χ2

(5) h=1 h=6 h=12
50 AEST 78.32 (0.08) 11.16/10.52 78.64 (0.09) 10.71/10.65 79.59 (0.10) 10.21/10.19

AGAUS 83.58 (0.07) 5.19/11.23 79.80 (0.09) 8.93/11.27 80.58 (0.10) 8.66/10.75
SRA 79.90 (0.07) 9.23/10.86 72.73 (0.12) 12.58/14.69 69.13 (0.14) 14.22/16.65
BAYESN 84.30 (0.06) 4.86/10.84 78.91 (0.08) 9.51/11.58 79.48 (0.09) 9.28/11.24
BOOT 79.22 (0.07) 10.35/10.43 80.11 (0.09) 9.78/10.11 81.95 (0.10) 8.76/9.29

100 AEST 78.99 (0.06) 10.84/10.17 79.36 (0.07) 10.47/10.17 79.81 (0.08) 10.14/10.04
AGAUS 84.60 (0.05) 4.52/10.88 80.56 (0.07) 8.64/10.80 80.87 (0.07) 8.53/10.60
SRA 79.90 (0.05) 9.83/10.28 76.77 (0.08) 11.43/11.80 75.74 (0.09) 11.82/12.45
BAYESN 84.87 (0.05) 4.43/10.71 79.82 (0.07) 9.07/11.10 80.10 (0.07) 9.00/10.90
BOOT 79.37 (0.06) 10.51/10.12 80.11 (0.07) 9.99/9.89 81.08 (0.07) 9.39/9.53

300 AEST 79.74 (0.04) 10.26/9.99 79.68 (0.04) 10.23/10.08 79.83 (0.05) 10.12/10.05
AGAUS 85.57 (0.03) 3.72/10.70 80.92 (0.04) 8.37/10.71 80.90 (0.05) 8.46/10.64
SRA 80.15 (0.03) 9.87/9.99 78.98 (0.05) 10.43/10.59 78.82 (0.05) 10.46/10.72
BAYESN 85.51 (0.03) 3.82/10.67 80.55 (0.04) 8.59/10.85 80.54 (0.05) 8.63/10.83
BOOT 79.73 (0.04) 10.25/10.02 79.94 (0.04) 10.08/9.98 80.18 (0.05) 9.95/9.87
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Table A.5: Monte Carlo averages and standard errors (in parenthesis) of coverages of the estimated forecast intervals
for model yt = 0.8yt−1 + εt and σ2

ε=1 with nominal coverage of 95%.

h=1 h=6 h=12
Sample size Method Coverage Coverage Coverage Coverage Coverage Coverage

below/above below/above below/above
Gaussian 95% 2.5%/2.5% 95% 2.5%/2.5% 95% 2.5%/2.5%

50 AEST/AGAUS 93.88 (0.03) 3.09/3.02 93.42 (0.06) 3.31/3.26 93.57 (0.06) 3.21/3.23
SRA 92.17 (0.05) 2.79/5.04 85.02 (0.10) 6.07/8.91 82.76 (0.11) 8.22/9.02
BAYESN 94.58 (0.03) 2.73/2.69 93.60 (0.05) 3.23/3.18 94.07 (0.06) 2.95/2.97
BOOT 93.16 (0.04) 3.46/3.38 94.12 (0.05) 2.96/2.92 94.97 (0.06) 2.49/2.53

100 AEST/AGAUS 94.44 (0.02) 2.81/2.76 94.26 (0.03) 2.88/2.86 94.26 (0.04) 2.88/2.86
SRA 94.09 (0.03) 2.36/3.55 91.46 (0.05) 3.55/4.98 89.61 (0.07) 4.51/5.87
BAYESN 94.74 (0.02) 2.65/2.61 94.20 (0.03) 2.91/2.88 94.41 (0.04) 2.79/2.79
BOOT 93.98 (0.03) 3.01/3.01 94.53 (0.03) 2.73/2.74 94.99 (0.04) 2.47/2.54

300 AEST/AGAUS 94.81 (0.01) 2.60/2.59 94.77 (0.02) 2.64/2.60 94.74 (0.02) 2.63/2.62
SRA 94.74 (0.02) 2.42/2.85 94.12 (0.03) 2.76/3.12 93.60 (0.03) 3.06/3.34
BAYESN 94.80 (0.01) 2.59/2.61 94.63 (0.02) 2.70/2.67 94.67 (0.02) 2.67/2.66
BOOT 94.56 (0.02) 2.72/2.72 94.81 (0.02) 2.62/2.57 94.97 (0.02) 2.52/2.51
Student-5 h=1 h=6 h=12

50 AEST 94.07 (0.03) 2.99/2.94 93.75 (0.05) 3.19/3.07 93.89 (0.05) 3.05/3.06
AGAUS 93.79 (0.03) 3.13/3.08 93.57 (0.05) 3.28/3.16 93.73 (0.05) 3.13/3.14
SRA 92.99 (0.04) 2.42/4.59 85.95 (0.09) 5.77/8.27 82.94 (0.11) 8.45/8.61
BAYEST 94.68 (0.02) 2.66/2.66 94.51 (0.04) 2.78/2.72 94.92 (0.04) 2.53/2.54
BAYESN 94.31 (0.03) 2.89/2.80 93.70 (0.05) 3.21/3.09 94.16 (0.05) 2.91/2.92
BOOT 93.47 (0.03) 3.33/3.20 94.31 (0.05) 2.87/2.82 95.16 (0.05) 2.44/2.41

100 AEST 94.55 (0.02) 2.76/2.69 94.44 (0.03) 2.83/2.72 94.46 (0.04) 2.79/2.75
AGAUS 94.29 (0.02) 2.89/2.82 94.27 (0.03) 2.92/2.81 94.31 (0.04) 2.87/2.83
SRA 94.59 (0.03) 2.26/3.15 91.64 (0.06) 3.71/4.66 89.81 (0.07) 4.61/5.58
BAYEST 94.75 (0.02) 2.65/2.60 94.75 (0.03) 2.67/2.58 94.96 (0.03) 2.54/2.49
BAYESN 94.54 (0.02) 2.76/2.70 94.27 (0.03) 2.93/2.80 94.50 (0.04) 2.75/2.75
BOOT 94.23 (0.02) 2.95/2.82 94.74 (0.03) 2.71/2.55 95.14 (0.03) 2.48/2.38

300 AEST 94.88 (0.01) 2.55/2.57 94.88 (0.02) 2.55/2.57 94.86 (0.02) 2.56/2.58
AGAUS 94.61 (0.01) 2.69/2.70 94.71 (0.02) 2.63/2.66 94.71 (0.02) 2.63/2.66
SRA 94.92 (0.02) 2.35/2.73 94.38 (0.03) 2.63/2.99 93.9 (0.03) 2.91/3.19
BAYEST 94.86 (0.01) 2.53/2.61 94.89 (0.02) 2.57/2.53 94.97 (0.02) 2.50/2.53
BAYESN 94.62 (0.01) 2.68/2.70 94.64 (0.02) 2.68/2.68 94.65 (0.02) 2.66/2.69
BOOT 94.70 (0.02) 2.65/2.64 94.97 (0.02) 2.53/2.50 95.08 (0.02) 2.45/2.46
χ2

(5) h=1 h=6 h=12
50 AEST 92.69 (0.06) 4.43/2.87 93.20 (0.06) 3.84/2.95 93.43 (0.06) 3.72/2.85

AEST 94.71 (0.02) 0.10/5.19 93.92 (0.05) 1.65/4.43 94.05 (0.05) 1.76/4.18
SRA 92.59 (0.05) 3.06/4.35 86.00 (0.09) 5.88/8.12 83.22 (0.11) 8.57/8.21
BAYESN 95.16 (0.02) 0.05/4.79 94.13 (0.04) 1.53/4.34 94.50 (0.05) 1.52/3.98
BOOT 93.72 (0.04) 2.97/3.31 94.42 (0.05) 2.65/2.93 95.25 (0.05) 2.25/2.50

100 AEST 93.60 (0.04) 3.73/2.67 94.05 (0.04 3.26/2.69 94.12 (0.04) 3.19/2.69
AEST 95.05 (0.02) 0.01/4.94 94.68 (0.03) 1.22/4.10 94.65 (0.04) 1.35/4.00
SRA 94.33 (0.03) 2.57/3.09 91.60 (0.05) 3.92/4.48 89.49 (0.07) 4.96/5.55
BAYESN 95.25 (0.02) 0.01/4.74 94.63 (0.03) 1.24/4.13 94.77 (0.03) 1.32/3.90
BOOT 94.24 (0.03) 2.88/2.88 94.68 (0.04) 2.63/2.69 95.14 (0.04) 2.33/2.53

300 AEST 94.53 (0.02) 2.92/2.55 94.62 (0.02) 2.81/2.57 94.61 (0.03) 2.81/2.58
AEST 95.23 (0.01) 0.00/4.76 95.14 (0.02) 0.91/3.95 95.04 (0.02) 1.06/3.89
SRA 94.84 (0.02) 2.51/2.65 94.10 (0.03) 2.93/2.96 93.62 (0.03) 3.16/3.22
BAYESN 95.23 (0.01) 0.00/4.77 95.01 (0.02) 0.98/4.01 95.00 (0.02) 1.08/3.92
BOOT 94.58 (0.02) 2.74/2.68 94.79 (0.02) 2.62/2.59 94.89 (0.03) 2.55/2.56
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A.3. Monte Carlo results for forecast intervals of 95% for model yt =

0.6yt−1 + 0.3yt−2 + εt with σ2
ε=1.

Table A.6: Monte Carlo averages and standard errors (in parenthesis) of coverages of the estimated forecast intervals
for model yt = 0.6yt−1 + 0.3yt−2 + εt and σ2

ε=1 with nominal coverage of 95%.

h=1 h=6 h=12
Sample size Method Coverage Coverage Coverage Coverage Coverage Coverage

below/above below/above below/above
Gaussian 95% 2.5%/2.5% 95% 2.5%/2.5% 95% 2.5%/2.5%

50 EST/GAUS 93.66 (0.03) 3.11/3.23 93.01 (0.05) 3.39/3.59 92.86 (0.07) 3.42/3.71
GAUSaicc 92.82 (0.04) 3.59/3.59 92.70 (0.06) 3.57/3.73 92.21 (0.07) 3.77/4.01

100 EST/GAUS 94.35 (0.02) 2.85/2.79 94.08 (0.03) 2.99/2.93 93.92 (0.04) 3.07/3.01
GAUSaicc 93.88 (0.03) 3.07/3.05 93.90 (0.04) 3.07/3.02 93.65 (0.05) 3.19/3.16

300 EST/GAUS 94.78 (0.01) 2.61/2.61 94.76 (0.02) 2.66/2.58 94.70 (0.02) 2.67/2.63
GAUSaicc 94.68 (0.01) 2.66/2.66 94.69 (0.02) 2.68/2.63 94.64 (0.03) 2.70/2.66
Student-5 h=1 h=6 h=12

50 EST 93.56 (0.03) 3.27/3.17 92.63 (0.06) 3.74/3.63 92.52 (0.07) 3.72/3.76
GAUS 93.27 (0.03) 3.42/3.32 92.44 (0.06) 3.84/3.73 92.36 (0.07) 3.80/3.83
GAUSaicc 92.52 (0.04) 3.75/3.73 91.95 (0.07) 3.99/4.05 91.65 (0.08) 4.10/4.25

100 EST 94.20 (0.02) 2.92/2.89 93.66 (0.04) 3.20/3.14 93.47 (0.05) 3.29/3.25
GAUS 93.92 (0.02) 3.05/3.03 93.47 (0.04) 3.29/3.23 93.33 (0.05) 3.35/3.32
GAUSaicc 93.48 (0.03) 3.29/3.23 93.29 (0.04) 3.45/3.26 93.09 (0.05) 3.54/3.37

300 EST 94.78 (0.01) 2.59/2.63 94.65 (0.02) 2.66/2.69 94.58 (0.03) 2.67/2.75
GAUS 94.52 (0.01) 2.72/2.76 94.48 (0.02) 2.74/2.78 94.44 (0.03) 2.74/2.82
GAUSaicc 94.42 (0.01) 2.77/2.81 94.41 (0.02) 2.78/2.81 94.38 (0.03) 2.77/2.85
χ2

(5) h=1 h=6 h=12
50 EST 91.95 (0.07) 4.99/3.07 92.03 (0.07) 4.38/3.59 91.82 (0.08) 4.44/3.73

GAUS 94.27 (0.03) 0.19/5.54 92.69 (0.06) 2.11/5.19 92.25 (0.08) 2.68/5.07
GAUSaicc 93.61 (0.04) 0.54/5.85 92.27 (0.07) 2.41/5.32 91.44 (0.09) 3.11/5.44

100 EST 93.03 (0.05) 4.18/2.79 93.47 (0.04) 3.49/3.03 93.35 (0.05) 3.57/3.08
GAUS 94.79 (0.02) 0.04/5.16 94.01 (0.04) 1.51/4.48 93.70 (0.05) 2.02/4.28
GAUSaicc 94.46 (0.02) 0.21/5.33 93.73 (0.04) 1.68/4.59 93.35 (0.05) 2.22/4.42

300 EST 94.36 (0.03) 3.08/2.56 94.51 (0.02) 2.88/2.61 94.44 (0.03) 2.91/2.66
GAUS 95.14 (0.01) 0.00/4.86 94.99 (0.02) 1.07/3.94 94.76 (0.02) 1.52/3.72
GAUSaicc 95.09 (0.01) 0.01/4.90 94.90 (0.02) 1.12/3.98 94.67 (0.03) 1.58/3.75
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YT = 0.6YT−1 + 0.3YT−2 + εT WITH σ2ε=1.

Table A.7: Monte Carlo averages and standard errors (in parenthesis) of the forecast intervals constructed by the
asymptotic procedures for model yt = 0.6yt−1 + 0.3yt−2 + εt and σ2

ε=1 with nominal coverage of 95%.

h=1 h=6 h=12
Sample size Method Coverage Coverage Coverage Coverage Coverage Coverage

below/above below/above below/above
Gaussian 95% 2.5%/2.5% 95% 2.5%/2.5% 95% 2.5%/2.5%

50 AEST/AGAUS 94.00 (0.03) 2.94/3.06 93.35 (0.05) 3.22/3.43 93.13 (0.07) 3.27/3.60
AGAUSaicc 93.16 (0.04) 3.42/3.42 93.01 (0.06) 3.41/3.58 92.41 (0.08) 3.65/3.94
SRA 92.28 (0.04) 2.68/5.03 85.24 (0.10) 5.85/8.91 79.07 (0.13) 9.99/10.94
SRAaicc 91.86 (0.05) 2.95/5.18 85.44 (0.10) 5.87/8.69 79.10 (0.14) 10.04/10.86

100 AEST/AGAUS 94.56 (0.02) 2.74/2.69 94.40 (0.03) 2.83/2.77 94.27 (0.04) 2.89/2.84
AGAUSaicc 94.12 (0.03) 2.95/2.93 94.23 (0.04) 2.90/2.87 93.99 (0.05) 3.01/3.00
SRA 94.21 (0.03) 2.35/3.43 91.50 (0.05) 3.73/4.77 87.33 (0.08) 5.57/7.10
SRAaicc 93.93 (0.03) 2.47/3.61 91.18 (0.06) 3.86/4.96 86.84 (0.09) 5.78/7.38

300 AEST/AGAUS 94.86 (0.01) 2.57/2.57 94.90 (0.02) 2.59/2.51 94.85 (0.02) 2.59/2.56
AGAUSaicc 94.77 (0.01) 2.61/2.61 94.83 (0.02) 2.61/2.56 94.80 (0.02) 2.62/2.58
SRA 94.77 (0.01) 2.46/2.77 94.14 (0.02) 2.81/3.05 93.20 (0.03) 3.22/3.58
SRAaicc 94.70 (0.01) 2.49/2.81 93.97 (0.03) 2.86/3.17 93.13 (0.04) 3.29/3.58
Student-5 h=1 h=6 h=12

50 AEST 93.84 (0.03) 3.13/3.03 92.90 (0.06) 3.58/3.51 92.67 (0.08) 3.59/3.73
AGAUS 93.55 (0.03) 3.28/3.17 92.71 (0.06) 3.68/3.61 92.53 (0.09) 3.67/3.80
AGAUSaicc 92.83 (0.04) 3.61/3.56 92.15 (0.07) 3.91/3.94 91.70 (0.10) 4.06/4.24
SRA 92.69 (0.04) 2.55/4.75 84.17 (0.10) 6.86/8.97 79.06 (0.14) 10.86/10.08
SRAaicc 92.40 (0.05) 2.59/5.01 84.34 (0.11) 6.54/9.12 79.48 (0.13) 10.39/10.13

100 AEST 94.35 (0.02) 2.84/2.81 93.93 (0.04) 3.07/2.99 93.78 (0.05) 3.14/3.08
AGAUS 94.07 (0.02) 2.97/2.96 93.75 (0.04) 3.16/3.09 93.65 (0.05) 3.20/3.15
AGAUSaicc 93.68 (0.03) 3.18/3.14 93.60 (0.04) 3.29/3.11 93.41 (0.05) 3.39/3.21
SRA 94.46 (0.03) 2.24/3.30 91.05 (0.06) 3.97/4.98 87.03 (0.08) 5.99/6.97
SRAaicc 94.21 (0.03) 2.38/3.41 90.88 (0.06) 4.06/5.06 86.54 (0.09) 6.15/7.31

300 AEST 94.83 (0.01) 2.57/2.60 94.77 (0.02) 2.60/2.63 94.71 (0.03) 2.61/2.68
AGAUS 94.57 (0.01) 2.70/2.73 94.61 (0.02) 2.68/2.71 94.59 (0.03) 2.67/2.74
AGAUSaicc 94.49 (0.01) 2.74/2.77 94.54 (0.02) 2.71/2.74 94.53 (0.03) 2.69/2.77
SRA 94.85 (0.01) 2.39/2.75 94.25 (0.03) 2.69/3.06 93.26 (0.04) 3.06/3.68
SRAaicc 94.81 (0.02) 2.42/2.77 94.15 (0.03) 2.77/3.08 93.16 (0.04) 3.16/3.68
χ2

(5) h=1 h=6 h=12
50 AEST 92.43 (0.06) 4.62/2.94 92.37 (0.07) 4.16/3.47 91.99 (0.09) 4.29/3.72

AGAUS 94.49 (0.03) 0.15/5.36 93.00 (0.06) 1.97/5.03 92.38 (0.09) 2.61/5.01
AGAUSaicc 93.84 (0.04) 0.46/5.70 92.46 (0.08) 2.29/5.24 91.56 (0.10) 3.05/5.39
SRA 92.58 (0.05) 3.00/4.42 84.21 (0.11) 6.77/9.02 77.85 (0.15) 11.82/10.32
SRAaicc 92.15 (0.06) 3.27/4.59 84.45 (0.11) 6.71/8.83 78.22 (0.15) 11.38/10.41

100 AEST 93.32 (0.05) 3.95/2.72 93.80 (0.04) 3.29/2.91 93.71 (0.05) 3.37/2.93
AGAUS 94.91 (0.02) 0.03/5.05 94.30 (0.04) 1.38/4.32 94.03 (0.05) 1.87/4.09
AGAUSaicc 94.63 (0.02) 0.17/5.20 94.04 (0.04) 1.54/4.42 93.69 (0.05) 2.07/4.24
SRA 94.08 (0.04) 2.77/3.15 90.99 (0.06) 4.09/4.92 86.97 (0.08) 6.11/6.92
SRAaicc 93.76 (0.04) 3.03/3.21 90.94 (0.06) 4.16/4.90 86.66 (0.09) 6.18/7.16

300 AEST 94.47 (0.03) 2.99/2.54 94.67 (0.02) 2.78/2.55 94.60 (0.03) 2.82/2.58
AGAUS 95.18 (0.01) 0.00/4.82 95.11 (0.02) 1.02/3.86 94.90 (0.02) 1.46/3.64
AGAUSaicc 95.14 (0.01) 0.01/4.85 95.04 (0.02) 1.07/3.89 94.83 (0.03) 1.51/3.66
SRA 94.81 (0.02) 2.58/2.61 94.12 (0.03) 3.01/2.87 93.07 (0.04) 3.51/3.42
SRAaicc 94.73 (0.02) 2.64/2.63 93.97 (0.03) 3.09/2.93 92.93 (0.04) 3.59/3.47
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Table A.8: Monte Carlo averages and standard errors (in parenthesis) of forecast intervals constructed by the Bayesian
procedures for model yt = 0.6yt−1 + 0.3yt−2 + εt and σ2

ε=1 with nominal coverage of 95%.

h=1 h=6 h=12
Sample size Method Coverage Coverage Coverage Coverage Coverage Coverage

below/above below/above below/above
Gaussian 95% 2.5%/2.5% 95% 2.5%/2.5% 95% 2.5%/2.5%

50 BAYESN 94.79 (0.03) 2.56/2.64 94.37 (0.05) 2.79/2.84 94.15 (0.06) 2.85/2.99
BAYESL 94.86 (0.03) 2.54/2.59 93.08 (0.06) 3.39/3.53 92.07 (0.07) 3.89/4.04

100 BAYESN 94.92 (0.02) 2.59/2.49 94.71 (0.03) 2.69/2.60 94.53 (0.04) 2.72/2.74
BAYESL 94.78 (0.03) 2.67/2.54 93.76 (0.04) 3.15/3.09 93.00 (0.05) 3.49/3.51

300 BAYESN 94.91 (0.01) 2.54/2.55 94.93 (0.02) 2.59/2.48 94.92 (0.02) 2.56/2.52
BAYESL 94.89 (0.01) 2.51/2.60 94.62 (0.02) 2.70/2.68 94.32 (0.03) 2.83/2.85
Student-5 h=1 h=6 h=12

50 BAYEST 94.54 (0.03) 2.73/2.72 94.00 (0.05) 3.03/2.96 93.94 (0.06) 3.03/3.03
BAYESN 94.12 (0.03) 2.98/2.90 93.67 (0.05) 3.20/3.13 93.49 (0.06) 3.26/3.26
BAYESL 94.25 (0.03) 2.81/2.93 92.50 (0.06) 3.73/3.77 91.54 (0.07) 4.17/4.29

100 BAYEST 94.60 (0.02) 2.71/2.68 94.42 (0.03) 2.82/2.76 94.28 (0.04) 2.88/2.84
BAYESN 94.32 (0.02) 2.84/2.84 94.18 (0.04) 2.90/2.91 94.02 (0.05) 2.98/3.00
BAYESL 94.41 (0.03) 2.79/2.79 93.49 (0.04) 3.28/3.23 92.83 (0.05) 3.56/3.61

300 BAYEST 94.80 (0.01) 2.59/2.60 94.82 (0.02) 2.59/2.59 94.81 (0.02) 2.55/2.64
BAYESN 94.60 (0.01) 2.68/2.72 94.64 (0.02) 2.68/2.68 94.61 (0.03) 2.66/2.73
BAYESL 94.62 (0.01) 2.67/2.71 94.41 (0.02) 2.81/2.78 94.12 (0.03) 2.91/2.98
χ2

(5) h=1 h=6 h=12
50 BAYESN 94.91 (0.03) 0.15/4.94 94.17 (0.05) 1.54/4.29 93.68 (0.07) 2.04/4.28

BAYESL 95.08 (0.03) 0.21/4.71 92.92 (0.06) 2.26/4.82 91.78 (0.07) 3.05/5.17
100 BAYESN 95.09 (0.02) 0.04/4.87 94.71 (0.03) 1.24/4.05 94.36 (0.04) 1.72/3.92

BAYESL 95.16 (0.02) 0.16/4.69 93.88 (0.04) 1.80/4.32 93.01 (0.05) 2.50/4.49
300 BAYESN 95.21 (0.01) 0.00/4.78 95.11 (0.02) 1.03/3.86 94.88 (0.03) 1.46/3.66

BAYESL 95.29 (0.01) 0.01/4.70 94.86 (0.02) 1.23/3.92 94.47 (0.03) 1.70/3.83
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YT = 0.6YT−1 + 0.3YT−2 + εT WITH σ2ε=1.

Table A.9: Monte Carlo averages and standard errors (in parenthesis) of forecast intervals by the bootstrap procedures
for model yt = 0.6yt−1 + 0.3yt−2 + εt and σ2

ε=1 with nominal coverage of 95%.

h=1 h=6 h=12
Sample size Method Coverage Coverage Coverage Coverage Coverage Coverage

below/above below/above below/above
Gaussian 95% 2.5%/2.5% 95% 2.5%/2.5% 95% 2.5%/2.5%

50 BOOT 93.42 (0.04) 3.23/3.35 94.29 (0.04) 2.79/2.91 95.00 (0.05) 2.41/2.59
BOOTEX 93.29 (0.04) 3.36/3.35 94.66 (0.05) 2.65/2.69 94.86 (0.06) 2.51/2.63
BOOTNP 85.78 (0.14) 6.78/7.45 80.90 (0.12) 9.32/9.78 76.87 (0.13) 11.33/11.80

100 BOOT 94.14 (0.03) 2.94/2.92 94.76 (0.03) 2.67/2.57 95.05 (0.04) 2.49/2.45
BOOTEX 94.11 (0.03) 2.93/2.96 94.92 (0.03) 2.55/2.53 95.09 (0.04) 2.46/2.44
BOOTNP 89.42 (0.13) 5.35/5.24 86.50 (0.11) 6.87/6.63 84.26 (0.11) 8.09/7.64

300 BOOT 94.67 (0.02) 2.64/2.69 94.94 (0.02) 2.56/2.50 95.07 (0.02) 2.48/2.44
BOOTEX 94.62 (0.02) 2.68/2.69 94.92 (0.02) 2.57/2.51 95.06 (0.02) 2.48/2.47
BOOTNP 93.18 (0.09) 3.39/3.42 91.03 (0.06) 4.50/4.47 89.93 (0.05) 5.04/5.03
Student-5 h=1 h=6 h=12

50 BOOT 93.47 (0.04) 3.33/3.20 93.67 (0.05) 3.22/3.11 94.32 (0.06) 2.90/2.78
BOOTEX 93.25 (0.04) 3.43/3.32 93.76 (0.06) 3.19/3.05 94.13 (0.06) 2.97/2.91
BOOTNP 84.68 (0.16) 6.87/8.44 80.25 (0.13) 9.19/10.57 76.49 (0.14) 11.30/12.21

100 BOOT 94.09 (0.03) 3.02/2.89 94.23 (0.03) 2.92/2.85 94.52 (0.04) 2.72/2.77
BOOTEX 93.98 (0.03) 3.07/2.94 94.37 (0.04) 2.86/2.77 94.61 (0.04) 2.72/2.67
BOOTNP 89.15 (0.13) 5.59/5.25 86.32 (0.11) 6.94/6.74 83.69 (0.11) 8.12/8.19

300 BOOT 94.66 (0.02) 2.67/2.67 94.81 (0.02) 2.60/2.58 94.96 (0.02) 2.46/2.58
BOOTEX 94.59 (0.02) 2.72/2.68 94.79 (0.02) 2.61/2.59 94.95 (0.02) 2.48/2.57
BOOTNP 92.65 (0.10) 3.57/3.78 90.49 (0.08) 4.72/4.79 89.17 (0.08) 5.33/5.50
χ2

(5) h=1 h=6 h=12
50 BOOT 94.13 (0.05) 2.43/3.44 94.01 (0.06) 2.65/3.34 94.39 (0.07) 2.53/3.08

BOOTEX 94.36 (0.05) 2.10/3.54 94.32 (0.06) 2.39/3.28 94.26 (0.07) 2.55/3.18
BOOTNP 85.75 (0.15) 6.52/7.73 81.29 (0.12) 9.67/9.03 77.34 (0.12) 11.66/11.00

100 BOOT 94.41 (0.04) 2.56/3.03 94.47 (0.04) 2.61/2.93 94.81 (0.04) 2.42/2.77
BOOTEX 94.42 (0.04) 2.49/3.08 94.62 (0.04) 2.44/2.93 94.78 (0.05) 2.47/2.75
BOOTNP 89.56 (0.15) 4.20/6.24 86.17 (0.11) 7.38/6.45 83.51 (0.11) 8.88/7.61

300 BOOT 94.78 (0.02) 2.55/2.67 94.89 (0.02) 2.53/2.58 94.95 (0.03) 2.51/2.53
BOOTEX 94.82 (0.03) 2.52/2.67 94.86 (0.02) 2.55/2.59 94.95 (0.03) 2.52/2.53
BOOTNP 93.92 (0.08) 1.81/4.26 90.75 (0.06) 4.52/4.73 89.49 (0.06) 5.28/5.23
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A.4. Monte Carlo results for model yt = 0.6yt−1 + 0.3yt−2 + εt with σ2
ε=4

Table A.10: Monte Carlo averages and standard deviations (in parenthesis) of MD distances between the estimated
and true forecast densities for model yt = 0.6yt−1 + 0.3yt−2 + εt with σ2

ε=4.

Panel A: Gaussian T=50 T=100 T=300
h=1 h=6 h=12 h=1 h=6 h=12 h=1 h=6 h=12

EST/GAUS 0.371 0.917 1.343 0.254 0.602 0.846 0.140 0.318 0.428
(0.301) (0.879) (1.439) (0.210) (0.635) (0.953) (0.117) (0.309) (0.412)

GAUSaicc 0.518 1.033 1.384 0.313 0.676 0.905 0.157 0.340 0.447
(0.402) (0.863) (1.389) (0.269) (0.674) (0.971) (0.139) (0.330) (0.432)

Panel B: Student-5 T=50 T=100 T=300
h=1 h=6 h=12 h=1 h=6 h=12 h=1 h=6 h=12

EST 0.399 0.981 1.417 0.282 0.657 0.910 0.161 0.351 0.461
(0.332) (0.843) (1.316) (0.225) (0.632) (0.949) (0.133) (0.376) (0.518)

GAUS 0.461 1.004 1.433 0.360 0.692 0.936 0.272 0.406 0.510
(0.330) (0.839) (1.311) (0.217) (0.624) (0.941) (0.119) (0.356) (0.498)

GAUSaicc 0.573 1.123 1.491 0.403 0.744 0.962 0.284 0.427 0.530
(0.455) (0.879) (1.298) (0.262) (0.646) (0.931) (0.138) (0.377) (0.524)

Panel C: χ2
(5) T=50 T=100 T=300

h=1 h=6 h=12 h=1 h=6 h=12 h=1 h=6 h=12
EST 0.393 0.934 1.354 0.267 0.591 0.815 0.151 0.332 0.440

(0.303) (0.852) (1.347) (0.216) (0.507) (0.749) (0.108) (0.275) (0.367)

GAUS 0.576 1.019 1.415 0.487 0.688 0.884 0.437 0.482 0.555
(0.261) (0.836) (1.348) (0.170) (0.478) (0.731) (0.083) (0.247) (0.348)

GAUSaicc 0.668 1.100 1.416 0.527 0.745 0.935 0.444 0.497 0.569
(0.378) (0.867) (1.383) (0.233) (0.550) (0.797) (0.100) (0.261) (0.359)
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Table A.11: Monte Carlo averages and standard errors (in parenthesis) of coverages of the estimated forecast intervals
for model yt = 0.6yt−1 + 0.3yt−2 + εt and σ2

ε=4 with nominal coverages of 80% and 95%.

h=1 h=6 h=12
Sample size Method Coverage Coverage Coverage Coverage Coverage Coverage

below/above below/above below/above
Gaussian 80% 10%/10% 80% 10%/10% 80% 10%/10%

50 EST/GAUS 78.08 (0.05) 10.85/11.07 77.06 (0.09) 11.47/11.47 77.10 (0.12) 11.44/11.46
GAUSaicc 76.47 (0.06) 11.82/11.71 76.67 (0.11) 11.70/11.64 76.10 (0.13) 11.97/11.93

100 EST/GAUS 78.87 (0.04) 10.67/10.46 78.44 (0.06) 11.03/10.53 78.55 (0.08) 10.95/10.50
GAUSaicc 78.26 (0.04) 10.93/10.81 78.10 (0.07) 11.26/10.64 78.09 (0.09) 11.23/10.67

300 EST/GAUS 79.63 (0.02) 10.27/10.10 79.58 (0.03) 10.41/10.02 79.60 (0.05) 10.37/10.03
GAUSaicc 79.47 (0.02) 10.38/10.15 79.46 (0.04) 10.45/10.09 79.52 (0.05) 10.39/10.10
Student-5 h=1 h=6 h=12

50 EST 77.39 (0.07) 11.30/11.31 76.47 (0.10) 11.60/11.94 76.73 (0.12) 11.45/11.82
GAUS 81.68 (0.06) 9.17/9.15 78.16 (0.09) 10.77/11.06 77.93 (0.11) 10.85/11.22
GAUSaicc 80.10 (0.08) 10.10/9.805 77.76 (0.11) 10.89/11.34 76.99 (0.13) 11.29/11.73

100 EST 78.50 (0.05) 10.74/10.76 78.00 (0.07) 11.04/10.96 78.08 (0.09) 10.99/10.93
GAUS 82.74 (0.04) 8.62/8.646 79.64 (0.06) 10.22/10.14 79.23 (0.08) 10.41/10.36
GAUSaicc 82.03 (0.05) 8.92/9.05 79.30 (0.07) 10.32/10.38 78.77 (0.09) 10.62/10.61

300 EST 79.34 (0.03) 10.31/10.35 79.07 (0.04) 10.50/10.43 79.06 (0.05) 10.47/10.46
GAUS 83.46 (0.03) 8.26/8.28 80.66 (0.04) 9.70/9.63 80.19 (0.05) 9.91/9.90
GAUSaicc 83.25 (0.03) 8.35/8.39 80.46 (0.04) 9.77/9.77 79.98 (0.05) 9.99/10.03
χ2

(5) h=1 h=6 h=12
50 EST 77.36 (0.09) 11.67/10.97 77.14 (0.09) 11.28/11.57 77.59 (0.11) 10.98/11.43

GAUS 82.64 (0.07) 5.69/11.68 78.21 (0.09) 9.59/12.20 78.23 (0.11) 9.81/11.96
GAUSaicc 80.45 (0.09) 7.22/12.33 77.89 (0.11) 9.68/12.43 77.37 (0.12) 10.22/12.41

100 EST 78.55 (0.07) 10.87/10.58 78.66 (0.07) 10.48/10.86 79.05 (0.08) 10.19/10.76
GAUS 83.95 (0.05) 4.77/11.28 79.68 (0.06) 8.83/11.49 79.65 (0.08) 9.06/11.29
GAUSaicc 82.83 (0.07) 5.59/11.58 79.24 (0.07) 8.99/11.76 79.01 (0.09) 9.36/11.63

300 EST 79.28 (0.04) 10.61/10.12 79.45 (0.04) 10.46/10.08 79.68 (0.05) 10.31/10.01
GAUS 85.10 (0.03) 4.08/10.81 80.55 (0.04) 8.75/10.70 80.35 (0.05) 9.14/10.51
GAUSaicc 84.85 (0.03) 4.23/10.92 80.41 (0.04) 8.83/10.76 80.22 (0.05) 9.22/10.55

h=1 h=6 h=12
Sample size Method Coverage Coverage Coverage Coverage Coverage Coverage

below/above below/above below/above
Gaussian 95% 2.5%/2.5% 95% 2.5%/2.5% 95% 2.5%/2.5%

50 EST/GAUS 93.68 (0.03) 3.12/3.20 92.67 (0.06) 3.63/3.70 92.33 (0.08) 3.79/3.87
GAUSaicc 92.69 (0.04) 3.68/3.62 92.12 (0.07) 3.92/3.96 91.40 (0.09) 4.27/4.32

100 EST/GAUS 94.24 (0.02) 2.93/2.83 93.80 (0.04) 3.20/2.99 93.63 (0.05) 3.27/3.10
GAUSaicc 93.88 (0.02) 3.09/3.02 93.54 (0.04) 3.37/3.09 93.31 (0.05) 3.47/3.22

300 EST/GAUS 94.76 (0.01) 2.65/2.59 94.65 (0.02) 2.75/2.60 94.55 (0.03) 2.77/2.68
GAUSaicc 94.68 (0.01) 2.69/2.62 94.58 (0.02) 2.77/2.65 94.49 (0.03) 2.78/2.72
Student-5 h=1 h=6 h=12

50 EST 93.72 (0.03) 3.14/3.13 92.69 (0.06) 3.61/3.71 92.47 (0.07) 3.70/3.83
GAUS 93.43 (0.03) 3.28/3.28 92.49 (0.06) 3.70/3.80 92.31 (0.07) 3.78/3.91
GAUSaicc 92.68 (0.04) 3.73/3.58 92.05 (0.06) 3.88/4.07 91.51 (0.08) 4.16/4.33

100 EST 94.31 (0.02) 2.82/2.87 93.75 (0.03) 3.15/3.10 93.58 (0.05) 3.24/3.19
GAUS 94.04 (0.02) 2.95/3.00 93.56 (0.03) 3.25/3.19 93.44 (0.05) 3.30/3.26
GAUSaicc 93.70 (0.02) 3.11/3.19 93.28 (0.04) 3.36/3.36 93.05 (0.05) 3.49/3.45

300 EST 94.69 (0.01) 2.64/2.67 94.45 (0.02) 2.78/2.77 94.34 (0.03) 2.83/2.83
GAUS 94.43 (0.01) 2.77/2.80 94.27 (0.02) 2.87/2.86 94.20 (0.03) 2.90/2.90
GAUSaicc 94.33 (0.01) 2.82/2.85 94.15 (0.02) 2.92/2.93 94.07 (0.03) 2.95/2.98
χ2

(5) h=1 h=6 h=12
50 EST 92.05 (0.06) 4.91/3.04 92.59 (0.06) 3.99/3.42 92.63 (0.07) 3.97/3.39

GAUS 94.36 (0.03) 0.15/5.49 93.17 (0.05) 1.86/4.97 93.00 (0.07) 2.34/4.66
GAUSaicc 93.57 (0.04) 0.57/5.86 92.61 (0.07) 2.23/5.16 92.14 (0.08) 2.79/5.06

100 EST 93.24 (0.05) 3.98/2.78 93.78 (0.04) 3.27/2.95 93.78 (0.05) 3.26/2.96
GAUS 94.75 (0.02) 0.06/5.18 94.23 (0.03) 1.38/4.39 94.06 (0.04) 1.84/4.10
GAUSaicc 94.42 (0.02) 0.20/5.38 93.88 (0.04) 1.52/4.59 93.61 (0.05) 2.03/4.37

300 EST 94.18 (0.03) 3.25/2.57 94.52 (0.02) 2.90/2.58 94.52 (0.03) 2.88/2.60
GAUS 95.14 (0.01) 0.00/4.86 95.02 (0.02) 1.08/3.90 94.82 (0.03) 1.51/3.66
GAUSaicc 95.07 (0.01) 0.00/4.93 94.93 (0.02) 1.12/3.95 94.73 (0.03) 1.56/3.70
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Table A.12: Monte Carlo averages and standard deviations (in parenthesis) of MD distances between the estimated
and true forecast densities for model yt = 0.6yt−1 + 0.3yt−2 + εt with σ2

ε=4.

Panel A: Gaussian T=50 T=100 T=300
h=1 h=6 h=12 h=1 h=6 h=12 h=1 h=6 h=12

AEST/AGAUS 0.372 0.920 1.354 0.255 0.605 0.854 0.140 0.319 0.429
(0.301) (0.878) (1.456) (0.210) (0.635) (0.955) (0.117) (0.309) (0.413)

AGAUSaicc 0.517 1.040 1.399 0.313 0.679 0.912 0.157 0.340 0.449
(0.403) (0.863) (1.409) (0.269) (0.674) (0.974) (0.139) (0.330) (0.433)

BAYESN 0.379 0.767 1.057 0.274 0.562 0.750 0.182 0.362 0.463
(0.280) (0.638) (1.103) (0.196) (0.502) (0.763) (0.114) (0.271) (0.348)

BAYESL 0.565 0.843 0.882 0.470 0.780 0.822 0.283 0.489 0.549
(0.411) (0.541) (0.488) (0.346) (0.545) (0.566) (0.189) (0.360) (0.386)

BOOT 0.432 0.918 1.394 0.321 0.671 0.973 0.204 0.388 0.516
(0.255) (0.760) (1.263) (0.190) (0.629) (0.983) (0.110) (0.307) (0.427)

BOOTEX 0.503 0.967 1.362 0.369 0.707 0.987 0.218 0.402 0.518
(0.314) (0.723) (1.193) (0.230) (0.621) (0.931) (0.125) (0.317) (0.442)

BOOTNP 0.972 1.611 1.906 0.819 1.299 1.556 0.590 0.818 0.995
(0.579) (0.912) (1.031) (0.528) (0.833) (0.996) (0.368) (0.539) (0.675)

Panel B: Student-5 T=50 T=100 T=300
h=1 h=6 h=12 h=1 h=6 h=12 h=1 h=6 h=12

AEST 0.400 0.984 1.428 0.281 0.658 0.915 0.161 0.351 0.462
(0.337) (0.846) (1.321) (0.226) (0.635) (0.956) (0.134) (0.377) (0.519)

AGAUS 0.466 1.009 1.446 0.363 0.695 0.943 0.274 0.407 0.512
(0.336) (0.842) (1.315) (0.217) (0.626) (0.946) (0.120) (0.356) (0.499)

AGAUSaicc 0.574 1.130 1.503 0.405 0.749 0.971 0.285 0.428 0.532
(0.456) (0.882) (1.306) (0.262) (0.649) (0.938) (0.138) (0.377) (0.525)

BAYEST 0.387 0.787 1.077 0.286 0.561 0.732 0.194 0.355 0.446
(0.297) (0.605) (0.993) (0.176) (0.437) (0.614) (0.106) (0.276) (0.369)

BAYESN 0.455 0.836 1.146 0.356 0.606 0.776 0.274 0.391 0.476
(0.352) (0.694) (1.143) (0.203) (0.476) (0.689) (0.119) (0.319) (0.436)

BAYESL 0.603 0.913 0.943 0.511 0.798 0.822 0.361 0.505 0.558
(0.508) (0.671) (0.559) (0.318) (0.553) (0.550) (0.185) (0.375) (0.439)

BOOT 0.478 0.998 1.508 0.355 0.704 1.007 0.230 0.406 0.533
(0.303) (0.793) (1.286) (0.197) (0.610) (0.974) (0.121) (0.365) (0.530)

BOOTEX 0.532 1.041 1.471 0.393 0.750 1.012 0.244 0.426 0.547
(0.370) (0.785) (1.248) (0.234) (0.613) (0.929) (0.134) (0.388) (0.564)

BOOTNP 1.080 1.717 2.029 0.818 1.251 1.541 0.680 0.869 1.070
(0.725) (0.954) (1.061) (0.506) (0.734) (0.935) (0.428) (0.642) (0.888)

Panel C: χ2
(5) T=50 T=100 T=300

h=1 h=6 h=12 h=1 h=6 h=12 h=1 h=6 h=12
AEST 0.394 0.939 1.367 0.266 0.594 0.822 0.151 0.333 0.443

(0.303) (0.852) (1.349) (0.216) (0.508) (0.754) (0.108) (0.276) (0.369)

AGAUS 0.579 1.025 1.430 0.489 0.692 0.893 0.438 0.484 0.559
(0.263) (0.837) (1.351) (0.172) (0.480) (0.736) (0.084) (0.249) (0.352)

AGAUSaicc 0.669 1.112 1.439 0.529 0.750 0.945 0.445 0.499 0.573
(0.379) (0.884) (1.450) (0.233) (0.552) (0.803) (0.100) (0.263) (0.363)

BAYESN 0.574 0.855 1.135 0.483 0.618 0.757 0.439 0.468 0.520
(0.254) (0.663) (1.152) (0.165) (0.358) (0.523) (0.078) (0.214) (0.288)

BAYESL 0.706 0.918 0.929 0.621 0.815 0.848 0.496 0.576 0.604
(0.363) (0.597) (0.520) (0.280) (0.532) (0.531) (0.152) (0.310) (0.371)

BOOT 0.450 0.956 1.463 0.321 0.649 0.933 0.201 0.378 0.499
(0.272) (0.800) (1.305) (0.204) (0.514) (0.803) (0.098) (0.271) (0.378)

BOOTEX 0.527 1.002 1.411 0.367 0.690 0.947 0.218 0.405 0.525
(0.344) (0.817) (1.341) (0.247) (0.545) (0.825) (0.123) (0.292) (0.397)

BOOTNP 1.002 1.585 1.907 0.797 1.234 1.524 0.663 0.841 1.036
(0.606) (0.887) (1.025) (0.497) (0.746) (0.899) (0.439) (0.591) (0.747)
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Table A.13: Monte Carlo averages and standard errors (in parenthesis) of the forecast intervals constructed by the
asymptotic procedures for model yt = 0.6yt−1 + 0.3yt−2 + εt and σ2

ε=4 with nominal coverage of 80%.

h=1 h=6 h=12
Sample size Method Coverage Coverage Coverage Coverage Coverage Coverage

below/above below/above below/above
Gaussian 80% 10%/10% 80% 10%/10% 80% 10%/10%

50 AEST/AGAUS 78.68 (0.05) 10.56/10.76 77.64 (0.10) 11.17/11.19 77.73 (0.12) 11.14/11.14
AGAUSaicc 77.03 (0.06) 11.54/11.43 77.22 (0.11) 11.43/11.35 76.58 (0.14) 11.75/11.67
SRA 80.03 (0.06) 8.88/11.09 71.16 (0.13) 13.42/15.41 64.83 (0.15) 16.74/18.43
SRAaic 79.36 (0.07) 9.22/11.42 71.47 (0.12) 13.40/15.14 64.86 (0.15) 16.66/18.48

100 AEST/AGAUS 79.25 (0.04) 10.48/10.27 79.05 (0.06) 10.73/10.23 79.25 (0.09) 10.60/10.16
AGAUSaicc 78.69 (0.04) 10.72/10.59 78.72 (0.07) 10.95/10.33 78.79 (0.09) 10.89/10.33
SRA 79.89 (0.04) 9.65/10.45 76.46 (0.08) 11.32/12.22 73.70 (0.12) 12.83/13.47
SRAaicc 79.54 (0.05) 9.69/10.76 75.90 (0.09) 11.46/12.64 73.05 (0.12) 13.03/13.92

300 AEST/AGAUS 79.77 (0.02) 10.20/10.03 79.85 (0.03) 10.27/9.88 79.90 (0.05) 10.22/9.882
AGAUSaicc 79.64 (0.02) 10.30/10.06 79.74 (0.04) 10.31/9.95 79.83 (0.05) 10.22/9.94
SRA 79.97 (0.03) 9.86/10.17 79.08 (0.04) 10.32/10.60 78.69 (0.06) 10.41/10.9
SRAaicc 79.85 (0.03) 9.95/10.20 78.81 (0.05) 10.45/10.74 78.50 (0.06) 10.47/11.02
Student-5 h=1 h=6 h=12

50 AEST 77.96 (0.07) 11.02/11.02 77.14 (0.10) 11.27/11.58 77.47 (0.12) 11.07/11.46
AGAUS 82.22 (0.06) 8.90/8.88 78.83 (0.09) 10.44/10.73 78.66 (0.12) 10.48/10.86
AGAUSaicc 80.62 (0.07) 9.83/9.55 78.34 (0.11) 10.61/11.05 77.53 (0.13) 11/11.46
SRA 80.09 (0.06) 8.68/11.23 71.54 (0.13) 12.62/15.84 64.04 (0.17) 15.94/20.02
SRAaicc 79.33 (0.08) 9.10/11.57 71.89 (0.13) 12.50/15.61 64.26 (0.17) 15.90/19.84

100 AEST 78.82 (0.05) 10.58/10.60 78.55 (0.07) 10.76/10.68 78.76 (0.09) 10.65/10.59
AGAUS 83.04 (0.04) 8.47/8.49 80.20 (0.06) 9.95/9.85 79.88 (0.08) 10.09/10.03
AGAUSaicc 82.41 (0.04) 8.74/8.86 79.89 (0.07) 10.03/10.07 79.43 (0.09) 10.29/10.28
SRA 79.99 (0.04) 9.44/10.57 76.64 (0.09) 11.00/12.36 74.05 (0.12) 11.99/13.96
SRAaicc 79.67 (0.05) 9.54/10.79 76.42 (0.09) 10.90/12.67 73.60 (0.12) 12.11/14.29

300 AEST 79.47 (0.03) 10.25/10.28 79.31 (0.04) 10.38/10.31 79.36 (0.05) 10.32/10.32
AGAUS 83.57 (0.03) 8.21/8.22 80.91 (0.04) 9.58/9.51 80.48 (0.05) 9.77/9.75
AGAUSaicc 83.39 (0.03) 8.28/8.32 80.73 (0.04) 9.64/9.63 80.30 (0.05) 9.83/9.87
SRA 79.84 (0.03) 9.89/10.26 78.74 (0.04) 10.41/10.85 78.27 (0.06) 10.68/11.05
SRAaicc 79.76 (0.03) 9.92/10.32 78.52 (0.05) 10.49/10.99 78.05 (0.06) 10.75/11.20
χ2

(5) h=1 h=6 h=12
50 AEST 78.13 (0.08) 11.16/10.72 77.87 (0.09) 10.87/11.26 78.35 (0.12) 10.55/11.10

AGAUS 83.31 (0.07) 5.28/11.42 78.90 (0.09) 9.20/11.89 78.98 (0.11) 9.39/11.63
AGAUSaicc 81.04 (0.09) 6.86/12.10 78.57 (0.11) 9.30/12.13 78.02 (0.13) 9.86/12.11
SRA 79.97 (0.07) 9.40/10.63 71.45 (0.13) 13.94/14.61 64.55 (0.15) 17.02/18.43
SRAaicc 79.32 (0.09) 9.79/10.89 71.53 (0.13) 13.93/14.54 64.88 (0.16) 16.80/18.32

100 AEST 78.99 (0.07) 10.56/10.45 79.25 (0.07) 10.14/10.6 79.73 (0.08) 9.82/10.45
AGAUS 84.33 (0.05) 4.52/11.15 80.25 (0.06) 8.51/11.23 80.32 (0.08) 8.70/10.98
AGAUSaicc 83.28 (0.06) 5.30/11.42 79.86 (0.07) 8.65/11.49 79.68 (0.09) 8.99/11.32
SRA 79.88 (0.05) 9.70/10.42 76.41 (0.08) 11.38/12.21 73.81 (0.11) 12.69/13.50
SRAaicc 79.39 (0.06) 9.99/10.62 75.92 (0.09) 11.74/12.34 73.34 (0.12) 13.20/13.46

300 AEST 79.45 (0.04) 10.48/10.07 79.74 (0.04) 10.29/9.97 79.99 (0.05) 10.13/9.88
AGAUS 85.25 (0.03) 3.98/10.76 80.82 (0.04) 8.59/10.59 80.67 (0.05) 8.95/10.38
AGAUSaicc 85.04 (0.03) 4.11/10.85 80.70 (0.04) 8.66/10.64 80.55 (0.05) 9.03/10.42
SRA 79.75 (0.03) 10.18/10.07 78.87 (0.05) 10.55/10.58 78.48 (0.06) 10.78/10.74
SRAaicc 79.65 (0.04) 10.23/10.12 78.62 (0.05) 10.70/10.68 78.26 (0.06) 10.84/10.90
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Table A.14: Monte Carlo averages and standard errors (in parenthesis) of the forecast intervals constructed by the
asymptotic procedures for model yt = 0.6yt−1 + 0.3yt−2 + εt and σ2

ε=4 with nominal coverage of 95%.

h=1 h=6 h=12
Sample size Method Coverage Coverage Coverage Coverage Coverage Coverage

below/above below/above below/above
Gaussian 95% 2.5%/2.5% 95% 2.5%/2.5% 95% 2.5%/2.5%

50 AEST/AGAUS 94.01 (0.03) 2.96/3.03 92.93 (0.07) 3.47/3.60 92.51 (0.09) 3.69/3.79
AGAUSaicc 93.04 (0.04) 3.51/3.45 92.31 (0.08) 3.81/3.88 91.43 (0.1) 4.28/4.29
SRA 92.59 (0.04) 2.65/4.76 84.88 (0.10) 6.29/8.83 79.42 (0.13) 10.80/9.79
SRAaicc 92.17 (0.05) 2.85/4.98 85.18 (0.10) 6.27/8.56 79.41 (0.13) 10.67/9.92

100 AEST/AGAUS 94.44 (0.02) 2.83/2.73 94.14 (0.04) 3.04/2.83 93.98 (0.05) 3.10/2.92
AGAUSaicc 94.12 (0.02) 2.98/2.91 93.89 (0.04) 3.19/2.92 93.67 (0.05) 3.29/3.03
SRA 94.22 (0.03) 2.38/3.39 91.24 (0.06) 3.95/4.80 87.06 (0.08) 5.87/7.07
SRAaicc 93.96 (0.03) 2.44/3.59 90.88 (0.06) 4.03/5.09 86.53 (0.09) 6.13/7.34

300 AEST/AGAUS 94.83 (0.01) 2.61/2.56 94.80 (0.02) 2.68/2.53 94.71 (0.02) 2.68/2.61
AGAUSaicc 94.77 (0.01) 2.65/2.58 94.73 (0.02) 2.69/2.57 94.66 (0.03) 2.69/2.64
SRA 94.79 (0.02) 2.47/2.74 94.15 (0.03) 2.71/3.13 93.18 (0.04) 3.16/3.66
SRAaicc 94.75 (0.02) 2.49/2.75 94.01 (0.03) 2.77/3.22 93.06 (0.04) 3.19/3.75
Student-5 h=1 h=6 h=12

50 AEST 94.02 (0.03) 2.99/2.99 93.05 (0.05) 3.43/3.52 92.77 (0.07) 3.54/3.69
AGAUS 93.73 (0.03) 3.13/3.141 92.86 (0.06) 3.53/3.62 92.62 (0.07) 3.61/3.77
AGAUSaicc 93.00 (0.04) 3.57/3.44 92.35 (0.07) 3.73/3.92 91.65 (0.09) 4.06/4.29
SRA 93.13 (0.04) 2.28/4.59 85.18 (0.10) 6.00/8.82 78.80 (0.14) 10.25/10.95
SRAaicc 92.85 (0.05) 2.39/4.76 85.40 (0.10) 5.85/8.75 79.02 (0.14) 10.14/10.85

100 AEST 94.45 (0.02) 2.75/2.79 94.03 (0.03) 3.01/2.95 93.91 (0.04) 3.07/3.02
AGAUS 94.18 (0.02) 2.89/2.93 93.86 (0.03) 3.10/3.04 93.78 (0.05) 3.14/3.09
AGAUSaicc 93.89 (0.02) 3.02/3.09 93.61 (0.04) 3.21/3.18 93.40 (0.05) 3.33/3.27
SRA 94.70 (0.03) 2.06/3.24 91.29 (0.05) 3.76/4.95 87.01 (0.08) 5.61/7.38
SRAaicc 94.56 (0.03) 2.09/3.36 91.16 (0.06) 3.68/5.16 86.75 (0.09) 5.72/7.53

300 AEST 94.74 (0.01) 2.62/2.64 94.58 (0.02) 2.72/2.71 94.49 (0.03) 2.76/2.75
AGAUS 94.48 (0.01) 2.75/2.77 94.40 (0.02) 2.80/2.79 94.35 (0.03) 2.83/2.82
AGAUSaicc 94.40 (0.01) 2.78/2.81 94.29 (0.02) 2.85/2.86 94.24 (0.03) 2.87/2.88
SRA 94.87 (0.02) 2.39/2.74 94.20 (0.03) 2.74/3.06 93.10 (0.04) 3.23/3.67
SRAaicc 94.84 (0.02) 2.40/2.76 94.05 (0.03) 2.79/3.16 93.00 (0.04) 3.25/3.75
χ2

(5) h=1 h=6 h=12
50 AEST 92.57 (0.06) 4.51/2.91 92.98 (0.06) 3.76/3.26 92.95 (0.08) 3.80/3.25

AGAUS 94.59 (0.03) 0.10/5.31 93.50 (0.05) 1.74/4.763 93.27 (0.07) 2.25/4.48
AGAUSaicc 93.80 (0.04) 0.52/5.68 92.90 (0.07) 2.10/4.99 92.37 (0.09) 2.69/4.94
SRA 92.63 (0.05) 3.06/4.31 85.33 (0.09) 6.59/8.08 79.38 (0.13) 11.33/9.29
SRAaicc 92.17 (0.06) 3.36/4.48 85.51 (0.10) 6.52/7.97 79.66 (0.13) 11.07/9.27

100 AEST 93.53 (0.05) 3.75/2.72 94.09 (0.04) 3.09/2.82 94.12 (0.05) 3.08/2.80
AGAUS 94.88 (0.02) 0.04/5.08 94.51 (0.03) 1.27/4.22 94.37 (0.04) 1.72/3.92
AGAUSaicc 94.58 (0.02) 0.16/5.25 94.19 (0.04) 1.39/4.41 93.93 (0.05) 1.88/4.18
SRA 94.32 (0.04) 2.57/3.11 91.25 (0.05) 3.87/4.89 86.97 (0.08) 5.98/7.05
SRAaicc 94.10 (0.05) 2.71/3.19 90.93 (0.06) 4.15/4.92 86.62 (0.09) 6.33/7.05

300 AEST 94.30 (0.03) 3.16/2.55 94.68 (0.02) 2.79/2.52 94.67 (0.03) 2.79/2.54
AGAUS 95.17 (0.01) 0.00/4.83 95.14 (0.02) 1.02/3.84 94.97 (0.03) 1.44/3.58
AGAUSaicc 95.12 (0.01) 0.00/4.88 95.06 (0.02) 1.06/3.87 94.90 (0.03) 1.49/3.61
SRA 94.58 (0.02) 2.76/2.65 94.07 (0.03) 2.97/2.95 93.11 (0.04) 3.42/3.47
SRAaicc 94.55 (0.02) 2.77/2.68 93.87 (0.03) 3.09/3.04 92.98 (0.04) 3.45/3.57
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Table A.15: Monte Carlo averages and standard errors (in parenthesis) of forecast intervals constructed by the Bayesian
procedures for model yt = 0.6yt−1 + 0.3yt−2 + εt and σ2

ε=4 with nominal coverages of 80% and 95%.

h=1 h=6 h=12
Sample size Method Coverage Coverage Coverage Coverage Coverage Coverage

below/above below/above below/above
Gaussian 80% 10%/10% 80% 10%/10% 80% 10%/10%

50 BAYESN 79.48 (0.05) 10.20/10.32 78.05 (0.08) 11.03/10.92 77.23 (0.10) 11.46/11.32
BAYESL 79.58 (0.06) 10.41/10.01 76.26 (0.09) 12.06/11.69 74.58 (0.11) 12.86/12.57

100 BAYESN 79.68 (0.04) 10.27/10.05 79.07 (0.06) 10.68/10.26 78.71 (0.08) 10.84/10.44
BAYESL 79.65 (0.05) 10.25/10.10 77.60 (0.07) 11.42/10.98 76.34 (0.09) 12.06/11.60

300 BAYESN 79.81 (0.03) 10.13/10.06 79.51 (0.03) 10.37/10.12 79.26 (0.05) 10.54/10.20
BAYESL 79.91 (0.03) 10.05/10.04 79.35 (0.04) 10.29/10.35 78.69 (0.05) 10.69/10.63
Student-5 h=1 h=6 h=12

50 BAYEST 80.27 (0.06) 9.84/9.89 78.62 (0.09) 10.58/10.8 77.99 (0.11) 10.88/11.13
BAYESN 82.93 (0.06) 8.54/8.54 79.18 (0.09) 10.29/10.53 78.19 (0.11) 10.80/11.01
BAYESL 83.06 (0.06) 8.55/8.39 77.72 (0.10) 11.06/11.22 75.77 (0.11) 12.06/12.17

100 BAYEST 80.26 (0.04) 9.82/9.92 79.10 (0.06) 10.50/10.40 78.64 (0.08) 10.68/10.67
BAYESN 83.42 (0.04) 8.25/8.32 80.20 (0.06) 9.94/9.85 79.42 (0.08) 10.33/10.26
BAYESL 83.31 (0.05) 8.33/8.35 78.86 (0.08) 10.45/10.70 77.36 (0.09) 11.30/11.35

300 BAYEST 80.01 (0.03) 9.96/10.03 79.46 (0.04) 10.30/10.24 79.24 (0.05) 10.37/10.39
BAYESN 83.63 (0.03) 8.18/8.19 80.65 (0.04) 9.73/9.61 79.86 (0.05) 10.08/10.05
BAYESL 83.64 (0.03) 8.18/8.18 80.41 (0.04) 9.74/9.85 79.38 (0.05) 10.30/10.31
χ2

(5) h=1 h=6 h=12
50 BAYESN 83.80 (0.07) 5.14/11.06 78.93 (0.09) 9.37/11.69 78.24 (0.1) 9.94/11.82

BAYESL 83.24 (0.08) 5.89/10.87 77.23 (0.10) 10.54/12.22 75.39 (0.11) 11.76/12.85
100 BAYESN 84.70 (0.05) 4.41/10.89 80.09 (0.06) 8.75/11.16 79.49 (0.08) 9.29/11.22

BAYESL 83.92 (0.06) 5.33/10.75 78.43 (0.08) 9.91/11.67 77.13 (0.09) 10.89/11.99
300 BAYESN 85.26 (0.04) 4.05/10.69 80.50 (0.04) 8.78/10.72 79.99 (0.05) 9.35/10.66

BAYESL 84.89 (0.04) 4.44/10.66 80.17 (0.05) 9.08/10.75 79.37 (0.06) 9.67/10.96
h=1 h=6 h=12

Sample size Method Coverage Coverage Coverage Coverage Coverage Coverage
below/above below/above below/above

Gaussian 95% 2.5%/2.5% 95% 2.5%/2.5% 95% 2.5%/2.5%
50 BAYESN 94.64 (0.03) 2.65/2.71 93.95 (0.05) 3.02/3.03 93.65 (0.06) 3.18/3.17

BAYESL 94.69 (0.03) 2.75/2.56 92.75 (0.06) 3.69/3.56 91.61 (0.07) 4.25/4.14
100 BAYESN 94.83 (0.02) 2.64/2.53 94.45 (0.03) 2.87/2.68 94.31 (0.04) 2.90/2.79

BAYESL 94.83 (0.02) 2.61/2.57 93.56 (0.04) 3.32/3.12 92.82 (0.05) 3.69/3.48
300 BAYESN 94.83 (0.01) 2.60/2.57 94.69 (0.02) 2.72/2.59 94.57 (0.03) 2.75/2.68

BAYESL 94.91 (0.02) 2.55/2.54 94.60 (0.02) 2.71/2.69 94.19 (0.03) 2.92/2.89
Student-5 h=1 h=6 h=12

50 BAYEST 94.61 (0.03) 2.69/2.69 94.28 (0.05) 2.82/2.89 94.16 (0.06) 2.89/2.95
BAYESN 94.25 (0.03) 2.85/2.89 93.61 (0.05) 3.15/3.24 93.40 (0.06) 3.29/3.31
BAYESL 94.45 (0.03) 2.79/2.77 92.63 (0.06) 3.66/3.71 91.60 (0.07) 4.15/4.25

100 BAYEST 94.69 (0.02) 2.64/2.68 94.48 (0.03) 2.79/2.73 94.40 (0.04) 2.82/2.78
BAYESN 94.45 (0.02) 2.76/2.79 94.09 (0.03) 2.98/2.93 94.02 (0.04) 2.99/2.99
BAYESL 94.52 (0.02) 2.71/2.77 93.38 (0.04) 3.29/3.33 92.75 (0.05) 3.62/3.64

300 BAYEST 94.75 (0.01) 2.59/2.65 94.61 (0.02) 2.69/2.69 94.59 (0.02) 2.69/2.71
BAYESN 94.51 (0.01) 2.74/2.76 94.27 (0.02) 2.88/2.84 94.22 (0.03) 2.91/2.88
BAYESL 94.57 (0.01) 2.70/2.73 94.28 (0.02) 2.85/2.87 93.94 (0.03) 3.03/3.04
χ2

(5) h=1 h=6 h=12
50 BAYESN 94.99 (0.02) 0.10/4.91 94.21 (0.05) 1.50/4.29 94.00 (0.06) 1.87/4.12

BAYESL 95.10 (0.03) 0.24/4.67 93.09 (0.05) 2.22/4.68 92.09 (0.07) 3.02/4.89
100 BAYESN 95.11 (0.02) 0.03/4.87 94.68 (0.03) 1.24/4.08 94.56 (0.04) 1.61/3.83

BAYESL 95.20 (0.02) 0.11/4.69 93.86 (0.04) 1.79/4.34 93.16 (0.05) 2.46/4.39
300 BAYESN 95.21 (0.01) 0.00/4.79 95.05 (0.02) 1.07/3.88 94.82 (0.03) 1.52/3.66

BAYESL 95.28 (0.01) 0.01/4.72 94.83 (0.02) 1.23/3.93 94.44 (0.03) 1.71/3.84
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Table A.16: Monte Carlo averages and standard errors (in parenthesis) of forecast intervals by the bootstrap procedures
for model yt = 0.6yt−1 + 0.3yt−2 + εt and σ2

ε=4 with nominal coverage of 80%.

h=1 h=6 h=12
Sample size Method Coverage Coverage Coverage Coverage Coverage Coverage

below/above below/above below/above
Gaussian 80% 10%/10% 80% 10%/10% 80% 10%/10%

50 BOOT 79.09 (0.06) 10.41/10.51 79.47 (0.08) 10.29/10.23 80.50 (0.10) 9.77/9.72
BOOTEX 78.61 (0.06) 10.78/10.61 79.90 (0.10) 10.12/9.97 80.21 (0.11) 9.95/9.83
BOOTNP 72.59 (0.16) 13.51/13.90 64.46 (0.14) 17.84/17.70 60.13 (0.14) 19.90/19.97

100 BOOT 79.31 (0.04) 10.44/10.25 79.78 (0.06) 10.32/9.89 80.43 (0.08) 9.97/9.60
BOOTEX 79.28 (0.05) 10.42/10.30 80.09 (0.07) 10.15/9.76 80.57 (0.08) 9.88/9.55
BOOTNP 75.52 (0.15) 12.52/11.97 68.89 (0.13) 15.78/15.33 66.01 (0.13) 17.15/16.85

300 BOOT 79.75 (0.03) 10.16/10.09 79.96 (0.04) 10.21/9.83 80.22 (0.05) 10.02/9.76
BOOTEX 79.66 (0.03) 10.25/10.09 79.97 (0.04) 10.22/9.81 80.25 (0.05) 10.05/9.70
BOOTNP 80.17 (0.09) 9.88/9.95 74.27 (0.08) 12.88/12.85 72.27 (0.08) 14.03/13.7
Student-5 h=1 h=6 h=12

50 BOOT 79.45 (0.06) 10.23/10.32 79.63 (0.09) 10.09/10.28 80.39 (0.10) 9.67/9.94
BOOTEX 79.45 (0.06) 10.37/10.18 80.20 (0.10) 9.72/10.08 80.44 (0.12) 9.55/10.01
BOOTNP 71.05 (0.19) 13.87/15.08 63.10 (0.15) 17.51/19.39 59.09 (0.15) 19.61/21.30

100 BOOT 79.71 (0.04) 10.20/10.09 79.81 (0.06) 10.14/10.05 80.39 (0.08) 9.90/9.70
BOOTEX 79.74 (0.04) 10.16/10.11 80.06 (0.07) 9.97/9.97 80.34 (0.08) 9.92/9.75
BOOTNP 76.24 (0.15) 11.95/11.81 68.91 (0.13) 15.48/15.60 65.66 (0.13) 16.98/17.35

300 BOOT 79.62 (0.03) 10.19/10.19 79.63 (0.04) 10.17/10.20 79.89 (0.05) 10.08/10.02
BOOTEX 79.70 (0.03) 10.15/10.15 79.67 (0.04) 10.13/10.21 79.79 (0.05) 10.03/10.18
BOOTNP 79.51 (0.12) 10.34/10.15 73.10 (0.10) 13.63/13.27 70.77 (0.10) 14.71/14.52
χ2

(5) h=1 h=6 h=12
50 BOOT 79.67 (0.07) 9.81/10.51 79.91 (0.08) 9.52/10.57 81.04 (0.10) 8.92/10.04

BOOTEX 79.47 (0.09) 9.76/10.77 80.54 (0.10) 9.14/10.32 80.99 (0.12) 8.93/10.08
BOOTNP 72.32 (0.19) 12.75/14.93 64.19 (0.15) 18.52/17.29 59.93 (0.14) 20.77/19.30

100 BOOT 79.71 (0.06) 9.97/10.32 80.17 (0.06) 9.45/10.38 80.99 (0.08) 8.93/10.08
BOOTEX 79.47 (0.07) 9.99/10.53 80.31 (0.07) 9.33/10.36 80.83 (0.09) 9.04/10.13
BOOTNP 77.64 (0.15) 9.76/12.60 68.90 (0.12) 15.44/15.67 66.17 (0.12) 16.50/17.34

300 BOOT 79.56 (0.04) 10.35/10.09 79.94 (0.04) 10.14/9.92 80.40 (0.05) 9.85/9.75
BOOTEX 79.72 (0.04) 10.22/10.06 79.96 (0.04) 10.05/9.98 80.31 (0.05) 9.89/9.80
BOOTNP 81.27 (0.13) 7.21/11.52 73.85 (0.09) 12.48/13.67 72.05 (0.09) 13.33/14.62
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Table A.17: Monte Carlo averages and standard errors (in parenthesis) of forecast intervals by the bootstrap procedures
for model yt = 0.6yt−1 + 0.3yt−2 + εt and σ2

ε=4 with nominal coverage of 95%.

h=1 h=6 h=12
Sample size Method Coverage Coverage Coverage Coverage Coverage Coverage

below/above below/above below/above
Gaussian 95% 2.5%/2.5% 95% 2.5%/2.5% 95% 2.5%/2.5%

50 BOOT 93.55 (0.03) 3.21/3.24 94.23 (0.05) 2.89/2.89 94.65 (0.06) 2.67/2.67
BOOTEX 93.27 (0.04) 3.38/3.35 94.31 (0.05) 2.88/2.82 94.38 (0.06) 2.79/2.83
BOOTNP 85.77 (0.14) 6.75/7.48 81.29 (0.12) 9.28/9.43 77.56 (0.12) 11.24/11.20

100 BOOT 94.08 (0.03) 3.00/2.92 94.54 (0.03) 2.82/2.64 94.83 (0.04) 2.64/2.53
BOOTEX 94.03 (0.03) 3.01/2.96 94.71 (0.04) 2.73/2.55 94.93 (0.04) 2.60/2.46
BOOTNP 89.65 (0.12) 5.30/5.04 86.46 (0.10) 6.94/6.60 84.05 (0.10) 8.08/7.86

300 BOOT 94.68 (0.02) 2.71/2.61 94.85 (0.02) 2.66/2.49 94.95 (0.02) 2.55/2.49
BOOTEX 94.66 (0.02) 2.71/2.63 94.85 (0.02) 2.68/2.47 94.98 (0.02) 2.55/2.47
BOOTNP 93.76 (0.07) 3.05/3.19 91.20 (0.05) 4.35/4.45 89.81 (0.05) 5.11/5.08
Student-5 h=1 h=6 h=12

50 BOOT 93.63 (0.03) 3.17/3.20 93.77 (0.05) 3.13/3.10 94.32 (0.05) 2.85/2.83
BOOTEX 93.46 (0.04) 3.33/3.21 94.06 (0.05) 2.98/2.95 94.26 (0.06) 2.84/2.89
BOOTNP 83.68 (0.17) 7.75/8.57 80.21 (0.13) 9.58/10.21 76.30 (0.14) 11.52/12.18

100 BOOT 94.26 (0.02) 2.85/2.88 94.32 (0.03) 2.85/2.83 94.70 (0.04) 2.69/2.61
BOOTEX 94.22 (0.02) 2.87/2.91 94.33 (0.04) 2.84/2.83 94.57 (0.04) 2.73/2.69
BOOTNP 88.98 (0.12) 5.49/5.53 86.72 (0.10) 6.55/6.73 83.93 (0.10) 7.87/8.20

300 BOOT 94.61 (0.02) 2.68/2.71 94.61 (0.02) 2.71/2.68 94.71 (0.03) 2.65/2.64
BOOTEX 94.63 (0.02) 2.68/2.69 94.58 (0.02) 2.71/2.72 94.65 (0.03) 2.66/2.69
BOOTNP 92.33 (0.10) 3.78/3.88 90.24 (0.08) 4.97/4.79 88.91 (0.08) 5.62/5.47
χ2

(5) h=1 h=6 h=12
50 BOOT 94.21 (0.04) 2.37/3.43 94.39 (0.05) 2.42/3.18 95.03 (0.05) 2.15/2.82

BOOTEX 94.11 (0.05) 2.28/3.61 94.55 (0.06) 2.32/3.13 94.70 (0.07) 2.37/2.93
BOOTNP 85.44 (0.17) 6.62/7.94 80.97 (0.12) 10.26/8.77 76.96 (0.13) 12.54/10.50

100 BOOT 94.58 (0.03) 2.40/3.02 94.71 (0.03) 2.40/2.89 95.13 (0.04) 2.23/2.64
BOOTEX 94.67 (0.04) 2.20/3.12 94.73 (0.04) 2.36/2.91 95.06 (0.05) 2.21/2.73
BOOTNP 90.15 (0.14) 3.84/6.01 86.39 (0.10) 6.94/6.67 83.96 (0.10) 8.19/7.85

300 BOOT 94.60 (0.02) 2.69/2.71 94.81 (0.02) 2.59/2.59 95.000 (0.03) 2.48/2.51
BOOTEX 94.68 (0.02) 2.55/2.77 94.82 (0.02) 2.57/2.61 94.96 (0.03) 2.51/2.53
BOOTNP 93.54 (0.10) 1.87/4.59 90.74 (0.07) 4.48/4.78 89.42 (0.07) 5.32/5.25
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A.5. Monte Carlo results for model yt = 0.98yt−1+εt+0.5εt−1 with σ2
ε=1.

Table A.18: Monte Carlo averages and standard deviations (in parenthesis) of MD distances between the estimated
and true forecast densities for model yt = 0.98yt−1 + εt + 0.5εt−1 with σ2

ε=1

Panel A: Gaussian T=50 T=100 T=300
h=1 h=6 h=12 h=1 h=6 h=12 h=1 h=6 h=12

EST/GAUS 0.181 0.885 1.610 0.134 0.712 1.295 0.078 0.413 0.752
(0.146) (0.790) (1.580) (0.095) (0.566) (1.062) (0.067) (0.432) (0.814)

GAUSaicc 0.402 1.149 1.938 0.202 0.803 1.385 0.082 0.409 0.737
(0.303) (0.907) (1.900) (0.209) (0.628) (1.126) (0.078) (0.422) (0.791)

Panel B: Student-5 T=50 T=100 T=300
h=1 h=6 h=12 h=1 h=6 h=12 h=1 h=6 h=12

EST 0.204 0.983 1.786 0.151 0.739 1.326 0.094 0.467 0.826
(0.162) (0.864) (1.787) (0.134) (0.583) (1.115) (0.099) (0.483) (0.905)

GAUS 0.236 1.002 1.801 0.191 0.763 1.349 0.149 0.515 0.874
(0.159) (0.857) (1.777) (0.129) (0.574) (1.101) (0.092) (0.465) (0.880)

GAUSaicc 0.435 1.259 2.150 0.245 0.841 1.421 0.149 0.506 0.851
(0.338) (1.041) (2.227) (0.241) (0.614) (1.141) (0.094) (0.453) (0.851)

Panel C: χ2
(5) T=50 T=100 T=300

h=1 h=6 h=12 h=1 h=6 h=12 h=1 h=6 h=12
EST 0.193 0.956 1.751 0.139 0.702 1.274 0.084 0.432 0.769

(0.150) (0.879) (1.839) (0.100) (0.576) (1.121) (0.068) (0.403) (0.764)

GAUS 0.286 1.022 1.801 0.247 0.784 1.341 0.221 0.550 0.864
(0.130) (0.858) (1.820) (0.082) (0.544) (1.090) (0.050) (0.370) (0.738)

GAUSaicc 0.456 1.269 2.141 0.301 0.858 1.419 0.221 0.542 0.845
(0.288) (1.010) (2.285) (0.182) (0.585) (1.132) (0.050) (0.359) (0.710)
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Table A.19: Monte Carlo averages and standard errors (in parenthesis) of coverages of the estimated forecast intervals
for model yt = 0.98yt−1 + εt + 0.5εt−1 and σ2

ε=1 with nominal coverages of 80% and 95%.

h=1 h=6 h=12
Sample size Method Coverage Coverage Coverage Coverage Coverage Coverage

below/above below/above below/above
Gaussian 80% 10%/10% 80% 10%/10% 80% 10%/10%

50 EST/GAUS 78.66 (0.05) 10.71/10.64 76.27 (0.09) 11.86/11.87 74.80 (0.13) 12.58/12.62
GAUSaicc 76.68 (0.08) 11.83/11.48 66.95 (0.11) 16.73/16.32 65.36 (0.14) 17.51/17.12

100 EST/GAUS 79.23 (0.04) 10.44/10.34 77.82 (0.06) 11.16/11.02 76.80 (0.08) 11.74/11.46
GAUSaicc 78.11 (0.05) 10.99/10.90 75.69 (0.09) 12.22/12.09 74.63 (0.11) 12.81/12.56

300 EST/GAUS 79.68 (0.02) 10.20/10.12 79.04 (0.03) 10.51/10.45 78.59 (0.05) 10.72/10.68
GAUSaicc 79.47 (0.02) 10.31/10.22 79.05 (0.03) 10.49/10.46 78.57 (0.05) 10.72/10.71
Student-5 h=1 h=6 h=12

50 EST 77.94 (0.07) 11.25/10.81 76.13 (0.10) 12.09/11.78 74.89 (0.13) 12.64/12.47
GAUS 82.19 (0.06) 9.11/8.71 77.55 (0.10) 11.38/11.07 75.74 (0.13) 12.21/12.04
GAUSaicc 79.75 (0.10) 10.80/9.46 67.76 (0.12) 16.18/16.06 65.51 (0.14) 17.15/17.35

100 EST 78.73 (0.05) 10.49/10.78 77.84 (0.07) 10.86/11.29 77.06 (0.09) 11.17/11.77
GAUS 82.93 (0.05) 8.43/8.65 79.25 (0.07) 10.18/10.57 77.92 (0.09) 10.75/11.33
GAUSaicc 81.77 (0.07) 9.13/9.09 77.08 (0.09) 11.32/11.6 75.62 (0.11) 11.92/12.46

300 EST 79.54 (0.03) 10.21/10.24 79.22 (0.04) 10.49/10.29 78.86 (0.05) 10.68/10.47
GAUS 83.72 (0.03) 8.12/8.162 80.64 (0.04) 9.77/9.59 79.67 (0.05) 10.28/10.05
GAUSaicc 83.58 (0.03) 8.19/8.24 80.57 (0.04) 9.79/9.64 79.58 (0.05) 10.30/10.12
χ2

(5) h=1 h=6 h=12
50 EST 77.84 (0.08) 11.35/10.81 76.20 (0.10) 11.91/11.89 74.87 (0.13) 12.41/12.72

GAUS 83.17 (0.07) 5.29/11.53 77.07 (0.10) 10.40/12.53 75.30 (0.13) 11.46/13.24
GAUSaicc 80.04 (0.10) 7.77/12.19 67.29 (0.12) 16.03/16.67 65.39 (0.15) 16.96/17.66

100 EST 79.01 (0.06) 10.56/10.44 78.12 (0.06) 10.84/11.04 77.22 (0.09) 11.18/11.6
GAUS 84.52 (0.05) 4.34/11.14 78.94 (0.06) 9.38/11.69 77.60 (0.09) 10.27/12.13
GAUSaicc 82.99 (0.06) 5.43/11.58 76.61 (0.09) 10.72/12.67 75.19 (0.11) 11.63/13.19

300 EST 79.76 (0.04) 10.07/10.17 79.35 (0.04) 10.26/10.4 79.07 (0.05) 10.39/10.55
GAUS 85.42 (0.03) 3.71/10.87 80.18 (0.04) 8.78/11.03 79.46 (0.05) 9.47/11.07
GAUSaicc 85.26 (0.03) 3.81/10.93 80.12 (0.04) 8.83/11.05 79.36 (0.05) 9.53/11.11

h=1 h=6 h=12
Sample size Method Coverage Coverage Coverage Coverage Coverage Coverage

below/above below/above below/above
Gaussian 95% 2.5%/2.5% 95% 2.5%/2.5% 95% 2.5%/2.5%

50 EST/GAUS 94.03 (0.03) 2.99/2.97 92.24 (0.06) 3.89/3.87 90.92 (0.09) 4.56/4.52
GAUSaicc 92.87 (0.05) 3.63/3.49 85.46 (0.09) 7.43/7.11 83.78 (0.12) 8.29/7.93

100 EST/GAUS 94.47 (0.02) 2.78/2.75 93.51 (0.04) 3.28/3.20 92.65 (0.06) 3.71/3.63
GAUSaicc 93.84 (0.03) 3.12/3.03 91.87 (0.06) 4.12/4.01 90.92 (0.08) 4.60/4.48

300 EST/GAUS 94.81 (0.01) 2.60/2.59 94.44 (0.02) 2.79/2.76 94.09 (0.03) 2.97/2.95
GAUSaicc 94.70 (0.01) 2.66/2.64 94.44 (0.02) 2.79/2.77 94.06 (0.03) 2.98/2.96
Student-5 h=1 h=6 h=12

50 EST 93.99 (0.03) 3.09/2.92 92.38 (0.06) 3.96/3.66 91.29 (0.09) 4.46/4.25
GAUS 93.71 (0.03) 3.24/3.05 92.16 (0.06) 4.07/3.77 91.13 (0.09) 4.54/4.33
GAUSaicc 92.86 (0.06) 3.89/3.25 85.35 (0.10) 7.38/7.27 83.59 (0.13) 8.12/8.29

100 EST 94.39 (0.03) 2.75/2.85 93.61 (0.04) 3.16/3.23 92.97 (0.06) 3.42/3.61
GAUS 94.12 (0.03) 2.89/2.98 93.41 (0.04) 3.26/3.33 92.82 (0.06) 3.49/3.68
GAUSaicc 93.58 (0.05) 3.22/3.21 91.82 (0.06) 4.09/4.09 91.01 (0.08) 4.43/4.56

300 EST 94.84 (0.01) 2.58/2.58 94.55 (0.02) 2.77/2.68 94.30 (0.03) 2.89/2.81
GAUS 94.58 (0.01) 2.71/2.70 94.37 (0.02) 2.86/2.77 94.17 (0.03) 2.96/2.87
GAUSaicc 94.52 (0.01) 2.74/2.74 94.33 (0.02) 2.87/2.79 94.10 (0.03) 2.99/2.91
χ2

(5) h=1 h=6 h=12
50 EST 92.47 (0.06) 4.51/3.01 91.97 (0.07) 4.22/3.80 90.90 (0.10) 4.63/4.46

GAUS 94.45 (0.03) 0.13/5.42 92.54 (0.07) 2.21/5.25 91.15 (0.10) 3.21/5.64
GAUSaicc 93.87 (0.05) 0.45/5.68 85.70 (0.10) 5.64/8.65 83.79 (0.13) 6.89/9.32

100 EST 93.70 (0.04) 3.56/2.74 93.53 (0.04) 3.34/3.13 92.87 (0.06) 3.63/3.50
GAUS 94.88 (0.02) 0.01/5.10 93.95 (0.04) 1.53/4.51 93.06 (0.06) 2.37/4.57
GAUSaicc 94.55 (0.03) 0.10/5.35 92.29 (0.06) 2.39/5.32 91.25 (0.07) 3.29/5.46

300 EST 94.48 (0.03) 2.92/2.60 94.51 (0.02) 2.80/2.69 94.26 (0.03) 2.92/2.82
GAUS 95.10 (0.01) 0.00/4.90 94.90 (0.02) 1.14/3.96 94.48 (0.03) 1.73/3.79
GAUSaicc 95.06 (0.01) 0.00/4.94 94.87 (0.02) 1.16/3.98 94.42 (0.03) 1.76/3.82
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Table A.20: Monte Carlo averages and standard deviations (in parenthesis) of MD distances between the estimated
and true forecast densities for model yt = 0.98yt−1 + εt + 0.5εt−1 with σ2

ε=1.

Panel A: Gaussian T=50 T=100 T=300
h=1 h=6 h=12 h=1 h=6 h=12 h=1 h=6 h=12

AEST/AGAUS 0.182 0.892 1.655 0.135 0.713 1.298 0.078 0.414 0.754
(0.146) (0.829) (1.811) (0.095) (0.565) (1.065) (0.067) (0.432) (0.813)

BAYESN 0.198 0.933 1.663 0.140 0.679 1.156 0.094 0.421 0.705
(0.152) (0.837) (1.755) (0.096) (0.578) (1.061) (0.054) (0.334) (0.605)

BAYESL 0.263 0.947 1.392 0.236 0.866 1.228 0.154 0.538 0.789
(0.198) (0.680) (0.897) (0.162) (0.622) (0.857) (0.096) (0.377) (0.558)

BOOT 0.206 0.830 1.515 0.153 0.672 1.198 0.109 0.465 0.807
(0.126) (0.728) (1.493) (0.080) (0.492) (0.943) (0.060) (0.394) (0.751)

BOOTEX 0.280 1.059 1.826 0.206 0.814 1.379 0.138 0.543 0.903
(0.193) (0.906) (1.789) (0.131) (0.615) (1.040) (0.083) (0.418) (0.752)

BOOTNP 1.114 1.978 2.757 1.249 1.852 2.545 1.455 1.616 2.154
(0.704) (0.918) (1.028) (0.754) (0.985) (1.090) (0.761) (0.993) (1.092)

Panel B: Student-5 T=50 T=100 T=300
h=1 h=6 h=12 h=1 h=6 h=12 h=1 h=6 h=12

AEST 0.206 0.995 1.843 0.152 0.741 1.331 0.094 0.470 0.831
(0.163) (0.926) (2.092) (0.134) (0.583) (1.124) (0.100) (0.485) (0.909)

AGAUS 0.239 1.016 1.863 0.193 0.766 1.354 0.150 0.518 0.880
(0.161) (0.924) (2.099) (0.130) (0.574) (1.110) (0.092) (0.467) (0.884)

BAYEST 0.200 0.924 1.658 0.145 0.629 1.075 0.101 0.406 0.669
(0.152) (0.807) (1.718) (0.103) (0.506) (0.966) (0.068) (0.301) (0.566)

BAYESN 0.241 1.013 1.821 0.185 0.688 1.160 0.144 0.446 0.722
(0.169) (0.921) (2.009) (0.129) (0.569) (1.085) (0.091) (0.398) (0.709)

BAYESL 0.299 0.974 1.439 0.281 0.892 1.247 0.191 0.597 0.864
(0.225) (0.726) (0.942) (0.198) (0.611) (0.809) (0.130) (0.467) (0.679)

BOOT 0.223 0.917 1.682 0.174 0.695 1.232 0.123 0.499 0.867
(0.143) (0.810) (1.719) (0.119) (0.510) (0.988) (0.078) (0.417) (0.811)

BOOTEX 0.297 1.126 1.964 0.225 0.851 1.431 0.157 0.585 0.968
(0.220) (1.054) (1.970) (0.162) (0.642) (1.131) (0.117) (0.485) (0.831)

BOOTNP 1.116 2.025 2.835 1.225 1.834 2.556 1.483 1.630 2.167
(0.780) (0.961) (1.101) (0.777) (0.996) (1.131) (0.934) (1.080) (1.163)

Panel C: χ2
(5) T=50 T=100 T=300

h=1 h=6 h=12 h=1 h=6 h=12 h=1 h=6 h=12
AEST 0.194 0.970 1.825 0.139 0.703 1.279 0.085 0.434 0.774

(0.150) (0.960) (2.220) (0.101) (0.575) (1.136) (0.068) (0.403) (0.763)
AGAUS 0.287 1.035 1.875 0.248 0.786 1.347 0.222 0.552 0.869

(0.129) (0.940) (2.205) (0.082) (0.545) (1.110) (0.050) (0.370) (0.738)
BAYESN 0.293 1.036 1.820 0.247 0.726 1.191 0.219 0.491 0.727

(0.141) (0.938) (2.155) (0.080) (0.551) (1.094) (0.044) (0.292) (0.552)
BAYESL 0.339 1.026 1.455 0.315 0.903 1.255 0.254 0.625 0.864

(0.181) (0.701) (0.948) (0.151) (0.584) (0.807) (0.081) (0.376) (0.582)
BOOT 0.215 0.907 1.666 0.156 0.662 1.189 0.109 0.465 0.813

(0.134) (0.845) (1.791) (0.086) (0.501) (0.996) (0.061) (0.372) (0.720)
BOOTEX 0.288 1.134 1.967 0.214 0.797 1.369 0.140 0.546 0.915

(0.207) (1.029) (2.068) (0.138) (0.591) (1.103) (0.085) (0.417) (0.757)
BOOTNP 1.100 1.973 2.791 1.211 1.814 2.534 1.474 1.600 2.153

(0.708) (0.906) (1.039) (0.720) (0.975) (1.108) (0.767) (1.011) (1.102)
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Table A.21: Monte Carlo averages and standard errors (in parenthesis) of the forecast intervals constructed by the
asymptotic procedures for model yt = 0.98yt−1 + εt + 0.5εt−1 and σ2

ε=1 with nominal coverages of 80% and 95%.

h=1 h=6 h=12
Sample size Method Coverage Coverage Coverage Coverage Coverage Coverage

below/above below/above below/above
Gaussian 80% 10%/10% 80% 10%/10% 80% 10%/10%

50 AEST/AGAUS 78.91 (0.06) 10.57/10.52 75.64 (0.12) 12.18/12.18 73.45 (0.18) 13.31/13.24
SRAaicc 78.55 (0.08) 9.58/11.87 69.38 (0.16) 14.18/16.44 8.48 (2.73) 19.57/22.40

100 AEST/AGAUS 79.53 (0.04) 10.29/10.18 78.12 (0.06) 11.03/10.85 77.14 (0.09) 11.61/11.24
SRAaicc 78.75 (0.05) 10.17/11.08 74.55 (0.11) 12.15/13.3 8.55 (1.70) 14.18/15.36

300 AEST/AGAUS 79.84 (0.02) 10.12/10.05 79.34 (0.03) 10.36/10.3 79.07 (0.05) 10.47/10.45
SRAaicc 79.45 (0.03) 10.22/10.33 78.40 (0.05) 10.90/10.7 8.58 (0.81) 11.42/11.29
Student-5 h=1 h=6 h=12

50 AEST 78.09 (0.08) 11.14/10.77 75.38 (0.13) 12.38/12.23 73.77 (0.17) 13.13/13.11
AGAUS 82.29 (0.07) 9.03/8.68 76.77 (0.13) 11.68/11.55 74.57 (0.17) 12.72/12.70
SRAaicc 78.85 (0.09) 9.61/11.54 70.74 (0.15) 13.57/15.69 60.60 (0.20) 18.48/20.92

100 AEST 78.95 (0.05) 10.39/10.66 78.05 (0.07) 10.77/11.18 77.31 (0.10) 11.03/11.66
AGAUS 83.13 (0.05) 8.33/8.54 79.47 (0.07) 10.07/10.46 78.15 (0.10) 10.62/11.22
SRAaicc 79.16 (0.06) 9.76/11.08 75.08 (0.11) 11.75/13.17 8.49 (2.32) 13.52/15.28

300 AEST 79.70 (0.03) 10.14/10.16 79.48 (0.04) 10.36/10.16 79.29 (0.05) 10.47/10.24
AGAUS 83.86 (0.03) 8.06/8.08 80.90 (0.04) 9.64/9.46 80.11 (0.05) 10.07/9.82
SRAaicc 79.51 (0.03) 9.99/10.51 78.65 (0.05) 10.55/10.79 8.42 (0.90) 11.16/11.23
χ2

(5) h=1 h=6 h=12
50 AEST 77.98 (0.09) 11.27/10.75 75.14 (0.14) 12.51/12.35 73.28 (0.19) 13.31/13.41

AGAUS 83.25 (0.08) 5.28/11.46 75.97 (0.14) 11.06/12.97 73.67 (0.19) 12.42/13.9
SRAaicc 78.32 (0.10) 10.18/11.50 70.97 (0.16) 14.14/14.88 8.78 (3.64) 18.83/20.42

100 AEST 79.31 (0.06) 10.35/10.34 78.37 (0.07) 10.71/10.92 77.53 (0.09) 11.03/11.44
AGAUS 84.75 (0.05) 4.21/11.04 79.18 (0.07) 9.26/11.56 77.91 (0.10) 10.12/11.97
SRAaicc 78.56 (0.08) 10.52/10.92 75.26 (0.10) 12.31/12.43 8.50 (1.73) 14.27/14.04

300 AEST 79.95 (0.04) 9.94/10.11 79.64 (0.04) 10.08/10.28 79.53 (0.05) 10.13/10.34
AGAUS 85.58 (0.03) 3.61/10.81 80.47 (0.04) 8.62/10.91 79.93 (0.05) 9.21/10.86
SRAaicc 79.53 (0.05) 10.22/10.25 78.68 (0.05) 10.72/10.6 8.53 (0.89) 11.02/10.85

h=1 h=6 h=12
Sample size Method Coverage Coverage Coverage Coverage Coverage Coverage

below/above below/above below/above
Gaussian 95% 2.5%/2.5% 95% 2.5%/2.5% 95% 2.5%/2.5%

50 AEST/AGAUS 94.12 (0.03) 2.94/2.94 91.19 (0.11) 4.41/4.404 88.47 (0.18) 5.83/5.70
SRAaicc 91.51 (0.06) 3.13/5.37 81.39 (0.14) 8.37/10.24 69.17 (0.19) 15.30/15.53

100 AEST/AGAUS 94.62 (0.02) 2.71/2.67 93.66 (0.04) 3.25/3.10 92.69 (0.07) 3.78/3.52
SRAaicc 93.65 (0.03) 2.69/3.66 89.68 (0.08) 4.64/5.68 82.90 (0.13) 7.81/9.29

300 AEST/AGAUS 94.89 (0.01) 2.56/2.55 94.59 (0.02) 2.72/2.69 94.35 (0.03) 2.82/2.82
SRAaicc 94.53 (0.02) 2.58/2.89 93.78 (0.03) 3.05/3.17 92.35 (0.05) 3.76/3.89
Student-5 h=1 h=6 h=12

50 AEST 93.96 (0.04) 3.12/2.92 91.09 (0.13) 4.51/4.40 89.17 (0.17) 5.42/5.40
AGAUS 93.68 (0.04) 3.26/3.06 90.89 (0.13) 4.61/4.50 89.02 (0.17) 5.49/5.48
SRAaicc 92.20 (0.06) 2.69/5.10 82.18 (0.12) 8.06/9.75 70.35 (0.19) 14.57/15.08

100 AEST 94.49 (0.03) 2.72/2.79 93.68 (0.05) 3.14/3.18 92.97 (0.07) 3.43/3.61
AGAUS 94.23 (0.03) 2.85/2.92 93.48 (0.05) 3.24/3.28 92.83 (0.07) 3.49/3.68
SRAaicc 94.09 (0.04) 2.31/3.60 89.43 (0.09) 4.88/5.70 83.12 (0.13) 7.66/9.22

300 AEST 94.90 (0.01) 2.55/2.55 94.68 (0.02) 2.71/2.61 94.52 (0.03) 2.79/2.69
AGAUS 94.65 (0.01) 2.68/2.67 94.50 (0.02) 2.79/2.70 94.39 (0.03) 2.86/2.75
SRAaicc 94.72 (0.02) 2.47/2.80 93.85 (0.04) 2.92/3.23 92.68 (0.05) 3.58/3.74
χ2

(5) h=1 h=6 h=12
50 AEST 92.48 (0.07) 4.52/3.00 90.37 (0.14) 5.09/4.53 88.01 (0.20) 6.19/5.79

AGAUS 94.41 (0.04) 0.20/5.39 90.91 (0.14) 3.16/5.92 88.23 (0.20) 4.94/6.83
SRAaicc 91.81 (0.07) 3.41/4.78 82.22 (0.13) 8.07/9.70 70.74 (0.19) 14.39/14.87

100 AEST 93.86 (0.04) 3.44/2.70 93.60 (0.05) 3.32/3.07 92.87 (0.08) 3.67/3.47
AGAUS 94.95 (0.02) 0.01/5.04 94.00 (0.04) 1.57/4.43 93.03 (0.08) 2.46/4.51
SRAaicc 93.68 (0.05) 2.87/3.45 90.16 (0.07) 4.72/5.12 83.92 (0.12) 7.60/8.47

300 AEST 94.59 (0.03) 2.83/2.57 94.67 (0.02) 2.70/2.62 94.52 (0.03) 2.77/2.71
AGAUS 95.14 (0.01) 0.00/4.86 95.03 (0.02) 1.08/3.88 94.71 (0.03) 1.63/3.66
SRAaicc 94.51 (0.03) 2.69/2.79 93.94 (0.03) 3.16/2.90 92.66 (0.05) 3.74/3.59
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Table A.22: Monte Carlo averages and standard errors (in parenthesis) of forecast intervals constructed by the Bayesian
procedures for model yt = 0.98yt−1 + εt + 0.5εt−1 and σ2

ε=1 with nominal coverages of 80% and 95%.

h=1 h=6 h=12
Sample size Method Coverage Coverage Coverage Coverage Coverage Coverage

below/above below/above below/above
Gaussian 80% 10%/10% 80% 10%/10% 80% 10%/10%

50 BAYESN 80.02 (0.05) 10.00/9.98 76.35 (0.10) 11.74/11.91 74.41 (0.13) 12.72/12.87
BAYESL 80.12 (0.06) 9.79/10.10 74.76 (0.10) 12.43/12.82 72.16 (0.12) 13.64/14.20

100 BAYESN 79.97 (0.04) 10.00/10.03 77.77 (0.06) 11.15/11.08 76.45 (0.09) 11.78/11.76
BAYESL 79.88 (0.04) 10.11/10.01 76.26 (0.08) 11.61/12.13 74.69 (0.10) 12.32/13.00

300 BAYESN 79.91 (0.03) 10.11/9.97 78.96 (0.04) 10.59/10.45 78.36 (0.05) 10.85/10.79
BAYESL 79.87 (0.03) 10.21/9.92 78.72 (0.04) 10.92/10.36 78.02 (0.06) 11.20/10.78
Student-5 h=1 h=6 h=12

50 BAYEST 80.92 (0.06) 9.66/9.41 78.06 (0.09) 11.06/10.88 76.72 (0.12) 11.65/11.63
BAYESN 83.30 (0.06) 8.46/8.23 78.18 (0.10) 11.02/10.80 76.06 (0.12) 12.06/11.89
BAYESL 83.31 (0.07) 8.52/8.17 76.44 (0.10) 11.98/11.59 73.75 (0.12) 13.19/13.06

100 BAYEST 80.50 (0.04) 9.67/9.84 78.67 (0.06) 10.47/10.85 77.69 (0.08) 10.93/11.38
BAYESN 83.52 (0.05) 8.14/8.34 79.31 (0.07) 10.21/10.48 77.58 (0.09) 11.03/11.39
BAYESL 82.99 (0.06) 8.44/8.57 77.44 (0.08) 11.15/11.41 75.64 (0.10) 12.04/12.32

300 BAYEST 80.28 (0.03) 9.79/9.92 79.58 (0.04) 10.23/10.19 79.17 (0.05) 10.47/10.36
BAYESN 83.92 (0.03) 8.01/8.07 80.64 (0.04) 9.69/9.67 79.50 (0.05) 10.28/10.22
BAYESL 83.68 (0.03) 8.02/8.30 80.11 (0.05) 9.86/10.02 79.03 (0.06) 10.48/10.48
χ2

(5) h=1 h=6 h=12
50 BAYESN 84.10 (0.07) 4.87/11.03 77.44 (0.10) 10.16/12.40 75.23 (0.13) 11.40/13.37

BAYESL 83.85 (0.08) 5.30/10.85 75.51 (0.10) 11.52/12.97 73.06 (0.12) 12.91/14.03
100 BAYESN 84.95 (0.05) 4.21/10.84 78.76 (0.07) 9.53/11.71 77.06 (0.09) 10.64/12.3

BAYESL 84.05 (0.06) 5.16/10.79 77.11 (0.08) 10.59/12.29 75.46 (0.10) 11.78/12.76
300 BAYESN 85.50 (0.03) 3.73/10.77 80.18 (0.04) 8.83/11.00 79.22 (0.05) 9.62/11.15

BAYESL 84.90 (0.04) 4.43/10.67 79.61 (0.05) 9.31/11.07 78.83 (0.06) 9.96/11.21
h=1 h=6 h=12

Sample size Method Coverage Coverage Coverage Coverage Coverage Coverage
below/above below/above below/above

Gaussian 95% 2.5%/2.5% 95% 2.5%/2.5% 95% 2.5%/2.5%
50 BAYESN 94.96 (0.03) 2.53/2.51 92.99 (0.06) 3.48/3.52 91.85 (0.08) 4.04/4.10

BAYESL 95.03 (0.03) 2.41/2.56 91.93 (0.07) 4.00/4.06 90.21 (0.09) 4.80/4.99
100 BAYESN 94.92 (0.02) 2.55/2.53 93.72 (0.04) 3.20/3.08 92.93 (0.06) 3.58/3.49

BAYESL 94.89 (0.02) 2.58/2.53 92.90 (0.05) 3.47/3.63 91.87 (0.06) 3.89/4.24
300 BAYESN 94.92 (0.01) 2.55/2.52 94.44 (0.02) 2.79/2.76 94.09 (0.03) 2.95/2.95

BAYESL 94.86 (0.01) 2.62/2.52 94.24 (0.02) 3.00/2.75 93.87 (0.03) 3.15/2.98
Student-5 h=1 h=6 h=12

50 BAYEST 94.83 (0.03) 2.62/2.55 93.89 (0.05) 3.14/2.98 93.29 (0.07) 3.41/3.30
BAYESN 94.44 (0.03) 2.82/2.74 93.04 (0.06) 3.59/3.36 92.33 (0.07) 3.94/3.73
BAYESL 94.61 (0.03) 2.74/2.65 92.26 (0.06) 3.96/3.78 90.87 (0.08) 4.61/4.52

100 BAYEST 94.75 (0.02) 2.60/2.65 94.22 (0.04) 2.84/2.93 93.75 (0.05) 3.04/3.20
BAYESN 94.49 (0.02) 2.71/2.79 93.64 (0.04) 3.17/3.19 93.02 (0.05) 3.45/3.54
BAYESL 94.40 (0.03) 2.76/2.84 92.69 (0.05) 3.64/3.67 91.89 (0.06) 3.97/4.13

300 BAYEST 94.89 (0.01) 2.55/2.56 94.72 (0.02) 2.66/2.62 94.52 (0.03) 2.75/2.73
BAYESN 94.66 (0.01) 2.68/2.66 94.38 (0.02) 2.82/2.80 94.18 (0.03) 2.94/2.89
BAYESL 94.64 (0.02) 2.61/2.75 94.15 (0.03) 2.93/2.92 93.92 (0.03) 3.00/3.07
χ2

(5) h=1 h=6 h=12
50 BAYESN 94.92 (0.03) 0.17/4.90 93.23 (0.06) 2.00/4.77 92.22 (0.08) 2.80/4.97

BAYESL 95.11 (0.03) 0.23/4.66 92.23 (0.06) 2.73/5.04 90.73 (0.08) 3.81/5.46
100 BAYESN 95.15 (0.02) 0.01/4.84 94.09 (0.04) 1.54/4.37 93.21 (0.05) 2.35/4.44

BAYESL 95.22 (0.02) 0.08/4.69 93.29 (0.04) 2.08/4.63 92.33 (0.06) 2.97/4.69
300 BAYESN 95.17 (0.01) 0.00/4.83 94.90 (0.02) 1.17/3.94 94.48 (0.03) 1.76/3.76

BAYESL 95.23 (0.01) 0.01/4.76 94.64 (0.02) 1.38/3.98 94.27 (0.03) 1.92/3.80
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Table A.23: Monte Carlo averages and standard errors (in parenthesis) of forecast intervals by the bootstrap procedures
for model yt = 0.98yt−1 + εt + 0.5εt−1 and σ2

ε=1 with nominal coverage of 80%.

h=1 h=6 h=12
Sample size Method Coverage Coverage Coverage Coverage Coverage Coverage

below/above below/above below/above
Gaussian 80% 10%/10% 80% 10%/10% 80% 10%/10%

50 BOOT 78.41 (0.06) 10.74/10.85 77.21 (0.09) 11.43/11.36 76.76 (0.12) 11.64/11.61
BOOTEX 78.40 (0.07) 10.74/10.86 75.90 (0.12) 11.99/12.11 75.37 (0.15) 12.17/12.45
BOOTNP 69.12 (0.26) 15.32/15.56 48.52 (0.17) 25.90/25.58 41.43 (0.15) 29.52/29.05

100 BOOT 79.10 (0.04) 10.43/10.47 78.60 (0.06) 10.73/10.67 78.50 (0.08) 10.84/10.67
BOOTEX 79.08 (0.05) 10.49/10.43 78.66 (0.08) 10.69/10.65 78.62 (0.10) 10.75/10.62
BOOTNP 74.65 (0.26) 12.36/12.99 54.87 (0.17) 22.34/22.78 48.00 (0.15) 25.83/26.17

300 BOOT 79.55 (0.03) 10.24/10.21 79.45 (0.03) 10.33/10.22 79.42 (0.05) 10.30/10.28
BOOTEX 79.53 (0.03) 10.36/10.11 79.25 (0.04) 10.54/10.21 79.40 (0.06) 10.44/10.16
BOOTNP 82.15 (0.23) 9.45/8.39 62.35 (0.16) 19.02/18.64 56.13 (0.15) 22.16/21.71
Student-5 h=1 h=6 h=12

50 BOOT 79.26 (0.06) 10.51/10.23 77.87 (0.09) 11.2/10.93 77.38 (0.12) 11.38/11.24
BOOTEX 79.37 (0.08) 10.4/10.23 76.25 (0.12) 11.86/11.89 75.66 (0.15) 12.04/12.3
BOOTNP 67.51 (0.28) 17/15.48 48.10 (0.18) 26.64/25.26 40.50 (0.16) 30.38/29.12

100 BOOT 79.52 (0.05) 10.19/10.29 79.13 (0.06) 10.32/10.55 79.04 (0.08) 10.27/10.70
BOOTEX 79.62 (0.05) 10.15/10.23 78.40 (0.08) 10.60/11 78.06 (0.11) 10.73/11.21
BOOTNP 74.51 (0.27) 13.45/12.04 54.82 (0.18) 22.84/22.34 47.96 (0.16) 26.02/26.02

300 BOOT 79.78 (0.03) 10.12/10.10 79.79 (0.04) 10.26/9.95 79.78 (0.05) 10.28/9.93
BOOTEX 79.78 (0.03) 10.01/10.22 79.44 (0.05) 10.26/10.29 79.52 (0.06) 10.32/10.17
BOOTNP 82.70 (0.24) 8.14/9.16 63.20 (0.16) 17.81/18.98 56.65 (0.15) 21.26/22.09
χ2

(5) h=1 h=6 h=12
50 BOOT 78.64 (0.07) 10.53/10.82 77.53 (0.10) 10.92/11.55 77.02 (0.12) 11.03/11.95

BOOTEX 78.92 (0.09) 10.11/10.98 75.89 (0.12) 11.87/12.24 75.54 (0.15) 11.85/12.61
BOOTNP 70.00 (0.28) 15.83/14.17 48.44 (0.18) 26.86/24.7 40.52 (0.16) 30.90/28.59

100 BOOT 79.40 (0.05) 10.14/10.45 79.15 (0.06) 10.12/10.73 79.04 (0.08) 10.13/10.84
BOOTEX 79.69 (0.07) 9.67/10.64 78.75 (0.08) 10.35/10.90 78.71 (0.10) 10.41/10.88
BOOTNP 74.10 (0.28) 13.57/12.33 53.57 (0.18) 24.10/22.33 46.91 (0.16) 27.27/25.81

300 BOOT 79.82 (0.04) 9.94/10.24 79.82 (0.04) 9.92/10.26 79.84 (0.05) 9.92/10.24
BOOTEX 79.72 (0.05) 10.10/10.18 79.50 (0.05) 10.22/10.28 79.73 (0.06) 10.03/10.24
BOOTNP 82.36 (0.25) 8.69/8.94 63.10 (0.16) 18.21/18.69 56.55 (0.15) 21.24/22.21
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Table A.24: Monte Carlo averages and standard errors (in parenthesis) of forecast intervals by the bootstrap procedures
for model yt = 0.98yt−1 + εt + 0.5εt−1 and σ2

ε=1 with nominal coverage of 95%.

h=1 h=6 h=12
Sample size Method Coverage Coverage Coverage Coverage Coverage Coverage

below/above below/above below/above
Gaussian 95% 2.5%/2.5% 95% 2.5%/2.5% 95% 2.5%/2.5%

50 BOOT 93.27 (0.04) 3.41/3.32 93.15 (0.06) 3.44/3.41 92.76 (0.08) 3.62/3.61
BOOTEX 93.31 (0.04) 3.40/3.29 92.27 (0.08) 3.89/3.83 91.87 (0.10) 4.13/4.00
BOOTNP 79.72 (0.26) 9.79/10.48 64.38 (0.18) 17.87/17.76 56.68 (0.16) 21.75/21.57

100 BOOT 94.08 (0.03) 2.97/2.94 94.09 (0.03) 2.98/2.93 93.94 (0.05) 3.04/3.01
BOOTEX 93.99 (0.03) 3.07/2.93 94.04 (0.04) 2.99/2.97 94.01 (0.06) 3.01/2.98
BOOTNP 86.76 (0.22) 6.16/7.08 72.84 (0.17) 13.29/13.88 66.14 (0.16) 16.63/17.23

300 BOOT 94.62 (0.02) 2.69/2.69 94.62 (0.02) 2.71/2.67 94.56 (0.03) 2.72/2.72
BOOTEX 94.58 (0.02) 2.72/2.69 94.51 (0.02) 2.80/2.68 94.58 (0.03) 2.77/2.65
BOOTNP 93.20 (0.17) 3.74/3.06 81.59 (0.15) 9.57/8.84 75.85 (0.15) 12.42/11.72
Student-5 h=1 h=6 h=12

50 BOOT 93.51 (0.04) 3.31/3.18 92.77 (0.06) 3.72/3.51 92.63 (0.08) 3.72/3.65
BOOTEX 93.38 (0.04) 3.34/3.28 91.98 (0.08) 4.07/3.95 91.74 (0.10) 4.08/4.18
BOOTNP 78.68 (0.27) 10.85/10.48 63.63 (0.19) 18.97/17.4 55.63 (0.17) 23.05/21.32

100 BOOT 94.15 (0.03) 2.90/2.95 93.90 (0.04) 3.05/3.04 93.85 (0.05) 3.03/3.11
BOOTEX 94.13 (0.03) 2.86/3.00 93.46 (0.05) 3.22/3.32 93.36 (0.07) 3.26/3.38
BOOTNP 85.66 (0.24) 7.83/6.51 72.17 (0.18) 14.12/13.71 65.16 (0.17) 17.52/17.31

300 BOOT 94.66 (0.02) 2.69/2.65 94.61 (0.02) 2.77/2.62 94.61 (0.03) 2.76/2.62
BOOTEX 94.57 (0.02) 2.71/2.71 94.46 (0.03) 2.79/2.75 94.55 (0.03) 2.75/2.71
BOOTNP 92.84 (0.18) 3.11/4.05 82.00 (0.15) 8.44/9.55 76.49 (0.15) 11.32/12.18
χ2

(5) h=1 h=6 h=12
50 BOOT 94.02 (0.04) 2.39/3.59 93.13 (0.06) 2.97/3.91 92.79 (0.09) 3.10/4.11

BOOTEX 94.34 (0.05) 2.07/3.59 92.38 (0.08) 3.30/4.31 91.96 (0.11) 3.50/4.53
BOOTNP 79.76 (0.27) 10.78/9.46 64.03 (0.2) 18.29/17.69 55.77 (0.18) 22.49/21.74

100 BOOT 94.72 (0.03) 2.22/3.06 94.27 (0.03) 2.62/3.11 94.18 (0.05) 2.67/3.15
BOOTEX 94.98 (0.03) 1.85/3.17 94.12 (0.05) 2.65/3.23 94.07 (0.06) 2.77/3.16
BOOTNP 85.05 (0.25) 8.02/6.92 71.71 (0.19) 14.53/13.76 64.67 (0.18) 18.07/17.26

300 BOOT 94.80 (0.02) 2.41/2.79 94.77 (0.02) 2.51/2.72 94.76 (0.03) 2.52/2.72
BOOTEX 95.02 (0.03) 2.24/2.73 94.67 (0.03) 2.58/2.75 94.71 (0.03) 2.54/2.76
BOOTNP 92.44 (0.18) 4.12/3.44 82.16 (0.15) 8.79/9.05 76.64 (0.14) 11.38/11.98
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A.6. Monte Carlo results for model yt = 0.98yt−1+εt−0.5εt−1 with σ2
ε=1.

Table A.25: Monte Carlo averages and standard deviations (in parenthesis) of MD distances between the estimated
and true forecast densities for model yt = 0.98yt−1 + εt − 0.5εt−1 with σ2

ε=1

Panel A: Gaussian T=50 T=100 T=300
h=1 h=6 h=12 h=1 h=6 h=12 h=1 h=6 h=12

EST/GAUS 0.189 0.412 0.662 0.125 0.307 0.501 0.072 0.183 0.299
(0.167) (0.352) (0.633) (0.105) (0.265) (0.458) (0.060) (0.175) (0.300)

GAUSaicc 0.384 0.812 1.039 0.232 0.524 0.720 0.073 0.184 0.298
(0.271) (0.408) (0.566) (0.234) (0.464) (0.608) (0.062) (0.175) (0.297)

Panel B: Student-5 T=50 T=100 T=300
h=1 h=6 h=12 h=1 h=6 h=12 h=1 h=6 h=12

EST 0.199 0.429 0.678 0.134 0.322 0.522 0.080 0.195 0.304
(0.170) (0.376) (0.671) (0.105) (0.277) (0.497) (0.057) (0.161) (0.282)

GAUS 0.233 0.434 0.681 0.175 0.329 0.526 0.137 0.209 0.318
(0.165) (0.376) (0.671) (0.099) (0.274) (0.493) (0.055) (0.158) (0.278)

GAUSaicc 0.404 0.832 1.058 0.258 0.519 0.717 0.139 0.212 0.320
(0.296) (0.466) (0.616) (0.236) (0.429) (0.566) (0.062) (0.165) (0.282)

Panel C: χ2
(5) T=50 T=100 T=300

h=1 h=6 h=12 h=1 h=6 h=12 h=1 h=6 h=12
EST 0.193 0.435 0.703 0.134 0.320 0.515 0.079 0.194 0.303

(0.149) (0.380) (0.726) (0.106) (0.255) (0.439) (0.060) (0.164) (0.284)

GAUS 0.285 0.455 0.716 0.247 0.349 0.534 0.219 0.237 0.334
(0.126) (0.373) (0.721) (0.086) (0.248) (0.435) (0.045) (0.154) (0.276)

GAUSaicc 0.421 0.820 1.057 0.328 0.556 0.747 0.220 0.237 0.332
(0.223) (0.451) (0.627) (0.211) (0.426) (0.565) (0.048) (0.155) (0.271)
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Table A.26: Monte Carlo averages and standard errors (in parenthesis) of coverages of the estimated forecast intervals
for model yt = 0.98yt−1 + εt − 0.5εt−1 and σ2

ε=1 with nominal coverages of 80% and 95%.

h=1 h=6 h=12
Sample size Method Coverage Coverage Coverage Coverage Coverage Coverage

below/above below/above below/above
Gaussian 80% 10%/10% 80% 10%/10% 80% 10%/10%

50 EST/GAUS 78.20 (0.06) 10.79/11.02 75.36 (0.10) 12.17/12.47 73.19 (0.14) 13.24/13.57
GAUSaicc 76.80 (0.08) 11.14/12.06 82.37 (0.14) 8.52/9.11 79.12 (0.17) 10.24/10.64

100 EST/GAUS 79.29 (0.04) 10.27/10.44 77.83 (0.07) 11.02/11.15 76.68 (0.10) 11.57/11.75
GAUSaicc 77.98 (0.06) 10.82/11.20 78.77 (0.11) 10.35/10.88 76.53 (0.13) 11.46/12.01

300 EST/GAUS 79.88 (0.02) 10.13/9.99 79.26 (0.04) 10.60/10.15 78.75 (0.05) 10.90/10.35
GAUSaicc 79.71 (0.02) 10.20/10.09 79.17 (0.04) 10.63/10.20 78.66 (0.05) 10.93/10.41
Student-5 h=1 h=6 h=12

50 EST 77.41 (0.07) 11.20/11.39 74.48 (0.12) 12.85/12.67 72.52 (0.15) 13.97/13.51
GAUS 81.71 (0.07) 9.07/9.22 76.65 (0.11) 11.76/11.59 73.97 (0.15) 13.23/12.79
GAUSaicc 79.62 (0.10) 10.17/10.21 82.76 (0.14) 8.45/8.78 79.63 (0.17) 9.98/10.39

100 EST 78.52 (0.05) 10.72/10.76 76.95 (0.08) 11.63/11.41 75.78 (0.11) 12.28/11.93
GAUS 82.77 (0.04) 8.61/8.62 78.95 (0.08) 10.62/10.43 77.04 (0.10) 11.64/11.31
GAUSaicc 81.55 (0.06) 9.06/9.38 80.27 (0.11) 9.76/9.97 77.65 (0.13) 11.11/11.24

300 EST 79.44 (0.03) 10.28/10.28 78.94 (0.04) 10.57/10.49 78.56 (0.05) 10.77/10.67
GAUS 83.60 (0.03) 8.20/8.201 80.84 (0.04) 9.62/9.53 79.71 (0.05) 10.19/10.10
GAUSaicc 83.45 (0.03) 8.27/8.28 80.77 (0.04) 9.65/9.58 79.63 (0.05) 10.22/10.15
χ2

(5) h=1 h=6 h=12
50 EST 78.03 (0.09) 11.30/10.67 75.38 (0.12) 12.44/12.18 73.21 (0.15) 13.30/13.50

GAUS 83.20 (0.08) 5.43/11.37 76.91 (0.11) 10.31/12.78 74.06 (0.15) 11.94/14.00
GAUSaicc 80.39 (0.11) 7.85/11.76 83.08 (0.14) 6.94/9.99 79.60 (0.17) 8.76/11.64

100 EST 79.11 (0.07) 10.61/10.28 77.91 (0.08) 11.13/10.97 76.73 (0.10) 11.61/11.66
GAUS 84.55 (0.05) 4.48/10.97 79.30 (0.08) 9.13/11.57 77.49 (0.10) 10.34/12.17
GAUSaicc 82.16 (0.09) 6.59/11.25 80.32 (0.11) 8.89/10.78 77.86 (0.13) 10.33/11.81

300 EST 79.86 (0.04) 10.05/10.09 79.33 (0.04) 10.34/10.33 78.82 (0.06) 10.62/10.56
GAUS 85.56 (0.03) 3.66/10.78 80.73 (0.04) 8.35/10.91 79.53 (0.05) 9.41/11.06
GAUSaicc 85.36 (0.03) 3.81/10.84 80.64 (0.04) 8.42/10.94 79.46 (0.05) 9.46/11.08

h=1 h=6 h=12
Sample size Method Coverage Coverage Coverage Coverage Coverage Coverage

below/above below/above below/above
Gaussian 95% 2.5%/2.5% 95% 2.5%/2.5% 95% 2.5%/2.5%

50 EST/GAUS 93.70 (0.04) 3.09/3.21 91.42 (0.07) 4.16/4.41 89.37 (0.11) 5.12/5.51
GAUSaicc 92.88 (0.05) 3.37/3.75 94.26 (0.08) 2.61/3.13 91.73 (0.10) 3.87/4.39

100 EST/GAUS 94.52 (0.02) 2.71/2.77 93.38 (0.04) 3.29/3.32 92.40 (0.07) 3.77/3.83
GAUSaicc 93.79 (0.03) 3.06/3.16 93.40 (0.06) 3.20/3.39 91.82 (0.08) 3.94/4.24

300 EST/GAUS 94.90 (0.01) 2.56/2.53 94.49 (0.02) 2.84/2.67 94.17 (0.03) 3.01/2.81
GAUSaicc 94.82 (0.01) 2.60/2.58 94.44 (0.02) 2.86/2.69 94.11 (0.03) 3.04/2.85
Student-5 h=1 h=6 h=12

50 EST 93.75 (0.03) 3.09/3.16 91.46 (0.07) 4.26/4.28 89.43 (0.11) 5.29/5.27
GAUS 93.45 (0.03) 3.24/3.31 91.26 (0.07) 4.36/4.38 89.27 (0.11) 5.38/5.35
GAUSaicc 92.70 (0.05) 3.62/3.67 93.99 (0.08) 2.94/3.06 91.75 (0.11) 3.97/4.28

100 EST 94.32 (0.02) 2.82/2.85 93.18 (0.05) 3.48/3.34 92.17 (0.07) 3.97/3.86
GAUS 94.04 (0.02) 2.97/2.99 93.01 (0.05) 3.56/3.42 92.04 (0.07) 4.04/3.92
GAUSaicc 93.57 (0.04) 3.11/3.33 93.46 (0.06) 3.25/3.29 91.96 (0.08) 3.99/4.04

300 EST 94.77 (0.01) 2.61/2.62 94.43 (0.02) 2.79/2.77 94.12 (0.03) 2.93/2.96
GAUS 94.51 (0.01) 2.74/2.75 94.28 (0.02) 2.88/2.85 93.99 (0.03) 2.99/3.02
GAUSaicc 94.44 (0.01) 2.77/2.79 94.24 (0.02) 2.89/2.87 93.93 (0.03) 3.01/3.06
χ2

(5) h=1 h=6 h=12
50 EST 92.36 (0.07) 4.69/2.95 90.92 (0.09) 5.25/3.83 89.06 (0.12) 6.03/4.90

GAUS 94.43 (0.03) 0.23/5.34 91.92 (0.08) 2.45/5.63 89.62 (0.11) 3.93/6.45
GAUSaicc 93.61 (0.05) 1.04/5.36 94.30 (0.08) 1.87/3.83 91.81 (0.11) 3.14/5.05

100 EST 93.60 (0.05) 3.72/2.68 93.09 (0.06) 3.83/3.09 92.15 (0.07) 4.27/3.58
GAUS 94.95 (0.02) 0.04/5.01 93.84 (0.05) 1.49/4.67 92.59 (0.07) 2.52/4.89
GAUSaicc 94.26 (0.04) 0.63/5.11 94.02 (0.06) 1.75/4.23 92.35 (0.08) 2.90/4.75

300 EST 94.58 (0.02) 2.87/2.56 94.41 (0.02) 2.92/2.67 94.11 (0.03) 3.05/2.83
GAUS 95.16 (0.01) 0.00/4.84 94.95 (0.02) 0.92/4.13 94.42 (0.03) 1.61/3.97
GAUSaicc 95.12 (0.01) 0.00/4.88 94.91 (0.02) 0.94/4.15 94.38 (0.03) 1.64/3.98
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Table A.27: Monte Carlo averages and standard deviations (in parenthesis) of MD distances between the estimated
and true forecast densities for model yt = 0.98yt−1 + εt − 0.5εt−1 with σ2

ε=1.

Panel A: Gaussian T=50 T=100 T=300
h=1 h=6 h=12 h=1 h=6 h=12 h=1 h=6 h=12

AEST/AGAUS 0.190 0.417 0.683 0.126 0.308 0.503 0.072 0.183 0.300
(0.167) (0.362) (0.706) (0.105) (0.265) (0.462) (0.060) (0.174) (0.300)

BAYESN 0.218 0.466 0.692 0.149 0.330 0.487 0.094 0.194 0.286
(0.176) (0.349) (0.611) (0.111) (0.273) (0.437) (0.058) (0.157) (0.250)

BAYESL 0.290 0.471 0.605 0.250 0.412 0.524 0.151 0.246 0.329
(0.212) (0.328) (0.375) (0.177) (0.314) (0.400) (0.101) (0.185) (0.261)

BOOT 0.226 0.391 0.618 0.158 0.295 0.466 0.104 0.203 0.316
(0.153) (0.333) (0.615) (0.094) (0.241) (0.414) (0.054) (0.157) (0.273)

BOOTEX 0.280 0.497 0.715 0.203 0.374 0.556 0.137 0.231 0.349
(0.185) (0.328) (0.497) (0.132) (0.267) (0.391) (0.084) (0.175) (0.280)

BOOTNP 0.520 0.850 0.995 0.449 0.768 0.925 0.340 0.545 0.719
(0.294) (0.503) (0.533) (0.261) (0.468) (0.517) (0.204) (0.360) (0.447)

Panel B: Student-5 T=50 T=100 T=300
h=1 h=6 h=12 h=1 h=6 h=12 h=1 h=6 h=12

AEST 0.200 0.433 0.701 0.134 0.323 0.524 0.080 0.195 0.304
(0.171) (0.389) (0.772) (0.105) (0.277) (0.499) (0.057) (0.161) (0.282)

AGAUS 0.235 0.439 0.705 0.176 0.330 0.529 0.138 0.210 0.319
(0.167) (0.389) (0.773) (0.100) (0.275) (0.496) (0.055) (0.158) (0.278)

BAYEST 0.214 0.443 0.648 0.146 0.301 0.450 0.098 0.176 0.254
(0.150) (0.333) (0.572) (0.087) (0.233) (0.395) (0.048) (0.129) (0.201)

BAYESN 0.250 0.474 0.695 0.180 0.333 0.491 0.137 0.194 0.276
(0.181) (0.385) (0.659) (0.108) (0.284) (0.487) (0.053) (0.139) (0.219)

BAYESL 0.321 0.485 0.612 0.266 0.398 0.507 0.185 0.237 0.311
(0.239) (0.369) (0.417) (0.174) (0.293) (0.353) (0.099) (0.179) (0.241)

BOOT 0.241 0.404 0.633 0.169 0.305 0.481 0.113 0.203 0.312
(0.156) (0.358) (0.655) (0.091) (0.251) (0.459) (0.050) (0.150) (0.263)

BOOTEX 0.294 0.513 0.737 0.216 0.372 0.556 0.144 0.231 0.343
(0.206) (0.368) (0.545) (0.138) (0.273) (0.424) (0.085) (0.166) (0.266)

BOOTNP 0.535 0.827 0.991 0.453 0.714 0.896 0.356 0.504 0.668
(0.311) (0.477) (0.504) (0.309) (0.438) (0.501) (0.224) (0.325) (0.409)

Panel C: χ2
(5) T=50 T=100 T=300

h=1 h=6 h=12 h=1 h=6 h=12 h=1 h=6 h=12
AEST 0.194 0.439 0.722 0.134 0.321 0.518 0.079 0.195 0.305

(0.149) (0.389) (0.800) (0.106) (0.255) (0.440) (0.060) (0.164) (0.284)
AGAUS 0.286 0.459 0.735 0.248 0.350 0.537 0.220 0.238 0.336

(0.127) (0.383) (0.797) (0.086) (0.247) (0.436) (0.046) (0.155) (0.276)
BAYESN 0.297 0.497 0.734 0.252 0.357 0.504 0.219 0.232 0.310

(0.136) (0.376) (0.715) (0.088) (0.253) (0.412) (0.044) (0.143) (0.233)
BAYESL 0.353 0.490 0.621 0.329 0.437 0.554 0.257 0.283 0.360

(0.184) (0.335) (0.398) (0.160) (0.283) (0.366) (0.084) (0.192) (0.271)
BOOT 0.232 0.412 0.666 0.159 0.301 0.479 0.105 0.202 0.313

(0.149) (0.377) (0.728) (0.098) (0.231) (0.402) (0.054) (0.154) (0.264)
BOOTEX 0.282 0.515 0.756 0.212 0.375 0.556 0.142 0.233 0.351

(0.172) (0.340) (0.538) (0.121) (0.250) (0.379) (0.085) (0.173) (0.269)
BOOTNP 0.518 0.823 0.984 0.447 0.701 0.878 0.355 0.521 0.687

(0.292) (0.481) (0.499) (0.262) (0.430) (0.494) (0.237) (0.360) (0.449)
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Table A.28: Monte Carlo averages and standard errors (in parenthesis) of the forecast intervals constructed by the
asymptotic procedures for model yt = 0.98yt−1 + εt − 0.5εt−1 and σ2

ε=1 with nominal coverages of 80% and 95%.

h=1 h=6 h=12
Sample size Method Coverage Coverage Coverage Coverage Coverage Coverage

below/above below/above below/above
Gaussian 80% 10%/10% 80% 10%/10% 80% 10%/10%

50 AEST/AGAUS 78.48 (0.06) 10.65/10.87 74.91 (0.12) 12.37/12.72 71.66 (0.19) 13.95/14.39
SRAaicc 78.62 (0.07) 9.51/11.87 72.33 (0.12) 12.86/14.81 65.71 (0.16) 16.48/17.81

100 AEST/AGAUS 79.47 (0.04) 10.18/10.35 78.02 (0.07) 10.93/11.05 76.83 (0.11) 11.52/11.65
SRAaicc 79.17 (0.05) 9.68/11.15 75.62 (0.08) 11.68/12.70 72.10 (0.12) 13.50/14.40

300 AEST/AGAUS 79.95 (0.02) 10.09/9.96 79.46 (0.04) 10.49/10.05 79.11 (0.05) 10.72/10.17
SRAaicc 79.73 (0.03) 10.02/10.26 78.43 (0.04) 10.85/10.72 77.67 (0.07) 11.28/11.05
Student-5 h=1 h=6 h=12

50 AEST 77.66 (0.07) 11.08/11.26 74.04 (0.14) 13.12/12.84 71.43 (0.19) 14.71/13.86
AGAUS 81.92 (0.07) 8.96/9.11 76.17 (0.14) 12.04/11.78 72.80 (0.18) 14.01/13.18
SRAaicc 78.63 (0.08) 9.70/11.67 73.14 (0.12) 12.79/14.06 65.31 (0.16) 16.69/18

100 AEST 78.67 (0.05) 10.64/10.68 77.07 (0.08) 11.57/11.36 75.80 (0.12) 12.25/11.95
AGAUS 82.90 (0.04) 8.54/8.56 79.05 (0.08) 10.56/10.39 77.04 (0.12) 11.62/11.35
SRAaicc 78.79 (0.05) 9.93/11.28 75.58 (0.09) 12.04/12.38 72.44 (0.13) 13.50/14.06

300 AEST 79.50 (0.03) 10.26/10.25 79.11 (0.04) 10.49/10.40 78.87 (0.05) 10.62/10.51
AGAUS 83.65 (0.03) 8.17/8.18 81.00 (0.04) 9.54/9.45 80.03 (0.05) 10.03/9.94
SRAaicc 79.47 (0.03) 10.13/10.39 78.50 (0.05) 10.61/10.89 77.88 (0.07) 11.09/11.03
χ2

(5) h=1 h=6 h=12
50 AEST 78.32 (0.09) 11.10/10.57 74.96 (0.14) 12.63/12.41 71.69 (0.20) 14.02/14.29

AGAUS 83.44 (0.08) 5.27/11.28 76.47 (0.13) 10.54/13 72.51 (0.19) 12.73/14.76
SRAaicc 78.49 (0.10) 10.50/11.00 72.93 (0.13) 12.86/14.21 65.22 (0.17) 16.09/18.69

100 AEST 79.31 (0.07) 10.47/10.22 78.09 (0.08) 11.01/10.90 76.88 (0.11) 11.51/11.61
AGAUS 84.71 (0.05) 4.38/10.91 79.48 (0.08) 9.03/11.49 77.64 (0.11) 10.25/12.11
SRAaicc 79.19 (0.08) 9.97/10.83 76.25 (0.09) 11.57/12.19 72.97 (0.13) 13.31/13.72

300 AEST 79.95 (0.04) 9.98/10.07 79.55 (0.04) 10.21/10.23 79.20 (0.05) 10.41/10.39
AGAUS 85.63 (0.03) 3.61/10.76 80.95 (0.04) 8.23/10.83 79.92 (0.05) 9.18/10.91
SRAaicc 79.42 (0.05) 10.32/10.27 78.50 (0.05) 10.89/10.62 77.74 (0.07) 11.25/11.01

h=1 h=6 h=12
Sample size Method Coverage Coverage Coverage Coverage Coverage Coverage

below/above below/above below/above
Gaussian 95% 2.5%/2.5% 95% 2.5%/2.5% 95% 2.5%/2.5%

50 AEST/AGAUS 93.85 (0.04) 3.02/3.13 90.67 (0.11) 4.51/4.82 86.79 (0.19) 6.29/6.92
SRAaicc 91.71 (0.05) 2.80/5.48 86.28 (0.09) 5.54/8.18 79.91 (0.14) 10.44/9.65

100 AEST/AGAUS 94.62 (0.02) 2.66/2.72 93.43 (0.05) 3.27/3.29 92.24 (0.08) 3.88/3.87
SRAaicc 93.77 (0.03) 2.52/3.71 90.98 (0.06) 3.99/5.02 85.99 (0.09) 6.42/7.59

300 AEST/AGAUS 94.94 (0.01) 2.55/2.52 94.60 (0.02) 2.79/2.61 94.37 (0.03) 2.92/2.72
SRAaicc 94.63 (0.02) 2.54/2.83 93.79 (0.03) 3.05/3.16 92.61 (0.05) 3.68/3.71
Student-5 h=1 h=6 h=12

50 AEST 93.86 (0.03) 3.04/3.10 90.53 (0.12) 4.77/4.70 87.38 (0.18) 6.61/6.00
AGAUS 93.56 (0.03) 3.18/3.25 90.33 (0.12) 4.87/4.80 87.24 (0.18) 6.69/6.08
SRAaicc 92.29 (0.05) 2.74/4.97 86.77 (0.10) 5.52/7.70 80.40 (0.14) 10.31/9.29

100 AEST 94.38 (0.02) 2.79/2.82 93.16 (0.05) 3.47/3.37 91.80 (0.10) 4.08/4.13
AGAUS 94.11 (0.02) 2.94/2.96 92.99 (0.05) 3.55/3.46 91.66 (0.10) 4.15/4.19
SRAaicc 94.14 (0.03) 2.44/3.42 91.05 (0.06) 4.02/4.93 86.52 (0.10) 6.17/7.31

300 AEST 94.79 (0.01) 2.60/2.61 94.51 (0.02) 2.76/2.73 94.27 (0.03) 2.85/2.88
AGAUS 94.53 (0.01) 2.73/2.74 94.36 (0.02) 2.83/2.80 94.15 (0.03) 2.91/2.94
SRAaicc 94.68 (0.02) 2.50/2.82 93.95 (0.03) 2.93/3.12 92.88 (0.04) 3.49/3.63
χ2

(5) h=1 h=6 h=12
50 AEST 92.55 (0.07) 4.55/2.91 90.21 (0.11) 5.60/4.18 86.44 (0.20) 7.19/6.36

AGAUS 94.50 (0.03) 0.22/5.27 91.17 (0.11) 2.86/5.97 86.98 (0.19) 5.24/7.78
SRAaicc 91.94 (0.07) 3.54/4.53 86.91 (0.10) 5.50/7.58 80.12 (0.15) 10.36/9.52

100 AEST 93.72 (0.05) 3.63/2.65 93.14 (0.06) 3.80/3.06 92.01 (0.09) 4.32/3.67
AGAUS 94.99 (0.02) 0.04/4.97 93.86 (0.05) 1.50/4.64 92.42 (0.09) 2.63/4.95
SRAaicc 93.81 (0.05) 2.93/3.26 91.29 (0.06) 4.09/4.63 86.60 (0.10) 6.26/7.14

300 AEST 94.63 (0.02) 2.83/2.54 94.52 (0.02) 2.84/2.63 94.32 (0.03) 2.93/2.75
AGAUS 95.18 (0.01) 0.00/4.82 95.04 (0.02) 0.88/4.07 94.60 (0.03) 1.53/3.86
SRAaicc 94.48 (0.03) 2.81/2.72 93.97 (0.03) 3.07/2.96 92.84 (0.04) 3.65/3.51
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Table A.29: Monte Carlo averages and standard errors (in parenthesis) of forecast intervals constructed by the Bayesian
procedures for model yt = 0.98yt−1 + εt − 0.5εt−1 and σ2

ε=1 with nominal coverages of 80% and 95%.

h=1 h=6 h=12
Sample size Method Coverage Coverage Coverage Coverage Coverage Coverage

below/above below/above below/above
Gaussian 80% 10%/10% 80% 10%/10% 80% 10%/10%

50 BAYESN 78.94 (0.06) 10.31/10.75 78.35 (0.10) 10.66/10.99 76.38 (0.12) 11.72/11.90
BAYESL 79.84 (0.06) 9.81/10.35 78.15 (0.09) 10.73/11.12 75.23 (0.11) 12.25/12.52

100 BAYESN 79.49 (0.04) 10.21/10.30 79.17 (0.07) 10.40/10.43 77.92 (0.09) 11.05/11.03
BAYESL 79.81 (0.05) 9.93/10.26 78.76 (0.08) 10.55/10.69 76.59 (0.10) 11.66/11.75

300 BAYESN 79.87 (0.03) 10.14/9.99 79.70 (0.04) 10.35/9.95 79.05 (0.05) 10.62/10.33
BAYESL 80.11 (0.03) 9.93/9.96 79.85 (0.04) 10.12/10.03 78.91 (0.06) 10.62/10.47
Student-5 h=1 h=6 h=12

50 BAYEST 79.50 (0.06) 10.20/10.30 78.61 (0.10) 10.61/10.79 77.01 (0.12) 11.42/11.57
BAYESN 82.28 (0.06) 8.81/8.91 79.30 (0.10) 10.32/10.39 76.94 (0.13) 11.58/11.48
BAYESL 82.75 (0.07) 8.38/8.87 79.25 (0.10) 10.12/10.62 76.18 (0.12) 11.69/12.13

100 BAYEST 79.85 (0.04) 10.08/10.06 79.26 (0.06) 10.37/10.37 78.14 (0.09) 10.97/10.89
BAYESN 82.89 (0.04) 8.49/8.62 80.28 (0.07) 9.86/9.86 78.40 (0.09) 10.91/10.69
BAYESL 83.11 (0.05) 8.27/8.61 80.18 (0.07) 9.85/9.97 77.64 (0.09) 11.00/11.35

300 BAYEST 80.00 (0.03) 10.00/9.99 79.60 (0.04) 10.23/10.17 79.28 (0.05) 10.31/10.41
BAYESN 83.61 (0.03) 8.18/8.21 81.16 (0.04) 9.41/9.43 80.12 (0.05) 9.91/9.97
BAYESL 83.54 (0.03) 8.16/8.29 81.43 (0.04) 9.21/9.36 79.86 (0.06) 9.97/10.17
χ2

(5) h=1 h=6 h=12
50 BAYESN 83.66 (0.07) 5.19/11.15 79.74 (0.11) 8.63/11.63 77.37 (0.13) 10.09/12.54

BAYESL 83.51 (0.08) 5.81/10.68 79.35 (0.09) 9.27/11.38 76.11 (0.11) 11.14/12.76
100 BAYESN 84.46 (0.05) 4.65/10.89 80.53 (0.08) 8.54/10.92 78.62 (0.10) 9.81/11.58

BAYESL 83.88 (0.06) 5.32/10.79 79.79 (0.08) 9.31/10.89 77.24 (0.10) 10.89/11.87
300 BAYESN 85.43 (0.03) 3.79/10.78 81.10 (0.04) 8.17/10.74 79.76 (0.05) 9.30/10.94

BAYESL 84.96 (0.04) 4.35/10.69 81.12 (0.05) 8.19/10.69 79.46 (0.06) 9.48/11.05
h=1 h=6 h=12

Sample size Method Coverage Coverage Coverage Coverage Coverage Coverage
below/above below/above below/above

Gaussian 95% 2.5%/2.5% 95% 2.5%/2.5% 95% 2.5%/2.5%
50 BAYESN 94.40 (0.03) 2.70/2.90 94.04 (0.06) 2.85/3.10 92.94 (0.08) 3.38/3.67

BAYESL 94.86 (0.03) 2.47/2.67 93.86 (0.05) 2.98/3.16 91.96 (0.07) 3.91/4.13
100 BAYESN 94.72 (0.02) 2.63/2.65 94.44 (0.04) 2.79/2.77 93.67 (0.06) 3.16/3.16

BAYESL 94.88 (0.02) 2.55/2.56 94.16 (0.04) 2.92/2.93 92.87 (0.06) 3.54/3.59
300 BAYESN 94.89 (0.01) 2.56/2.54 94.81 (0.02) 2.65/2.53 94.46 (0.03) 2.84/2.70

BAYESL 95.00 (0.01) 2.49/2.51 94.86 (0.02) 2.60/2.54 94.31 (0.03) 2.87/2.81
Student-5 h=1 h=6 h=12

50 BAYEST 94.40 (0.03) 2.81/2.79 94.36 (0.05) 2.78/2.86 93.64 (0.07) 3.11/3.25
BAYESN 93.98 (0.03) 2.98/3.03 93.68 (0.05) 3.14/3.18 92.71 (0.08) 3.61/3.68
BAYESL 94.39 (0.03) 2.71/2.90 93.60 (0.05) 3.11/3.28 91.93 (0.07) 3.94/4.13

100 BAYEST 94.55 (0.02) 2.70/2.75 94.64 (0.03) 2.69/2.66 94.08 (0.05) 2.93/2.98
BAYESN 94.21 (0.02) 2.89/2.90 94.13 (0.04) 2.95/2.92 93.43 (0.05) 3.34/3.23
BAYESL 94.45 (0.02) 2.74/2.81 94.04 (0.04) 2.96/3.00 92.83 (0.06) 3.49/3.67

300 BAYEST 94.80 (0.01) 2.59/2.60 94.77 (0.02) 2.62/2.61 94.59 (0.03) 2.68/2.72
BAYESN 94.53 (0.01) 2.73/2.74 94.50 (0.02) 2.75/2.75 94.29 (0.03) 2.81/2.90
BAYESL 94.56 (0.01) 2.69/2.74 94.66 (0.02) 2.63/2.71 94.21 (0.03) 2.84/2.94
χ2

(5) h=1 h=6 h=12
50 BAYESN 94.85 (0.03) 0.16/4.99 94.25 (0.05) 1.50/4.24 93.17 (0.07) 2.31/4.52

BAYESL 95.13 (0.03) 0.31/4.56 94.13 (0.05) 1.79/4.08 92.34 (0.07) 2.95/4.71
100 BAYESN 95.05 (0.02) 0.05/4.90 94.72 (0.04) 1.25/4.03 93.76 (0.06) 2.10/4.14

BAYESL 95.22 (0.02) 0.14/4.64 94.45 (0.04) 1.61/3.94 93.00 (0.06) 2.66/4.34
300 BAYESN 95.18 (0.01) 0.00/4.82 95.16 (0.02) 0.88/3.96 94.62 (0.03) 1.56/3.82

BAYESL 95.23 (0.02) 0.02/4.76 95.10 (0.02) 0.99/3.90 94.49 (0.03) 1.68/3.83
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Table A.30: Monte Carlo averages and standard errors (in parenthesis) of forecast intervals by the bootstrap procedures
for model yt = 0.98yt−1 + εt − 0.5εt−1 and σ2

ε=1 with nominal coverage of 80%.

h=1 h=6 h=12
Sample size Method Coverage Coverage Coverage Coverage Coverage Coverage

below/above below/above below/above
Gaussian 80% 10%/10% 80% 10%/10% 80% 10%/10%

50 BOOT 77.60 (0.06) 10.96/11.43 76.80 (0.10) 11.45/11.75 75.64 (0.13) 12.01/12.35
BOOTEX 78.51 (0.07) 10.47/11.03 82.96 (0.09) 8.33/8.71 82.80 (0.12) 8.41/8.79
BOOTNP 70.47 (0.16) 14.79/14.74 63.74 (0.13) 18.56/17.70 57.55 (0.12) 21.78/20.68

100 BOOT 78.76 (0.04) 10.52/10.73 78.71 (0.07) 10.63/10.67 78.43 (0.09) 10.72/10.85
BOOTEX 79.26 (0.04) 10.10/10.64 82.46 (0.07) 8.61/8.92 82.64 (0.09) 8.51/8.85
BOOTNP 73.09 (0.16) 13.22/13.69 68.52 (0.14) 15.81/15.67 63.47 (0.14) 18.47/18.06

300 BOOT 79.68 (0.03) 10.26/10.06 79.72 (0.04) 10.36/9.914 79.68 (0.05) 10.40/9.93
BOOTEX 79.77 (0.03) 10.19/10.04 81.39 (0.04) 9.49/9.13 81.77 (0.05) 9.34/8.89
BOOTNP 79.45 (0.11) 10.28/10.27 74.83 (0.10) 12.83/12.34 70.59 (0.11) 15.17/14.25
Student-5 h=1 h=6 h=12

50 BOOT 78.34 (0.06) 10.79/10.87 77.04 (0.11) 11.56/11.4 75.82 (0.14) 12.24/11.94
BOOTEX 78.94 (0.07) 10.51/10.54 82.83 (0.10) 8.68/8.49 82.50 (0.13) 8.85/8.65
BOOTNP 69.82 (0.18) 14.96/15.21 62.63 (0.14) 18.75/18.62 56.07 (0.14) 22.12/21.80

100 BOOT 78.86 (0.05) 10.60/10.53 78.36 (0.08) 10.96/10.68 77.96 (0.10) 11.21/10.83
BOOTEX 79.46 (0.05) 10.17/10.36 82.10 (0.07) 9.02/8.88 82.23 (0.09) 8.93/8.83
BOOTNP 73.50 (0.17) 13.09/13.41 67.81 (0.15) 16.23/15.96 62.19 (0.14) 19.28/18.53

300 BOOT 79.60 (0.03) 10.19/10.20 79.62 (0.04) 10.24/10.15 79.69 (0.05) 10.24/10.07
BOOTEX 79.73 (0.03) 10.10/10.17 81.27 (0.04) 9.35/9.38 81.75 (0.05) 9.07/9.18
BOOTNP 79.89 (0.11) 10.02/10.09 74.55 (0.11) 13.00/12.45 70.42 (0.11) 15.17/14.42
χ2

(5) h=1 h=6 h=12
50 BOOT 78.08 (0.08) 11.05/10.87 77.21 (0.11) 11.28/11.51 75.91 (0.14) 11.69/12.41

BOOTEX 79.45 (0.09) 9.86/10.69 83.87 (0.10) 7.00/9.13 83.25 (0.12) 7.29/9.46
BOOTNP 70.03 (0.18) 15.32/14.66 62.98 (0.14) 19.49/17.53 56.49 (0.14) 22.75/20.76

100 BOOT 78.84 (0.06) 10.71/10.46 79.02 (0.08) 10.44/10.54 78.68 (0.10) 10.46/10.86
BOOTEX 80.06 (0.07) 9.39/10.55 82.71 (0.07) 8.15/9.13 82.69 (0.09) 8.23/9.08
BOOTNP 74.03 (0.17) 11.95/14.02 68.60 (0.14) 16.04/15.36 63.29 (0.14) 18.94/17.77

300 BOOT 79.56 (0.04) 10.19/10.25 79.93 (0.04) 9.99/10.08 79.80 (0.05) 10.07/10.13
BOOTEX 79.92 (0.05) 9.88/10.20 81.66 (0.05) 8.85/9.49 81.93 (0.06) 8.75/9.32
BOOTNP 79.67 (0.14) 8.59/11.74 73.92 (0.12) 13.05/13.03 69.82 (0.12) 15.52/14.66



138 A.6. MONTE CARLO RESULTS FOR MODEL YT = 0.98YT−1 + εT − 0.5εT−1 WITH σ2ε=1.

Table A.31: Monte Carlo averages and standard errors (in parenthesis) of forecast intervals by the bootstrap procedures
for model yt = 0.98yt−1 + εt − 0.5εt−1 and σ2

ε=1 with nominal coverage of 95%.

h=1 h=6 h=12
Sample size Method Coverage Coverage Coverage Coverage Coverage Coverage

below/above below/above below/above
Gaussian 95% 2.5%/2.5% 95% 2.5%/2.5% 95% 2.5%/2.5%

50 BOOT 92.77 (0.04) 3.53/3.71 92.75 (0.07) 3.52/3.73 92.06 (0.10) 3.83/4.11
BOOTEX 93.28 (0.04) 3.23/3.49 95.79 (0.05) 1.96/2.25 95.30 (0.07) 2.18/2.51
BOOTNP 84.20 (0.14) 8.05/7.75 80.24 (0.11) 10.01/9.76 74.34 (0.12) 13.11/12.55

100 BOOT 93.81 (0.03) 3.08/3.12 94.05 (0.04) 2.98/2.97 93.85 (0.06) 3.05/3.11
BOOTEX 94.09 (0.03) 2.89/3.02 95.79 (0.04) 2.06/2.15 95.74 (0.05) 2.04/2.22
BOOTNP 87.50 (0.14) 6.20/6.29 84.97 (0.12) 7.67/7.36 80.70 (0.12) 9.78/9.52

300 BOOT 94.60 (0.02) 2.73/2.67 94.75 (0.02) 2.70/2.55 94.80 (0.03) 2.69/2.51
BOOTEX 94.67 (0.02) 2.71/2.62 95.54 (0.02) 2.30/2.16 95.70 (0.03) 2.20/2.09
BOOTNP 93.03 (0.08) 3.57/3.40 91.03 (0.08) 4.64/4.32 88.14 (0.09) 6.11/5.75
Student-5 h=1 h=6 h=12

50 BOOT 92.99 (0.04) 3.48/3.53 92.61 (0.07) 3.71/3.69 91.85 (0.11) 4.08/4.08
BOOTEX 93.32 (0.04) 3.32/3.36 95.15 (0.05) 2.49/2.37 95.00 (0.07) 2.52/2.48
BOOTNP 83.14 (0.16) 8.43/8.44 80.08 (0.12) 10.18/9.75 73.91 (0.13) 13.29/12.81

100 BOOT 93.82 (0.03) 3.18/3.00 93.69 (0.05) 3.26/3.05 93.43 (0.06) 3.34/3.23
BOOTEX 94.03 (0.03) 3.06/2.91 95.38 (0.03) 2.39/2.23 95.45 (0.04) 2.31/2.25
BOOTNP 87.30 (0.15) 5.90/6.79 85.04 (0.12) 7.67/7.28 80.21 (0.13) 10.19/9.60

300 BOOT 94.58 (0.02) 2.73/2.69 94.63 (0.02) 2.76/2.61 94.62 (0.03) 2.73/2.65
BOOTEX 94.58 (0.02) 2.69/2.72 95.34 (0.02) 2.35/2.31 95.51 (0.02) 2.23/2.26
BOOTNP 92.59 (0.08) 3.64/3.77 90.89 (0.08) 4.70/4.41 88.26 (0.09) 5.97/5.78
χ2

(5) h=1 h=6 h=12
50 BOOT 93.43 (0.05) 3.00/3.57 93.03 (0.08) 3.22/3.75 92.19 (0.10) 3.52/4.29

BOOTEX 94.48 (0.05) 2.00/3.51 95.90 (0.05) 1.55/2.56 95.40 (0.07) 1.92/2.68
BOOTNP 83.09 (0.16) 8.83/8.07 79.40 (0.13) 11.71/8.89 73.72 (0.13) 14.84/11.43

100 BOOT 94.04 (0.04) 2.94/3.01 94.26 (0.05) 2.76/2.98 93.93 (0.06) 2.89/3.18
BOOTEX 94.97 (0.04) 1.97/3.06 95.87 (0.04) 1.75/2.38 95.62 (0.05) 1.98/2.39
BOOTNP 87.95 (0.14) 5.05/6.99 85.23 (0.12) 8.06/6.71 80.62 (0.12) 10.64/8.74

300 BOOT 94.62 (0.02) 2.67/2.72 94.81 (0.02) 2.54/2.66 94.82 (0.03) 2.53/2.64
BOOTEX 95.06 (0.03) 2.20/2.73 95.68 (0.02) 1.96/2.36 95.79 (0.03) 1.93/2.28
BOOTNP 92.68 (0.12) 2.53/4.79 90.27 (0.10) 5.11/4.62 87.47 (0.10) 6.86/5.67
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A.7. Convergence diagnosis of BAYESN

A.7.1. DGP: yt = 0.6yt−1 + 0.3yt−2 + εt with ε ∼ N(0, 1).



140 A.7. CONVERGENCE DIAGNOSIS OF BAYESN

Figure A.4: Time series plot of the parameters of model BAYESN. Burning=1000.
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Figure A.5: Kernel density of the parameters of model BAYESN. Burning=1000.
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142 A.7. CONVERGENCE DIAGNOSIS OF BAYESN

Figure A.6: Autocorrelation function of the parameters of model BAYESN. Burning=1000.
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A.7.2. DGP: yt = 0.98yt−1 + εt − 0.5εt−1 with ε ∼ N(0, 1).



144 A.7. CONVERGENCE DIAGNOSIS OF BAYESN

Figure A.7: Time series plot of the parameters of model BAYESN. Burning=1000.
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Figure A.8: Kernel density of the parameters of model BAYESN. Burning=1000.

T=50

φ

θ

σε

T=300

φ

θ

σε



146 A.7. CONVERGENCE DIAGNOSIS OF BAYESN

Figure A.9: Autocorrelation function of the parameters of model BAYESN. Burning=1000.
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A.8. Convergence diagnosis of model BAYEST.

A.8.1. DGP: yt = 0.6yt−1 + 0.3yt−2 + εt with ε ∼ Student− 5.



148 A.8. CONVERGENCE DIAGNOSIS OF MODEL BAYEST.

Figure A.10: Time series plot of the parameters of model BAYEST. Burning=1000.
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Figure A.11: Kernel density of the parameters of model BAYEST. Burning=1000.
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150 A.8. CONVERGENCE DIAGNOSIS OF MODEL BAYEST.

Figure A.12: Autocorrelation function of the parameters of model BAYEST. Burning=1000.
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A.8.2. DGP: yt = 0.98yt−1 + εt − 0.5εt−1 with ε ∼ Student− 5.



152 A.8. CONVERGENCE DIAGNOSIS OF MODEL BAYEST.

Figure A.13: Time series plot of the parameters of model BAYEST. Burning=1000.
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Figure A.14: Kernel density of the parameters of model BAYEST. Burning=1000.
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154 A.8. CONVERGENCE DIAGNOSIS OF MODEL BAYEST.

Figure A.15: Autocorrelation function of the parameters of model BAYEST. Burning=1000.
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A.9. Convergence diagnosis: model BAYESL.

A.9.1. DGP: yt = 0.6yt−1 + 0.3yt−2 + εt with ε ∼ N(0, 1).

Figure A.16: Time series plot of the parameters of model BAYESL. T=50 and burning=1000.
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156 A.9. CONVERGENCE DIAGNOSIS: MODEL BAYESL.

Figure A.17: Kernel density of the parameters of model BAYESL. T=50 and burning=1000.
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Figure A.18: Autocorrelation function of the parameters of model BAYESL. T=50 and burning=1000.
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158 A.9. CONVERGENCE DIAGNOSIS: MODEL BAYESL.

Figure A.19: Time series plot of the parameters of model BAYESL. T=300 and burning=1000.
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Figure A.20: Kernel density of the parameters of model BAYESL. T=300 and burning=1000.
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160 A.9. CONVERGENCE DIAGNOSIS: MODEL BAYESL.

Figure A.21: Autocorrelation function of the parameters of model BAYESL. T=300 and burning=1000.
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A.9.2. DGP: yt = 0.98yt−1 + εt − 0.5εt−1 with ε ∼ N(0, 1).

Figure A.22: Time series plot of the parameters of model BAYESL. T=50 and burning=1000.
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162 A.9. CONVERGENCE DIAGNOSIS: MODEL BAYESL.

Figure A.23: Kernel density of the parameters of model BAYESL. T=50 and burning=1000.
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Figure A.24: Autocorrelation function of the parameters of model BAYESL. T=50 and burning=1000.
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164 A.9. CONVERGENCE DIAGNOSIS: MODEL BAYESL.

Figure A.25: Time series plot of the parameters of model BAYESL. T=300 and burning=1000.
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Figure A.26: Kernel density of the parameters of model BAYESL. T=300 and burning=1000.
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166 A.9. CONVERGENCE DIAGNOSIS: MODEL BAYESL.

Figure A.27: Autocorrelation function of the parameters of model BAYESL. T=300 and burning=1000.
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