
ISSN 1745-8587 
B

irk
be

ck
 W

or
ki

ng
 P

ap
er

s 
in

 E
co

no
m

ic
s 

&
 F

in
an

ce
 

 
 

School of Economics, Mathematics and Statistics 

 
 

 
 

BWPEF 0604 
 
 

Fractional Diffusion Models of Option 
Prices in Markets with Jumps 

 
 
 

Álvaro Cartea 
Birkbeck, University of London 

 
Diego del-Castillo-Negrete 

Oak Ridge National Laboratory, U.S. 
 

 
 
 
 

August 2006 

▪ Birkbeck, University of London ▪ Malet Street ▪ London ▪ WC1E 7HX ▪ 



Fractional Diffusion Models of Option Prices in

Markets with Jumps

Forthcoming: Physica A
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Abstract

Most of the recent literature dealing with the modeling of financial assets

assumes that the underlying dynamics of equity prices follow a jump process or

a Lévy process. This is done to incorporate rare or extreme events not captured

by Gaussian models. Of those financial models proposed, the most interesting

include the CGMY, KoBoL and FMLS. All of these capture some of the most

important characteristics of the dynamics of stock prices. In this article we

show that for these particular Lévy processes, the prices of financial derivatives,

such as European-style options, satisfy a fractional partial differential equation

(FPDE). As an application, we use numerical techniques to price exotic options,

in particular barrier options, by solving the corresponding FPDEs derived.
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1 Introduction

A problem of significant interest in finance is the pricing of financial instruments

that derive their value from financially traded assets such as stocks. Among the first

systematic treatments of this problem was the pioneering work of Black, Scholes and

Merton who proposed the widely known, and extensively used, Black-Scholes (BS)

model, Ref. [23]. The BS model rests on the assumption that the natural logarithm

of the stock price St follows a random walk or diffusion with deterministic drift:

d(lnSt) =

(

µ −
1

2
σ2

)

dt + σdBt, (1)

where µ > 0 is the average compounded growth of the stock St; dBt is the increment

of Brownian motion which is assumed to have the Normal or Gaussian distribution;

i.e. dBt ∼ N(0, dt); and σ ≥ 0 is the volatility of the returns from holding St.

Once a stochastic process for the evolution of prices has been specified, it is pos-

sible to address the question of how options on traded stocks such as St are priced.

The simplest examples of options are known as European calls and puts. A European

call gives the owner of the option the right, but not the obligation, to buy a unit of

stock St at a known future time T for a pre-specified price K, known as the strike

price. Similarly, a European put gives the owner of the option the right, but not the

obligation, to sell a unit of stock St at a future known date T , for a pre-specified

price K. More generally, European-style options refer to options that may only be

exercised at a future known date T . Moreover, an American option is like holding a

European option but with the extra flexibility that it can be exercised at any time

until the expiry date.

According to the BS model, the price of a European-style option V (S, t), written
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on the traded asset St, satisfies the partial differential equation (PDE)

∂V (S, t)

∂t
+

1

2
σ2S2∂2V (S, t)

∂S2
+ rS

∂V (S, t)

∂S
= rV (S, t), (2)

where r is the risk-free rate, Ref. [34]. The BS equation may also be written as

an advection-diffusion type equation by making the change of variable xt = lnSt in

Eq. (2)
∂V (x, t)

∂t
+

1

2
σ2∂2V (x, t)

∂x2
+

(

r −
1

2
σ2

)

∂V (x, t)

∂x
= rV (x, t). (3)

One of the most significant shortcomings of the BS model is that financial data

shows that Gaussian shocks underestimate the probability that stock prices exhibit

large movements or jumps over small time steps. To address this issue, a number

of extensions or alternative stochastic shocks to the random walk in Eq. (1) have

been proposed. In broad terms, these models have either assumed a two-factor model

where the dynamics of the stock price follow Eq. (1) and the volatility σ follows a

stochastic process, or a stock price which follows a jump process or a Lévy process

(i.e. a jump process with independent and stationary increments).

It is well-known in the literature that when the Brownian motion component

in Eq. (1) is substituted by a Lévy process, the pricing Eq. (3) becomes a partial-

integro-differential equation (PIDE), Ref. [32]. PIDEs are introduced to capture the

non-locality induced by the jumps in the Lévy process. Our contribution in this

article is twofold. First, we show that for European-style options written on assets,

that follow some of the most advocated jump models in the financial literature, one

can write the general PIDE as a fractional partial differential equation (FPDE), which

are a subset of the class of pseudo-differential equations. Second, we solve numerically

this FPDE to price exotic financial instruments such as barrier options.

Previous work on numerical methods for PIDEs include Ref. [11] where a finite-

difference scheme was proposed for option pricing in jump diffusion and exponential

Lévy models. Other methods include the use of fast Fourier transform to price path-

independent European-style options Ref. [7]. As an alternative to these methods,

here we propose techniques from fractional calculus. In our approach the problem

of the truncation (localization) of the non-local operators to finite size domains is
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circumvented with the use of regularized fractional derivative operators. For the dis-

cretization of the PIDE we use the Grünwald-Letnikov representation of the fractional

derivative that provides an efficient, relatively easy to implement finite-difference nu-

merical scheme. The truncation and finite-difference scheme used here are based on

the numerical method originally proposed in Refs. [13, 12] for the solution of frac-

tional diffusion equations. The pricing of barrier options for exponentially damped

processes has been studied analytically and numerically in Refs. [2, 11]. As an appli-

cation of our fractional calculus approach, here we consider the less studied problem

of barrier options for finite moment log-stable (FMLS) processes.

Applications of fractional calculus in finance include Cartea Ref. [9]. In this article

the author shows that classical hedging strategies, ie risk minimizing, based on ‘lo-

calised’ information of the value of a hedge portfolio, for instance those based on the

information provided by the delta and gamma of the portfolio, can be substantially

improved by employing fractional or ‘non-local’ operators.1 The author extends the

classical idea that a market player who sold an option written on the underlying St,

can hedge it by setting up a portfolio consisting of the short option plus an amount

of St plus another option also written on St. Rather than making the portfolio delta-

neutral and gamma-neutral over a time step ∆t, ie choose the amounts of St and

second option in the portfolio so that the first and second derivative of the value of

the portfolio are zero (see Ref. [1]), the fractional strategy makes the portfolio delta-

neutral and neutral to a fractional derivative (that includes the gamma derivative as

a particular case) over ∆t. The intuition behind why the fractional strategy outper-

forms the classical approach of delta-gamma-hedging relies on the non-local nature

of the fractional operator. It must be pointed out that over a time step ∆t the stock

price St can diffuse and/or jump to values St+∆t ‘far away’ from St making the use

of localized information of the portfolio at St less relevant. The fractional derivative

‘weighs’ information of the portfolio over a range of values of the underlying rather

than looking at localized information. Finally, for other applications of fractional

calculus in finance see Refs. [31, 18].

1The delta of a financial instrument is the first derivative of the value of the instrument with

respect to the underlying. For example, the delta of a European-style option V (S, t) is given by

∂V (S, t)/∂S. Similarly, the gamma is the second derivative, ∂2V (S, t)/∂S2.
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The rest of the article is structured as follows: Section 2 reviews basic concepts

of Lévy processes and their use in financial modeling. Section 3 presents concepts of

fractional calculus and derives the FPDEs satisfied by the value of European options

written on assets that follow the particular processes presented in section 2. Section 4

prices barrier options by numerically solving the FPDEs derived in section 3. Finally,

section 5 concludes and discusses further applications of this work, such as the pricing

of American and other exotic options.

2 Lévy processes and stock price models

Examples where it has been assumed that share prices follow jump processes include:

the early work of Press Ref. [28]; Merton’s Jump Diffusion model Ref. [23]; and the

work of Mantegna and Stanley, see Refs. [20, 21, 22], which builds on the work of

Mandelbrot Ref. [19] to show that Truncated Lévy Flights can be very successful at

capturing the high-frequency empirical probability distribution of the S&P 500 index.

Based on this work, Koponen Ref. [15] and Boyarchenko and Levendorskǐi Ref. [3]

proposed the use of modified LS (also known as Lévy-α-stable) processes to model

the dynamics of securities. This modification introduced a damping effect in the tails

of the LS distribution to ensure finite moments and gain mathematical tractability;

these models are known in the mathematical finance literature as KoBoL processes.

Finally, motivated by the most important properties of the dynamics of share prices

including size and frequency of both positive and negative jumps in the stock price

movements, Carr, Geman, Madan and Yor proposed the CGMY process Ref. [6]. This

is essentially the same model as the KoBoL, and has quickly become one of the most

widely used models for equity prices.

Although the class of Lévy processes is vast, one can characterize them in a very

compact way via the characteristic function of the process. More precisely, a time-

dependent random variable Xt is a Lévy process if and only if it has independent and

stationary increments with log-characteristic function given by the Lévy-Khintchine
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representation

ln E
[

eiξXt

]

≡ tΨ(ξ) = mitξ −
1

2
σ2tξ2 + t

∫

R\{0}

(

eiξx − 1 − iξh(x)
)

W (dx), (4)

where m ∈ R, σ ≥ 0, h(x) is a truncation function, the Lévy measure W must satisfy
∫

R

min{1, x2}W (dx) < ∞, (5)

and Ψ(ξ) is known as the characteristic exponent of the Lévy process, Ref. [14]. A

Lévy process can be seen as a combination of a drift component, and two indepen-

dent processes: a Brownian motion component and a jump component. These three

components are completely determined by the Lévy-Khintchine triplet (m, σ2, W ).

The Lévy measure W is responsible for the behavior of the jump component of Xt

and determines the frequency and magnitude of jumps. If the Lévy measure is of the

form W (dx) = w(x)dx, w(x) is called the Lévy density.

To understand how Lévy processes are incorporated in the derivatives pricing

models, it is instructive to recall how Gaussian shocks are built into the standard

BS framework. To find the fair, or arbitrage free, price of financial instruments

that derive their value from an underlying stock price St, it is necessary to express

the dynamics of St under what is known as the risk-neutral measure or equivalent

martingale measure (EMM), Ref. [32]. For example, in the BS model, this means

that the random walk followed by St under the EMM is

d(lnSt) =

(

r −
1

2
σ2

)

dt + σdBQ
t (6)

where σ > 0, r is the risk-free rate and dBQ
t is the increment of a Brownian motion

under the EMM. Note that this random walk is similar to Eq. (1) but the drift now

contains the risk-free rate r and while the stochastic component is again Brownian

motion, we stress that it is under the risk-free measure by using the superscript Q.

In the BS model, the price of a European call option C(S, t; K, T ) struck at K,

expiring at T and with payoff max(ST − K, 0), can be calculated by either taking

expectations of the payoff discounted by the risk-free rate

C(S, t; K, T ) = e−r(T−t)
E

Q[max(ST − K, 0)]
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when St follows Eq. (6), or by solving the BS PDE Eq. (2) subject to the appropriate

boundary conditions, Ref. [34]. The BS model is one of the few where there are

closed-form solutions for the value of European-style options. However, as we shall see

below, once a more realistic random walk for the risk-neutral dynamics of the stock

price St is assumed, the pricing of instruments, more complex than European call

and put options, is not straightforward. In such cases, one must resort to numerical

methods to solve the analogue PDE to the BS Eq. (2) to price other type of financial

instruments.

Based on the poor empirical performance of the BS model, much of the recent

financial literature proposes to replace the Brownian shocks in Eq. (1) with a Lévy

process so that

d(lnSt) = µdt + dLP
t , (7)

where we denote the increments of the Lévy process, under the physical or historical

measure P , by dLP
t . As in the Brownian motion case, pricing of instruments is

performed under a chosen EMM that will no longer be unique due to the presence of

jumps introduced by the Lévy process Lt. The literature proposes a number of ways

of choosing an EMM under which pricing of instruments is performed. One of the

most popular approaches has been to assume that under the EMM the stock price

stays within the family of Lévy processes (not necessarily the same one driving the

historical process) and this is the approach adopted here. For a rigorous treatment

of the connection between historical and risk-neutral measures see Refs. [5, 10].

Therefore, for the purposes of pricing financial instruments, it is further assumed

that, under the risk-neutral measure, the stock price follows a geometric Lévy process

d(ln St) = (r − υ)dt + dLt, (8)

with solution

ST = Ste
(r−υ)(T−t)+

R
T

t
dLu , (9)

where r is the risk-free rate, υ is a convexity adjustment so that E
Q[ST ] = er(T−t)St,

and dLt is the increment of a Lévy process under the EMM Ref. [10]. Note that

Eq. (6) is a particular case of Eq. (8) when the Lévy process Lt has triplet (0, σ2, 0)
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and υ = 1
2
σ2. Below we discuss in detail the particular choices of Lévy processes we

are interested in: LS, CGMY and KoBoL.

2.1 LS processes

For an LS process, the Lévy density is given by

wLS(x) =

{

Dq |x|−1−α for x < 0,

Dpx−1−α for x > 0,
(10)

where D > 0, p, q ∈ [−1, 1] with the restriction p + q = 1 and 0 < α ≤ 2. Using

Eq. (4) yields the characteristic exponent of an LS process in terms of the parameters,

α, σ, β and m:

ΨLS(ξ) = −
1

2
σα|ξ|α {1 − iβsign(ξ) tan(απ/2)} + imξ for α 6= 1. (11)

An equivalent, more convenient, expression of ΨLS(ξ), which we use below, is

ΨLS(ξ) = −
σα

4 cos(απ/2)
{(1 − β)(iξ)α + (1 + β)(−iξ)α} + imξ. (12)

If the random variable X belongs to an LS distribution with parameters α, σ, β

and m we write X ∼ LSα (σ, β, m). The parameter α is known as the stability index;

σ is a scaling parameter; −1 ≤ β ≤ 1 is a skewness parameter with β = p − q and m

is a location parameter. Moreover, we point out that when β = −1 (resp. β = 1) the

random variable X is maximally skewed to the left (resp. right). For α = 2 and β = 0

the Gaussian case is obtained and apart from the case α = 2, the random variable X

possesses infinite variance. Although there are strong theoretical grounds that support

the use of LS processes in financial modeling, the infinite moments property makes

it difficult to implement it from a mathematical and financial viewpoint Ref. [22].

However, for maximally skewed LS processes with β = −1, the Laplace transform of

the process Xt ∼ LSα

(

t1/ασ,−1, a
)

exists. This choice of parameters gives rise to an

interesting financial model known as the finite moment log-stable (FMLS), Ref. [8].

A particular feature of the FMLS process is that it only exhibits downwards jumps,

whilst upwards movements have continuous paths. This is straightforward to see by

inspecting the Lévy density in Eq. (10) evaluated at q = 1 and p = 0, i.e. β = −1.
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2.2 CGMY and KoBoL processes

We recall that to circumvent the infinite variance limitation of LS processes and to

ensure the existence of moments of all orders, it was proposed to truncate the tails of

the LS distribution Refs. [20, 22]. This approach was extended by introducing an ex-

ponential damping in the Lévy density Eq. (10) to yield a more tractable formulation

of the characteristic function of the stochastic process. Two ‘damped’ LS processes

have been proposed in the financial literature: CGMY and KoBoL.

The CGMY process is a pure jump Lévy process (i.e. it has no Brownian motion

component) with Lévy measure W (dx) = wCGMY (x)dx

wCGMY (x) =

{

C e−G|x|

|x|1+Y for x < 0,

C e−Mx

x1+Y for x > 0.
(13)

Substituting it in the Lévy-Khintchine representation Eq. (4) with m = 0, and eval-

uating the integral, we obtain the characteristic exponent

ΨCGMY (ξ) = CΓ(Y ){(M − iξ)Y − MY + (G + iξ)Y − GY }. (14)

Here C > 0, G ≥ 0, M ≥ 0 and Y < 2. The parameter C may be viewed as a measure

of the overall level of activity. The parameters G and M control the exponential decay

of the left and right tail respectively and the distribution is symmetric when G = M .

The KoBoL process is also a pure jump Lévy process, very similar to the CGMY,

with Lévy density

wKOBOL(x) =

{

Dq |x|−1−α e−λ|x| for x < 0,

Dpx−1−αe−λx for x > 0,
(15)

therefore the characteristic exponent becomes

ΨKOBOL(ξ) = 1
2
σα {p(λ − iξ)α + q(λ + iξ)α − λα} ,

ΨKOBOL(ξ) = 1
2
σα {p(λ − iξ)α + q(λ + iξ)α − λα − iξαλα−1(q − p)} ,

(16)

for 0 < α < 1 and for 1 < α ≤ 2 respectively. The parameter λ > 0 plays the same

role as G and M do in the CGMY model, while the other parameters perform a similar

function to those in the LS process. The main differences between the CGMY and
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KoBoL are that in the CGMY the parameter Y < 2 while for the KoBoL 0 < α ≤ 2.

Moreover, the skewness in the CGMY is controlled by G and M while in the KoBoL

by p and q.

3 A fractional calculus approach to option pricing

In this section we derive the FPDEs satisfied by options written on assets that follow

the Lévy processes presented above. To establish the connection between the frac-

tional pricing equations and these processes, we first note that if the log-stock process

follows Eq. (8), where the characteristic exponent of the Lévy process Lt is Ψ(ξ), then

the Fourier transform, denoted by

f̂(ξ) =

∫ ∞

−∞

eiξxf(x)dx = F{f(x)},

of the value of a European-style option V̂ (ξ, T ), written on St, satisfies

∂V̂ (ξ, t)

∂t
= [r + iξ(r − υ) − Ψ(−ξ)]V̂ (ξ, t), (17)

with boundary condition V̂ (ξ, T ) = Π̂(ξ, T ).

One can prove this result by looking at the infinitesimal generator of the Lévy

process Ref. [10]. Here we provide an alternative and straightforward proof in Ap-

pendix A where we use the fact that the characteristic function of ln ST , using Eq. (9),

is given by

E
Q

[

eiξ lnST

]

= eiξ lnSt+iξ(T−t)(r−υ)+(T−t)Ψ(ξ). (18)

We stress that Eq. (17) is general in the sense that it encompasses all Lévy process,

with finite exponential moments, and not only the ones described in Section 2. We

will use Eq. (17) to derive the FPDEs satisfied by European-style options written

on assets that follow the random walk Eq. (8), via its expression in Fourier space

Eq. (18), with different choices of dLt and its corresponding convexity adjustment

υ. In particular, we assume that the underlying risk-neutral dynamics of an asset St

follow either an FMLS (or maximally skewed LS process), CGMY or KoBoL process.
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In Appendix B we review concepts of fractional calculus whilst here we present

the basic definition and notation of fractional derivatives. We define the Riemann-

Liouville (RL) fractional derivative of the function f as follows, Ref. [27]. The left

and right fractional derivatives, of order γ of the function f , are respectively given by

aD
γ
xf(x) =

1

Γ(n − γ)

∂n

∂xn

∫ x

a

(x − y)n−γ−1f(y)dy n − 1 ≤ γ < n, (19)

and

xD
γ
b f(x) =

(−1)n

Γ(n − γ)

∂n

∂xn

∫ b

x

(y − x)n−γ−1f(y)dy n − 1 ≤ γ < n, (20)

where n is the smallest integer larger than the number γ. Moreover, in an infinite

domain, a = −∞ or b = ∞, the Fourier transforms of the left and right operators,

Eq. (19) and Eq. (20), are given by

F{−∞Dγ
xf(x)} = (−iξ)γ f̂(ξ) and F{xD

γ
∞f(x)} = (iξ)γ f̂(ξ). (21)

Fractional derivatives are closely related to non-Gaussian stochastic processes. As

discussed in Ref. [24] and references therein, these operators naturally appear in the

description of anomalous transport in continuous-time (non-Brownian) random walks.

In particular, the probability distribution function of random walkers with algebraic

decaying jump size l, with distribution functions of the form p ∼ l−(1+α), is described

by fractional diffusion equations of order α.

3.1 Derivation of FMLS FPDE

According to Eq. (12), the characteristic exponent of the FMLS process, i.e. an LS

process with β = −1, is

ΨFMLS(−ξ) = −
1

2
σα sec(απ/2)(−iξ)α (22)

and the convexity adjustment of the random walk in Eq. (8) is

υ = −
1

2
σα sec(απ/2). (23)
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Substituting Eq. (22) in Eq. (17) and taking the inverse Fourier transform delivers

the pricing FPDE

∂V (x, t)

∂t
+

(

r +
1

2
σα sec(απ/2)

)

∂V (x, t)

∂x
−

1

2
σα sec(απ/2)−∞Dα

xV (x, t) = rV (x, t).

(24)

3.2 Derivation of CGMY and KoBoL FPDEs

If the shocks to the log-stock price are CGMY we obtain the pricing FPDE by substi-

tuting ΨCGMY (−ξ), using Eq. (14), in Eq. (17). Taking the inverse Fourier transform

yields

∂V (x, t)

∂t
+ (r − υ)

∂V (x, t)

∂x
+CΓ(−Y )eMx

xD
Y
∞

(

e−MxV (x, t)
)

+CΓ(−Y )e−Gx
−∞DY

x

(

eGxV (x, t)
)

= (r + CΓ(−Y )(MY + GY ))V (x, t), (25)

where

υ = CΓ(Y ){(M − 1)Y − MY + (G + 1)Y − GY }. (26)

Note that for Y < 0 the fractional operators in Eq. (25) are fractional integrals.

Similarly, if the risk-neutral log-stock price dynamics follow a KoBoL process, the

pricing equation satisfied by European-style options satisfies

∂V (x, t)

∂t
+ (r − υ − λα−1(q − p))

∂V (x, t)

∂x
+

1

2
σα

[

peλx
xD

α
∞e−λxV (x, t) + qe−λx

−∞Dα
xeλxV (x, t)

]

=

(

r +
1

2
σαλα

)

V (x, t),

(27)

where

υ =
1

2
σα

{

p(λ − 1)α + q(λ + 1)α − λα − αλα−1(q − p)
}

. (28)

As expected, this equation coincides with the PIDE derived in Ref. [3] for KoBoL

processes, and if α = 2 we recover the classical BS partial differential Eq. (3).
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CGMY and KoBoL processes are particularly useful damped Lévy processes be-

cause, as shown here, they lead to generalized fractional operators involving exponen-

tial damping factors that can be incorporated into pricing equations. Other possible

dampening include power-law cutoffs that can also be incorporated into generalized

fractional operators, see Ref. [33]. However, power-law truncations are not suited for

derivative pricing because the expectation value of the stock price, E
Q[St] = E

Q[eXt ],

diverges when the distribution of the random variable Xt exhibits algebraic tails for

x > 0. Note that this is not an issue for FMLS processes which involve maximally

skewed distributions where only the left tail exhibits algebraic decay and the expec-

tation E
Q[eXt ] < ∞, see Ref. [30].

In this section we have shown that for the Lévy processes discussed here, the

pricing equations satisfied by European-style derivatives are FPDEs. When it was

assumed that log-stock prices follow an FMLS process, we observed, as a consequence

of a heavy left tail of the distribution, that only the left RL operator appears. For

the CGMY and KoBoL we see that both the right and left RL operators appear as a

consequence of both left and right heavy tails of the distribution of log-stock prices.

4 Option pricing: numerical solution of FPDEs

In the previous section it was shown that for the Lévy processes discussed in Section

2, the pricing equation for European-style options can be written using fractional

derivative operators. Beyond the conceptual insight gained by doing this, one of the

main advantages of introducing explicitly fractional operators rests on the possibility

of using recently developed numerical methods for solving fractional order equations.

In the standard BS model, the local nature of the differential operators involved,

makes the solution of the pricing equation straightforward by using well-understood

methods, e.g. finite-difference techniques Ref. [34]. On the other hand, as discussed

before, non-Gaussian models lead to pricing equations involving integro-differential

operators whose non-local behavior creates non-trivial numerical problems. See for

example Ref. [11] and references therein.
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In the case of infinite domains, where boundary conditions are easily incorpo-

rated, Fourier transform methods provide an efficient technique for solving integro-

differential pricing equations Ref. [7]. However, transform methods cannot be applied

to problems in finite or semi-infinite domains where the operators have to be localized

and boundary conditions imposed. An important example of this type of problems are

barrier options. In their simplest realization, barrier options, also known as knock-out

options, are similar to European calls and puts with the difference that their value

depends on the stock price ‘hitting’ a known threshold throughout the life of the op-

tion. The presence of such barrier makes the solution of the option pricing problem

dependent on the trajectory of the stock value.

In this section we consider the pricing of knock-out barrier options for FMLS

processes using Eq. (24). Depending on the boundary conditions, there are three

different cases: up-and-out, down-and-out, and double-knock-out options. For a Eu-

ropean up-and-out call option with barrier located at x = Bu the boundary conditions

are

V (x, t) =

{

0 for ex ≥ eBu , 0 ≤ t < T,

max (ex − K, 0) for 0 < ex < eBu , t = T.
(29)

Boundary conditions for European down-and-out call options follow a similar logic

requiring the value of the option to vanish when the price of the asset falls below a

prescribed value, x = Bd,

V (x, t) =

{

0 for ex ≤ eBd , 0 ≤ t < T,

max (ex − K, 0) for eBd < ex, t = T.
(30)

Finally, double-knock-out options with lower boundary at x = Bd and upper bound-

ary at x = Bu require the vanishing of the price when ex ≤ eBd and ex ≥ eBu for

0 ≤ t < T , with V (x, T ) = max(ex − K, 0) for eBd < ex < eBu . Note that the main

difference between jump models and the BS case is that in the former the boundary

condition at the barrier must also specify the value of the option beyond the barrier,

which is zero. This is the correct specification because the jump nature of the stock

price can take the underlying over the barrier without hitting it as in the diffusion

case where the underlying stock price has continuous paths.

14



The standard Black-Scholes model and its fractional extensions assume an infinite

domain, x ∈ (−∞,∞). However, to solve the corresponding equations numerically it

is necessary to truncate the original unbounded domain into a finite interval. Whereas

this truncation is more or less direct in the standard Black-Scholes case, it is non-

trivial in the fractional case due to the non-locality of the operators involved. In this

section we apply the truncation method and numerical scheme originally proposed in

Refs. [13, 12] to solve the fractional Black-Scholes equation for FMLS processes.

A straightforward way to truncate the fractional operators is to approximate

−∞Dγ
x ≈ aD

γ
x, where a is the lower bound of the finite size domain of interest.

In the case of down-and-out options, a = Bd. However, this naive prescription is

problematic because for finite a the left Riemann-Liouville derivative is singular at

the lower, x = a, boundary. To understand the nature of this singularity consider a

differentiable function f . Expanding in Taylor series around x = a and fractional-

differentiating term by term (using Eq. (51)) we get for 1 < γ < 2,

aD
γ
x f =

1

Γ(1 − γ)

f(a)

(x − a)γ
+

1

Γ(2 − γ)

f ′(a)

(x − a)γ−1
+

∞
∑

k=0

f (k+2)(a)(x − a)k+2−γ

Γ(k + 3 − γ)
, (31)

The key observation is that, for 1 < γ < 2 and finite a, the first two terms on the

right hand side are in general singular. Rewriting Eq. (31) as

aD
γ
x [f(x) − f(a) − f ′(a)(x − a)] =

∞
∑

k=0

f (k+2)(a)(x − a)k+2−γ

Γ(k + 3 − γ)
, (32)

with the regular terms on the right hand side, it is observed that, although the

truncated Riemann-Liouville derivative of a general function is singular, the derivative

of the function with the boundary terms subtracted is regular. This motivates the

definition of the regularized, truncated left fractional derivative of order 1 < γ < 2 as

c
aD

γ
x f =a Dγ

x [f(x) − f(a) − f ′(a)(x − a)] , (33)

which after integration by parts can be written as

c
aD

γ
x f =

1

Γ(2 − γ)

∫ x

a

∂2
yf

(x − y)γ−1
dy . (34)

We use the left super-index “c” because this regularized fractional derivative corre-

sponds to the Caputo fractional derivative used in the study of fractional derivative
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operators in time, see for example Refs. [27, 29]. By construction, for well-behaved

functions, in the limit x → a, c
aD

γ
x f → 0, and as expected, in the limit a → −∞,

c
aD

γ
x f →−∞ Dγ

x f . Based on this, following Refs. [13, 12], for the numerical solution of

the fractional BS equation in the (a, b) domain, we truncate the fractional derivative

using the approximation −∞Dγ
x ≈ c

aD
γ
x.

In the numerical solution of the standard and the fractional Black-Scholes models

one has to translate the asymptotic boundary conditions into the finite domain of

interest. Since the fractional FMLS model contains only a left fractional derivative,

non-locality plays no role in the specification of the boundary conditions at x = Bu

which can be implemented numerically following what is done in the standard Black-

Scholes model (see for example Ref. [34] ). The boundary conditions at the lower

boundary are less trivial to implement since in this case the non-local effects of the left

derivative play a role. For down-and-out and double-knock-out options the truncation

guarantees by definition the correct boundary condition V (x, t) = 0 for x ≤ Bd.

For up-and-out barriers, we adopt the Neumann boundary condition V ′(Bd, t) = 0.

This boundary condition neglects the contribution of the fractional derivative from

the (−∞, Bd) interval. However this approximation is justified by the fact that the

Greens’s function of the fractional Black-Scholes derivatives for an FMLS process is

an extremal LS distribution that decays exponentially in the (−∞, Bd) interval.

A key issue in the solution of PIDEs is the discretization of the integral operator(s)

involved. For the case of fractional operators two methods can be followed. One

consists of a direct finite different approximation of the integral appearing in the

definition of the RL derivative. This method, which can in principle be applied to

general PIDEs, was used in Ref. [17] to solve FPDEs. An alternative method is based

on the Grünwald-Letnikov (GL) definition of the fractional derivative according to

which

aD
γ
x f(x) = lim

h→0

−∆γ
h f(x)

hγ
, (35)

where the left finite-difference fractional operator, −∆µ
hf , is defined as

−∆γ
h f(x) =

m−
∑

j=0

w
(γ)
j f(x − jh) , (36)

with m− = [(x − a)/h], where the brackets [ ] denote the integral part, Ref. [27].
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The right fractional derivative is defined in an analogous manner. In the first order

approximation, the coefficients w
(µ)
j are recursively defined as

w
(γ)
0 = 1 , w

(γ)
k =

(

1 −
γ + 1

k

)

w
(γ)
k−1 , k = 1, 2, . . . N , (37)

and for finite h they provide a first order approximation of the fractional derivative,

i.e.

aD
γ
xV −

a∆
γ
hV

hγ
= O(h) . (38)

For well-behaved functions it can be shown that the Grünwald-Letnikov definition is

equivalent to the Riemann-Liouville definition, see for example Ref. [27].

For the numerical integration we use the “backward” time variable T − t so that

the payoff curve at expiry gives the initial condition at T − t = 0 and the evolution

of the price follows a diffusion-like process for T − t > 0. The integration domain

x ∈ (Bd, Bu) is divided into N equally spaced segments with grid points at {xk} for

k = 0, 1, . . .N , with x0 = Bd, xN = Bu, and xk+1 − xk = (Bu − Bd)/N = h. The

value of V at grid point xk is denoted as Vk. The first order regular derivative in the

FPDE is discretized using an up-wind scheme Ref. [26]. Following Refs. [13, 12], to

discretize the left fractional derivative, we first write the operator in flux conserving

form aD
γ
x = ∂x aD

γ−1
x . The first order derivative ∂x is then discretized using a forward

finite-difference scheme and the fractional derivative of order γ−1 is discretized using

the Grünwald-Letnikov representation. The resulting finite-difference equation can

be written in matrix form as

∂t Vk = h−γ [M V ]k . (39)

For the time advance we use the weighted average method

V m+1
k − V m

k = ν Λ [M V ]m+1
k + ν (1 − Λ) [M V ]mk , (40)

where V m
k denotes the value of V at grid point k at time t = m∆t, and ν = ∆t /hγ.

Solving for V m+1 leads to

V m+1
k = [1 − νΛM ]−1 [1 − ν (1 − Λ)M ] V m

k . (41)

The weighting factor Λ can in general depend on γ but for the calculation presented

here we used the Crank-Nicolson prescription Λ = 1/2. Further details of the numer-

ical method can be found in Refs. [13, 12].
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In the calculations reported here to price barrier options, it is assumed that the

options are struck at K = 50 and the starting value of the stock price at time t = 0

is S0 = 50. The down barrier is located at Bd = 30, and the up barrier is located at

Bu = 83. Figure 1 shows the up-and-out values; Figure 2 the down-and-out values;

and Figure 3 the double-knock-out values for the FMLS FDE with α = 1.5 and

σ = 0.25. All figures show values for T = {3/12, 2/12, 1/12, 2/52, 1/52, 0}. That is, 3

months, 2 months, 1 month, 2 weeks, 1 week and at expiry. To interpret these results

we evaluate the difference between the prices obtained by a trader who assumes a

BS model and a trader who assumes that the log-stock process follows an FMLS

process. For illustrative purposes we assume that the two traders’ measure of the

variance of returns, (St+∆t − St)/St, over a time step ∆t coincide. According to this

prescription σ = 0.25 in the FMLS implies σBS = 0.2706 in the BS model. Figures

4, 5 and 6 show the corresponding difference between the BS and FMLS values. It is

interesting to observe that for the three types of knock-out call options considered,

the BS model delivers higher prices when S < K and lower prices for deeper in-the-

money options (S ' 53). In the up-and-out case it is straightforward to see that

the jump nature of the FMLS process must deliver a much higher price for in-the-

money options than the equivalent BS case. As mentioned above, the FMLS process

exhibits downwards jumps but no upwards jumps. Therefore, compared to Gaussian

shocks, the probability of hitting the up barrier is much lower than if shocks were

Gaussian. Finally, when the barrier is placed below the strike, BS options are more

expensive than FMLS for out-of-the-money down-and-out options, and cheaper for

in-the-money options. Note that in this case, the presence of downward jumps in the

FMLS reduces the value of an FMLS down-and-out call but it is still more expensive

(for in-the-money values) than the BS down-and-out. Finally, Figure 6 shows the

difference in prices for the double knock-out that may be interpreted in the same way

the up-and-out and down-and-out discussed above.
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Figure 1: FMLS Up-and-Out. Up-and-Out values with α = 1.5, Bu = 83 and

σ = 0.25 for T = {3/12, 2/12, 1/12, 2/52, 1/52, 0}.
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Figure 2: FMLS Down-and-Out. Down-and-Out values with α = 1.5, Bd = 43

and σ = 0.25 for T = {3/12, 2/12, 1/12, 2/52, 1/52, 0}.

5 Conclusions and further work

Over the past decade, the financial literature has proposed a multitude of different

models to capture the dynamics of financial assets. The use of Lévy processes has
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Figure 3: FMLS Double-Knock-Out. Double-Knock-Out values with α = 1.5,

Bu = 83, Bd = 30, σ = 0.25 and for T = {3/12, 2/12, 1/12, 2/52, 1/52, 0}.
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Figure 4: Black-Scholes vs FMLS Up-and-Out. Difference in Up-and-Out

values with α = 1.5, Bu = 83, σ = 0.25 and σBS = 0.2706 for T =

{3/12, 2/12, 1/12, 2/52, 1/52, 0}.

proven to be an excellent tool that strikes the right balance between capturing the

desired properties of stock price evolution and mathematical tractability. The class of

Lévy processes is vast, but for equity modeling, the FMLS, CGMY and KoBoL stand
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Figure 5: Black-Scholes vs FMLS Down-and-Out. Difference in Down-and-

Out values with α = 1.5, Bd = 43, σ = 0.25, and σBS = 0.2706 for T =

{3/12, 2/12, 1/12, 2/52, 1/52, 0}.

out as some of the best choices among practitioners and academics. On the other hand

the use of fractional operator theory seems to be increasing in a number of disciplines.

In this article we show that financial instruments that derive their value from assets

that are modeled as geometric Lévy processes, such as those mentioned above, satisfy

FPDEs. These fractional equations may be used not only to price simple options,

such as European calls and puts, but can also be employed to solve other more exotic

instruments, such as barrier options, and American options. To illustrate this we

priced barrier options when the stock price follows a geometric FMLS process.

The pricing of American options may also be performed numerically by noting

that instead of having equality we have an inequality in the FPDEs. For example, an

American option written on an asset that follows a geometric KoBoL process, satisfies

∂V (x, t)

∂t
+ (r − υ − λα−1(q − p))

∂V (x, t)

∂x

+
1

2
σα

[

peλx
xD

α
∞e−λxV (x, t) + qe−λx

−∞Dα
xeλxV (x, t)

]

≤

(

r +
1

2
σαλα

)

V (x, t),

(42)

where υ is given by Eq. (28) and subject to the relevant boundary conditions. The
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Figure 6: Black-Scholes vs FMLS Double Knock-Out. Difference Double

Knock-Out values with α = 1.5, Bu = 83, Bd = 30, σ = 0.25 and σBS = 0.2706

for T = {3/12, 2/12, 1/12, 2/52, 1/52, 0}.

case T = ∞ is known as a perpetual option and closed-form solutions may be obtained

for a for a large class of members of the Lévy processes family Refs. [4, 25].

Finally, as for American options, there is a need to be able to price more complex

instruments and in the majority of these cases one has to resort to numerical tech-

niques that involve solving pricing equations, such as the ones derived here, subject

to the relevant boundary and initial conditions. It is here that the wealth of literature

and techniques developed in the field of fractional operators can be applied to price

a wide range of financial instruments.
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A Derivation of Eq. (17)

Here we show that the Fourier transform of the value of a European-style option

written on an asset that follows Eq. (8) satisfies Eq. (17). We start by writing the

value of the option as the risk-neutral expectation of the final payoff Π(xT , T )

V (x, t) = e−r(T−t)
E

Q[Π(xT , T )].

Assuming that the payoff Π(xT , T ) has a complex Fourier transform

F{Π(xT , T )} ≡ Π̂(ξ, T ) =

∫ ∞+iξi

−∞+iξi

eiξxT Π(xT , T )dxT ,

in the strip a < ξi < b, where we denote ξi = Im ξ, we write

V (x, t) =
e−r(T−t)

2π
E

Q

[
∫ ∞+iξi

−∞+iξi

e−ixT ξΠ̂(ξ, T )dξ

]

. (43)

Taking the expectation operator inside the integral, see Ref. [16], we obtain

V (x, t) =
e−r(T−t)

2π

∫ ∞+iξi

−∞+iξi

E
Q[e−ixT ξ]Π̂(ξ, T )dξ

=
e−r(T−t)

2π

∫ ∞+iξi

−∞+iξi

e−iξxt−iξ(r−υ)(T−t)e(T−t)Ψ(−ξ)Π̂(ξ, T )dξ, (44)

where Ψ(ξ) is the characteristic exponent of the Lévy process Lt. Note that we require

eΨ(−ξ) to be analytic in a strip that intersects the strip where the complex Fourier

transform of the payoff exists. It follows from Eq. (44) that

V̂ (ξ, t) = e[−r−iξ(r−υ)+Ψ(−ξ)](T−t)Π̂(ξ, T ),

which is the solution of Eq. (17) with boundary condition V̂ (ξ, T ) = Π̂(ξ, T ).

B Review of fractional calculus

In this appendix we review some useful results from fractional calculus pertaining to

the present paper. Further information can be found in Refs. [27, 29]. A convenient
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way to define the fractional derivative is by first introducing the fractional integral.

Let f(x) be a real valued function, and n an integer number. Then, the n-th order

integration of f(x) is

aD
−n
x f(x) =

∫ x

a

dx1

∫ x1

a

dx2 . . .

∫ xn−1

a

dxn f(xn) , (45)

where a is a constant. Equation (45) can equivalently be written as

aD
−n
x f(x) =

1

(n − 1)!

∫ x

a

f(y)

(x − y)1−n
dy . (46)

A straightforward extension of Eq. (45) to non-integer order γ leads to

aD
−γ
x f(x) =

1

Γ(γ)

∫ x

a

f(y)

(x − y)1−γ dy , (47)

where Γ is the gamma function, which generalizes the factorial to non-integer values.

Equation (47) is the Riemann-Liouville fractional integral of order γ. Results from

regular integral calculus extend naturally to this operator. An instructive example is

the fractional integral of a power

0D
−γ
x xµ =

Γ(µ + 1)

Γ(µ + γ + 1)
xµ+γ . (48)

Based on the fractional integral, the fractional derivative of order γ is defined as

aD
γ
x f(x) =

∂m

∂xm

[

aD
−(m−γ)
x f(x)

]

, (49)

where m is the smallest integer greater than γ. As expected, for integer γ = N ,

aD
N
x f(x) = ∂Nf(x)/∂xN . Substituting Eq. (47) into Eq. (49) leads to Riemann-

Liouville fractional derivative of order γ,

aD
γ
xf(x) =

1

Γ(m − γ)

∂m

∂xm

∫ x

a

f(y)

(x − y)γ+1−m dy , (50)

where m − 1 ≤ γ < m with m a positive integer. As an example,

0D
γ
x xµ =

Γ(µ + 1)

Γ(µ − γ + 1)
xµ−γ . (51)

As in the case of the fractional integral, basic results from regular calculus naturally

extend to the fractional derivative operator.

24



The value of the fractional derivative in Eq. (50) at x depends on the behavior of

the function f(x) to the “left” of x, i.e. in the interval (a, x). This is the reason why,

in a more precise terminology, Eq. (50) is called the left Riemann-Liouville fractional

derivative. The right Riemann-Liouville fractional derivative is naturally defined by

switching the integration limits

xD
γ
b f(x) =

1

Γ(m − γ)

∂m

∂xm

∫ b

x

f(y)

(y − x)γ+1−m dy . (52)

The general fractional derivative operator is defined as a superposition of the left and

right derivatives. Moreover, in an infinite domain, a = −∞ or b = ∞, the Fourier

transforms of the left and right operators are given by

F{−∞Dγ
xf(x)} = (−iξ)γ f̂(ξ) and F{xD

γ
∞f(x)} = (iξ)γ f̂(ξ).
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under regular Lévy processes of exponential type. Annals of Applied Probability,

12(4):1261–1298, 2002.
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for truncated Lévy processes. Working paper, 2006.

[6] P. Carr, H. Geman, D. Madan, and M. Yor. The fine structure of asset returns:

an empirical investigation. Journal of Business, 75(2):305–332, 2002.

[7] P. Carr and D. Madan. Option valuation using the fast Fourier transform.

Journal of Computational Finance, 2:61–73, 1999.

[8] P. Carr and L. Wu. The finite moment logstable process and option pricing. The

Journal of Finance, LVIII(2):753–777, April 2003.
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