

This is a postprint version of the following published document:

Bagnulo, Marcelo; Burbridge, Trevor; Crawford, Sam;
Eardley, Philip; Schoenwaelder, Juergen; Trammell, Brian
2014). Building a standard measurement platform. IEEE
Communications Magazine, 52(5), pp.: 165-173.

DOI: https://doi.org/10.1109/MCOM.2014.6815908

© 2014 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.
See https://www.ieee.org/publications/rights/index.html for more
information.

https://doi.org/10.1109/MCOM.2014.6815908
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.ieee.org/publications/rights/index.html

Abstract— Network management is achieved through a large
number of disparate solutions for different technologies and
parts of the end-to-end network. Gaining an overall view, and
especially predicting the impact on a service user, is difficult.
Recently a number of proprietary platforms have emerged to
conduct end-to-end testing from user premises, however, these
are limited in scale, interoperability and the ability to compare
like-for-like results. In this paper we show that these platforms
share similar architectures and can benefit from the
standardisation of key interfaces, test definitions, information
model and protocols. We take the SamKnows platform as a use
case and we propose an evolution from its current proprietary
protocols to standardized protocols and tests. In particular we
propose to use extensions of the IETF’s IPFIX and
NETCONF/YANG in the platform. Standardisation will allow
measurement capabilities to be included on many more network
elements and user devices, providing a much more
comprehensive view of user experience and enabling problems
and performance bottlenecks to be identified and addressed.

Index Terms—Multi-domain measurement platforms,

network management, standardization.

I. INTRODUCTION

Network management has always been the Cinderella

child: remembered only reluctantly and after dealing with the
more exciting business of adding new applications and link
layer technologies. This has led to network management
comprising a whole series of more-or-less independent
solutions cobbled together to tackle what are seen as more-or-
less independent problems. From a technical point of view,
this approach becomes harder to sustain with the ever
increasing scale, scope and rate of change of the Internet: the
tens of thousands of autonomously administered networks;
the move from centralized client-server applications to fully
distributed cloud computing; the proliferation of super-fast
access speeds. From a socio-economic perspective, the
problem is even more urgent because the Internet is now vital
infrastructure; whilst the technical expert knows that the
underlying technology is best effort, from a user’s
perspective the Internet is a critical utility – in fact, in a UK
survey in 2011 of “things you couldn’t live without”, the
Internet was rated second, ahead of water, a cooker and a

mobile phone, and behind only sunshine!
In order to gain deeper insight about Internet performance,

several large-scale measurement platforms - such as
SamKnows1, RIPE Atlas2 and Netalyzr[11] - have been
deployed over the last few years. They encompass several
thousands probes distributed across the Internet. Most of
these probes are located in homes and can perform active
tests against measurement servers located in the core of the
Internet, and they are used to assess the performance of the
Internet access from the perspective of an end user.
Currently, these measurement platforms are mainly used for
benchmarking ISPs.

While these platforms have been proven useful, we believe
they have not realized their full potential due to their
proprietary and by consequence closed nature. All the current
platforms use proprietary protocols and proprietary
metrics/tests, which has negative side effects, including:
• The platforms cannot interact with each other.

Measurement platforms clearly benefit from the so-
called network effect, meaning that a platform is more
useful as more probes it has. Because of that, platforms
would benefit from some form of interaction that would
allow the pooling of the probes from multiple platforms.
There are different levels of interaction that can be
envisioned, ranging from enabling one platform to use
the probes of another platform, to supporting coordinated
tests that are executed in parallel on different platforms.
This is not possible today as deployed platforms are
bespoke systems that cannot interact with other systems
through standard interfaces.

• The deployment of platforms is expensive. Since each
platform uses proprietary protocols, whenever a new
party wants to deploy probes to perform its own
measurements it cannot buy off-the-shelf components
that natively interact to form a measurement platform.
Instead it should be possible to have components from
multiple vendors.

• Because the tests and the metrics themselves are
proprietary, it is not safe to compare results of

1 http://www.samknows.com/
2 https://atlas.ripe.net/

Building a standard measurement platform

 Marcelo Bagnulo Trevor Burbridge Sam Crawford
 Universidad Carlos III de Madrid BT SamKnows
 marcelo@it.uc3m.es trevor.burbridge@bt.com sam@samknows.com

 Philip Eardley Juergen Schoenwaelder Brian Trammell
 BT Jacobs University ETH Zurich
 philip.eardley@bt.com j.schoenwaelder@jacobs-university.de trammell@tik.ee.ethz.ch

supposedly the same metric, since their definitions may
differ. This also implies that the results obtained from
different platforms cannot be aggregated to obtain a
larger data set, severely reducing the usefulness of the
obtained results.

The result is that the community has invested a large
amount of resources deploying these platforms, but it is not
possible to take the full advantage such infrastructure could
provide.

In this paper, we propose to extend a set of standard
protocols to build a large-scale measurement platform. As a
consequence, it would be possible to build a measurement
platform using standard off-the-shelf components and build
federations of measurement platforms. The context of this
work is the efforts being carried out in several standards
development organizations (SDOs): at the IETF’s LMAP and
IPPM working groups; at the Broadband Forum’s WT-304
activity; and at the IEEE’s project P802.16.3.

In this paper we follow an evolutionary approach. We
examine the state of the art in measurement platforms,
focusing on the SamKnows platform as a case study and we
propose an evolution of the platform towards open standards.
We start by describing the current architecture of existing
platforms in section II and then we describe how to evolve to
a standard architecture in section III, the information model
in section IV, standard metrics in section V and standard
protocols in sections VI and VII.

II. STATE OF THE ART IN MEASUREMENT PLATFORMS
Here we examine three current active network measurement
platforms, RIPE Atlas, perfSONAR, and SamKnows, as
background for identifying the requirements for a standard
measurement platform.

A. RIPE Atlas
Atlas (http://atlas.ripe.net) is an active Internet measurement
network developed and run by the RIPE NCC. Small
hardware probes, produced by RIPE, perform basic active
measurements: ICMP ping, traceroute, and DNS, HTTP, and
SSL certificate retrieval queries. It is aimed at engineers with
some networking expertise, for whom its primary advantage
is that it provides multiple vantage points from which these
measurements can be run. Data collected from these probes
are also available for research purposes, and provide a data
source for RIPE Labs research studies. Users build up credit
by hosting RIPE probes, and can use this credit to run their
own measurements, as well.

Currently, slightly fewer than 4,000 probes are connected to
the network at any given time; basic tests include ping and
traceroute to a selection of DNS servers, as well as ping
measurements to the first two hops to the Internet, via IPv4
and IPv6.

Control is distributed among a set of RIPE Atlas controllers,
running a proprietary control and reporting protocols
designed by RIPE running over SSH making use of multiple
SSH channels to logically separate different traffic types.
Results are centralized at the controllers, and are available via
a web interface as well as a RESTful API.

B. perfSONAR
perfSONAR [10] is a service-based platform for distributed
passive and active measurements. It features a three-layer
architecture, including a user interface layer and a services
layer backed up by a measurement point layer. The
controllers and collectors reside in the services layer.

The basic services provided include:

• a measurement point (MP) service, which performs
measurements and is a service wrapper around an
entity in the measurement point layer;

• a measurement archive (MA) service, providing
access to historical monitoring data and/or storing
the results produced by an MP;

• a transformation service (TS), which provides
transformation of data (e.g. aggregation, correlation,
filtering) provided by other services;

• a lookup service (LS), which provides discovery of
other services;

• an authentication service (AS), which works with
the lookup service to provide access control
restrictions to measurement services; and

• a resource protector service (RP), which avoids
overload of shared measurement resources.

The measurements supported include ping and traceroute, as
with RIPE Atlas, as well as one-way delay via OWAMP [12]
and achievable bandwidth testing. perfSONAR can also
integrate passive observation of network flows and SNMP
counters. Multiple user interfaces and data analysis tools run
atop the perfSONAR service, which is itself concerned
primarily with providing distributed access to measurement
data and capabilities.
The protocols used between the different components of
perfSONAR use NMWG3 messages, with the XML schema
defined by the Open Grid Forum. These messages are carried
in a SOAP message, carried over HTTP.

The network is aimed at larger network operators, primarily
those associated with research networks connected to
Internet2 and/or GEANT, to support performance
troubleshooting by their network engineering staffs.

C. SamKnows
Currently the SamKnows platform consists of three distinct

components: measurement probes, measurement servers and

3 http://nmwg.internet2.edu/

management infrastructure as depicted in Figure 1.a.
The measurement probes are small Linux-based hardware

devices. The SamKnows platform currently accounts for over
40.000 probes. These are deployed into volunteers’ homes,
inline with their existing home network (the probes can
operate as Ethernet bridges or routers). The probes run
measurements against measurement servers and real
endpoints on the Internet when the end user is not actively
using their connection. Cross-traffic is identified on both the
wired and wireless interfaces. Probes pull their configuration
from the management infrastructure upon start-up and check
for updates periodically thereafter. The testing configuration,
frequency and other associated parameters are all configured
remotely.

Measurement servers are Linux servers running a set of
custom server applications to support the tests discussed
below. These applications on the measurement servers are
relatively trivial; almost all of the measurement logic is
performed on the client-side (at the probe). Measurement
servers can be deployed anywhere, and probes can be
configured to test against them in any desired combination
and frequency.

The probes support a wide range of measurements,
including:
• UDP round-trip latency and packet loss (long-lived test,

sampled periodically)
• UDP one-way jitter (singleton)
• DNS resolution time and failure rate
• Web browsing (measures transaction time to download a

page)
• ICMP round-trip latency and packet loss
• Video streaming (measuring buffer under-runs using a

fixed streaming rate)
• Latency and packet loss under load
• TCP throughput, downstream and upstream, using one or

multiple concurrent TCP connections.
The management infrastructure consists of three key

components:
1) The Data Collection Server: This handles all management
interaction with the probes. All communications are
conducted over HTTPS (TLS). The communications protocol
is a simple but proprietary one. Requests for configuration
updates use GET requests, with the current configuration
version in the query string, and the response is the tuple
<latest_version, package_url>. If the client determines an
upgrade is required, it fetches the configuration package (a
tar.gz) from the package_url. Measurement results are
uploaded by the probes using the POST method, with a
comma-delimited body containing the measurement results
(one row per result). Each row contains at a minimum the
tuple <probe_id, metric_id, timestamp_utc>. Additional
fields are determined by the metric type. Measurement results
are written locally to disk on the data collection server and

queued for import into the database.
2) The database: This stores all probe metadata, recent raw
measurement data, and summarised historical data. Raw
measurement data is imported in bulk from the Data
Collection Server frequently (once per minute). This raw data
is kept in the database for approximately 3 months, after
which time it is archived to flat files. During this time,
summaries of the raw data are generated (at reduced
resolution) for presentation to end-users. Multiple database
servers are typically deployed (some operating with master-
master replication, others as read-only slaves) for redundancy
and throughput.
3) Web reporting portal and web services: This presents the
summarised results (stored in the database) to end-users and
client-side applications.

Note that only the probe initiates all communications. No
results are collected or stored on the measurement servers;
that is all handled by the probes.

III. A STANDARD ARCHITECTURE FOR MEASUREMENT
PLATFORMS

A reference architecture provides a common framework
and helps identify the protocols that are needed between the
different elements of the architecture. In order to hint how the
SamKnows platform could evolve towards our reference
architecture, Figure 1.b shows them overlaid. The reference
architecture contains the following elements:
• Measurement agents perform network measurements.

They are pieces of code that can be executed in
specialized hardware (hardware probe, like the case of
SamKnows) or on a general-purpose device (like a PC or
mobile phone). Measurements may be active (the agents
generate test traffic), passive (agents observe user
traffic), or some hybrid form of the two. A measurement
agent can perform two distinct roles: either a
Measurement Client (hereafter MC) or a Measurement
Server (hereafter MS). They correspond to the
SamKnows measurement probes and measurement
servers respectively. Note that the MC initiates a test
whilst the MS simply responds to the MC.

• A Controller manages MCs by informing them which
tests they should perform and when, and also where to
report the measurement results and when. We refer to
them as the Test and Report Schedules. This is a
fundamental component since it is in charge of
scheduling measurement activities performed by the
MCs.

• A Collector accepts measurement results from the MCs,
once their tests are complete. The Controller and
Collector functions are both performed by the
SamKnows Data Collection Server.

We believe these are the main components that it is critical
to standardise, although a measurement platform may include

other components such as: a results database, which receives
results from Collector(s) and processes and stores them; and
data analysis tools, which use the data to isolate faults,
present results (similar to the SamKnows Web portal) and
interact with an operator’s OAM systems.

Having identified the components of the reference
architecture, we can easily identify the protocols involved:
• Protocols between the MCs and the MSs. These are the

actual tests performed by the platforms and will be
covered in section V.

• The protocol between the MC and the Controller. We
will call this the Control protocol and we will cover it in
section VI.

• The protocol between the MC and the Collector. We will
call this the Report protocol and we will cover it in
section VII.

An additional component that is relevant and useful to be
standardized is an API to retrieve measurement results data
from the platform. This would enable a number of
applications. For example in the case of an ISP that is using
the measurement platform to monitor its network, it would
allow it to export the measurement data into its Operation and
Management systems in a standard way. While we
acknowledge that is a key component it is out of the scope of
any standardization work at this point in time and this is why
we do not cover this in any detail in this paper.

IV. INFORMATION MODEL
Before defining the Control and Report protocols, it is

sensible first to define the information model: an abstract,
protocol-neutral definition of the data to be transferred. Later
we present proposals for protocols and associated data
models that implement the information model: NETCONF-
YANG for the Control protocol and IPFIX for the Report
protocol (Section VI and VII respectively).

We believe this is a powerful approach that will prove
useful. While in this paper we argue for a standardized
measurement platform, we also believe that some
deployments will use other protocols due to environmental
constraints. For example, some of the already deployed DSL
access networks may decide to use a transport based on the
Broadband Forum protocol TR069 [1] based transport.
Defining a protocol-independent information model allows
these platforms to use different protocols while still
exchanging the same information with the same control and
reporting capabilities (for example, the Controller could
specify the same calendar-based schedule of the same test
with the same configuration parameters). Thus a single
information model ensures a very high level interoperability
between different control and reporting protocols.

The information model encompasses the elements
described next.

The Control protocol carries information about the Test
and Report Schedules.

The Test Schedule defines which tests a MC has to
perform and with what test parameters (including the MSs to
test against). It also covers how to reschedule tests in case
connectivity is temporarily lost (e.g., a device turned off) or
in situations where there is too much cross traffic to execute a
test. Finally, it contains information about when the tests
should be performed.

The Report Schedule defines when test results are reported
(how often), where to (the Collector’s address) and in what
format, and what to do if reporting fails.

The structure for the information model of the Test and
Report Schedule is presented in UML in Figure 2. In this
proposal the schedule specifies which pre-configured tests to
conduct and which reports the results should be included in.
It allows for the test and report configuration to be done
irregularly and the test schedule to be updated separately.
Schedule timing options include periodic, calendar-based and
one-off scheduled or instantaneous tests. The multiple timing
options allow for different measuring purposes, for example,
calendar based timing allows to target a specific time (for
example perform measurement while night-time that are
unlikely to disturb the users or peak time, to observe the
highest load on the network) while instantaneous tests allows
to schedule a tests as soon as possible to troubleshoot an
ongoing event.

The information model for the Report protocol includes the
MC’s identifier; the time of the report; a description of the
test (essentially an ‘echo’ of the Test Schedule, which may be
done by reference to a Template, see Section VII); and the
actual measurement results (which are highly test-specific).

V. IPPM BASED TESTS
The test protocols are executed between a MC and a MS.

The SamKnows platform performs proprietary tests based on
standard Internet protocols (e.g. TCP, UDP, ICMP, DNS,
etc). For example, in order to measure UDP latency, the
SamKnows probes send UDP packets, of a certain length,
from a set of ports and use a periodic schedule with a certain
rate. When reporting the results, they exclude the outliers
using a specific statistical method (e.g. providing the 95th
percentile mean or interval). However, another platform
measuring UDP latency would most likely make different
choices for the above, and so it would not be safe to compare
the results obtained from the different platforms.

The IPPM working group at the IETF has defined a large
set of metrics for delay, packet loss, jitter and many others. A
natural approach would be to use these metrics as the tests in
a standard measurement platform. However, if we try to map
the tests that are actually performed by the SamKnows
platform to the defined IPPM metrics, we find that the IPPM

metrics are not well-defined enough to be useful as test
descriptors. The problem is that the IPPM metrics leave too
many degrees of freedom to the actual implementation. For
example, all the IPPM metrics leave the packet type as an
open parameter. This means that referencing a particular
IPPM metric does not define whether the packets are TCP,
UDP, ICMP or something else. There seems to be a clear gap
where further standards could help.

In order to close that gap, we propose to complement the
IPPM metric definition by specifying the open parameters
that fundamentally affect the test (like the packet type) and
leaving open only a few parameters that do not change the
nature of the test (like the source or destination address).

We can map some of the tests available in the SamKnows
platform to existing IPPM metrics plus additional
specification. As a few examples to illustrate this operation:
• SamKnows defines a UDP latency test. IPPM defines a

Round-Trip Delay metric in [2]. In order to bridge the
gap between the two of them, we need to specify the
packet type (UDP packet, payload length and content),
the scheduling types (Periodic in this case), the output
type (raw or 95th percentile mean). The source and
destination ports and addresses are parameters as well as
the time of execution.

• SamKnows defines an ICMP packet loss test. IPPM
defines a Round Trip Loss metric in [3]. To use the
IPPM specification we need to specify the packet type
(ICMP echo request and reply messages), the scheduling
and the output type, as above. The input parameters are
the source and destination addresses as well as the time
of execution are open parameters.

By extending the IPPM specifications we create
standardized metrics, so that different implementations and
platforms produce measurement results that are comparable.
We have specified several other tests in [4].

Once there are well defined standard tests then they can be
referred to in the Control and Report protocols, so that a MC
can unambiguously understand from the Controller what test
to perform (and later the Collector knows what test the MC
has done).

VI. A NETCONF/YANG BASED CONTROL PROTOCOL
The Control protocol is executed between the Controller

and a MC to configure test and report schedules, which was
defined in a protocol-neutral fashion in section IV. In this
section we propose to use the IETF standard protocol
NETCONF and the IETF standard data modelling language
YANG. This would be an alternative to the proprietary
protocol currently used in the SamKnows platform (section
II).

During the last 10 years, the IETF has developed a generic
protocol to support device configuration called NETCONF
and an associated data modelling language called YANG [5].

The NETCONF protocol provides a remote procedure call
mechanism running over a secure transport (SSH or TLS). On
top of the generic RPC layer, a number of specific operations
are defined to retrieve and edit a device's configuration (e.g.,
get-config, edit-config, copy-config, delete-config). In
addition, there are standard operations to support coarse and
fine-grained locking or to implement configuration change
transactions over a number of devices. The configuration data
manipulated by NETCONF is a structured document
conceptually stored in a configuration datastore and serialized
using XML. The structure and semantics of the configuration
data manipulated by NETCONF is defined using the YANG
data modelling language. YANG in addition allows a data
modeller to define (i) new operations that extend the core set
of generic configuration management operations provided by
NETCONF and (ii) notifications that can be emitted by a
device when certain events occur.

The NETCONF protocol was originally targeted at devices
such as routers or switches in provider backbone networks
and large enterprise networks. In these environments,
configuration changes are usually pushed to the devices by a
management application that can initiate NETCONF sessions
as needed. In large-scale measurement platforms, however,
the MCs are behind a network address translator and so must
establish the communication session and (periodically) pull
their configuration from the Controller. The usage of
NETCONF, therefore, requires the provision of a 'call home'
mechanism allowing devices to initiate the establishment of a
NETCONF session. While this is currently not supported by
the standardized NETCONF transports, it seems relatively
easy to add this feature to the NETCONF over TLS transport:
the NETCONF client is configured with a schedule indicating
when to establish a TCP connection to a NETCONF
configuration server. The NETCONF server then acts as a
TCP client establishing the TCP connection and as a TLS
client establishing a TLS session. At this point, client and
server roles are swapped, such that the MC takes the role of a
NETCONF server and the Controller takes the role of a
NETCONF client, pushing any pending configuration
changes to the device.

 Consider the following example. Suppose a Controller
wants to request a MC with the IP address 192.0.2.1 (say) to
perform a UDP latency test to a destination IP address
203.0.113.1, using source port 23677 and destination port
34567. The test is a singleton test performed at 08:00 UTC.
The test is to be performed without cross-traffic and the
output type is raw. The use of NETCONF/YANG to send the
information in this example is depicted in Figure 3.
While NETCONF can, in principle, also be used to push
measurement results to a Collector, it seems that IPFIX is a
much better fit for this task as described below. The
configuration parameters needed by an IPFIX exporter can
easily be configured via NETCONF since there is already a

standard IPFIX configuration data model [6], as described in
the next section.

VII. AN IPFIX BASED REPORT PROTOCOL
As mentioned earlier, the SamKnows platform uses HTTP
with a proprietary protocol on top of it to convey test results
data from the MCs to the Collector. In this section, we
propose the use of the IETF standard IPFIX protocol for that
purpose.

IPFIX [7] is a unidirectional, transport-independent export
protocol for binary data records, with a focus on network
measurement and operations applications. The structure of
the data records is described in-band by Templates, which
refer to Information Elements (IEs) from a common data
model managed by the Internet Assigned Numbers Authority.
The basic IEs cover most Layer 3 and Layer 4 measurement
needs, and the information elements can be extended [8].

IPFIX organizes data records into Messages. A Message is
a sequence of Sets preceded by a Message Header which,
among other things, includes an Observation Domain ID
(identifying where the records in the Message were
measured) and an Export Time (when the Message was
originally sent).

 A Set contains Records preceded by a Set Header, which
contains a Set ID identifying the type of the records the Set
contains. Template Sets, identified by a special Set ID,
contain Templates, which are sequences of IE identifiers and
lengths; these define the fields of the records they describe.
A Template's ID matches the Set ID of the Sets containing
records described by the Template. Since many records may
be described by a single Template, IPFIX's data
representation is more efficient than those based on inline
record structures (e.g. XML, JSON).

 In IPFIX terminology [9], the MC encompasses both the
Metering Process (MP) and the Exporting Process (EP),
while the Collector is the Collecting Process (CP). IPFIX is
used between the EP/MC and the Collector/CP.

 We next explore how to use IPFIX to report
measurement results by defining a Template.

 Part of the information can be conveyed using the fields in
the IPFIX header, namely:
• Information about the MA: The MA identifier can be

sent in the Observation Domain field of the IPFIX
header.

• Information about the time of the report: The Export
Time field that can be used to convey this information.

The information describing the test is included in a
Template set that contains multiple IEs for each of the
different pieces of information we need to convey. This
includes:
• An identifier of the metric used for the test. In order

to convey that we need to define a new IE, let's call it
metricIdentifier.

• An identifier of the scheduling strategy used to
perform the test. Again, this will be a new IE, called
testSchedule.

• An identifier of the output format. A new IE
outputType is needed.

• An identifier of the environment, notably, whether
cross traffic was present during the execution of the
test. A new IE is needed for this testEnvironment.

• The input parameters for the test. Most of these can
be expressed using existing IEs, such as
sourceIPv4Address, destinationIPv4Address, etc.

The information describing the test results widely varies
with each test, but can include the time each packet was sent
and received, the number of sent and lost packets and other
information. Again most of these can be expressed using
existing IEs, and some new ones can be defined if needed for
a particular test.

As an example, suppose a MC wants to report the result
from the UDP latency test requested by the Controller in the
previous section using IPFIX. The IPFIX report message for
this test is depicted in figure 4.

VIII. CONCLUSIONS
Network operators have many disparate technology and

network management tools, but few that provide an overall
assessment of what user experience might be like. Growing
interest has led to a number of over-the-top measurement
platforms. While these platforms all differ, we have shown
that it would be possible to abstract common architectural
components and could share some common standard
interfaces and data models that would enable a degree of
interoperability.

Standardisation discussions have already commenced in
the IETF and Broadband Forum. In this paper we have taken
the SamKnows platform as a case study and we have
proposed an evolution of the platform towards standard
protocols. In particular, we have shown how this can be done
by using NETCONF and IPFIX for the control and report
protocols respectively. We presented other two platforms,
RIPE Atlas and perfSONAR to illustrate that several
deployed platforms share a similar architecture, which hints
that it would be feasible for the different platforms to adopt
the proposed standard solution.

While traditional network management tools are applied
across the breadth of the network, the emerging end-user
premise tools are currently limited to selective deployments
on user devices and dedicated measurement boxes.
Standardisation will allow these approaches to break through
into mainstream network and service management. We can
imagine that network operators can embed measurement
capabilities in a wide range of network and CPE devices
(such as Home Gateways) as well as on internal network
elements. All of these devices can be controlled by a single

framework and the measurement results can be collected
together to provide a comprehensive end-to-end view, as well
as between known network locations. Tests can be operated
continuously across all lines or on a randomly selected subset
of lines for purposes such as capacity planning and network
design. Problems can be investigated through adapting the
test configurations, schedules and selection of lines tested.
This can help identify problems in the network and with
equipment or suppliers, and to isolate whether the issue is in
the shared part of the network, a vendor hardware problem
affecting many users, unique to a single user line, in the home
network or an over-the-top service. Comparable data can also
be shared between horizontal or vertically arranged network
operators, with service providers and with other parties such
as regulators.

IX. REFERENCES
[1] BBF TR-069, “CPE WAN Management Protocol v1.1”, Issue 1,

Amendment 2, Broadband Forum, December 2007.
[2] Almes, G., Kalidindi, S., and M. Zekauskas, "A Round-trip Delay

Metric for IPPM", IETF RFC 2681, September 1999.
[3] [RFC6673] Morton, A., "Round-Trip Packet Loss Metrics", RFC

6673, August 2012.
[4] Bagnulo, M., Burbridge, T., Crawford, S., Eardley, P., and A. Morton,

"A registry for commonly used metrics. Independent registries", draft-
bagnulo-ippm-new-registry-independent-00 (work in progress), January
2013.

[5] Schönwälder, J., Björklund, M. and Shafer, P., “Network
Configuration Management Using NETCONF and YANG.” IEEE
Communications Magazine 48(9), September 2010.

[6] Muenz, G., Claise, B., and Aitken, P., “Configuration Data Model for
the IP Flow Information Export (IPFIX) and Packet Sampling
(PSAMP) Protocols”, IETF RFC 6728, October 2012.

[7] Trammell, B., and Boschi, E., “An Introduction to IP Flow
Information Export (IPFIX)”, IEEE Communications Magazine 49(4),
April 2011.

[8] Trammell, B. and B. Claise, "Guidelines for Authors and Reviewers of
IPFIX Information Elements", draft-ietf-ipfix-ie-doctors-07 (work in
progress), October 2012.

[9] Sadasivan, G., Brownlee, N., Claise, B., and J. Quittek, "Architecture
for IP Flow Information Export", IETF RFC 5470, March 2009.

[10] Hanemann, A., Boote, J. W., Boyd, E. L., Durand, J., Kudarimoti, L.,
Lapacz, R., Swany, D. M., Zurawski, J., Trocha, S., "PerfSONAR: A
Service Oriented Architecture for MultiDomain Network Monitoring",
Proceedings of the Third International Conference on Service Oriented
Computing, Springer Verlag, LNCS 3826, December, 2005.

[11] Kreibich, C., Weaver, N., Nechaev, B., and Paxson, V., “Netalyzr:
Illuminating The Edge Network” Internet Measurement Conference
(IMC), Melbourne, Australia, 2010.

[12] Shalunov, S., Teitelbaum, B., Karp, A., Boote, J., Zekauskas, M., “A
One-way Active Measurement Protocol (OWAMP)”, IETF RFC 4656,
September 2006.

 a) b)
Figure 1: Measurement platform architecture. Figure 1.a) shows the current SamKnows architecture, whilst in Figure 1.b) the proposed
reference architecture is overlaid on top of the SamKnows architecture.

Figure 2: Proposed Information model for the control protocol, in UML

1

{choice: 1}

Figure 3: Example of a NETCONF/YANG control message
for a UDP Latency test

Figure 4: Example of an IPFIX report message for a UDP
Latency test

