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bstract
This article proposes omnibus tests for conditional symmetry around a parametric function in a

dynamic context. Conditional moments may not exist or may depend on the explanatory variables.

Test statistics are suitable functionals of the empirical process of residuals and explanatory variables,

whose limiting distribution under the null is nonpivotal. The tests are implemented with the

assistance of a bootstrap method, which is justified assuming very mild regularity conditions on the

specification of the center of symmetry and the underlying serial dependence structure. Finite sample

properties are examined by means of a Monte Carlo experiment.
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1. Introduction

Testing symmetry of a distribution is a useful model specification tool. Location and
dispersion can be unambiguously defined under symmetry and, unlike other location

arameters, the center of symmetry can be robustly, even adaptively, estimated. Smirnov
1947) first proposed an omnibus test for the simple hypothesis of symmetry around a
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known value based on the standard empirical process. See also the related works by Butler

(1969), Nadaraya (1975), Hill and Rao (1977, 1981), Aki (1981), Antille et al. (1982),
Bhattacharya et al. (1982) or more recently Neumeyer and Dette (2003).

In this article, we are concerned with omnibus testing of the composite hypothesis of
conditional symmetry around a parametric function in a time series context. Such tests are
well motivated in econometrics practice. For instance, it is interesting to test, given the
available information at a given period of time, whether or not profits and loses are equally
likely in financial markets, or whether or not positive and negative shocks are equally likely
in macroeconomic models. Bai and Ng (2001) provide an excellent motivation of testing
conditional symmetry in econometric applications. Unlike other symmetry tests, our
testing procedure allows for higher conditional moments of unknown functional form, e.g.,
nonparametric conditional heteroskedasticity or heterokurtosis. In fact, it is not even
assumed that any innovation moment exists, which is convenient when dealing with
financial data, where conditional distributions frequently exhibit fat tails.

Consider a R1þk-valued strictly stationary multivariate time series process ðY ;X Þ ¼
ðY t;X tÞt2Z; with an information set I t ¼ fðY s 1;X sÞ; t�mþ 1psptg at time t; i.e., It 2 R

p

with p ¼ mð1þ kÞ. Given a suitable parameter space Y � Rq and a function
g : Rp �Y! R, we are interested in testing that the conditional distribution function of
Y t given I t ¼ � is symmetric around gð�; y0Þ for some y0 2 Y. Consider the family of
symmetric distributions around zero

G ¼ fG : GðvÞ ¼ 1� Gð�vÞg.

Thus, the null hypothesis can be expressed as

H0 : There exists a y0 2 Y such that Fy0ð�juÞ 2 G a.s., (1)

where FyðvjuÞ is the conditional distribution of the residuals �tðyÞ ¼ Y t � gðIt; yÞ given
I t ¼ u evaluated at �tðyÞ ¼ v. We consider omnibus tests, i.e., the alternative hypothesis is
the negation of the null.

The null hypothesis states the correct specification of the dynamic model

Y t ¼ gðI t; y0Þ þ �t; t 2 Z,

where �t ¼ �t y0ð Þ are innovations with a conditional symmetry center equal to zero. The
parameter vector y0 can be identified under H0 as the solution of the moment equations

E½cðY t; I t; y0Þ� ¼ 0 (2)

for some vector of functions cð�Þ or, alternatively as the optimizing value

y0 ¼ arg min
y2Y

E½rð�1ðyÞÞ�, (3)

for some function rð�Þ. For instance, if rðvÞ ¼ v2; EðY tjI tÞ ¼ gðIt; y0Þ, and if rðvÞ ¼ jvj,
MedianðY tjI tÞ ¼ gðI t; y0Þ. The corresponding c functions for the conditional mean and
median are cðv; u; yÞ ¼ rygðu; yÞ � ðv� gðu; yÞÞ and cðv; u; yÞ ¼ rygðu; yÞ � signðv� gðu; yÞÞ,
respectively. Henceforth, ra means derivative w.r.t. a. Under H0, gð�; y0Þ is the conditional
center of symmetry, which is equal to the conditional median and also to the conditional
mean when these conditional location functions exist. Under H1; there is also a y0 defined
by (2) or (3) and gð�; y0Þ is no longer the center of symmetry, but any other conditional
location function.
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The many procedures for testing the symmetry of the marginal distribution of data

around an unknown parameter can be also applied for testing the symmetry of the
marginal distribution of the regression errors �t ¼ Y t � gðI t; y0Þ around zero. That is, for
testing

_H0 : E½F y0 ðvjI1Þ� ¼ 1� E½Fy0 ð�vjI1Þ� a.s. for some y0 2 Y. (4)

Fan and Gencay (1995) and Ahmad and Li (1997) proposed omnibus tests of _H0;
consistent in the direction of general nonparametric alternatives, based on smooth
estimates of the marginal probability density of �t with independent and identically
distributed (iid) observations. These tests are inconsistent for testing H0 in any direction
where _H0 holds. Zheng (1998) proposed an omnibus test for H0 based on smooth
nonparametric estimates of the conditional distribution function. In these tests, the testing
decision often depends on the choice of a smoothing parameter, despite of the satisfaction
of several smoothness assumptions on the underlying conditional probability density. In
this paper, we propose omnibus tests for the composite hypothesis H0 without using
smoothers and under fairly general regularity conditions on the underlying data generating
process (DGP).
The null hypothesis H0 in (1) can be equivalently expressed as

H0 : Sy0 ðu; vÞ ¼ 0 a.s. for some y0 2 Y, (5)

where

Syðu; vÞ ¼ Kyðu; vÞ � Kyðu;1Þ þ Kyðu;�vÞ,

and

Kyðu; vÞ ¼ E½1ðI1puÞF yðvjI1Þ�

¼ E½1ðI1puÞ1ð�1ðyÞpvÞ�

is the joint cumulative distribution function (cdf) of the ðpþ 1Þ-valued random variable
ðI1; �1ðyÞÞ. Henceforth, inequalities are coordinatewise. Given some suitable square-root-
n-consistent estimator of y0; yn say, this formulation of H0 suggests to use the empirical
process

Sn;yn
ðu; vÞ ¼ n

p
½Kn;yn

ðu; vÞ � Kn;yn
ðu;1Þ þ Kn;yn

ðu;�vÞ�,

where

Kn;yðu; vÞ ¼
1

n

Xn

t 1

1ðItpuÞ1ð�tðyÞpvÞ

is the joint empirical distribution of f�tðyÞ; Itg
n
t 1; which estimates Kyðu; vÞ.

The empirical process Sn;yn
ð1; �Þ forms a basis for testing symmetry of the marginal

distribution of the innovations. Tests based on Sn;y0ð1; �Þ were first proposed by Butler
(1969) for testing the simple symmetry hypothesis, when parameters are known, as a
variation of the empirical process introduced by Smirnov (1947). The asymptotic
distribution of Sn;yn

ð1; �Þ depends on unknown features of the underlying DGP, because
of the effect of estimated parameters. Therefore, the asymptotic distribution of functionals
of Sn;yn

ð1; �Þ, used as test statistics, cannot be tabulated. This is why Bai and Ng (2001)
proposed to use a martingale transform of Sn;yn

ð1; �Þ resulting in an asymptotically
distribution free empirical process, as suggested by Khmaladze (1981) in a different
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context. See also Bai (2003) and Delgado and Stute (2005) for martingale transform

applications to testing conditional distribution model specification. These transformations
are computationally challenging, specially in the multiparameter case, like the one
considered in this article. Bootstrap assisted tests are well motivated under these
circumstances.

The test proposed by Bai and Ng (2001) is omnibus for testing symmetry around zero of
the marginal distribution of the conditionally scaled innovations Ut ¼ �t=sðIt; g0Þ; where
VarðY tjI t ¼ �Þ ¼ s2ð�; g0Þ, with s2 a known function and g0 an unknown parameter vector.
The resulting tests are sensitive to the parametric specification of the conditional variance,
and they are inconsistent in any of the infinite directions where the marginal distribution of
the standardized errors is symmetric around zero. In this article, we propose conditional
symmetry tests where higher order conditional moments of �tðy0Þ given I t are
nonparametric, i.e., unknown functions of the information set. That is, the serial
dependence structure of the innovations is unknown. Furthermore, conditional moments
may not exist.

By defining Sn;yn
ð�1; �Þ ¼ Sn;yn

ð�;�1Þ ¼ 0, the sample paths of Sn;yn
belong to the space

‘1ðRdÞ; the space of all uniformly bounded real functions on Rd :¼ ½�1;1�d ; with d ¼

pþ 1; which is equipped with the sup-norm. Tests statistics are continuous functionals of
Sn;yn

; say jðSn;yn
Þ; for some suitable continuous functional j : ‘1ðRd Þ 7�!Rþ � ½0;1Þ. The

most popular criteria are the Kolmogorov–Smirnov jðgÞ ¼ supðu;vÞ2Rd jgðu; vÞj and the
Cramér–von Mises jðgÞ ¼

R
R2 gðu; vÞ2Fðdu;dvÞ for some suitable measure function F;

which is usually a consistent estimate of the distribution Ky0 ; e.g., Kn;yn
. Once a Functional

Central Limit Theorem (FCLT) for Sn;yn
is provided, the limiting distribution of jðSn;yn

Þ

under H0 is obtained by applying the Continuous Mapping Theorem (CMT).
In this article we consider convergence in distribution of empirical processes in the

metric space ‘1ðRdÞ with the sup-norm in the sense of Hoffmann–Jørgensen (see, e.g.,
Dudley, 1999, p. 94). The convergence in distribution of the standard residual empirical
process

Tn;yn
ðu; vÞ :¼ n1=2½Kn;yn

ðu; vÞ � Ky0 ðu; vÞ�

has been obtained for a variety of models under fairly weak regularity conditions on g and
the underlying serial dependence structure, but assuming that f�tgt2Z are iid, see, e.g., Koul
(2002) monograph. Once the limiting distribution of Tn;yn

is established, the limiting
distribution of Sn;yn

follows straightforwardly. The iid innovations assumption rules out
important situations where conditional moments are not expected to be constant, e.g.,
models for financial data with conditional heteroskedasticity or conditional heterokurtosis
of unknown form. See, for instance, Harvey and Siddque (1999, 2000).

The weak convergence of Sn;yn
in ‘1ðRdÞ with iid innovations seems difficult to be

extended to the case where f�tgt2Z exhibit an unknown serial dependence structure. Such
extension is one of the main contributions of this paper. To this end, we need first, an
asymptotic representation of Sn;yn

in terms of Sn;y0 when f�tgt2Z are not independent and
second, we need a FCLT for Sn;y0 . We take advantage of the fact that, under H0; Sn;y0 ðu; vÞ
is a martingale for each ðu; vÞ 2 Rd , which allows to apply the weak convergence results of
Levental (1989), Bae and Levental (1995) and Nishiyama (2000).

It is worth noticing that the conditional distribution is symmetric if and only if the
conditional characteristic function is real-valued, i.e., it does not have imaginary part. This
fact has been exploited by Feuerverger and Mureika (1977), Csörgö and Heathcote (1982,
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1987), Koutrovelis (1985), Ghosh and Ruymgaart (1992) and Heathcote et al. (1995)

amongst others, to construct consistent tests for unconditional symmetry. More formally,
the null hypothesis can equivalently expressed asZ 1

1

sinðv̄vÞFy0 ðdv̄juÞ ¼ 0 a.s. for some y0 2 Y

or, equivalently,Z 1
1

sinðv̄vÞKy0ðu;dv̄Þ ¼ 0 a.s. for some y0 2 Y.

This suggests to use as test statistics continuous functionals of the empirical process

Rn;yn
ðu; vÞ ¼ n

p
Z 1
1

sinðv̄vÞKn;yn
ðu;dv̄Þ

¼
1

n
p
Xn

t 1

sinð�tðynÞvÞ1ðI tpuÞ.

Interestingly, under H0;

Rn;yn
ðu; vÞ ¼

1

2

Z 1
1

sinðv̄vÞSn;yn
ðu; dv̄Þ.

Therefore, the limiting distribution of test statistics jðRn;yn
Þ, based on a suitable

continuous functional j : ‘1ðRdÞ 7!R, is obtained as a straightforward consequence of the
CMT, once it has been derived the limiting distribution of Sn;yn

.
The rest of the paper is organized as follows. In the next section we provide the

asymptotic distribution of the test statistics. The asymptotic power of the tests are studied
in Section 3. We suggest and justify, in Section 4, to implement the tests with the assistance
of a bootstrap method. The practical performance of the tests is illustrated by means of a
Monte Carlo experiment in Section 5. Mathematical proofs and some instrumental results
are confined to an Appendix, at the end of the paper.

2. Limiting distribution of test statistics under the null hypothesis

The assumptions on the underlying serial dependence structure are summarized by the
following regularity conditions,

(A1) fY t; I tgt2Z is an strictly stationary and ergodic process.
(A2) The joint cdf of ð�1; I1Þ; K ; is uniformly continuous on Rd and f�tgt2N is a Markov’s
process, in the sense that, under H0;
(A3
Eð1f�tp�gjFtÞ ¼ F y0ð�jI tÞ a.s. for each t 2 N,
where Ft ¼ sðI 0t; I
0
t 1; . . .Þ is the s-field generated by the information set obtained up

to time t.
) The family of distribution functions fFy0ð�juÞ : u 2 Rpg has Lebesgue densities
ff y0 ð�juÞ : u 2 Rpg that are uniformly bounded

sup
p

jf y0 ðvjuÞjo1.

u2R ;v2R
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Furthermore, there exists a constant C such that

A
T

(A5)

dyna
the f
sup
u2Rp;v1;v22R

jFy0ðv1juÞ � F y0ðv2juÞj

jF y0 ðv1Þ � F y0ðv2Þj
pC,

where Fy0 is the marginal distribution of the errors �tðy0Þ; t 2 Z.

FCLT for Sn;y0 can be obtained easily from a FCLT for the standard empirical process

and an application of the CMT. Though FCLTs for T are available in generous
n;y0 n;y0

supply, assuming that f�tgt2Z are iid or satisfy some short of mixing condition, it seems
hard to prove it under general serial dependence assumptions like (A1) and (A2). This is
why we prove directly the weak convergence of Sn;y0 ; rather than Tn;y0 ; taking advantage of
the fact that, under H0; (A1) and (A2),

Sn;y0 ðu; vÞ ¼
1

n
p
Xn

i 1

otðvÞ � 1ðI tpuÞ,

with otðvÞ ¼ 1f�tpvg � 1f��tpvg being a martingale differenced sequence with respect to
the filtration fFtgt2Z for each v 2 R; i.e., EðotðvÞjFtÞ ¼ 0 8v 2 R. Therefore, applying a
standard CLT for martingales, see e.g., Hall and Heyde (1980), the finite-dimensional
distributions of Sn;y0 converge to those of S1; a Gaussian process with continuous sample
paths and covariance function,

E½S1ðu1; v1ÞS1ðu2; v2Þ� ¼ E½o1ðv1Þo1ðv2Þ1ðI1pu1 ^ u2Þ�.

Next theorem extends the finite-dimensional convergence of Sn;y0 to weak convergence in
‘1ðRdÞ; which is a direct consequence of Theorem A.1 in the Appendix.

Theorem 1. Under H0; if (A1)–(A3) hold, then,

Sn;y0 converges in distribution to S1 in ‘1ðRd Þ.

The limiting distribution of Sn;yn
is obtained from Theorem 1 and an asymptotic

expansion of Sn;yn
in terms of Sn;y0 . Such expansion requires the following regularity

conditions on g.

(A4) There exists a vector of functions _g : Rp �Y! Rq such that _gðIt; yÞ is Ft-

measurable for each t 2 Z, E½j _gðI1; y0Þj2�o1; and satisfies, for all a; k and y1 2 Y;( )
lim sup
n!1

Pr sup
jy1 y2jpkn 1=2

jgðI1; y1Þ � gðI1; y2Þ � ðy1 � y2Þ
0 _gðI1; y2Þj

jy1 � y2j
4a ¼ 0.

ry0ðu; vÞ ¼ E½ _gðI1; y0Þf y0ðvjuÞ1ðI1puÞ� is an absolutely continuous function in all its
arguments.
Th
ese assumptions are standard when dealing with empirical process of residuals in
mic models, see, e.g., Koul (1996). Under these regularity conditions, we can obtain

ollowing asymptotic expansion of Sn;yn

.
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Theorem 2. Under H0, if (A1)–(A5) hold, then, uniformly in ðu; vÞ 2 Rd ,
Sn;yn
ðu; vÞ ¼ Sn;y0 ðu; vÞ � 2ry0ðu; vÞ

0 n
p
ðyn � y0Þ þ oPð1Þ.

The asymptotic distribution of Sn;yn
is a straightforward consequence of Theorems 1

and 2, once it is assumed that yn satisfies the following asymptotic representation.

(A6) n
p
ðyn � y0Þ ¼

1
p
Xn

ly0ð�t; I tÞ þ oPð1Þ,

n

T

t 1

where ly0ð�Þ is such that E½ly0 ð�1; I1Þ� ¼ 0 and Lðy0Þ ¼ E½ly0 ð�1; I1Þl
0
y0ð�1; I1Þ� exists and

is positive definite.

he estimator yn can be a Z-estimator, the sample analog of y0 defined in (2), i.e.,
Xn
t 1

cðY t; I t; ynÞ ¼ 0, (6)

or a M-estimator, the sample analog of y0 defined in (3), i.e.,

yn ¼ arg min
y2y

Xn

t 1

rð�tðyÞÞ. (7)

The expansion for yn is satisfied, both under the null and the alternative hypothesis, for a
variety of estimators. For instance, if yn is the nonlinear least-squares (NLS) estimator, i.e.,
rðvÞ ¼ v2; ly0 ðv; uÞ ¼ E½rygðI1; y0ÞrygðI1; y0Þ

0
��1rygðu; y0Þ � v. If yn is the nonlinear least

absolute deviation (NLAD) estimator, i.e., rðvÞ ¼ jvj; ly0 ðv; uÞ ¼ E½rygðI1; y0Þryg

ðI1; y0Þ
0
��1rygðu; y0Þ � signðvÞ. The parameter y0 defined in (2) or (3) is consistently

estimated by yn in (6) or (7); even when H0 is not satisfied.

Theorem 3. Under H0; if (A1)–(A6) hold, then,

Sn;yn
converges in distribution to Ŝ1 in ‘1ðRdÞ,

with

Ŝ1ðu; vÞ ¼
d

S1ðu; vÞ � ry0ðu; vÞ
0

Z
Rd

ly0ðv̄; ūÞS1ðdū; dv̄Þ.

The limiting distribution of Rn;yn
; as well as of test statistics based on Sn;yn

or Rn;yn
; is an

immediate consequence of Theorem 3 and the CMT, as stated in the following corollary.

Corollary 1. Under the conditions of Theorem 3,

Rn;yn
!d R̂1 in ‘1ðRdÞ,

with

R̂1ðu; vÞ ¼
d
Z 1
�1

sinðv̄vÞŜ1ðu;dv̄Þ.

Furthermore, for any continuous functional j : ‘1ðRdÞ 7�!R,

jðSn;yn
Þ!djðŜ1Þ.
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In the empirical processes literature, the most popular functionals are the sup-norm,

jðgÞ ¼ sup

ðu;vÞ2R
d jgðu; vÞj, which provides the Kolmogorov–Smirnov-type statistics

KSn ¼ sup
ðu;vÞ2Rd

jSn;yn
ðu; vÞj (8)

and

KSn ¼ sup
ðu;vÞ2Pc

jRn;yn
ðu; vÞj,

where Pc � Rd is a compact subset containing the origin. Under the conditions in
Corollary 1,

KSn!d sup
ðu;vÞ2Rd

jŜ1ðu; vÞj

and

KSn!d sup
ðu;vÞ2Pc

jR̂1ðu; vÞj.

Other popular choice is the L2-distance with respect to a suitable measure, F say,
jðgÞ ¼

R
R2 gðu; vÞ2Fðdu;dvÞ. The choice of the integrating function F has implications on

the power performance of the Cramér–von Mises-type statistics. In the standard goodness-
of-fit tests, F is the distribution function under the null hypothesis. Since, it is not known,
it is reasonable to use the empirical joint distribution. In our case, this choice yields the
Cramér–von Mises-type statistic

CvMn ¼

Z
Rd

S2
n;yn
ðu; vÞKn;yn

ðdu; dvÞ

¼
1

n

Xn

t 1

S2
n;yn
ð�tðynÞ; I tÞ. ð9Þ

A Cramér–von Mises-type statistics based on Rn;yn
is

CvMn ¼

Z
Rd

R2
n;yn
ðu; vÞFnðdu; dvÞ.

Epps and Pulley (1983) have discussed the choice of Fn in the context of goodness-of-fit
testing based on the empirical characteristic function. Following the arguments of these
authors, we consider a weighting function of the form Fnðu; vÞ ¼ F n;I ðuÞ � F1ðvÞ; where Fn;I

is the empirical distribution function of fI tg
n
t 1 and F1 is the standard normal distribution

function. With such a choice,

CvMn ¼ n�2
X
r 1

n X
s 1

n

arsbrs, (10)

where

ars ¼
X
t 1

n

1ðI rpI tÞ1ðIspI tÞ
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and
brs ¼ 0:5 expð�0:5ð�rðynÞ � �sðynÞÞ
2
Þ � 0:5 expð�0:5ð�rðynÞ þ �sðynÞÞ

2
Þ.

Corollary 1 and an application of Lemma 3.1 in Chang (1990) imply that as long as the
Glivenko-Cantelli result

sup
x2Rd

jKn;yn
ðxÞ � Ky0 ðxÞj�!0 a.s.

is satisfied,

CvMn!d

Z
Rd

Ŝ
2

1ðu; vÞKy0ðdu;dvÞ

and

CvMn!d

Z
Rd

R̂
2

1ðu; vÞFðdu; dvÞ,

where Fðu; vÞ ¼ F I ðuÞ � F1ðvÞ and FI is the cdf of I1.

3. Asymptotic power
Let us consider contiguous asymmetric alternatives of the form

HAn : f
ðnÞ
y0
ðvjuÞ ¼ f y0 ðvjuÞ 1þ

1

n
p hn;y0 ðu; vÞ

� �
a:s: for some y0 2 Y, (11)

where f y0 is a symmetric density, i.e., f y0 ðvjuÞ ¼ f y0ð�vjuÞ for each ðu; vÞ 2 Rd ; and hn;y0 :
Rd ! R is a function such that for each nX1 and each ðu; vÞ 2 Rd ,

1

n
p hn;y0 ðu; vÞX� 1; hn;y0 ðu; vÞahn;y0ðu;�vÞ; sup

u2Rp

Z 1
�1

hn;y0 ðu; vÞf y0ðdvjuÞ

���� ���� ¼ 0,

and

hn;y! hy in L2ðKyÞ for all y 2 Y,

where L2ðKyÞ is the Hilbert space of all Ky-square integrable real-valued functions on Rd .
These contiguous alternatives have been considered in the classical goodness-of-fit testing
problem of parametric distribution functions (see Neuhaus, 1973, 1976).
Notice that, under HAn;

E½Kn;y0ðu; vÞ� ¼

Z v

�1

E½f
ðnÞ
y0
ðv̄jI1Þ1ðI1puÞ�dv̄

¼

Z v

�1

E½f y0 ðv̄jI1Þ1ðI1puÞ�dv̄þ
1

n
p D1

y0 ðu; vÞ

with

D1
y0 ðu; vÞ ¼

Z v

�1

E½f y0ðv̄jI1Þhy0 ðI1; v̄Þ1ðI1puÞ�dv̄.
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Hence, the expansion of Sn;y0 under HAn; now becomes (uniformly in ðu; vÞ 2 Rd Þ
Sn;yn
ðu; vÞ ¼ Sn;y0ðu; vÞ � 2ry0 ðu; vÞ n

p
ðyn � y0Þ

þ D1
y0ðu; vÞ � D1

y0ðu;1Þ þ D1
y0ðu;�vÞ þ oPð1Þ.

Under contiguous alternatives HAn; the expansion (A6) for yn still continues to hold, but ly0
terms are not centered anymore. See Behnen and Neuhaus (1975). This results in the
additional shift,

D2
yðu; vÞ ¼ 2ryðu; vÞ

0

Z 1
1

E½hyðI1; v̄ÞlyðI1; v̄Þf yðv̄jI1Þ�dv̄.

Put

Dy0ðu; vÞ ¼ D1
y0 ðu; vÞ þ D1

y0 ðu;�vÞ � D1
y0ð1; vÞ � D2

y0 ðu; vÞ.

The following theorem provides the asymptotic distribution of Sn;yn
under HAn.

Theorem 4. Under the alternative hypothesis HA and (A1)–(A6),

Sn;yn
� Dy0!dŜ1.

This theorem shows that the limiting distribution of Sn;yn
is shifted under HAn. This fact

guarantees that the corresponding test statistics based on suitable continuous functionals
are able to detect contiguous alternatives HAn. Though the additional term D2

y0 , it is
possible that, though parameters may be known, their estimation increases the power of
the test.

Notice that HAn nests the mixtures considered by Bai and Ng (2001),

_HAn : f
ðnÞ
y0
ðvjuÞ ¼ 1�

d
n
p

� �
f y0ðvjuÞ þ

d
n
p ay0ðvjuÞ a.s. for some y0 2 Y,

where ay0 is an asymmetric conditional density and d 2 R, taking

hn;y0ðu; vÞ ¼ d
ay0ðvjuÞ

f y0 ðvjuÞ
� 1

� �
.

However, other local alternatives are possible. For instance, taking

hn;y0ðu; vÞ ¼ v �mn;y0ðuÞ � 1ðjv �mn;y0 ðuÞjp n
p
Þ,

produces conditional heteroskewness, i.e., for any function mn;y0 satisfying that mn;y0 !

my0 in L2ðF I Þ,

Eð�3t jI t ¼ uÞ ¼
1

n
p mn;y0 ðuÞ

Z n
p

=jmn;y0 ðuÞj

n
p

=jmn;y0 ðuÞj

v4f y0 ðvjuÞdv.

4. Bootstrap approximation

Bootstrap assisted tests have been extensively used in the specification testing literature
when the limiting distribution of the test statistics is not pivotal, see, e.g., Stute et al.
(1998), Delgado and González-Manteiga (2001) and Li et al. (2003). The wild bootstrap
(WB) introduced in Wu (1986) and Liu (1988) appears to be relevant for respecting the
underlaying relation between innovations and explanatory variables. We adapt the WB

10



approach to test for conditional symmetry with time series data, extending the method

proposed by Neumeyer and Dette (2003) for the iid linear regression case. Other proposal,
only valid for linear processes, is that of Psaradakis (2003) who considered a sieve bootstrap
procedure for testing unconditional symmetry based on residuals resampled from an
autoregressive approximation of the given process. In a related but different problem,
Corradi and Swanson (2006) use the block bootstrap for Kolmogorov-type conditional
distribution tests under dynamic misspecification and parameter estimation error.
Here, we approximate the asymptotic null distribution of the test statistics Sn;yn

by the
‘‘bootstrap distribution’’ of

S�n;y�n ðu; vÞ ¼ n�1=2
X
t 1

n

w�t;y�n ðvÞ1ðItpuÞ ðu; vÞ 2 Rd ,

where w�t;y�n
ðvÞ ¼ f1ð��t ðy

�
nÞpvÞ � 1ð���t ðy

�
nÞpvÞg and the sequence f��t ðy

�
nÞg

n
t 1 are the WB

residuals obtained from the following algorithm:

(1) Estimate the original model and obtain the residuals �tðynÞ for t ¼ 1; . . . ; n.

) Generate WB residuals according to ��t ðynÞ ¼ �tðynÞVt for t ¼ 1; . . . ; n; where fVtg

n
t 1 is
(2
(

a

a sequence of iid Bernoulli variates with PrðV 1 ¼ 1Þ ¼ PrðV 1 ¼ �1Þ ¼ 0:5 (Radema-
cher random variables) and independent of the sample fY t; I tg

n
t 1.
(3
) Given yn and ��t ðynÞ; generate bootstrap observations for the dependent variable Y �t
according to

Y �t ¼ gðI t; ynÞ þ �
�
t ðynÞ for t ¼ 1; . . . ; n.
4) Compute the bootstrap analog of yn; y�n say, using the bootstrap observations
fY �t ; I tg

n
t 1 and compute the residuals �̂�t ðy

�
nÞ ¼ Y �t � gðIt; y

�
nÞ for t ¼ 1; . . . ; n.
The unknown limiting null distribution of jðSn;yn
Þ; i.e., the distribution of jðŜ1Þ; is

pproximated by the bootstrap distribution of jðS�n;y�n Þ. That is, the bootstrap distribution
� � n
FjðS�
n;y�n
ÞðxÞ ¼ PrðjðSn;y�n

ÞpxjfY t; I tgt 1Þ

estimates the asymptotic null distribution function

FjðŜ1Þ
ðxÞ ¼ PrðjðŜ1ÞpxÞ.

Thus, H0 will be rejected at the 100a% of significance when jðSn;yn
ÞXc�n;a; where

F�jðS�
n;y�n
Þðc
�
n;aÞ ¼ 1� a. Also, we can use the bootstrap p-values, p�n say, rejecting H0 when

p�noa; where p�n ¼ PrðjðS�n;y�n ÞXjðSn;yn
ÞjfY t; I tg

n
t 1Þ. The bootstrap assisted test is valid if

F�jðS�
n;y�n
Þ is a consistent estimator of FjðŜ1Þ

at each continuity point of FjðŜ1Þ
. When

consistency is a.s., it is expressed as jðS�n;y�n Þ!djðŜ1Þ a.s. See Giné and Zinn (1990) or van

der Vaart and Wellner (1996) for discussion.
Likewise, we can construct tests based on

R�n;y�n ðu; vÞ ¼
1

2

Z 1
�1

sinðv̄vÞS�n;y�n ðu;dv̄Þ.

11



In order to show that the bootstrap assisted tests are valid, we need to assume that the

bootstrap analogs of yn satisfy an asymptotic expansion like (A6) in the bootstrap world.
Remark that we say that the bootstrap statistic Z�n converges in probability a.s. to Zn if for
all d40; PrðjZ�n � ZnjXdjfY t; I tg

n
t 1Þ ! 0 a.s., which is expressed as Z�n ¼ Zn þ oPð1Þ a.s.

Also, bootstrap expectations are denoted by E�ðZ�nÞ ¼ EðZ�njfY t; I tg
n
t 1Þ.
(A7(a)) There exists a unique y1 such that under both, the null and the alternative
hypotheses, jy � y j ¼ o ð1Þ. The estimator y� satisfies the following asymptotic

e

(A7(b))
(A7(c))

(A7(e))

Hencefo
outer alm
n 1 P n

xpansion:

n
p
ðy�n � ynÞ ¼

1

n
p
X
t 1

n

l�yn
ðY �t ; I tÞ þ oPð1Þ a:s:;

where the function l�yn
is such that

E�½l�yn
ðY �t ; I tÞ� ¼ 0; a.s.

LðynÞ ¼ E�½l�yn
ðY �t ; I tÞl

�0
yn
ðY �t ; I tÞ� exists and is positive definite (a.s.)

with LðynÞ�!Lðy1Þ a.s.

(A7(d)) F
or all ðu1; v1Þ, ðu2; v2Þ 2 Rd ;
1
Xn
n
t 1

wt;yn
ðv1Þwt;yn

ðv2Þ1ðItpu1Þ1ðItpu2Þ

�!
as

E½wt;y1 ðv1Þwt;y1 ðv2Þ1ðI tpu1Þ1ðItpu2Þ�.

Uniformly in ðu; vÞ 2 Rd ;

1
Xn Xn

� � � � as

n

t 1 s 1

ðE ½wt;y�n
ðvÞ1ðItpuÞlyn

ðY s ; IsÞ� � wt;y1 ðvÞ1ðItpuÞly1ðY s; IsÞÞ �! 0.

rth, almost sure convergence of nonmeasurable maps is understood, as usual, as
ost sure convergence, see van der Vaart and Wellner (1996) for definitions. It is

cult to show that assumption (A7) is satisfied for Z and M estimators under
not diffi
suitable regularity conditions, see, e.g., Koul (2002, Chapter 7). Sufficient conditions for
(A7) are easily obtained from results of Wooldridge (1994), White (1994) or Koul (2002).
In many cases, the functions ly0 and l�yn

required in (A6) and (A7) can be expressed as
ly0 ð�t; I tÞ ¼ �tðy0ÞkðIt; y0Þ and l�yn

ðY �t ; I tÞ ¼ V t�tðynÞkðIt; ynÞ; respectively, for some function
kð�Þ; see, e.g., the NLS, or, more generally, estimators resulting from a martingale
estimating equation (see Heyde, 1990). Then, in those cases, (A7(e)) reduces to the uniform
convergence

sup
ðu;vÞ2Rd

1

n

Xn

t 1

ðwt;yn
ðvÞ1ðItpuÞ�tðynÞkðIt; ynÞ � wt;y1ðvÞ1ðI tpuÞ�tðy1ÞkðIt; y1ÞÞ

�����
������!as 0,

which is satisfied under some mild conditions on the function kð�Þ and (A1)–(A5).
Next theorem justifies the validity of bootstrap assisted tests.
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Theorem 5. Assume (A1)–(A7), and let j : ‘1ðRd Þ 7!R be a continuous functional. Then,
jðS�n;y�n Þ!djðeS1Þ a.s.

where eS1 is the same Gaussian process as in Theorem 3 but with y1 replacing y0.

Since the theorem is satisfied under the null and the alternatives, it justifies the
consistency of bootstrap assisted tests.

5. Monte Carlo

We investigate in this section, by means of a Monte Carlo experiment, the finite sample
performance of Cramér–von Mises-type statistics (9) and (10), as well as their one
parameter versions

CvMn;u ¼

Z
Rd

S2
n;yn
ð1; vÞKn;yn

ð1; dvÞ

and

CvMn;u ¼

Z
Rd

R2
n;yn
ð1; vÞF1ðdvÞ,

respectively, with F1ðvÞ the cdf of standard normal r.v. These tests are also compared with
the asymptotically pivotal tests of Bai and Ng (2001), henceforth BN, based on the
martingale transform of Sn;yn

ð1; �Þ using the conditionally scaled residuals, and using the
same smooth estimates of nonparametric functions as BN recommends. The BN’s test is
denoted by CS.
Bootstrap critical values are approximated by Monte Carlo using 500 replications. We

consider two sample sizes, n ¼ 50 and 200. The Monte Carlo experiments are based on
1000 replications. We only report results for the 5% significance level. We have also
considered size-corrected critical values, which are not reported since they do not provide
any additional information.
First, we consider the case where the conditional center of symmetry does not depend on

explanatory variables. That is, we consider gðI t; y0Þ ¼ m; for all t 2 Z; say, where m is a
constant and I t ¼ Y t�1. The unknown mean m is estimated by the sample mean and the
residuals are �tðY nÞ ¼ Y t � Y n. As in BN, the demeaned data are standardized by the
sample standard deviation.
We investigate the size accuracy of the test in the context of the following designs:

(S1) Y t	iid Nð0; 1Þ.
(S2) Y t	iid t5.
(S3) Y t	iid e11ðZp0:5Þ þ e21ðZ40:5Þ with e1	iid Nð�1; 1Þ, e2	iid Nð1; 1Þ and
(S4–S7
(S
Z	iid Uð0; 1Þ mutually independent.
) Y t are iid according to a symmetric l distributions with
F�1ðuÞ ¼ l þ ½ul3 � ð1� uÞl4 �=l ; 0ouo1,
1 2

with the l values taken from Randles et al. (1980),

(S4
) l1 ¼ 0; l2 ¼ 0:19754; l3 ¼ 0:134915 and l4 ¼ 0:134915.
5) l1 ¼ 0; l2 ¼ �1; l3 ¼ �0:08 and l4 ¼ �0:08.
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(S6) l1 ¼ 0; l2 ¼ �0:397912; l3 ¼ �0:16 and l4 ¼ �0:16.

(S7)
(A

(A10) H

n

C

(S1) 5.

(S2) 5.

(S3) 5.

(S4) 6.

(S5) 5.

(S6) 5.

(S7) 7.
l1 ¼ 0; l2 ¼ �1; l3 ¼ �0:24 and l4 ¼ �0:24.
Table
 1 reports the percentage of rejections for models (S1)–(S7).

All the bootstrap tests exhibit good size accuracy. The asymptotic BN test also behaves

fairly well under H0 but for the design (S5).
In order to study the power in finite samples, we consider the following designs:
1) Y t	iid expðNð0; 1ÞÞ.
	iid w2 .
(A2) Y

(A3) Y
0 in

¼ 5

vM

2

0

6

5

0

9

8

t ð2Þ

t	iid � lnðUð0; 1ÞÞ.

(A4)–(A8) Y
 t are iid according to asymmetric l distributions (see (S4)–(S7)) with

l ¼ 0; l ¼ 1; l ¼ 1:4 and l ¼ 0:25.
(A4)
 1 2 3 4
(A5) l
1 ¼ 0; l2 ¼ �1; l3 ¼ �0:0075 and l4 ¼ �0:03.

(A6) l
1 ¼ 0; l2 ¼ �1; l3 ¼ �0:1 and l4 ¼ �0:18.

(A7) l
(A8) l
1 ¼ 0; l2 ¼ �1; l3 ¼ �0:001 and l4 ¼ �0:13.
¼ 0; l ¼ �1; l ¼ �0:0001 and l ¼ �0:17.
(A9) Y

1 2 3 4

¼ X � X with X 	iid w2 .

(A10) Y
t t t 1 t ð2Þ

¼ X � X with X 	iid � lnðUð0; 1ÞÞ.
t t t 1 t
and
rnatives (A1)–(A8) were considered by BN. Under the alternatives (A9)
The alte
_
 (4) (unconditional symmetry) is satisfied, though H0 does not hold (Table 2).
As expected, all the tests are able to detect alternatives (A1)–(A8), but the ‘‘marginal’’
tests CvMn;u; CvMn;u and CS; which are consistent for testing _H0; have trivial power for
testing H0 in the direction of alternatives (A9) and (A10). However, the bootstrap tests
CvMn and CvMn also exhibit good power in the direction of (A9) and (A10). It is worth
mentioning that the test CvMn performs better than CvMn for alternatives (A1), (A9) and
(A10), whereas CvMn rejects more in the direction of alternatives (A2)–(A8). This behavior
may be explained by the fact that alternatives (A1), (A9) and (A10) are ‘‘low-frequency’’
alternatives, which are well detected by standard empirical process based tests, whereas
tests based on the empirical characteristic function are designed for detecting ‘‘high-
frequency’’ alternatives.

Table 1

Empirical size at 5% of significance level
0 n ¼ 200

n CvMn CvMn;u CvMn;u CS CvMn CvMn CvMn;u CvMn;u CS

5.6 3.8 5.6 2.9 6.1 6.4 3.7 4.8 4.4

5.0 6.6 6.6 4.5 5.2 6.1 5.6 6.8 4.8

5.6 3.8 4.2 4.6 5.8 5.2 6.4 5.2 4.8

6.1 4.5 5.4 3.3 3.6 4.8 5.6 6.1 3.6

5.7 5.4 21.8 13.4 4.1 5.6 6.6 7.0 3.2

6.1 5.5 6.8 4.8 5.0 4.8 5.9 6.6 7.0

7.2 6.6 6.1 8.6 5.6 5.0 5.9 5.4 10.4
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Also, as in BN, we consider the following autoregressive process of order 1, AR(1),
Y t ¼ rY t 1 þ �t; where �t are:

Table 3

Proportion of rejections at 5% of significance level for the AR(1) model

r ¼ 0:5 n ¼ 50 n ¼ 200

CvMn CvMn CvMn;u CvMn;u CS CvMn CvMn CvMn;u CvMn;u CS

(AU1) 6.6 5.6 4.8 5.6 3.7 5.6 6.6 5.0 4.6 11.4

(AU2) 7.2 6.8 5.7 6.2 3.5 5.2 5.2 5.6 5.0 4.8

(AU3) 4.8 4.3 5.2 5.4 3.3 5.9 5.9 5.0 5.0 5.0

(AU4) 94.6 96.8 97.2 99.2 71.2 100.0 100.0 100.0 100.0 100.0

(AU5) 96.4 99.4 99.0 100.0 78.4 97.8 97.2 100.0 100.0 95.8

(AU6) 96.8 98.4 99.4 100.0 83.1 100.0 100.0 100.0 100.0 99.0

Table 2

Empirical power at 5% of significance level

n ¼ 50 n ¼ 200

CvMn CvMn CvMn;u CvMn;u CS CvMn CvMn CvMn;u CvMn;u CS

(A1) 91.6 87.9 99.7 99.9 92.1 100.0 100.0 100.0 100.0 100.0

(A2) 78.2 86.2 98.6 99.8 78.9 100.0 100.0 100.0 100.0 100.0

(A3) 77.6 87.0 98.6 99.8 78.2 100.0 100.0 100.0 100.0 100.0

(A4) 23.5 37.0 45.8 57.6 29.8 77.2 90.8 100.0 100.0 92.0

(A5) 40.5 99.9 44.4 100.0 70.4 95.3 100.0 100.0 100.0 97.3

(A6) 24.3 27.7 21.2 29.0 23.3 71.3 75.6 85.0 100.0 72.6

(A7) 84.1 97.8 99.0 100.0 82.9 100.0 100.0 100.0 100.0 100.0

(A8) 87.2 95.4 99.0 100.0 86.6 100.0 100.0 100.0 100.0 100.0

(A9) 85.9 77.0 0.60 0.20 3.30 99.4 99.6 0.00 0.00 3.20

(A10) 47.0 39.2 1.40 0.60 2.20 99.6 99.3 0.00 0.00 2.00
(AU1) �t	iid Nð0; 1Þ.
(AU2) �t	iid t5.

(AU3) � 	iid mixture of normals as (S3).

(AU4
Ta
based
t

) �t	iid w22.

(AU5
) �t	iid l-distribution with parameters l1 ¼ 0; l2 ¼ �1; l3 ¼ �0:001 and l4 ¼ �
0:13.

(AU6
) �t	iid l-distribution with parameters l1 ¼ 0; l2 ¼ �1; l3 ¼ �0:0001 and l4 ¼ �
0:17.
The
 proportion of rejections for r ¼ 0:5 are reported in Table 3.
bles 3 confirms that bootstrap tests perform better than asymptotically pivotal test

on CS. Surprisingly enough, the conditional tests perform similarly to unconditional
tests, even when the latter take into account the information that the errors are
independent of the regressors, as is the case with the AR(1) alternatives considered here.
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Now, we consider the following conditional heteroskedastic model, GARCH(1,1), Y t ¼
2 2 2
1þ �t; �t ¼ stet; st ¼ f0 þ f1st 1 þ f2�t 1; f0 ¼ 2;f1 ¼ 0:5;f2 ¼ 0:3 (GARCH1); f0 ¼

2;f1 ¼ 0:9;f2 ¼ 0:05 (GARCH2). The residuals for CS are standardized using the
parametric estimated standard deviation under models GARCH1 and GARCH2. The
distributions for �t are the same that in the AR(1) model (AU1)–(AU6). We report the
results for the GARCH(1,1) models in Tables 4 and 5, respectively.

The empirical size of tests for the GARCH1 and GARCH2 models are quite accurate.
Only BN’s test statistic CS shows large overrejection for the (AU3) model. Our tests
statistics CvMn and CvMn have excellent empirical power against alternatives
(AU4)–(AU6). The unconditional test CvMn;u has no power against the alternative
(AU4), specially for large sample sizes. This contradictory behavior may be due to the fact
that CvMn;u cannot discriminate between conditional symmetry and other conditional
dependence structure.

In models GARCH1 and GARCH2, the BN’s test CS uses the parametric estimator for
the conditional variance. In order to study the sensitivity of this test under a misspecified
conditional variance, we consider the same models as before but where the incorrectly
estimated variance is that of a ARCH(1) model. The true DGP are the GARCH1 and
GARCH2 models considered before. The proportion of rejections for the latter experiment
are reported in Table 6.

Table 6 shows that CS has large size distortions for model (AU3). Furthermore, under
the alternatives (AU5) and (AU6) and for n ¼ 50; the proportion of rejections has

Table 4

Proportion of rejections at 5% of significance level for the GARCH1 model
n ¼ 50 n ¼ 200

CvMn CvMn CvMn;u CvMn;u CS CvMn CvMn CvMn;u CvMn;u CS

(AU1) 4.9 5.6 4.6 5.6 2.3 8.2 9.7 6.6 5.3 3.9

(AU2) 6.4 5.7 5.6 6.4 7.9 6.0 5.2 5.3 4.3 15.4

(AU3) 3.7 4.8 3.9 3.8 8.5 6.4 6.1 5.0 4.0 27.0

(AU4) 98.5 100.0 14.0 96.2 99.0 100.0 100.0 0.00 99.6 100.0

(AU5) 47.8 56.1 63.0 76.6 79.9 93.2 100.0 100.0 100.0 100.0

(AU6) 67.0 71.6 82.2 91.2 83.9 100.0 100.0 100.0 100.0 100.0

Table 5

Proportion of rejections at 5% of significance level for the GARCH2 model

n ¼ 50 n ¼ 200

CvMn CvMn CvMn;u CvMn;u CS CvMn CvMn CvMn;u CvMn;u CS

(AU1) 5.2 5.9 3.8 4.6 2.2 6.4 7.4 2.9 3.3 2.4

(AU2) 4.3 5.0 6.6 6.0 2.8 3.7 5.0 4.3 4.3 4.4

(AU3) 5.4 5.5 2.9 2.8 3.0 3.4 4.0 5.3 4.6 3.5

(AU4) 96.2 99.8 57.8 100.0 98.1 100.0 100.0 2.33 100.0 99.8

(AU5) 75.7 80.0 90.0 93.8 83.4 100.0 100.0 100.0 100.0 100.0

(AU6) 86.4 89.1 96.2 98.0 89.6 100.0 100.0 100.0 100.0 100.0
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decreased in the GARCH1 model from 79.9 and 83.9 to 43.8 and 46.4, respectively, and for
the GARCH2 model from 83.4 and 89.6 to 39.0 and 45.6, respectively. This behavior has

Table 6

Proportion of rejections at 5% of significance level for CS under misspecified GARCH models

DGP GARCH1 GARCH1 GARCH2 GARCH2

n 50 200 50 200

Estimated model: ARCH(1)

(AU1) 2.2 2.6 2.2 1.4

(AU2) 7.4 11.8 4.1 4.6

(AU3) 5.6 24.0 2.4 2.9

(AU4) 97.6 99.0 82.6 99.8

(AU5) 43.8 99.4 39.0 98.4

(AU6) 46.4 99.2 45.6 98.0
been due to the misspecification of the conditional variance.
This small simulation study suggests that even with relative small sample sizes the

bootstrap test proposed in this paper exhibits fairly good size accuracy and power. Our
tests are able to detect alternatives where the innovations’ marginal distribution is
symmetric, which go unnoticed by alternative procedures designed for testing the
symmetry of the errors’ marginal distribution. Also, unlike alternative procedures, our
tests are insensitive to misspecification of higher conditional moments and, in particular,
there is no need of assuming any conditional variance model (e.g., GARCH) in the
presence of conditional heteroskedasticity.

Appendix A. Mathematical proofs

First, we shall consider in this section a FCLT for a large class of empirical processes
under martingale difference conditions which is essential for providing the different results
in the paper. Let for each nX1; I 0n;1; . . . ; I

0
n;n; be an array of random vectors in Rp, p 2 N;

and �n;1; . . . ; �n;n; be an array of real random variables (r.v.’s). Denote by ðOn;An;PnÞ; nX1;
the probability space in which all the r.v.’s f�n;t; I

0
n;tg

n
t 1 are defined. Let Fn;t; 0ptpn; be a

double array of sub-s-fields of An such that Fn;t �Fn;tþ1; t ¼ 0; . . . ; n� 1 and such that
for each nX1 and each x 2 P 
 Rd , d 2 N;

E½wð�n;t; In;t; xÞ jFn;t� ¼ 0 a:s:; 1ptpn; 8nX1. (12)

Moreover, we shall assume that fwð�n;t; In;t;xÞ;Fn;t; 0ptpng is a square-integrable
martingale difference sequence for each x 2 P 
 Rd ; that is, (12) holds, Ew2ð�n;t; In;t;xÞo1
and wð�n;t; In;t;xÞ is Fn;tþ1-measurable for each x 2 P 
 Rd and 8t; 1ptpn; 8n 2 N.
The main goal of this section is to establish the weak convergence of the empirical
process

an;wðxÞ ¼ n�1=2
X
t 1

n

wð�n;t; In;t;xÞ; x 2 P.

Under mild conditions the empirical process an;w can be viewed as a mapping from On to
‘1ðPÞ; the space of all real-valued functions that are uniformly bounded on any compact
subset of P 
 Rd . Let !d denote weak convergence on compacta in ‘1ðPÞ; see van der
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Vaart and Wellner (1996, Definition 1.3.3, Chapter 1.6). Note that if P is compact, then

!d reduces to the classical weak convergence concept of Hoffmann–Jørgensen (Dudley,
1999, p. 94). Of course, the sample paths of an;w are usually contained in a much smaller
space (such as the cadlag space DðPÞ, the space of real-valued functions on P with jump
discontinuities), but as long as this space is equipped with the sup-metric, this is irrelevant
for the weak convergence theorem. The weak convergence theorem that we present here is
funded on results by Levental (1989), Bae and Levental (1995) and Nishiyama (2000).

An important role in the weak convergence theorem is played by the conditional
quadratic variation of the empirical process an;w on a finite partition B ¼ fHk; 1pkpNg

of Pc; where hereafter Pc is any compact subset of P which is defined as

an;wðBÞ ¼ max
1pkpN

n�1
X
t 1

n

E sup
x1;x22Hk

jwð�n;t; In;t;x1Þ � wð�n;t; In;t;x2Þj
2

����Fn;t

" #
.

Then, for the weak convergence theorem we need the following assumptions:

(W1) For each nX1; fð�n;t; I
0
n;tÞ
0 : 1ptpng is a strictly stationary and ergodic process. The

sequence fwð� ; I ;xÞ;F ; 0ptpng is a square-integrable martingale difference
n;t n;t n;t
(W2)

Let a
Cwðx
sequence for each x 2 P 
 Rd . Also, there exists a function Cwðx1;x2Þ onPc �Pc to
R such that uniformly in ðx1;x2Þ 2 Pc �Pc

n�1
Xn

t 1

wð�n;t; In;t;x1Þwð�n;t; In;t; x2Þ ¼ Cwðx1;x2Þ þ oPn
ð1Þ.

For every compact subset Pc; the family wð�n;t; In;t;xÞ is such that an;w is a mapping
from On to ‘1ðPcÞ and for every �40 there exists a finite partition B� ¼

fHk; 1pkpN�g of Pc; with N� being the elements of such partition, such that
Z 1
0

logðN�Þ
p

d�o1 (13)

and

sup
�2ð0;1Þ\Q

an;wðB�Þ

�2
¼ OPn

ð1Þ. (14)

1;wð�Þ be a Gaussian process with zero mean and covariance function given by

1;x2Þ. We are now in position to state the following

em A.1. If Assumptions (W1) and (W2) hold, then it follows that
Theor

an;w!da1;w in ‘1ðPÞ.

Now, we shall show that assumption (W2) is satisfied (under (W1) and some mild
conditions) for most families w considered in the literature. First, we start with smooth
functions w, which may arise, for instance, when conditional specifications are made in
terms of the conditional characteristic function. Note that under (W1) and for smooth
functions w satisfying

jwð�n;t; In;t; x1Þ � wð�n;t; In;t;x2ÞjpKn;trðx1;x2Þ,
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with rð�; �Þ such that ðPc;rÞ is a totally bounded metric space and Kn;t is, for each nX1; a
2
strictly stationary process with E½Kn;t�o1, 8t; 1ptpn; a sufficient condition for (W2) is

that Z 1
0

logðNðPc; r; �ÞÞ
p

d�o1,

where NðPc;r; �Þ is the �-covering number of Pc with respect to r; i.e., the minimum
number of r-balls needed to cover Pc. This assumption is satisfied, for instance, for
wð�n;t; In;t;xÞ ¼ ½sinðv�n;tÞ sinðu

0In;tÞ�; x ¼ ðu0; vÞ0 2 Pc; with Pc a compact subset of Rd . For
nonsmooth functions, such as wð�n;t; In;t;xÞ ¼ f1ð�n;tpvÞ � 1ð��n;tpvÞg1ðIn;tpuÞ; x ¼

ðu0; vÞ0 2 Rd ; the situation is more involved, see the proof of Theorem 1.
To prove Theorem A.1 we consider two lemmas. The first lemma corresponds to

Theorems 1.5.4 and 1.5.6 of van der Vaart and Wellner (1996).

Lemma A.1. Let T be a nonempty set. For every n 2 N let ðOn;Fn;PnÞ be a probability

space, and X n be a mapping from On to ‘1ðTÞ. Consider the following statements:

(i) X n converges weakly to a tight Borel law;
(ii) every finite-dimensional marginal of X n converges weakly to a (tight) Borel law;

(ii
ar
i) for every �; Z40 there exists a finite partition B ¼ fTk; 1pkpNg of T such that" #

Lim sup P� max sup jX nðtÞ � X nðsÞj4� pZ.
n!1 1pkpN t;s2Tk

Then, there is the equivalence ðiÞ()ðiiÞ þ ðiiiÞ. Furthermore, if the marginals of a

stochastic process X have the same laws as the limits in (ii), then there exists a version eX
of X such that X n!d

eX in ‘1ðTÞ.

Next, lemma is the so-called Bernstein–Freedman inequality for martingale difference
rays. See Freedman (1975) for the proof.
Lemma A.2. Let fMn;t : 1ptpng be an R-valued martingale difference array with respect to

the filtration Fn;t; such that jMn;tjoa; 8n; 1ptpn. Let s be a bounded stopping time. Then

for any b40

P max
1psps

X
t 1

s

Mn;t

�����
�����4�;

X
t 1

s

E½M2
n;t jFn;t�pb

 !
p2 exp �

�2

2ða�þ bÞ

� �
8�40.

Proof of Theorem A.1. Apply the Central Limit Theorem (CLT) for stationary and ergodic
martingale difference sequences, cf. Billingsley (1961), to show that the finite-dimensional
distributions of an;w converge to those of the Gaussian process a1;w. To complete the proof
we need to show that (iii) in Lemma A.1 holds. To this end, fix a compact subset Pc � P;
and using (W2) we can choose a nested sequence of finite partitions Pq ¼ fBqk; 1pkpNqg

of Pc; for every q 2 N; qX1; such thatX1
q 1

2�q logNq

p
o1.
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Let define aq ¼ 2�q= logðNqþ1Þ
p

. Now, choose and element xqk for each Bqk and define for

every x 2 Pc the events

pqx ¼ xqk

Bqx ¼ Bqk
if x 2 Bqk.

To simplify notation define Mn
t ðxÞ ¼ n�1=2wð�n;t; In;t;xÞ. Then, by Lemma A.1, see also the

proof of Theorem 2.5.6 of van der Vaart and Wellner (1996), it is sufficient to prove that
for every �; Z40 there exists a q0 2 N such that

Lim sup
n!1

P
X
t 1

n

Mn
t ðxÞ �

X
t 1

n

Mn
t ðpq0xÞ

�����
�����
Pc

4�

24 35pZ,

where k � kPc
denotes the uniform norm on Pc and where from now on probabilities of

nonmeasurable maps are understood as outer probabilities. To this end, fix any q0 for a
while, and let define the quantities for each fixed n and large qXq0

Dn
t ðBÞ ¼ sup

x1;x22B

jMn
t ðx1Þ �Mn

t ðx2Þj,

and the events

Cn
t;q�1 ¼ 1ðDn

t ðBq0xÞpaq0 ; . . . ;D
n
t ðBq�1xÞpaq�1Þ,

Dn
t;q ¼ 1ðDn

t ðBq0xÞpaq0 ; . . . ;D
n
t ðBq�1xÞpaq�1;Dn

t ðBqxÞ4aqÞ

and

Dn
t;q0
¼ 1ðDn

t ðBq0xÞ4aq0 Þ.

Now, similarly to van der Vaart and Wellner (1996, p. 131), we decompose

Mn
t ðxÞ �Mn

t ðpq0xÞ ¼ ðM
n
t ðxÞ �Mn

t ðpq0xÞÞD
n
t;q0
þ
X1

q q0þ1

ðMn
t ðxÞ �Mn

t ðpqxÞÞDn
t;q

þ
X1

q q0þ1

ðMn
t ðpqxÞ �Mn

t ðpq�1xÞÞC
n
t;q. ð15Þ

On the other hand, by (12)

0 ¼ E½ðMn
t ðxÞ �Mn

t ðpq0xÞÞD
n
t;q0
jFn;t� þ

X1
q q0þ1

E½ðMn
t ðxÞ �Mn

t ðpqxÞÞDn
t;q jFn;t�

þ
X1

q q0þ1

E½ðMn
t ðpqxÞ �Mn

t ðpq�1xÞÞC
n
t;q jFn;t�.
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Now, by (15) and the last display
X
t 1

n

Mn
t ðxÞ �

X
t 1

n

Mn
t ðpqxÞ

�����
�����
Pc

pI1 þ I2 þ II1 þ II2 þ III ,

where

I1 ¼
X
t 1

n

Dn
t ðBq0xÞD

n
t;q0

�����
�����
Pc

,

I2 ¼
X
t 1

n

E½Dn
t ðBq0xÞD

n
t;q0
jFn;t�

�����
�����
Pc

,

II1 ¼
X
t 1

n X1
q q0þ1

Dn
t ðBqxÞDn

t;q

�����
�����
Pc

,

II2 ¼
X
t 1

n X1
q q0þ1

E½Dn
t ðBqxÞDn

t;q jFn;t�

�����
�����
Pc

and

III ¼
X
t 1

n X1
q q0þ1

ðMn
t ðpqxÞ �Mn

t ðpq 1xÞÞC
n
t;q

�����
� E½ðMn

t ðpqxÞ �Mn
t ðpq 1xÞÞC

n
t;q jFn;t�

�����
Pc

.

Further, it holds by the triangle inequality that II1pII3 þ II2; where

II3 ¼
X
t 1

n X1
q q0þ1

Dn
t ðBqxÞDn

t;q � E½Dn
t ðBqxÞDn

t;q jFn;t�

�����
�����
Pc

.

Hereafter, we perform estimations for terms I1; I2; II3; II2 and III . First, from
Dn

t ðBqxÞp2kMn
t ðxÞkPc

; we have that under our assumptions it can be easily proved that
I1 and I2 converge in probability to zero for any fixed q0; see for instance Lemma A.2 in
Stute et al. (1998).
By assumption (W2), for any Z40 there exists a constant K ¼ KZ40; such that

lim sup
n!1

PðOnnOn
K ÞpZ,
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where
On
K sup

q2N

an;wðB�Þ

2�2q
pK

( )
.

Then, for the estimation of II2, we see that

II2p
X
t 1

n X1
q q0þ1

1

aq

E½jDn
t ðBqxÞj2Dn

t;q jFn;t�

�����
�����
Pc

p sup
qXq0þ1

X
t 1

n E½jDn
t ðBqxÞj2Dn

t;q jFn;t�

2�2q

�����
�����
Pc

X1
q q0þ1

2�2q

aq

pK
X1

q q0þ1

2�q logNqþ1

p
a:s: on the set On

K .

As for II3, since

jDn
t ðBqxÞDn

t;q � E½Dn
t ðBqxÞDn

t;q jFn;t�jp2aq�1 identically,

and X
t 1

n

E½jDn
t ðBqxÞj2Dn

t;q jFn;t�pK2�2q a.s. on the set On
K ,

it follows from the Freedman’s (1975) inequality in Lemma A.2, which plays here the same
role as the Bernstein’s inequality does in the iid setup, and Lemma 2.11.17 of van der Vaart
and Wellner (1996) that for any measurable set A

E
X
t 1

n

Dn
t ðBqxÞDn

t;q � E½Dn
t ðBqxÞDn

t;q jFn;t�

�����
�����1ðA \ On

K Þ

pCð2aq�1 logðNqÞ þ K
p

2�q logðNqÞ
p

Þ PðAÞ þ
1

Nq

� �
pCðð2þ K

p
Þ2�q logðNqÞ

p
Þ PðAÞ þ

1

Nq

� �
.

Thus, using the last inequality and defining for every q 2 N; qX1; a partition fOn
qk :

1pkpNqg of On such that the maximum

X
t 1

n X1
q q0þ1

Dn
t ðBqxÞDn

t;q � E½Dn
t ðBqxÞDn

t;q jFn;t�

�����
�����
Pc

is achieved at Bqk on the set On
qk. Then, we have

EjII3j1ðOn
K ÞpE

X
t 1

n X1
q q0þ1

Dn
t ðBqxÞDn

t;q � E½Dn
t ðBqxÞDn

t;q jFn;t�

�����
�����
Pc

1ðOn
K Þ

p
X1

q q0þ1

E
X
t 1

n

Dn
t ðBqxÞDn

t;q � E½Dn
t ðBqxÞDn

t;q jFn;t�

�����
�����
Pc

1ðOn
K Þ
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X1 XNq Xn
n n n n

��� ��� n n
p
q q0þ1 k 1

E
t 1

Dt ðBqxÞDt;q � E½Dt ðBqxÞDt;q jFn;t��� ��1ðOqk \ OK Þ

pCð2þ K
p
Þ
X1

q q0þ1

XNq

k 1

2�q logðNqÞ
p

PðOn
qkÞ þ

1

Nq

� �

pCð2þ K
p
Þ
X1

q q0þ1

2�q logðNqÞ
p

.

Finally, the estimation of III follows from the same arguments as for II3; and therefore, we
obtain

EjIII j1ðOn
K ÞpCð2þ K

p
Þ
X1

q q0þ1

2�q logðNqÞ
p

.

The theorem follows from choosing a large K, a large q0 and then, letting n!1. &

Proof of Theorem 1. To prove Theorem 1 we need that the conditions of Theorem A.1
hold. To that end, let us define the semimetric

d2
ðx; yÞ :¼jFy0ðvyÞ � Fy0 ðvxÞj þ jFI ðuyÞ � F I ðuxÞj,

where y :¼ðu0y; vyÞ
0;x :¼ðu0x; vxÞ

0
2 Rd and F I is the stationary marginal distribution of I1.

Then, the equicontinuity of the joint cdf guarantees that for any �40 we can form a
partition B� ¼ fBk; 1pkpN�g of Rd in �-brackets Bk ¼ ½xk; yk�; i.e., fBkg

N�

k 1 covers Rd ;
xkpyk; and d2

ðxk; ykÞp�2. Let us denote for each k; 1pkpN�; yk :¼
ðu0yk; vykÞ

0; x :¼ðu0xk; vxkÞ
0. For every q 2 N; qX1; when � ¼ 2�q we denote the previous

partition by Bq ¼ fBqk; 1pkpNq � N2 qg. From standard results on VC-classes, see van
der Vaart and Wellner (1996), we have that (13) of Theorem A.1 holds for these partitions.
Furthermore, simple algebra yields

anðBqÞ:¼ max
1pkpNq

n�1
X
t 1

n

E sup
x;y2Bqk

jwð�t; I t;xÞ � wð�t; I t; yÞj

�����
�����
2
������Ft
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p max

1pkpNq

1

n

X
t 1

n

E sup
x;y2Bqk

j1ð�tpvxÞ1ðItpuxÞ � 1ð�tpvyÞ1ðItpuyÞj
2

�����Ft

" #�����
�����

þ max
1pkpNq

1

n

X
t 1

n

E sup
x;y2Bqk

j1ð��tpvxÞ1ðItpuxÞ � 1ð��tpvyÞ1ðItpuyÞj
2

�����Ft

" #�����
�����

¼ 2 max
1pkpNq

1

n

X
t 1

n

E½1ðvxkp�tpvykÞ jFt�1ðuxkpI tpuykÞ

�����
�����. ð16Þ

Therefore, the last display and (A3) imply (14). Therefore, (W2) of Theorem A.1 holds and
Theorem 1 is proved. &

Before proving Theorems 2 and 3, we need some additional lemmas which generalize
Theorem 2.2.3 in Koul (2002) and Lemma 1.1 in Koul (1996) under only martingale
difference assumptions. For a sequence of r.v’s dn;t, 1ptpn; and x ¼ ðu0; vÞ0 2 Rd ; let
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define the processes
VnðxÞ ¼
1

n

Xn

t 1

1ð�n;tpvþ dn;tÞ1ðIn;tpuÞ,

JnðxÞ ¼
1

n

Xn

t 1

Fy0;In;t ðvþ dn;tÞ1ðIn;tpuÞ,

where F y0;In;t ðvÞ ¼ F y0 ðvjIn;tÞ. Let us also define

V�nðxÞ ¼
1

n

Xn

t 1

1ð�n;tpvÞ1ðIn;tpuÞ; x ¼ ðu0; vÞ0 2 Rd ,

J�nðxÞ ¼
1

n

Xn

t 1

F y0;In;t ðvÞ1ðIn;tpuÞ,

UnðxÞ ¼ n
p
ðV nðxÞ � JnðxÞÞ

and

U�nðxÞ ¼ n
p
ðV�nðxÞ � J�nðxÞÞ.

Lemma A.3. Under the assumptions of Theorem 3 with f�n;t; I
0
n;tg

n
t 1 replacing f�t; I

0
tg

n
t 1 there

and assuming that dn;t is Fn;t-measurable, where Fn;t ¼ sðI 0n;t; I
0
n;t�1; . . .Þ; 0ptpn;

max1ptpnjdn;tj ¼ oPð1Þ and that �n;t is Fn;tþ1-measurable, then

kUn �U�nkRd ¼ oPð1Þ.

Proof. The fact that Un �U�n is a sum of conditionally centered bounded r.v.’s yields that

VarðUnðxÞ �U�nðxÞÞpEn�1
Xn

t 1

jFy0;In;t ðvþ dn;tÞ � F y0;In;t ðvÞj1ðIn;tpuÞ ¼ oð1Þ

by (A3) and the Ergodic Theorem. The lemma follows from showing the asymptotic
uniform equicontinuity of Un and U�n. For the latter condition apply our Theorem A.1 as
in Theorem 1 in a routine fashion. See Theorem 2.2.3 in Koul (2002) for details. &

For s 2 Y; let define the processes

Vnðx; sÞ ¼
1

n
p
Xn

t 1

1ðY n;t � gn;tðsÞpvÞ1ðIn;tpuÞ,

dn;tðsÞ ¼ gn;tðy0 þ n�1=2sÞ � gn;tðy0Þ,

vnðx; sÞ ¼ n�1=2
Xn

t 1

F y0;In;t ðvþ dn;tðsÞÞ1ðIn;tpuÞ,

W nðx; tÞ ¼ Vnðx; y0 þ n�1=2sÞ � vnðx; sÞ,

where gn;tðyÞ � gðIn;t; yÞ and Nb ¼ fs 2 Y : jsjpbg.
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Lemma A.4. Under the assumptions of Lemma A.3, assume that,
n 1=2 max
1ptpn

j _gðIn;t; y0Þj ¼ oPð1Þ (17)

and

n 1
Xn

t 1

j _gðIt;n; y0Þj ¼ OPð1Þ. (18)

Then, for any b 2 R;

sup jW nðx; sÞ �W nðx; 0Þj ¼ oPð1Þ,

where the supremum is over ðx; sÞ 2 Rd �Nb.

Proof. From (17) we readily obtain

sup
t;s
jdn;tðsÞj ¼ oPð1Þ.

Hence from Lemma A.3 we conclude that

sup
x
jW nðx; sÞ �W nðx; 0Þj ¼ oPð1Þ; s 2 Nb.

To complete the proof, because the compactness of Nb, it suffices to show that 8a40;
9d40 and n0o1; such that 8s 2 Nb

Pr sup
x2Rd ;jr sjpd

jDnðx; rÞ �Dnðx; sÞj4a

 !
pa; n4n0, (19)

where Dnðx; rÞ :¼W nðx; rÞ �W nðx; 0Þ. Write Dn;2ðx; s; rÞ :¼Dnðx; rÞ �Dnðx; sÞ.
Now fix an Z40; s 2 Nb and a d40. Let Dn;t :¼ n 1=2ðdj _gðIt;n; y0Þj þ 2bZÞ and

An :¼ sup
r2Nb;jr sjpd

jdn;tðrÞ � dn;tðsÞjpDn;t; 1ptpn

( )
.

From (A4), it follows that

PrðAnÞX1� Z; n4n1. (20)

Next, define, for x 2 Rd ; a 2 R

Dn;3ðx; s; aÞ :¼ n 1=2
Xn

t 1

f1ð�n;tpvþ dn;tðsÞ þ aDn;tÞ

� Fy0;In;tðvþ dn;tðsÞ þ aDn;tÞg1ðIn;tpuÞ.

By definition and from (17), dn;tðsÞ þ aDn;t is Fn;t-measurable with

max
1ptpn

jdn;tðsÞ þ aDn;tj ¼ oPð1Þ.

Therefore an application of Lemma A.3 yields that

sup
x
jDn;3ðx; s; aÞ �Dn;3ðx; s; 0Þj ¼ oPð1Þ; a 2 R. (21)
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Now, using the monotonicity of the indicator function and the cdf F y0;In;t ; we obtain, that

on An; 8r 2 Nb; jr� sjpd,

jDn;2ðx; s; rÞjpjDn;3ðx; s; 1Þ �Dn;3ðx; s; 0Þj þ jDn;3ðx; s;�1Þ �Dn;3ðx; s; 0Þj

þ n�1=2
Xn

t 1

fF y0;In;t ðvþ dn;tðsÞ þ Dn;tÞ

�����
� Fy0;In;t ðvþ dn;tðsÞ � Dn;tÞg1ðIn;tpuÞ

�����.
By (A3) the last term in this upper bound is no larger than

Cn�1
Xn

t 1

ðdj _gðIt;n; y0Þj þ 2bZÞ1ðIn;tpuÞ,

which, in view of (18), can be made smaller than a with an arbitrary large probability for
sufficiently large n by the choice of d and Z. This together with (20) and (21) completes the
proof of (19) and hence that of the theorem. &

Proof of Theorems 2 and 3. Define b�t :¼ �tðynÞ and �t :¼ �tðy0Þ and write

Sn;yn
ðu; vÞ ¼ n�1=2

Xn

t 1

wy0 ðvÞ1ðItpuÞ þ n�1=2
Xn

t 1

fwyn
ðvÞ � wy0ðvÞg1ðI tpuÞ

:¼Sn;y0ðu; vÞ þ S2n;yn
ðu; vÞ,

where

S2n;yn
ðu; vÞ ¼ n�1=2

Xn

t 1

fwyn
ðvÞ � wy0 ðvÞg1ðI tpuÞ :¼Dn1ðxÞ �Dn2ðxÞ þDn3ðxÞ,

with

Dn1ðxÞ ¼ n�1=2
Xn

t 1

f1ðb�tpvÞ � 1ð�tpvÞ � Fy0;In;t ðvþb�t � �tÞ þ Fy0;In;t ðvÞg1ðI tpuÞ,

Dn2ðxÞ ¼ n�1=2
Xn

t 1

f1ð�b�tpvÞ � 1ð��tpvÞ � Fy0;In;t ðv�b�t þ �tÞ þ F y0;In;t ðvÞg1ðI tpuÞ

and

Dn3ðxÞ ¼ n�1=2
Xn

t 1

fF y0;In;t ðv�b�t þ �tÞ � Fy0;In;t ðvþb�t � �tÞg1ðItpuÞ.

From Lemma A.4 we have that

sup
x2Rd

jDnjðxÞj ¼ oPð1Þ; j ¼ 1; 2.

Whereas, from (A3) and the Glivenko Cantelli’s Theorem

sup
x2Rd

jDn3ðxÞ þ 2 n
p
ðyn � y0Þry0 ðxÞj ¼ oPð1Þ.
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As for Sn;y0 ðu; vÞ, the weak convergence follows from our Theorem A.1. This proves

Theorems 2 and 3. &

Proof of Theorem 4. First, note that under the local alternatives (11)

EðotðvÞjItÞ ¼ D1
y0ðI t; vÞ � D1

y0ðI t;1Þ þ D1
y0 ðI t;�vÞ :¼AtðvÞ,

where

D1
y0 ðI t; vÞ ¼

Z v

�1

f y0ðv̄jI tÞhy0ðI t; v̄Þdv̄.

Then, we write

Sn;yn
ðu; vÞ ¼ n�1=2

X
t 1

n

wtðvÞ �
AtðvÞ

n1=2
þ wt;yn

ðvÞ � wtðvÞ þ
AtðvÞ

n1=2

	 

1ðI tpuÞ

:¼eSn;y0 ðu; vÞ þ A1 þ A2, ð22Þ

with wt;yn
ðvÞ ¼ 1f�tðynÞpvg � 1f��tðynÞpvg,

eSn;y0 ðu; vÞ ¼ n�1=2
X
t 1

n

wtðvÞ �
AtðvÞ

n1=2

	 

1ðI tpuÞ,

A1 ¼ n�1=2
X
t 1

n

fwt;yn
ðvÞ � wtðvÞg1ðI tpuÞ

and

A2 ¼ n�1
X
t 1

n

AtðvÞ1ðItpuÞ.

Arguing as in Theorem 3, we obtain

jA1 þ 2 n
p
ðyn � y0Þry0ðxÞj ¼ oPð1Þ

uniformly in x 2 Rd . On the other hand, by the Ergodic Theorem, uniformly in x 2 Rd

jA2 � E½A1ðvÞ1ðI1puÞ�j ¼ oPð1Þ.

As for eSn;y0 ; because fwtðvÞ � n�1=2AtðvÞg1ðI tpuÞ is a zero mean square-integrable
martingale difference sequence with respect to Ft, for each x 2 Rd ; we can use our
Theorem A.1 to conclude that

eSn;y0 ¼) S1.

Using the preceding equations and (22), the theorem holds by (A6). &

Proof of Theorem 5. We need to show that the process S�n;y�n (conditionally on the sample)
has the same asymptotic finite-dimensional distributions that the process Sn;yn

; with y1
replacing y0; and that S�n;y�n is asymptotically tight, both with probability one. Let us denote
w�t;y�n
ðvÞ ¼ f1ð��t ðy

�
nÞpvÞ � 1ð���t ðy

�
nÞpvÞg and w�t;yn

ðvÞ ¼ f1ð��t ðynÞpvÞ � 1ð���t ðynÞpvÞg;

27



where e�t ðynÞ ¼ etðynÞV t. Then, write similarly to Theorem 3
S�n;y�n
¼ n 1=2

X
t 1

n

w�t;yn
ðvÞ1ðItpuÞ þ n 1=2

X
t 1

n

fw�t;y�n
ðvÞ � w�t;yn

ðvÞg1ðI t 1pxÞ

:¼S�1n;yn
ðu; vÞ þ S�2n;yn

ðu; vÞ.

First, we prove

S�1n;yn
!d

eS1 a:s.

To this end, we need to show that the finite-dimensional distributions of S�1n;yn
converge

(conditional on the original sample) to those of eS1 a.s. for all samples. Let us consider a
finite set of points of Rd ; x1 ¼ ðu

0
1; v1Þ

0; . . . ;xr ¼ ðu
0
1; v1Þ

0 and a real vector l ¼ ðl1; . . . ; lrÞ
0

with jlj ¼ 1. Define

Z�n;r ¼ n 1=2
X
t 1

n X
j 1

r

ljw
�
t;yn
ðvjÞ1ðItpujÞ :¼

Xn

t 1

zrn
nt ,

where zrn
nt is implicitly defined. Then, noting that conditional on the original data, zrn

nt is an
independent (not identically distributed) array of random variables,

E�
Xn

t 1

zr�
nt

 !
¼
Xn

t 1

n 1=2
X
j 1

r

ljE
�ðw�t;yn

ðvjÞÞ1ðItpujÞ ¼ 0,

while

V�
Xn

t 1

zrn
nt

 !
¼
Xn

t 1

V�ðzrn
nt Þ

¼
X
j 1

r X
h 1

r

ljlh n 1
Xn

t 1

wt;yn
ðvjÞwt;yn

ðvhÞ1ðItpujÞ1ðItpuhÞ

 !
:¼es2n;r.

By (A7(d)) es2h;r�!s2h;r a.s., where s2h;r is the variance associated to eS1. Then, it is easy to
show that for some positive constants d

Xn

t 1

E�½jzrn
nt j

21ðjzrn
nt j4dÞ�

converges almost surely to zero, see Stute et al. (1998, p. 149). Then the triangular array
fzrn

nt g satisfies the conditions of the Lindeberg–Feller’s CLT, conditionally on almost all
samples, so that

Pn
t 1 z

r�
nt¼)nNð0;s2h;rÞ a.s. Next, the asymptotic uniform equicontinuity

almost sure in all samples follows from Theorem 2.11.9 in van der Vaart and Wellner
(1996) or from our Theorem A.1.

As for S�2n;yn
;

S�2n;yn
ðu; vÞ ¼ D�n1ðxÞ �D�n2ðxÞ þD�n3ðxÞ,
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with
D�n1ðxÞ ¼ n 1=2
Xn

t 1

f1ð��t ðy
�
nÞpvÞ � 1ð��t ðynÞpvÞ � Fyn;In;t ðvþ �

�
t ðy
�
nÞ � �

�
t ðynÞÞ

þ Fyn;In;t ðvÞg1ðI tpuÞ,

D�n2ðxÞ ¼ n 1=2
Xn

t 1

f1ð���t ðy
�
nÞpvÞ � 1ð���t ðynÞpvÞ � F yn;In;t ðv� �

�
t ðy
�
nÞ þ �

�
t ðynÞÞ

þ Fyn;In;t ðvÞg1ðI tpuÞ

and

D�n3ðxÞ ¼ n 1=2
Xn

t 1

fFyn;In;t ðv� �
�
t ðy
�
nÞ þ �

�
t ðynÞÞ � Fyn;In;t ðvþ �

�
t ðy
�
nÞ � �

�
t ðynÞÞg1ðItpuÞ.

A similar argument to Lemma A.4 yields that

sup
x2Rd

jD�njðxÞj ¼ oPð1Þ a.s.; j ¼ 1; 2.

Whereas, from the (A3) and the Glivenko Cantelli’s Theorem

sup
x2Rd

jD�n3ðxÞ þ 2 n
p
ðy�n � ynÞrynðxÞj ¼ oPð1Þ a.s.

The theorem follows from (A7). &
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