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Abstract 
In this paper we study a two stage contest where the strength of players in the second stage depends 
on the result of the contest in the first stage. We show that this contest displays properties that are not 
present in one shot contests. Non-symmetric players make different efforts in the first stage and rent 
dissipation in the first period may be large. We study the conditions under which the discouragement 
effect holds. In addition, new issues emerge like the evolution of the strengths and the shares of the 
prize during the game. 
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1. Introduction

The theory of contests analyzes situations in which several contenders expend e¤ort to win a prize.

The theory developed from the initial papers by Tullock (1967), Krueger (1974) and Becker (1984),

see also Hirshleifer (1991), assumed in the main that the e¤ort of di¤erent players had an identical

impact in the contest. We will refer to this impact as the strength of a player. Static models

in which players have di¤erent strengths were considered by Hillman and Riley (1989), Gradstein

(1995), Corchón (2000) and Cornes and Hartley (2005).

Dynamic contests have been studied in a number of papers focussing on in�nite horizon models

(Cairns, 1989; Wirl, 1994; Leininger and Chun-Lei, 1994; and McBride and Skaperdas, 2007), two

period models of war and settlement (Skaperdas and Syropoulos, 1996; Skaperdas and Gar�nkel,

2000) and models in which players have to win a number of contests in order to win a grand contest

(Konrad and Kovenock, 2009; see also the surveys of Konrad, 2009, Chpt. 8, and Konrad, 2010).

All these papers assume that the strength of players does not vary during the contest.

In this paper we present a two period, two players contest in which the strength of players is

endogenous. We assume that the strength of a player in the second period depends on the result

of the contest in the �rst period. Think of a war composed of two battles where the outcome

of the �rst battle determines the strength of players in the second battle. This is a general idea

that we want to explore in a particular setting in which the strength of contenders in the second

period depends on the share of the prize obtained in the �rst period (we assume that the prize is

divisible). This assumption captures situations such as wars in which the strength of a country

depends on the fraction of the territory owned by this country. Another example might be the cold

war between the USSR and the US in which the relative strength of each side could be measured

by the territories (or the population) under its control.

The model is spelled out in Section 2. We assume that the transition function is a concave

contraction and costs are linear on e¤ort. The contest success function (CSF) is assumed to be of

a generalized Tullock form in which the e¤orts of players are raised to an number between zero and

one and the resultant numbers are weighted by their strengths. We assume that the only source of

asymmetry between players is their strength. This assumption is made in order to focus our study

on the impact of initial strength on the equilibrium outcome of the game.

In Section 3 we prove the existence of a Subgame Perfect Nash Equilibrium (Proposition 1).
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This equilibrium displays features di¤erent from those in one shot models: Non-symmetric players

make di¤erent e¤orts in the �rst period and, consequently, the share of the prize in the hands

of a player in the �rst period does not equal her relative strength. We also prove that when the

exponent of e¤ort is one and the transition function is linear the equilibrium is unique (Proposition

2). These two assumptions will be maintained in the rest of the paper.

In Section 4 we explore the properties of equilibrium. We �rst prove some properties of equi-

librium e¤orts with respect to the initial relative strength of player 1. We show that the e¤ort of

a player is a mirror image of the e¤ort of the other player (since the only source of asymmetry

is the relative strength) and that the player with the largest relative strength makes the larger

e¤ort (Proposition 3). The latter is not true in one shot games with two players and Tullock CSF.

Relative strengths count here because the second period creates di¤erent incentives for players with

di¤erent relative strengths. We show that the ratio of the e¤ort of player 1 with respect to player 2

in period 1 is increasing in the relative strength of player 1 (Proposition 4). Thus, when the e¤ort

in the �rst period is also an investment for the second period, the stronger player makes more e¤ort

in both absolute and relative terms than the weaker player.

The previous properties prompt us to compare the e¤ort made in the �rst period of our game

with the e¤ort made if the game were one shot. This has been studied in several papers and

discussed in Konrad (2010). In many cases, multi-stage contests involve a "discouragement e¤ect"

in which weak players make less e¤ort in early stages than they would if the contest were one

shot. We �nd that the discouragement e¤ect also holds in our framework when the weak player

is su¢ ciently weak (Proposition 5). But it does not always hold. Even if a player is three times

stronger than the other the latter makes more e¤ort than in a one shot game. This is because in

our framework agents receive a prize in each period and not only at the end of the grand contest.

Next we study the trajectory of relative strengths during the game. Clearly, the relative strength

of a player in the second period is an increasing function of the relative strength of this player at

the start of the game. When the link between periods is strong (no discount and the strength in the

second period equals the share in the prize in the �rst period) an initially strong (resp. weak) player

will be even stronger (weaker) in the second period. We call this the "avalanche e¤ect" because the

initial advantage of a player is ampli�ed later on. However when the link between periods is not

strong the avalanche e¤ect only occurs when initial strengths are similar. When initial strengths
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are unequal the relative strength of the strong player decreases in the second period. We call this

the "level-o¤" e¤ect. It is caused by an increase in the relative e¤ort of the weak player. When

the link between periods is weak the avalanche e¤ect disappears, so in the second period relative

strengths are levelled o¤with respect to what they were in the �rst period. The range of parameters

for which both e¤ects occur is characterized in Proposition 6.1

Finally we study rent dissipation. We show that only when players have identical initial

strengths and the link between periods is the strongest, rents are completely dissipated (Proposi-

tion 7). When players are very similar and the link between periods is strong, there is more rent

dissipation in the two stage game than in the one shot game (Proposition 8). But rent dissipation

is not monotonic with the link between periods; thus weak links can be associated with more rent

dissipation than strong links. This is due to the discouragement e¤ect.

Finally Section 5 o¤ers our closing comments.

Our paper is related to the literature providing foundations to CSF. In some papers the CSF

is determined by a planner. We do not review this literature but note that the closest papers to

ours in terms of goals are by Nti (2004) and Franke et alia (2009) who look for the optimal weights

of a given CSF. In other papers the CSF is not determined by a planner. We call these situations

con�icts. Fearon (1996) (see also Leventoglu and Slantchev, 2007) presented a model in which the

bargaining power is endogenous and determined by the size of the territory and the threat of a war

in which one of the countries would disappear. In our model there is neither bargaining nor �nal

war but a protracted con�ict like in the multi-batle models mentioned before.

The closest paper to ours is by Klumpp and Polborn (2006). In their model, candidates to

o¢ ce have to win a certain number of elections in order to win the grand contest. They show that

the outcome of the �rst election creates an asymmetry in later rounds which might be decisive for

the grand contest. Thus they provide an explanation based on rational agents for the "momentum

e¤ect" which is the tendency of early winners in preliminary contests to win the grand contest.

The main di¤erence with our paper is that the prize is obtained at the end of the grand con�ict

and that the strengths of players is exogenous. In their case the expected value of the prize at each

moment is the variable which changes as the game is unfolding.

1We also study the trajectory of the share of the prize in the hands of player 1.
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2. The Model

2.1. Players and payo¤s

Two players, i 2 f1; 2g; �ght for a divisible prize in two periods, t 2 f1; 2g. Each player ends each

period with a fraction pti of the prize. The value of the prize for each player in each period is V .

The interpretation is that the resource under con�ict produces a certain surplus each period that

can be expropriated by the owner (harvest, money, slave population, human capital, etc.) and that

this surplus does not depend on the intensity of con�ict.

Player i makes an e¤ort eti in period t. We assume that the marginal cost of e¤ort is constant

and equal to 1: Payo¤s in period t are denoted by �ti and equal p
t
iV � eti i = 1; 2. Payo¤s for the

whole game are
P2
t=1 �

t�1�ti � �i where � 2 [0; 1] is the discount rate of the players.

Players have relative strengths which determine the impact of their e¤ort. We denote by

�t 2 [0; 1] the relative strength of player 1 at t; and by 1 � �t the relative strength of player

2 at t: The contest success function (CSF) maps e¤orts and strengths in a period into the fraction

of the price owned by the players in this period. Let p (resp. 1 � p) be the fraction obtained by

player 1 (resp. 2). We assume the CSF takes the asymmetric general Tullock (1980) form:

pt =
�t
�
et1
�


�t (et1)


+ (1� �t) (et2)


 if e
t
1 + e

t
2 > 0; pt = �t otherwise: (2.1)

1� pt =
(1� �t)

�
et2
�


�t (et1)


+ (1� �t) (et2)


 if e
t
1 + e

t
2 > 0; 1� pt = 1� �t otherwise: (2.2)

Thus, e¤orts and relative strength enter multiplicatively in the CSF. Think of the relative strength

as capital (social or physical) or territory and of �t
�
eti
�
as the (Cobb-Douglas) production function

of the in�uence of player i in the contest. Thus in�uence in the contest is produced by capital and

labor. The parameter 
 measures the sensitivity of the probability of winning to the e¤orts. When


 = 0, the outcome of the contest is independent of e¤orts. When 
 = 1, the CSF is proportional. It

seems reasonable to require that the CSF is homogeneous of degree zero, so winning probabilities do

not depend on how resources are measured (euros or dollars, thousands or millions of soldiers, etc.).

Clark and Riis (1998), following Skaperdas (1996), have shown that under certain assumptions the

only functional form that is homogeneous of degree zero is precisely the one above.

Finally, note that the only source of asymmetry among players in payo¤s and strategies comes

from relative strength in period one which is exogenously given.
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2.2. The transition function

The relative strength of player 1 changes from period one to period two according to the following

transition function:

�t = f(pt�1); (2.3)

where f : [0; 1]! [0; 1] ful�ls the following properties:

i) f(1=2) = 1=2;

ii) f(p) � p if p � 1=2; f(p) � p if p � 1=2; for all p 2 [0; 1];

iii) 0 < f 0(p) � 1; f 00(p) � 0; for all p 2 [0; 1]:

Properties i) and ii) re�ect the symmetry of the transition function. This plus the assumptions

made in the previous subsection allows us to identify � as the unique source of asymmetry in our

model. Thus, the impact of initial strength on e¤orts will be the main theme of this paper. In

order to motivate ii) and iii) consider the following example of a linear transition function:

f(pt�1) = apt�1 + b; with 0 < a � 1; a = 1� 2b; b � 0; (2.4)

where a measures the importance of the share of the resource in the previous period and b the

strength of country 1 which does not depend on the share. Since a > 0 the ownership of the

resource contributes positively to the relative strength, i.e. more people to draft or more/better

sources of food, money, etc. The condition a = 1 � 2b makes p and 1 � p symmetric because the

strength for player 2 evolves according to

1� �t = 1� apt�1 � b = a(1� pt�1) + 1� a� b: (2.5)

It seems natural to assume that even if a country has a zero share in the resource it has a non-

negative relative strength. Thus,

b � 0 and 1 � a+ b: (2.6)

It is also natural to assume that the relative strength of a country is not maximal when it owns

zero of the resource. Thus

b � 1 and b+ a � 0: (2.7)

Conditions (2.6) and (2.7) imply a 2 [0; 1] which corresponds to f(p) � p if p � 1=2 (and the

symmetric property when p < 1=2), f 0(p) � 1; f 00(p) � 0:

6



3. Equilibrium

We look for a Subgame Perfect Nash Equilibrium of the game described in the previous section.

Since there are only two periods, the game is solved backwards.

In what follows and in order to simplify notation we will denote with prime the variables in the

second period and without prime the variables in the �rst period.

In the second period, since the game ends, players play the one shot Nash equilibrium. Thus,

e01 = e
0
2 = 
(1� �0)�0V; (3.1)

and the fraction of the price that agent 1 gets in the second period is given by:

p0 = �0 = f(p): (3.2)

Payo¤s in the second period, given (3.2), are:

�01 = f(p)V � 
f(p)(1� f(p))V = (3.3)

= f(p)V (1� 
(1� f(p))): (3.4)

�02 = (1� f(p))V � 
f(p)(1� f(p))V = (3.5)

= (1� f(p))V (1� 
f(p)): (3.6)

In the �rst period, each player solves:

max
e1
pV � e1 + �f(p)V (1� 
(1� f(p))) (3.7)

max
e2
(1� p)V � e2 + �(1� f(p))V (1� 
f(p)) (3.8)

First order conditions of payo¤ maximization for both players are:

@p

@e1
V
�
1 + �f 0(p)(1� 
 + 2
f(p))

�
= 1; (3.9)

� @p
@e2

V [1 + �f 0(p)(1 + 
 � 2
f(p))] = 1: (3.10)

In the Appendix we show that the second order conditions of payo¤ maximization are ful�lled.

Note �rst that p is as a function of relative e¤orts and relative strengths. Let x = e1=e2: And let

h1(�; �) and h2(�; �) be de�ned as follows

h1(x; �) = 1 + �f
0(p)(1� 
 + 2
f(p)); (3.11)
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h2(x; �) = 1 + �f
0(p)(1 + 
 � 2
f(p)): (3.12)

Thus, the �rst order conditions can be rewritten as:


�(1� �)e
�11 e
2
(�e
1 + (1� �)e



2)
2
V h1(x; �) = 1; (3.13)


�(1� �)e
1e

�1
2

(�e
1 + (1� �)e


2)
2
V h2(x; �) = 1: (3.14)

Thus,

e2h1(x; �) = e1h2(x; �): (3.15)

Dividing the above equation by e2 we get:

h1(x; �)� xh2(x; �) = 0: (3.16)

We show in the Appendix that the above equation has a solution. Let x = x(�) be one of the

solutions of this equation. Thus, from equation (3.13) we get that

e1(�) =

�(1� �)(x(�))


(�(x(�))
 + (1� �))2V h1(x(�); �); (3.17)

e2(�) =

�(1� �)(x(�))
�1
(�(x(�))
 + (1� �))2V h1(x(�); �): (3.18)

which are the equilibrium e¤orts. Thus we have shown,

Proposition 1. A Subgame Perfect Nash Equilibrium exists.

Note that periods are linked by the discount rate � and the the transition function. When �

is zero, or the transition function is constant, this link is severed and our equilibrium is just the

one shot equilibrium. This is seen from (3.11) and (3.12) because then h1(x; �) = h2(x; �) = 1 so

x(�) = 1 and e¤orts in (3.17) and (3.18) collapse in the one shot equilibrium values which are

eos1 (�) = e
os
2 (�) = 
�(1� �)V: (3.19)

Even if the strength of players is di¤erent, the e¤ort made in equilibrium in the one shot game

is the same for both players. This property holds as long as there are two players with identical

valuations and the CSF is homogeneous of degree zero (Corchón 2000). In our two stage game this
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property does not hold in the �rst period, re�ecting the di¤erent strategic opportunities for both

players in the continuation game.

In general, we can not guarantee uniqueness of equilibrium. Uniqueness is obtained if the

transition function is linear and the contest success function is proportional to weighted e¤orts. We

formally state this in the following proposition. The proof is in the Appendix.

Proposition 2. If 
 = 1 and f(p) is linear, there exist a unique Subgame Perfect Nash Equilibrium.

To close this section, note that in the case described in Proposition 2, plugging (3.17) and (3.18)

in (2.1) we obtain that the fraction of the resource owned by player 1 in period 1 is

p(�) =
�x(�)

�x(�) + 1� �: (3.20)

It is easy to show that since x(�) is increasing (see Proposition 4 below) p(�) is increasing. So, as in

the one shot game -where p(�) = �- the fraction of resources owned by player 1 in period 1 depends

positively on the initial strength (as intuition suggests), though in a more complicated way.

Finally, notice that V does not a¤ect the equilibrium distribution of the prize between players

in both periods. This also happens in the one shot game.

In what follows we restrict the analysis of the properties of equilibrium to the special case de-

scribed in Proposition 2. This assures uniqueness of equilibrium which seems a sensible requirement

when exploring the properties of equilibrium.

4. Properties of equilibrium

4.1. Preliminary properties

We �rst state and prove some properties of equilibrium e¤orts that will be useful later on. We will

see that some of these properties di¤er from the corresponding properties in a one shot game. All

the proofs are gathered in the Appendix.

Proposition 3. The equilibrium e¤orts in the �rst period satisfy the following:

(i) e2(�) = e1(1� �);

(ii) e1(�) = e2(�) for � = 1=2; � = 0; � = 1;

(iii) e1(�) > e2(�) if and only if � > 1=2:

9



Proposition 3 says that individual e¤orts display symmetry properties inherited from the sym-

metry of the basic data of the problem. Part (i) says that the e¤ort of player 1 is the mirror image

of the e¤ort of player 2 when her relative strength � is substituted by 1 � �. Part (ii) says that

the e¤ort of both players are identical either when they have the same relative strength (� = 1=2)

or when one of them has zero strength. Part (iii) says that the player with larger strength makes

larger e¤ort. Notice that this is not true in the one shot game, so this fact is explained by the

existence of a second period.

The next result studies the ratio of e¤orts.

Proposition 4. The ratio of the equilibrium e¤orts in the �rst period, x(�); is increasing in �.

Proposition 4 says that relative e¤orts are increasing with relative strength. Thus, the strong

player makes more e¤ort in the �rst period than the weaker player, which leaves her in better shape

for the con�ict in the second period. This contrasts with the one shot game where x(�) = 1 for all

� 2 [0; 1].

4.2. The Discouragement e¤ect

We now address the question of when agents make more e¤ort in our two stage game than in the

one shot game. We start by considering the following example.

Example 1. Suppose that a = 1; b = 0 and V = 10. In this case we obtain a closed form solution

for e¤orts and x, namely

x(�) =
2�� 2� + 4�� � 1 +

p
4� + 4�2 + 16�2�2 � 16�� � 16��2 + 16�2� + 1

2�
: (4.1)

In Figure 1 below we show the e¤ort in the �rst period for both players as a function of �: We

draw the case of � = 1: The solid line corresponds to player 1 and the dashed line to player 2: Note

the symmetry of the two lines, as proved in 3 part i). The dotted line corresponds to the e¤ort of

each player in the one shot game.
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When the strength of a player is very large or very small, this player exerts little e¤ort. This is

because the outcome of the contest is very biased on -or against- her. When the contest is "fair"

in the sense that similar e¤orts have similar impacts on the contests, e¤orts are larger.

We can see the e¤ect of introducing a second period. If a player has little strength (approximately

less than .3 in the �gure for player 1) she is discouraged by the existence of a second period in

the sense of exerting less e¤ort in the two-period game than in the one period game. However, for

larger values of strength, the existence of a second period encourages players to exercise more e¤ort

than in the one period game.

The example above exhibits a "discouragement e¤ect" which is when weak players "reduce their

incentives to expend e¤ort in early rounds," (Konrad and Kovenock, 2010, p. 95 see the references

there for earlier analysis of this e¤ect and Konrad (2009, pp. 189-191) for a survey). This e¤ect

runs counter to the intuition that in a multiperiod game, players exert more e¤ort than in a single

period game because each period adds more return to the e¤ort and thus incentives to expend more

e¤ort are enhanced by the existence of additional periods. This intuition is correct when �rst order

conditions of payo¤ maximization are una¤ected by the e¤ort of other players. But when this is

not the case the situation might be reversed. The next Proposition analyzes this e¤ect for player

1. The analysis for player 2 would be totally symmetric.
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Proposition 5. If a; � > 0; there exist �� 2 (0; 1=2) such that for all � 2 (0; ��); the equilibrium

e¤ort of player 1 in period 1 is smaller than the equilibrium e¤ort in the one shot game.

This result says that the discouragement e¤ect happens when one of the players is su¢ ciently

weak. But as Figure 1 makes clear, even for reasonably low values of the strength of the weak

player, say � = 1=3, the discouragement e¤ect does not hold.

The discouragement e¤ect is less and less severe as a or � becomes smaller. In the limit case

(a = 0 or � = 0) the e¤ect disappears because the equilibrium values of e¤orts collapse in the

value corresponding to the one shot equilibrium. In Figure 2 we represent the e¤ort of player 1 for

di¤erent values of a and � = 1. The solid line corresponds to a = 1; the dashed line corresponds

to a = 0:8; and the dotted line corresponds to the one shot game which is equal to a = 0: Similar

e¤ects are obtained when � decreases.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0
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4

5

6

Strength

Effort

Figure 2

4.3. Avalanches or level o¤?

The second question that we address is the trajectory of strengths. Since �0 is increasing in p which

in turn is increasing in �, it follows that �0 is increasing in �. But this does not imply anything

about whether � ? �0. 2
2Clearly, if � = 1=2, �0 = 1=2 too.
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A possibility is that when player 1 is initially strong (� > 1=2) she will be even stronger in the

second period (�0 > �). We call this situation the avalanche e¤ect of the second period because the

strength of strong (resp. weak) players is ampli�ed.3 We see that this is the case when a = � = 1

and b = 0: This follows from the fact that �0 = �x=(�x+1��) is increasing in x and for � > 1=2;

x > 1: This is represented in Figure 3 below by a sinusoid solid line. The straight solid line is the

450 line.

But when a = 0:8; � = 1 and b = 0:1 -represented in Figure 3 by the dotted line- this line

intersects the 450 line in three points. From 1=2 to the intersection to the right of 1=2 (or from the

intersection to the left of 1=2 to zero) the avalanche e¤ect still holds. However for � close to one,

�0 < � and for � close to zero �0 > �. Thus the existence of a second period levels o¤ relative

strengths.

Finally, the dashed line in Figure 3 represents the case a = 0:5; � = 1 and b = 0:25. In this case

the avalanche e¤ect disappears completely and starting from any position the relative strength of

players is levelled o¤ in the second period.

In fact these three cases exhaust all the possibilities that might arise in our framework. This is

shown in the next proposition where the case a) corresponds to the solid line, the case b) corresponds

to the dotted line and the case c) corresponds to the dashed line in Figure 3.
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alpha
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Figure 3
3This e¤ect has consequences similar to the momentum e¤ect in Klumpp and Polborn (2006). But the momentum

e¤ect operates through the value of the prize and the avalanche e¤ect through the strength of players.
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Proposition 6. a) If b = 0 there is an avalanche e¤ect for all � 2 [0; 1] n f1=2g.

b) If 0 < b < 1=4 and � > 2b=(1 � 2b)(1 � 4b); there exist �� < 1=2 (resp. �̂ > 1=2) such that for

all � 2 (0; ��) (resp. � 2 (�̂; 1)) there is a level-o¤ e¤ect. For all � 2 (��; 1=2) (resp. � 2 (1=2; �̂))

there is an avalanche e¤ect:

c) If 0 < b < 1=4 and � < 2b=(1� 2b)(1� 4b); or if b � 1=4 and � 2 [0; 1] there is a level-o¤ e¤ect

for all � 2 [0; 1] except, possibly, for two isolated values of �:

The condition � > 2b=(1� 2b)(1� 4b) and b < 1=4 is equivalent to d�0=d� > 1 at � = 1=2. In

this case the curve relating � and �0 crosses the 45o from below like the solid line (where d�0=d� = 2

at � = 1=2) and the dotted line (where d�0=d� = 1: 241 4 at � = 1=2) in Figure 3. Finally, the

conditions b < 1=4; and � < 2b=(1� 2b)(1� 4b); or b � 1=4 and � 2 [0; 1] implies that d�0=d� < 1

at � = 1=2 like the dashed line in Figure 3 (where d�0=d� = 0:6 at � = 1=2).

4.4. The domino e¤ect

The third question that we address is the trajectory of the share of the prize in the hands of player

1. This share summarizes the equilibrium outcome of our game. One would expect that this share

follows the behavior of �. We see that this is not the case.

Following the ideas introduced in the previous subsection consider the possibility that when

player 1 is having initially more than half of the prize (p > 1=2) she will have even a larger share in

the second period (p0 > p). We call this situation the domino e¤ect of the second period because

the initial share of a strong (resp. weak) player is ampli�ed later on in the game. Notice that

p0 = ap+ b = (1� 2b)p+ b: (4.2)

Rearranging (4.2) we obtain

p0 � p = b(1� 2p): (4.3)

Thus we have two cases. In the extreme case in which only the outcome in the �rst period is

relevant to determine the strength next period (i.e. b = 0), p0 = p so shares are invariant in time.

In any other case, b > 0 and p > 1=2 implies p0 < p, irrespective of whether there is an avalanche

or a level o¤ e¤ect. This suggests that protracted con�icts tend to end up in an impasse in which

players have to spend resources period after period in order to maintain their position. Examples

like the Roman empire vs. Germanic tribes or vs. the Persian Empire, the �rst World War (until
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the entry of US in the con�ict) or the cold war come to our mind. However, a full proof of this

conjecture would take a model with several periods which is not attempted here. We do not enter

in the discussion of what kind of modelling is preferable, a two stage model or an in�nite horizon

model. For an enthusiastic defense of the former see Shapiro (1989).

4.5. Rent Dissipation

Our �nal question is the impact of the second period on the rent dissipation in the �rst period. In

the second period since e¤orts equal those in a one shot game rent dissipation is like in a one shot

game.

Total e¤ort in the �rst period amounts to

�(1� �)x(�)
(�x(�) + (1� �))2V h1(x(�); �) +

�(1� �)
(�x(�) + (1� �))2V h1(x(�); �): (4.4)

Since in equilibrium h1(x(�); �) = x(�)h2(x(�); �); and h1(x(�); �)+h2(x(�); �) = 2(1+�a); (4.4)

can be written as:
�(1� �)x(�)2(1 + �a)V
(�x(�) + (1� �))2 : (4.5)

Call this function B(�; d; x) where d � �a: We now study the maxima of B() with respect to �; d

and x. Given that B() does not take into account the dependence of x with respect to the other

variables, the maxima of B() is always larger or equal than the maximum amount of e¤ort. We see

immediately that B() is increasing in d so in the maximum d = 1 (which implies that a = � = 1).

We also see that the maximum with respect to � cannot be at the boundaries of [0; 1] because

there, the function takes the value 0. Also, the maximum cannot be at either x = 0 (where the

function takes the value 0) or at an arbitrarily large value of x where the function takes a value

arbitrarily close to 0. Thus the maximum with respect to � and x must be interior. Computing

@B(�; d; x)

@�
= 0 yields � =

1

x+ 1
(4.6)

@B(�; d; x)

@x
= 0 yields x =

1� �
�

: (4.7)

Equations (4.6) and (4.7) are identical so there is a continuum of solutions. We now introduce the

fact that x is increasing in � and it is always positive. Thus 1=(x(�) + 1) is decreasing in � and

strictly positive. So (4.6) has a unique solution. Nothe that for � = 1=2; x(�) = 1; and this is

always a solution of (4.6). So, this must be the unique solution. We have proved the following.
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Proposition 7. Rents are completely dissipated i¤ � = 1=2, � = a = 1.

The previous result calls for a comparison of the rent dissipation in our game and in the one

shot game. In the latter total e¤orts are

2�(1� �)V: (4.8)

In this case, rents are never completely dissipated. Thus we have the following

Proposition 8. For � close to 1=2 and � and a close to 1, there is more rent dissipation in the

two stage game than in the one shot game.

The result follows from the fact that the correspondence mapping �, � and a into e¤orts has a

closed graph in (0; 1)� [0; 1]� [0; 1]. Since this correspondence is a function (because equilibrium

is unique) this function is continuous and the result follows.4

Thus, when the link between periods is stronger (no discount and strengths are derived directly

from the share in the �rst period) competition among agents dissipates the prize entirely. In this

case competition is tougher because to the e¤ect of �ghting for the price in the �rst period, we

have to add the e¤ect of maintaining relative strengths in the second period. Clearly, as strength

in the second period depends less on e¤ort in the �rst period, this second e¤ect vanishes. In Figure

5 we show how total e¤ort in the �rst period changes with a for the case of � = 1: The solid line

corresponds to a = 1; the dashed line corresponds to a = 0:5; and the dotted line corresponds to

a = 0. We note that, due to the discouragement e¤ect, in some cases, con�ict is less severe than in

the one shot game.

4Notice that this result cannot be obtained directly from the function B() since this function does not incorporate

the restriction that x = x(�).
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5. Final comments

In this paper we have developed a theory of endogenous strength. We assumed that the strength

in a period is a function of the fraction of the resource enjoyed by a player. We have found that

equilibrium displays some features di¤erent from the one shot game. In particular rents might

be completely dissipated in the �rst period and players with di¤erent strengths make di¤erent

e¤orts in the �rst period. Our model also di¤ers from other multi-contest models in which the

discouragement e¤ect is pervasive. Finally new issues appear like the avalanche/level-o¤ e¤ect and

the domino e¤ect.

In order to get a tractable model, we assume two players, two periods and a linear transition

function. The assumption that a � 1 plays also an important role in our proofs. Therefore, it

would be convenient to investigate a model in which a > 1 or in which the transition function is not

always increasing re�ecting that too much territory might be disadvantageous for strength. But

this is outside the scope of this paper. Here we try to make a �rst cut in the issue of the evolution

of strength when it depends on past outcomes. Our conclusions are, of course, tentative.

Our model does not pay attention to issues which play an important role in dynamic con�icts.

Among them we note the following two.

1. There are no resource constraints in the model. Consequently there are no bankruptcies.
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But the history of Europe has plenty of examples where con�ict was ended by bankruptcy: the

bankruptcy of 1607 which sealed the fate of the Spanish Ausburghs in their �ght against France,

the bankruptcy of France in 1788 -caused by the war with Great Britain- which paved the way for

the French revolution and the British dominance in the next hundred years, and the bankruptcy

of the USSR in the late eighties of the past century -caused by the military expenses- that led to

the collapse of the socialist block.

2. The role of chance. The importance of random events in con�icts cannot be underestimated.

Clausewitz (1832) devoted the seventh chapter of his book to highlighting the in�uence of "frictions"

on the outcome of war. Also there is a sizeable literature of contest in which the CSF arises as a

reduced form of the e¤ort of players and a random variable (Hillman and Riley 1989, Lazear and

Rosen 1981, Dixit 1987, Fullerton and McAfee 1999, Baye and Hoppe 2003 and Jia 2007). In our

case, a possible way to introduce random events would be by making the parameter b a random

variable.

We plan to study these aspects in the near future.

6. Appendix

6.1. Second order conditions

First we show that the second order conditions of pro�t maximization hold. Indeed,

@2�i
@e21

=
@2p

@e21
V [1 + �f 0(p)(1� 
 + 2
f(p))] + ( @p

@e1
)2V �2
(f 0(p))2 + (6.1)

+(
@p

@e1
)2V �f 00(p)(1� 
 + 2
f(p)): (6.2)

Note that,
@p

@e1
=


�(1� �)e
�11 e
2
(�e
1 + (1� �)e



2)
2
; (6.3)

which is positive, and

@2p

@e21
= � 
�(1� �)e
�21 e
2

(�e
1 + (1� �)e


2)
3
(e
2(1� �)(1� 
) + e



1�(1 + 
)); (6.4)

which is negative.

We show �rst that @2p=@e21 + 2(@p=@e1)
2 � 0: Note that @2p=@e21 + 2(@p=@e1)2 can be written as:


�(1� �)e
�21 e
2
(�e
1 + (1� �)e



2)
4
[2e
1e



2
�(1� �)� (e



2(1� �)(1� 
) + e



1�(1 + 
))(�e



1 + (1� �)e



2)]: (6.5)
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Note that the term in brackets can be rewritten as:

2e
1e


2�(1� �)(
 � 1)� e

2

2 (1� �)2(1� 
)� e

2

1 �

2(1 + 
); (6.6)

which is negative because 
 � 1: Thus, @2p=@e21 + 2(@p=@e1)2 � 0:

Note that since f 00(p) � 0; and 
 � 1; the last term in (6.1) is less or equal than zero. Since f 0(p) � 0;

and @2p=@e21 � 0; the �rst term is less or equal to V (@2p=@e21); and since f 0(p) � 1; � � 1; and 
 � 1;

@p=@e1 > 0; the second term is less or equal to 2V (@p=@e1)2: Finally, since @2p=@e21+2(@p=@e1)
2 � 0

we obtain that @2�i=@e21 � 0; as we wanted to show.

6.2. Existence of x(�)

Existence: Recall that x(�) is de�ned as the solution of

1 + �f 0(p)(1� 
 + 2
f(p)) = x[1 + �f 0(p)(1 + 
 � 2
f(p))]: (6.7)

Suppose x ! 0. Then, the left hand side is larger than the right hand side (which tends to

zero). But if x ! 1 the right hand side tends to in�nite (note that, because of the assumptions

on the transition function, the term in brackets is bounded) and is larger than the left hand side

which tends to a positive real number. By the intermediate value theorem there is an x such that

both sides are identical, so (6.7) has indeed a solution.

6.3. Proof of Proposition 2

Existence of equilibrium is guarantee as we proved in the last section. We show that in the case

of 
 = 1; and a linear transition function the equilibrium is unique. For that it is enough to show

that the solution to h1(x; �)� xh2(x; �) = 0 is unique. For 
 = 1; and a linear transition function,

h1(x; �)� xh2(x; �) = 0 can be written as:

1 + �2a(a
�x

�x+ (1� �) + b) = x(1 + �2a(1� a
�x

�x+ (1� �) � b)): (6.8)

Write (6.8) as follows

1 + �2a2
�x

�x+ (1� �)(x+ 1) + �2ab = x(1 + 2�a� 2�ab): (6.9)
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The right hand side of (6.9) is linear and increasing, being zero when x = 0. The left hand side of

(6.9) takes a positive value when x = 0. Furthermore, when � > 1=2 it is strictly concave. A linear

function and a strictly concave function can intersect, at most twice. But given the behavior of

both functions at x = 0 the intersection is unique. If � � 1=2 the left hand side of (6.9) is convex

(linear if � = 1=2), thus the slope of the curve is increasing with x. When x tends to in�nity the

slope tends to �2a2: But notice that since a+ b � 1; 1� 2�ab+ 2�a � 1 + �2a2; which implies that

�2a2 < 1 � 2�ab + 2�a thus the slope of the convex curve is always smaller than the slope of the

linear function: Thus, given the behavior of both functions at x = 0; the linear function and the

convex function intersect just once.

6.4. Proof of Proposition 3

(i) If the strength of player 1 is 1 � �, the �rst order conditions of the maximization problem for

each player can be written as:

�(1� �)e2
((1� �)e1 + �e2)2

V g1(y; 1� �) = 1; (6.10)

�(1� �)e1
((1� �)e1 + �e2)2

V g2(y; 1� �) = 1; (6.11)

where y = e2=e1, and

g1(y; 1� �) = 1 + �2a(ap+ b); (6.12)

g2(y; 1� �) = 1 + �2a(a(1� p) + b); (6.13)

p =
(1� �)

(1� �) + �y ; 1� p =
�y

(1� �) + �y : (6.14)

Thus, from (6.10), and (6.11) we get that

yg1(y; 1� �)� g2(y; 1� �) = 0: (6.15)

Notice that g1(y; 1� �) = h2(y; �); and g2(y; 1� �) = h1(y; �); thus equation (6.15) is identical to

equation (3.16), which implies that

y(1� �) = x(�): (6.16)
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Thus, from (6.10) and the de�nition of y we obtain that

e1(1� �) =
�(1� �)y(1� �)

((1� �) + �y(1� �))2V g1(y; 1� �) = (6.17)

=
�(1� �)x(�)

((1� �) + �x(�))2V h2(x; �) = (6.18)

=
�(1� �)

((1� �) + �x(�))2V h1(x; �) = e2(�); (6.19)

where we have made use of the fact that g1(y; 1� �) = h2(y; �) and (3.16).

(ii) Trivially, if � = 1; or � = 0; e1 = e2 = 0: And since e2(�) = e1(1 � �); e1(1=2) = e2(1=2):

Thus x(1=2) = 1:

(iii) We �nally show that when � > 1=2; x(�) > 1 which implies that e1(�) > e2(�): Recall

that x(�) is the solution of 0 = h1(x; �) � xh2(x; �): Since h1(x; �) is increasing in �, h2(x; �) is

decreasing in �; and � > 1=2; we have that h1(x; �) � xh2(x; �) > h1(x; 1=2) � xh2(x; 1=2): Since

x(1=2) = 1, h1(1; 1=2) � h2(1; 1=2) = 0: Thus, h1(x; 1=2) � xh2(x; 1=2) < h1(1; 1=2) � h2(1; 1=2).

But note that h1(x; 1=2)� xh2(x; 1=2) can be written as

1 + 2�a2
x

x+ 1
+ 2�ab� x(1 + 2�a� 2�a2 x

x+ 1
� 2�ab): (6.20)

Rearranging terms,

1 + 2�ab+ x(2�a(a+ b� 1)� 1); (6.21)

which is decreasing in x because a + b � 1: Therefore, h1(x; 1=2) � xh2(x; 1=2) is decreasing in x:

Thus, x(�) > 1 for � > 1=2:

6.5. Proof of Proposition 4

Since x(�) is given by h1(x; �)� xh2(x; �) = 0;

x0(�) =
�@h1
@� + x

@h2
@�

@h1
@x � h2 � x

@h2
@x

: (6.22)

The sign of @h1=@� depends on the sign of @p=@� which is positive. The sign of @h2=@� depends

on the sign of �@p=@� which is negative. Thus, the numerator in (6.22) is negative. We show next

that the denominator is also negative. Note �rst that the denominator can be written as:

2�a2
@p

@x
� 1� 2�a(a(1� p) + b)) + x2�a2 @p

@x
: (6.23)
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(6.23) can be rewritten as:

2�a2(
@p

@x
(1 + x)� (1� p)� 1� 2�ab: (6.24)

Since @p=@x = (�(1� �))=(�x+ (1� �))2 (6.24) can be rewritten as

2�a2
1� �

�x+ (1� �)(
�(1 + x)

�x+ (1� �) � 1)� 1� 2�ab: (6.25)

Simplifying (6.25) we obtain

2�a2
1� �

�x+ (1� �)(
2�� 1

�x+ (1� �))� 1� 2�ab: (6.26)

Since the expression in brackets is negative for � � 1=2, (6.25) is negative as we wanted to prove.

We show next that this is also the case for a > 1=2: If � > 1=2, x(�) > 1 and since (6.26) is

decreasing in x it is smaller than

2�a2(1� �)(2�� 1)� 1� 2�ab (6.27)

which has a maximum at � = 3=4 then (6.27) is smaller than

�a2

4
� 1� 2�ab (6.28)

which is always negative.

6.6. Proof of Proposition 5

Recall that eosi denotes the equilibrium e¤ort of player i in the one shot game. Note that in the one

shot game both agents spend the same e¤ort and eos1 = e
os
2 = �(1��)V:We show that there exists

�� < 1=2 such that for all � 2 (0; ��); e1(�) < eos1 (�): Note �rst that by (3.17) the equilibrium

e¤ort of player 1 can be written as:

e1(�) = e
os
1 (�)

x(�)

(�x(�) + (1� �))2h1(x(�); �): (6.29)

Let us see that there exists a unique �� < 1=2 such that

x(�)

(�x(�) + (1� �))2h1(x(�); �) = 1: (6.30)

For � = 1=2; x(�) = 1 and therefore (6.30) is equal to h1(x(�); �): Recall that h1(x(�); �) =

1+ �2a(ap+ b) > 1: Thus, for � = 1=2 the left hand side of (6.30) is bigger than 1:When � is close
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to zero, the left hand side of (6.30) is close to zero. Thus, by the intermediate value theorem there

exists �� < 1=2 such that equation (6.30) is satis�ed. We show that the left hand side of equation

(6.30) is strictly increasing for all � � 1=2 which guarantees that �� is unique. Since h1(x(�); �) is

strictly increasing, it only remains to be proved that x(�)=(�x(�) + (1 � �))2 is increasing for all

� � 1=2: The �rst derivative of x(�)=(�x(�) + (1� �))2 can be written as:

x0(�)(��x(�) + (1� �)) + 2x(�)(1� x(�))
(�x(�) + (1� �))3 : (6.31)

Since � < 1=2; x(�) < 1; and (1� �) > � > �x(�): Thus, (6.31) is positive as we wanted to show.

Thus, there exists a unique �� < 1=2 such that for all � 2 (0; ��); e1(�) < eos1 (�):

6.7. Proof of Proposition 6

We �rst recall the equations that we will use here, namely:

�0 = ap+ b; (6.32)

p =
�x

�x+ 1� �; (6.33)

x =
1 + 2�a(ap+ b)

1 + 2�a(1� ap� b) ; (6.34)

a = 1� 2b: (6.35)

Using (6.32), equations (6.33) and (6.34) can be written as

�x(�0 � b� a) = (b� �0)(1� �): (6.36)

x =
1 + 2�a�0

1 + 2�a(1� �0) : (6.37)

Substituting the value of x in (6.37) in equation (6.36) we obtain that

�(�0 � b� a)(1 + 2�a�0)� (b� �0)(1� �)(1 + 2�a(1� �0)) = 0 (6.38)

which will be our main equation in this proof.

Our �rst step is to study the roots of (6.38) when � = �0. Notice that in this case (6.38) is a cubic

function of �

�(�� b� a)(1 + 2�a�)� (b� �)(1� �)(1 + 2�a(1� �)) = 0: (6.39)

Note that � = 1=2 is always a solution of (6.39), and if �� is a solution of (6.39), then 1� �� is also

a solution of (6.39). Also note that (6.39) can be written as

4�(1� 2b)�3 + 6�(2b� 1)�2 + 2(� � 4�b2 + b)�+ b(4b� � 1� 2�) = 0: (6.40)
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By using numerical methods it can be shown that (6.40) has, at most, three solutions in �.

Our second step is to compute d�0=d�. Let us call the left hand side of (6.38) F (�; �0). Totally

di¤erentiating (6.38) we obtain that

d�0

d�
=
�@F (�;�0)

@�
@F (�;�0)
@�0

: (6.41)

We now compute

�@F (�; �
0)

@�
= (1 + 2�a�0)(a+ b� �0) + (�0 � b)(1 + 2�a(1� �0)): (6.42)

Since �0 > b (from (6.32)) and �0 < b+ a (from (6.36)), both terms in the right hand side of (6.42)

are positive.

Let us now study the denominator of (6.41). We compute

@F (�; �0)

@�0
= 2�a(4��0 � 2�� 2�0 + 1 + b) + 1: (6.43)

Thus, using (6.42) and (6.43), (6.41) can be written as

d�0

d�
=
(1 + 2�a�0)(1� b� �0) + (�0 � b)(1 + 2�a(1� �0))

2�a(4��0 � 2�� 2�0 + 1 + b) + 1 : (6.44)

Next we compute d�0=d� evaluated at � = �0 = 1=2 which amounts to

d�0

d�
=
2(1 + �a)(1=2� b)

2�ab+ 1
: (6.45)

Rearranging the previous expression we obtain that

d�0

d�
> 1 if and only if � >

2b

(1� 2b)(1� 4b) and b < 1=4; (6.46)

d�0

d�
< 1 if and only if � <

2b

(1� 2b)(1� 4b) and b < 1=4; or b � 1=4 and � 2 [0; 1]: (6.47)

Finally when � = 0, equation (6.38) which de�nes �0 as a function of � is �(b��0)(1+2�a(1��0)) =

0. This equation has only one root �0 = b.

Now we have all the necessary ingredients to prove the proposition. We will do it for the case

� < 1=2. The case � > 1=2 is totally symmetric.

Part a). If b = 0; d�0=d� > 1 so the curve relating � with �0 cuts the 450 degree line from below.

In this case (6.39) has three solutions in alpha, namely 0; 1=2 and 1. Given the geometry of the

problem, the avalanche e¤ect occurs for all � 2 [0; 1] n f1=2g:
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Part b). If � > 2b=(1� 2b)(1� 4b) and b < 1=4; d�0=d� > 1. Since when � < 1=2, but su¢ ciently

close to 1=2, �0 < � and when � = 0, �0 = b, by continuity the function relating � to �0 must cut

the 450 line so the existence of �� is guaranteed. The symmetry of the function around 1=2 and

the existence of at most three solutions to (6.40) imply that this intersection is unique in (0; 1=2).

Thus for all � 2 (0; ��) there is a level-o¤ e¤ect and for � 2 (��; 1=2) there is an avalanche e¤ect.

Part c). If b < 1=4 and � < 2b=(1 � 2b)(1 � 4b); or if b � 1=4 and � 2 [0; 1], d�0=d� < 1. Thus

when � is less than 1=2, but su¢ ciently close to 1=2, �0 > � and when � = 0, �0 = b. The function

relating � and �0 does not fall below the 450. There might be a point at which � = �0 but just

one because if this function cuts twice the 450; by symmetry, there would be 5 solutions to (6.40)

which is impossible. Thus the level-o¤ e¤ect holds for all � 2 [0; 1] except, possibly, for two values

of �:
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