

UNIVERSIDAD CARLOS III DE MADRID

ESCUELA POLITÉCNICA SUPERIOR

TELEMATICS ENGINEERING DEGREE

FINAL DEGREE PROJECT

VULDRONE: A VULNERABILITY CRAWLING AND
MANAGEMENT TOOL

Author: Daniel Martínez Adán
Tutor: Manuel Urueña Pascual

VULDRONE 2015

2

VULDRONE 2015

3

I want to thank all those people who have been with me through all this way and

supported me on one way or another.

I want to thank my coworkers from whom I have learnt a lot of things and

improve a lot, especially technically, and more specifically, on the computer security

field. I want to thank Javier because from the start has fully trusted on me to develop

this solution and gave me all the facilities in order to carry this out and my college Rafa

that also trusted on me and wanted this solution to turn real. Of course, I want to

mention here Carlos, who has always being there with me and has helped me with

many technical problems about a wide range of topics, and Luis; he has also gave me

ideas that have led to the right solution. Also, special thanks to Javi and Adri because

they have work with me and helped me throwing light at some point where it was

decisive.

My university friends have been a very important support through this entire

path. I will start with my friend Cesar with whom I share tons of information and

knowledge and served as an inspiration on multiple stages; Rodrigo, he really

supported this project since the moment he saw it working, which gave me lot of

strength to keep going; my friend Yago, an experienced programmer also has thrown

light on things I am not so experienced with; Nister, with whom I share the security field

and gives me another point of view; Fernando, he has always been available to help me;

and Robert, from whom I have picked up the love for the “low-level” of computer

science and how really things work.

I don’t forget my old-friends Pablo, Juan and Alvaro, who really made me grow

as a person, and always been with me.

I also want to thank my tutor for supervising this work and giving me advice

throughout the project.

I want to specially thank my girlfriend Laura for always supporting me, trusting

me and my projects and being there with me no matter what and, last but not least, in

fact the most important: my family, without them I wouldn’t be here at all; they have

done anything possible for me to be here and to be who I am.

VULDRONE 2015

4

VULDRONE 2015

5

As the time goes on, software doesn’t stop growing more and more, and

the consequence is that security vulnerabilities and exploits are increasing

exponentially.

Users and, especially companies, are becoming more aware of how

important is computer security and how bad it can end up being a hacker’s

victim. Big companies want to know when a vulnerability concerning their

products appears, so that they can take a decision on whether stop using the

software, or patching the software.

In this report, it is step by step explained how vulnerabilities and exploits

work, how hackers take advantage of those vulnerabilities, the importance of

taking certain procedures into account such as patching and of course, being

aware of our product vulnerabilities which is, in fact, the aim of the solution.

This research offers a solution regarding this matter. The user can insert

in the application his sensitive products and, at he can see at a glimpse all the

vulnerabilities that concern their products, so that he is aware of his own product

weaknesses and can decide what to do next.

VULDRONE 2015

6

VULDRONE 2015

7

A medida que avanza el tiempo, el software no para de crecer más y más, y

la consecuencia es que las vulnerabilidades de seguridad y los exploits están

creciendo exponencialmente.

Los usuarios, y especialmente las compañías, están más concienciadas de

lo importante que es la seguridad informática y como puede ser de grave el

convertirse en la víctima de un hacker. Las grandes compañías quieren saber

cuándo una vulnerabilidad de los productos que usan aparece para poder tomar

una decisión ya sea parar la aplicación o aplicar un parche.

En esta memoria, se explica paso a paso cómo funcionan vulnerabilidades

y exploits, cómo hackers aprovechan estas vulnerabilidades, la importancia de

tener en cuenta ciertos procedimientos como el parcheo y, por supuesto, el ser

consciente de las vulnerabilidades de nuestros propios productos, lo que es, el

objetivo de esta solución.

La investigación ofrece una solución en lo que a esta materia respecta. El usuario

puede insertar en la aplicación sus productos sensibles y puede, en un simple

vistazo, ver todas las vulnerabilidades que tienen que ver con sus productos, así,

por lo tanto, el usuario es consciente de las debilidades de sus propios productos y

puede decidir qué hacer después.

VULDRONE 2015

8

INDEX

Acknowledgements ... 3

Abstract ... 5

Resumen .. 7

1. Introduction ... 12

1.1 Structure of this document ... 14

2. State of the art .. 15

2.1 Vulnerabilities.. 15

2.2 CVE .. 17

2.3 The security vulnerability life-cycle ... 19

2.4 Exploits and Zero-days .. 21

2.5 Other solutions .. 24

2.5.1 Security database ... 24

2.5.2 Vulnerability Central... 25

3. Design and implementation .. 26

3.1 Database .. 28

3.1.1 Vulnerabilities_cve ... 29

3.1.2 Vulnerabilities_mail .. 30

3.1.3 Products ... 30

3.1.4 Exploits ... 31

3.1.5 Users ... 32

3.1.6 Requests ... 33

3.1.7 Alerts .. 34

3.2 Web Crawlers .. 35

3.2.1 CVEspider ... 37

3.2.3 exploitSpider .. 46

3.2.4 Scrapy states... 50

3.2.5 Initial approach... 51

VULDRONE 2015

9

3.3 Mail Procesor .. 53

3.3.1 Mail harvester .. 53

3.3.2 Mail Sender .. 56

3.4 User interface .. 58

4. Validation .. 69

4.1 Fuctionality .. 69

4.2 Web Pentesting ... 72

4.2.1 SQL injection ... 72

4.2.3 Man In The Middle attacks ... 74

4.2.4 Cross Site Scripting (XSS) .. 77

4.2.5 Directory Listing ... 79

4.2.6 Unexpected Requests ... 80

4.2.7 Sensitive cacheable information .. 81

4.2.8 MIME Sniffing ... 81

4.2.9 Click-Jacking .. 82

5. Planning and Budget ... 83

5.1 Budget ... 84

5.1.1 Staff's cost .. 84

5.1.3 Software and licenses cost ... 85

5.1.4 Total cost .. 85

6. Conclusion and Future works .. 86

6.1 Future works ... 87

7. Bibliography... 88

VULDRONE 2015

10

FIGURES

Figure 1 – Most common vulnerabilities [7] ... 16

Figure 2 – CVSS Score distribution ... 18

Figure 3 – Zero-day lifecycle [12] .. 22

Figure 4 – Application Block Diagram ... 27

Figure 5 – CVEdetails crawling starting page .. 38

Figure 6 – CVEdetails CVE’s pages ... 39

Figure 7 – CVEdetails XPath page selector .. 39

Figure 8 – CVEdetails XPath CVE selector ... 40

Figure 9 – CVEdetails CVE example ... 40

Figure 10 – CVEDetails XPath CVE field selector ... 41

Figure 11 – CVEDetails XPath Description field selector ... 41

Figure 12 - CVEDetails XPath P_Date and U_Date selector .. 42

Figure 13 – CVEDetails XPath Score field selector .. 42

Figure 14 – CVEDetails XPath Type field selector .. 42

Figure 15 – CVEDetails XPath Vendor selector ... 44

Figure 16 – CVEDetails XPath Product selector ... 44

Figure 17 – CVEDetails XPath Version selector ... 44

Figure 18 – ExploitDB crawling starting page .. 47

Figure 19 – ExploitDB exploit sample .. 48

Figure 20 – ExploitDB XPath ID field selector .. 48

Figure 21 – ExploitDB XPath CVE field selector ... 49

Figure 22 – ExploitDB XPath Date field selector ... 49

Figure 23 - ExploitDB XPath Exploit field selector ... 49

Figure 24 – User Interface flowchart diagram .. 60

Figure 25 – User Interface Login view ... 61

Figure 26 – User Interface Main view ... 62

Figure 27 – User Interface Add Products view .. 63

Figure 28 – User interface autocomplete view ... 64

VULDRONE 2015

11

Figure 29 – User interface CVEs view .. 65

Figure 30 – User interface Exploits view ... 66

Figure 31 – User interface Mails view ... 66

Figure 32 – User interface Alerts view .. 68

Figure 33 – SQLmap databases attack .. 73

Figure 34 – SQLmap users and passwords attack ... 73

Figure 35 – Wireshark HTTP user and password sniffing .. 75

Figure 36 – Wireshark TLS sniffing .. 76

Figure 37 – SSLscan certificates checking ... 76

Figure 38 – SOCAT listenning for cookie ... 78

Figure 39 – Vuldrone Directory listing vulnerability ... 79

Figure 40 – Vuldrone Directoy Listing vulnerability fixed ... 80

Figure 41 – Project planning.. 83

VULDRONE 2015

12

Nowadays, in a modern society, a high percentage of the people use a
device with many software applications installed on it. But software applications
are prone to having vulnerabilities, mostly because of either programming
mistakes or by using third-party software that is already vulnerable.

The common procedure when a company or a private user becomes
aware of a security problem in any of the software it is using, is, either patching
the vulnerability, if it’s possible, or just avoiding using the affected software. In
any case it is of paramount importance for the user to know what products are
vulnerable, especially for big companies whose servers store sensitive
information, or companies that are running applications that cannot misbehave.
In those cases, if the application gets compromised and the vulnerability is
critical, it could even lead the company to bankrupt.

For example, a vulnerability on a bank, that allows someone to figure out
another user’s credit card or account password, would lead into chaos. This is
one example of the multiple scenarios where security plays a very important role,
and where a single problem can cause terrible consequences. Obviously, no
one wants this to happen, security is, as the time goes on, becoming more
important for companies, and people that work with sensitive applications.

People using software want to be aware of when a vulnerability

concerning their products has being released, because that way, they can take a
decision, they can uninstall the software and use another solution, or they can
patch it, and they can stop their production if they think it is likely from them to
be hacked and have much to lose. Summarizing, they want to be aware of what
is their products security state.

Vulnerabilities can be found by googling in different websites, like
http://www.cvedetails.com/ or http://osvdb.org/ and one can also subscribe a
mailing list such as Bugtraq that announces product’s vulnerabilities whenever
one is released. That way there could be people constantly looking for their
products and checking whether those are vulnerable or not.

Checking out the vulnerabilities such active way, on an exceptional time
(e.g for a high profile vulnerability) it is alright, because it doesn't consume much
time to carry this out. The problem is when a company has multiple products
with different versions and the security team wants to know their products state
constantly, not one-time.

http://www.cvedetails.com/
http://osvdb.org/

VULDRONE 2015

13

This report explains in detail what a vulnerability and an exploit is, what is
the life-cycle of a vulnerability, how is the process from when an exploit is
discovered to the day the vulnerability is published to the public, which is called
“zero-day”, and, it presents a solution to this problem: how to be aware of when
a product is vulnerable.

This report explains thoroughly, a proposed solution, an application called
Vuldrone, which is a vulnerability crawling and management tool. Vuldrone
allows users to log in and insert the products they want to know the
vulnerabilities from. They can also decide whether they want to be alerted of
vulnerabilities without known exploits or not, because, if there is an exploit for a
product, probably the measures taken could be different than if there is not yet
an exploit, because that means the product is prone to be compromised and
depending how critical it is, could compromise the behavior of the whole system,
access passwords, etc.

Vuldrone also has an autocomplete function for vendor and product in
contrast with the cvedetails website itself. So it makes easy for the user to
request the products properly. When a user requests products, the user can
access their vulnerabilities and, if they exist, their known exploits.

The solution put together information from vulnerability websites and
mailing lists, which keeps the user from gathering information from multiple
sources as everything is on the same application. Another feature of the
application is alerting: whenever a new vulnerability is released concerning the
products the user has requested, she automatically receives an email, just for
having logged in the website with an email. When a new alert appears, it is also
displayed in the website with a number that represent the number of alerts. The
user can delete both products from their requests and alerts, if she doesn’t need
them anymore

The application has different modules very well differentiated and it uses
several technologies and programming languages, each one chosen not a
product of a rash decision but thoroughly compared with others that could have
offered similar solutions.

VULDRONE 2015

14

1.1 Structure of this document

Section 2 introduces the computer vulnerability field, explaining what a

computer vulnerability and a CVE is as well as the lifecycle of a vulnerability, from

the release to the patching and it also explains what exploits and also the concept

of zero-day attacks and its lifecycle. Finally, this 2nd section presents and compares

two other software commercial alternatives to Vuldrone and explains why

Vuldrone offers a better solution than the current market alternatives.

Section 3 delves into the project design and implementation in detail. It

describes Vuldrone’s different modules: the database, the Web Crawlers, the Mail

Processor and the User Interface and why it has been each technology chosen

among another technologies that could have offered a similar functionality.

Section 4 shows all the performed tests to the application and a Web

Pentesting subsection in order to test Vuldrone’s security, as it could be a target for

hacker’s attacks since its functionality is to keep systems from beign compromised

by alerting the users, which would hinder the hacking process.

Section 5 describes the working planning and contents a Gannt diagram

that displays clearly the project’s work distribution. Section 5 also has a subsection

called Budget that presents what are the application’s partial and total costs.

Finally, section 6 is the project conclusion. In this section it is explained how

well does the application meets the initial requirements and, in a subsection named

Future works there have been explained certain improvements that would be

appropriate to include in Vuldrone.

VULDRONE 2015

15

2.1 Vulnerabilities

A security vulnerability is, by definition: [4]

“A security vulnerability is a weakness in a product that could allow an
attacker to compromise the integrity, availability, or confidentiality of that
product.”

It is worth dissect this definition and explain the important concepts in
order to understand perfectly what it means, since all this project revolves
around security vulnerabilities.

A weakness in a product means that the design has a vulnerability. That
can be exploited and make the product misbehave. Using FTP in a product isn’t
a vulnerability itself, even though the traffic travels on plaintext. But if the product
uses SSL and the data is on plaintext because of a weakness exploitation that
would constitute a vulnerability.

Integrity refers to reliability, so a weakness in a product that allows an
attacker to modify data without permission would constitute a vulnerability. In
contrast, a bad application design that allows the administrator to change any
file permission of the system wouldn’t be considered a vulnerability.

Availability refers to the resource access, so, if an attacker is able to deny
the service in a product by exploiting a weakness, would be compromising the
availability of a product. But if the product itself is designed to only allow one
request per minute, and thus, being much less available than another one with
an exploit, that wouldn’t constitute a vulnerability, unlike the previous example.

Confidentiality refers to accessing a resource only to authorized people,
so, if an attacker could access a non-public resource by taking advantage of a
weakness that would constitute a vulnerability. On the other hand, if the
application has a poor design and the location of a file are revealed, although
that could be used for bad purposes, that wouldn’t be classified as a security
vulnerability.

VULDRONE 2015

16

Having the software up to date and knowing what third-party components
an application is using, is crucial. Therefore, it is important to consider the
following facts: [7]

 The most common root of all vulnerabilities is poor patching and software
maintenance.

 A robust patching policy and procedure could have been avoided 34% of the
vulnerabilities discovered on 2014.

 Over 20% of patch related vulnerabilities are rated as a critical risk.

 Approximately 16% of the vulnerabilities could be mitigated by using HTTP
Security Headers, which doesn’t affect system performance. Only 1% of
web applications have adequate HTTP Security Headers.

 Patching vulnerabilities relates to both operating system and software
frameworks, such as PHP, Spring, Symphony, Wordpress, Apache Server,
Joomla…

 Using commonly used frameworks, such as Wordpress and components
like jQuery, can introduce vulnerabilities into web application and servers,
even though the developer makes no programming security mistake.

 Security components and frameworks should be a consideration for critical
applications.

The most common vulnerabilities are displayed in the following image:

Figure 1 – Most common vulnerabilities [7]

As it can be seen, Cross-Site Scripting (XSS) is the vulnerability that most
frequently appears. This is a type of attack in which malicious code is injected
into otherwise trusted websites. XSS can be used to deface a website, steal
user’s credentials, install malware or redirect users to other websites.

VULDRONE 2015

17

There is an average density of 2.4 XSSes per web application. It has
been discovered that every web application has two high critical vulnerabilities
on average, as a result of poor coding practices. Those high risks include
business logic issues, vulnerabilities injection, client side security issues and
authorization weaknesses.

2.2 CVE

CVE stands for Common Vulnerabilities and Exposures, and it is a
dictionary, rather than a database, of common names for announcing known
information security vulnerabilities.

CVE was launched in 1999 when most information security tools
employed their own databases with their own names for security vulnerabilities.
At that time there was no significant variation among products and no easy way
to determine when different database where referring to the same vulnerability.

CVE common identifiers makes it easy for every network, database and
tools to “speak” the same language, to share data regarding vulnerabilities
without room for mistake, as every tools has the same identifier. This keeps
tools from having different databases with different vulnerability definitions,
which would be difficult for organizing the common vulnerabilities, so the CVE
remediates this problem. That way, organizations can share the vulnerabilities in
a simple way, with no need to rewrite the vulnerability description, so, CVE
provides easier interoperability.

Each CVE Identifier includes a CVE identifier number, a brief description
of the security vulnerability or exposure, and any pertinent references to other
sources that could complete the vulnerability information.

The process of creating a CVE Identifier begins with the discovery of a
potential security vulnerability. Then, a CVE Numbering Authority (CNA) assigns
a CVE Identifier and posts on the CVE List the new vulnerability or exposure. As
part of its CVE management, the MITRE Corporation works functions as the
Primary CNA.

CVEs have a score, the so-called CVSS, which is a standard for
assessing the severity of computer system security vulnerabilities. The scores
are based on a series of measurements (called metrics) based on expert
assessment. The scores range from 0 to 10. Vulnerabilities with a base score in
the 7.0-10.0 range are High, those in the 4.0-6.9 range are Medium, and in 0-3.9
are Low. Those are the metrics used for computing the score.

https://en.wikipedia.org/wiki/Technical_standard
https://en.wikipedia.org/wiki/Computer_security
https://en.wikipedia.org/wiki/Vulnerability_(computing)
https://en.wikipedia.org/wiki/Software_metric

VULDRONE 2015

18

Metric Value Description

Access Vector Network The vulnerability may be accessed from any
network that can access the target system -
typically the whole Internet

Access
Complexity

Low There are no special requirements for access

Authentication None There is no requirement for authentication in order
to exploit the vulnerability

Confidentiality Partial The attacker can read some files and data on the
system

Integrity Partial The attacker can alter some files and data on the
system

Availability Complete The attacker can cause the system and web
service to become unavailable / unresponsive by
shutting the system down

Figure 2 shows the current CVSS Score distribution for all known vulnerabilities:

Figure 2 – CVSS Score distribution

VULDRONE 2015

19

2.3 The security vulnerability life-cycle

Once the concepts of what a security vulnerability and CVE is are
introduced, this section explains what the vulnerability lifecycle is from the
discovery to the installation of a fix on the affected system.

These are the stages of this cycle:

 Discovery: When a vulnerability is discovered, engineers verify it and rate
how critical is it. This allows prioritizing the issues with greater risk to be
handled first.

 Research: When a vulnerability is discovered outside the affected company
domain, it must be researched and reproduced to understand the risk that it
entails. By doing that, it leads many times to finding out other vulnerabilities
that also need fixes.

 Notification: A CVE assignment that records the vulnerability and links the
problem with the fix for all applicable implementations is released.
Sometimes the vulnerability is inherent to other software and that host
software would relate to that CVE.

 Patch development: Developing the fix is one of the most difficult parts of
the process. The fix must completely solve the problem out and, besides,
not introducing any other problem along the way. So, the affected company
reviews all patches to verify this new patch fixes the underlying vulnerability
while checking for future possible future problems. Sometimes, a company
comes up with their own patches to fix a third-party software vulnerability.
When this happens, the company fixes not only their own software, but also
provides this fix back to the master software repository, so that, all the new
software shipped by the master repository is clean of vulnerabilities.

 Quality assurance: The Company must validate the vulnerability fix and
check for possible future problems. This is as important as the patch
development, and this step can take a significant amount of time and effort
depending on the package. However this step is absolutely worthy in spite
of these drawbacks as it substantially reduces any possible risk that the
security patch could have not fixed.

 Documentation: In order to save time for the customers to understand what
a certain vulnerability is based on. Companies spend time documenting

VULDRONE 2015

20

what the flaw is and what can it do. This documentation is used to describe
vulnerabilities released on the CVE pages.
Having a more personal description of issues that is easier to understand
than either the developer comments in patches, or the CVE pages; is
important to the customer who wants to know about the flaw. This allows
customers to properly assess the impact on to their own environment, and,
thus, make the appropriate decisions on if, how and when will be deployed
in their systems.

 Patch shipment: Once a fix has been verified, it is sent to the customers. At
the same time the fixes are made available in the repositories. Many
companies announce it in a mailing list, such as Bugtraq or Full Disclosure.
The mailing list will also provide information on the vulnerability.

Customers will begin seeing updates available on their system almost
immediately.

 Follow-on support

There are many cases on which customers need technical support for
maintaining all the company products.

There are certain companies that have a technical support team for when
questions concerning security vulnerabilities. The team does not only
answer questions, about recent vulnerabilities but also helps customers
applying fixes.

VULDRONE 2015

21

2.4 Exploits and Zero-days

A zero-day attack is a cyber-attack that consists in exploiting a
vulnerability that has not been yet disclosed publicly.

There is almost no defense against a zero-day attack. While the
vulnerability remains unknown, the software affected cannot be patched and
anti-virus cannot detect the attack through signature-based scanning.

For cyber criminals, unpatched vulnerabilities in popular software like
Adobe Flash, Microsoft Office or Wordpress, represents a free pass to any
target they plan to attack. For this reason, the market value of a new exploit is
very high. The price can vary from 5.000$ to several hundred thousand dollars,
depending on a number of factors. A vulnerability that exists in multiple versions
of Windows operating system will be much more valuable that one existing in a
single version of software with the same popularity. But one exploit that targets
software more difficult to be cracked is more valuable.

Examples of famous zero-day attacks are, the 2010 Hydraq trojan, also
known as the Aurora attack, was a zero-day which purpose was stealing
information for several companies. Another famous attack was the 2010 Stuxnet
worm, which combined four zero-day vulnerabilities to target industrial control
systems.

In 2014, around 83% of vulnerabilities have patches available at the
disclosure day. Thus, there is still a high percentage of products that remain
unpatched, which provides an opportunity for hackers to exploit the vulnerable
applications once it is disclosed publicly. [8]

As it has been said before, a zero-day attack is an attack exploiting a
vulnerability not yet disclosed to the public. A security vulnerability starts as a
programming bug that has not properly tested. Cyber criminals discover the
vulnerability, take advantage of it and exploit it. Then; they package the exploit
with malicious payload to conduct attacks against the selected targets. As it has
been explained before, when discussing the vulnerability life-cycle, after the
vulnerability is discovered by the security community and announced in a public
advisory, the vendor of the affected software releases a patch for the
vulnerability, after that, vendors update anti-virus signatures to detect the exploit.
However, in some cases the exploit is reused, and even additional exploits are
created based on the patch. This is why a good patch development and quality
assurance parts are both of paramount importance.

VULDRONE 2015

22

The following events constitute the zero-day life-cycle; each event is
going to have a time, used afterwards on Figure 3:

 Vulnerability introduced: A bug, commonly a programming mistake, is
introduced in software that is later released and deployed on hosts around
the world. (time = tv).

 Exploit released: Black hat hackers discover the vulnerability, create a
working exploit and use to conduct stealth attacks against selected targets
(time = te).

 Vendor vulnerability discovery: The vendor learns about the vulnerability
either by himself or from a third-party report, assesses its severity, assigns a
priority for fixing it and starts working on a patch (time = td).

 Vulnerability public disclosure: The vulnerability is disclosed, either by
the vendor or a third-party, on public forums or mailing lists. A CVE Identifier
is assigned to the vulnerability (time = t0).

 Anti-virus signature release: Once the vulnerability is disclosed, anti-virus
vendors updates their signatures, because that way, future attacks with the
same exploit can be detected using heuristic detections for the exploit, so,
host with updated signatures are protected against the exploit (time = ts).

 Patch release: On the disclosure date or shortly afterwards, the software
vendor releases a patch for the vulnerability. After this point, hosts that have
applied the patch are no longer vulnerable. (time = tp).

 Patch deployment completed: All vulnerable hosts worldwide are patched
and the vulnerability doesn’t have impact anymore, at this point, the attacks
end. (time = ta).

Figure 3 – Zero-day lifecycle [12]

VULDRONE 2015

23

A zero-day attack is characterized by a vulnerability that is exploited
before it is disclosed (t0 > te).

In some cases, software vendors fix bugs and patch vulnerabilities in all
their product releases, and, therefore, some vulnerabilities are never exploited
or disclosed. In other cases, vendors learn about a vulnerability before it is
exploited, but consider it a low priority, also cyber criminals delay the release of
exploits until they come across a suitable target, to prevent vendors from
discovering the vulnerability and, thus, working on a patch.

While CVE sometimes indicates when vulnerabilities were reported to the
vendors, it is generally impossible to determine the exact date when the vendor
or the cyber criminals discovered the vulnerability or even which discovery came
first. Therefore, the disclosure date of the vulnerability is considered as “day
zero”, which is, the end of the zero-day attacks, if any.

VULDRONE 2015

24

2.5 Other solutions

Another solution for the aim of the project would be to manually look for
the CVEs frequently and for manually subscribe to mailing lists and filter the
emails in order to, using different sources, do a research about the user
products. This would be the worst solution, the most time consuming one, and
hasn’t been considered a feasible solution.

Instead, this section is going to discuss other applications that can be
used for a similar purpose as the one pursued in this project. Those applications
are Security Database and Vulnerability Central.

2.5.1 Security database

Security database is a website that offers solutions for vulnerability
detection. It has many interesting features:

 Multiple alert sources: CVE, Microsoft Bulletin, Debian, Mandriva, Redhat,
VU-Cert, Cisco, Sun, Ubuntu, Gentoo, US-Cert, VMWare, HP.

 It possible to monitor products every hourl.

 It is also possible to subscribe to a mailing list.

 There is a blog where interesting security related news are published.

On the other hand, besides not being free, the cost of monitoring 10
products with 100 different versions is 999$ per month. The website has many
drawbacks too:

 It is not intuitive at all for the user to get where she wants to.

 The information is completely disperse, and the current arrangement does
not seem to be logical and easy for the user to find.

 There is not autocomplete function for the vendors and products.

VULDRONE 2015

25

 The mailing list is completely separated from the rest, instead of being
transparently integrated with the other alerts.

 It doesn’t link exploits to CVEs

 Even though there are many alert sources, the other ones which are not the
CVE, does not really contribute, because all the important information is on
the CVE pages.

2.5.2 Vulnerability Central

This is another solution for vulnerability detection, but for using this
application is necessary to provide ISC2 credentials because it is a member
benefit, so, it is not open to everyone.

Even though it is a private benefit, it still has features that could have
been better, and that Vuldrone does offer:

 The information is composed mostly from CVEs. It doesn’t display
information from mailing lists such as Bugtraq or Full Disclosure.

 The displayed information is too much summarized. It is necessary to click
on external links to see more detailed information.

 It doesn’t send emails to the user when a new vulnerability is published.

 It doesn’t provide information about the available exploits for a given product.

In spite of all those drawbacks, it has a feature that could be great
advantage for certain users, which is a better filtering. It allows filtering the
available information based on keywords and key phrases.

VULDRONE 2015

26

The first implementation idea was, that the user was able to select the
products he wanted to know the vulnerabilities from, inserting the products on a
form and right after the form was submitted with the desired products, start
crawling different sources of vulnerabilities like http://www.cvedetails.com/
http://www.securityfocus.com/ and https://oval.mitre.org/ and gather all the
information about the CVEs “on the fly”.

This first idea seemed to be a good approach, because it consisted on
just a simple form for the user, a crawler and a page showing the information
well-formatted could be good enough for the user to gather information about
different sources just using one website. But this implementation had two big
problems:

1) Crawling several websites for several products it’s relatively complex and it
takes time. With this first approach implemented, the delay time for having
the results was about 3 minutes, depending on how many products the user
inserted so, it took too much time for the user to have the crawled products
given, resulting it a tedious process whenever a user wanted to look for
products vulnerabilities.

2) Another big problem is that, the most recent vulnerabilities are not stored
into http://www.cvedetails.com/ after a while. So a user could own a
vulnerable product without being aware, if she uses cvedetails as the only
source. The most recent vulnerabilities are reported on mailing lists, like
Bugtraq.

So, as for the first problem, the solution for the slow responses has been
to, first, store all the existence known vulnerabilities from cvedetails in a local
database. That way the user now to queries a database, with the vulnerabilities
related to that specific user, which is far quicker than crawling the websites while
interacting with the application itself.

As for the second problem, the project has an email harvester subscribed
to the most active mail lists: (Bugtraq, Security Focus) and those vulnerabilities
are also stored in the database.

The project consists of four important modules very well differentiated:
the database, the web crawlers, the mail processor and user interface.

http://www.cvedetails.com/
http://www.securityfocus.com/
http://www.cvedetails.com/

VULDRONE 2015

27

Application block diagram:

Figure 4 – Application Block Diagram

VULDRONE 2015

28

3.1 Database

MySQL has been chosen as the Vuldrone database for several reasons:

 It is widely used. Almost any Linux or Windows based web host server
supports MySQL. It’s a component of the LAMP stack: Linux, Apache,
MySQL and Perl/PHP.

 It’s easy to find help. There are countless sites to find a solution for any
problem.

 It’s considered mature. While it has its defects, it is considered a mature
technology in the industry and vendors try to have their application
compatible with MySQL because of its popularity.

 It has a native support for cutting-edge technologies. It comes prepared to
support languages as Ajax, Ruby, and PHP.

 It is flexible and scalable. You can adapt your MySQL setup to adapt to a
large set of conditions and doing changes on the tables, or adding new
tables is performed easily.

The structure of the database is one database named VULDRONEDB with

the following tables:

Vulnerabilities_cve, Vulnerabilities_mail, Products, Exploits, Users, Requests
and Alerts.

The initial implementation idea was to join the Vulnerabilities_cve

and the Vulnerabilities_mail tables into one table called Vulnerabilities,

but the differences between both are important: vulnerability description fetched
in the mail is much larger than the description at www.cvedetails.com, so the it
would have been a substantial waste of memory to allocate unnecessary
memory for the short description from the www.cvedetails.com website.

Another important implementation decision was whether to join the

Users and the Requests tables into a single one, but linking them with a

Primary-Foreign key turned out to be much cleaner and more logical, having the
users on one side and their requests on another.

http://www.cvedetails.com/
http://www.cvedetails.com/

VULDRONE 2015

29

After thinking thoroughly, this implementation happened to be the most
logical, effective, and the one makes more sense for the aim of the project. The
structure of the tables is described in the following sections:

3.1.1 Vulnerabilities_cve

This is the table where the http://www.cvedetails.com crawler inserts data
for each CVE. Its columns are:

 CVE. It is the number of the CVE itself concatenated after the string “CVE-”
so an example of that field would be: “CVE-2010-3135”. It is a varchar of
length 13 and it’s the primary key of the table. This is one of the most
important fields because it is the link connecting the

Vulnerabilities_cve table with the Products and Exploits. Those

have a foreign key referencing the CVE.

 Description. It is a varchar of length 2000 chars and it’s the description of a
CVE, describing what the vulnerability consists of.
An example of that field, for the CVE: CVE-2010-3135 is:
“Untrusted search path vulnerability in Cisco Packet Tracer 5.2 allows local
users, and possibly remote attackers, to execute arbitrary code and conduct
DLL hijacking attacks via a Trojan horse wintab32.dll that is located in the
same folder as a .pkt or .pkz file”.

 P_Date. It is a date and it is the CVE published date.
An example of this field would be: “2010-08-26”.

 U_Date. It is a date and it is the CVE updated date.
An example of this field would be: “2011-01-12”.

 Score. It is a decimal (3, 1) which means it can hold 2 numbers plus one
decimal so an example would be: “6.5”. The score field is the CVSS Score.

VULDRONE 2015

30

3.1.2 Vulnerabilities_mail

This is the table where the Mail Processor inserts data into whenever
the mail harvester receives a new email. Its columns are:

 ID. It is an int and it identifies an email from any other one. ID is the primary

key of the Vulnerabilities_mail table.

 Subject. It is a varchar of length 500, and it’s the subject itself of an email.
A subject example: “Session Fixation, Reflected XSS, Code Execution in
PivotX 2.3.10”.

 Date. It is a date and it is the date the email is received. The date format is

the same than in the Vulnerabilities_mail table, YYYY-mm-dd.

 Summary. It is a mediumtext. It’s the mail received from the mailing list.

3.1.3 Products

This table stores all the products from cvedetails, each one related to at
least one CVE. This table has the following columns:

 Vendor: its type is varchar of length 30 and it is the vendor of a product. For
example: “Cisco”.

 Product: its type is varchar of length 60 and it is the product itself. For
example: “Packet Tracer”.

 Version: its type is varchar of length 10 and it is the version of a product. For
example: “4.0”.

 CVE: its type is varchar of length 14. It’s the foreign key pointing to the

Vulnerabilities_CVE table. That way, products and CVEs are linked

and it is possible to find everything from the Vulnerabilities_CVE table

for a given product. For example, it is possible to access the description the
vulnerabilities given a vendor, product and version.

It’s important to note that there is a unique key made up by Vendor,

Product, Version and CVE. That way, it is not possible to store duplicates.

The first idea was to base the unique key on Vendor, Product and

Version, but since there are products with several CVEs linked to, that would

have been a big problem, so including the CVE for the unique key worked it out.

VULDRONE 2015

31

The number of products stored in this table is above 500.000. Those
products are the ones the final user is going to introduce on their searches in
order to find the vulnerabilities and, optionally, the exploits from.

3.1.4 Exploits

This table stores all the exploits from www.exploit-db.com, but only those
that have a CVE linked. This is about 60% of all the current exploits. This table
has the following columns:

 ID. Its type is varchar of length 9 and it uniquely identifies an exploit. It is the
primary key of the Exploits table.

 CVE. Its type is varchar of length 30. It is a foreign key referencing

Vulnerabilities_cve table. With the CVE as a primary key in

Vulnerabilities_cve table and as a foreign key in both Products and

Exploits table, it is possible to obtain all the exploits and vulnerabilities for a
given product. In fact, all the columns are can be accessed and fetched the
information from.

 Date. Its type is date, and it’s formatted as: YYYY-mm-dd. It represent the
date an exploit has been released and stored into the exploitdb database.

 Exploit. Its type is varchar (10000). It is the exploit itself with the explanation
of how the exploit works, what is the vulnerability based on, and the code
itself of the exploit.

18.000 exploits have been already stored, and as it has been already
said, only those that have a CVE linked to.

It is important to note that the sometimes exploits contains JavaScript,

HTML or PHP code that, if not properly sanitized it can cause the application
working undesirably, and dangerous code could be executed on the server.

Having the exploits is not the main aim of the project, it’s just a plus, and
even though the exploits not including the CVEs could have been easily stored
on the database, it hasn’t considered a high priority. Instead, the priority has
been achieving coherence and consistency, so that, for a given product, the
most important priority is to know its vulnerability and then, for more advanced
users who want to explore how their products could be affected and how easy it
is to leverage the vulnerability, being able to access to that information in a
simple way.

http://www.exploit-db.com/

VULDRONE 2015

32

3.1.5 Users

This table contains the users that can access the application with an
email and a password. The table columns are the following:

 ID. Its type is an int. The ID uniquely identifies a user, its value auto

increments. That means that there is no need to insert this column when

registering a new user. The ID is the primary key of the Users table and it is

the column that works as a link between the Users and Requests tables.

This column is especially important because, for the user interface part, the
user is going to be identified by his ID, even though the user has previously
inserted the email and the password before. Because of its simplicity, it is
going to be the main part of the cookie, of the PHPSESSID, and the part of
the cookie is going to identify the user through the whole website.

 Email. Its type is a varchar of length 60 and it is the email address that is
going to receive the emails from the Mail Processor module whenever a
vulnerability appears and is related to a product the user is subscribed to.
That means, a product the user has inserted in the website.
The Email is also part of the cookie, of the PHPSESSID, and it is used for
being displayed at the top of the website for the user to know that is him
who is logged in in the website and not another one. For a sense of safety
and consistence surfing the website as the email is displayed at the top of
every page.

 Password. Its type is a varchar of length 20 and it’s the website password.
That password doesn't have to be the email password.

It is important to note that the new users can only be created by the
database administrator. The reasons are, because the application is private and
the ones who want to use the application have to contact the administrator for
having access to the application. Another reason is, that, if a person with bad
intentions signs him up with a fake email and attaches to all the products, that
email address is going to receive, although not harmful, many spam emails
about vulnerabilities that person is not interested in.

VULDRONE 2015

33

3.1.6 Requests

This table stores the user’s requests, that is, the products a user wants to
know the vulnerabilities from.

This table, unlike the other tables, can be filled from the user interface.
 The user is allowed to both adding new requests and therefore, inserting them
into the table, and, deleting requests from the table. The structure of the table’s
columns is the following:

 Vendor. Its type is varchar of length 30. It is the vendor of the product.

 Product. Its type is varchar of length 60. It is the product itself.

 Date. Its type is date. It is the date from where the user wants to know the
vulnerabilities from a product. It’s important to note that the date is going to
check the date from where a product has been updated and not published,
because that is what really the user is interested in.
This is field is useful because maybe a user could be looking for the SAP
product vulnerabilities but only wants results from a specific date, because
she doesn’t need the large amount of results from long time before she is
using that specific product.

 Exploit. Its type is a varchar of length 3. The only possible values are either
“Yes” or “No” and it gives the user the chance of choosing whether the user
wants to be giving the product’s exploits or not.

 ID. Its type is int and it is a foreign key linking the Users table.
This field is of paramount importance for user-handling as it’s the field that
allows retrieving the products for the user that logged in.

VULDRONE 2015

34

3.1.7 Alerts

This table stores the emails from the mailing lists for a given user, based
on the requested products he has inserted.

The Alerts table is filled after processing the emails in the mail

harvester. The emails are given to another function that takes care of obtaining
all the users related for an email.

The emails stored in this table are going to be shown to the user on a
specific section of the website given its importance.

The user can also interact with this table by deleting alerts she doesn’t
want to know about anymore. The user is not able of inserting new alerts,
because that happens automatically through the mail processor module.

The structure of the table is as follows:

 Subject. Its type is a varchar of length 500. It is the subject of the email, the

same than in the Vulnerabilities_cve table.

 Date. Its type is a date and it’s the date when the vulnerability has been
received by the email harvester.

 Summary. Its type is a medium text, and it has the same content as the one

from Vulnerabilities_cve table for a given email.

 ID. Its type is an int. It is a foreign key referencing a user. This way, when a
user logs in the website, and accesses the alerts section of the website, the
user is presented only the alerts for himself.

VULDRONE 2015

35

3.2 Web Crawlers

This is, along with the Mail Processor, the core of the project; it’s the

module that fills the following database base tables: Vulnerabilities_cve,

Products and Exploits.

Vulnerabilities_cve and Products tables are built from crawling

http://www.cvedetails.com and the Exploits table from http://www.exploit-

db.com/.

This allows the project databases being automatically up to date just by
gathering information from the sources frequently.

In order to harvest the vulnerabilities from cvedetails, Scrapy, a Python
framework for extracting data from websites has been the best option found by
far. Before crawling with Scrapy, other libraries and programming languages
have been tested, such as Goutte, a PHP library for web crawling.

Actually, all the crawling part was first performed using Goutte, but there
has been several reasons for choosing using Scrapy over Goutte:

 Scrapy crawls using threads. That means it crawls asynchronously, been
able to perform multiple requests at the same time and, therefore, crawling
much faster.

 The personal experience with Python over PHP.

 Having the backend (crawling and email gathering) part written on the same
language (everything is in Python).

 Once getting comfortable with the Scrapy framework, writing a new crawler
for other website takes a very short time. It is very easy to adapt the code
from one project to another one.

 Scrapy documentation is much better than Goutte documentation.
It’s important to note that, with the Scrapy framework, the way for for
selecting an element is through XPath.

XPath is a language itself that allows us to select elements within the

XML, their attributes and any other information inside the website.

http://www.cvedetails.com/
http://www.cvedetails.com/
http://www.exploit-db.com/
http://www.exploit-db.com/

VULDRONE 2015

36

XPath is a very easy and versatile language to use which allows powerful
selectors and functions that expand a lot the possibilities and makes it the best
language for treating XML-based documents.

This is an example of how XPath looks like:

Given the following XML:

<catalog>

 <cd id=”1”>

 <title >Empire Burlesque</title>

 <artist class=”name”>Bob Dylan</artist>

 <country>USA</country>

 <company>Columbia</company>

 <price>10.90</price>

 <year>1985</year>

 </cd>

 <cd id=”2”>

 <title”>Hide your heart</title>

 <artist class=”name”>Bonnie Tyler</artist>

 <country>UK</country>

 <company>CBS Records</company>

<company>XPath Records</company>

 <price>9.90</price>

 <year>1988</year>

 </cd>

</catalog>

The XPath to select the companies’ text from the second CD is:.

//cd[@id=’2’]/company/text()

Which means, get the text from the companies element from the cd with a

class named “id” of value “2”. The // means that it doesn’t matter what the

parent node of “cd” is. This would return;

CBS Records

XPath Records

 If the interest is just to know what the first company is, the XPath expression
should be:

//cd[@id=’2’]/company[position()=1]/text()

VULDRONE 2015

37

This returns only the text from the first company element from the CD

with a class named “id” of value “2”. And that would be:

CBS Records

 When crawling with Scrapy, there are four important parts must be set up:

 The name of the spider.

 The allowed domains where the spider can crawl.

 The URL from where the spider is going to start crawling the website.

 The links the spider is going to access.

 The function that performs the crawling for the desirable links.

3.2.1 CVEspider

This spider crawls the cvedetails website, extracts the products and
vulnerabilities and inserts them into the local database.

The different parts of a Scrapy spider inside the CVEspider are.

-Name:

name = "cve"

This is the name of the spider, and the name used for calling the spider

from the command line:

scrapy dmoz crawl

-Allowed domains:

allowed_domains = ["cvedetails.com"]

It’s an array; if more domains want to be crawled at the same time in the

same file, it is possible by creating an array with more than one position, for
example:

allowed_domains = ["cvedetails.com", "exploitdb.com"]

VULDRONE 2015

38

-Starting url:

start_urls = [

 "http://www.cvedetails.com/vulnerability-list/"

]

This is the website from where all the CVEs and products crawling start
from:

Figure 5 – CVEdetails crawling starting page

-Links:

As far as the links are concerned, there are two possible actions can be
performed: either clicking them and do nothing with the information inside, just
follow the link; or crawling the information within it.

This is the part of the code in charge of handling the links:

rules =

[Rule(SgmlLinkExtractor(restrict_xpaths=('//div[@class="paging"]/a

')), follow=True),

 Rule(SgmlLinkExtractor(restrict_xpaths=('//tr/td[@nowrap]/a')),

callback='parse_item')]

This is an array of rules, determining how the crawler is going to behave

with respect to the links. The first position of the array, is:

Rule(SgmlLinkExtractor(restrict_xpaths=('//div[@class="paging"]/a'

)), follow=True)

This rule corresponds to all the pages inside the page from where the
crawler starts from, http://www.cvedetails.com/vulnerability-list/.

http://www.cvedetails.com/vulnerability-list/

VULDRONE 2015

39

Figure 6 – CVEdetails CVE’s pages

The numbers at the bottom are all the pages, ordered by date, from 2015
to 1999. There are 1417 links. According to the rule, all those links are going to
be followed, so inside a specific link, the information is not going to be collected.

In order to select the links, this is the XPath expression:

//div[@class="paging"]/a

That means, selecting all the “a” elements within a div that has a class

called class of value paging. This corresponds, in order to illustrate in detail

how it works to a selection within the following HTML code:

Figure 7 – CVEdetails XPath page selector

VULDRONE 2015

40

So, all those links are clicked and then, the CVEs (50 per page) within
each page are harvested.

This is the rule that in charge of the CVEs harvesting:

Rule(SgmlLinkExtractor(restrict_xpaths=('//tr/td[@nowrap]/a')),

callback='parse_item')]

Which corresponds to:

Figure 8 – CVEdetails XPath CVE selector

-Crawling function:

All the CVE links are clicked, but not followed. Instead, the information
inside is harvested, and inserted into the database. There is an argument called

callback that calls a function for every CVE link, and this is the function in

charge of handling what is done for the links of the kind set in the XPath.

This is a CVE page example:

Figure 9 – CVEdetails CVE example

VULDRONE 2015

41

The function named parse_item inserts into two databases:

Vulnerabilities_cve and Products, therefore, it’s going to be explained

in two different parts.

3.2.1.1 Vulnerabilities:

Vulnerabilities are stored in an object from the class called

VulnerabilityItem, created on the items.py file like all the items.

VulnerabilitieItem has the following structure:

class VulnerabilityItem(scrapy.Item):

 CVE = scrapy.Field()

 Description = scrapy.Field()

 P_Date = scrapy.Field()

 U_Date = scrapy.Field()

 Score = scrapy.Field()

 Type = scrapy.Field()

-CVE:

cve = response.xpath("//h1/a[@title][position() =

1]/text()").extract()[0]

Figure 10 – CVEDetails XPath CVE field selector

It is important to note that only the first “a” element is selected, because

there can be two “a” elements, and the second position is a link to the exploit

references, in case there is a known exploit for a specific CVE.

-Description:

description =

response.xpath("//td/div[@class='cvedetailssummary']/text()").extr

act()[0]

Figure 11 – CVEDetails XPath Description field selector

VULDRONE 2015

42

-P_Date and U_Date:

datenote =

response.xpath("//span[@class='datenote']/text()").extract()[0]

Figure 12 - CVEDetails XPath P_Date and U_Date selector

As far as P_Date and U_Date fields are concerned, it’s important to

mention that they are not separated in different elements. They are in the same
element.

The string with the published and the updated date are harvested
together. Therefore, it has been necessary to split them and creating two
variables for the published date and the updated date parts.

-Score:

vulnerability['Score'] =

response.xpath("//td/div[@class='cvssbox']/text()").extract()[0]

Figure 13 – CVEDetails XPath Score field selector

-Type:

type_aux =

response.xpath("//table//tr[position()=8]/td/span/text()").extract

()

Figure 14 – CVEDetails XPath Type field selector

It’s worth mentioning that, if there a CVE with more than one type of

vulnerability related, each type is a new span element, and type_aux the

variable is a list of all the vulnerabilities.

What the application is meant to perform is to insert all the vulnerabilities
as one string, so, after gathering a list of types of vulnerabilities, this list is

VULDRONE 2015

43

converted into a string, and that is what is inserted into the Type column of

Vulnerabilities_cve table.

The part of the code in charge of the database insertion is:

insert_vulnerabilities

(vulnerability['CVE'],vulnerability['Description'],vulnerability['

P_Date']\

 ,vulnerability['U_Date'],

vulnerability['Score'],vulnerability['Type'])

This function and all the functions that have to do with the database

insertions from the web crawlers are located in a file named queries.py.

3.2.1.2 Products:

Products are stored in an object from the class called Products, created

on the items.py file as all the items.

ProductItem has the following structure:

class ProductItem(scrapy.Item):

 Vendor = scrapy.Field()

 Product = scrapy.Field()

 Version = scrapy.Field()

 CVE = scrapy.Field()

-CVE:

CVE is obtained when harvesting the vulnerability and this value is the

same than that one inserted into the Vulnerabilities_cve table.

-Vendor:

product['Vendor'] =

response.xpath("//table[@id='vulnprodstable']//tr/td[position() =

3]/a/text()").extract()

VULDRONE 2015

44

Figure 15 – CVEDetails XPath Vendor selector

-Product:

product['Product'] =

response.xpath("//table[@id='vulnprodstable']//td[position() =

4]/a/text()").extract()

Figure 16 – CVEDetails XPath Product selector

-Version:

product['Version'] =

response.xpath("//table[@id='vulnprodstable']//td[position() =

5]/text()").extract()

Figure 17 – CVEDetails XPath Version selector

The insertion into the Products table is handled in this part of the code:

VULDRONE 2015

45

for x in range(len(product['Vendor'])):

 print cve

 print product['Vendor'][x]

 print product['Product'][x]

 print product['Version'][x].strip()

 insert_product

(product['Vendor'][x],product['Product'][x],product['Version'][x].

strip(),cve)

It is important to note that, unlike the vulnerability insertion, for each CVE,
there can be more than one product to insert into the database. That is the

reason the insertion code is inside a for loop, inserting as many products as

the length of the product[‘Vendor’].

3.2.2 updateSpider:

This crawler is very similar to the CVEspider, the differences are:

-Starting URL:

start_urls = [

 "http://www.cvedetails.com/vulnerability-

search.php?f=1&vendor=&product=&cveid=&cweid=&cvssscoremin=&cvsssc

oremax=&psy=&psm=&pey=&pem=&usy=&usm=&uey=6000&uem=4"

]

Number 6000 means the year 6000, that is, the page is going to show
updated vulnerabilities from that year backwards. It’s a way to ensure that the
crawling would start by the most recent year.

-Crawling function:

It crawls the same elements. The caveat is that an insert function is not
called, but a function that updates the CVE:

update_vulnerability

(vulnerability['CVE'],vulnerability['Description'],vulnerability['

P_Date']\

,vulnerability['U_Date'],

vulnerability['Score'],vulnerability['Type'])

VULDRONE 2015

46

3.2.3 exploitSpider

This spider crawls the exploitdb website, extracts the exploits and inserts
them into the database.

Exploits are stored in an object from the class called ExpoitItem, which

has the following structure:

class ExploitItem(scrapy.Item):

 ID = scrapy.Field()

 CVE = scrapy.Field()

 Date = scrapy.Field()

 Exploit = scrapy.Field()

-Name:

name = "exploitSpider"

-Allowed domains:

allowed_domains = ["www.exploit-db.com"]

-Starting URL:

start_urls = [

 "https://www.exploit-

db.com/search/?order_by=date&order=desc&pg="+str(i)+"&action=searc

h" for i in range(1,2000)

]

It should be noted that, for the exploitSpider, unlike the CVEspider,

the staring URLs is a list of 2000 positions, instead just one URL.

This is because it has not been possible to select the pages through the
XPath way, so, this alternative has turned to be also easy, effective and it also
meets the requirements perfectly. This website would be the first page:

VULDRONE 2015

47

Figure 18 – ExploitDB crawling starting page

-Links:

rules =

[Rule(SgmlLinkExtractor(restrict_xpaths=('//td[@class="description

"]/a')), callback='parse_item')]

From each starting URL, there are not links to be followed. The exploits

itself are directly clicked, harvested and inserted into the Exploits database.

-Crawling function:

This function harvests all the exploits and inserts into the database those
that have an associated CVE. This is an example of what is crawled, for a
specific exploit:

VULDRONE 2015

48

Figure 19 – ExploitDB exploit sample

Inside the page above, the following fields are collected and inserted as

columns into the Exploit table: ID, CVE, Date, Exploit.

-ID:

exploit['ID'] =

response.xpath("//table[@class='exploit_list']//tr[position()=1]/t

d[position()=1]/text()").extract()[0]

Figure 20 – ExploitDB XPath ID field selector

-CVE:

exploit['CVE']=response.xpath("//table[@class='exploit_list']//tr[

position()=1]/td[position()=2]/a/text()").extract()[0]

VULDRONE 2015

49

Figure 21 – ExploitDB XPath CVE field selector

-Date:

exploit['Date'] =

response.xpath("//table[@class='exploit_list']//tr[position()=2]/t

d[position()=3]/text()").extract()[0]

Figure 22 – ExploitDB XPath Date field selector

-Exploit:

exploit['Exploit'] =

response.xpath("//div[@id='container']/pre/text()").extract()[0]

Figure 23 - ExploitDB XPath Exploit field selector

It should be noted that the exploit field has been crawled based on the
source code of the website; inspect element didn’t work because it takes into
account the Javascripts that run in the web for the client, but since the real
elements are in the source code of the website, all could have been crawled
looking at the source code.

The only cases it can’t be crawled looking at the ‘inspect element’ are
when there are Javascripts that modifies the tags of the elements, as it has been
this case with the ‘exploit’ field.

This is the part that calls the function that inserts the exploit into the
database:

insert_exploit(exploit['ID'],"CVE-

"+exploit['CVE'],exploit['Date'],exploit['Exploit'])

VULDRONE 2015

50

3.2.4 Scrapy states

It should be noted that there are two states as far as the crawling is
concerned:

 First crawling.

 Update crawling.

-First crawling:

This is the first crawling made, when the database is empty, in order to

dump the whole exploitdb and cvedetails into VULDRONEDB database.

It has been told before that Scrapy is a framework that can crawl
websites asynchronously and it uses multiple threads for crawling

.
The crawling isn’t performed in order and this is how Scrapy works by

default. No change should be made in the settings.py file for this crawling-

mode.

-Update crawling:

It also is possible for Scrapy to crawl websites in order, from the first
element to the last one. Those are the changes must be done in the

settings.py file:

DEPTH_PRIORITY = 1

SCHEDULER_DISK_QUEUE = 'scrapy.squeue.PickleFifoDiskQueue'

SCHEDULER_MEMORY_QUEUE = 'scrapy.squeue.FifoMemoryQueue'

That way, when crawling the CVEs and products, whenever it comes
across a CVEs already inserted, it stops.

This is achieved by capturing the Duplicate entry error while inserting into
the database, and, afterwards, exiting the program:

except mdb.IntegrityError, message:

 errorcode = message[1]

 print "ERRORCODE------------->"+errorcode

 if "Duplicate entry" in errorcode: # if duplicate

 os._exit(1)

As for the first crawling, the Duplicate entry error wouldn’t be captured.

VULDRONE 2015

51

3.2.5 Initial approach

The initial approach was to use Goutte in order to crawl the whole
cvedetails website as well as exploitdb:

 CVEs and products:

The starting URL used has been: http://www.cvedetails.com/browse-by-
date.php, and the way to perform the harvesting has been the following:

 Iterating over all the years, then iterating all the pages inside a
year, and then, iterating all the CVEs inside a page. Once inside a
specific CVE, all the relevant information about the CVE and the
products related to that CVE has been saved into the MySQL
database.

 The iteration over the years, pages and CVEs has been carried out
through the elements of the page, the website XML path, with
XPath.

This is how a specific element is retrieved, but not harvested, with Goutte:

$years = $crawler

->filterXPath('//table[@class="stats"]//tr//th/a[@title]')-

>each(function ($nodes) {

 return $nodes->text();

 });

That is done for the pages and CVEs too in the same way, with their

specific XPath.

As far as the element selection is concerned, Goutte allowed performing
it two different ways: using DOM selectors or using XPath.

DOM selector syntax is easy and fast to write. For instance, for selecting

all the elements p, where the parent is a div element, the syntax is like this:

div > p, whereas, with XPath, the syntax is : //div/p.

XPath has been preferred over DOM selectors because for more complex
elements selections, it’s much more powerful, the syntax is clearer, and it’s less
limited. XPath has also functions and operators that make it really versatile. This
is the way the vulnerabilities has been crawled on the first PHP implementation
with Goutte, using XPath, within a CVE:

http://www.cvedetails.com/browse-by-date.php
http://www.cvedetails.com/browse-by-date.php

VULDRONE 2015

52

$vulnerabilities = $crawler3->filterXPath('//td//div[@class =

"cvedetailssummary"]/text()

| //*[@class="datenote"] | //div[@class="cvssbox"] |

//h1/a[@title][position() = 1] | //table//tr[position()=8]/td')

 Exploits

The exploits has been also crawled and stored into the database with the
Goutte PHP library as well as the products and CVEs.

The approach had been very similar than the one with Scrapy: It had
been used the same starting URL: https://www.exploit
db.com/search/?order_by=date&order=desc&pg=j&action=search This URL is

iterated in a for loop giving the variable “j” a value from 1 to 1800. Inside a

page, all the Exploits are iterated.

The following part of the code is in charge of harvesting the exploit with
all its fields:

$exploit = $crawler2->filterXPath('//div[@id="container"]/pre

 |

//table[@class="exploit_list"]//tr[position()=1]/td[position()=1]/

text()

|//table[@class="exploit_list"]//tr[position()=1]/td[position()=2]

/a

 |

//table[@class="exploit_list"]//tr[position()=2]/td[position()=3]/

text()')->each(function ($nodes) {

 return $nodes->text();

 });

It is, in fact, the same XPath as the one used in Scrapy.

https://www.exploit/

VULDRONE 2015

53

3.3 Mail Procesor

The Mail Processor is the other part of the Vuldrone backend. The core
of the application along with the Web Crawlers.

It is simpler and it doesn’t have as many nuances as the previous module,
but it is as crucial as the Web Crawlers. In fact, it is the combination of all the
modules and the way they are used that makes the application unique and
powerful.

As far as this module is concerned, there are two parts worth be

explained separately: the mail harvester and the mail sender.

3.3.1 Mail harvester

This part task is to harvest the emails from security mailing lists and

inserting them into the database, in the Vulnerabilities_mail table.

There are plenty of security mailing lists, in websites like:
http://www.securityfocus.com/ or http://seclists.org/. For instance: Nmap
Development, Nmap Announce, Full Disclosure, Bugtraq, Security Basics,
Penetration Testing, Info Security News, Firewall Wizards, IDS Focus, Web App
Security, Daily Dave, PaulDotCom, Honeypots, Microsoft Sec Notification,
Funsec, CERT Advisories, Open Source Security, Secure Coding, Educause
Security Discussion, NANOG, Interesting People, The RISKS Forum, Data Loss.

Among all these mailing lists, there many too specific and not of great
interest, but there are two mailing lists that are going to be the ones used for the
mail harvester, as they receive all the Vulnerabilities, not only for a specific type,
but all kinds of vulnerabilities. Those two mailing lists are: Bugtraq and Full
Disclosure.

It is possible that by only subscribing to Bugtraq would met the
requirements for this module, because Bugtraq is the premier general security
mailing list and vulnerabilities are often announced there first. However that
doesn’t mean the vulnerabilities are always announced in Bugtraq. Sometimes
Full Disclosure receives them first many hours or days before, and they pass
through the Bugtraq moderation queue later.

Although Full Disclosure publics many times information that is not
relevant at all concerning vulnerabilities of a certain product, the fact that this

http://www.securityfocus.com/
http://seclists.org/

VULDRONE 2015

54

mailing list sometimes announces the vulnerabilities first than Bugtraq, being
aware of the vulnerabilities in that mailing list too, it could make the difference
for the users between being aware of whether their products are vulnerable or
not, and all the severe problems and risks that this entails.

All the emails coming from the mailing lists are collected in the INBOX of
a private email account and the emails are accessed via IMAP.

The parts of the message gathered are: subject, body and date.

These parts, for every message are stored into a dictionary called message,

which have the keys Subject, Date and Body. This dictionary is the one

passed as a parameter for the insert function, in order to insert them into the

Vulnerabilities_mail table.

Certain parts of the process_mailbox function code should be

mentioned:

Some emails have attached files on them and they can be either multipart
or no multipart messages, and the way to handle their body part of the email is
different:

if msg.get_content_type() == "text_plain": #No Multipart messages

 body = msg.get_payload()

 body = re.sub(r"\[image:.*\]","",body)

 split_signature = re.split(r"-----BEGIN PGP

SIGNATURE.*",body)

 body = split_signature[0]

 message['Body']=body.decode('utf-8')

 else: #Multipart messages

 for part in msg.walk():

 if part.get_content_type() == "text/plain": #

ignore attachments/html

 body = part.get_payload(decode=True)

 body = re.sub(r"\[image:.*\]","",body)

 split_signature = re.split(r"-----BEGIN PGP

SIGNATURE.*",body)

 body = split_signature[0]

 message['Body']=body.decode('utf-8')

It should also be noted that the emails have been first cleaned; they have
a PGP signature at the end of them and in some cases, images. Both PGP
signatures and images parts have been deleted in order to obtain a much
clearer message.

VULDRONE 2015

55

body = re.sub(r"\[image:.*\]","",body)

split_signature = re.split(r"-----BEGIN PGP SIGNATURE.*",body)

body = split_signature[0]

The date has been formatted into the format used in the CVEs (YY-mm-
dd), for consistency and coherence:

date_tuple = email.utils.parsedate_tz(msg['Date'])

 if date_tuple:

 local_date = datetime.datetime.fromtimestamp(

 email.utils.mktime_tz(date_tuple))

 message['Date']=local_date.strftime("%Y-%m-%d")

The subject part of the email shouldn’t be mentioned because it is
obtained straightforward when converted the email with the python IMAP library.

After the ‘message’ dictionary is filled, it is inserted into the database and
then, the email is moved from INBOX to Trash:

insert_vulnerability_mail(message['Subject'],message['Date'],messa

ge['Body'].encode('utf-8'))

 M.store(num, '+FLAGS', r'(\Deleted)')

 M.close()

 M.logout()

Whenever an email is processed, a function named send_mail is called,

and this is the second part of the Mail Processor module.

It should be noted that this module was first implemented in Java with the

javax.mail but is has been changed to python, as well as the crawler first has

been implemented in PHP with the Goutte library and rebuilt into Scrapy, the
Python framework for web crawling.

The reasons of using Python in this part are that the code turned out to
be far simpler, easier to read and to scale. There are many string operations,
and, as far as this aspect is concerned, Python excels.

VULDRONE 2015

56

3.3.2 Mail Sender

This function is called from the process_mailbox function with the

message as a parameter. It is in charge or two important tasks:

 Inserting the emails into the Alerts table.

 Sending an email to those users whose requested products are related to
the email passed as a parameter.

The emails are sent using the SMTP protocol, with the python smtplib
library.

Regarding this part, there are important and delicate parts that must be
noted and explained with more detail:

In order to know the target users, a function called show_users returns

a list with the users and their requests. This would be the query:

SELECT Login,Users.ID,Vendor,Product from Users inner join

Peticiones on Users.ID = Peticiones.ID

Once the users and their requests are obtained, for every user, it is
checked whether their requests (product and vendor) is in the body of the
message or not; if the user has a request related to the email, his email is

appended to a list of users called receivers, which is, the list emails the

message is going to be sent to.

users = show_users()

 for user in users:

 if user[1].lower() in messagex['Body'].lower() and

user[2].lower() in messagex['Body'].lower():

 if "@" in user[0]:

 receivers.append(user[0])

insert_alert(user[3],message['Subject'],message['Date'],message['B

ody'])

 receivers = set (receivers)

It is worth mentioning that show_users returns a list of a user’s tuple,

where the position 0 of the tuple corresponds to the email, the position 1 to the
vendor, the position 2 to the product and the position 3 to the user ID.

VULDRONE 2015

57

The body message is exactly the same message received by parameter

from the process_mailbox function, but there is a caveat: the string:

VULDRONEMAIL----- is added to the subject for the user to know that the

email is related to a security issue announced from the application, the “from”
header is also set to the mail sender account.

message = "\r\n".join([

 "From: mailfeeder90@gmail.com",

 "Subject: VULDRONEMAIL-----"+messagex['Subject'],

 "",

 messagex['Body'].encode('utf-8')

])

With the message built and the receiver emails obtained, the next part is
sending the message to the users that have product’s requests related to the
email received in the Bugtraq or Full Disclosure mailing lists.

if len(receivers)>0:

 conn.sendmail(sender, receivers, message)

VULDRONE 2015

58

3.4 User interface

This is the fourth module of the Vuldrone application; it is the part that
allows the user to interact with the application. The priority has been to make the
interaction very intuitive and simple, for every user to be able to use the
application without any kind of training.

Other important priority is its security. As this application is totally security
related, if the application, whose aim is to protect the users, could compromise
the user, would be a paradox. Exhaustive penetration testing has been
performed against the website to test its security, but this is explained in the next
section in more detail.

The backend language used has been PHP for several reasons:

 PHP is very easy to scale. If it would be required to scale the project, PHP
does is very quickly due to its architecture. The cluster size can be
increased with very little configuration.

 It doesn’t require years of experience. For an application developed by one
programmer, that doesn’t require an organization working together in
different modules, PHP is a language that allows a person without a very
long experience do really powerful things. If it was an application that
requires many people working, PHP probably wouldn’t have been the
chosen language.

 It doesn’t fail hard compared to other languages. PHP runs in separate
isolated processes within Apache. PHP’s state cleans up and starts over for
each request, so one request does not corrupt another. Other languages
requires more work to handle that, PHP does it by default.

 Very good documentation. Every function and method has documentation
and a great number of functions have tons of examples.

 Lot of blogs. PHP philosophy is about sharing information, so, there are
many people with very good blogs sharing useful information.

 Dynamic typing. There is no need to worry about whether using an int or a
char, if there is need for a specific type; it significantly reduces the amount
of code needed to write and error conditions to check for.

 Works great with HTML. Integrating HTML code within PHP is extremely
easy. In fact, PHP and HTML are interchangeable within the page.

VULDRONE 2015

59

 Lower level. Compared to other web frameworks, PHP is lower level, less
abstract and more transparent, what allows the programmer understanding
in more detail the code.

Vuldrone has been coded in raw PHP, without a framework due to the

following reasons:

 Low level. You learn a lot writing on your own. The subtle differences
between using one function or another, between placing the code in one
part instead of another one results on a deeper understanding of what is
happening with the code, and the most important theory behind rather than
mindless implementation.

 Frameworks templates. They handle templates that many times do not fit
one self’s needs.

 Adapting the framework to the application rather than the application to the
framework. It turns out to be faster adapting your own framework rather than
loading a framework.

 Small project. For a not very big project, that probably won’t need to be
expanded much, a framework would be more work than necessary. It would
have happen to be wasting more time on learning a framework than the time
saved for the framework templates and features.

As for the graphic interface, Bootstrap has been used because:

 It is compatible with all major browsers. There is no need to worry about the
operative system running, it can either run on a Mac or a PC and you can
use Firefox, Safari, Internet Explorer or Chrome.

 It supports responsive design. The website can be seen on any device:
desktop, tablet or mobile phone.

 It saves time. For people with little experience with HTML and graphic
interface in general, it saves a lot of time since offers convenient pieces of
code that will give the website a very nice style.

 It’s customizable. The developer can edit and add new pieces of code to the
given JavaScript or CSS. The developer can make it to fit the website needs.

 It has a detailed documentation and vast community. Even if a developer is
new to Bootstrap, the documentation provides great support in learning it
without any hassles.

VULDRONE 2015

60

 It updates frequently. Bootstrap releases more updates than any other
framework. You can be sure of working with the latest tools.

Figure 24 shows the website’s flowchart:

Figure 24 – User Interface flowchart diagram

The user interface is composed by the following files: login.html,
login.php, main.php, deleteproduct.php, add.php,

VULDRONE 2015

61

addproduct.php, viewproduct.php, alerts.php,

deletealert.php, logout.php, queries.php and a set of CSS,

JavaScripts and a data folder. Each part worth being explained:

-Login.html

This is the page where the website starts, in this page, the user has to log
in the application.

Figure 25 – User Interface Login view

-Login.php

Once the ‘Log in’ button is pressed, the form goes straight to the

login.php page, and it checks whether the user logged is in the database or

not. This is the database query:

SELECT * FROM Users WHERE login = ? AND password = ?

If the user exists, it initializes the PHP session, that is, the PHPSESSID

cookie, with the aim of identifying the user throughout the whole website, once

the cookie is set, the user is redirected to the main.php page.

$_SESSION["ID_User"]=$user_id;

$_SESSION["name"]=$login;

header('Location: main.php');

If the user doesn’t exist, it stays in the login.html page without being

given any message, for security, not to give the user any hint about whether is
not accessing because of the non-existence of the user or an internal error.

VULDRONE 2015

62

header('Location: login.html');

-Main.php

This is the page where the user can access all the application services.
She can add a new product, delete a product, view a product, and go to alerts or
logout from the website.

Figure 26 – User Interface Main view

The already added products are shown to the user in the main.php page,

and those products are retrieved for a specific user by this query:

SELECT * from Peticiones INNER JOIN Users ON Peticiones.ID =

Users.ID WHERE Peticiones.ID = ?

Peticiones.ID value is the $_SESSION["ID_User"], this is how a

user is identified within the website.

It should be noted that the ‘Edit’ button has no use but hasn’t been
deleted because it would probably be a future improvement.

The $_SESSION["name"]=$login part of the cookie is used on every

page, always at the top right. In this case, vuldrone@uc3m.es is the user
created for the examples.

-Add.php

mailto:vuldrone@uc3m.es

VULDRONE 2015

63

This is accessed from the main.php when pressing the button with the

‘Add new products’ text.

Figure 27 – User Interface Add Products view

This part of the user interface requires a bit more explanation; given it
contains some important features.

It allows autocomplete vendors and products dynamically, up to a list of
35 vendors and products. Vendors and products are stored in a JavaScript file,
and they are an array of names, obtained with a SQL query that saves the result
into a file.

It is possible to add more than one product at the same time and cancel
them. They are stored into a JavaScript array of objects, and it can dynamically
change when the ‘add’ button is pressed, or when a product is canceled. One
JavaScript function is on charge of adding a product to the array and other one
to delete it from the array.

VULDRONE 2015

64

Figure 28 – User interface autocomplete view

When the ‘Submit all and finish’ button is pressed it sends the data via
POST using AJAX, which is a programming technique that allows to send data

from the client to the server side, to a page named addproduct.php and the

user is returned to the main.php page. At this point, the user is displayed the

products she has just added.

-Addproduct.php

This page is called from the add.php file when the submit button is

pressed. In this file, there is a loop that iterates over the array and inserts each
object, that is, each product, into the database:

foreach ($elements as $element){

 new_product($element,$user_id);

 }

The query that inserts each product is as follows:

INSERT INTO Peticiones (Vendor, Product, Version, P_Date, Exploit,

ID) VALUES (?, ?, ?, ?, ?, ?)

VULDRONE 2015

65

-Deleteproduct.php

The user can delete a requested product in the main.php page, by

clicking the button tagged by ‘Del’. When the user presses it, the product data is

sent via POST using AJAX to deleteproduct.php and the product is deleted

from the database and from the page instantly, with a slow fading effect.

The query in charge of the database deletion is the following:

DELETE FROM Peticiones WHERE Vendor = ? AND Product = ? AND

Version = ? AND ID = ?

-Viewproduct.php

This page is accessed from main.php by clicking the “View” button.

Once clicked, the data is sent to viewproduct.php via GET with the following

parameters: vendor, product, version and exploit.

The parameters are processed in three functions:

view_product_vulns, view_product_exploits and

view_product_vulns_mail and all the vulnerabilities and product’s exploits

are displayed to the user. These are the vulnerabilities gathered from
http://www.cvedetails.com/.

.
Figure 29 – User interface CVEs view

http://www.cvedetails.com/

VULDRONE 2015

66

These are the exploits gathered from http://www.exploit-db.com/:

Figure 30 – User interface Exploits view

This tab shows the vulnerabilities harvested on the Mail Processor:

Figure 31 – User interface Mails view

The user’s session doesn’t play an important role in this page, because
the vulnerabilities from a certain product does not consider the user at all, they

http://www.exploit-db.com/

VULDRONE 2015

67

are the same for everyone, although, the user’s session is used for being
displayed at the top left corner.

The database query that is in charge of obtaining the CVE vulnerabilities
is the following:

SELECT Vulnerabilities_cve.CVE AS CVE, Description AS Description,

P_Date AS P_Date, U_Date AS U_Date, Score AS Score FROM

Vulnerabilities_cve INNER JOIN Products ON Vulnerabilities_cve.CVE

= Products.CVE WHERE Vendor = ? and Product = ? and Version = ?

GROUP BY Description ORDER BY U_Date DESC

Here, there is the possibility too, that the user has inserted a product
without a version, so the query is the same but without the version field. In order
to retrieve the exploits this query has been used:

SELECT Vulnerabilities_cve.CVE AS CVE, Description AS Description,

P_Date AS P_Date, U_Date AS U_Date, Score AS Score, Exploit AS

Exploit FROM Vulnerabilities_cve INNER JOIN Products ON

Vulnerabilities_cve.CVE = Products.CVE INNER JOIN Exploits ON

Vulnerabilities_cve.CVE = Exploits.CVE WHERE Vendor = ? and

Product = ? GROUP BY Exploit ORDER BY Date DESC

And, the last tab, corresponds to the vulnerabilities obtained from the
mailing lists, and the query in charge of obtaining this information is as follows:

SELECT Subject,date,summary FROM Vulnerabilities_mail WHERE

summary LIKE ? AND summary LIKE ?

The two page parameters are vendor and product so, the emails shown
to the user are the ones whose body text includes both the vendor and product
the user has inserted as a request.

-Alerts.php

This part of the application is accessed from main.php and it displays

the latest vulnerabilities to the user.

The displayed data is retrieved from the Alerts table, by the following

query:

SELECT Subject,date,summary FROM Alerts WHERE ID = ?

That way, all the alerts are shown to the user, no matter what product
they come from, which is the purpose of this section.

All alerts are displayed in the same page, alerts.php, and the alert

subject is first shown to the user. The user can watch the whole alert message

VULDRONE 2015

68

by clicking on the subject. She can hide the content by clicking on the subject
again.

Figure 32 – User interface Alerts view

The user is also allowed to remove alerts by clicking on the trash icon.

-Deletealert.php

When the trash icon is clicked from the alerts.php page, a POST is

sent to deletealert.php using AJAX. Once the button is clicked, the whole

alert is removed visually from the website, both the subject and the whole body,
and also deleted from the database. The MySQL query in charge of the alert
deletion is the following:

DELETE FROM Alerts WHERE Subject = ? AND ID = ?

When the button is clicked, the red number of alerts is also automatically

updated without needing to reload the page.

-Logout.php

The only purpose of this page, is to remove the user’s session and to redirect him
to the website login.

Once the user logouts the user needs to log in again, it is not possible for
the user to use his previous cookie.

VULDRONE 2015

69

This chapter lists all the tests that have been performed to the Vuldrone

application:

4.1 Fuctionality

CVESpider

The spider starts from the newest to the oldest CVEs.

The spider is can go through all the pages without any kind of problem.

All the XPaths are correct.

The spider doesn’t get blocked from the cvedetails.com domain.

The spider works asynchronously when it has to dump the whole cvedetails
database.

The spider works in order when it has to monitor the CVEs.

The field “type” in CVEs with more than one type, is correctly joined by all the types
in one string.

Published date and update date are split correctly even though having the same
XPath.

All the fields are formatted correctly, with no special characters.

The spider doesn’t inserts CVEs with score 0.

The CVE information is correctly inserted into the Vulnerabilies_cve database

When a CVE has more than one product affected, all the products are correctly
inserted in the Products database.

The spider stops when a duplicate CVE is found.

Whenever the spider opens a connection to the database, it closes the connection
after the operation is done.

The spider displays the information about how much time has the crawling taken.

UpdateSpider

The spider starts crawling from the newest CVEs to the oldest.

The spider monitors every week, not to lose a single update.

The spider doesn’t get blocked from the cvedetails.com domain.

All the XPaths are correct.

The field “type” in CVEs with more than one type, is correctly joined by all the types
in one string.

VULDRONE 2015

70

Fields with same XPath are split correctly.

All the fields are formatted correctly, with no special characters.

The CVE information is correctly updated in the Vulnerabilies_cve database.

The spider displays the information about how much time has the crawling taken.

ExploitSpider

The spider starts from the newest to the oldest exploits, in order.

The spider stops crawling whenever a duplicate exploit ID is found.

The spider doesn’t get blocked from the exploit-db.com domain.

All the XPaths are correct.

The spider drops the exploits that have not a CVE attached to them and inserts the
ones that have a CVE.

All the fields are properly formatted, without special characters.

The exploit is correctly inserted into the Exploits database.

The spider displays the information about how much time has the crawling taken.

Mail harvester:

The INBOX mailbox is accessed properly.

The mail harvester goes through all the emails correctly.

The email is properly split into date, subject and body.

The date is formatted with the YY-mm-dd format.

The PGP Signature is removed from every email correctly.

The message is properly decoded.

Both non-multipart and multipart messages are handled properly and their parts
are well extracted.

The email is correctly inserted into the Vulnerabilities_mail database.

When a connection to the database is open, after the operation, it is always closed.

The emails are correctly moved to the trash mailbox.

Mail sender

The subject is changed properly.

The list of users that have requested a product for every email, that is, the list of
emails the email is going to be sent, is retrieved always correctly.

The message body is properly encoded.

The email is correctly sent to the list of users correctly.

http://www.exploit-db.com/

VULDRONE 2015

71

User Interface

The website adapts well to PC, tablets or mobiles.

The user can’t access with a wrong email, password or both.

The user can access with a correct email and password.

The list of products is displayed to the user properly.

When a user deletes a request, it only deletes the request for him and not for every
user, the deletion is correct.

The product deletion is done dynamically.

The user is able to add several products at the same time.

When a user adds a product, it is dynamically added.

When a user deletes a product from the cart, it only deletes that product, even
though he mistakes and choose more than once the same product.

Autocomplete functionality works perfectly.

The date field is displayed as a calendar in all the browsers properly.

When the user press the submit button, the products are inserted properly into the
Requests table.

The submit button makes the user goes to the main page and new requests are
properly displayed.

From the products adding section, the user can either go to home or logout,

The user email is correctly displayed at the top of the products adding section.

All the CVEs are properly selected to the user.

The CVEs are properly formatted, without special chars inside.

The CVEs are ordered properly by the update date.

The CVSS changes its color depending on how critical the vulnerability is.

All the CVE urls are correct and redirect to the original website properly.

All the exploits are properly selected to the user.

Exploits are properly displayed and formatted, and so the CVEs.

All the mails are properly selected to the user.

Mails are properly displayed and formatted.

In the view section, the user’s email is properly displayed at the top.

From the alerts section, the user can go to either home or logout properly

The number of alerts is properly displayed to the user in the main page.

All the alerts are properly selected to the user.

All the alerts can be pressed in order to see the content in detail.

The deletion works dynamically, and the number of alerts is automatically updated,
as well as the alert itself.

From the alerts section, the users can either home page or the logout properly.

The user’s email is properly displayed at the top of the alerts section.

When the user tries to access any page different from the login by typing the URL,
if he has not a valid cookie, he is redirected to the login page.

Logout removes the user’s cookie properly.

VULDRONE 2015

72

4.2 Web Pentesting

As this application’s aim is to protect systems, it could be a likely target for

Black Hat hackers. So besides the main functional tests, the security of Vuldrone

has been thoroughly tested as explained next.

4.2.1 SQL injection

Every single SQL query is implemented with prepared statements in
order to avoid SQL injection.

This is an example of the PHP code without prepared statements:

$sql = "SELECT * from Users where login = '".$login."' and

password = '".$password_log."'";

 $result = mysqli_query($conn, $sql);

 if (mysqli_num_rows($result) > 0) {

 // output data of each row

 while($row = mysqli_fetch_assoc($result)) {

 return $row["ID"];

 }

 }

 else {

 return false;

 }

This way, a hacker is able to introduce malicious SQL code in the login
and password fields by closing the quotes himself.

For proving this vulnerability has been used the tool called sqlmap, an
open source penetration testing tool coded in python that automates the
process of detecting and exploiting SQL injection flaws and taking over of
database servers.

sqlmap -u http://172.16.0.228:8080/login.php --dbs

That allows obtaining the databases.

VULDRONE 2015

73

Figure 33 – SQLmap databases attack

The target database in this case is VULDRONEDB, from which we can

obtain all the tables, columns and fields and end up obtaining the users and
passwords.

sqlmap -u http://172.16.0.228:8080/login.php --

data="login=&password=" -D VULDRONEDB -T Users -C Login,Password -

-dump

Figure 34 – SQLmap users and passwords attack

As it is proved in the screenshot above, this mistake can end up allowing the

hacker to obtain all the users names and passwords of the application.

This has been the way to avoid SQL injection:

$stmt=$conn->prepare("select * from Users where login = ?

VULDRONE 2015

74

 and password = ?");

 $stmt->bind_param("ss",$login,$password_log);

 $stmt->execute();

 $stmt->store_result();

 $stmt->bind_result($id,$login,$password_log);

 while($stmt->fetch()) {

 return $id;

 }

 return false;

4.2.3 Man In The Middle attacks

Man in the middle attack, often abbreviated to MitM, is an attack in which
the attacker is in the middle of the communication between the victim and the
router. The attacker can do it one direction or two directions:

 The attacker can be in the middle of the communication from the victim to
the router, so he can tamper the data the user sends, or, from the router to
the victim, so that the attacker is able to manipulate the data received to the
user.

 The attacker can be in the middle of both, so he can tamper the two
directions data.

HTTPS (also called HTTP over TLS, HTTP over SSL or HTTP Secure) is
a protocol for secure communication over a computer network which is widely
used on the Internet. HTTPS consists of communication over Hypertext Transfer
Protocol (HTTP) within a connection encrypted by Transport Layer Security or
its predecessor, Secure Sockets Layer. The main motivation for HTTPS is
authentication of the visited website and to protect the privacy and integrity of
the exchanged data. [36] It protects against eavesdropping. Without HTTPS, this
is what could have happened if an attacker performing a MitM attack is capturing
the traffic with a traffic analyzer such as Wireshark.

https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Communications_protocol
https://en.wikipedia.org/wiki/Network_security
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Authentication
https://en.wikipedia.org/wiki/Website
https://en.wikipedia.org/wiki/Information_privacy
https://en.wikipedia.org/wiki/Data_integrity

VULDRONE 2015

75

Figure 35 – Wireshark HTTP user and password sniffing

The attacker would have been able to see the user login and password in
plain text.

To protect against this, it has been used HTTPS to communicate with the
server. This is the how it has been performed.

It has been enabled SSL:

a2enmod ssl

a2ensite default-ssl

/etc/init.d/apache2 restart

The HTTP traffic has been redirected to HTTPS:

a2enmod rewrite

In the /etc/apache2/sites-enabled/000-default file:

<VirtualHost *:80>

 RewriteEngine on

 RewriteCond %{SERVER_PORT} !^443$

 RewriteRule ^.*$ https://%{SERVER_NAME}/VULDRONE/login.html

[L,R]

</VirtualHost>

VULDRONE 2015

76

And this is what the attacker captures with Wireshark:

Figure 36 – Wireshark TLS sniffing

This time, the attacker is not able to capture the traffic. But it not 100%
secure yet, because by default, weak cypher methods are enabled.

It has been tested the ciphers with sslscan, a Linux tool for testing the SSL server
security, and this is what has been found:

Figure 37 – SSLscan certificates checking

That means, SSLv3, a weak server cipher it is enabled, which allows the
client to negotiate using this cipher, and end up capturing the traffic in plain text.

The way it has been prevented, has been, to add in the

/etc/apache/sites-available/default-ssl file, the following lines:

SSLEngine on

SSLProtocol all -SSLv2 -SSLv3

VULDRONE 2015

77

With these measures, the website is protected against possible
eavesdropping.

4.2.4 Cross Site Scripting (XSS)

Before, it has been explained that XSS is a type of attack in which
malicious code is injected into trusted websites. XSS can be used to deface a
website, steal user’s credentials, install malware or redirect users to other
websites.

In the Vuldrone website, there is one form where the user can insert data
into the database, in a AJAX POST form, when adding the product, and those
inputs are then displayed to the user, so, this is a sensitive part of the
application and inserting scripts shouldn’t be allowed.

This potential XSS turns out to be on the private part, after the user logs
in, but, although trickier, it can also be exploited, forcing the user to fill and
submit a form with the malicious JavaScript.

This is the structure of the code that forces the user to submit a form:

<form action="http://172.16.0.228/VULDRONE/addproducts.php"

method="POST" target="_blank" >

 <input type="text" name="products[0][vendor]" value="Cisco"/>

 <input type="text" name="products[0][product]" value=

"<script>location.href='http://172.16.0.228:7070?c='+document.cook

ie</script>"/>

 <input id="vul" type="submit" value="Submit"

onfocus='this.click()' autofocus/>

</form>

It is inserted in the product rather than in the vendor because of the

database structure: the product column in the Requests table can take up 90

characters, and this size is enough for inserting the malicious script, which, in
this case, it’s purpose is to send the cookie to the attacker, that would be
listening with socat.

This is the part of the sensitive PHP code that would allow an attacker to steal the
user’s cookie:

VULDRONE 2015

78

$stmt->bind_param("ssssss",($element['vendor']),

($element['product']),($element['version']),($element['date']),

 ($element['exploit']),$user_id);

This is, not sanitizing sensitive fields at the moment the insertion on the
database is done. And this is what could happen:

Figure 38 – SOCAT listenning for cookie

This is, the hacker side, listening with socat, waiting for the cookie to be
automatically sent from the victim side.

The way to fix this security hole is very simple, there is a PHP function

called htmlspecialchars that sanitize the sensitive strings, properly escaping

the HTML characters and thus, not letting introducing scripts.

$stmt->bind_param("ssssss", htmlspecialchars($element['vendor']),

htmlspecialchars($element['product']),htmlspecialchars($element['v

ersion']),

 htmlspecialchars($element['date']),

htmlspecialchars($element['exploit']),$user_id);

Besides, in order to fortify the security, the X-XSS-Protection header has
been forced to be enabled by the browsers, to prevent XSS. To carry this out,

the following line has been added in the /etc/apache2/apache.conf file:

Header set X-XSS-Protection 1

This header enables the Cross-site scripting (XSS) filter built into most
recent web browsers. It's usually enabled by default anyway, so the role of this
header is to re-enable the filter for this particular website if it was disabled by the
user.[38]

https://www.owasp.org/index.php/Cross-site_scripting

VULDRONE 2015

79

The last measure is not to include JavaScript code from other origins,
because, if the trusted origin gets compromised, the victim’s website could be
executing malicious code. In the other hand, if our network gets compromised,
and we suffer a DNS spoofing attack, the attacker can confuse our DNS and, tell
us to go the attacker domain when trying to go our “trusted” JavaScript code and,
therefore, we can also end up executing malicious JavaScript code.

4.2.5 Directory Listing

It’s a bad practice to allow your website to list directories, as a potential
attacker can see all the website structure and there could be files that website
developer doesn’t want to show. Even though it can be exploited with brute force
attacks that can take at some cases, depending on the files names and on how
much directories layers there can take too much time for the attack to be
successfully performed. This is what someone can do if directory listing is
allowed:

Figure 39 – Vuldrone Directory listing vulnerability

The way to solve this is by disabling the Indexes option in the

/etc/apache2/sites-available/default-ssl. And this would be the

server response if someone requests the website root directory:

VULDRONE 2015

80

Figure 40 – Vuldrone Directoy Listing vulnerability fixed

4.2.6 Unexpected Requests

When performing the XSS, the form that introduced the malicious script
was a classic form, not an AJAX request, which is the way the POST is done
when the user interacts with the website.

To prevent that exploit to be performed, the server should check the X-
Requested-With HTTP Header, and only allow inserting the product if the
request is done via AJAX, this is way this vulnerability has been mitigated.

In the addproducts.php file, the following lines only allow inserting

products if the requests have been done via AJAX:

if (is_ajax()){

 foreach ($elements as $element){

 new_product($element,$user_id);

 }

}

function is_ajax() {

 return isset($_SERVER['HTTP_X_REQUESTED_WITH']) &&

strtolower($_SERVER['HTTP_X_REQUESTED_WITH']) == 'xmlhttprequest';

}

This way a hacker that convinces a victim to press a link, which is an auto
submitted form, including the JavaScript, wouldn’t success.

VULDRONE 2015

81

The headers only can be set in an AJAX request, and sending AJAX
requests via POST to different domains can be only achieved by a technique
called CORPS, which requires the server to include certain headers in order to
allow requests from other domains. Therefore, this measure adds extra security
to the website.

4.2.7 Sensitive cacheable information

In order to prevent an attacker with physical access to a computer to
manipulate sensitive information, it has been set the Cache-Control Header.

This has been done by adding the following line in

/etc/apache2/apache.conf:

Header set Cache-Control "max-age=3600, public"

This means, in 3600 seconds, the information is not in cache anymore.

4.2.8 MIME Sniffing

MIME sniffing also known as Content Sniffing or Media Type Sniffing, is
the practice of inspecting the content of a byte stream to attempt to deduce the
file format of the data within it.

doing this opens up a serious security vulnerability, in which, by confusing
the MIME sniffing algorithm, the browser can be manipulated into interpreting
data in a way that allows an attacker to carry out operations that are not
expected by either the site operator or user, such as cross-site scripting.

The way to prevent this vulnerability is, adding the following line in the

/etc/apache2/apache2.conf:

Header set X-Content-Type-Options nosniff

The only defined value, "nosniff", prevents Internet Explorer and Google
Chrome from MIME-sniffing a response away from the declared content-type.

https://en.wikipedia.org/wiki/Byte_stream
https://en.wikipedia.org/wiki/File_format
https://en.wikipedia.org/wiki/Security_vulnerability
https://en.wikipedia.org/wiki/Cross-site_scripting

VULDRONE 2015

82

4.2.9 Click-Jacking

Clickjacking, also known as a "UI redress attack", is when an attacker
uses multiple transparent or opaque layers to trick a user into clicking on a
button or link on another page when they were intending to click on the top level
page.

For example, imagine an attacker who builds a web site that has a button
on it that says "click here for a free iPod". However, on top of that web page, the
attacker has loaded an iframe with the website vulnerability alerts, and lined up
exactly the recycle bin, that delete alerts button directly on top of the "free iPod"
button. The victim tries to click on the "free iPod" button but instead actually
clicked on the invisible recycle bin button. In essence, the attacker has
"hijacked" the user's click, hence the name "Clickjacking".

This is avoided by denying the X-Frame-Options that is, adding the

following header in the /etc/apache2/apache2.conf:

Header add X-FRAME-OPTIONS “DENY”

This way, the website can’t be loaded as an iframe on another website,
and thus, is not vulnerable to click-jacking.

After all the taken measures, the application turns out to be out of security
alerts, is properly hardened and using adequate HTTP Security Headers, which,
as has been said before, only 1% websites on average does.

VULDRONE 2015

83

The next table shows the project planning from the very start to the end,
from the research on the alternative solutions and the technologies learnt during
the process, to the performed tests on the application once finished and during
the implementation, and of course, the designing and implementation part are
also displayed.

Figure 41 – Project planning

As we can see, it has been necessary to learn many programming
languages and technologies, and at some points there is an overlapping in order
to optimize certain tasks. For example, during the last stage of the
implementation, the application has been started to be tested with different web
penetration tests, and corrected on the course of the tests.

Is also appreciable too, an overlapping during the implementation on the

user interface part, because it had to work together with the backend, and it is

VULDRONE 2015

84

almost impossible implementing the backend perfectly at the first time without
testing it as a user.

5.1 Budget

In this section the project budget is detailed in different parts: the staff, as
well as the hardware and software used during the project. The last part is the
summary of all the tables, concluding with the final total cost of the project.

5.1.1 Staff's cost

There have been two people working on the project, an engineer that has
designed and implemented the project and a Senior engineer that has
supervised the application to make sure everything is right and meets the
requirements.

Occupation Hours Price/hour Cost (€)

Senior 10 60 600

Engineer 300 30 9.000

TOTAL 310

9.600 €

As for the required resources, it has been necessary a computer with a
mouse and keyboard and a relatively large screen and a pendrive.

Description Cost
(€)

%
Dedicated

use

Duration
(months)

Depreciation
period

Chargable
Cost (€)

PC Intel Core 2x
CPU 2.33 GHZ

500 100 6 60 50

Logitech mouse
and keyboard

90 100 6 60 9

Monitor TFT LG-
22M35A-B

120 100 6 60 12

Pendrive
Kingston

DataTraveler
SE9 16 Gb

10 100 6 60 1

TOTAL

72 €

VULDRONE 2015

85

5.1.3 Software and licenses cost

Regarding the software’s cost; almost all the software used has been free,
except the Microsoft Office license to write this document.

Description Chargable cost (€)

Microsoft Office 2010 Professional 250

Komodo Edit 0

Apache 0

PHP 0

MySQL 0

Python 0

Scrapy 0

Bootstrap 0

Eclipse 0

Teamgantt 0

OWASP ZAP 0

Google 0

TOTAL 250 €

To conclude, in the next table it is shown a recap of all the costs
previously detailed.

5.1.4 Total cost

Description Total cost (€)

Staff 9.600

Hardware amortization 72

Software and licenses 250

TOTAL 9.922 €

VULDRONE 2015

86

This work has discussed the security vulnerabilities world, it has
presented concepts like what a security vulnerability is, what CVE is, what are
the most common vulnerabilities and statistics about them, how patching and
using safe components can mitigate a software from being compromised, how
much time does it take on average to patch a vulnerability, how does the
vulnerability life-cycle works, since the discovery to the patching. It has also
showed the evil part of this world is: what is an exploit and what is a zero day in
detail.

The actual solutions have been presented as far as security vulnerability

alerting is concerned, and the strong and weak points of commercial software
compared to the solution given in this report.

Then the proposed Vuldrone solution has been explained in detail and

why everything has been done in such way. Inherent to the solution the security
vulnerabilities mailing list and the web crawlers have been explained and
discussed different solutions regarding this part.

The first aim of the project had been to make it useful, to insert the

products and to be given the CVE, regardless of the rest of the parts. The time
has allowed prioritizing not just one aspect but many:

 The functionality, which was the first priority, has been extended: the user is
also given information from the mailing lists and the exploits.

 The speed: A database allows making requests much faster than crawling
the websites every time the user logs in.

 The easiness. The user can use it smoothly, with no room for mistake
because everything is very easy for the user to spot. Also, the product and
vendor autocomplete helps a lot for the user to introduce the parameters
right.

 Security. It has been performed a complete web penetration testing to the
website using many security tools such as OWASP Zap, Golismero, sqlmap,
sslscan and manually. Thus, the project has been coded being totally aware
of the security holes in order to avoid making a mistake regarding the
website security.

VULDRONE 2015

87

Therefore, much time has been spent polishing many aspects that first

were not a first priority and honing all these subtle nuances has resulted on,
personally, I think a good solution that contributes with completely new features
and make it feasible to be used for a company or for a personal user as for the
aimed purpose of the project, mitigating software from being compromised.

The final conclusion is that the project although meets all the initial the

requirements and at some points exceeds the first expectations, it could also be
improved and adapt to the new requirements. It has served for delving into the
security vulnerability world in depth as well as for learning and putting together
much different knowledge in order to make this solution possible.

6.1 Future works

The project could grow much more, and there are many functionalities

that could be added without having to change many parts of the code, because
the code has been properly modularized to make it scalable.

 For instance, if a client requires another website to crawl, because she

only focuses on a certain vendor as it could be Mozilla, it is easy to implement a
new spider that crawls the Mozilla security advisories website. Therefore,
depending on the client requests, it can grow to have implemented tons of
different crawlers for different vendors.

Subscribing to a new mailing list would be immediate, because the only

change is to choose another source of emails apart from Bugtraq and Full
Disclosure, all the emails go to the same database so the process is utterly
automatic.

Other additional features would be to show the user’s statistics in the

home page, displaying information about their products and the risk of their
vulnerabilities in a graphic in order to allow the users to, at a glimpse, see how
much and how many are their products vulnerable and. As far as the security is

concerned it would be highly appropriate to use the phpass a PHP class which

functionality is to safely encrypt the user’s passwords in the VULDRONEDB

database.

VULDRONE 2015

88

[1] Python Tutorial. https://www.codecademy.com/en/tracks/python.
[Access: 01/04/2015]

[2] CVE Information research. http://cve.mitre.org/about/index.html.

[Access: 15/09/2015]

[3] CVE Information research. http://makingsecuritymeasurable.mitre.org/docs/cve-intro-handout.pdf.

[Access: 15/09/2015]

[4] Vulnerability definition. https://msdn.microsoft.com/en-us/library/cc751383.aspx.

[Access: 13/09/2015]

[5] Vulnerability information. https://www.secpoint.com/what-is-a-vulnerability.html.
[Access: 13/09/2015]

[6] Vulnerability information. https://en.wikipedia.org/wiki/Vulnerability_%28computing%29.
[Access: 13/09/2015]

[7] Vulnerabilities research. http://www.bccriskadvisory.com/wp-content/uploads/Edgescan-Stats-
Report.pdf.
[Access: 14/09/2015]

[8] Common
vulnerabilities .https://secunia.com/?action=fetch&filename=secunia_vulnerability_review_2015_pdf
..pdf.
[Access: 14/09/2015]

[9] Vulnerabilities life-cycle. http://www.cs.colostate.edu/~malaiya/p/joh.risk.2010.pdf.
[Access: 14/09/2015]

[10] Vulnerabilities life-cycle. https://securityblog.redhat.com/2015/02/04/life-cycle-of-a-security-
vulnerability/.
[Access: 15/09/2015]

[11] Vulnerabilities life-cycle. http://www.alertlogic.com/wp-content/uploads/2013/02/Defense-
Throughout-the-Vulnerability-Life-Cycle-3.pdf.
[Access: 16/09/2015]

[12] Zero-day research.
https://users.ece.cmu.edu/~tdumitra/public_documents/bilge12_zero_day.pdf.
[Access: 17/09/2015]

[13] Zero-day research. https://stacks.stanford.edu/file/druid:zs241cm7504/Zero-
Day%20Vulnerability%20Thesis%20by%20Fidler.pdf.
[Access: 17/09/2015]

http://cve.mitre.org/about/index.html
http://makingsecuritymeasurable.mitre.org/docs/cve-intro-handout.pdf
https://msdn.microsoft.com/en-us/library/cc751383.aspx
https://www.secpoint.com/what-is-a-vulnerability.html
https://en.wikipedia.org/wiki/Vulnerability_%28computing%29
http://www.bccriskadvisory.com/wp-content/uploads/Edgescan-Stats-Report.pdf
http://www.bccriskadvisory.com/wp-content/uploads/Edgescan-Stats-Report.pdf
https://secunia.com/?action=fetch&filename=secunia_vulnerability_review_2015_pdf..pdf
https://secunia.com/?action=fetch&filename=secunia_vulnerability_review_2015_pdf..pdf
http://www.cs.colostate.edu/~malaiya/p/joh.risk.2010.pdf
https://securityblog.redhat.com/2015/02/04/life-cycle-of-a-security-vulnerability/
https://securityblog.redhat.com/2015/02/04/life-cycle-of-a-security-vulnerability/
http://www.alertlogic.com/wp-content/uploads/2013/02/Defense-Throughout-the-Vulnerability-Life-Cycle-3.pdf
http://www.alertlogic.com/wp-content/uploads/2013/02/Defense-Throughout-the-Vulnerability-Life-Cycle-3.pdf
https://users.ece.cmu.edu/~tdumitra/public_documents/bilge12_zero_day.pdf
https://stacks.stanford.edu/file/druid:zs241cm7504/Zero-Day%20Vulnerability%20Thesis%20by%20Fidler.pdf
https://stacks.stanford.edu/file/druid:zs241cm7504/Zero-Day%20Vulnerability%20Thesis%20by%20Fidler.pdf

VULDRONE 2015

89

[14] Alternative solutions. Vulnerability Central.
http://infosecosaurus.blogspot.com.es/2015/02/isc2s-vulnerability-central-what-it-is.html.
[Access: 18/09/2015]

[15] Alternative solutions. Vulnera-ng. https://www.s21sec.com/es/sobre-s21sec/news-a-
events/noticias/234-s21sec-presenta-su-primer-informe-anual-de-vulnerabilidades.
[Access: 18/09/2015]

[16] Alternative solutions. Security Database. http://www.security-database.com.
[Access: 18/09/2015]

[17]State of Art. OSDVhttp://blog.osvdb.org/category/vulnerability-statistics/.
[Access: 12/09/2015]

[18] Python crawling framework Scrapy. http://doc.scrapy.org/en/latest/intro/tutorial.html.
[Access: 5/07/2015]

[19] Javascript tutorial. http://www.w3schools.com/js/.
[Access: 20/08/2015]

[20] PHP tutorial. https://www.codecademy.com/tracks/php.
[Access: 15/04/2015]

[21] PHP crawling framework. Goutte. https://github.com/FriendsOfPHP/Goutte.
[Access: 15/04/2015]

[22] Bootstrap framework. http://www.w3schools.com/bootstrap/.
[Access: 15/08/2015]

[23] Gantt Diagram. https://teamgantt.com/.
[Access: 1/09/2015]

[24] Exploits database. https://www.exploit-db.com/.
[Access: 15/08/2015]

[25] CVE database. http://www.cvedetails.com/.
[Access: 15/08/2015]

]27] Security mailing lists. http://www.securityfocus.com/.
[Access: 15/08/2015]

[28] Security mailing lists. http://seclists.org/.
[Access: 15/08/2015]

[29] Web Pentesting. OWASP top 10 vulnerabilities.
https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet.
[Access: 21/09/2015]

[30] Python IMAP example. https://yuji.wordpress.com/2011/06/22/python-imaplib-imap-example-
with-gmail/.
[Access: 20/08/2015]

[31] Python SMTP example. https://docs.python.org/2/library/email-examples.html.
[Access: 21/08/2015]

http://infosecosaurus.blogspot.com.es/2015/02/isc2s-vulnerability-central-what-it-is.html
https://www.s21sec.com/es/sobre-s21sec/news-a-events/noticias/234-s21sec-presenta-su-primer-informe-anual-de-vulnerabilidades
https://www.s21sec.com/es/sobre-s21sec/news-a-events/noticias/234-s21sec-presenta-su-primer-informe-anual-de-vulnerabilidades
http://www.security-database.com/
http://blog.osvdb.org/category/vulnerability-statistics/
http://doc.scrapy.org/en/latest/intro/tutorial.html
http://www.w3schools.com/js/
https://www.codecademy.com/tracks/php
https://github.com/FriendsOfPHP/Goutte
http://www.w3schools.com/bootstrap/
https://teamgantt.com/
https://www.exploit-db.com/
http://www.cvedetails.com/
http://www.securityfocus.com/
http://seclists.org/
https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://yuji.wordpress.com/2011/06/22/python-imaplib-imap-example-with-gmail/
https://yuji.wordpress.com/2011/06/22/python-imaplib-imap-example-with-gmail/
https://docs.python.org/2/library/email-examples.html

VULDRONE 2015

90

[32] Several coding and Apache configuration solutions. http://stackoverflow.com/.
[Access: 22/09/2015]

[33] Web Pentesting. XSS cookie exploiting.
https://pentesterlab.com/exercises/xss_and_mysql_file/course.
[Access: 21/09/2015]

[34] Java Mail Processor email receiver. http://www.javatpoint.com/example-of-receiving-email-
using-java-mail-api.

[Access: 30/07/2015]

[35] User Interface Bootstrap snippets. http://bootsnipp.com/.
[Access: 17/08/2015]

[36] HTTPS definition. https://es.wikipedia.org/wiki/Hypertext_Transfer_Protocol_Secure.
[Access: 18/09/2015]

[37] Web Pentesting. Sqlmap definition and demo tutorial. http://sqlmap.org/.
[Access: 21/09/2015]

[38] List of useful HTTP Headers. https://www.owasp.org/index.php/List_of_useful_HTTP_headers.

[Access: 22/09/2015]

http://stackoverflow.com/
https://pentesterlab.com/exercises/xss_and_mysql_file/course
http://www.javatpoint.com/example-of-receiving-email-using-java-mail-api
http://www.javatpoint.com/example-of-receiving-email-using-java-mail-api
http://bootsnipp.com/
https://es.wikipedia.org/wiki/Hypertext_Transfer_Protocol_Secure
http://sqlmap.org/
https://www.owasp.org/index.php/List_of_useful_HTTP_headers

