UNIVERSIDAD CARLOS Ill DE MADRID
ESCUELA POLITECNICA SUPERIOR

TELEMATICS ENGINEERING DEGREE

FINAL DEGREE PROJECT

VULDRONE: A VULNERABILITY CRAWLING AND
MANAGEMENT TOOL

o oug” \ o1l
o110 o171
P11l 10 100!

- 11m

1011101 O
~0:101110: 0

Author: Daniel Martinez Adan
Tutor: Manuel Urueiia Pascual



VULDRONE 2015




VULDRONE 2015

Acknowledgements

| want to thank all those people who have been with me through all this way and
supported me on one way or another.

| want to thank my coworkers from whom | have learnt a lot of things and
improve a lot, especially technically, and more specifically, on the computer security
field. | want to thank Javier because from the start has fully trusted on me to develop
this solution and gave me all the facilities in order to carry this out and my college Rafa
that also trusted on me and wanted this solution to turn real. Of course, | want to
mention here Carlos, who has always being there with me and has helped me with
many technical problems about a wide range of topics, and Luis; he has also gave me
ideas that have led to the right solution. Also, special thanks to Javi and Adri because
they have work with me and helped me throwing light at some point where it was
decisive.

My university friends have been a very important support through this entire
path. | will start with my friend Cesar with whom | share tons of information and
knowledge and served as an inspiration on multiple stages; Rodrigo, he really
supported this project since the moment he saw it working, which gave me lot of
strength to keep going; my friend Yago, an experienced programmer also has thrown
light on things | am not so experienced with; Nister, with whom | share the security field
and gives me another point of view; Fernando, he has always been available to help me;
and Robert, from whom | have picked up the love for the “low-level’ of computer
science and how really things work.

| don’t forget my old-friends Pablo, Juan and Alvaro, who really made me grow
as a person, and always been with me.

| also want to thank my tutor for supervising this work and giving me advice
throughout the project.

| want to specially thank my girlfriend Laura for always supporting me, trusting
me and my projects and being there with me no matter what and, last but not least, in
fact the most important: my family, without them | wouldn’t be here at all; they have
done anything possible for me to be here and to be who | am.




VULDRONE 2015




VULDRONE 2015

Abstract

As the time goes on, software doesn’t stop growing more and more, and
the consequence is that security vulnerabilities and exploits are increasing
exponentially.

Users and, especially companies, are becoming more aware of how
important is computer security and how bad it can end up being a hacker’s
victim. Big companies want to know when a vulnerability concerning their
products appears, so that they can take a decision on whether stop using the
software, or patching the software.

In this report, it is step by step explained how vulnerabilities and exploits
work, how hackers take advantage of those vulnerabilities, the importance of
taking certain procedures into account such as patching and of course, being
aware of our product vulnerabilities which is, in fact, the aim of the solution.

This research offers a solution regarding this matter. The user can insert
in the application his sensitive products and, at he can see at a glimpse all the
vulnerabilities that concern their products, so that he is aware of his own product
weaknesses and can decide what to do next.




VULDRONE 2015




VULDRONE 2015

Resumen

A medida que avanza el tiempo, el software no para de crecer mas y mas, y
la consecuencia es que las vulnerabilidades de seguridad y los exploits estan
creciendo exponencialmente.

Los usuarios, y especialmente las compaiiias, estan mas concienciadas de
lo importante que es la seguridad informética y como puede ser de grave el
convertirse en la victima de un hacker. Las grandes compafiias quieren saber
cuando una vulnerabilidad de los productos que usan aparece para poder tomar
una decision ya sea parar la aplicacién o aplicar un parche.

En esta memoria, se explica paso a paso como funcionan vulnerabilidades
y exploits, como hackers aprovechan estas vulnerabilidades, la importancia de
tener en cuenta ciertos procedimientos como el parcheo y, por supuesto, el ser
consciente de las vulnerabilidades de nuestros propios productos, lo que es, el
objetivo de esta solucion.

La investigacién ofrece una solucién en lo que a esta materia respecta. El usuario
puede insertar en la aplicacion sus productos sensibles y puede, en un simple
vistazo, ver todas las vulnerabilidades que tienen que ver con sus productos, asi,
por lo tanto, el usuario es consciente de las debilidades de sus propios productos y
puede decidir qué hacer después.




VULDRONE 2015

INDEX
ACKNOWIEAZEMENTS ....eiii ittt e et e e e et e e e sbte e e e ebteeeesbteeesebtaeeesaseaeeessensesaseneananes 3
Y o1 - Tot AF TP PRSPPI USR PP 5
=T [ =T o ST PPPPPPPPON 7
N [ oo [V T 4 T o PP T PPV P PPROPRPN 12
1.1 Structure of this dOCUMENT ....co.iiiiiiiieeee e s s 14
2. StAte Of the AT ettt st sttt b e b e b e st e e en 15
2.0 VUINEIADIIIES. c.eee ettt ettt sttt e st e e sat e e s e et esabeesbaeesabeeebae s 15
2.2 CVE et aan 17
2.3 The security vulnerability [ife-CYClE ... 19
AN (o) (o 43R [ o A=Y Co B I- VA RS 21
2.5 OTher SOIULIONS ...ttt ettt et et st sttt b e e s beesaeesaeeenneens 24
2.5.1 SeCUNity database ......ccoccuiiiiiciiee e et e e e e e e e s enraeeeeans 24
2.5.2 VUulnerability CENTral.......uiiiiiiiee et e e s e e s s ae e e e sbae e e s sbaaeeeeaes 25
3. Design and implementation .......c.uiie e e e e et e e s ae e e e saraeaeean 26
3.0 DAtADASE et sttt et sre e saeeereere e 28
3.1.1 VUINEIabilitIES _CVE cueeiiiiiiee ettt ettt e e et e e e e et e e e e e bae e e e enteeeeentaeaeenns 29
3.1.2 VUulnerabilities_Mail......ccueeiieiiiee e e e eaes 30
3.1 PrOQUCES ..ottt s e s ne e s e s ree e sreeenee s 30
I o] Lo T {3 31
R T U =T PP 32
3.0.0 ROQUESTS .. s 33
IR A A 1= £ TP PP PPP PR 34
3.2 WED CraWlers ...ttt ettt ettt e s e e bt e sar e s be e e sare e sbe e e eneeesareeesaneesanes 35
30 R OV =2 o o [ PRSI 37
I I =) (o] Lo 1 oY o1 o [T PRSI 46
3.2, SCrAPY STATES. s 50
R (o114 F- | BT o] o] o - 1 o TSRS 51




VULDRONE 2015

3.3 MAIL PrOCESON ..ttt ettt ettt e et e st e e bt e e sabeesabe e e sabe e s bt e e snbeesaneeesabeesares 53
3.3 1 Ml NAIVESEEE ettt ettt et sttt et e snee e sbeeenaeeas 53
3.3.2 M SENTET ettt ettt st st sttt eeereens 56

B4 USEI INTEITACE ...ttt ettt sttt ettt e bt e s bt e sae e st e s bt e bt e beenbeesbeesaeeenneenreens 58

TV 1 [T Y o] o H TP U TP PRSP 69

0t I ¥ Ty o T =1 11 Y PRSP 69

4.2 WED PENTESTING c.uvviii ittt sttt e e ettt e s e st e e s st e e e e abee e e esabeeeeesabaeeesnnreeeeenanees 72
0 B © LI 1 =Tt { [ ] o DO OO U P PP PO UOPRTPPPPT 72
4.2.3 Man In The Middle attacks.......c.coveeieeiieiieeeeeeeee et 74
4.2.4 Cross Site SCrPLING (XSS) cuurrieieiiiieieiiiie ettt et e e e e esrre e e e ste e e e esatae e e seataeeeesasaeeeeansaneans 77
4.2.5 DireCtory LiSTING coooeeiiei e, 79
4.2.6 UNeXPECLEd REOUESTES...ciiviiieiiiiiieieiiete ettt ee sttt e e st e e e st e e e s eataeeessataeeessataeeesnnsaeessnssseeeas 80
4.2.7 Sensitive cacheable iNformation ... 81
AV Y oY1 T o = SRS 81
e N @ [T F- Vol {1 Y-S SRS 82

5. Planning @nd BUEET ......coouiiiee ittt ettt e e e tte e e e et e e e e ebte e e s eabtaeeseabteeeessteeeesantanaesnns 83

LT 2 T o F= -] PP ST 84
5.0 1 STAfF'S COST cuneiiiiiie it s ere e 84
5.1.3 Software and liCENSES COSE....c..uirmiiiriiiiierie ettt e 85
5.1 A TOTAl COST ettt ettt e b e s bt e s at e st sab e et e e beesbeesbeesaeeeaeeebeens 85

6. CoNCIUSION AN FULUIE WOIKS .. .coeiiiiiieieet ettt st sttt sbe e st se e e ens 86

6.1 FULUIE WOTKS ..ttt ettt sttt et b e s bt e sat e st e et e e b e e beesbeesbeesatesaneenneens 87

211 o1 T4 =T o o 1 PRSPPI 88




VULDRONE 2015

FIGURES

Figure 1 — Most common vUINErabilities [7] .....ueeeeeiiieeiiiieee e e e 16
Figure 2 — CVSS Score diStribDULION .......oeiieiiiieiiiiiee ettt vee e e e e e e e v ae e e e nnes 18
Figure 3 —Zero-day lifeCyCle [12] ... ettt et e e e e aree e e e e e e e enrae e e ennes 22
Figure 4 — Application BIOCK DI@gram ........ccueeeiiiiieiieiiiee et et e e e re e e s e avae e e eabe e e e enraee e enneas 27
Figure 5 — CVEdetails crawling starting Page .....ccuveeeeciieee ettt e e e s e 38
Figure 6 — CVEEtails CVE’S PAZES..ccciiuiieeeiiieeeeiiieeeeetteeeeetteeessateeeesateeeeeateeesesraeesentesesesrenesannsens 39
Figure 7 — CVEdetails XPath page SEIECTON ......ccuciiiiieiee ettt e e e e 39
Figure 8 — CVEdetails XPath CVE SEIECTON ......coovuiiiieciiee ettt e e e 40
Figure 9 — CVEdetails CVE @XamMPIE .....uuiiiiiiiieecciiee ettt sttt ettt e e e e ra e e e s e e e s s nbae e e snnes 40
Figure 10 — CVEDetails XPath CVE field SElECIOr .....ciccviiiiiiiiiectee et 41
Figure 11 — CVEDetails XPath Description field selector........cccoeuviiiiiciieiiiee e 41
Figure 12 - CVEDetails XPath P_Date and U_Date Selector .......cccuvvevcieeiiiiiiee e 42
Figure 13 — CVEDetails XPath Score field SeleCtOr .....c.uviviviiiiiiee e 42
Figure 14 — CVEDetails XPath Type field SEleCtor.......cuuiiiiiiiiiieeeccee e 42
Figure 15 — CVEDetails XPath Vendor SEIECION .......cccuviiiiecieee et 44
Figure 16 — CVEDetails XPath Product SEIECLON........cccuvviiiiiiiie ettt e e 44
Figure 17 — CVEDetails XPath Version SEIECTON ........cccuuiiiiiiiiieecciee et et 44
Figure 18 — EXploitDB crawling Starting Page.....cc.ueeeeciieeeeiiiee e et e et e ettt e e ree e e e bee e e e baee e eaneas 47
Figure 19 — EXploitDB eXploit SAMPIE.....cii e e e ree e e 48
Figure 20 — ExploitDB XPath ID field SEIECOr........uiiieiieeeecee e e e 48
Figure 21 — ExploitDB XPath CVE field SEIECION.......ccccuiieeeieee et e 49
Figure 22 — ExploitDB XPath Date field SElECtOr .....civvviiiiiieeeeeee e 49
Figure 23 - ExploitDB XPath Exploit field SEleCtOr......c.uuvviiiiiiiieeeecee e 49
Figure 24 — User Interface flowchart diagram .........oocuviiiiiiiii i 60
Figure 25 — User INterface LOZIN VIBW .....ccccuuiiiiiiiiie ettt et vae s s vae e e nvae e e e 61
Figure 26 — User INterface Main VIBW .......ccuiiiiiciiiiecciiee ettt e e s vae e s e e e s enrae e e enaes 62
Figure 27 — User Interface Add Products VIEW .........cccuueeiiiiiiieiiiiieeccieeeeciee s eeee e e sve e e e vae e e e 63
Figure 28 — User interface autoCoOMPIete VIEW .......ccccuviiiiiiiiie ettt e 64

s
10




VULDRONE 2015

Figure 29 — User iNterface CVES VIEW .....ciivciiiiiiiiiiieeiiee s ssitte e st e e e sitee e ssive e e ssareeesssseeessnbeeessnnnens 65
Figure 30 — User interface EXPIOitS VIEW ..oc.viiiiiiiiiiiciieeccete ettt ee e s e s 66
Figure 31 — User interface MailSs VIBW ......cccuiiiiiiiiiicciiee ettt et e e vee e s sbee e s bee e s s 66
Figure 32 — User interface AIBItS VIEW ....cccuuiiii ettt e e vae e e e e e e nrae e e enneas 68
Figure 33 — SQLMap databases attack .........ccceecuiiiiiiiiiee e e 73
Figure 34 — SQLmap users and passwords attack ........cccceeccviiiiciiiic e e 73
Figure 35 — Wireshark HTTP user and password sniffing........ccccccveieiiiieiiiiiiiee e e 75
Figure 36 — Wireshark TLS SNiffing .....c..ueeieiiiiiiciiee ettt e e e ree e e e 76
Figure 37 — SSLscan certificates ChECKING ......cooociviiieieeeee e e e 76
Figure 38 — SOCAT listenning for COOKIE .....uuiiiiiiiie e e e 78
Figure 39 — Vuldrone Directory listing vulnerability ........ccccoueiiiiiiiiinie e 79
Figure 40 — Vuldrone Directoy Listing vulnerability fixed .......cccccoviiiviiiiiiiiee e, 80
= U Rl o oY [=Tot f o] =T o o 11 =S RSP PP 83

11



VULDRONE 2015

1. Introduction

Nowadays, in a modern society, a high percentage of the people use a
device with many software applications installed on it. But software applications
are prone to having vulnerabilities, mostly because of either programming
mistakes or by using third-party software that is already vulnerable.

The common procedure when a company or a private user becomes
aware of a security problem in any of the software it is using, is, either patching
the vulnerability, if it's possible, or just avoiding using the affected software. In
any case it is of paramount importance for the user to know what products are
vulnerable, especially for big companies whose servers store sensitive
information, or companies that are running applications that cannot misbehave.
In those cases, if the application gets compromised and the vulnerability is
critical, it could even lead the company to bankrupt.

For example, a vulnerability on a bank, that allows someone to figure out
another user’s credit card or account password, would lead into chaos. This is
one example of the multiple scenarios where security plays a very important role,
and where a single problem can cause terrible consequences. Obviously, no
one wants this to happen, security is, as the time goes on, becoming more
important for companies, and people that work with sensitive applications.

People using software want to be aware of when a vulnerability
concerning their products has being released, because that way, they can take a
decision, they can uninstall the software and use another solution, or they can
patch it, and they can stop their production if they think it is likely from them to
be hacked and have much to lose. Summarizing, they want to be aware of what
is their products security state.

Vulnerabilities can be found by googling in different websites, like
http://www.cvedetails.com/ or http://osvdb.org/ and one can also subscribe a
mailing list such as Bugtraq that announces product’s vulnerabilities whenever
one is released. That way there could be people constantly looking for their
products and checking whether those are vulnerable or not.

Checking out the vulnerabilities such active way, on an exceptional time
(e.g for a high profile vulnerability) it is alright, because it doesn't consume much
time to carry this out. The problem is when a company has multiple products
with different versions and the security team wants to know their products state
constantly, not one-time.

e
12



http://www.cvedetails.com/
http://osvdb.org/

VULDRONE 2015

This report explains in detail what a vulnerability and an exploit is, what is
the life-cycle of a vulnerability, how is the process from when an exploit is
discovered to the day the vulnerability is published to the public, which is called
“zero-day”, and, it presents a solution to this problem: how to be aware of when
a product is vulnerable.

This report explains thoroughly, a proposed solution, an application called
Vuldrone, which is a vulnerability crawling and management tool. Vuldrone
allows users to log in and insert the products they want to know the
vulnerabilities from. They can also decide whether they want to be alerted of
vulnerabilities without known exploits or not, because, if there is an exploit for a
product, probably the measures taken could be different than if there is not yet
an exploit, because that means the product is prone to be compromised and
depending how critical it is, could compromise the behavior of the whole system,
access passwords, etc.

Vuldrone also has an autocomplete function for vendor and product in
contrast with the cvedetails website itself. So it makes easy for the user to
request the products properly. When a user requests products, the user can
access their vulnerabilities and, if they exist, their known exploits.

The solution put together information from vulnerability websites and
mailing lists, which keeps the user from gathering information from multiple
sources as everything is on the same application. Another feature of the
application is alerting: whenever a new vulnerability is released concerning the
products the user has requested, she automatically receives an email, just for
having logged in the website with an email. When a new alert appears, it is also
displayed in the website with a number that represent the number of alerts. The
user can delete both products from their requests and alerts, if she doesn’t need
them anymore

The application has different modules very well differentiated and it uses
several technologies and programming languages, each one chosen not a
product of a rash decision but thoroughly compared with others that could have
offered similar solutions.

13



VULDRONE 2015

1.1 Structure of this document

Section 2 introduces the computer vulnerability field, explaining what a
computer vulnerability and a CVE is as well as the lifecycle of a vulnerability, from
the release to the patching and it also explains what exploits and also the concept
of zero-day attacks and its lifecycle. Finally, this 2" section presents and compares
two other software commercial alternatives to Vuldrone and explains why
Vuldrone offers a better solution than the current market alternatives.

Section 3 delves into the project design and implementation in detail. It
describes Vuldrone’s different modules: the database, the Web Crawlers, the Mail
Processor and the User Interface and why it has been each technology chosen
among another technologies that could have offered a similar functionality.

Section 4 shows all the performed tests to the application and a Web
Pentesting subsection in order to test Vuldrone’s security, as it could be a target for
hacker’s attacks since its functionality is to keep systems from beign compromised
by alerting the users, which would hinder the hacking process.

Section 5 describes the working planning and contents a Gannt diagram
that displays clearly the project’s work distribution. Section 5 also has a subsection
called Budget that presents what are the application’s partial and total costs.

Finally, section 6 is the project conclusion. In this section it is explained how
well does the application meets the initial requirements and, in a subsection named
Future works there have been explained certain improvements that would be
appropriate to include in Vuldrone.

14



VULDRONE 2015

2. State of the art

2.1 Vulnerabilities

A security vulnerability is, by definition: [4]

“A security vulnerability is a weakness in a product that could allow an
attacker to compromise the integrity, availability, or confidentiality of that
product.”

It is worth dissect this definition and explain the important concepts in
order to understand perfectly what it means, since all this project revolves
around security vulnerabilities.

A weakness in a product means that the design has a vulnerability. That
can be exploited and make the product misbehave. Using FTP in a product isn’t
a vulnerability itself, even though the traffic travels on plaintext. But if the product
uses SSL and the data is on plaintext because of a weakness exploitation that
would constitute a vulnerability.

Integrity refers to reliability, so a weakness in a product that allows an
attacker to modify data without permission would constitute a vulnerability. In
contrast, a bad application design that allows the administrator to change any
file permission of the system wouldn’t be considered a vulnerability.

Availability refers to the resource access, so, if an attacker is able to deny
the service in a product by exploiting a weakness, would be compromising the
availability of a product. But if the product itself is designed to only allow one
request per minute, and thus, being much less available than another one with
an exploit, that wouldn’t constitute a vulnerability, unlike the previous example.

Confidentiality refers to accessing a resource only to authorized people,
so, if an attacker could access a non-public resource by taking advantage of a
weakness that would constitute a vulnerability. On the other hand, if the
application has a poor design and the location of a file are revealed, although
that could be used for bad purposes, that wouldn’t be classified as a security
vulnerability.

15



VULDRONE 2015

Having the software up to date and knowing what third-party components
an application is using, is crucial. Therefore, it is important to consider the
following facts: [7]

e The most common root of all vulnerabilities is poor patching and software
maintenance.

e A robust patching policy and procedure could have been avoided 34% of the
vulnerabilities discovered on 2014.

e Over 20% of patch related vulnerabilities are rated as a critical risk.

e Approximately 16% of the vulnerabilities could be mitigated by using HTTP
Security Headers, which doesn’t affect system performance. Only 1% of
web applications have adequate HTTP Security Headers.

e Patching vulnerabilities relates to both operating system and software
frameworks, such as PHP, Spring, Symphony, Wordpress, Apache Server,
Joomla...

e Using commonly used frameworks, such as Wordpress and components
like jQuery, can introduce vulnerabilities into web application and servers,
even though the developer makes no programming security mistake.

e Security components and frameworks should be a consideration for critical
applications.

The most common vulnerabilities are displayed in the following image:

‘ 39% ‘ 30% ‘ 25% ' ‘ 20% ' ‘ 17% ' ‘ B% , ‘ 3% '

X55: Content Aurtharisation CSRF Session Information  Authentication saL Other
Injection Management Leakage Injection Injection

Figure 1 — Most common vulnerabilities [7]

As it can be seen, Cross-Site Scripting (XSS) is the vulnerability that most
frequently appears. This is a type of attack in which malicious code is injected
into otherwise trusted websites. XSS can be used to deface a website, steal
user’s credentials, install malware or redirect users to other websites.

16



VULDRONE 2015

There is an average density of 2.4 XSSes per web application. It has
been discovered that every web application has two high critical vulnerabilities
on average, as a result of poor coding practices. Those high risks include
business logic issues, vulnerabilities injection, client side security issues and
authorization weaknesses.

2.2 CVE

CVE stands for Common Vulnerabilities and Exposures, and it is a
dictionary, rather than a database, of common names for announcing known
information security vulnerabilities.

CVE was launched in 1999 when most information security tools
employed their own databases with their own names for security vulnerabilities.
At that time there was no significant variation among products and no easy way
to determine when different database where referring to the same vulnerability.

CVE common identifiers makes it easy for every network, database and
tools to “speak” the same language, to share data regarding vulnerabilities
without room for mistake, as every tools has the same identifier. This keeps
tools from having different databases with different vulnerability definitions,
which would be difficult for organizing the common vulnerabilities, so the CVE
remediates this problem. That way, organizations can share the vulnerabilities in
a simple way, with no need to rewrite the vulnerability description, so, CVE
provides easier interoperability.

Each CVE Identifier includes a CVE identifier number, a brief description
of the security vulnerability or exposure, and any pertinent references to other
sources that could complete the vulnerability information.

The process of creating a CVE ldentifier begins with the discovery of a
potential security vulnerability. Then, a CVE Numbering Authority (CNA) assigns
a CVE ldentifier and posts on the CVE List the new vulnerability or exposure. As
part of its CVE management, the MITRE Corporation works functions as the
Primary CNA.

CVEs have a score, the so-called CVSS, which is a standard for
assessing the severity of computer system security vulnerabilities. The scores
are based on a series of measurements (called metrics) based on expert
assessment. The scores range from 0 to 10. Vulnerabilities with a base score in
the 7.0-10.0 range are High, those in the 4.0-6.9 range are Medium, and in 0-3.9
are Low. Those are the metrics used for computing the score.

e
17


https://en.wikipedia.org/wiki/Technical_standard
https://en.wikipedia.org/wiki/Computer_security
https://en.wikipedia.org/wiki/Vulnerability_(computing)
https://en.wikipedia.org/wiki/Software_metric

VULDRONE

2015

Access Vector Network  The vulnerability may be accessed from any
network that can access the target system -
typically the whole Internet

Access Low There are no special requirements for access

Complexity

Authentication  None There is no requirement for authentication in order
to exploit the vulnerability

Confidentiality  Partial The attacker can read some files and data on the
system

Integrity Partial The attacker can alter some files and data on the
system

Availability Complete The attacker can cause the system and web

service to become unavailable / unresponsive by
shutting the system down

Figure 2 shows the current CVSS Score distribution for all known vulnerabilities:

Distribution of all vulnerabilities by CVSS Scores Vulnerability Distribution By CVSS Scores
CVSS Score Number Of Vulnerabilities Percentage CV55 Score Ranges
59 0.70 Mo
2530 .
&0 0.70 oo
249 3.00 3-4
3-4 372 4.50 45
1837 58
4-5 1637 19.60
1251 o7
2580 30.90 1108 cas M
1106 13.20 =B-9
1251 15.00 372 e
50 g0 249 41
41 0.30 -
996 11.50
Total 8351

Weighted Average CVSS Score: 6.5

Figure 2 — CVSS Score distribution

18




VULDRONE 2015

2.3 The security vulnerability life-cycle

Once the concepts of what a security vulnerability and CVE is are
introduced, this section explains what the vulnerability lifecycle is from the
discovery to the installation of a fix on the affected system.

These are the stages of this cycle:

e Discovery: When a vulnerability is discovered, engineers verify it and rate
how critical is it. This allows prioritizing the issues with greater risk to be
handled first.

e Research: When a vulnerability is discovered outside the affected company
domain, it must be researched and reproduced to understand the risk that it
entails. By doing that, it leads many times to finding out other vulnerabilities
that also need fixes.

e Notification: A CVE assignment that records the vulnerability and links the
problem with the fix for all applicable implementations is released.
Sometimes the vulnerability is inherent to other software and that host
software would relate to that CVE.

e Patch development: Developing the fix is one of the most difficult parts of
the process. The fix must completely solve the problem out and, besides,
not introducing any other problem along the way. So, the affected company
reviews all patches to verify this new patch fixes the underlying vulnerability
while checking for future possible future problems. Sometimes, a company
comes up with their own patches to fix a third-party software vulnerability.
When this happens, the company fixes not only their own software, but also
provides this fix back to the master software repository, so that, all the new
software shipped by the master repository is clean of vulnerabilities.

e Quality assurance: The Company must validate the vulnerability fix and
check for possible future problems. This is as important as the patch
development, and this step can take a significant amount of time and effort
depending on the package. However this step is absolutely worthy in spite
of these drawbacks as it substantially reduces any possible risk that the
security patch could have not fixed.

e Documentation: In order to save time for the customers to understand what
a certain vulnerability is based on. Companies spend time documenting

19



VULDRONE 2015

what the flaw is and what can it do. This documentation is used to describe
vulnerabilities released on the CVE pages.

Having a more personal description of issues that is easier to understand
than either the developer comments in patches, or the CVE pages; is
important to the customer who wants to know about the flaw. This allows
customers to properly assess the impact on to their own environment, and,
thus, make the appropriate decisions on if, how and when will be deployed
in their systems.

e Patch shipment: Once a fix has been verified, it is sent to the customers. At
the same time the fixes are made available in the repositories. Many
companies announce it in a mailing list, such as Bugtraq or Full Disclosure.
The mailing list will also provide information on the vulnerability.

Customers will begin seeing updates available on their system almost
immediately.

e Follow-on support

There are many cases on which customers need technical support for
maintaining all the company products.

There are certain companies that have a technical support team for when
guestions concerning security vulnerabilities. The team does not only
answer questions, about recent vulnerabilities but also helps customers
applying fixes.

20



VULDRONE 2015

2.4 Exploits and Zero-days

A zero-day attack is a cyber-attack that consists in exploiting a
vulnerability that has not been yet disclosed publicly.

There is almost no defense against a zero-day attack. While the
vulnerability remains unknown, the software affected cannot be patched and
anti-virus cannot detect the attack through signature-based scanning.

For cyber criminals, unpatched vulnerabilities in popular software like
Adobe Flash, Microsoft Office or Wordpress, represents a free pass to any
target they plan to attack. For this reason, the market value of a new exploit is
very high. The price can vary from 5.000$ to several hundred thousand dollars,
depending on a number of factors. A vulnerability that exists in multiple versions
of Windows operating system will be much more valuable that one existing in a
single version of software with the same popularity. But one exploit that targets
software more difficult to be cracked is more valuable.

Examples of famous zero-day attacks are, the 2010 Hydraq trojan, also
known as the Aurora attack, was a zero-day which purpose was stealing
information for several companies. Another famous attack was the 2010 Stuxnet
worm, which combined four zero-day vulnerabilities to target industrial control
systems.

In 2014, around 83% of vulnerabilities have patches available at the
disclosure day. Thus, there is still a high percentage of products that remain
unpatched, which provides an opportunity for hackers to exploit the vulnerable
applications once it is disclosed publicly. [8]

As it has been said before, a zero-day attack is an attack exploiting a
vulnerability not yet disclosed to the public. A security vulnerability starts as a
programming bug that has not properly tested. Cyber criminals discover the
vulnerability, take advantage of it and exploit it. Then; they package the exploit
with malicious payload to conduct attacks against the selected targets. As it has
been explained before, when discussing the vulnerability life-cycle, after the
vulnerability is discovered by the security community and announced in a public
advisory, the vendor of the affected software releases a patch for the
vulnerability, after that, vendors update anti-virus signatures to detect the exploit.
However, in some cases the exploit is reused, and even additional exploits are
created based on the patch. This is why a good patch development and quality
assurance parts are both of paramount importance.

21



VULDRONE 2015

The following events constitute the zero-day life-cycle; each event is
going to have a time, used afterwards on Figure 3:

e Vulnerability introduced: A bug, commonly a programming mistake, is
introduced in software that is later released and deployed on hosts around
the world. (time = tv).

e Exploit released: Black hat hackers discover the vulnerability, create a
working exploit and use to conduct stealth attacks against selected targets
(time =te).

e Vendor vulnerability discovery: The vendor learns about the vulnerability
either by himself or from a third-party report, assesses its severity, assigns a
priority for fixing it and starts working on a patch (time = td).

e Vulnerability public disclosure: The vulnerability is disclosed, either by
the vendor or a third-party, on public forums or mailing lists. A CVE Identifier
is assigned to the vulnerability (time = t0).

e Anti-virus signature release: Once the vulnerability is disclosed, anti-virus
vendors updates their signatures, because that way, future attacks with the
same exploit can be detected using heuristic detections for the exploit, so,
host with updated signatures are protected against the exploit (time = ts).

e Patch release: On the disclosure date or shortly afterwards, the software
vendor releases a patch for the vulnerability. After this point, hosts that have
applied the patch are no longer vulnerable. (time = tp).

e Patch deployment completed: All vulnerable hosts worldwide are patched
and the vulnerability doesn’t have impact anymore, at this point, the attacks
end. (time = ta).

o e o

1
t, L Ly b L & L
| Zero day attack | Follow-on attacks
[ L

L Window of exposure
I

Figure 3 — Zero-day lifecycle [12]

22



VULDRONE 2015

A zero-day attack is characterized by a vulnerability that is exploited
before it is disclosed (t0 > te).

In some cases, software vendors fix bugs and patch vulnerabilities in all
their product releases, and, therefore, some vulnerabilities are never exploited
or disclosed. In other cases, vendors learn about a vulnerability before it is
exploited, but consider it a low priority, also cyber criminals delay the release of
exploits until they come across a suitable target, to prevent vendors from
discovering the vulnerability and, thus, working on a patch.

While CVE sometimes indicates when vulnerabilities were reported to the
vendors, it is generally impossible to determine the exact date when the vendor
or the cyber criminals discovered the vulnerability or even which discovery came
first. Therefore, the disclosure date of the vulnerability is considered as “day
zero”, which is, the end of the zero-day attacks, if any.

23



VULDRONE 2015

2.5 Other solutions

Another solution for the aim of the project would be to manually look for
the CVEs frequently and for manually subscribe to mailing lists and filter the
emails in order to, using different sources, do a research about the user
products. This would be the worst solution, the most time consuming one, and
hasn’t been considered a feasible solution.

Instead, this section is going to discuss other applications that can be

used for a similar purpose as the one pursued in this project. Those applications
are Security Database and Vulnerability Central.

2.5.1 Security database

Security database is a website that offers solutions for vulnerability
detection. It has many interesting features:

e Multiple alert sources: CVE, Microsoft Bulletin, Debian, Mandriva, Redhat,
VU-Cert, Cisco, Sun, Ubuntu, Gentoo, US-Cert, VMWare, HP.

e |t possible to monitor products every hourl.
e |tis also possible to subscribe to a mailing list.
e There is a blog where interesting security related news are published.

On the other hand, besides not being free, the cost of monitoring 10
products with 100 different versions is 999% per month. The website has many
drawbacks too:

e |tis not intuitive at all for the user to get where she wants to.

¢ The information is completely disperse, and the current arrangement does
not seem to be logical and easy for the user to find.

e There is not autocomplete function for the vendors and products.

24



VULDRONE 2015

e The mailing list is completely separated from the rest, instead of being
transparently integrated with the other alerts.

e |t doesn'’t link exploits to CVEs

e Even though there are many alert sources, the other ones which are not the
CVE, does not really contribute, because all the important information is on
the CVE pages.

2.5.2 Vulnerability Central

This is another solution for vulnerability detection, but for using this
application is necessary to provide ISC2 credentials because it is a member
benefit, so, it is not open to everyone.

Even though it is a private benefit, it still has features that could have
been better, and that Vuldrone does offer:

e The information is composed mostly from CVEs. It doesn’t display
information from mailing lists such as Bugtraq or Full Disclosure.

e The displayed information is too much summarized. It is necessary to click
on external links to see more detailed information.

e It doesn’t send emails to the user when a new vulnerability is published.
e |t doesn’t provide information about the available exploits for a given product.

In spite of all those drawbacks, it has a feature that could be great
advantage for certain users, which is a better filtering. It allows filtering the
available information based on keywords and key phrases.

25



VULDRONE 2015

3. Design and implementation

The first implementation idea was, that the user was able to select the
products he wanted to know the vulnerabilities from, inserting the products on a
form and right after the form was submitted with the desired products, start
crawling different sources of vulnerabilities like http://www.cvedetails.com/
http://www.securityfocus.com/ and https://oval.mitre.org/ and gather all the
information about the CVEs “on the fly”.

This first idea seemed to be a good approach, because it consisted on
just a simple form for the user, a crawler and a page showing the information
well-formatted could be good enough for the user to gather information about
different sources just using one website. But this implementation had two big
problems:

1) Crawling several websites for several products it’s relatively complex and it
takes time. With this first approach implemented, the delay time for having
the results was about 3 minutes, depending on how many products the user
inserted so, it took too much time for the user to have the crawled products
given, resulting it a tedious process whenever a user wanted to look for
products vulnerabilities.

2) Another big problem is that, the most recent vulnerabilities are not stored
into http://www.cvedetails.com/ after a while. So a user could own a
vulnerable product without being aware, if she uses cvedetails as the only
source. The most recent vulnerabilities are reported on mailing lists, like
Bugtrag.

So, as for the first problem, the solution for the slow responses has been
to, first, store all the existence known vulnerabilities from cvedetails in a local
database. That way the user now to queries a database, with the vulnerabilities
related to that specific user, which is far quicker than crawling the websites while
interacting with the application itself.

As for the second problem, the project has an email harvester subscribed
to the most active mail lists: (Bugtraq, Security Focus) and those vulnerabilities
are also stored in the database.

The project consists of four important modules very well differentiated:
the database, the web crawlers, the mail processor and user interface.

26


http://www.cvedetails.com/
http://www.securityfocus.com/
http://www.cvedetails.com/

VULDRONE 2015

Application block diagram:

“__  SecurityFocus

PHP ‘
Mail processor
|
MySQL
Crawler Update CVE Crawler CVE Crawler Exploits
2 pdate _‘ . - ExploitDB \
- - - e —

Figure 4 — Application Block Diagram

27



VULDRONE 2015

3.1 Database

MySQL has been chosen as the Vuldrone database for several reasons:

e |tis widely used. Almost any Linux or Windows based web host server
supports MySQL. It's a component of the LAMP stack: Linux, Apache,
MySQL and Perl/PHP.

e |t's easy to find help. There are countless sites to find a solution for any
problem.

e It's considered mature. While it has its defects, it is considered a mature
technology in the industry and vendors try to have their application
compatible with MySQL because of its popularity.

e |t has a native support for cutting-edge technologies. It comes prepared to
support languages as Ajax, Ruby, and PHP.

e ltis flexible and scalable. You can adapt your MySQL setup to adapt to a
large set of conditions and doing changes on the tables, or adding new
tables is performed easily.

The structure of the database is one database named VULDRONEDRB with
the following tables:

Vulnerabilities_cve, Vulnerabilities_mail, Products, Exploits, Users, Requests
and Alerts.

The initial implementation idea was to join the Vulnerabilities cve
and the Vulnerabilities mail tables into one table called Vulnerabilities,
but the differences between both are important: vulnerability description fetched
in the mail is much larger than the description at www.cvedetails.com, so the it
would have been a substantial waste of memory to allocate unnecessary
memory for the short description from the www.cvedetails.com website.

Another important implementation decision was whether to join the
Users and the Requests tables into a single one, but linking them with a
Primary-Foreign key turned out to be much cleaner and more logical, having the
users on one side and their requests on another.

28


http://www.cvedetails.com/
http://www.cvedetails.com/

VULDRONE 2015

After thinking thoroughly, this implementation happened to be the most

logical, effective, and the one makes more sense for the aim of the project. The
structure of the tables is described in the following sections:

3.1.1 Vulnerabilities cve

This is the table where the http://www.cvedetails.com crawler inserts data

for each CVE. Its columns are:

>

CVE. It is the number of the CVE itself concatenated after the string “CVE-"
so an example of that field would be: “CVE-2010-3135”. It is a varchar of
length 13 and it’s the primary key of the table. This is one of the most
important fields because it is the link connecting the
Vulnerabilities cve table with the Products and Exploits. Those
have a foreign key referencing the CVE.

Description. It is a varchar of length 2000 chars and it’s the description of a
CVE, describing what the vulnerability consists of.

An example of that field, for the CVE: CVE-2010-3135 is:

“Untrusted search path vulnerability in Cisco Packet Tracer 5.2 allows local
users, and possibly remote attackers, to execute arbitrary code and conduct
DLL hijacking attacks via a Trojan horse wintab32.dll that is located in the
same folder as a .pkt or .pkz file”.

P_Date. It is a date and it is the CVE published date.
An example of this field would be: “2010-08-26".

U_Date. It is a date and it is the CVE updated date.
An example of this field would be: “2011-01-12".

Score. Itis a decimal (3, 1) which means it can hold 2 numbers plus one
decimal so an example would be: “6.5”. The score field is the CVSS Score.

29



VULDRONE 2015

3.1.2 Vulnerabilities mail

This is the table where the Mail Processor inserts data into whenever
the mail harvester receives a new email. Its columns are:

> ID. Itis an int and it identifies an email from any other one. ID is the primary
key of the vulnerabilities mail table.

» Subject. It is a varchar of length 500, and it's the subject itself of an email.
A subject example: “Session Fixation, Reflected XSS, Code Execution in
PivotX 2.3.10”

» Date. It is a date and it is the date the email is received. The date format is
the same than in the Vulnerabilities mail table, YYYY-mm-dd.

» Summary. It is a mediumtext. It's the mail received from the mailing list.

3.1.3 Products

This table stores all the products from cvedetails, each one related to at
least one CVE. This table has the following columns:

» Vendor: its type is varchar of length 30 and it is the vendor of a product. For
example: “Cisco”.

» Product: its type is varchar of length 60 and it is the product itself. For
example: “Packet Tracer”.

> Version: its type is varchar of length 10 and it is the version of a product. For
example: “4.0”.

» CVE: its type is varchar of length 14. It's the foreign key pointing to the
Vulnerabilities CVE table. That way, products and CVEs are linked
and it is possible to find everything from the Vvulnerabilities CVE table
for a given product. For example, it is possible to access the description the
vulnerabilities given a vendor, product and version.

It's important to note that there is a unique key made up by vendor,
Product, Version and CVE. Thatway, it is not possible to store duplicates.

The first idea was to base the unique key on vVendor, Product and
Version, but since there are products with several CVEs linked to, that would
have been a big problem, so including the CVE for the unique key worked it out.

e
30




VULDRONE 2015

The number of products stored in this table is above 500.000. Those
products are the ones the final user is going to introduce on their searches in
order to find the wvulnerabilities and, optionally, the exploits from.

3.1.4 Exploits

This table stores all the exploits from www.exploit-db.com, but only those
that have a CVE linked. This is about 60% of all the current exploits. This table
has the following columns:

» ID. Its type is varchar of length 9 and it uniquely identifies an exploit. It is the
primary key of the Exploits table.

» CVE. Its type is varchar of length 30. It is a foreign key referencing
Vulnerabilities cve table. With the CVE as a primary key in
Vulnerabilities cve table and as a foreign key in both Products and
Exploits table, it is possible to obtain all the exploits and vulnerabilities for a
given product. In fact, all the columns are can be accessed and fetched the
information from.

» Date. Its type is date, and it's formatted as: YYYY-mm-dd. It represent the
date an exploit has been released and stored into the exploitdb database.

> Exploit. Its type is varchar (10000). It is the exploit itself with the explanation
of how the exploit works, what is the vulnerability based on, and the code
itself of the exploit.

18.000 exploits have been already stored, and as it has been already
said, only those that have a CVE linked to.

It is important to note that the sometimes exploits contains JavaScript,
HTML or PHP code that, if not properly sanitized it can cause the application
working undesirably, and dangerous code could be executed on the server.

Having the exploits is not the main aim of the project, it's just a plus, and
even though the exploits not including the CVEs could have been easily stored
on the database, it hasn’'t considered a high priority. Instead, the priority has
been achieving coherence and consistency, so that, for a given product, the
most important priority is to know its vulnerability and then, for more advanced
users who want to explore how their products could be affected and how easy it
is to leverage the vulnerability, being able to access to that information in a
simple way.

31


http://www.exploit-db.com/

VULDRONE 2015

3.1.5 Users

This table contains the users that can access the application with an
email and a password. The table columns are the following:

> ID. Its type is an int. The ID uniquely identifies a user, its value auto
increments. That means that there is no need to insert this column when
registering a new user. The ID is the primary key of the Users table and it is
the column that works as a link between the Users and Requests tables.
This column is especially important because, for the user interface part, the
user is going to be identified by his ID, even though the user has previously
inserted the email and the password before. Because of its simplicity, it is
going to be the main part of the cookie, of the PHPSESSID, and the part of
the cookie is going to identify the user through the whole website.

» Email. Its type is a varchar of length 60 and it is the email address that is
going to receive the emails from the Mail Processor module whenever a
vulnerability appears and is related to a product the user is subscribed to.
That means, a product the user has inserted in the website.

The Email is also part of the cookie, of the PHPSESSID, and it is used for
being displayed at the top of the website for the user to know that is him
who is logged in in the website and not another one. For a sense of safety
and consistence surfing the website as the email is displayed at the top of
every page.

» Password. Its type is a varchar of length 20 and it's the website password.
That password doesn't have to be the email password.

It is important to note that the new users can only be created by the
database administrator. The reasons are, because the application is private and
the ones who want to use the application have to contact the administrator for
having access to the application. Another reason is, that, if a person with bad
intentions signs him up with a fake email and attaches to all the products, that
email address is going to receive, although not harmful, many spam emails
about vulnerabilities that person is not interested in.

32



VULDRONE 2015

3.1.6 Requests

This table stores the user’s requests, that is, the products a user wants to

know the vulnerabilities from.

This table, unlike the other tables, can be filled from the user interface.

The user is allowed to both adding new requests and therefore, inserting them
into the table, and, deleting requests from the table. The structure of the table’s
columns is the following:

>

>

Vendor. Its type is varchar of length 30. It is the vendor of the product.
Product. Its type is varchar of length 60. It is the product itself.

Date. Its type is date. It is the date from where the user wants to know the
vulnerabilities from a product. It's important to note that the date is going to
check the date from where a product has been updated and not published,
because that is what really the user is interested in.

This is field is useful because maybe a user could be looking for the SAP
product vulnerabilities but only wants results from a specific date, because
she doesn’t need the large amount of results from long time before she is
using that specific product.

Exploit. Its type is a varchar of length 3. The only possible values are either
“Yes” or “No” and it gives the user the chance of choosing whether the user
wants to be giving the product’s exploits or not.

ID. Its type is int and it is a foreign key linking the Users table.
This field is of paramount importance for user-handling as it’s the field that
allows retrieving the products for the user that logged in.

33



VULDRONE 2015

3.1.7 Alerts

This table stores the emails from the mailing lists for a given user, based
on the requested products he has inserted.

The Alerts table is filled after processing the emails in the mail
harvester. The emails are given to another function that takes care of obtaining
all the users related for an email.

The emails stored in this table are going to be shown to the user on a
specific section of the website given its importance.

The user can also interact with this table by deleting alerts she doesn’t
want to know about anymore. The user is not able of inserting new alerts,
because that happens automatically through the mail processor module.

The structure of the table is as follows:

» Subject. Its type is a varchar of length 500. It is the subject of the email, the
same than in the Vvulnerabilities cve table.

» Date. Its type is a date and it's the date when the vulnerability has been
received by the email harvester.

» Summary. Its type is a medium text, and it has the same content as the one
from Vulnerabilities cve table for a given email.

> ID. Its type is an int. It is a foreign key referencing a user. This way, when a
user logs in the website, and accesses the alerts section of the website, the
user is presented only the alerts for himself.

34



VULDRONE 2015

3.2 Web Crawlers

This is, along with the Mail Processor, the core of the project; it's the
module that fills the following database base tables: vulnerabilities cve,
Products and Exploits.

Vulnerabilities cve and Products tables are built from crawling
http://www.cvedetails.com and the Exploits table from http://www.exploit-
db.com/.

This allows the project databases being automatically up to date just by
gathering information from the sources frequently.

In order to harvest the vulnerabilities from cvedetails, Scrapy, a Python
framework for extracting data from websites has been the best option found by
far. Before crawling with Scrapy, other libraries and programming languages
have been tested, such as Goutte, a PHP library for web crawling.

Actually, all the crawling part was first performed using Goutte, but there
has been several reasons for choosing using Scrapy over Goutte:

e Scrapy crawls using threads. That means it crawls asynchronously, been
able to perform multiple requests at the same time and, therefore, crawling
much faster.

e The personal experience with Python over PHP.

e Having the backend (crawling and email gathering) part written on the same
language (everything is in Python).

e Once getting comfortable with the Scrapy framework, writing a new crawler
for other website takes a very short time. It is very easy to adapt the code
from one project to another one.

e Scrapy documentation is much better than Goutte documentation.
It's important to note that, with the Scrapy framework, the way for for
selecting an element is through XPath.

XPath is a language itself that allows us to select elements within the
XML, their attributes and any other information inside the website.

35


http://www.cvedetails.com/
http://www.cvedetails.com/
http://www.exploit-db.com/
http://www.exploit-db.com/

VULDRONE 2015

XPath is a very easy and versatile language to use which allows powerful
selectors and functions that expand a lot the possibilities and makes it the best
language for treating XML-based documents.

This is an example of how XPath looks like:

Given the following XML.:

<catalog>

<cd id="1">
<title >Empire Burlesque</title>
<artist class="name”>Bob Dylan</artist>
<country>USA</country>
<company>Columbia</company>
<price>10.90</price>
<year>1985</year>

</cd>

<cd id="2">
<title”>Hide your heart</title>
<artist class="name”>Bonnie Tyler</artist>
<country>UK</country>
<company>CBS Records</company>
<company>XPath Records</company>
<price>9.90</price>
<year>1988</year>
</cd>
</catalog>

The XPath to select the companies’ text from the second CD is..
//cd[@id='2"]/company/text ()

Which means, get the text from the companies element from the cd with a
class named “id” of value “2”. The // means that it doesn’t matter what the
parent node of “cd” is. This would return;

CBS Records
XPath Records

If the interest is just to know what the first company is, the XPath expression
should be:

//cd[@id=’"2"]/company[position()=1]/text ()

36



VULDRONE 2015

This returns only the text from the first company element from the CD
with a class named “id” of value “2”. And that would be:

CBS Records

When crawling with Scrapy, there are four important parts must be set up:

The name of the spider.

The allowed domains where the spider can crawl.

The URL from where the spider is going to start crawling the website.

The links the spider is going to access.

The function that performs the crawling for the desirable links.

3.2.1 CVEspider

This spider crawls the cvedetails website, extracts the products and
vulnerabilities and inserts them into the local database.

The different parts of a Scrapy spider inside the CVEspider are.

-Name:

name = "cve"

This is the name of the spider, and the name used for calling the spider
from the command line:

scrapy dmoz crawl

-Allowed domains:

allowed domains = ["cvedetails.com"]

It's an array; if more domains want to be crawled at the same time in the
same file, it is possible by creating an array with more than one position, for
example:

allowed domains = ["cvedetails.com", "exploitdb.com"]

37



VULDRONE 2015

-Starting url:

start urls = [
"http://www.cvedetails.com/vulnerability-1list/"

This is the website from where all the CVEs and products crawling start
from:

L C | [} www.cvedetails.com/vulnerability-list/

w G ® =
CVE Details —

- . . . View CVE
The ultimate security vulnerability datasource

LoalIn Register ResetPassword Activate Account Vulnerability Foeds & Widgetsnew (g ¢ | £|w]s]]+|
Home

Browse : Security Vulnerabilities

CVSS Scores Greater Thans 0 1 2 3 4 5 6 7 8 9

P ucts Sert Results By : CVE Number Descending CVE Number Ascending CVSS Score Descending Number Of Exploits Descending
Vulnerabilities By Date  copy Results Download Results Select Table

Vulnerabilities By Tvpe | 4 CVEID CWE  #of Exploits. Vulnerability Type(s) Publish Date UpdateDate Score  Gained Access Level Access Complexity ~ Authentication Conf. Integ. Avail.
Reports : D
VS8 Score Report 1 CYE-2015-5623 284 Bypass 2015-08-03 2015-08-03 4,0 None Remote Low Single system  None  Partial  Mone
CVSS Seore Distribution
Search WordPress before 4.2.3 does not properly verify the edit_posts capability, which allows remote authenticated users to bypass intended access restrictions and create drafts by leveraging the
Vendor Search Subscriber role, as demonstrated by a post-quickdraft-save action to wp-admin/post.php.
Product Search 2 CVE-2015-5622 79 XSS 2015-08-03 2015-08-03 3.5 None Remote Medium Single system None Partial MNone

ersion Search Cross-site scripting (X55) vulnerability in WordPress before 4.2.3 allows remate authenticated users to inject arbitrary web script or HTML by leveraging the Author or Contributor role to place a

Vulnerability Search crafted shortcode inside an HTML element, related to wp-includes/kses.php and wp-includes/shortcodes.php.

By Microsoft References )
\CLoSOR REISTENSes 3 CVE-2015-5618 264 Bypass 2015-07-31 2015-08-03 178 Hone Remote Low  MNotreauired  Partial  Partial Partial

Chiyu BF-630 and BF-630W fingerprint access-control devices allow remote attackers to bypass authentication and (1) read or (2) modify (a) Voice Time Set configuration settings via a request

to voice.htm or (b) UniFinger configuration settings via a request to bf.htm, a different vulnerability than CVE-2015-2871.

4 CVE-2015-5611 2015-07-21 2015-07-30 - HNone Local Network  Low Mot required  Complete Complete Complete
Unspecified vulnerability in Uconnect before 15.26.1, as used in certain Fiat Chrysler Automobiles (FCA) from 2013 to 2015 models, allows remate attackers in the same cellular network to

control vehicle movement, cause human harm or physical damage, or modify dashboard settings via vectors related to modification of entertainment-system firmware and access of the CAN bus
due to insufficient "Radia security protection,” as demonstrated on a 2014 Jeep Cherokee Limited FWD.

Figure 5 — CVEdetails crawling starting page

As far as the links are concerned, there are two possible actions can be
performed: either clicking them and do nothing with the information inside, just
follow the link; or crawling the information within it.

This is the part of the code in charge of handling the links:

rules =

[Rule(SgmlLinkExtractor(restrict xpaths=('//div[@class="paging"]/a
")), follow=True),

Rule (SgmlLinkExtractor(restrict xpaths=('//tr/td[@nowrapl/a')),
callback='parse item')]

This is an array of rules, determining how the crawler is going to behave
with respect to the links. The first position of the array, is:

Rule (SgmlLinkExtractor(restrict xpaths=('//div[@class="paging"]/a'
)), follow=True)

This rule corresponds to all the pages inside the page from where the
crawler starts from, http://www.cvedetails.com/vulnerability-list/.

38


http://www.cvedetails.com/vulnerability-list/

VULDRONE 2015

47 CVE-2015-5148 89 Exec Code Sql 2015-06- 2015-07- | 7.5 Mone Remaote Low Mot required  Partial Partial Partial
30 01
SQL injection vulnerability in LivelyCart 1.2.0 allows remote attackers to execute arbitrary SQL commands via the search_guery parameter to product/search.
48 CVE-2015-5147 119 DoS Exec Code 2015-07- 2015-07- | 7.5 Mone Remote Low Mot required  Partial Partial Partial
overflow 14 14

Stack-based buffer overflow in the header_anchor function in the HTML renderer in Redcarpet before 3.3.2 allows attackers to cause a denial of service (crash) and
possibly execute arbitrary code via unspecified vectors.

49 CWE-2015-5145 399 DoS 2015-07- 2015-07- 7.8 Mone Remote Low Mot required None Mone  Complete
14 15

validators.URLValidator in Django 1.8.x before 1.8.3 allows remote attackers to cause a denial of service (CPU consumption) via unspecified vectors.

S0 CVE-2015-5144 20 Http R.Spl. 2015-07- 2015-07- 4.3 Mone Remote Medium Mot regquired None Partial Mone
14 15

Django before 1.4.21, 1.5.% through 1.6.x, 1.7.x before 1.7.9, and 1.8.x before 1.8.3 uses an incorrect regular expression, which allows remote attackers to inject
arbitrary headers and conduct HTTP response splitting attacks via a newline character in an (1) email message to the EmailValidator, a {2) URL to the URLValidator, or
unspecified vectors to the (3) validate_ipv4_address or (4) validate_slug validator.

Total number of vulnerabilities : 70837 Page : 1 (ThisPage)2 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 6 — CVEdetails CVE’s pages

The numbers at the bottom are all the pages, ordered by date, from 2015
to 1999. There are 1417 links. According to the rule, all those links are going to
be followed, so inside a specific link, the information is not going to be collected.

In order to select the links, this is the XPath expression:
//div[Qclass="paging"]/a

That means, selecting all the “a” elements within a div that has a class
called class of value paging. This corresponds, in order to illustrate in detail
how it works to a selection within the following HTML code:

50 CVE-2015-5144 20 Http R.Spl.  2015- 2015- | 4.3 MNon
07-14 07-15

Cjango before 1.4.21, 1.5.x through 1.6.x, 1.7.x before 1.7.9, and 1.5.x befo

attackers to inject arbitrary headers and conduct HTTP response splitting atta

EmailValidator, a (2) URL to the URLValidator, or unspecified vectars to the (3

isplay:none; clear:

Total number of vulnerabilities : 70837 Page : 1 (ThisPage)2 3 4 53 6 7
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 . .

v id="searchresults”>..</div>
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 ¥ ¢div class="paging" id="pagingb"»

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 1 "

Total number of vulnerabilities :
T T TEeR TR TEER A e U e Smes e amem e e o <b>7@B37</b>

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 1 " &nbsp;
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 1 Page
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 2

S2S S22 £S5 SL S S S St s/ sf. S A S AL A= 8 <a href="/vulnerabil
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 2 vendor_id=Bproduct_i =&page=18hasexp=..

th=2& cf9994d68386594F1283Fc226CfS
e 1dad5fe72bB" title="Go to page 1"»1</a>
296 297 29§ 299 300 301 302 303 304 305 306 307 308 309 310 3 "

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 3 (This Page)"
¢a href="/wulnerability-list.php?

i id=8page=2&hasexp=&..

380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 3 th=8& Cf9994d68386594F1283FC226CF5

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 4 1dacSfe7208" title-"Go to page 22</a>

Figure 7 — CVEdetails XPath page selector

39



VULDRONE 2015

So, all those links are clicked and then, the CVEs (50 per page) within
each page are harvested.

This is the rule that in charge of the CVEs harvesting:

Rule (SgmlLinkExtractor (restrict xpaths=('//tr/td[@nowrap]/a')),
callback='parse item')]

Which corresponds to:

# CVEID CWE #of V b tre < /ERS
I Exploits ¥ ¢tr class="srrowns">
» ctd class="num">.</td>

1 CWE-2015-5623 28 =3 .
<a href="/cve/CVE-2815-5623/" title="CVE-2815-5623
security vulnerability details">CVE-2815-5623</a>

WordPress before 4.2.3 does not pn /gy

restrictions and create drafts by lev: P octds.og tds

Figure 8 — CVEdetails XPath CVE selector

-Crawling function:

All the CVE links are clicked, but not followed. Instead, the information
inside is harvested, and inserted into the database. There is an argument called
callback that calls a function for every CVE link, and this is the function in
charge of handling what is done for the links of the kind set in the XPath.

This is a CVE page example:

Vulnerability Details : CVE-2009-4086 (1 public exploit)

CRLF injection vulnerability in Xerver HTTP Server 4.31 and 4.32 allows remote attackers to inject arbitrary HTTP headers and conduct HTTP response splitting attacks via certain byte sequences at
the end of a URL. NOTE: some of these details are obtained from third party information.
Publish Date : 2009-11-29 Last Update Date : 2011-12-12

Collapse All Expand All Select Select&Copy Scroll To Comments External Links
Search Twitter Search YouTube Search Google

- CVSS Scores & Vulnerability Types

CVSS Score 5.0
Confidentiality Impact None (There is no impact to the confidentiality of the system.)
Integrity Impact (Modification of some system files or information is possible, but the attacker does not have control over what can be modified, or the scope of what the attacker

can affect is limited.)

Availability Impact Mone (There is no impact to the availability of the system.)
Access Complexity Low (Specialized access conditions or extenuating circumstances do not exist. Very little knowledge or skill is required to exploit. )
Authentication Not required (Authentication is not required to exploit the vulnerability.)

Gained Access None

Vulnerability Type(s) Hitp response splitting

CWE ID 20

= Products Affected By CVE-2009-4086

# Product Type  Vendor Product Version Update Edition Language
1 Application Javascript Xerver Http Server 4.31 Version Details Vulnerabilities
2 application Javascript Xerver Hitp Server 4.32 Version Details Yulnerabilities

Figure 9 — CVEdetails CVE example

40



VULDRONE 2015

The function named parse item Inserts into two databases:

Vulnerabilities cve and Products, therefore, it's going to be explained
in two different parts.

3.2.1.1 Vulnerabilities:

Vulnerabilities are stored in an object from the class called
VulnerabilityItem, created on the items.py file like all the items.
VulnerabilitieItem has the following structure:

class VulnerabilityItem(scrapy.Item):

CVE = scrapy.Field()
Description = scrapy.Field()
P Date = scrapy.Field()

U Date = scrapy.Field()
Score = scrapy.Field()

Type = scrapy.Field()

-CVE:

cve = response.xpath("//hl/a[@title] [position() =
1] /text ()") .extract () [0]

¥ <hl>
Vulnerability Details : CVE-2009-4086 "Vulnerability Details : *

<a href="/cve/CVE-2089-4886/" title="CVE-2009-4886 security vulnerability
details">CVE-2009-4086</a>

L. . e <a href="#references" title="Go to exploit references" style="color:red">(1
CRLF injection vulnerability in Xerver HTTP Ser public exploit)</a>
headers and conduct HTTP response splitting af <span id="hmetasexpcount”></span>
these details are obtained from third party info “ f'l ’ .

P <div ss="cvedetailssummary
Publish Date : 2009-11-29 Last Update Date : 201 P ¢script type="text/javascript

Figure 10 — CVEDetails XPath CVE field selector

It is important to note that only the first “a” element is selected, because
there can be two “a” elements, and the second position is a link to the exploit
references, in case there is a known exploit for a specific CVE.

-Description:

description =

response.xpath("//td/div[@class="'cvedetailssummary']/text ()") .extr
act () [0]

Vulnerability Details : CVE-2009-4086 (1 public exploit) o/ni

CRLF injection vulnerability in Xerver HTTP Server 4.31 and 4.32 allows remote attackers to inject arbitrary HTTP
headers and conduct HTTP response splitting attacks via certain byte sequences at the end of a URL. NOTE: some of
these details are obtained from third party information.

Publish Date : 2009-11-29 Last Update Date : 2011-12-12

L
ul e : 2009-11-28  Last Update Date : 2811-12-12  </span>
d

Figure 11 — CVEDetails XPath Description field selector

41




VULDRONE 2015

-P Date and U Date:

datenote =
response.xpath("//span[@class="datenote']/text () ") .extract () [0]

i <span class="datenote">
Publish Date : 2009-11-29 Last Update Date : 2011-12-12

Publish Date : 2009-11-29 Last Update Date : 2811-12-12 </span¥

Figure 12 - CVEDetails XPath P_Déte and U_Date selector

As far as P Date and U Date fields are concerned, it's important to
mention that they are not separated in different elements. They are in the same
element.

The string with the published and the updated date are harvested
together. Therefore, it has been necessary to split them and creating two
variables for the published date and the updated date parts.

-Score:

vulnerability['Score'] =
response.xpath("//td/div[@class="cvssbox']/text ()").extract () [0]

- CVSS Scores & Vulnerability Types ¥ ctd>
<div class="cvssbox" style="background-color:#ffcce@"»5.0</divy
CWS5 Score 5.0 /td>

Figure 13 — CVEDetails XPath Score field selector

type aux =
" ) ) . n
response.xpath("//table//tr[position()=8]/td/span/text ()") .extract
Integrity Impact (Modification of some system files or informati,
does not have control over what can be modified, or t|
can affect is limited.)
Availability Impact Mone (There is no impact to the availability of the sysi
Access Complexity Low (Specialized access conditions or extenuating circ|
little knowledge or skill is reguired to exploit. )
Authentication Mot required {Authentication is not required to exploit
Gained Access None
Vulnerability Type(s) Http response splitting <th>Vulnerability Type(s)</th>
CWE ID 20 ¥ <td>

Figure 14 — CVEDetails XPath Type field selector

It's worth mentioning that, if there a CVE with more than one type of
vulnerability related, each type is a new span element, and type aux the
variable is a list of all the vulnerabilities.

What the application is meant to perform is to insert all the vulnerabilities
as one string, so, after gathering a list of types of vulnerabilities, this list is

42



VULDRONE 2015

converted into a string, and that is what is inserted into the Type column of
Vulnerabilities cve table.

The part of the code in charge of the database insertion is:

insert vulnerabilities
(vulnerability['CVE'] ,vulnerability['Description'],vulnerability["
P Date']\

,vulnerability['U Date'],
vulnerability['Score'],vulnerability[ 'Type'])

This function and all the functions that have to do with the database
insertions from the web crawlers are located in a file named queries.py.

3.2.1.2 Products:

Products are stored in an object from the class called Products, created
on the items.py file as all the items.

ProductItem has the following structure:
class ProductItem(scrapy.Item):
Vendor = scrapy.Field()
Product = scrapy.Field()

Version = scrapy.Field()
CVE = scrapy.Field()

-CVE:

CVE is obtained when harvesting the vulnerability and this value is the
same than that one inserted into the Vulnerabilities cve table.

-Vendor:

product['Vendor'] =
response.xpath("//table[Q@id="'vulnprodstable']//tr/td[position() =
3]/a/text ()") .extract ()

43



VULDRONE

2015

- Products Affected By CVE-2009-4086

# Product Type  Vendor Product Version Update Edition Language
1 Application Javascript Xerver Http Server 4.31 Version Details Vulnerabilities
2 Application Javascript Xerver Http Server 4.32 Version Details Vulnerabilities

= Number Of Affected Versions By Product

Vendor Product. Vulnerable Versions

Javascript Xerver Hitp Server 2

- References For CVE-2009-4086

» <h2 onclick="pm("vulnprodstable’ )">..</h2>
¥ ¢table class="listtable" id="vulnprodstable">
¥ ¢tbody>
B ctrong/tre
¥<tr>
<td class="num">

</td>
<td>
Application
</td>
¥ <td>

<a href="http://www.cvedetails.com/vendor/10288/
Javascript.html" title="Details for
Javascript"»lavascript</a»

Figure 15 — CVEDetails XPath Vendor selector

-Product:

product['Product'] =

response.xpath("//table[Q@id="vulnprodstable']//td[position () =

4]1/a/text () ") .extract ()

- Products Affected By CVE-2009-4086

# Product Type  Vendor Product Version Update Edition Language
1 Application Javascript Xerver Hitp Server 4.31 Version Details Vulnerabilities
2 Application Javascript Xerver Hitp Server 4.32 Version Details Vulnerabilities

= Number Of Affected Versions By Product

Vendor Product Vulnerable Versions

Javascript Xerver Http Server 2

- References For CVE-2009-4086

Exploit! http://packetstormsecurity.ora/0911-exploits/xerver-split.bet

http://secunia.com/advisories/36661

P <h2 on pm('vulnprodstable' )">.</h2>
¥ ctable class="listtable" id="vulnprodstable">
¥ <{thody>
B ctroac/try
Ytr>
<td class="num">

</td>
<td>
Application
4/td>
P <tdrad/tdy
¥<td>
<a href="http://wwi.cvedetails.com/product/21658/
Javascript-Xerver-Http-Server.html?vendor_id=10288"
title="Product Details Javascript Xerver Http
Server"»Xerver Http Server</a:
</td>

Figure 16 — CVEDetails XPath Product selector

-Version:

product['Version'] =

response.xpath("//table[@id="vulnprodstable']//td[position () =

5]/text () ") .extract ()

- Products Affected By CVE-2009-4086

# Product Type  Vendor Product Version Update Edition Language
1 Application Javascript Xerver Http Server 4.31 Version Details Vulnerabilities
2 Application Javascript Xerver Http Server 4.32 Version Details Vulnerabilities

= Number Of Affected Versions By Product

Vendor Product Vulnerable Versions
Javascript Xerver Http Server 2

- References For CVE-2009-4086

Exploit! hitp://packetstormsecurity.org/0911-exploits/xerver-split.txt

http://secunia.com/advisories/36681

m( 'vulnprodstable' )"».</h2>
¥ ¢table class="listtable" id="vulnprodstable">
¥ {thody:

<td class="num">

1
<td»
<td»
Application
</td>
b ctd>a/td>
» ctd>.¢/td>

Figure 17 — CVEDetails XPath Version selector

The insertion into the Products table is handled in this part of the code:

44




VULDRONE 2015

for x in range(len(product['Vendor']l)):

print cve

print product]['Vendor'] [x]

print product|['Product'][x]

print product['Version'][x].strip()

insert product
(product|['Vendor'] [x] ,product['Product'] [x],product['Version'] [x].
strip() ,cve)

It is important to note that, unlike the vulnerability insertion, for each CVE,
there can be more than one product to insert into the database. That is the
reason the insertion code is inside a for loop, inserting as many products as
the length of the product [ ‘“Vendor’ ].

3.2.2 updateSpider:
This crawler is very similar to the CVEspider, the differences are:

-Starting URL:

start urls = [

"http://www.cvedetails.com/vulnerability-
search.php?f=1&vendor=&product=6&cveid=&cweid=&cvssscoremin=&Ccvsssc
oremax=&psy=&psm=&pey=&pem=&usy=&usm=&uey=6000&uem=4"

1

Number 6000 means the year 6000, that is, the page is going to show
updated vulnerabilities from that year backwards. It's a way to ensure that the
crawling would start by the most recent year.

-Crawling function:

It crawls the same elements. The caveat is that an insert function is not
called, but a function that updates the CVE:

update vulnerability
(vulnerability['CVE'],vulnerability['Description'],vulnerability]["
P Date']\

,vulnerability['U Date'],
vulnerability['Score'],vulnerability['Type'])

45



VULDRONE 2015

3.2.3 exploitSpider

This spider crawls the exploitdb website, extracts the exploits and inserts
them into the database.

Exploits are stored in an object from the class called ExpoitItem, which
has the following structure:

class ExploitItem(scrapy.Item):
ID = scrapy.Field()
CVE = scrapy.Field()

Date = scrapy.Field()
Exploit = scrapy.Field()

-Name:

name = "exploitSpider"

-Allowed domains:

allowed domains = ["www.exploit-db.com"]

-Starting URL:

start urls = [
"https://www.exploit-
db.com/search/?order by=date&order=desc&pg="+str(i)+"&action=searc
h" for i in range(1,2000)
1

It should be noted that, for the exploitSpider, unlike the CVEspider,
the staring URLs is a list of 2000 positions, instead just one URL.

This is because it has not been possible to select the pages through the
XPath way, so, this alternative has turned to be also easy, effective and it also
meets the requirements perfectly. This website would be the first page:

46



VULDRONE 2015

& https://www.exploit-db.com/search/?order_by=date&order=desc&pg=18&action=search

Home Exploits Shellcode Papers Google Hacking Database Submit Search

Search the Exploit Database

35,159 total entries
<< prevfl23 45678910 next =

Date v D A V Title Platform Author
2015-08-07 § [ « Heroes of Might and Magic Ill .h3m Map file Buffer Overflow windows metasploit
2015-08-07 § - (@ Linuxx86 Memory Sinkhole Privilege Escalation PoC linux Christopher Do.
2015-0807 & [7 (@ Froxlor Server Management Panel 0.9.33.1 - MySQL Login Information Disclosure php Dustin Dérr
2015-08-07 § - & PHP News Script 4.0.0 - SQL Injection php Meisam Monsef
2015-08-07 § [ (9 PCMan FTP Server 2.0.7 - PUT Command Buffer Overflow windows Jay Turla
2015-08-07 § - (9 Windows NDProxy Privilege Escalation XP SP3 x86 and 2003 SP2 x86 (M514-002) win32 Tomislav Paska.
2015-08-07 § - (9 BIGINT Overflow Error Based SQL Injection multiple Osanda Malith

Figure 18 — ExploitDB crawling starting page

-Links:
rules =

[Rule (SgmlLinkExtractor (restrict xpaths=('//td[Q@class="description
"1/a')), callback='parse item')]

From each starting URL, there are not links to be followed. The exploits
itself are directly clicked, harvested and inserted into the Exploits database.

-Crawling function:

This function harvests all the exploits and inserts into the database those
that have an associated CVE. This is an example of what is crawled, for a
specific exploit:

47



VULDRONE 2015

EXPLOIT &
DATABASE

Internet Download Manager - OLE
Automation Array Remote Code Execution

EDB-ID: 37668 CVE: 2014-6332 QSVDB-ID: N/A
Verified: x Author: Mohammad Reza Espargham  Published: 2015-07-21

Download Exploit: [# Source (1Raw  Download Vulnerable App: N/A

« Previous Exploit Next Exploit »

#!/usr/bin/php

<?php

Title : Internet Download Manager - OLE Automation Array Remote Code Execution
Affected Versions: All Version

Founder : InternetDownloadManager

Tested on Windows 7 / Server 2088

Author : Mohammad Reza Espargham

Linkedin : https://ir.linkedin.com/in/rezasp

E-Mail : me[at]reza[dot]es , reza.espargham[at]gmail[dot]com
Website : WWW.reza.es

Tuitter : https://twitter.com/rezesp

FaceBook : https://www.facebook.com/mohammadreza.espargham

0leAut32.d11 Exploit MS14-864 CVE2814-6332

1 . run php code : php idm.php
2 . open "IDM"

B R I i o L L

Figure 19 — ExploitDB exploit sample

Inside the page above, the following fields are collected and inserted as
columns into the Exploit table: ID, CVE, Date, Exploit

-Q:

exploit['ID'] =

response.xpath("//table[Qclass="exploit list']//tr[position()=1]/t
d[position()=1]/text ()") .extract () [0]

T <div class="info"»
¥ ¢table class="exploit_list"»

¥ <tbody>
EDB-ID: s CVE: 2014-6332 0SVDB-ID: N/A ¥ <ctry
¥ <>
Verified: % Author: Mohammad Reza Published: 2015-07- <strong»>EDB-ID:</strong>
- ‘ - " 37668"

Figure 20 — ExploitDB XPath ID field selector

-CVE:

exploit['CVE']=response.xpath("//table[@class="exploit list']//tr|
position ()=1]/td[position()=2]/a/text ()").extract() [0]

48



VULDRONE 2015

EDBHID: 37668 (WiH014.633 0SVDBHID: N/A Bkt
Verified: X Author: Mohammad Reza Published: 201507 a rel="nofollov" href="http://cve,mitre.org/cg-bin/ cvenane. cgi2nase=CVE-2014-6332" target=" blank" class="external S20-6332/a>

Figure 21 — ExploitDB XPath CVE field selector

-Date:
exploit['Date'] =

response.xpath("//table[Q@class="exploit list']//tr[position()=2]/t
d[position()=3]/text ()") .extract () [0]

¥ <table class="exploit_list"»

EDB-ID: 37668 CVE: 2014-6332 OSVDB-ID: N/A
Verified: x Author: Mohammad Reza Published: ehjESUS
Espargham 1 <strong>Published: </strong>

" 2015-87-21"

Figure 22 — ExploitDB XPath Date field selector

-Exploit:

exploit['Exploit'] =
response.xpath("//div[Q@id="container']/pre/text ()") .extract () [0]

EDB-ID: 37668 (442014633 OSVDB-ID: N/A
Verified: X Author: Mohammad Reza Published: 2015.07.

It should be noted that the exploit field has been crawled based on the
source code of the website; inspect element didn’t work because it takes into
account the Javascripts that run in the web for the client, but since the real
elements are in the source code of the website, all could have been crawled
looking at the source code.

The only cases it can’t be crawled looking at the ‘inspect element’ are
when there are Javascripts that modifies the tags of the elements, as it has been
this case with the ‘exploit’ field.

This is the part that calls the function that inserts the exploit into the
database:

insert exploit (exploit['ID'],"CVE-
"+exploit['CVE'] ,exploit['Date'],exploit['Exploit'])

49



VULDRONE 2015

3.2.4 Scrapy states

It should be noted that there are two states as far as the crawling is

concerned:

e First crawling.
e Update crawling.

-First crawling:
This is the first crawling made, when the database is empty, in order to
dump the whole exploitdb and cvedetails into VULDRONEDB database.

It has been told before that Scrapy is a framework that can crawl
websites asynchronously and it uses multiple threads for crawling

The crawling isn’t performed in order and this is how Scrapy works by
default. No change should be made in the settings.py file for this crawling-

mode.

-Update crawling:

It also is possible for Scrapy to crawl websites in order, from the first
element to the last one. Those are the changes must be done in the

settings.py file:

DEPTH PRIORITY = 1
SCHEDULER DISK QUEUE = 'scrapy.squeue.PickleFifoDiskQueue'
SCHEDULER MEMORY QUEUE = 'scrapy.squeue.FifoMemoryQueue'

That way, when crawling the CVEs and products, whenever it comes

across a CVEs already inserted, it stops.
This is achieved by capturing the Duplicate entry error while inserting into

the database, and, afterwards, exiting the program:

except mdb.IntegrityError, message:
errorcode = message[l]

print "ERRORCODE============~ >"+errorcode

if "Duplicate entry" in errorcode: # if duplicate

os. exit (1)

As for the first crawling, the Duplicate entry error wouldn’t be captured.

50



VULDRONE 2015

3.2.5 Initial approach

The initial approach was to use Goutte in order to crawl the whole
cvedetails website as well as exploitdb:

e CVESs and products:

The starting URL used has been: http://www.cvedetails.com/browse-by-
date.php, and the way to perform the harvesting has been the following:

e lterating over all the years, then iterating all the pages inside a
year, and then, iterating all the CVEs inside a page. Once inside a
specific CVE, all the relevant information about the CVE and the
products related to that CVE has been saved into the MySQL
database.

e The iteration over the years, pages and CVEs has been carried out
through the elements of the page, the website XML path, with
XPath.

This is how a specific element is retrieved, but not harvested, with Goutte:

$years = $crawler
=>filterXPath('//table[Qclass="stats"]//tr//th/a[@title] ")~
>ecach (function ($nodes) {

return $nodes->text () ;

});

That is done for the pages and CVEs too in the same way, with their
specific XPath.

As far as the element selection is concerned, Goutte allowed performing
it two different ways: using DOM selectors or using XPath.

DOM selector syntax is easy and fast to write. For instance, for selecting
all the elements p, where the parent is a div element, the syntax is like this:
div > p, whereas, with XPath, the syntaxis: //div/p.

XPath has been preferred over DOM selectors because for more complex
elements selections, it's much more powerful, the syntax is clearer, and it’s less
limited. XPath has also functions and operators that make it really versatile. This
is the way the vulnerabilities has been crawled on the first PHP implementation
with Goutte, using XPath, within a CVE:

51


http://www.cvedetails.com/browse-by-date.php
http://www.cvedetails.com/browse-by-date.php

VULDRONE 2015

$vulnerabilities = $crawler3->filterXPath('//td//div[C@class =
"cvedetailssummary"]/text ()

| //*[@Qclass="datenote"] | //div[@class="cvssbox"] |
//hl/a[@title] [position() = 1] | //table//tr[position()=8]/td")

e Exploits

The exploits has been also crawled and stored into the database with the
Goutte PHP library as well as the products and CVEs.

The approach had been very similar than the one with Scrapy: It had
been used the same starting URL: https://www.exploit
db.com/search/?order_by=date&order=desc&pg=j&action=search This URL is

iterated in a for loop giving the variable “j” a value from 1 to 1800. Inside a
page, all the Exploits are iterated.

The following part of the code is in charge of harvesting the exploit with
all its fields:

$exploit = $crawler2->filterXPath('//div[@id="container"]/pre

|
//table[Q@class="exploit 1list"]//tr[position()=1]/td[position()=1]1/
text ()

| //table[@class="exploit 1list"]//tr[position()=1]/td[position()=2]
/a
|
//table[Qclass="exploit 1list"]//tr[position()=2]/td[position()=3]1/
text () ") ->each (function ($nodes) {
return $nodes->text();

});

It is, in fact, the same XPath as the one used in Scrapy.

52


https://www.exploit/

VULDRONE 2015

3.3 Mail Procesor

The Mail Processor is the other part of the Vuldrone backend. The core
of the application along with the Web Crawlers.

It is simpler and it doesn’t have as many nuances as the previous module,
but it is as crucial as the Web Crawlers. In fact, it is the combination of all the
modules and the way they are used that makes the application unique and
powerful.

As far as this module is concerned, there are two parts worth be
explained separately: the mail harvester andthemail sender.

3.3.1 Mail harvester

This part task is to harvest the emails from security mailing lists and
inserting them into the database, in the Vulnerabilities mail table.

There are plenty of security mailing lists, in websites like:
http://www.securityfocus.com/ or http://seclists.org/. For instance: Nmap
Development, Nmap Announce, Full Disclosure, Bugtraq, Security Basics,
Penetration Testing, Info Security News, Firewall Wizards, IDS Focus, Web App
Security, Daily Dave, PaulDotCom, Honeypots, Microsoft Sec Notification,
Funsec, CERT Advisories, Open Source Security, Secure Coding, Educause
Security Discussion, NANOG, Interesting People, The RISKS Forum, Data Loss.

Among all these mailing lists, there many too specific and not of great
interest, but there are two mailing lists that are going to be the ones used for the
mail harvester, as they receive all the Vulnerabilities, not only for a specific type,
but all kinds of vulnerabilities. Those two mailing lists are: Bugtrag and Full
Disclosure.

It is possible that by only subscribing to Bugtrag would met the
requirements for this module, because Bugtraq is the premier general security
mailing list and vulnerabilities are often announced there first. However that
doesn’t mean the vulnerabilities are always announced in Bugtrag. Sometimes
Full Disclosure receives them first many hours or days before, and they pass
through the Bugtraq moderation queue later.

Although Full Disclosure publics many times information that is not
relevant at all concerning vulnerabilities of a certain product, the fact that this

e
53



http://www.securityfocus.com/
http://seclists.org/

VULDRONE 2015

mailing list sometimes announces the vulnerabilities first than Bugtraq, being
aware of the vulnerabilities in that mailing list too, it could make the difference
for the users between being aware of whether their products are vulnerable or
not, and all the severe problems and risks that this entails.

All the emails coming from the mailing lists are collected in the INBOX of
a private email account and the emails are accessed via IMAP.

The parts of the message gathered are: subject, body and date.
These parts, for every message are stored into a dictionary called message,
which have the keys Subject, Date and Body. This dictionary is the one
passed as a parameter for the insert function, in order to insert them into the
Vulnerabilities mail table.

Certain parts of the process mailbox function code should be
mentioned:

Some emails have attached files on them and they can be either multipart
or no multipart messages, and the way to handle their body part of the email is
different:

if msg.get content type() == "text plain": #No Multipart messages

body = msg.get payload()

body = re.sub(r"\[image:.*\]","",body)

split signature = re.split(r"----- BEGIN PGP
SIGNATURE. *" ,body)

body = split signature[0]

message['Body']=body.decode('utf-8")

else: #Multipart messages
for part in msg.walk():
if part.get content type() == "text/plain": #
ignore attachments/html

body = part.get payload(decode=True)

body = re.sub(r"\[image:.*\]","",body)

split signature = re.split(r"----- BEGIN PGP
SIGNATURE. *" ,body)

body = split signature[0]

message['Body']=body.decode ('utf-8")

It should also be noted that the emails have been first cleaned; they have
a PGP signature at the end of them and in some cases, images. Both PGP
signatures and images parts have been deleted in order to obtain a much
clearer message.

54



VULDRONE 2015

body = re.sub(r"\[image:.*\]1","" , body)
split signature = re.split(r"--—--- BEGIN PGP SIGNATURE.*" , body)
body = split signature[0]

The date has been formatted into the format used in the CVEs (YY-mm-
dd), for consistency and coherence:

date tuple = email.utils.parsedate tz(msg['Date'])
if date tuple:
local date = datetime.datetime.fromtimestamp (
email.utils.mktime tz(date tuple))
message['Date']=local date.strftime("3Y-sm-3d")

The subject part of the email shouldn’t be mentioned because it is
obtained straightforward when converted the email with the python IMAP library.

After the ‘message’ dictionary is filled, it is inserted into the database and
then, the email is moved from INBOX to Trash:

insert vulnerability mail (message['Subject'],message['Date'],messa
ge['Body'] .encode('utf-8"))

M.store (num, '+FLAGS', r' (\Deleted) ')
M.close()
M. logout ()

Whenever an email is processed, a function named send mail is called,
and this is the second part of the Mail Processor module.

It should be noted that this module was first implemented in Java with the
javax.mail butis has been changed to python, as well as the crawler first has
been implemented in PHP with the Goutte library and rebuilt into Scrapy, the
Python framework for web crawling.

The reasons of using Python in this part are that the code turned out to
be far simpler, easier to read and to scale. There are many string operations,
and, as far as this aspect is concerned, Python excels.

55



VULDRONE 2015

3.3.2 Mail Sender

This function is called from the process mailbox function with the
message as a parameter. It is in charge or two important tasks:

e Inserting the emails into the Alerts table.

e Sending an email to those users whose requested products are related to
the email passed as a parameter.

The emails are sent using the SMTP protocol, with the python smtplib
library.

Regarding this part, there are important and delicate parts that must be
noted and explained with more detail:

In order to know the target users, a function called show users returns
a list with the users and their requests. This would be the query:

SELECT Login,Users.ID,Vendor,Product from Users inner join
Peticiones on Users.ID = Peticiones.ID

Once the users and their requests are obtained, for every user, it is
checked whether their requests (product and vendor) is in the body of the
message or not; if the user has a request related to the email, his email is
appended to a list of users called receivers, which is, the list emails the
message is going to be sent to.

users = show users()
for user in users:
if user[l].lower() in messagex['Body'].lower() and
user[2].lower() in messagex|['Body'].lower() :
if "@" in user[0]:

receivers.append (user[0])

insert alert(user[3],message['Subject'],message['Date'] ,message['B
ody'])

receivers = set (receivers)

It is worth mentioning that show users returns a list of a user’s tuple,
where the position O of the tuple corresponds to the email, the position 1 to the
vendor, the position 2 to the product and the position 3 to the user ID.

56



VULDRONE 2015

The body message is exactly the same message received by parameter
from the process mailbox function, but there is a caveat: the string:
VULDRONEMAIL-—---— is added to the subject for the user to know that the
emalil is related to a security issue announced from the application, the “from”
header is also set to the mail sender account.

message = "\r\n".join([
"From: mailfeeder90@gmail.com",
"Subject: VULDRONEMAIL----- "+messagex['Subject'],

wn

messagex['Body'].encode('utf-8")

1)

With the message built and the receiver emails obtained, the next part is
sending the message to the users that have product’s requests related to the
email received in the Bugtraq or Full Disclosure mailing lists.

if len(receivers)>0:
conn.sendmail (sender, receivers, message)

57



VULDRONE 2015

3.4 User interface

This is the fourth module of the Vuldrone application; it is the part that
allows the user to interact with the application. The priority has been to make the
interaction very intuitive and simple, for every user to be able to use the
application without any kind of training.

Other important priority is its security. As this application is totally security
related, if the application, whose aim is to protect the users, could compromise
the user, would be a paradox. Exhaustive penetration testing has been
performed against the website to test its security, but this is explained in the next
section in more detail.

The backend language used has been PHP for several reasons:
e PHP is very easy to scale. If it would be required to scale the project, PHP

does is very quickly due to its architecture. The cluster size can be
increased with very little configuration.

e |t doesn’t require years of experience. For an application developed by one
programmer, that doesn’t require an organization working together in
different modules, PHP is a language that allows a person without a very
long experience do really powerful things. If it was an application that
requires many people working, PHP probably wouldn’t have been the
chosen language.

e |t doesn't fail hard compared to other languages. PHP runs in separate
isolated processes within Apache. PHP’s state cleans up and starts over for
each request, so one request does not corrupt another. Other languages
requires more work to handle that, PHP does it by default.

e Very good documentation. Every function and method has documentation
and a great number of functions have tons of examples.

e Lot of blogs. PHP philosophy is about sharing information, so, there are
many people with very good blogs sharing useful information.

¢ Dynamic typing. There is no need to worry about whether using an int or a
char, if there is need for a specific type; it significantly reduces the amount
of code needed to write and error conditions to check for.

e Works great with HTML. Integrating HTML code within PHP is extremely
easy. In fact, PHP and HTML are interchangeable within the page.

e
58




VULDRONE 2015

e Lower level. Compared to other web frameworks, PHP is lower level, less
abstract and more transparent, what allows the programmer understanding
in more detail the code.

Vuldrone has been coded in raw PHP, without a framework due to the
following reasons:

e Low level. You learn a lot writing on your own. The subtle differences
between using one function or another, between placing the code in one
part instead of another one results on a deeper understanding of what is
happening with the code, and the most important theory behind rather than
mindless implementation.

e Frameworks templates. They handle templates that many times do not fit
one self's needs.

e Adapting the framework to the application rather than the application to the
framework. It turns out to be faster adapting your own framework rather than
loading a framework.

e Small project. For a not very big project, that probably won’t need to be
expanded much, a framework would be more work than necessary. It would
have happen to be wasting more time on learning a framework than the time
saved for the framework templates and features.

As for the graphic interface, Bootstrap has been used because:

e |tis compatible with all major browsers. There is no need to worry about the
operative system running, it can either run on a Mac or a PC and you can
use Firefox, Safari, Internet Explorer or Chrome.

e It supports responsive design. The website can be seen on any device:
desktop, tablet or mobile phone.

e |t saves time. For people with little experience with HTML and graphic
interface in general, it saves a lot of time since offers convenient pieces of
code that will give the website a very nice style.

e |t's customizable. The developer can edit and add new pieces of code to the
given JavaScript or CSS. The developer can make it to fit the website needs.

e It has a detailed documentation and vast community. Even if a developer is
new to Bootstrap, the documentation provides great support in learning it
without any hassles.

e
59




VULDRONE 2015

e |t updates frequently. Bootstrap releases more updates than any other
framework. You can be sure of working with the latest tools.

Figure 24 shows the website’s flowchart:

| Main DELETE Product

SELECT
Vulnerabilities

INSERT Product — Add Product

Figure 24 — User Interface flowchart diagram

The user interface is composed by the following files: 1ogin.html,
login.php, main.php, deleteproduct.php, add.php,

s
60




VULDRONE 2015

addproduct.php, viewproduct.php, alerts.php,
deletealert.php, logout.php, queries.php and a set of CSS,
JavaScripts and a data folder. Each part worth being explained:

-Login.html

This is the page where the website starts, in this page, the user has to log
in the application.

+J)VULDRONE

] Remember
Login

CGI Copyright 2015 All Right Reserved.

Figure 25 — User Interface Login view

-Login.php

Once the ‘Log in’ button is pressed, the form goes straight to the
login.php page, and it checks whether the user logged is in the database or
not. This is the database query:

SELECT * FROM Users WHERE login = ? AND password = ?

If the user exists, it initializes the PHP session, that is, the PHPSESSID
cookie, with the aim of identifying the user throughout the whole website, once
the cookie is set, the user is redirected to the main.php page.

$ SESSION["ID User"]=$user id;
$ SESSION["name"]=$login;
header('Location: main.php');

If the user doesn’t exist, it stays in the 1login.html page without being
given any message, for security, not to give the user any hint about whether is
not accessing because of the non-existence of the user or an internal error.

s
61



VULDRONE 2015

header ('Location: login.html');

-Main.php

This is the page where the user can access all the application services.
She can add a new product, delete a product, view a product, and go to alerts or
logout from the website.

@vuldrone@uc3m.es  ftHome & Alerts 12 ] Logout
Vendor Product Version Action
Collabnet Subversion [ % Del |
Mozilla Firefox 40 [ % Del |
Apple Itunes m
Freebsd Freebsd [ % De |
Wordpress Wordpress [ % Del |

CGI Copyright 2015 All Right Reserved.

Figure 26 — User Interface Main view

The already added products are shown to the user in the main.php page,
and those products are retrieved for a specific user by this query:

SELECT * from Peticiones INNER JOIN Users ON Peticiones.ID =
Users.ID WHERE Peticiones.ID = ?

Peticiones.ID value is the $ SESSION["ID User"], this is how a
user is identified within the website.

It should be noted that the ‘Edit’ button has no use but hasn’t been
deleted because it would probably be a future improvement.

The $ SESSION["name"]=$login part of the cookie is used on every
page, always at the top right. In this case, vuldrone@uc3m.es is the user
created for the examples.

-Add.php

62


mailto:vuldrone@uc3m.es

VULDRONE 2015

This is accessed from the main.php when pressing the button with the
‘Add new products’ text.

@vuldrone@uc3m.es  #Home +J Logout

Mr.vuldrone@uc3m.es:

Add product: Preview:

Vendor Product Version Exploit Date
Vendor

Product

Submit all and finish
Version

Exploit Yes v
Date mmJ/dd/yyyy

+ Add

CGI Copyright 2015 All Right Reserved

Figure 27 — User Interface Add Products view

This part of the user interface requires a bit more explanation; given it
contains some important features.

It allows autocomplete vendors and products dynamically, up to a list of
35 vendors and products. Vendors and products are stored in a JavaScript file,
and they are an array of names, obtained with a SQL query that saves the result
into afile.

It is possible to add more than one product at the same time and cancel
them. They are stored into a JavaScript array of objects, and it can dynamically
change when the ‘add’ button is pressed, or when a product is canceled. One
JavaScript function is on charge of adding a product to the array and other one
to delete it from the array.

63



VULDRONE 2015

@vuldrone@uc3m.es i Home =] Logout

Mr.vuldrone@uc3m.es:

Add product: Preview:
Vendor Product Version Exploit Date
Vendor Mozilla
Cisco Packet Yes 2015-08-03 »®
Product Firefo| ~
Collabnet Subversion Yes 2015-08-03 x
Firefox
Version

Firefox Adsense

Exploit Firefox Esr
el Firefoxos Submit all and finish

Date Skype Extension For Firefox

Unity-firefox-extension

Yoono For Firefox

CGI Copyright 2015 All Right Reserved.

Figure 28 — User interface autocomplete view

When the ‘Submit all and finish’ button is pressed it sends the data via
POST using AJAX, which is a programming technique that allows to send data
from the client to the server side, to a page named addproduct.php and the
user is returned to the main.php page. At this point, the user is displayed the
products she has just added.

-Addproduct.php

This page is called from the add.php file when the submit button is
pressed. In this file, there is a loop that iterates over the array and inserts each
object, that is, each product, into the database:

foreach ($elements as $element) {

new_product ($element, Suser id);

The query that inserts each product is as follows:

INSERT INTO Peticiones (Vendor, Product, Version, P Date, Exploit,
ID) VALUES (?, ?, ?, 2?2, 2?2, ?)

64



VULDRONE 2015

-Deleteproduct.php

The user can delete a requested product in the main.php page, by
clicking the button tagged by ‘Del’. When the user presses it, the product data is
sent via POST using AJAX to deleteproduct.php and the product is deleted
from the database and from the page instantly, with a slow fading effect.

The query in charge of the database deletion is the following:

DELETE FROM Peticiones WHERE Vendor = ? AND Product = ? AND
Version = ? AND ID = ?

-Viewproduct.php

This page is accessed from main.php by clicking the “View” button.
Once clicked, the data is sent to viewproduct.php via GET with the following
parameters: vendor, product, version and exploit.

The parameters are processed in three functions:
view product vulns, view product exploits and
view product vulns mail and all the vulnerabilities and product’s exploits
are displayed to the user. These are the vulnerabilities gathered from
http://www.cvedetails.com/.

@vuldrone@uc3m.es i Home =3 Logout

Mozilla Firefox

Exploit DB Mailists  Dropdown +

CVE-2015-2808

Description:

The RCa algerithm, as used in

Date: 2015-03-31
Score:

http:/www.cvedetails.comicve/CVE-2015-2808/

CVE-2015-4000

Description:

col 1.2 and ea

The TLS prote
n a client, d

a DHE_EXPORT ch
e attacks by

Date: 2015-05-20

Score:

http:/www.cvedetails.com/icve/CVE-2015-4000/

Figure 29 — User interface CVEs view

65


http://www.cvedetails.com/

VULDRONE 2015

These are the exploits gathered from http://www.exploit-db.com/:

@vuldrone@uc3m.es  fHome =3 Logout

Mozilla Firefox

CVE Details Exploit DB Mailists Dropdown ~

CVE-2014-8636

Description:

The XrayWrapper implementation in Mozilla Firefox before 35.0 and SeaMonkey before 2.32 does not
properly interact with a DOM object that has a named getter, which might allow remote attackers to
execute arbitrary JavaScript code with chrome privileges via unspecified vectors

Date: 2015-01-14
Score: 7.5

hitp/iwww.cvedetails.com/cve/CVE-2014-8636/

Exploit:

##
# This module requires Metasploit: http://metasploit.com/download
# Current source: https://github.com/rapid7/metasploit-framework
##

require 'msf/core’
require 'rex/exploitation/jsobfu’

class Metasploit3 < Msf::Exploit::Remote
Rank - ManualRanking

include Msf::Exploit::Remote::BrowserExploitServer
include Ms ploit: :Remote: :BrowserAutopwn
include Msf::Exploit::Remote::FirefoxPrivilegeEscalation

def initialize(info = {})
super(update_infa(info,
“Name* => 'Firefox Proxy Prototype Privileged Javascript Injection’,
‘Description’  => %q{
This exploit gains remote code execution on Firefox 31-34 by abusing a bug in the X

Figure 30 — User interface Exploits view

This tab shows the vulnerabilities harvested on the Mail Processor:

@vuldrone@uc3m.es i Home <] Logout

Mozilla Firefox

CVE Details Exploit DB Mailists Dropdown ~

[SECURITY] [DSA 3300-1] iceweasel security
update

Date: 2015-07-04

Description:

----- BEGIN PGP SIGNED MESSAGE-----

Hash: SHAL

Debian Security Advisory DSA-332@-1 securityf@debian.org
https://wew.debian.org/security/ Moritz Mushlenhoff
July @4, 2015 https://wwwi.debian.org/security/fag
Package : iceweasel

CVE ID © CVE-2815-2743 CVE-2015-480@2 CVE-2015-2734 CVE-2815-2735

CVE-2015-2736 CVE-2015-2737 CVE-2915-2738 CVE-2015-2739
CVE-2015-2748 CVE-2015-2728 CVE-2015-2731 CVE-2015-2724

Hultiple security issues have been found in Iceweasel, Debian's version
of the Mozilla Firefox web browser: Multiple memory safety errors,
use-after-frees and other implementation errors may lead to the
execution of arbitrary code or denial of service. This update also
addresses a vulnerability in DHE key processing commonly knoun as

the "Loglam" vulnerability.

Figure 31 — User interface Mails view
The user’s session doesn’t play an important role in this page, because
the vulnerabilities from a certain product does not consider the user at all, they

B ——————
66



http://www.exploit-db.com/

VULDRONE 2015

are the same for everyone, although, the user's session is used for being
displayed at the top left corner.

The database query that is in charge of obtaining the CVE vulnerabilities
is the following:

SELECT Vulnerabilities cve.CVE AS CVE, Description AS Description,
P Date AS P Date, U Date AS U Date, Score AS Score FROM
Vulnerabilities cve INNER JOIN Products ON Vulnerabilities cve.CVE
= Products.CVE WHERE Vendor = ? and Product = ? and Version = ?
GROUP BY Description ORDER BY U Date DESC

Here, there is the possibility too, that the user has inserted a product
without a version, so the query is the same but without the version field. In order
to retrieve the exploits this query has been used:

SELECT Vulnerabilities cve.CVE AS CVE, Description AS Description,
P Date AS P Date, U Date AS U Date, Score AS Score, Exploit AS
Exploit FROM Vulnerabilities cve INNER JOIN Products ON
Vulnerabilities cve.CVE = Products.CVE INNER JOIN Exploits ON
Vulnerabilities cve.CVE = Exploits.CVE WHERE Vendor = ? and
Product = ? GROUP BY Exploit ORDER BY Date DESC

And, the last tab, corresponds to the vulnerabilities obtained from the
mailing lists, and the query in charge of obtaining this information is as follows:

SELECT Subject,date,summary FROM Vulnerabilities mail WHERE
summary LIKE ? AND summary LIKE °?

The two page parameters are vendor and product so, the emails shown
to the user are the ones whose body text includes both the vendor and product
the user has inserted as a request.

-Alerts.php

This part of the application is accessed from main.php and it displays
the latest vulnerabilities to the user.
The displayed data is retrieved from the Alerts table, by the following

query:

SELECT Subject,date,summary FROM Alerts WHERE ID = ?

That way, all the alerts are shown to the user, no matter what product
they come from, which is the purpose of this section.

All alerts are displayed in the same page, alerts.php, and the alert
subject is first shown to the user. The user can watch the whole alert message

s
67




VULDRONE 2015

by clicking on the subject. She can hide the content by clicking on the subject
again.

@vuldrone@uc3m.es & Home *JLogout

peret _

» FreeBSD Security Advisory FreeBSD-SA-15:18.bsdpatch

« FreeBSD Security Advisory FreeBSD-SA-15-19 routed

« Device Inspector v1.5 10S - Command Inject Vulnerabilities
« [slackware-security] mozilla-firefox (SSA-2015-219-01)

[E=0= =t

Date: 2015-08-08

Description:

Hash: SHA1
[slackware-security] mozilla-firefox (S5A:2015-21%9-01)

New mozilla-firefox packages are available for Slackware 14.1 and -current to
fix security issues.

Here are the details from the Slackware 14.1 Changelog:

e

patches/packages/mozilla-firefox-38.1.1esr-i486-1_slackl4.1.txz: Upgraded.
This release contains security fixes and improvements.

Fig-u-;e 32 — User interface Alerts view

The user is also allowed to remove alerts by clicking on the trash icon.

-Deletealert.php

When the trash icon is clicked from the alerts.php page, a POST is
sent to deletealert.php using AJAX. Once the button is clicked, the whole
alert is removed visually from the website, both the subject and the whole body,
and also deleted from the database. The MySQL query in charge of the alert
deletion is the following:

DELETE FROM Alerts WHERE Subject = ? AND ID = ?

When the button is clicked, the red number of alerts is also automatically
updated without needing to reload the page.

-Logout.php

The only purpose of this page, is to remove the user’s session and to redirect him
to the website login.
Once the user logouts the user needs to log in again, it is not possible for
the user to use his previous cookie.

68



VULDRONE 2015

4. Validation

This chapter lists all the tests that have been performed to the Vuldrone
application:

4.1 Fuctionality
.~ CvEspider

The spider starts from the newest to the oldest CVEs.

The spider is can go through all the pages without any kind of problem.

All the XPaths are correct.

The spider doesn’t get blocked from the cvedetails.com domain.

The spider works asynchronously when it has to dump the whole cvedetails
database.

The spider works in order when it has to monitor the CVEs.

The field “type” in CVEs with more than one type, is correctly joined by all the types
in one string.

Published date and update date are split correctly even though having the same
XPath.

All the fields are formatted correctly, with no special characters.

The spider doesn’t inserts CVEs with score 0.

The CVE information is correctly inserted into the Vulnerabilies cve database
When a CVE has more than one product affected, all the products are correctly
inserted in the Products database.

The spider stops when a duplicate CVE is found.

Whenever the spider opens a connection to the database, it closes the connection
after the operation is done.

The spider displays the information about how much time has the crawling taken.

The spider starts crawling from the newest CVEs to the oldest.

The spider monitors every week, not to lose a single update.

The spider doesn’t get blocked from the cvedetails.com domain.

All the XPaths are correct.

The field “type” in CVEs with more than one type, is correctly joined by all the types
in one string.

69



VULDRONE 2015

Fields with same XPath are split correctly.

All the fields are formatted correctly, with no special characters.

The CVE information is correctly updated in the Vvulnerabilies cve database.
The spider displays the information about how much time has the crawling taken.

The spider starts from the newest to the oldest exploits, in order.

The spider stops crawling whenever a duplicate exploit ID is found.

The spider doesn’t get blocked from the exploit-db.com domain.

All the XPaths are correct.

The spider drops the exploits that have not a CVE attached to them and inserts the
ones that have a CVE.

All the fields are properly formatted, without special characters.

The exploit is correctly inserted into the Exploits database.

The spider displays the information about how much time has the crawling taken.

The INBOX mailbox is accessed properly.

The mail harvester goes through all the emails correctly.

The email is properly split into date, subject and body.

The date is formatted with the YY-mm-dd format.

The PGP Signature is removed from every email correctly.

The message is properly decoded.

Both non-multipart and multipart messages are handled properly and their parts
are well extracted.

The email is correctly inserted into the Vulnerabilities_mail database.

When a connection to the database is open, after the operation, it is always closed.
The emails are correctly moved to the trash mailbox.

The subject is changed properly.

The list of users that have requested a product for every email, that is, the list of
emails the email is going to be sent, is retrieved always correctly.

The message body is properly encoded.

The email is correctly sent to the list of users correctly.



http://www.exploit-db.com/

VULDRONE 2015

User Interface
The website adapts well to PC, tablets or mobiles.
The user can’t access with a wrong email, password or both.
The user can access with a correct email and password.
The list of products is displayed to the user properly.
When a user deletes a request, it only deletes the request for him and not for every
user, the deletion is correct.
The product deletion is done dynamically.
The user is able to add several products at the same time.
When a user adds a product, it is dynamically added.
When a user deletes a product from the cart, it only deletes that product, even
though he mistakes and choose more than once the same product.
Autocomplete functionality works perfectly.
The date field is displayed as a calendar in all the browsers properly.
When the user press the submit button, the products are inserted properly into the
Requests table.
The submit button makes the user goes to the main page and new requests are
properly displayed.
From the products adding section, the user can either go to home or logout,
The user email is correctly displayed at the top of the products adding section.
All the CVEs are properly selected to the user.
The CVEs are properly formatted, without special chars inside.
The CVEs are ordered properly by the update date.
The CVSS changes its color depending on how critical the vulnerability is.
All the CVE urls are correct and redirect to the original website properly.
All the exploits are properly selected to the user.
Exploits are properly displayed and formatted, and so the CVEs.
All the mails are properly selected to the user.
Mails are properly displayed and formatted.
In the view section, the user’s email is properly displayed at the top.
From the alerts section, the user can go to either home or logout properly
The number of alerts is properly displayed to the user in the main page.
All the alerts are properly selected to the user.
All the alerts can be pressed in order to see the content in detail.
The deletion works dynamically, and the number of alerts is automatically updated,
as well as the alert itself.
From the alerts section, the users can either home page or the logout properly.
The user’s email is properly displayed at the top of the alerts section.
When the user tries to access any page different from the login by typing the URL,
if he has not a valid cookie, he is redirected to the login page.
Logout removes the user’s cookie properly.

71



VULDRONE 2015

4.2 Web Pentesting

As this application’s aim is to protect systems, it could be a likely target for
Black Hat hackers. So besides the main functional tests, the security of Vuldrone
has been thoroughly tested as explained next.

4.2.1 SQL injection

Every single SQL query is implemented with prepared statements in
order to avoid SQL injection.

This is an example of the PHP code without prepared statements:

$sgl = "SELECT * from Users where login = '"".$login."' and
password = '".$password log."'";

$result = mysgli query($conn, $sql);

if (mysgli num rows ($result) > 0) {
// output data of each row
while($row = mysqgli fetch assoc($result)) {
return $row["ID"];
}
}

else {

return false;

This way, a hacker is able to introduce malicious SQL code in the login
and password fields by closing the quotes himself.

For proving this vulnerability has been used the tool called sglmap, an
open source penetration testing tool coded in python that automates the
process of detecting and exploiting SQL injection flaws and taking over of
database servers.

sglmap -u http://172.16.0.228:8080/1login.php --dbs
g p p 9 pap

That allows obtaining the databases.

72



VULDRONE 2015

at 13:43:30
Figure 33 — SQLmap databases attack

The target database in this case is VULDRONEDB, from which we can
obtain all the tables, columns and fields and end up obtaining the users and
passwords.

sgqlmap -u http://172.16.0.228:8080/1login.php --
data="login=&password=" -D VULDRONEDB -T Users -C Login, Password -
—dump

[*] shutting down at 13:57:46

3 |

Figure 34 — SQLmap users and passwords attack

As it is proved in the screenshot above, this mistake can end up allowing the
hacker to obtain all the users names and passwords of the application.

This has been the way to avoid SQL injection:

$stmt=$conn->prepare("select * from Users where login = ?

e
73




VULDRONE 2015

and password = 2");
$stmt->bind param("ss",$login, $password log);
$stmt->execute () ;
$stmt->store result();
$stmt->bind result($id, $login, $password log);

while ($stmt->fetch()) {

return $id;

}

return false;

4.2.3 Man In The Middle attacks

Man in the middle attack, often abbreviated to MitM, is an attack in which
the attacker is in the middle of the communication between the victim and the
router. The attacker can do it one direction or two directions:

e The attacker can be in the middle of the communication from the victim to
the router, so he can tamper the data the user sends, or, from the router to
the victim, so that the attacker is able to manipulate the data received to the
user.

e The attacker can be in the middle of both, so he can tamper the two
directions data.

HTTPS (also called HTTP over TLS, HTTP over SSL or HTTP Secure) is
a protocol for secure communication over a computer network which is widely
used on the Internet. HTTPS consists of communication over Hypertext Transfer
Protocol (HTTP) within a connection encrypted by Transport Layer Security or
its predecessor, Secure Sockets Layer. The main motivation for HTTPS is
authentication of the visited website and to protect the privacy and integrity of
the exchanged data. [36] It protects against eavesdropping. Without HTTPS, this
is what could have happened if an attacker performing a MitM attack is capturing
the traffic with a traffic analyzer such as Wireshark.

74


https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Communications_protocol
https://en.wikipedia.org/wiki/Network_security
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Authentication
https://en.wikipedia.org/wiki/Website
https://en.wikipedia.org/wiki/Information_privacy
https://en.wikipedia.org/wiki/Data_integrity

VULDRONE 2015

No. Time Source Destination Protocol | Lengtl | Info

T e S — Lt ees er N e —
16 -1411121492, 172.156.0.228 172.16.0.228 Tcp 74 http = 46822 [SYN, ACK] Seq=0 Ack=1
17 32.18470400( 172.156.0.228 172.16.0.228 Tcp 66 46822 = http [ACK] Seq=1 Ack=1 Win=

32.18477200( 172. POST /VULDRONE/login.php HTTP/1.1
19 32.18479300( 172.15. 228 Tcp 66 http = 46822 [ACK] Seq=1 Ack=1541 W
20 32.31442900( 172.16. 228 HTTP 521 HTTP/1.1 302 Found (text/html)

]
a.

.228 172.16.
228 172.16.

[c o]

+| Frame 18: 1606 bytes on wire (12848 bits), 1606 bytes captured (12848 bits) on interface ©

+ Ethernet II, Src: 00:00:00 00:00:00 (00:00:00:00:00:00), Dst: 0O0:00:00 00:00:00 (C0:00:00:00:00:00)

+ Internet Protocol Version 4, Src: 172.16.0.228 (172.16.0.228), Dst: 172.16.0.228 (172.16.0.228)

+ Transmission Centrol Protocol, Src Port: 46822 (46822), Dst Port: http (80), Seq: 1, Ack: 1, Len: 1540

—| Line-based text data: application/x-www-form-urlencoded

05d0 Be 74 65 6e 74 2d 54 79 70 65 3a 20 61 70 70 6c  ntent-Ty pe: appl
05e0 69 62 61 74 89 6f 6e 2f 78 2d 77 77 77 2d 66 &f ication/ x-www-To
osfo 72 6d 2d 75 72 6¢c 65 62 63 6f 64 65 64 0d Qa 43 rm-urlen coded..C
0600 &f 6e 74 65 Be 2d 4c 65 6e 67 74 68 3a 20 34 ontent-L ength: 4
0510 od 0a F log 1n=vuldr]
0520 [ 3m.es&pal
0630 234&1og-
0540

Figure 35 — Wireshark HTTP user and password sniffing

The attacker would have been able to see the user login and password in
plain text.

To protect against this, it has been used HTTPS to communicate with the
server. This is the how it has been performed.

It has been enabled SSL:

a2enmod ssl
aZ2ensite default-ssl
/etc/init.d/apache2 restart

The HTTP traffic has been redirected to HTTPS:

aZenmod rewrite

Inthe /etc/apache2/sites-enabled/000-default file:

<VirtualHost *:80>

RewriteEngine on

RewriteCond $%{SERVER PORT} !”~443$

RewriteRule ".*$ https://%{SERVER NAME}/VULDRONE/login.html
[L,R]
</VirtualHost>

75



VULDRONE 2015

And this is what the attacker captures with Wireshark:

No. Time Source Destination Protocol | Lengtl | Info
32 2.166893000 172.16.0.228 172.16.0.228 TLSv1.2 117 Change Cipher Spec, Hello Request,
33 2.172492000 172.16.0.228 172.16.0.228 TLSv1.2 1516 Application Data
34 2.172503000 172.16.0.228 172.16.0.228 TCP 66 https = 51032 [ACK] Seq=138 Ack=201

2.191856000 172.16.0. .16.0. TLSv1.2 Application Data, Application Data,

36 2,232955000 172.16.0.228 172.16.0.228 TCR 66 51032 = https [ACK] Seq=2019 Ack=70
37 2,277586000 172.16.0.228 172.16.0,228 TLSvl.2 1516 Apolication Data

+ Frame 35: 635 bytes on wire (5080 bits), 635 bytes captured (5080 bits) on interface ©

+ Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst: 00:00:00_00:00:00 (00:00:00:00:00:00)

+ Internet Protoceol Version 4, Src: 172.16.0.228 (172.16.0.228), Dst: 172.16.0.228 (172.16.0.228)

+ Transmission Control Protocol, Src Port: https (443), Dst Port: 51032 (51032), Seq: 138, Ack: 2018, Len: 569

+ Secure Sockets Layer

0040 89 17 17 03 03 01 ¢9 ec fh fd db fec ac 0e Zb da  ........ ...... +.

0050 Sc 66 16 31 SO 96 97 e4 40 be f4 10 sb 1a 24 11 \f.1P... @...[.%.
0060 69 10 Sa 59 ae 14 la 2¢ 7c 33 3f 94 61 Qe 3¢ 2¢  1.ZY..., |37.a.<,
0070 d6 76 c8 1f 0d c2 00 44 6e 07 9e cd 56 cc dl 28 .v..... Dn...V..(
0080 1f 52 d1 29 e0 f6 el 2c¢ bl 2f 81 11 2c 57 980 a3 .R.)..., ./..,W..

0090 ef a5 32 dS ca eB 00 29 d6 2c f4 e2 85 dc a3 3b  ..2....) ., ...
ofan 2 Ad 1h 70 Ada 22 Sh o Af 12 fa 1a da 22 &d o 72 Am_nhkl 4+

Figure 36 — Wireshark TLS sniffing

This time, the attacker is not able to capture the traffic. But it not 100%
secure yet, because by default, weak cypher methods are enabled.
It has been tested the ciphers with sslscan, a Linux tool for testing the SSL server
security, and this is what has been found:

Preferred Server Cipher(s):

ECDHE -RS

Figure 37 — SSLscan certificates checking

That means, SSLv3, a weak server cipher it is enabled, which allows the
client to negotiate using this cipher, and end up capturing the traffic in plain text.

The way it has been prevented, has been, to add in the
/etc/apache/sites-available/default-ssl file, the following lines:

SSLEngine on

SSLProtocol all -SSLv2 -SSLv3

76



VULDRONE 2015

With these measures, the website is protected against possible
eavesdropping.

4.2.4 Cross Site Scripting (XSS)

Before, it has been explained that XSS is a type of attack in which
malicious code is injected into trusted websites. XSS can be used to deface a
website, steal user’s credentials, install malware or redirect users to other
websites.

In the Vuldrone website, there is one form where the user can insert data
into the database, in a AJAX POST form, when adding the product, and those
inputs are then displayed to the user, so, this is a sensitive part of the
application and inserting scripts shouldn’t be allowed.

This potential XSS turns out to be on the private part, after the user logs
in, but, although trickier, it can also be exploited, forcing the user to fill and
submit a form with the malicious JavaScript.

This is the structure of the code that forces the user to submit a form:

<form action="http://172.16.0.228/VULDRONE/addproducts.php"
method="POST" target="_blank" >

<input type="text" name="products[0] [vendor]" value="Cisco"/>

<input type="text" name="products[0] [product]" value=
"<script>location.href="'http://172.16.0.228:7070?c="+document.cook
ie</script>"/>

<input id="wvul" type="submit" value="Submit"
onfocus="'this.click()' autofocus/>
</form>

It is inserted in the product rather than in the vendor because of the
database structure: the product column in the Requests table can take up 90
characters, and this size is enough for inserting the malicious script, which, in
this case, it's purpose is to send the cookie to the attacker, that would be
listening with socat.

This is the part of the sensitive PHP code that would allow an attacker to steal the
user’s cookie:

77



VULDRONE 2015

$stmt->bind param("ssssss", ($element['vendor']),

($element['product']), (Selement['version']), ($element['date']),
($element['exploit']), $user id);

This is, not sanitizing sensitive fields at the moment the insertion on the
database is done. And this is what could happen:

=gt at TCP-L:7@70,fork,
ffavicon.ico HTTR/1.1

(Windows. NT 63l; WOWG t/ 65 (KHTML,
4,93 Safari/ 36

4a84n30jud8rf3jbsl

Figure 38 — SOCAT listenning for cookie

This is, the hacker side, listening with socat, waiting for the cookie to be
automatically sent from the victim side.

The way to fix this security hole is very simple, there is a PHP function
called htmlspecialchars that sanitize the sensitive strings, properly escaping
the HTML characters and thus, not letting introducing scripts.

$stmt->bind param("ssssss", htmlspecialchars($element['vendor']),

htmlspecialchars ($element[ 'product']),htmlspecialchars ($element['v
ersion']),

htmlspecialchars ($element['date']),
htmlspecialchars($element['exploit']),Suser id);

Besides, in order to fortify the security, the X-XSS-Protection header has
been forced to be enabled by the browsers, to prevent XSS. To carry this out,
the following line has been added in the /etc/apache2/apache. conf file:

Header set X-XSS-Protection 1

This header enables the Cross-site scripting (XSS) filter built into most
recent web browsers. It's usually enabled by default anyway, so the role of this
header is to re-enable the filter for this particular website if it was disabled by the
user.[38]

78


https://www.owasp.org/index.php/Cross-site_scripting

VULDRONE 2015

The last measure is not to include JavaScript code from other origins,
because, if the trusted origin gets compromised, the victim’s website could be
executing malicious code. In the other hand, if our network gets compromised,
and we suffer a DNS spoofing attack, the attacker can confuse our DNS and, tell
us to go the attacker domain when trying to go our “trusted” JavaScript code and,
therefore, we can also end up executing malicious JavaScript code.

4.2.5 Directory Listing

It's a bad practice to allow your website to list directories, as a potential
attacker can see all the website structure and there could be files that website
developer doesn’t want to show. Even though it can be exploited with brute force
attacks that can take at some cases, depending on the files names and on how
much directories layers there can take too much time for the attack to be
successfully performed. This is what someone can do if directory listing is
allowed:

<« C @ https;//172.16.0.228/VULDRONE/

- 4 B
Index of /'VULDRONE
Name Last modified Size Description

éw -

Readme.txt 17-Tul-2015 07:30 211

@ add php 17-Tul-2015 07:30 58K

@ addproducts.php  21-Sep-2015 10:46 382

@ alerts php 21-Aug-2015 13:20 23K

Cyesy 14-Tul-2015 08:39

ﬁa data 16-Tul-2015 08:44

@ deletealert.php  21-Aug-2015 14:09 361
@ deleteproduct.php 21-Jul-2015 08:06 376

[@] favicon ico 27-Jul-2015 09:31 318
(23 fonts! 06-Tul-2015 08:43 -
[2] image php 15-Tul-2015 09-24 614
iy 21-Aug-2015 13:21 -
login html 17-Tul-2015 07-50 2 1K
[ loginphp 27-Jul-2015 09:31 483
[ login2 15-Tul-2015 09:24 3.7TK
[ logout php 17-Tul-2015 07-50 108
[#) mainphp 21-Aug-2015 08:47 2.1K
2] main> 15-Tul-2015 09-13 17K
memoria txt 17-Tul-2015 12:47 3580
[ queries php 21-Sep-2015 10:28 19K
[ tables.sql 21-Aug-2015 09:58 2 4K
[# testphp 07-Tul-2015 08:04 135

[# wiewproduer; 19-Aug-2015 12:35 3 8K

Figure 39 — Vuldrone Directory listing vulnerability

The way to solve this is by disabling the Indexes option in the
/etc/apache2/sites-available/default-ssl. And this would be the
server response if someone requests the website root directory:

79



VULDRONE 2015

<« C' | G https://172.16.0.228/VULDRONE/

Forbidden

You don't have permission to access /VULDRONE! on this server.

2222

Apache/2.2.22 {Debian) Server at 172.16.0.228 Port 443

Figure 40 — Vuldrone Directoy Listing vulnerability fixed

4.2.6 Unexpected Requests

When performing the XSS, the form that introduced the malicious script
was a classic form, not an AJAX request, which is the way the POST is done
when the user interacts with the website.

To prevent that exploit to be performed, the server should check the X-
Requested-With HTTP Header, and only allow inserting the product if the
request is done via AJAX, this is way this vulnerability has been mitigated.

In the addproducts.php file, the following lines only allow inserting
products if the requests have been done via AJAX:

if (is ajax()){

foreach ($elements as $element) {

new product ($element, $user id);

}

function is ajax() {

return isset ($_SERVER[ '"HTTP_ X REQUESTED WITH']) &&
strtolower($§ SERVER['HTTP X REQUESTED WITH']) == 'xmlhttprequest';
}

This way a hacker that convinces a victim to press a link, which is an auto
submitted form, including the JavaScript, wouldn’t success.

80



VULDRONE 2015

The headers only can be set in an AJAX request, and sending AJAX
requests via POST to different domains can be only achieved by a technique
called CORPS, which requires the server to include certain headers in order to
allow requests from other domains. Therefore, this measure adds extra security
to the website.

4.2.7 Sensitive cacheable information

In order to prevent an attacker with physical access to a computer to
manipulate sensitive information, it has been set the Cache-Control Header.

This has been done by adding the following line in
/etc/apache2/apache.conf:

Header set Cache-Control "max-age=3600, public"

This means, in 3600 seconds, the information is not in cache anymore.

4.2.8 MIME Sniffing

MIME sniffing also known as Content Sniffing or Media Type Sniffing, is
the practice of inspecting the content of a byte stream to attempt to deduce the
file format of the data within it.

doing this opens up a serious security vulnerability, in which, by confusing
the MIME sniffing algorithm, the browser can be manipulated into interpreting
data in a way that allows an attacker to carry out operations that are not
expected by either the site operator or user, such as cross-site scripting.

The way to prevent this vulnerability is, adding the following line in the
/etc/apache2/apache?2.conf:
Header set X-Content-Type-Options nosniff

The only defined value, "nosniff", prevents Internet Explorer and Google
Chrome from MIME-sniffing a response away from the declared content-type.

81


https://en.wikipedia.org/wiki/Byte_stream
https://en.wikipedia.org/wiki/File_format
https://en.wikipedia.org/wiki/Security_vulnerability
https://en.wikipedia.org/wiki/Cross-site_scripting

VULDRONE 2015

4.2.9 Click-Jacking

Clickjacking, also known as a "Ul redress attack”, is when an attacker
uses multiple transparent or opaque layers to trick a user into clicking on a
button or link on another page when they were intending to click on the top level

page.

For example, imagine an attacker who builds a web site that has a button
on it that says "click here for a free iPod". However, on top of that web page, the
attacker has loaded an iframe with the website vulnerability alerts, and lined up
exactly the recycle bin, that delete alerts button directly on top of the "free iPod"
button. The victim tries to click on the "free iPod" button but instead actually
clicked on the invisible recycle bin button. In essence, the attacker has
"hijacked" the user's click, hence the name "Clickjacking".

This is avoided by denying the X-Frame-Options that is, adding the
following header in the /etc/apache2/apache?2.conf:

Header add X-FRAME-OPTIONS “DENY”

This way, the website can’t be loaded as an iframe on another website,
and thus, is not vulnerable to click-jacking.

After all the taken measures, the application turns out to be out of security
alerts, is properly hardened and using adequate HTTP Security Headers, which,
as has been said before, only 1% websites on average does.

82



VULDRONE 2015

5. Planning and Budget

The next table shows the project planning from the very start to the end,
from the research on the alternative solutions and the technologies learnt during
the process, to the performed tests on the application once finished and during
the implementation, and of course, the designing and implementation part are
also displayed.

Mar 2015 Apr 2015 May 2015 Jun 2015 Jul 2015 Aug 2015

Vuldrone

¥ Research |7
Atlernative solutlons
Web development state of art
Learning PHP
Learning Goutte
Reviewing Python
Learning Scrapy
Learning Javascript

¥ Design ——1

Database Design

¥ Implementation 7

Goutte Spiders (I

Mall harvester Java [

Scrapy Spiders ( |

Mall harvester Python )

Mail sender Python C]

User Interface [ I

¥ Testing | —|
Web penstration testing O/

Figure 41 — Project planning

As we can see, it has been necessary to learn many programming
languages and technologies, and at some points there is an overlapping in order
to optimize certain tasks. For example, during the last stage of the
implementation, the application has been started to be tested with different web
penetration tests, and corrected on the course of the tests.

Is also appreciable too, an overlapping during the implementation on the
user interface part, because it had to work together with the backend, and it is

s
83



VULDRONE 2015

almost impossible implementing the backend perfectly at the first time without
testing it as a user.

5.1 Budget

In this section the project budget is detailed in different parts: the staff, as
well as the hardware and software used during the project. The last part is the
summary of all the tables, concluding with the final total cost of the project.

5.1.1 Staff's cost

There have been two people working on the project, an engineer that has
designed and implemented the project and a Senior engineer that has
supervised the application to make sure everything is right and meets the
requirements.

Occupation Hours Price/hour Cost (€)
Senior 10 60 600
Engineer 300 30 9.000

TOTAL 310 9.600 €

As for the required resources, it has been necessary a computer with a
mouse and keyboard and a relatively large screen and a pendrive.

Description Cost % Duration = Depreciation @ Chargable
(€) Dedicated (months) period Cost (€)
use
PC Intel Core 2x 500 100 6 60 50
CPU 2.33 GHz
Logitech mouse 90 100 6 60 9
and keyboard
Monitor TFT LG- 120 100 6 60 12
22M35A-B
Pendrive 10 100 6 60 1
Kingston
DataTraveler
SE9 16 Gb
TOTAL 72 €

84



VULDRONE 2015

5.1.3 Software and licenses cost

Regarding the software’s cost; almost all the software used has been free,
except the Microsoft Office license to write this document.

Description Chargable cost (€)
Microsoft Office 2010 Professional 250
Komodo Edit
Apache
PHP
MySQL
Python
Scrapy
Bootstrap
Eclipse
Teamgantt
OWASP ZAP
Google
TOTAL

OO OO0 0O0O0 000 OoOo

N
(34
o
an

To conclude, in the next table it is shown a recap of all the costs
previously detailed.

5.1.4 Total cost

Description Total cost (€)
Staff 9.600
Hardware amortization 72
Software and licenses 250
TOTAL 9.922 €

85



VULDRONE 2015

6. Conclusion and Future works

This work has discussed the security vulnerabilities world, it has
presented concepts like what a security vulnerability is, what CVE is, what are
the most common vulnerabilities and statistics about them, how patching and
using safe components can mitigate a software from being compromised, how
much time does it take on average to patch a vulnerability, how does the
vulnerability life-cycle works, since the discovery to the patching. It has also
showed the evil part of this world is: what is an exploit and what is a zero day in
detail.

The actual solutions have been presented as far as security vulnerability
alerting is concerned, and the strong and weak points of commercial software
compared to the solution given in this report.

Then the proposed Vuldrone solution has been explained in detail and
why everything has been done in such way. Inherent to the solution the security
vulnerabilities mailing list and the web crawlers have been explained and
discussed different solutions regarding this part.

The first aim of the project had been to make it useful, to insert the
products and to be given the CVE, regardless of the rest of the parts. The time
has allowed prioritizing not just one aspect but many:

e The functionality, which was the first priority, has been extended: the user is
also given information from the mailing lists and the exploits.

e The speed: A database allows making requests much faster than crawling
the websites every time the user logs in.

e The easiness. The user can use it smoothly, with no room for mistake
because everything is very easy for the user to spot. Also, the product and
vendor autocomplete helps a lot for the user to introduce the parameters
right.

e Security. It has been performed a complete web penetration testing to the
website using many security tools such as OWASP Zap, Golismero, sqlmap,
sslscan and manually. Thus, the project has been coded being totally aware
of the security holes in order to avoid making a mistake regarding the
website security.

86



VULDRONE 2015

Therefore, much time has been spent polishing many aspects that first
were not a first priority and honing all these subtle nuances has resulted on,
personally, | think a good solution that contributes with completely new features
and make it feasible to be used for a company or for a personal user as for the
aimed purpose of the project, mitigating software from being compromised.

The final conclusion is that the project although meets all the initial the
requirements and at some points exceeds the first expectations, it could also be
improved and adapt to the new requirements. It has served for delving into the
security vulnerability world in depth as well as for learning and putting together
much different knowledge in order to make this solution possible.

6.1 Future works

The project could grow much more, and there are many functionalities
that could be added without having to change many parts of the code, because
the code has been properly modularized to make it scalable.

For instance, if a client requires another website to crawl, because she
only focuses on a certain vendor as it could be Mozilla, it is easy to implement a
new spider that crawls the Mozilla security advisories website. Therefore,
depending on the client requests, it can grow to have implemented tons of
different crawlers for different vendors.

Subscribing to a new mailing list would be immediate, because the only
change is to choose another source of emails apart from Bugtraq and Full
Disclosure, all the emails go to the same database so the process is utterly
automatic.

Other additional features would be to show the user’s statistics in the
home page, displaying information about their products and the risk of their
vulnerabilities in a graphic in order to allow the users to, at a glimpse, see how
much and how many are their products vulnerable and. As far as the security is
concerned it would be highly appropriate to use the phpass a PHP class which
functionality is to safely encrypt the user's passwords in the VULDRONEDB
database.

87



VULDRONE 2015

7. Bibliography

[1] Python Tutorial. https://www.codecademy.com/en/tracks/python.
[Access: 01/04/2015]

[2] CVE Information research. http://cve.mitre.org/about/index.html.

[Access: 15/09/2015]

[3] CVE Information research. http://makingsecuritymeasurable.mitre.org/docs/cve-intro-handout.pdf.

[Access: 15/09/2015]

[4] Vulnerability definition. https://msdn.microsoft.com/en-us/library/cc751383.aspx.

[Access: 13/09/2015]

[5] Vulnerability information. https://www.secpoint.com/what-is-a-vulnerability.html.
[Access: 13/09/2015]

[6] Vulnerability information. https://en.wikipedia.org/wiki/Vulnerability %28computing%29.
[Access: 13/09/2015]

[7] Vulnerabilities research. http://www.bccriskadvisory.com/wp-content/uploads/Edgescan-Stats-

Report.pdf.
[Access: 14/09/2015]

[8] Common
vulnerabilities .https://secunia.com/?action=fetch&filename=secunia_vulnerability review 2015 pdf

..pdf.
[Access: 14/09/2015]

[9] Vulnerabilities life-cycle. http://www.cs.colostate.edu/~malaiya/p/joh.risk.2010.pdf.
[Access: 14/09/2015]

[10] Vulnerabilities life-cycle. https://securityblog.redhat.com/2015/02/04/life-cycle-of-a-security-

vulnerability/.
[Access: 15/09/2015]

[11] Vulnerabilities life-cycle. http://www.alertlogic.com/wp-content/uploads/2013/02/Defense-
Throughout-the-Vulnerability-Life-Cycle-3.pdf.
[Access: 16/09/2015]

[12] Zero-day research.
https://users.ece.cmu.edu/~tdumitra/public_documents/bilgel2 zero day.pdf.
[Access: 17/09/2015]

[13] Zero-day research. https://stacks.stanford.eduf/file/druid:zs241cm7504/Zero-
Day%20Vulnerability%20Thesis%20by%20Fidler.pdf.
[Access: 17/09/2015]

88


http://cve.mitre.org/about/index.html
http://makingsecuritymeasurable.mitre.org/docs/cve-intro-handout.pdf
https://msdn.microsoft.com/en-us/library/cc751383.aspx
https://www.secpoint.com/what-is-a-vulnerability.html
https://en.wikipedia.org/wiki/Vulnerability_%28computing%29
http://www.bccriskadvisory.com/wp-content/uploads/Edgescan-Stats-Report.pdf
http://www.bccriskadvisory.com/wp-content/uploads/Edgescan-Stats-Report.pdf
https://secunia.com/?action=fetch&filename=secunia_vulnerability_review_2015_pdf..pdf
https://secunia.com/?action=fetch&filename=secunia_vulnerability_review_2015_pdf..pdf
http://www.cs.colostate.edu/~malaiya/p/joh.risk.2010.pdf
https://securityblog.redhat.com/2015/02/04/life-cycle-of-a-security-vulnerability/
https://securityblog.redhat.com/2015/02/04/life-cycle-of-a-security-vulnerability/
http://www.alertlogic.com/wp-content/uploads/2013/02/Defense-Throughout-the-Vulnerability-Life-Cycle-3.pdf
http://www.alertlogic.com/wp-content/uploads/2013/02/Defense-Throughout-the-Vulnerability-Life-Cycle-3.pdf
https://users.ece.cmu.edu/~tdumitra/public_documents/bilge12_zero_day.pdf
https://stacks.stanford.edu/file/druid:zs241cm7504/Zero-Day%20Vulnerability%20Thesis%20by%20Fidler.pdf
https://stacks.stanford.edu/file/druid:zs241cm7504/Zero-Day%20Vulnerability%20Thesis%20by%20Fidler.pdf

VULDRONE 2015

[14] Alternative solutions. Vulnerability Central.
http://infosecosaurus.blogspot.com.es/2015/02/isc2s-vulnerability-central-what-it-is.html.
[Access: 18/09/2015]

[15] Alternative solutions. Vulnera-ng. https://www.s21sec.com/es/sobre-s21sec/news-a-
events/noticias/234-s21sec-presenta-su-primer-informe-anual-de-vulnerabilidades.
[Access: 18/09/2015]

[16] Alternative solutions. Security Database. http://www.security-database.com.
[Access: 18/09/2015]

[17]State of Art. OSDVhttp://blog.osvdb.org/category/vulnerability-statistics/.
[Access: 12/09/2015]

[18] Python crawling framework Scrapy. http://doc.scrapy.org/en/latest/intro/tutorial.html.
[Access: 5/07/2015]

[19] Javascript tutorial. http://www.w3schools.com/js/.
[Access: 20/08/2015]

[20] PHP tutorial. https://www.codecademy.com/tracks/php.
[Access: 15/04/2015]

[21] PHP crawling framework. Goutte. https://github.com/FriendsOfPHP/Goultte.
[Access: 15/04/2015]

[22] Bootstrap framework. http://www.w3schools.com/bootstrap/.
[Access: 15/08/2015]

[23] Gantt Diagram. https://teamgantt.com/.
[Access: 1/09/2015]

[24] Exploits database. https://www.exploit-db.com!/.
[Access: 15/08/2015]

[25] CVE database. http://www.cvedetails.com/.
[Access: 15/08/2015]

127] Security mailing lists. http://www.securityfocus.com/.
[Access: 15/08/2015]

[28] Security mailing lists. http://seclists.org/.
[Access: 15/08/2015]

[29] Web Pentesting. OWASP top 10 vulnerabilities.
https://www.owasp.org/index.php/OWASP Top Ten Cheat Sheet.
[Access: 21/09/2015]

[30] Python IMAP example. https://yuji.wordpress.com/2011/06/22/python-imaplib-imap-example-

with-gmail/.
[Access: 20/08/2015]

[31] Python SMTP example. https://docs.python.org/2/library/email-examples.html.
[Access: 21/08/2015]

89


http://infosecosaurus.blogspot.com.es/2015/02/isc2s-vulnerability-central-what-it-is.html
https://www.s21sec.com/es/sobre-s21sec/news-a-events/noticias/234-s21sec-presenta-su-primer-informe-anual-de-vulnerabilidades
https://www.s21sec.com/es/sobre-s21sec/news-a-events/noticias/234-s21sec-presenta-su-primer-informe-anual-de-vulnerabilidades
http://www.security-database.com/
http://blog.osvdb.org/category/vulnerability-statistics/
http://doc.scrapy.org/en/latest/intro/tutorial.html
http://www.w3schools.com/js/
https://www.codecademy.com/tracks/php
https://github.com/FriendsOfPHP/Goutte
http://www.w3schools.com/bootstrap/
https://teamgantt.com/
https://www.exploit-db.com/
http://www.cvedetails.com/
http://www.securityfocus.com/
http://seclists.org/
https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://yuji.wordpress.com/2011/06/22/python-imaplib-imap-example-with-gmail/
https://yuji.wordpress.com/2011/06/22/python-imaplib-imap-example-with-gmail/
https://docs.python.org/2/library/email-examples.html

VULDRONE 2015

[32] Several coding and Apache configuration solutions. http://stackoverflow.com/.
[Access: 22/09/2015]

[33] Web Pentesting. XSS cookie exploiting.
https://pentesterlab.com/exercises/xss _and _mysql file/course.
[Access: 21/09/2015]

[34] Java Mail Processor email receiver. http://www.javatpoint.com/example-of-receiving-email-
using-java-mail-api.
[Access: 30/07/2015]

[35] User Interface Bootstrap snippets. http://bootsnipp.com/.
[Access: 17/08/2015]

[36] HTTPS definition. https://es.wikipedia.org/wiki/Hypertext Transfer Protocol Secure.
[Access: 18/09/2015]

[37] Web Pentesting. Sqlmap definition and demo tutorial. http://sglmap.org/.
[Access: 21/09/2015]

[38] List of useful HTTP Headers. https://www.owasp.org/index.php/List_of useful HTTP_ headers.
[Access: 22/09/2015]

90


http://stackoverflow.com/
https://pentesterlab.com/exercises/xss_and_mysql_file/course
http://www.javatpoint.com/example-of-receiving-email-using-java-mail-api
http://www.javatpoint.com/example-of-receiving-email-using-java-mail-api
http://bootsnipp.com/
https://es.wikipedia.org/wiki/Hypertext_Transfer_Protocol_Secure
http://sqlmap.org/
https://www.owasp.org/index.php/List_of_useful_HTTP_headers

