
Evolving High-speed, Easy-to-understand
Network Intrusion Detection Rules with Genetic

Programming

Agustin Orfila1, Juan M. E. Tapiador1, and Arturo Ribagorda1

Universidad Carlos III de Madrid, Leganes 28911, Spain
{adiaz,jestevez,arturo}@inf.uc3m.es

Abstract. An ever-present problem in intrusion detection technology
is how to construct the patterns of (good, bad or anomalous) behaviour
upon which an engine have to make decisions regarding the nature of
the activity observed in a system. This has traditionally been one of
the central areas of research in the field, and most of the solutions pro-
posed so far have relied in one way or another upon some form of data
mining–with the exception, of course, of human-constructed patterns. In
this paper, we explore the use of Genetic Programming (GP) for such a
purpose. Our approach is not new in some aspects, as GP has already
been partially explored in the past. Here we show that GP can offer at
least two advantages over other classical mechanisms: it can produce very
lightweight detection rules (something of extreme importance for high-
speed networks or resource-constrained applications) and the simplicity
of the patterns generated allows to easily understand the semantics of
the underlying attack.

1 Introduction

This paper explores the application of GP [5] to the network intrusion detection
problem, particularly to automatically creating detection patterns/rules. To the
best of our knowledge, the idea is somewhat recent and was proposed for the
first time in 1995 by Crosbie [2]. Since then, the most relevant works have been
[9, 1, 4]. The problems we have identified in these previous efforts can be sum-
marised in two main points. First, these works do not make the most of GP. The
semantics of the domain is not captured in the solutions and this situation can
be improved in many aspects. Most of the times the function set chosen include
primitives poorly justified, such as trigonometric functions. This makes the solu-
tions very difficult to interpret. Second, experimental work is mainly done over
the well-known benchmark of KDD-99 [3]. Although this benchmark has become
a standard in the field, it has certain drawbacks such us being out of date or
presenting an unrealistic high prevalence of attacks. Moreover, KDD-99 dataset
was created for a contest by processing the tcpdump portions (i.e. raw network
traffic) of the 1998 DARPA IDS Evaluation Dataset, created by Lincoln Labs
under contract to DARPA [6]. The original traffic generation process and the

2

feature extraction done for the KDD contest remain controversial [7]. Any IDS
based on data-mining is very dependant upon the dataset, since the solutions
are mathematical relations between the benchmark features. As a consequence,
it is unclear the behaviour exhibited by these proposals in a real scenario. In
addition, a serious problem that current IDSs have to face is their application
in high-speed networks or, alternatively, in resource-constrained environments.
A lightweight detection is required in both cases; otherwise the IDS becomes a
bottleneck (and eventually it is disconnected for performance reasons), or sim-
ply it cannot be deployed in devices with shortage of computational resources.
GP, however, includes a natural mechanism to limit the amount of resources
consumed by the evolved individuals (e.g. limiting the number of nodes and/or
depth of trees, or associating a cost to each node in a tree and penalising trees
with higher costs.) This opportunity seems to have been systematically ignored
in previous works. For these reasons, instead of using KDD benchmark our work
focuses on publicly available raw tcp traffic from an enterprise network [8]. All in
all, it is clear that all this research supports the idea that GP can be effectively
applied to intrusion detection. Nevertheless we think that further work should be
done with other datasets in order to avoid the dependency of the results on the
dataset. Moreover, the function set should provide more understable semantics
in relation to why an event is considered an intrusion.

In this paper, we have constrained the experimental work to the capacity
of GP to find analysis engines that are able to detect scanning attacks based
on TCP (Transmission Control Protocol.) Therefore, traffic is only processed at
the transport layer and the TCP headers are extracted to be used as inputs for
our system. Results show that many TCP scans can be detected with simple
rules that directly operate on the TCP header fields. Furthermore, we show that
extra knowledge about the nature of the attack can be extracted thanks to the
simplicity of the generated patterns and the set of operators chosen. In order
to put the results in context, we compare GP solutions with those achieved by
the classical machine learning algorithm C4.5 in terms of effectiveness, efficiency
and semantics.

2 Design

For simplicity, in the work presented in this paper we shall restrict ourselves
to analyse the capabilities of standard GP to detect a specific form of attack:
scanning probes relying upon misuses of the TCP protocol. The design principles
are, however, very general and can be trivially extended to other forms of network
traffic and/or attacks.

For the case at hand, we extract the TCP header from each captured network
packet (see Section 3 for details about the traffic source used.) The header is
then processed by extracting all the fields (excluding options and checksum)
and converting them into a 32-bit unsigned integer. It is important to note that
each TCP flag (URG, ACK, PSH, RST, SYN, FIN) is converted separately to
an attribute. The vector resulting of this conversion is the input to the analysis

3

engine of the IDS, which will process it according to one or more individuals
obtained by GP in a training phase. Thus, the output of the engine is just 0 if
the packet analysed is considered non-scanning or 1 otherwise. In what follows
we describe the main GP components used in this work.

2.1 Function and Terminal sets

The set of functions define the core of solutions in standard GP. Domain knowl-
edge is captured through the election of these functions up to a certain extent.
Therefore, it is desirable to employ functions having a clear and simple semantics,
as well as a fast implementation. In our case, the chosen function set comprises
of logic operators (or logic, and logic, not logic) and bitwise operators (or, and,
not). Moreover, the function if srcport ge 10000 is also introduced to provide a
different point of view in the searching process, allowing to split the instances in
those with a source port over or under 10000. The set of terminals is relatively
simple. As we have already stated, each TCP field, including flags separately, is
represented by a 32-bit unsigned integer. We also included Ephermeral Random
Constants (ERCs) for completing the terminal set. An ERC is a constant value
used by GP in order to generate better individuals (for a more detailed explana-
tion on ERCs see [5].) In our system, ERCs are 32-bit random values that can
be included as terminals of the IDS.

2.2 Fitness function

The chosen fitness function is the difference between the hit rate (H) and the
false alarm rate (F) multiplied by the accuracy. The hit rate or detection rate
stands for the probability of an alarm given an intrusion P (A|I) while the false
alarm rate stands for the probability of an alarm given no intrusion P (A|NI).
These quantities can be computed as follows:

Accuracy =
True Positives + True Negatives

Total number of instances
(1)

H =
True Positives

True Positives + False Negatives
(2)

F =
False Positives

False Positives + True Negatives
(3)

2.3 Tree size limitations

We have constrained the maximum number of nodes to 20 nodes and the tree
depth to 6. This was done in order to obtain short individuals with an easy
interpretation of how they work. This restriction is adjustable, although in our
experimentation these parameters have demonstrated to produce very small and
sufficiently accurate rules.

4

3 Experimental work

Our experiments have been done using a modern dataset1 [8]. This dataset cor-
responds to internal enterprise traffic (Lawrence Berkeley National Laboratory)
recorded at a medium-sized site. It was systematically anonymised [8] and only
the resulting packet header traces (available in tcpdump/pcap format) are pub-
licly available. Two kinds of files for the traces are provided, anonymised sepa-
rately. One corresponds to the non-scanning traffic and the other to the scanning
traffic. We have used the first five traces of the dataset. Both non-scanning and
scanning traffic files were filtered to get rid of non TCP traces. After this pro-
cess, the number of packets under consideration is 3,415,747. Some of them were
used for evolving individuals and some for the testing phase, as will be explained
later. Table 1 shows the number of non-scanning and scanning TCP packets in
each analysed trace after the filtering process.

Table 1. Number of TCP packets in the 5 traces of the dataset considered.

Trace number Non-scanning Scanning Total

1 82,817 646 83,463
2 619,120 2,295 621,415
3 2,206,587 2,637 2,209,224
4 3,828 80 3,908
5 496,795 942 497,737

All 3,409,147 6,600 3,415,747

At a first stage, different initial populations were evolved using just one
trace of the dataset. Afterwards, the best individual obtained was tested over
the remaining traces. Trace number 3 has not been used for the evolution stage
due to its large size (2,209,224 instances.)

For each trace, we ran 15 experiments with 15 different seeds. The results
presented below correspond to the best individuals generated after these 15
experiments, with a population size of 100 individuals, a crossover probability
of 0.9, and an ending condition of 25 generations. Results are compared with
those obtained by the machine learning algorithm C4.5. In order to make a fair
comparison, the same process was followed in the case of C4.5: one of the five
traces was used to build the model and the remaining for testing purposes.

Table 2 summarises the best results obtained by GP and C4.5. It is important
to note that the prevalence of scanning TCP packets in the first five traces of
the dataset is 0.0019. Thus, a naive IDS stating that every TCP packet is non-
scanning would achieve a 99.81% of accuracy (with H=0 and F= 1.) Therefore,
when the distribution of the classes (scanning, non-scanning) is so unbalanced,
accuracy is not a good measure of effectiveness. Accordingly, we show the results
providing H and F . Thus, Table 2 shows that GP provides more effective rules
1 LBNL Enterprise trace Repository, http://www.icir.org/enterprise-tracing/

5

Table 2. Summary of results

GP C4.5
fitness = (H − F) Accuracy

Trace used for
evolution

Testing
traces

F H F H

1 2,3,4,5 0.1876 0.8013 0.0809 0.2057
2 1,3,4,5 0.0155 0.8546 0.0014 0.7936
4 1,2,3,5 0.0016 0.2979 0.0028 0.5304
5 1,2,3,4 0.0041 0.5322 0.0021 0.4231

than C4.5 for models derived from traces 1 and 5, but not for those from traces
2 and 4. The C4.5 model and the best GP individual obtained from trace 5 are
represented in Figure 1.

=== BEST-OF-RUN ===

generation: 13

nodes: 7

depth: 2

hits: 497007

TOP INDIVIDUAL:

-- #1 --

hits: 497007

raw fitness: 0.9315

standardized fitness: 0.9315

adjusted fitness: 0.9315

TREE:

(if_srcport_ge_10000 (or_logic bit_PUSH ack)

(and_logic sum window))

if_srcport_ge_10000

or_logic and_logic

bit_PUSH ack sum window

urp <= 0
| seq <= 0
| | srcport <= 37: 1 (119.0)
| | srcport > 37: 0 (31.0)
| seq > 0
| | dstport <= 68
| | | srcport <= 50170
| | | | dstport <= 37: 0 (425.0)
| | | | dstport > 37
| | | | | ack <= 18602
| | | | | | dataoffset <= 7
| | | | | | | bit_PUSH <= 0
| | | | | | | | bit_RST <= 0
| | | | | | | | | window <= 16952
| | | | | | | | | | sum <= 8815: 1 (7.0)
| | | | | | | | | | sum > 8815: 0 (6.0)
| | | | | | | | | window > 16952: 1 (32.0/2.0)
| | | | | | | | bit_RST > 0: 1 (9.0)
| | | | | | | bit_PUSH > 0: 0 (4.0)
| | | | | | dataoffset > 7: 0 (8.0)
| | | | | ack > 18602: 0 (36.0/1.0)
| | | srcport > 50170: 1 (146.0)
| | dstport > 68
| | | srcport <= 53
| | | | srcport <= 37: 0 (950.0/1.0)
| | | | srcport > 37
| | | | | bit_PUSH <= 0
| | | | | | dataoffset <= 6
| | | | | | | dstport <= 2953
| | | | | | | | dstport <= 1209: 1 (17.0/2.0)
| | | | | | | | dstport > 1209
| | | | | | | | | dstport <= 1367: 0 (10.0)
| | | | | | | | | dstport > 1367
| | | | | | | | | | dstport <= 2379: 1 (14.0/1.0)
| | | | | | | | | | dstport > 2379: 0 (4.0)
| | | | | | | dstport > 2953: 1 (13.0)
| | | | | | dataoffset > 6: 0 (9.0)
| | | | | bit_PUSH > 0: 0 (22.0)
| | | srcport > 53
| | | | bit_RST <= 0: 0 (494629.0/2.0)
| | | | bit_RST > 0
| | | | | srcport <= 137
| | | | | | srcport <= 89: 0 (16.0)
| | | | | | srcport > 89
| | | | | | | ack <= 34845: 1 (6.0)
| | | | | | | ack > 34845: 0 (3.0)
| | | | | srcport > 137: 0 (460.0/1.0)
urp > 0
| srcport <= 3967
| | dstport <= 3875
| | | sum <= 20241
| | | | urp <= 26494: 0 (5.0)
| | | | urp > 26494: 1 (48.0)
| | | sum > 20241: 1 (486.0/1.0)
| | dstport > 3875
| | | dstport <= 61951
| | | | srcport <= 137
| | | | | seq <= 7913: 1 (3.0)
| | | | | seq > 7913: 0 (2.0)
| | | | srcport > 137: 0 (95.0)
| | | dstport > 61951: 1 (43.0)
| srcport > 3967: 0 (79.0)

Fig. 1. Comparison of GP top individual (left) and C4.5 model (right) obtained from
trace 5

6

As can be seen, GP solution is much simpler than C4.5 one (7 vs. 63 nodes.)
Thus, it is easy to understand why the generated GP rule detects a scan. In
contrast, the C4.5 tree is complex enough (63 nodes) to make it difficult to
comprehend the nature of the detection. This is clearly an advantage in favour
of GP technique.

Apart from semantics reasons, the complexity of the rules has an impact on
the detection efficiency. Table 3 shows a comparison in terms of the number of
basic operations per TCP packet required for the worst case. The and, or, not,
and logic, or logic, not logic functions and load operations are considered basic
(i.e. with a cost of 1 unit), while comparisons are assumed to be formed by two
basic operations. GP models are generally much more efficient than C4.5 ones
(the only exception corresponds to trace 4 due to its small size–see Table 1.)

Table 3. Efficiency of GP vs. C4.5: Number of basic operations per TCP packet.

Trace used GP C4.5
for evolution fitness = (H − F) Accuracy

1 12 28
2 18 33
4 11 4
5 7 40

References

1. A. Abraham, C. Grosan, and C. Martin-Vide. Evolutionary design of intrusion
detection programs. International Journal of Network Security, 4(3):328–339, 2007.

2. M. Crosbie and E. H. Spafford. Applying genetic programming to intrusion detec-
tion. In Working Notes for the AAAI Symposium on GP, 1995.

3. C. Elkan. Results of the KDD’99 classifier learning contest. http://www-cse.ucsd.
edu/users/elkan/clresults.html, September 1999.

4. K. Faraoun and A. Boukelif. Genetic programming approach for multi-category
pattern classification applied to network intrusions detection. The International
Arab Journal of Information Technology, 4(3):237–246, 2007.

5. John R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

6. R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das. The 1999 DARPA
off-line intrusion detection evaluation. Computer Networks, 34(4):579–595, 2000.

7. Matthew V. Mahoney and Philip K. Chan. An analysis of the 1999 DARPA/Lincoln
Laboratory Evaluation Data for Network Anomaly Detection. In Proceedings of the
6th RAID, volume 2820 of LNCS, pages 220–237, 2003.

8. R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson, and B. Tierney. A first look
at modern enterprise traffic. In Proceedings of the 5th ACM SIGCOMM conference
on Internet measurement. IMC ’05, pages 1–14, New York, NY, USA, 2005. ACM.

9. D. Song, M. I. Heywood, and A. N. Zincir-Heywood. Training genetic programming
on half a million patterns: an example from anomaly detection. IEEE Transactions
on Evolutionary Computation, 9(3):225–239, June 2005.

