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Abstract 
This paper studies the impact of financial constraints on the persistency of high 

markups in a class of markets, including public procurement, known by practitioners as 
bidding markets. We develop an infinite horizon model in which two firms optimally 
reinvest working capital and bid for a procurement contract each period. Working capital 
is constrained by the firm's cash from previous period and some exogenous cash flow, it 
is costly and it increases the set of acceptable bids. We argue that the latter is a natural 
consequence of the presence of progress payments or the existence of moral hazard. We 
say that the firm is (severely) financially constrained if its working capital is such that only 
bids (substantially) above production cost are acceptable. We show that markups are 
positive (high) if and only if one firm is (severely) financially constrained. Our main result 
is that markups are persistently high because one firm is severely financially constrained 
most of the time. 
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1 Introduction

The persistency of high markups is a long standing concern in industrial organization and,

in particular, in bidding markets.1 Little attention has been given to the role of financial

constraints in spite of being very common in these markets.2 This is surprising because

the usual mismatch between inflows and outflows of cash naturally translates into high

markups when firms have limited access to financing. For instance, the common practice

of periodic progress payments (with or without retainage) in procurement means that a

firm with little working capital that wins a contract can cover its cash outflows only when

its bid was sufficiently high.3 The following example illustrates this point:4

Consider a two-month project that costs $300,000, with one third of its planned

expenses corresponding to the first month. If progress payments are monthly and

proportional to project completion, a firm that has secured working capital up to

$150,000 can finance the project only if its bid is larger than $450,000. The first

month expenses, $100,000, are paid out of the firm’s working capital and the second

month expenses, $200,000, out of the remaining working capital, $50,000, and the first

progress payment, which is equal to one third of the bid. Analogously, for a firm with

working capital $200,000 the lower bound on bids is the cost $300,000.

This example suggests that whenever the financing opportunities of each firm depend

on its bid5 and only bids that can be financed are submitted, prices are high if firms have

little working capital. We underscore that the dependence of prices on financial constraints

is a common feature of bidding markets that applies beyond public procurement:

“Offers submitted on Monday by Global Infrastructure Partners and a consortium led

1Bidding markets are those in which trade is organized through bidding, see Klemperer (2005). The most

commonly cited example is public procurement, see Bajari and Ye (2003), Jofre-Bonet and Pesendorfer

(2003), and OFT (2004). See also OECD (2006) for other examples including auctions.
2The most frequent explanations for high markups in this market invokes either collusion or capacity

constraints, see for instance Che (2008) or Jofre-Bonet and Pesendorfer (2003), respectively.
3Practitioners mention this, e.g. Mendes (2003): “subcontractors have worked hard at educating all of

the players in the construction industry about problems such as [...] bid inflation to account for retainage.”
4A real life example with the same qualitative features can be found in CALTRAN’s contract 03-4E6504,

available at http://www.dot.ca.gov/hq/asc/oap/payments/public/034e6504.htm.
5This occurs not only with progress payments but also when the firm has access to a credit line whose

size depends on the profitability of the project.
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by Manchester Airport Group have been depressed [...] by the problems of raising the

necessary bank finance.”

“Ferrovial receives depressed bids for Gatwick,” Financial Times, April 28th, 2009

Our main result is that the impact of financial constraints does not fade away and

explains the persistency of markups in bidding markets even if the cost of accumulat-

ing working capital is small. Our model predicts that market concentration should be

greater for larger projects than for smaller projects, a prediction in line with the empirical

evidence.6

A representative example of the institutional details of the bidding markets we are

interested in is highway maintenance procurement. As Hong and Shum (2002) pointed

out “many of the contractors in these auctions bid on many contracts overtime, and likely

derive a large part of their revenues from doing contract work for the state.” Besides,

Porter and Zona (1993) explain that “The set of firms submitting bids on large projects

was small and fairly stable[...] There may have been significant barriers to entry, and

there was little entry in a growing market.”7 Motivated by these observations, we study

an infinite horizon model in which a procurement contract is allocated through a first

price auction every period and two firms reinvest and bid optimally. At the beginning

of each period, the cash available to be reinvested as working capital is observable and

equal to the last period unspent working capital plus the earnings in previous procurement

contract and some exogenous cash flow. Holding working capital is costly. The auction is

held after firms have chosen their working capital.

We are interested in setups in which bids are acceptable if they are backed by a surety

bond.8 In our model, sureties back a bid only when they anticipate that the firm will
6Porter and Zona (1993) explain that “the market for large jobs [in procurement of highway mainte-

nance] was highly concentrated. Only 22 firms submitted bids on jobs over $1 million. On the 25 largest

jobs, 45 percent of the 76 bids were submitted by the four largest firms.”
7Moreover, it can be shown that in a model with many firms and entry the natural extension of the

equilibrium we study has the feature that only the two firms with more cash enter the market.
8In the U.S., the Miller Act regulates the provision of surety bonds for federal construction projects.

State legislatures have enacted ”Little Miller Acts” that establish similar requirements for state contracts.

A surety bond plays two roles: first, it certifies that the proposed bid is not jeopardized by the technological

and financial conditions of the firm, and second, it insures against the losses in case of non-compliance.

Indeed, the Surety Information Office highlights that “the surety [...] may require a financial statement
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comply with the contract. We assume that the latter occurs only if the bid is above a

certain threshold that decreases with the firm’s working capital. As our previous exam-

ple illustrates, this is a natural consequence of progress payments and limited access to

financing.9 We show in Appendix B that this is also the theoretical prediction of a model

inspired by the observation of Tirole (2006), page 114, that “The borrower must [...] keep

a sufficient stake in the outcome of the project in order to have an incentive not to waste

the money.”

By a Bertrand argument, the firm with more working capital wins the contract at a

price equal to the minimum acceptable bid for the firm with less working capital. Thus,

the markup is high if and only if one firm holds little working capital.

The strategic considerations that shape equilibrium reinvestments are easier to under-

stand in a one-period version in which firms start with different amounts of cash. We name

leader the firm with more cash and laggard the other firm. Reinvesting resembles an all

pay auction10 in that only the firm that reinvests more wins but both firms bear the cost

of working capital. In this sense our model is similar to Galenianos and Kircher (2008)

though it differs in that their working capital is not bounded by cash.11 As in the analysis

of the all pay auction with complete information, the equilibrium verifies here the follow-

ing two properties: (i) each firm plays a mixed strategy12 in a connected support; and

(ii) in the interior of this support firms use a density that equalizes the marginal cost and

marginal benefit of reinvesting. However, the randomization depends on the distribution

of cash in our model.

[that] [...] helps the surety company evaluate the working capital and overall financial condition of the

company.” See http://www.sio.org/html/Obtain.html#Financial and Calveras, Ganuza, and Hauk (2004).
9In general, the threshold depends not only on the working capital but also on other aspects as the

distribution of costs along time and the periodicity of the progress payments that we ignore for simplicity.
10In particular, it resembles Che and Gale’s (1998a) model of an all pay auction with caps in that

reinvestments are bounded by cash. Our model is more general in that they assume exogenous caps that

are common to all agents. Another difference is that the size of the prize varies with the rival’s action.

To the best of our knowledge, the literature on all pay auctions, see Kaplan, Luski, Sela, and Wettstein

(2002) and Siegel (2009), has only considered the case of prizes that vary with the agent’s action.
11Consequently, the laggard-leader scenario that we describe below does not arise in their model.
12We expect our equilibrium to be the limit of the equilibrium of a game in which firms have private

information about their costs, as Amann and Leininger (1996) have already shown for the standard all pay

auction.
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In what we call a symmetric scenario, a firm that reinvests the laggard’s cash makes

losses for any pair of strategies that verify (i) and (ii). This means that firms cash is

sufficiently abundant to render it irrelevant for the equilibrium. Thus, firms randomize

with equal probability of winning as in the equilibrium of the standard symmetric all pay

auction, and its usual zero profit condition implies here that the expected markup just

covers the expected cost of working capital. Consequently, the markup tends to zero as

the cost of working capital becomes negligible.

Instead, in what we call the laggard-leader scenario, the leader finds it profitable to

reinvests the laggard’s cash when the strategies verify (i) and (ii). Actually, this is what

the leader does in equilibrium with a probability that tends to one as the cost of working

capital becomes negligible. Thus, the laggard’s chances of winning tend to zero,13 which

explains why the laggard’s probability of reinvesting also tends to zero and the markup

becomes maximum.

In our infinite horizon model, these considerations also apply to the unique equilibrium

that is the limit of the sequence of equilibria of models with an increasing number of

periods.14 At any period, reinvesting also resembles an all pay auction because reinvesting

more than the rival gives not only the procurement profits, as above, but also the benefits

of being leader next period, and it is still costly because working capital has no value

for future competition. The latter is because when the firm wins, it becomes leader and

the leader’s cash does not affect future competition, and when the firm loses, it remains

laggard and the laggard’s continuation payoffs are pinned down by the zero profit condition

that holds in both scenarios. Interestingly, it is the prospect of strong future competition

that dumps current incentives to reinvest and, as a consequence, current competition.

On the equilibrium path, the frequency of each scenario depends on the severity of

the financial constraint. We say that the financial constraint is tight (resp. loose) when
13Assuming a tie breaking rule that allocates to the leader in case of a tie in which the laggard is

reinvesting all its cash. This guarantees that the leader’s has a best response when the laggard reinvests

all its cash, a condition necessary to ensure existence of an equilibrium. Intuitively, it gives the same

outcome as the limit when the leader reinvest marginally more than the laggard’s cash. Alternatively, we

could derive our results assuming the usual uniform random tie-breaking rule and that bids are chosen

from a discrete grid with a sufficiently large number of elements.
14The uniqueness result is proved in the supplementary material.
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exogenous cash flow is small (resp. large) relative to the working capital that renders

financial constraints irrelevant for bidding.

Our main result that financial constraints explain persistent high markups holds be-

cause the laggard-leader scenario occurs most of the time, even as the cost of working

capital becomes negligible, when the financial constraint is sufficiently tight. Another

consequence is that the same firm tends to win consecutive procurement contracts.15 On

the contrary, firms win each contract with the same probability when the financial con-

straints are so loose that the symmetric scenario occurs every period. This explains our

prediction of greater market concentration for larger projects to the extend that one can

associate the tightness of the financial constraint to the project’s size.16

Che and Gale (1998b) and Zheng (2001) already showed that markups can reflect

financial constraints. Our results show that this is the typical situation once we allow

firms to relax their financial constraints endogenously.17 Note, however, that whereas

they assume that firms do not differ ex ante in the severity of their financial constraints,

our results show that this is seldom the case. Bids decrease with working capital in

their models due to the cost of financing the bid.18 Zheng (2001) and Calveras, Ganuza,

and Hauk (2004) also show that limited liability and default imply that bids can also be

increasing in working capital if the cost of financing is sufficiently low.

Calveras, Ganuza, and Hauk (2004) started the analysis of surety bonds in procure-

ment. They show that a surety bond with a sufficiently large penal sum can make bids

independent of assets. However, one can show that bids would decrease in the firm’s work-

ing capital if the surety’s cost of completing the project were higher than the firm’s.19

15To the extend that joint profits are larger in the laggard-leader scenario than in the symmetric scenario,

our result is related to the literature on increasing dominance due to efficiency effects (see Budd, Harris, and

Vickers (1993), Cabral and Riordan (1994) and Athey and Schmutzler (2001).) The novelty of our model

is that the underlying static game displays neither strategic complementarity nor strategic substitutability.
16As we show in Appendix B.
17Che and Gale (1996, 2000), DeMarzo, Kremer, and Skrzypacz (2005) and Rhodes-Kropf and

Viswanathan (2007) also studied the effect of some given financial constraints in auctions and Pitchik

and Schotter (1988), Maskin (2000), Benoit and Krishna (2001) and Pitchik (2009) how bidders distribute

a fixed budget in a sequence of auctions. The latter is not a concern in our setup because the profits are

realized before the beginning of the next auction.
18We are reinterpreting both models in the context of procurement.
19At least, when the contract between the surety and the firm includes the price of the bid.
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Our characterization of the dynamics resembles that of Kandori, Mailath, and Rob

(1993) in that we study a Markov process in which two persistent scenarios occur infinitely

often and we ask which of the two occurs most of the time as the randomness vanishes.

We want to underscore that while the transition function of their stochastic process is

exogenous, ours stems from the equilibrium strategies of the infinite horizon game. As in

Cabral (2011), a typical time series of market shares displays not only a lot of concentration

but also, and more importantly, tipping, i.e. the system is very persistent but moves across

extremely asymmetric states.

Other explanations for the persistency of markups are capacity constraints and col-

lusion. Our model is empirically distinguishable from these models in that it predicts

negative correlation between the laggard’s cash and the bids (or the price). An alternative

to distinguish our model from the model of capacity constraints when the laggard’s cash

is not observable by the econometrician is to use as a proxy either the progress payments

of the firms uncompleted contracts20 or past bids.21 These proxies do not explain the

current bids in the models of capacity constraints once one controls by backlog and costs,

see Bajari and Ye (2003) and Jofre-Bonet and Pesendorfer (2003).

Another way in which our model is empirically distinguishable from the models of

collusion is that the time average of the price may decrease with patience22 and winning

today increases the probability of winning tomorrow. Collusive models predict that pa-

tience increases the time average of the price, see Green and Porter (1984) and Athey

and Bagwell (2001), and that winning today has either no effect on winning tomorrow,

see Athey, Bagwell, and Sanchirico (2004), or decreases its probability, see McAfee and

McMillan (1992), Athey and Bagwell (2001) and Aoyagi (2003).

Section 2 defines our canonical model of procurement with financial constraints. Sec-

tion 3 illustrates the strategic forces that shape our results in a static version of our main

model. The latter is analyzed in Section 4. Section 5 concludes. We also include an

appendix with the more technical proofs (Appendix A) and an extension of our model to

endogenize financial constraints (Appendix B).
20Caltran makes this information available in http://www.dot.ca.gov/hq/asc/oap/payments/public/ctnums.htm
21The latter holds true because the laggard’s past and current cash are positively correlated.
22This is what happens when the financial constraint is sufficiently loose.
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2 A Reduced Form Model of Procurement with Financial

Constraints

In this section, we describe a model of procurement that we later embed as a stage of the

models in Sections 3 and 4.

We model the market as two firms23 competing for a procurement contract of common

and known cost c in a first price auction:24 Each firm submits a bid, and the firm who

submits the lower bid gets the contract at a price equal to its bid. Thus, a firm that bids

p has potential profits p− c,25 and if it wins the markup is p− c.
Bids are acceptable when they are backed by a surety bond. We assume that sureties

back a bid only when they anticipate that the firm will comply with the contract.26 Mo-

tivated by our discussion in the Introduction, this occurs only if the bid is above a certain

threshold π(w) + c that decreases with the firm’s working capital w. Thus, only bids with

potential profits larger then π(w) are acceptable. For simplicity, we assume that π is also

continuously differentiable.

Remark 1. Our analysis in Sections 3 and 4 applies whenever the set of acceptable bids

is defined as here regardless of the institutional details that give rise to π.27

We say that the firm is financially constrained if its working capital is such that only

bids strictly above production cost are acceptable. We denote by θ the working capital

that renders financial constraints irrelevant for bidding. Formally, θ is the supremum of
23As in all pay auctions, see Baye, Kovenock, and de Vries (1996), assuming more than two firms rises

the problem of multiplicity of equilibria. It may be shown that there is always an equilibrium in which

two firms play the strategies we propose below for our two-firm model and the other firms do not reinvest.
24The particular auction framework turns out to be of little relevance because we assume symmetric

information between the two firms. We conjecture similar results in a second price auction.
25A sale auction of a good with common and known value V can be easily encompassed in our analysis

assuming that c = −V < 0 and bids are negative numbers.
26Alternatively, we could have assumed that it was costly for the firm to submit a bid and not complying.

This might be because either no surety bond is required and the firm bears a direct cost in case of default

or a surety bond is required and it is the surety who bears the cost of default and charges a positive price

for the bond to compensate for this (expected) cost.
27For instance, the model of auctions with budget constraints analyzed by Che and Gale (1998b) in

Section 3.2 does not assume a surety bond. However, it can be analyzed in our framework with π(w) =

V − w and the interpretation of our model as a sale auction, see Footnote 25.
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the set of working capitals for which the firm is financially constrained and we assume

that θ ∈ (0,∞).

3 A Static Model

We consider in this section a one-period version of the model we analyze in Section 4 to

illustrate the strategic trade-offs that shape our results.

Our game has two stages. In the first stage, the morning, each firm starts with some

cash (publicly observable) that can be either reinvested in the firm as working capital

or distributed to the shareholders. In the second stage, the afternoon, firms choose an

acceptable bid for a market as described in Section 2. We assume that the firms’ working

capitals are publicly observable at the beginning of the afternoon to avoid the complexities

of asymmetric first price auctions.

The firm cares about the sum of the morning payments to the shareholders and the

working capital plus market profits discounted at rate β < 1. The working capital rein-

vested in the firm has a rate of return r ∈ [1, 1/β) between the morning and the after-

noon.28 Hence, a firm has working capital w in the afternoon if it reinvested in the morning

w/r out of its cash and one unit of working capital has an implicit cost of 1 − βr > 0.

Throughout this paper, we say that the cost of working capital becomes negligible when

we let r tend to r∗ ≡ 1/β from below.

We restrict to the case in which both firms start with different cash29 and call leader

to the firm that starts with more cash and laggard to the other firm.

In this model, it is important we model explicitly the tie-breaking rule in the auction.30

In case of a tie, the firm with more working capital wins, and if both firms have the same

amount of working capital, a uniformly random tie-breaking rule is used except when the
28Later, we are interested in the limit in which 1− βr tends to zero and while all our results hold true

when we set r = 1 and make β tend to one, our arguments are more obscure because firms continuation

values diverge to infinity in the model of Section 4.
29We endogenize the firms’ cash in the model of next section and show that our interest in the case in

which both firms start with different cash is motivated in that it holds almost surely along the equilibrium

path because of the mixed strategies firms use every period.
30As it is usually the case in Bertrand games and all pay auctions, we deviate from the more natural

uniformly random tie-breaking rule to guarantee the existence of an equilibrium, see also Footnote 13.
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laggard was reinvesting all its cash. In this latter case, the leader wins.

We solve the game by backward induction. There is a unique equilibrium in the second

stage as can be deduced from the standard arguments in Bertrand competition. In this

equilibrium both firms bid c if acceptable for both, and otherwise, the minimum acceptable

bid for the firm with less working capital. Leaving aside the case where firms reinvest

at least θ/r, which is suboptimal, the firm that wins has profits equal to the minimum

profitability requirement of the other firm which are strictly positive by definition of θ. The

firm with more working capital wins except for the case of a tie where the rule described

above applies.

The continuation play described above implies that reinvesting resembles an all pay

auction in that only the firm that reinvests more wins the procurement contract but both

firms bear the cost of working capital. As it is usually the case in all pay auctions, there

is no pure strategy equilibrium in the morning. This can be easily understood when both

firms’ cash is weakly larger than θ/r. If both firms choose different reinvestments, the

one reinvesting more has a strictly profitable deviation: decreasing marginally its rein-

vestment.31 If both firms reinvests the same x, there is also a strictly profitable deviation:

increasing marginally its reinvestment if x < θ/r, and otherwise, no reinvestment.32

The usual indifference condition of a mixed strategy equilibrium is verified if firms

randomize with a density f̃ r(x) ≡ 1−βr
βπ(rx) in a support33 [0, ν̃r] for some ν̃r < θ/r.34 This

is because f̃ r(x) equalizes the marginal cost 1 − βr of reinvesting x with its marginal

expected benefit f̃ r(x)βπ(rx). The latter arises as a marginal increase in reinvestment

around x let the firm move from losing to winning the procurement contract when the

rival reinvests close to x. This event occurs with a limit probability approximated by the
31It saves on the cost of working capital without affecting to the procurement outcome.
32In the former case, the deviation is profitable because x < θ/r implies that winning the procurement

contract gives strictly positive profits and the deviation breaks the tie in favor of the deviating firm with

an arbitrarily small increase in the cost of working capital. In the latter case, x ≥ θ/r implies that there

is no profit in the procurement contract and the deviation saves the cost of working capital.
33We use the definition of support of a probability measure in Stokey and Lucas (1999). This is the

smallest closed set with probability one.
34That ν̃r is well defined can be deduced from the fact that continuous differentiability of π implies that

the differential of π is uniformly bounded below in [0, θ] by a constant −κ and hence, π(x) ≤ κ(θ−x), and

limx↑θ/r
R x
0

1−βr
βπ(rx̃)

dx̃ = +∞.
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density of the rival’s randomization at x, i.e. f̃ r(x), and the firm discounted profits in the

procurement contract when this event occurs are equal to βπ(rx).

We refer to the case in which the laggard’s cash is weakly greater than ν̃r as the

symmetric scenario.

Proposition 1. There is a unique equilibrium in the symmetric scenario. In this equilib-

rium both firms randomize with density f̃ r(x) = 1−βr
βπ(rx) in the support [0, ν̃r].

In this equilibrium, each firm’s expected profits in the second stage are equal to its

costs of working capital. This can be easily deduced from the fact that the support of

the firms’ randomization includes zero and in this case the firm loses and has zero cost of

working capital.

Corollary 1. In the symmetric scenario: (i) both the laggard and the leader have the

same probability of winning the procurement contract, (ii) a marginal change in the initial

distribution of cash has no effect on the equilibrium play; and (iii) as the cost of working

capital becomes negligible, each firm’s reinvestment converges35 to θ/r∗ and the markup

converges to zero.

The first two results are straightforward. The third result arises because the density of

the equilibrium randomization of reinvestments collapses to zero and the probability mass

concentrates around θ/r∗. Intuitively, as the cost of working capital becomes negligible

financial constraints become irrelevant.

The above equilibrium strategy is not feasible for the laggard if its cash is strictly less

than ν̃r. We refer to this case as the laggard-leader scenario.

Proposition 2. There is a unique equilibrium in the laggard-leader scenario. In this

equilibrium both firms use a truncation of the strategy in Proposition 1 at the laggard’s

cash. The laggard puts the remaining probability in an atom of probability at zero, and the

leader at the laggard’s cash.36

35In what follows, convergence is always in distribution unless stated otherwise.
36Interestingly, this equilibrium has the same features as the equilibrium of an all pay auction in which

both agents have the same cap but the tie-breaking rule allocates to one of the agents only. The latter

model has been studied in an independent and simultaneous work by Szec (2010).
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Both firms put their atom of probability at points that do not upset the incentives

of the rival to play its equilibrium randomization. There is only one such point for the

laggard, whereas the leader’s randomization takes the minimum working capital which

ensures that it wins the procurement contract.

The leader makes discounted expected profits in the second stage strictly greater than

its cost of working capital. This is because the laggard puts an atom of probability at zero,

and hence the leader expects to win the procurement contract at a profit by reinvesting

arbitrarily little.

Corollary 2. In the laggard-leader scenario: (i) the leader wins the procurement contract

with strictly greater probability than the laggard; (ii) a marginal increase in the laggard’s

cash changes the equilibrium play, and in particular, decreases the expected markup; and

(iii) as the cost of working capital becomes negligible, the laggard’s and leader’s equilibrium

reinvestment converge to zero and to the laggard’s cash, respectively, the probability that

the leader wins the procurement contract converges to one, and the markup converges to

π(0).

The first two results are a straightforward consequence of the atoms in the equilibrium

distributions. The limit results arise because the density of the equilibrium randomization

of reinvestments collapses to zero and the probability moves to the mass points. Intuitively,

there is an increasing preemption effect since the laggard’s chances of winning vanish as

the leader’s equilibrium randomization increases its mass at the laggard’s cash.

4 The Dynamic Model

In the analysis of the previous section, the qualitative features of the equilibrium hinge on

whether the symmetric or the laggard-leader scenario occurs which depends on the initial

distribution of cash. In this section, we endogenize this distribution by assuming that it

is derived from the past market outcomes and we show that the laggard-leader scenario

occurs most of the time.
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4.1 The Game

We consider the infinite repetition of the time structure of the game in last section in which

the cash in the first period is exogenous and afterwards, it is equal to its working capital

in the previous period plus the profits in the procurement contract and some exogenous

cash flow m > 0.37 We assume that m is constant across time and firms, and interpret

it as derived from other activities of the firm. The firm pays to the shareholders only

in the morning and maximizes the discounted value of these expected payments. The

corresponding time-line is represented in Figure 1.{ Period t Period t+1Period t-1

AuctionReinvestment
{ {(m1

t , m
2
t ) (w1

t , w2
t ) = (rx1

t , rx
2
t ) ( m1

t+1, m
2
t+1) = (w1

t + Πt + m, w2
t + m)

Figure 1: Time line when firms start with cash (m1
t ,m

2
t ) reinvests (x1

t , x
2
t ), Firm 1 wins the

procurement contract with profits Πt, and firms start next period with cash (m1
t+1,m

2
t+1).

A Markov strategy consists of a reinvestment function, σ, and a bid function, b. The

reinvestment function of a firm with cash m that faces a rival with cash m′ is a random-

ization over the feasible reinvestments described by its cumulative distribution function

σ ( .|m,m′) ∈ ∆(m), where ∆(m) denotes the set of cumulative distribution functions with

support in [0,m]. The bid function of a firm with working capital w that faces a rival with

working capital w′ is an acceptable bid b (w,w′) ≥ c+ π (w).

We refer to the beginning of the period lifetime payoff of a firm that has cash m when
37All our results also hold true in the case m = 0, though its analysis differs slightly.
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its rival has m′ as the firm’s value function and denote it by W (m,m′).

Our interest is in a model with a tie-breaking rule as described in the previous section.38

Here, however we shall make alternative assumptions. These assumptions do not affect the

equilibrium strategies but let us avoid several technical complications that could distract

from our main argument. These are the following: first, firms cannot reinvest all their cash

and hence their reinvestments strategies are chosen from a subset ∆(m) of distributions

in ∆(m) with no atom of probability at m. Second, if both firms have the same working

capital and submit the same bid p, they share the procurement profits, i.e. each gets

1/2(p− c). Third, in our equilibrium definition, see below, we do not put any constraint

in information sets at the beginning of the morning in which both firms have the same

amount of cash.39

We denote by φ(w,w′, p, p′) the cash of a firm that, in the previous afternoon, had

working capital w and bid p against a rival that had working capital w′ and bid p′.

Formally:

φ(w,w′, p, p′) ≡ w +m+


p− c if p < p′, or p = p′ and w > w′,

1
2(p− c) if p = p′ and w = w′

0 o.w.

Definition: A (symmetric)40 Bidding and Investment (BI) equilibrium associated to π

is a value function W , a bidding function b and a reinvestment function σ such that for

every w,w′,m,m′ ∈ <+, m 6= m′:

(a) σ ( ·|m,m′) is a maximizer of:

max
σ̃∈∆(m)

∫ [
m− x+ β

∫
W
(
φb
(
x, x′

)
, φb

(
x′, x

))
σ
(
dx′
∣∣m′,m)] σ̃ (dx) ,

where φb(x, x′) = φ(rx, rx′, b(rx, rx′), b(rx′, rx)).
38This is the model that we study in the supplementary material when we discuss the uniqueness of the

equilibrium.
39The first assumption makes the cash irrelevant for the tie-breaking rule. The second assumption

eliminates the need of introducing a new random variable to solve ties. The third assumption eliminates

the analysis of information sets that are irrelevant for our equilibrium.
40As we show in the supplementary material, our restriction to symmetric equilibria is without loss

of generality if one is interested in the limit of equilibria of the version of our model with finitely many

periods.
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(b) b (w,w′) is a maximizer of:

max
b̃≥c+π(w)

W
(
φ(w,w′, b̃, b(w′, w)), φ(w′, w, b(w′, w), b̃)

)
.

(c) The value of the problem in (a) is equal to W (m,m′).

Conditions (a) and (b) are the usual one-shot deviation properties that must be verified

in a Markov equilibrium. Condition (c) is the corresponding Bellman equation.

In what follows, we define a value function and a bidding and a reinvestment functions41

and show that they are a BI equilibrium.

4.2 The Equilibrium Strategies

Let the bid function be defined by b∗(w,w′) ≡ c + π(min{w,w′})+.42 To define the

reinvestment function, we use some auxiliary functions. Consider the following functional

equation:

Ψ̂(x) = β(1− F̂ (x, Ψ̂))
(
π(0) + Ψ̂(m)

)
, (1)

for

F̂ (x, Ψ̂) ≡ min

{
1,
∫ x

0

1− βr
β((π(rx̃))+ + Ψ̂(rx̃+m))

dx̃

}
.

Lemma 1. Equation (1) has a continuous decreasing solution Ψ : <+ → <+ that verifies

that F̂ (θ/r,Ψ) = 1, and hence Ψ(x) = 0 for any x ≥ θ/r.

Let W ∗ be a value function strictly increasing in the first argument and weakly de-

creasing in the second one that verifies:

W ∗
(
m,m′

)
=


m+ β

1−βm if m < m′

m+ β
1−βm+ Ψ (m′) if m > m′

(2)

Thus, Ψ(m′) is the difference in continuation value between being leader or laggard when

the other firm has cash m′.
41We show in the supplementary material that the version of our model with finitely many periods has

a unique equilibrium and it is symmetric. The equilibrium studied here corresponds to the limit of that

equilibrium.
42We adopt the convention that a+ = a if a ≥ 0 and a+ = 0 otherwise.

14



Let νr ∈ [0, θ/r] be the solution in ν to F̂ (ν,Ψ) = 1 and F r a cumulative distribution

function equal to F̂ (.,Ψ) in [0, νr] with density f r(x) ≡ 1−βr
β(π(rx)++Ψ(rx+m))

. We define the

reinvestment function σ∗(.|m,m′) in a very similar way as in Section 3. It is equal to F r

if both m and m′ are weakly greater than νr, and otherwise a truncation of F r at the

minimum of m and m′ that puts the remaining probability at either zero or the minimum

between m and m′ depending on whether m < m′ or m > m′.43

Proposition 3. (W ∗, σ∗, b∗) is a BI equilibrium.

To understand why σ∗ verifies condition (a) of a BI equilibrium note that it has the

same qualitative features as the equilibrium reinvestment randomization in Section 3.

In particular, its density equalizes the marginal cost of working capital, (1 − βr), with

the marginal benefit of reinvesting f r(x)β(π(rx)+ + Ψ(rx + m)). The additional term

Ψ(rx + m) appears here because reinvesting more than the rival also allows the firm to

become leader next period which means a jump in the continuation value of Ψ(rx + m).

The reason why b∗ verifies condition (b) of a BI equilibrium is that as in Section 3, the firm

finds it profitable to win at any price above the production cost c when the continuation

payoffs are given by W ∗.

To understand why the value function W ∗ satisfies condition (c) of a BI equilibrium

consider the laggard and the leader separately. For the laggard, recall that the support of

its randomization includes not reinvesting today which gives current payoffs of m plus the

discounted value of being again laggard tomorrow with cash m, which is equal to β
1−βm.

For the leader, note that the support of its randomization includes reinvesting arbitrarily

little which gives limit current payoffs of m plus a continuation value that depends on

whether the laggard reinvests or not. In the former case, which occurs with probability

F r(m′), the leader does not win today’s procurement contract and gets the discounted
43This is:

• If m < m′:

σ∗(x|m,m′) ≡

8<: F r(x) + 1− F r(m) if x ∈ [0,m)

1 o.w.

• If m > m′:

σ∗(x|m,m′) ≡

8<: F r(x) if x < m′

1 o.w.
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value of being laggard next period with cash m, i.e. β
1−βm. In the latter case, which

occurs with probability 1−F r(m′), the leader wins today’s procurement contract and gets

the discounted value of being leader next period with cash m + π(0), which is equal to
β

1−βm+ β(π(0) + Ψ(m)). Thus, the continuation value is equal to:

β

1− βm+ (1− F r(m′))β(π(0) + Ψ(m)) =
β

1− βm+ Ψ(m′),

as can be deduced from the definition of Ψ in Equation (1) evaluated at x = m′ and

Ψ̂ = Ψ.

We can also distinguish here between a symmetric and a laggard-leader scenarios, and

an analogous version of Corollaries 1 and 2 holds true as well. This is direct for the results

described in the first two items, whereas those in the third item can be deduced from the

following lemma.

Lemma 2. As the cost of working capital becomes negligible:

F r(x)→

 0 if x < θ/r∗,

1 if x > θ/r∗,
and νr → θ/r∗.

Another interesting feature is how markups evolve. Denote by wmin the minimum of

the firms’ working capitals in a given period. Then, the equilibrium markup is equal to

π(wmin)+ and the laggard’s cash in the morning next period is equal to wmin +m. We say

that the markup is increasing in an interval if the expected difference between the markup

tomorrow and today conditional on wmin is non-negative for any realization of wmin in that

interval and strictly positive in its interior. We also say that the markup is decreasing in

an interval when the symmetric inequalities hold. We also refer to the pre-laggard-leader

scenario to [0, θ/r∗−m) and to the pre-symmetric scenario to (θ/r∗−m, θ]44 and analyze

the (point-wise) limit properties of the markup.

Proposition 4. Suppose π(0) > π(w) for any w > 0. As the cost of working capital

becomes negligible, the markup is increasing in the pre-laggard-leader scenario and it is

decreasing in the pre-symmetric scenario.
44Note that wmin belongs to the pre-laggard-leader scenario if and only if wmin +m belongs to the limit

of the laggard-leader scenario as the cost of working capital becomes negligible. A similar statement also

holds true for the pre-symmetric scenario and the symmetric scenario.
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4.3 The Equilibrium Dynamics

To study the frequency of the symmetric and the laggard-leader scenarios, we study the

equilibrium stochastic process of the laggard’s cash. Its state space is equal to [m, rνr+m]

because the procurement profits are non negative and none of the firms reinvests more

than νr. Moreover, the laggard’s cash is determined by the equilibrium reinvestments and

bidding in the previous period. The latter depends on the laggard’s working capital in

the previous period, which has a distributions that, as the equilibrium reinvestments, only

depends on the laggard’s cash in the previous period. Thus, the laggard’s cash follows a

Markov process. Its transition probabilities Qr : [m, rνr +m]×B → [0, 1], for B the Borel

sets of [m, rνr + m], can be easily deduced from the equilibrium. In particular, they are

defined by:45

Qr (m, [m,x]) = 1−
[
1− F r

(
x−m
r

)]
·
(
F r (m)− F r

(
x−m
r

))+

. (3)

This expression is equal to one minus the probability that both the laggard and the leader

reinvest strictly more than x−m
r .

A distribution µr : B → [0, 1] is invariant if it verifies:

µr (M) =
∫
Qr (m,M)µr (dm) for all M∈ B. (4)

Standard arguments46 can be used to show that there exists a unique invariant distribution

and it is globally stable. A suitable law of large numbers can be applied to show that the

fraction of the time that the Markov process spends on any set M∈ B converges (almost

surely) to µr(M).

The invariant distribution puts positive probability in any open set in [m, rνr +m] if

the transition probability gives positive probability to arriving to any such set in a finite

number of periods. It is straightforward that this property is verified if one starts in the

symmetric scenario. In the other scenario, it is sufficient to note that there is positive

probability that the laggard’s working capital increases at least m each period, and hence

transits to the symmetric scenario in a finite number of periods.

To further characterize the invariant distribution, we distinguish two cases. We say

that the financial constraint is loose when the ratio r∗m
θ is weakly greater than one. Since

45As a convention, we denote by [m,m] the singleton {m}.
46See Hopenhayn and Prescott (1992).
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νr ≤ θ
r∗ for any r ≤ r∗, this condition guarantees that the symmetric scenario occurs every

period. We also say that the financial constraint is tight when the ratio r∗m
θ is strictly

less than 1
1+r∗ . This condition is equivalent to (1 + r∗)r∗m < θ and hence it means a firm

that begins a period with cash m, faces a rate of return r∗ and does not win the current

procurement contract is still financially constrained next period.

Typically, the invariant distribution depends on a non trivial way on the transition

probabilities. An exception is when the transition does not depend on the state which

corresponds in our model to an exogenous cash flow sufficiently large to guarantee that

only the symmetric scenario occurs, e.g. when the financial constraint is loose. In this case,

the transition probability does not dependent on the laggard’s current working capital and

µr([m,x)) = 1−
(
1− F r

(x−m
r

))2
. The properties of the equilibrium prices can be inferred

from Corollary 1 and their limit from Lemma 2.47

More generally, the frequency of each scenario depends on the severity of the financial

constraint. We say that the extreme laggard-leader scenario occurs most of the time as

the cost of working capital becomes negligible when µr({m})→ 1.

Theorem 1. If the financial constraint is tight, the extreme laggard-leader scenario occurs

most of the time as the cost of working capital becomes negligible.

This theorem characterizes the limit of the invariant distribution as the cost of working

capital becomes negligible.48 To understand its intuition let A ≡ {m}, B ≡ (m, m̃] and

C ≡ (m̃, θ + m] for some m̃ ∈ (m(1 + r∗), θ/r∗). That such m̃ exists is a consequence

of the financial constraint being tight. It follows from Lemma 2 that the probability of

transiting to B vanishes and so does µr(B). Hence, the limit of the invariant distribution

puts probability in at most A and C, and it is sufficient to argue that the ratio of µr(A)
µr(C)

diverges.
47In the more difficult case in which the transition probabilities depend on the state, the invariant distri-

bution associated to the limit transition probabilities as the cost of working capital becomes negligible has

an easy characterization. This is because the transition probabilities become degenerate and concentrate

its probability in one point only, either m or θ+m, and thus any distribution with support in {m, θ+m}

is an invariant distribution. Since there are multiple invariant distributions, we cannot apply a continuity

argument to characterize what happens when the cost of working capital is small.
48In what follows, we let Qr(m,M) = Qr(m,M ∩ [m, rνr +m]) and µr(M) = µr(M ∩ [m, rνr +m]) for

any Borel set M of the real line.
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Recall that any invariant distribution equalizes the probability of being in a set times

the probability of exiting from it with the probability of being one transition away from

that set times the probability of entering to it. The definition of m̃ imply that one cannot

transit from A to C in one period when r is close to r∗. Hence, µr(A)
µr(C) satisfies:49

R
A(1−Qr(m,A))µr(dm|A)R
C(1−Qr(m,C))µr(dm|C)︸ ︷︷ ︸

Exit ratio

·µr(A)
µr(C) =

∑
S=B,C

( R
S Q

r(m,A)µr(dm|S)R
B Q

r(m,C)µr(dm|B)︸ ︷︷ ︸
Entry ratios

· µr(S)
µr(B)

)
. (5)

The gist of the proof is to show that the exit ratio is uniformly bounded above and the

first entry ratio diverges to infinity. To understand the first result note that to exit from

A we need that the laggard reinvests in (0,m) and to exit from C that either of the two

firms reinvests in [0, m̃−mr ]. The probability of the former event is less than the probability

of the latter for r close to r∗ because by definition of m̃ the former set is contained in the

latter. For the second result note the laggard-leader scenario occurs in B and hence the

probability of transiting to A, that is the laggard no reinvesting, goes to one.

This corollary follows from Theorem 1 and the properties of the laggard-leader scenario.

Corollary 3. If the financial constraint is tight, as the cost of working capital becomes

negligible: (i) the probability that the leader wins the procurement contract converges to

one; and (ii) the fraction of time the markup is π(0) converges to one (almost surely).

Remark 2. In this section we have focused on the case in which financial constraints are

either tight or loose. It can be shown that as one moves r∗m
θ from the former case to the

latter, the frequency of the extreme laggard-leader and the symmetric scenarios vary from

1 to 0 and from 0 to 1, respectively, as the cost of working capital becomes negligible.

4.4 Numerical Solutions

Our analytical results apply to the extreme case where the cost of working capital, 1−βr,
is close to zero. In order to explore what happens for values of 1 − βr farther from 0,

we solve numerically for the invariant distribution for empirically grounded values of the

parameters50 and π(w) = 1 − w. The numerical results are useful, on the one hand, to

49We let µr(dm|M) = µr(dm)
µr(M)

if µr(M) 6= 0, and µr(dm|M) = 1 if µr(M) = 0 for M∈ {A,B,C}.
50Early work of Hong and Shum (2002) suggests that firms that do highway maintenance typically bid

in 4 contracts per year:“a data set of bids submitted in procurement contract auctions conducted by the
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show that mark-ups are largely as described in Theorem 1 and Corollary 3 and, on the

other hand, to shed some light on the invariant distribution of market shares, which was

not easy to characterize analytically.

For the case where the financial constraint is tight (we set r∗m
θ = 0.4), our numerical

solution shows that the extreme laggard-leader scenario occurs (i.e. µ(m) is) 99.52% of

the periods and the largest markup (π(0) = 1) arises in 99.87% of the extreme laggard-

leader scenarios. Therefore, the average markup is at least 0.9939. In contrast, for the

case where the financial constraint is loose (i.e. r∗m
θ ≥ 1), where we are always in the

symmetric scenario, the average markup is 0.1021.

The figure below plots the invariant distribution of annual market shares for our

parametrization of tight and loose financial constraint. It shows that in the former case

the same firm wins all the annual procurement contracts 98% of the years. Therefore,

a typical time series of market shares displays not only a lot of concentration but also,

and more importantly, tipping as in Cabral (2011), i.e. the system is very persistent but

moves across extremely asymmetric states. On the contrary, in the case of a loose financial

constraint there is little concentration in that each firms wins at least 25% of the annual

procurement contracts in 85% of the years.

Figure 2: Invariant distribution of annual market shares (one year equals four periods).

NJDOT in the years 1989-1997 [...] firms which are awarded at least one contract bid in an average of 29-43

auctions.” See also Porter and Zona (1993). Thus, we compute annual market shares for years of four

periods. We also choose β = 0.9457 and r = 1 so that the annual discount rate is 0.80, as in Jofre-Bonet

and Pesendorfer (2003), implying an annual expected cost of working capital of 0.20.
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5 Conclusions

We have studied a dynamic model of bidding markets with financial constraints. A key

element of our analysis is that the stage at which firms choose how much working capital

to reinvest resembles an all pay auction with caps.

The above features, and thus our results, seem pertinent for other models of investing

under winner-take-all competition, like patent races. A more general approach should

start by considering the robustness to our results to private information and to alternative

models of winner-take-all competition with financial constraints. Existing results for all

pay auctions and general contests51 suggest this may be fruitful line of future research.

Finally, our analysis points out a tractable way to incorporate the dynamics of liquidity

in Galenianos and Kircher’s (2008) analysis of monetary policy.

Appendix

A Proofs

Proof of Proposition 1

To see why the proposed strategy is an equilibrium note that the expected payoff of

Firm i with cash mi when it reinvests xi and the other firm randomizes its reinvestments

according to a distribution with density f̃ r is equal to:

mi − (1− βr)xi +
∫ xi

0
βπ(rx)f̃ r(x) dx,

which by definition of f̃ r is equal to mi for any xi ≤ ν̃r, and strictly less than mi otherwise,

as required.

As we argue in the main text, we can restrict to strategies with support in [0, θ/r]. We

prove two properties that any equilibrium (σ1, σ2) must verify. Later, we show that the

proposed strategy is the only one that verifies them. These two properties also hold true
51Amann and Leininger (1996) study the relationship between the equilibrium of the all pay auction

with and without private information, see also our Footnote 12, and Alcalde and Dahm (2010) study the

similarities between the equilibrium outcome in an all pay auction and in some other models of contests.
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in the more general case in which we do not restrict to m1,m2 ≥ ν̃r.

Claim 1: If x ∈ (0, θ/r] belongs to the support of σi, then σj((x − ε, x]) > 0 (j 6= i) for

any ε > 0. In the particular case x = θ/r, it must also be verified that σj((x − ε, x)) > 0

(j 6= i) for any ε > 0.

Suppose that x ∈ (0, θ/r] belongs to the support of σi and σj((x− ε, w]) = 0 for some

ε > 0. We argue that this contradicts the equilibrium. Firm i strictly prefers reinvesting

x − ε to reinvesting x because the former saves on the cost of working capital without

affecting the probability of winning at a profit. Thus, we can argue by continuity that

Firm i can strictly improve by moving the probability that σi puts in the set (x−ε′, x+ε′)

to x − ε for ε′ ∈ (0, ε) and small enough. That Firm i’s payoff are continuous at x is a

consequence of the contradiction hypothesis that σj((x − ε, x]) = 0 which rules out that

Firm j puts an atom at x. The proof of the result for the particular case x = θ/r is similar.

The only difference is that the contradiction hypothesis σj((x − ε, x)) = 0 allows for an

atom at θ. This, however, does not upset continuity because the procurement contract

gives zero profits when the other firm picks working capital x = θ/r.

Claim 2: If for some x ∈ [0,min{θ/r,mj}), σj((x − ε, x]) > 0 for any ε > 0, then

σi({x}) = 0 (i 6= j).

By contradiction, suppose an x ∈ [0,min{θ/r,mj}) for which σj((x − ε, x]) > 0 for

any ε > 0 and σi({x}) > 0. For ε′ > 0 small enough, Firm j can improve by moving the

probability that its puts in (x− ε′, x], to a point slightly above x. This deviation increases

Firm j’s cost of working capital marginally but allows the firm to win the procurement

contract at a strictly positive profit if Firm i plays the atom at x.

Claim 1 and 2 imply that (i) the only point where there can be a mass point in the

strategies is at zero, (ii) at most one of the firms’ strategies can have an atom at zero,

and (iii) the support of both σ1 and σ2 must be the same and equal to an interval [0, ν]

for some ν ≥ 0. The usual indifference condition that must hold in a mixed strategy

22



equilibrium implies that both σ1 and σ2 have density f̃ r a.e. in (0, ν], for some ν > 0,

and this together with (i) and (ii) imply that neither σ1 nor σ2 puts an atom at zero and

hence ν = ν̃r as desired. �

Proof of Proposition 2

We start showing that the proposed strategies are an equilibrium. Let mmin be the lag-

gard’s cash. The leader has no incentive to deviate when the laggard plays the proposed

strategy because, first, the leader is indifferent between any reinvestment in (0,mmin] by

the same reasons as in the proof of Proposition 1, and, second, because neither zero rein-

vesting nor reinvesting strictly more than mmin improves its payoffs. The former deviation

is not profitable because it has almost the same cost of working capital as a marginally

small reinvestment but it differs in that the leader lose the profits of the procurement

contract with strictly positive probability when the laggard reinvests zero. The latter de-

viation is not profitable because it lets the leader win in the afternoon in the same cases

as mmin but has a greater cost of working capital. Similarly, the laggard has no incentive

to deviate when the leader plays the proposed strategy because, first, the laggard is in-

different between any reinvestment in [0,mmin), and, second, the laggard cannot improve

by moving probability mass to mmin because the only difference with a working capital

marginally lower occurs when the leader also carries working capital mmin but in this case

our tie breaking rule implies that the leader wins the procurement contract.

To prove that there is no other equilibrium, note that Claims 1 and 2 in the proof

of Proposition 1 also hold true here. They imply here that (i) the laggard’s strategy can

have a probability mass only at zero and the leader’s only at either zero or mmin, (ii) at

most one of the firms’ strategies can have an atom at zero, and (iii) the support of both σ1

and σ2 must be the same and equal to an interval [0, ν] for some ν ∈ [0,mmin]. Again, the

usual indifference condition that must hold in a mixed strategy equilibrium implies that

both σ1 and σ2 have density f̃ r a.e. in (0, ν), and this together with (i)-(ii) and m < ν̃r

imply that ν = mmin and that the laggard puts the remaining probability at zero and the

leader at mmin. �
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Proof of Proposition 3

We first show that σ = σ∗ verifies (a) in the definition of a BI equilibrium for the value

function W ∗ and the bid function b = b∗. In case m < m′, σ∗ has support [0,m]. Thus,

it is sufficient to show that any degenerate reinvestment function in ∆(m), i.e. any rein-

vestment x ∈ [0,m), gives the same expected payoffs. The expected payoffs of reinvesting

x are equal to:

m− x+ βrx+
β

1− βm+ β

∫ x

0

(
π(rx′) + Ψ(rx′ +m)

)
f r(x′)dx′.

One can easily see after substituting f r by its value that this expression is constant in

x as desired. In case m > m′, σ∗ has support [0,m′] and puts no atom of probability

at zero. Thus, it is sufficient to show that any reinvestment x ∈ (0,m′] gives the same

expected payoffs, and that these payoffs are weakly larger than either no reinvestment or

reinvesting strictly more than m′. To prove so, note that a reinvestment x ∈ (0,m) gives

expected payoffs:

m−x+βrx+
β

1− βm+β
∫ min{x,m′}

0

(
π(rx′) + Ψ(rx′ +m)

)
f r(x′)dx′+β(1−F r(m′))(π(0)+Ψ(m)).

(6)

One can easily see after substituting f r by its value that this expression is constant in x

up to m′ and then decreasing as desired. Reinvesting x = 0 gives payoffs:

m+
β

1− βm+ β
(1− F r(m′))

2
(π(0) + Ψ(m)),

which is strictly less than Equation (6) evaluated at x = 0 as desired.

We next check that b = b∗(w,w′) verifies (b) of the definition of a BI equilibrium for the

value function W = W ∗. If w,w′ ≥ θ then b∗(w,w′) = b∗(w′, w) = c and b̃ = c is optimal

since any bid b̃ ≥ c gives the same payoffs W ∗(w + m,w′ + m), and any bid b̃ < c gives

continuation payoffs W ∗(w+ b̃− c+m,w′ +m) < W ∗(w+m,w′ +m). If w < w′, θ, then

b∗(w,w′) = b∗(w′, w) = c+π(w), and b̃ = c+π(w) is optimal since any bid b̃ ≥ c+π(w) gives

payoffs W ∗(w+m,w′+π(w)+m). If w′ < w, θ, then b∗(w,w′) = b∗(w′, w) = c+π(w′), and

b̃ = c+π(w′) is optimal since any bid b̃ > c+π(w′) gives payoffsW ∗(w+m,w′+π(w′)+m) <

W ∗(w+π(w′)+m,w′+m), a bid b̃ = c+π(w′) gives payoffs W ∗(w+π(w′)+m,w′+m) and

any bid b̃ < c+π(w′) gives payoffs W ∗(w+ b̃−c+m,w′+m) < W ∗(w+π(w′)+m,w′+m).

Finally, if w = w′ < θ, then b∗(w,w′) = b∗(w′, w) = c+ π(w) and b̃ = c+ π(w) is optimal
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since it gives payoffs W ∗(w + m + π(w)/2, w′ + π(w)/2 + m) and any bid b̃ > c + π(w)

gives payoffs W ∗(w +m,w′ + π(w) +m) < W ∗(w +m+ π(w′)/2, w′ + π(w)/2 +m).

The computations described above for the proof of condition (a) also show that the

condition (c) in the definition of a BI equilibrium is verified. �

Proof of Lemma 1

Let C be the set of bounded continuous and decreasing functions from R+ to R+ and

{Ψn} ⊂ C be a sequence defined recursively by Ψ0(x) = 0, and,

Ψn+1(x) = β
(

1− F̂ (x,Ψn)
)

(π(0) + Ψn(m)) . (7)

This sequence verifies that if Ψn ≥ Ψn−1, then:

Ψn+1(x) = β(1− F̂ (x,Ψn)) (π(0) + Ψn(m)) ≥

β(1− F̂ (x,Ψn−1)) (π(0) + Ψn−1(m)) = Ψn(x).

Moreover, Ψ1(x) ≥ 0 = Ψ0(x). Hence, we can argue by induction that our sequence is

increasing and, thus, has a pointwise limit. We can use an adaptation of the argument in

Footnote 34 to show that Ψn (θ/r) = 0 implies that Ψn+1 (θ/r) = 0. Thus, we can also

argue by induction that the pointwise limit of the sequence is equal to zero at x = θ/r.

Finally, one can deduce that the pointwise limit of the sequence verifies the limit equation

in Equation (7) applying the monotone convergence theorem (Theorem 16.2 in Billingsley

(1995)) to the sequence of integrals that corresponds to the sequence {F̂ (x,Ψn)}. �

Proof of Lemma 2

For any x < θ/r∗ that F r(x) r→r
∗

−→ 0 is a direct consequence of the fact that for r sufficiently

close to r∗, x < θ/r, and hence F r(x) ≤ f r(x)x ≤ (1−βr)
βπ(rx)x since f r is increasing and Ψ is

non-negative. For any x > θ/r∗, that F r(x) r→r
∗

−→ 1 is a direct consequence of the fact that

for r close to r∗, x > θ/r and hence x > νr. This last fact also means that to prove that

νr
r→r∗−→ θ/r∗, it is sufficient to show that lim infr→r∗ νr ≥ θ/r∗. We prove this last claim

by contradiction. Suppose there exists an ε > 0 and a sequence {rn} converging to r∗ such

that νrn < θ/r∗ − ε along the sequence. This means that F rn(θ/r∗ − ε) ≥ F rn(νrn) = 1

along the sequence, which contradicts the first limit of the lemma. �
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Proof of Proposition 4

In equilibrium, the markup is equal to π evaluated at r times the minimum reinvestment.

The probability that the minimum reinvestment is weakly less than x when the laggard’s

cash is equal to m is equal to one minus the probability of the complementary event (that

both firms reinvest strictly more than x):

1− [1− F r (x)] · (F r (m)− F r (x))+ .

Lemma 2 implies that this distribution converges weakly to a mass point at 0 if m < θ/r∗

and to a mass point at θ/r∗ if m > θ/r∗. This implies that the expected markup converges

to π(0) if the realization of wmin belongs to the pre-laggard-leader scenario and converges

to π(θ) = 0 if the realization of wmin belongs to the pre-symmetric scenario which implies

the proposition. �

Proof of Theorem 1

We show that as the cost of working capital becomes negligible: (i) µr(B) tends to 0 and

(ii) µr(A)
µr(C) diverges to infinity, where the sets A, B and C are defined after Theorem 1.

(i) can be deduced from the definition of an invariant distribution in Equation (4)

applied toM = B, Lemma 2, the definition of m̃ and the fact that for anym ∈ [m, rνr+m]:

Qr(m,B) = Qr(m, [m, m̃])−Qr(m, {m})

= 1−
[
1− F r

(
m̃−m
r

)]
·
(
F r (m)− F r

(
m̃−m
r

))+
− (1− F r(m))

= F r(m)−
[
1− F r

(
m̃−m
r

)]
·
(
F r (m)− F r

(
m̃−m
r

))+

≤ 1−
[
1− F r

(
m̃−m
r

)]2
,

where we have used Equation (3) in the second equality, and that the expression in the

third line is increasing in m in the inequality.

To prove (ii), we use the following general property of an invariant distribution µ :

B̃ → [0, 1] associated to a transition probability Q : M×B̃ → [0, 1] defined on an arbitrary

interval M and B̃ the Borel sets of M :∫
M

(1−Q(m,M))µ(dm) =
∫
M\M

Q(m,M)µ(dm) ∀M ∈ B̃. (8)
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As a consequence:∫
A

(1−Qr(m,A))µr(dm) =
∑

S=B,C

∫
S
Qr(m,A)µr(dm),

and hence:∫
A

(1−Qr(m,A))µr(dm|A)µr(A) =
∑

S=B,C

∫
S
Qr(m,A)µr(dm|S)µr(S).

By a similarly argument:∫
C

(1−Qr(m,C))µr(dm|C)µr(C) =
∫
B
Qr(m,C)µr(dm|B)µr(B),

since for r close to r∗, Qr(m,C) = 0 by definition of m̃.

Lemma 2 and our argument in the main text that the invariant distribution puts

positive probability in any open set in [m, rνr +m] implies that µr(C) > 0 for r close to

r∗. Thus, the combination of the last two equations implies Equation (5) in the main text.

To complete the argument we show that the exit ratio in that equation is bounded above

while the first entry ratio diverges to infinity.

Note that Qr(m,A) = Qr(m, {m}) whereas Qr(m,C) = 1−Qr(m, [m, m̃]). Hence, an

increase in m decreases the former expression and increases the latter, as can be deduced

from Equation (3). This means that the first entry ratio is bounded below by:

Qr(m̃, {m})
1−Qr(m̃, {m}) ,

and the exit ratio is bounded above by:

1−Qr(m, {m})
Qr(rνr +m, [m, m̃])

.

The former ratio diverges to infinity because Qr(m̃, {m}) tends to one as can be deduced

from Equation (3) and Lemma 2. Equation (3) also means that the latter ratio is equal

to:
F r(m)

F r
(
m̃−m
r

)(
2− F r

(
m̃−m
r

)) ,
which is weakly less than one for r close to r∗ by definition of m̃. �
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B A Model of Financial Constraints

In this Appendix, we endogenize the function π in a model in which non compliance

arises due to moral hazard. In this model, limited liability implies that the firm may

find it profitable to choose a risky project that fails with certain probability but gives

larger private profits when it succeeds. The main implication is that there is a decreasing

function π(w) that gives the minimum potential profits for the bid of a firm with working

capital w to be acceptable. In Section B.1, we revisit the model of Section 2 to endogenize

the function π, and in Section B.2, we embed this revised model in the model of Section

4.

B.1 A Structural Model of Procurement with Financial Constraints

We assume that the firm that wins the procurement contract may choose between a safe

project or a risky project. The safe project has cost c and succeeds with probability

one, whereas the risky project has a lower cost c(1 − ε), ε ∈ (0, 1), but only succeeds

with probability ρ < 1 and fails otherwise. In case of failure the firm cannot comply

with the procurement contract, and hence only the safe technology ensures compliance.

For simplicity, we assume a competitive banking sector that provides all the necessary

financing, c?w if the firms working capital w is less than c. Since sureties back a bid

only when they anticipate that the firm will comply with the contract, the bank loans are

risk free. Thus, the net interest rate is zero because there is no discounting between the

afternoon and the following morning.

B.2 A Dynamic Model with Endogenous Financial Constraints

We revisit the model of Section 4 and assume the model of procurement with financial

constraints described in previous section for the afternoon stage of each period.

Sureties are competitive, and hence do not charge for underwriting a bid that induces

the firm to choose the safe technology. Thus, the role of sureties is summarized by the set

of bids that they are willing to underwrite. These are the acceptable bids for the firm.

The surety decides to underwrite a bid upon observing the firm’s working capital w. The

surety, however, observes neither the other firm’s working capital nor the history of past

28



play.

We restrict to equilibria in which the set of bids underwritten by sureties is symmetric

and monotone. Symmetric in the sense that the sureties’ equilibrium strategy does not

distinguish the identity of the firm and monotone in the sense that the sureties underwrite

any bid with potential profits above a certain minimum profitability requirement that we

denote by π(w).

We assume that a firm not complying with a procurement contract is banned from any

other future procurement and it is replaced the following morning by another firm with

working capital equal to m. Since a firm banned from the procurement can still consume

the exogenous revenue (which has a discounted value β
1−βm) Firm i finds it profitable to

choose the safe project if and only if,

βW (w + Π +m,w′ +m) ≥ ρβW (w + Π + εc+m,w′ +m) + (1− ρ)
β

1− βm, (9)

for W the continuation value in the morning of next period, (w,w′) the distribution

of firms’ working capitals and Π the potential profits of the safe project. For a fixed

distribution of working capitals, we say that the potential profits induce the safe project

when the inequality in Equation (9) holds. If the opposite (weak) inequality holds, we say

that the potential profits induce the risky project.

The behavior of sureties requires that the bids that are underwritten along the equilib-

rium path induce the safe project. Besides, sequential rationality requires that the surety

believes that if rejected bids had been accepted and won the procurement contract, the

firm would take the risky project. Formally, given a continuation value W , a bid func-

tion b and a distribution of working capitals, we say that the sureties believe that some

potential profits would implement the risky project if they induce the risky project and the

associated bid wins with positive probability when the rival bids according to b.

Definition: We call a financial, bidding and investment (FBI) equilibrium, a decreasing

minimum profitability requirement function π and a BI equilibrium (b, σ,W ) associated

to π such that:

(i) For any distribution of working capitals in which Firm i wins the procurement con-

tract with positive probability in the BI equilibrium (b, σ,W ), Firm’s i potential

profits in the procurement contract induce the safe project.
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(ii) For any working capital of the firm, the sureties believe that potential profits strictly

below the minimum profitability requirement would implement the risky project for

some working capital of the other firm.

We are interested in an FBI equilibrium that generalizes the BI equilibrium in Propo-

sition 3. Note, first, that the functions (b∗, σ∗,W ∗) in the BI equilibrium are defined for

some given π function. To make this dependence transparent, we shall slightly abuse of the

notation and denote them by b∗π, σ∗π and W ∗π for a given decreasing function π : <+ → <+.

We define F rπ , νrπ and Ψπ in a similar way.

In what follows, we characterize sufficient conditions for (W ∗π , σ
∗
π, b
∗
π, π) to be an FBI

equilibrium. We start with condition (i) of an FBI equilibrium. If both firms use b∗π, the

winner of the procurement contract has more working capital than the loser. Besides, the

inequality in Equation (9) for W = W ∗π , see Equation (2), and w ≥ w′ is equivalent to:

Π ≥ θ̂ − w −Ψπ(w′), (10)

where θ̂ ≡ ρ
1−ρεc. Since Ψπ is decreasing and in a BI equilibrium the potential profits

of the procurement contract are at least π(w), the most stringent case for (i) is when

Π = π(w) and w′ = w. Hence, a sufficient condition for (i) is:

π(w) ≥ θ̂ − w −Ψπ(w). (11)

Now, we shall argue that π(w) ≤ θ̂ − w is a sufficient condition for (ii). Suppose a

π that verifies this condition and consider a continuation value W ∗π , a bid function b∗π,

a distribution of working capitals (w,w′), where w is arbitrary and w′ is strictly greater

than w and so large that Ψπ(w′) is zero, and any potential profits Π < π(w). First, if

the surety underwrites a bid with potential profits Π to the firm with working capital w,

w′ > w and Π < π(w) means that this firm wins the procurement contract when the rival

bids according to b∗π.52 Second, Π < π(w) and π(w) ≤ θ̂ − w implies that Π < θ̂ − w
which means that the potential profits Π induce the risky project for the continuation

52This argument does not generalize naturally to the second price auction as it hinges on both firms

bidding the bid associated to the minimum profitability requirement of the firm with less working capital.

For this case, a more elaborated argument can be used to show that the minimum of the π functions that

verify the conditions of Proposition 5 is still an FBI equilibrium.
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value W ∗π and the distribution (w,w′). As a consequence, the sureties believe that the

potential profits Π would implement the risky project. Therefore (and no further proof is

necessary):

Proposition 5. If π∗ is a decreasing function that verifies:

θ̂ − w −Ψπ∗(w) ≤ π∗(w) ≤ θ̂ − w,

for any w ≥ 0, then (π∗, b∗π∗ , σ
∗
π∗ ,W

∗
π∗) is an FBI equilibrium.

In this proposition is where the assumption r > 1 has some role. As the cost of

working capital becomes small enough the financial constraints might disappear in that

there exists an equilibrium in which sureties are willing to underwrite any bid above cost

independently of the firm’s working capital, i.e. π∗(w) ≤ 0 for any w. This is because

the jump in continuation value when the firm becomes the leader, Ψπ∗(w), diverges as the

cost of working capital becomes negligible. Intuitively, the prospect of winning an infinite

number of periods at a strictly positive profit gives unboundedly large payoffs.

Remark 3. For any π∗ that verifies the conditions in Proposition 5, it can be shown that

θ = θ̂. Since θ̂ = ρ
1−ρεc, c sufficiently large implies that the financial constraint is tight.
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Supplementary Material (Not Intended For Publication)

A Finite Horizon Model

In this appendix, we show that the unique equilibrium of a finite period version of the

model in Section 4 converges as the number of periods tend to infinity to the equilibrium

that we analyze in Section 4. As Athey and Schmutzler (2001) have argued:

If there are multiple equilibria, one equilibrium of particular interest (if it

exists) is an equilibrium attained by taking the limit of first-period strategies

as the horizon T approaches infinity.

Suppose a T + 1 period model in which all the periods but the last one are as in the

model of Section 4. In the last period, all the firm’s cash is distributed to the shareholders.

The dynamic link between periods and the firms’ objective functions are also as in Section

4. The game starts in the morning of period 1 with both firms having the same amount of

cash. We assume that in case of a tie in period t: the procurement contract is assigned to

the firm with more working capital; if both firms have the same amount of working capital

and one firm and only one reinvested all its cash, the contract is assigned to the firm

that had more cash at the beginning of the period; in the remaining cases the contract is

assigned randomly with equal probability between the two firms. We study the subgame

perfect equilibria of the game.

To state our results, we use the functions Ψn defined in the proof of Lemma 1. To

make the notation more easily readable, we let Ψ̂t ≡ ΨT+1−t for t ∈ {1, 2, ..., T + 1}. Let

Ft(x), t ∈ {1, 2, ..., T}, be a distribution function equal to F̂ (x, Ψ̂t+1) with density ft(x)

and support [0, νt]. To shorten the notation, we also denote π̂t(x) ≡ π(x)+ + Ψ̂t+1(x+m),

hence ft(x) = 1−βr
βπ̂t(rx) .

We start defining a function Wt(m,m′) that, as we show later, gives the expected

continuation payoffs at the beginning of each period t for a firm with cash m that competes

with a rival with cash m′: WT+1(m,m′) ≡ m, and for t ∈ {1, 2, ..., T},

Wt(m,m′) ≡ m+m

T+1−t∑
τ=1

βτ +


Ψ̂t(m′) if m > m′

ˆ̂Ψt(m′) if m = m′ < γt

0 o.w.
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where
ˆ̂Ψt(m′) ≡

β

2
π̂t(rm′)− (1− βr)m′,

and γt is equal to the unique solution to ˆ̂Ψt(γt) = 0.

This continuation value implies that when both firms play b∗ in the afternoon of period

t and have continuation payoffs in the morning of period t+1 given by Wt+1, the expected

continuation payoff at the beginning of the morning of period t of a firm with cash m that

reinvests x when the other firm has cash m′ and reinvests x′ is equal to:

m+m

T+1−t∑
τ=1

βτ + Γtβπ̂t(rx′)− (1− βr)x, (12)

where Γt denotes the probability that the firm wins the procurement contract in period t:

Γt =


1 if x > x′ or x = x′ = m′ < m

0 if x < x′ or x = x′ = m < m′

1/2 otherwise.

Consequently, for the case in which the continuation payoffs in period t+ 1 are given

by Wt+1 and both firms play b∗ in the afternoon of period t, Wt(m,m′) is equal to the

value of no reinvesting plus an extra term Ψ̂t(m′) if the firm is leader, and ˆ̂Ψt(m′) if both

firms have the same amount of cash and this is less than γt. The term Ψ̂t(m′) has the

same interpretation as Ψ(m′) in the model of Section 4, whereas ˆ̂Ψt(m′) is the discounted

increase in the continuation payoffs of each of the firms when they have the same amount

of cash m = m′ and reinvest it all x = x′ = m = m′. In this case, both firms have the

same probability of winning the current procurement contract and becoming the leader

next period.

We also define a distribution over reinvestments σ∗t (.|m,m′) that, as we shall show

later, characterizes the firms equilibrium reinvestments. Let σ∗t (.|m,m′) be equal to Ft(.)

if both m and m′ are weakly greater than νt. Let also σ∗t (.|m,m′) be equal to a truncation

of Ft(.) at m that puts the remaining probability at 0 if m < m′, νt, and at m′ if m′ < m, νt.

If m = m′ ∈ [0, γt), let σ∗t (.|m,m′) be a distribution that puts all the probability mass

at m. Finally, if m = m′ ∈ [γt, νt), let σ∗t (.|m,m′) be a truncation of Ft at λt(m) that

puts the remaining probability at m, where λt(m), m ∈ (γt, νt), is the unique value of
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λ ∈ (0,m) that solves:53

∫ λ

0
βπ̂t(rx̃)ft(x̃)dx̃+

β(1− Ft(λ))
2

π̂t(rm)− (1− βr)m = 0. (13)

This equation ensures that a firm is indifferent between reinvesting all its cash m and not

reinvesting, when the payoffs are as in Equation (12) and the other firm uses σ∗t .

Proposition 6. There is a unique subgame perfect equilibrium of the game. In this equi-

librium, and at any period t ∈ {1, 2, ..., T}, both firms use σ∗t in the morning and b∗ in the

afternoon and have continuation payoffs at the beginning of the period given by Wt.

Proof: We prove the proposition using backward induction. It is trivial that the contin-

uation payoffs are equal to WT+1 in period T + 1. We can then apply recursively the

following Lemmata: first, Lemma 4, then Lemma 5, and finally Lemma 3 to update the

continuation payoffs.

Lemma 3. The firm’s continuation payoffs in the morning of period t ∈ {1, 2, ..., T} are

equal to Wt if in period t both firms play σ∗t in the morning and b∗ in the afternoon, and

the continuation payoffs next period are given by Wt+1.

Lemma 4. There is a unique equilibrium in the game defined in the afternoon of period

t ∈ {1, 2, ..., T} by the continuation payoffs next period Wt+1. In this equilibrium, both

firms play b∗.

Lemma 5. There is a unique equilibrium in the game defined in the morning of period

t ∈ {1, 2, ..., T} by both players using b∗ in the afternoon and by continuation payoffs next

period given by Wt+1. In this equilibrium, both firms play σ∗t .

Proof of Lemma 3: Under the conditions of the lemma, the payoffs are as described in

Equation (12). We compute the expected payoffs of a firm with cash m when the rival has

m′ and both firms use σ∗t distinguishing several cases.
53Existence and uniqueness of the solution follows from the properties of the function in the left hand

side of the equation. This is increasing in λ by application of the Leibnitz rule, it is negative at λ = 0 by

definition of γ and since m > γ, and it is strictly positive at λ = m. The latter can be checked substituting

ft(x̃) and using that Ft(m) < 1 since m < νt.
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If m > m′ then our firm randomization has support [0,min{m′, νt}] whereas the rival

randomizes with density ft in (0,min{m′, νt}] and puts the remaining probability at zero.

The expected payoff of any reinvestment x ∈ (0,min{m′, νt}] is equal to:

m+m
T+1−t∑
τ=1

βτ + β(1− Ft(min{m′, νt}))π̂t(0) +
∫ x

0
βπ̂t(rx̃)ft(x̃)dx̃− (1− βr)x.

If m′ < νt, this expression is equal to m+m
∑T+1−t

τ=1 βτ + Ψ̂t(m′) as desired by definition

of ft, π̂t and Ψ̂t. Otherwise, this expression is equal to m + m
∑T+1−t

τ=1 βτ as desired by

definition of ft.

The case νt ≤ m ≤ m′ is as the case m′t ≥ νt above. The case m < m′, νt is also

similar. The difference is that σ∗t (.|m,m′) puts an atom at zero and the other firm at m.

Nevertheless, we can also argue as above that the expected payoffs of any reinvestment

x ∈ [0,m) is also equal to m+m
∑T+1−t

τ=1 βτ as desired.

In the case m = m′ ∈ (γt, νt), both firms randomize with density ft in the interval

[0, λt(m)] and put the remaining density at m. The expected payoffs of any reinvestment

x ∈ [0, λt(m)] are also equal to m+m
∑T+1−t

τ=1 βτ as desired by the same arguments as in

the case m > m′ ≥ νt above. The expected payoffs of a reinvestment x = m are equal to:

m+m
T+1−t∑
τ=1

βτ +
∫ λt(m)

0
βπ̂t(rx̃)ft(x̃)dx̃+

β(1− Ft(λt(m)))
2

π̂t(rm)− (1− βr)m,

which is equal to m+m
∑T+1−t

τ=1 βτ as desired by definition of λt(m).

Finally, if m = m′ ∈ [0, γt), then σ∗t (.|m,m′) puts all the probability mass at x = m.

Thus, the expected payoffs are equal to:

m+m
T+1−t∑
τ=1

βτ +
β

2
π̂t(rm′)− (1− βr)m′,

which is equal to m+m
∑T+1−t

τ=1 βτ + ˆ̂Ψt(m′) as desired by definition of ˆ̂Ψt. �

Proof of Lemma 4: The result follows from the usual arguments in Bertrand competition

because Wt is strictly increasing in the first argument and weakly decreasing in its second

argument. The monotonicity of Wt is direct except at t < T + 1 and m = m′ < γt. For

these points, we shall use that for any y ≤ γt: (a) ˆ̂Ψt(y) ≥ 0, and (b) Ψ̂t(y) ≥ ˆ̂Ψt(y). (a)

is a direct consequence of the definition of γt and the fact that ˆ̂Ψt is decreasing. To prove
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(b) note that:

Ψ̂t(y) = β(1− Ft(y))π̂t(0)

= β(1− Ft(y))π̂t(0) + β

∫ y

0
π̂t(rx̃)ft(x̃)dx̃− (1− βr)y

≥ βπ̂t(ry)− (1− βr)y

≥ ˆ̂Ψt(y),

where the first and last step are direct, the second equality follows from the definition of

ft and π̂t, and the first inequality from the fact that π̂t(rx̃) is decreasing in x̃.

To show that Wt is strictly increasing in its first argument at m = m′ = y < γt we have

to show that: Wt(y, y)−Wt(x, y) > 0 for any x < y, and Wt(x, y)−Wt(y, y) > 0 for any

x > y. These inequalities follow from (a) and (b) respectively, because their corresponding

left hand sides are equal to y − x + ˆ̂Ψt(y) and x − y + Ψ̂t(y) − ˆ̂Ψt(y). Similarly, to show

that Wt is decreasing in its second argument at m = m′ = y < γt we have to show that:

Wt(y, x)−Wt(y, y) ≥ 0 for any x < y, and Wt(y, y)−Wt(y, x) ≥ 0 for any x > y. These

inequalities follow from (b) and (a) respectively, because their corresponding left hand

sides are equal to Ψ̂t(y)− ˆ̂Ψt(y) and ˆ̂Ψt(y). �

Proof of Lemma 5: Under the conditions of the lemma, the payoffs are as described in

Equation (12). If either m,m′ ≥ νt or m 6= m′, one can show that our proposed strategy is

the unique equilibrium with identical arguments as in the proofs of Propositions 1 and 2.

The difference is that one uses π̂t+1, ft, Ft and νt instead of π, f̃ r, F̃ r and ν̃r, respectively,

and payoffs are scaled up by m
∑T+1−t

τ=1 βτ .

If m = m′ < γt, the proposed strategy specifies that both firms reinvest all their

cash m which gives expected payoffs m+m
∑T+1−t

τ=1 βτ + ˆ̂Ψt+1(m′) by definition of ˆ̂Ψt+1.

To see why a deviation is not profitable, notice that ˆ̂Ψt+1(m′) ≥ 0 since m′ ≤ γt and

the best deviation is to choose x = 0 which gives a payoff of m + m
∑T+1−t

τ=1 βτ . Any

other deviation gives lower payoffs as it implies a greater cost of working capital without

affecting the firm’s chances of winning.

If m = m′ ∈ [γt, νt), the proposed strategy specifies that both firms randomize with

density ft in [0, λt(m)] and put the remaining probability at m. As shown in the proof of

Lemma 3, any reinvestment x in its support gives the same expected payoff. Reinvesting
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x = λt(m) gives a greater expected payoff than any reinvestment in (λt(m),m), since they

all win in the same instances but λt(m) has less cost of working capital.

We next show that there is no other equilibrium in the case m = m′ < νt. Note, first,

that Claims 1 and 2 in the proof of Proposition 1 also hold true here. Both claims imply

here that: (a) any equilibrium distribution must be atomless in (0,m); (b) only one firm’s

strategy can put an atom at 0 in equilibrium. Claim 1 and (a) imply that for any point

x < m contained in the support of a firm’s strategy, the set [0, x] must be contained in

the support of both firm’s strategies in equilibrium. In this case, the usual indifference

condition implies that both equilibrium distributions must have density ft in (0, x). We

refer to this equilibrium condition as (c).

Next, we show that (a), (b) and (c) imply that both firms use the same strategy

in equilibrium. To see why, note that the only possible asymmetric equilibrium is that

one of the firms, say 1, puts an atom of probability ρ > 0 at 0, density ft in (0, w) for

some w ∈ [0,m] and the remaining probability, if any, in an atom at m, whereas the

other firm’s strategy has density ft in (0, w) and the remaining probability in an atom

at m. Equilibrium requires that Firm 1 gets a weakly greater continuation value with

a zero reinvestment than with a reinvestment of m and that Firm 2 gets weakly greater

continuation value reinvesting m than with any reinvestment arbitrarily close to zero. The

former condition requires that:∫ w

0
βπ̂t(rx̃)ft(x̃)dx̃+ β

(1− Ft(w))
2

π̂t(rm)− (1− βr)m ≤ 0,

whereas the latter condition requires that:

βρπ̂t(0) +
∫ w

0
βπ̂t(rx̃)ft(x̃)dx̃+ β

(1− Ft(w)− ρ)
2

π̂t(rm)− (1− βr)m ≥ βρπ̂t(0),

and hence both conditions are incompatible when ρ > 0 and π̂t(rm) > 0.

Consequently, the only possible equilibria are those in which both firms use density ft

in a set [0, w) for some w in [0,m] and put the remaining probability at m. To conclude

the proof, we show that equilibrium requires that w = 0, if m ≤ γt and that w = λt(m),

otherwise. Note that the case w = 0 requires that the firm weakly prefers to reinvest m

to reinvest zero, i.e.:
β

2
π̂t(rm)− (1− βr)m ≥ 0,
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whereas the case w ∈ (0,m] requires indifference, i.e.:∫ w

0
βπ̂t(rx̃)ft(x̃)dx̃+

β(1− Ft(w))
2

π̂t(rm)− (1− βr)m = 0.

If m ≤ γt, the former condition holds by definition of γt but the latter does not hold for

any w ∈ (0,m], because it is increasing by application of Leibnitz rule and it is positive

at w = 0 by definition of γt. If m > γt, the former condition does not hold by definition

of γt and the latter only holds for w = λt(m) by definition of λt. �

�

Finally, we show that the limit of the equilibrium of this finite game as the number

of periods goes to infinity is equal to the equilibrium of the model in Section 4. To state

this result, we abuse a little bit of the notation and denote by σ∗t,T and Wt,T the functions

σ∗t and Wt, respectively, to make the dependence in the length of the time horizon of the

game explicit.

Proposition 7. For any w 6= w′, σ∗t,T (.|w,w′) converges weakly to σ∗(.|w,w′) and Wt,T (w,w′)

converges point-wise to W ∗(w,w′) as T goes to infinity.

Proof: Note that Ψ̂t+1 = ΨT−t, and {ΨT−t}∞T=t is an increasing sequence that converges

point-wise to Ψ, see proof of Lemma 1. This together with the monotone convergence

theorem implies the weak convergence of Ft to F r, and hence the weak convergence of

σ∗t,T (.|w,w′) to σ∗(.|w,w′), for w 6= w′. The point-wise convergence of Ψ̂t to Ψ also implies

the convergence of Wt,T (w,w′) to W ∗(w,w′), for w 6= w′. �
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