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It is well known that many rationality tests do not have the correct sizes if innovations in the explanatory series are correlated
with the regressand and the explanatory series are substantially autocorrelated. We argue, by considering somewhat more
general data generating processes and models, that the importance of the over-rejections may have been over-emphasized.

1. Introduction

Many rationality tests take the form of regression of a series of expectational errors on a set of
random variables belonging to the information set upon which the expectations have been formed. It
is well known that if the null of orthogonality between these series holds but if (i) innovations in
some explanatory series are correlated with the regressand and (ii) the explanatory series are
substantially autocorrelated, the usual ¢ and F tests for coefficient significance do not have their
nominal sizes. Hence the null of rationality may tend to be rejected more often than the nominal
levels of the tests would suggest. This fact has been illustrated by Mankiw and Shapiro (1986)
(referred to henceforth as MS) in a recent paper in this journal They base their analysis on an
extensive Monte Carlo study for the case in which the set of regressors contains only the first lagged
level of a variable which belongs to the information set. MS therefore provide a set of critical values
for rationality tests which, if generally applicable, would remove the problem of unknown test levels.
Banerjee and Dolado (1987) have provided analytical approximations to those critical values by
using Nagar type expansions for the moments of the z-statistic.

This paper makes two points by extending the set of regressors used in the orthogonality tests.
First, we claim that the importance of the over-rejection effect may have been over-stated, because a
number of small alterations to the data generating process (DGP) and model considered by MS yield
true test levels considerably closer to the nominal ones. Second, for some interesting cases, the true
test levels appear to vary substantially with small variations in the DGP. The revised critical values
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given by MS therefore cannot necessarily be used in more general circumstances; the appropriate
critical values to use may depend sensitively upon a number of nuisance parameters [see, for
example, Davidson and Hendry (1981) and Muellbauer (1983) for a discussion of these ideas in the
context of the permanent income hypothesis of consumption].

The paper is organized as follows. Section 2 provides the DGP and the model. At this stage it
should be noted that although we use a bivariate set of regressors, the results extend to more general
cases. Section 3 contains results about ‘the sizes of tests for parameter significance and their
implications for interpretation of the outcomes. Section 4 concludes the paper.

2. The data generation process and models

MS consider the following problem. There exists a series {v,} which is postulated, under the null
of rationality, to be a series of innovations relative to another stationary variable x,_,. However, the
series { v, } may be correlated with the innovation at time ¢, denoted ¢, in that variable.

The DGP is therefore as follows:
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where 6| <1; ¢, ~nid(0, 1); », ~ nid(0, 1); E(¢,»,) = §,,p. The test of rationality is conducted using
the regression model:

Yi=agtopx, |t . ()

The investigator runs this regression and checks for a significant test statistic on the estimate of a.
MS provide correct Monte Carlo critical values for a range of values of 8 and p, placing special
emphasis on the cases in which # takes values close to, but smaller than, unity; that is, when the
series { x,} is borderline stationary.

We consider the following generalized DGP in order to address the points listed above:
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Where |0ij| <1 (ls j = 17 2), (2 nld(0> 1)7 €~ md(os 1); E(Vlci:) = Bt:p; E(Ell€2s) =0.

The generalization of the DGP in (1) consists in the inclusion of an extra variable x,, which is
independent of both y, and x,,. This latter assumption is made in order to consider the more realistic
case where regressors in the information set are not generated by univariate AR(1) processes. The
corresponding test of orthogonality is conducted using the extended regression model: !

Ye=Bo+ Bixy 1+ Baxy g+, (4)
and testing, either separately or jointly, the null hypothesis
Hy: B, =8,=0.

1 This corresponds to a test of semi-strong efficiency.



Table 1

Case 01 05, 0, X1y X NC Slope *

A <« 1.000 0.999 0.000 10) NI(1) No -

B 0.999 <« 1.000 0.000 NI(1) 1(0) No -

C «1.000 0.999 + 0.000 NI(1) NI(1) Yes 1-6y,)76,,
D 0.999 <« 1.000 # 0.000 NI(1) 1(0) No -

E 0.999 0.999 0.000 NI(1) NI(1) No -

F 0.999 0.999 # 0,000 NI(2) NI(1) No -

# Co-integrating parameter, for case C.

The simulations were carried out using 1000 replications, ? in the parameter space T X =;; X &y, X
E,, X p where T= {120}, ® =, = {0, 0.9, 0.999}, =,, = {0, 0.1, 0.9}, Z,, = {0, 0.9, 0.999}; p = {0, 1}.
Before commenting on the results, it is interesting to specify the taxonomy of cases displayed in table
1 which will help us to interpret the outcomes.

In table 1, < 1.00 denotes non-borderline stationary processes, (i.., |8;| <0.9). NI denotes
nearly integrated processes [see Phillips and Ouliaris (1986)] and NC denotes nearly co-integrated
processes [see Granger and Engle (1987)]. In fact, for the representative sample size chosen,
according to the MS results, the borderline case is practically indistinguishable from the unit root.
Therefore, in all cases, except C, the order of integration of the right-hand side in (4) is effectively
different from that of the left-hand side. Unwarranted reliance on distributions that are correct only
asymptotically would lead to incorrect inference about the individual or joint significance of the
regressors. In case C, the regressors are co-integrated and hence the particular linear combination
{x3;,— (1 —8,)""01,x,,} has an asymptotic normal distribution. This fact was first conjectured by
Sims (1978) and recently proved formally by Phillips and Ouliaris (1986). Cases A and B (respec-
tively C and D) are symmetric in the sense that §,, and 6,, have been interchanged for a given zero
(respectively non-zero) value of 6,,. Similarly, E and F are symmetric with respect to 6,,. Finally,
when 6;, and 6,, take the value of, say, 0.9, cases A and B (respectively C and D) tend towards case
E (respectively F), illustrating the properties of the tests where one of the roots is a mild borderline
case and the other is a strong borderline case.

3. Results

Table 2 presents the results for the parameter space described above, where the different cases
have been combined according to the symmetry considerations previously discussed. Each cell
contains the true sizes of the ¢ and F statistics. These are based on the critical values for the nominal
five percent level given by the ordinary asymptotic distribution. Each value of the size has a 95%
confidence interval of approximately + 1.4 percentage points (for p = 0.05; variance = p(1 —p)/N
where p is the true test level).

An interpretation of the results is as follows. When p =0, the rejection rates are correct,
irrespective of the order of integration of x;, and x,,, given that ¢, and », are independent (see
tables 1 and 2 in MS). When p = 1, in those cases (B, D, E) where x,, is NI(1) and non-co-integrated
with x,,, both the r-test of 8, and the F-test reject a true null hypothesis significantly more times

2 Initial values were chosen from the corresponding unconditional multivariate normal distributions.
3 Similar results were obtained for 7 = 200.



Table 2
Rejection frequencies (%) at nominal 5% level. 2

Case [4 011 2% 0,5 (B =0) (B, =0) F(By=B,=0)
Al 1.000 0.000 0.999 0.000 5 5 5
A2 0.000 0.000 0.999 0.000 5 5 4
A3 1.000 0.900 0.999 0.000 10 * 7 * 8 *
A4 0.000 0.900 0.999 0.000 6 5 4
B.1 1.000 0.999 0.000 0.000 32 % 5 23 *
B.2 0.000 0.999 0.000 0.000 5 5 S
B.3 1.000 0.999 0.900 0.000 40 * 7* 30 *
B4 0.000 0.999 0.900 0.000 5 4 4
Cl1 1.000 0.000 0.999 0.100 5 4 4
C2 0.000 0.000 0.999 0.100 5 4 S
C3 1.000 0.000 0.999 0.900 5 5 4
C4 0.000 0.000 0.999 0.900 5 5 5
D.1 1.000 0.999 0.000 0.100 34 * 5 22 *
D.2 0.000 0.999 0.000 0.100 b 4 4
D3 1.000 0.999 0.000. 0.900 17 * 7* 10 *
D4 0.000 0.999 0.000 0.900 5 5 S
E.1l 1.000 0.999 0.999 0.000 42 * 14 * 31*
E.2 0.000 0.999 0.999 0.000 5 4 4
F.1 1.000 0.999 0.999 0.100 5 5 4
F.2 0.000 0.999 0.999 0.100 4 4 4
F.J3 1.000 0.999 0.999 0.900 4 4 4
F.4 0.000 0.999 0.999 0.900 4 4 4

# Each cell in the last three columns represents actual rejection rates at the five percent nominal critical values;
* denotes a significant deviation from the nominal size.

than the nominal size requires. Note that, as A.1 reflects, actual and nominal test levels coincide if
8,, is well inside the unit circle. E.1 in table 2 highlights the fact that non-stationary features in both
regressors lead to wrong inferences in both #-ratios. Case C, in which the series are co-integrated,
conforms to the nominal size, even for low values of the co-integrating slope.

The most interesting result arises from case F, in which both series are positively integrated of
different orders. Where p =1, it is difficult to distinguish at this sample size between co-integrated
series (C.1, C.3) and non-co-integrated series (F.1, F.3) of different strictly positive orders [see
Banerjee et al. (1986)]. It is particularly interesting to compare the latter cases with E.1. In case F.3,
where 8,, = 0.9, the rejection rates are very close to the nominal rates; even for F.1 with 6,, = 0.1,
rates are much closer to the nominal values than for 8;, = 0 (E.1). Thus the appropriate critical value
is very sensitive to a small variation in the DGP.

Finally, A.3 and B.3, which tend to E.1 as 6,; — 1, illustrate how roots of 0.9 are still difficult to
distinguish from unit roots, even for a sample size which is larger than those typically found in
applied macroeconomic research.

It is also worth emphasizing a modification of the model used in the regression test from (4) to

Ye=Bo+ Bixy—1+ Byxyp ;. (5)

This extends the MS model by inclusion of an extra lag on the explanatory variable x;. We now find
that the actual test levels conform very nearly to the nominal levels for almost all values in the



parameter space =; X =, X E,, X p. As an example, consider the worst case for model (4), given as
E.l in table 2; the analogous entry for model (5) is

[E.1'] 1.000 0.999 0.999 0.000 7 3 26. *

Clearly the nominal levels are much better guides to the true levels of #-statistics than where only one
lagged value of the explanatory is present.

4. Concluding remarks

We have illustrated how the presence of more than one regressor in the orthogonality conditions
[such as our eq. (4)] which characterize rationality tests, poses some difficulties for the recommenda-
tion of an uncritical use of the MS results. Notably, in some instances, the incorporation of a new
regressor brings the actual sizes of the + and F statistics closer to the nominal ones. Hence the extent
of the over-rejection of rationality in empirical work may have been over-stated. Moreover, the fact
that critical values vary substantially with the addition of new regressors belonging to the DGP
renders any adjustment of the nominal levels hazardous.
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