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1 Introduction 

In many markets, when (or whether) an agent trades, and at what price, depends on 

his own characteristics (his value, or the cost or quality of his good), as well as on 

the characteristics of the other traders. In the market for new assistant professors of 

economics, for example, high-quality job candidates tend to leave the market (i.e., 

to accept job offers) earlier than low-quality candidates. In the clothing market, 

high-value buyers purchase the new fall fashions as soon as the clothes enter stores, 

whereas low-value buyers purchase later in the season once the clothes go on sale. 

The distribution of the characteristics of active traders also varies over time: In the 

market for new assistant professors, for example, the proportion of active candidates 

that are of high quality is larger when the market opens than when it closes. In these 

markets the "trading pattern" at each date (i.e., which types of buyers and sellers 

trade), and the "market composition" at each date (i.e., the characteristics of active 

traders), are determined endogenously. 

In this paper we introduce a simple model of a market, and we characterize the 

trading patterns that arise in equilibrium as well as their dynamics (that is, when 

more than one trading pattern arises, we identify the possible transitions from one 

trading pattern to the next). We also determine how the trading pattern depends 

on the market composition. ·With these results in hand, we establish that market 

equilibria may be inefficient (and may even exhibit trading delay), and we obtain 

results on the competitiveness of nearly frictionless markets. 

We study a market for an indivisible good that operates over a finite number of 

periods. There are two types of buyers, whose values are either "high" or "low," 

initially present in the market in given proportions. All sellers can supply a unit of 

the good at equal cost. After the market opens there is no further entry. Each period, 

active traders are randomly matched and bargain bilaterally. In the bargaining game 

one of the traders is randomly selected to make a take-it-or-Ieave-it price proposal. 

Bargaining is under incomplete information, as a seller does not know whether his 

partner has a high or a low value. 

A variety of trading patterns are possible in this market. A "pure" trading pattern 
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(where traders of the same type bargain the same way) specifies (i) whether sellers' 

price offers are accepted by high-value buyers, (ii) whether sellers' price offers are 

accepted by low-value buyers, (iii) whether low-value buyers' price offers are accepted 

by sellers, and (iv) whether high-value buyers' price offers are accepted by sellers. 

Hence in a given date there are 16 different "pure" trading patterns. In addition, there 

are "mixed" trading patterns in which traders of the same type bargain differently. 

There are two cases of interest: the "high cost" case where sellers have a cost 

above the value of low-value buyers (but below the value of high-value buyers), and 

the "low cost" case where the sellers' cost is below the values of both types of buyers. 

For both the high cost and the low cost case, we establish that a market equilibrium 

exists, and that as the discount factor approaches one and the time horizon becomes 

infinite, transaction prices converge to the competitive price. 

In the high cost case the market equilibrium is unique and symmetric (except 

for rejected offers): high-value buyers and sellers always trade, but low-value buyers 

never trade. 

In the low cost case, the case of primary interest, a richer set of trading patterns 

can arise. We establish that a market equilibrium exhibits at most three (pure) 

trading patterns over the life of the market. An important variable in determining 

which trading pattern arises at each date is the proportion of high-value buyers in the 

market. In periods where high-value buyers are abundant (i.e., when their proportion 

exceeds a critical threshold we identify), the trading pattern is either separating (high

value buyers trade, but low-value buyers do not trade) or partially-separating (high

value buyers trade, and low-value buyers trade only when they propose). In periods 

where high-value buyers are scarce, the trading pattern is pooling (both types of 

buyers trade). We establish that the proportion of high-value buyers in the market 

is (weakly) decreasing over time, and hence the pooling trading pattern is absorbing. 

Moreover, for discount factors near or equal to one, the transitions from one trading 

pattern to the next are in a particular order: from separating to partially-separating 

to pooling. When the market transits from one pure trading pattern to the next, 

however, there may be a single intervening period in which the trading pattern is 
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mixed. (Thus, unlike in the high cost case, in this case market equilibria need not be 

symmetric. ) 

Our analysis reveals two properties of market equilibria in the low cost case that 

are in sharp contrast with Walrasian equilibria: market equilibria may be inefficient 

and may exhibit delay. Since efficiency in the low cost case requires that both types 

of buyers always trade when matched, the equilibrium is inefficient whenever the 

separating or partially separating trading pattern arise. Market equilibria exhibit 

delay when the trading pattern is either separating or partially separating at the 

market open, and it is pooling by the market close; e.g., low-value buyers do not trade 

at the market open, but do trade at later periods. A sufficient condition for market 

equilibria to be inefficient is that high-value buyers are abundant when the market 

opens. If in addition the time horizon is sufficiently long, then there is also delay. 

Hence both inefficiency and delay occur for a non-negligible subset of the parameter 

space. As the market becomes frictionless the welfare loss due to inefficiency vanishes; 

delay persists, however, and in this respect frictionless markets are not competitive. 

RELATED LITERATURE 

Our results on trading patterns and their dynamics are novel and have no counter

part in the literature. Our findings that market equilibria may be inefficient and may 

exhibit delay, and that transaction prices are competitive as frictions vanish relate to 

results already in the literature. We discuss these connections. 

Equilibrium in a market is competitive: There is now a large literature studying 

whether decentralized markets are competitive as frictions vanish (see, for example, 

Rubinstein and Wolinsky (1985), and Gale (1987)). With the important exception of 

Binmore and Herrero (1988), who study markets with a single type of buyer and a 

single type of seller, the literature has focused on stationary equilibria. In the present 

paper we study dynamic markets with heterogenous traders. 

Equilibrium in markets where agents are asymmetrically informed: Wolinsky (1990) 

studies convergence to rational expectations equilibrium as frictions vanish when some 

traders are uninformed about the quality of the traded good. In Wolinsky's model 
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traders may bargain either "tough" or "soft." If both traders in a match bargain 

tough, the outcome is no trade. Otherwise, they trade at one of three exogenously 

given prices. The pair of bargaining positions determines at which of the three prices 

they trade. Adopting Wolinsky's model of bargaining, in the low cost case Serrano 

and Yosha (1996) show that when frictions are small every match ends with trade (in 

our terminology, the trading pattern is pooling), and therefore that market equilibria 

are efficient. Our results on trading patterns and their dynamics reveal that both the 

separating and partially-separating trading patterns arise in equilibrium even when 

frictions are small (in fact, even when frictions vanish). Therefore market equilibria 

may be inefficient and exhibit delay even when frictions are small. Our results differs 

from Serrano and Yosha's because we place no a priori restrictions on the prices a 

trader can offer. 1 

Market Efficiency and Equilibrium Delay: Samuelson (1992) models the decision 

of traders to terminate bargaining. In a model of decentralized trade and Nash 

bargaining, Sattinger (1995) shows that equilibrium is not efficient. Jackson and 

Palfrey (1999) show that there is a robust distribution of buyer and seller values for 

which equilibrium is inefficient for every bargaining game in a general class. Although 

inefficiency also arises in our model, we show that as the market becomes frictionless 

the welfare loss vanishes and each trader obtains his competitive equilibriuni utility. 

It is an open question whether similar results on the efficiency of frictionless markets 

hold in Jackson and Palfrey's general framework. 

Our work also relates to a large literature studying price dispersion and sales. 

Varian (1980), for example, shows that sales provide a means for sellers to price dis

criminate between informed and uninformed consumers. In Varian's model informed 

buyers pay the lowest offered price, while uninformed buyers purchase from each firm 

1 Wolinsky's two bargaining position model also imposes a monotonicity restriction on bargaining 

behavior as a trader's strategy is simply the number of periods in which he bargains tough (after 

which he forever bargains soft). Example 2 shows that the monotonicity of bargaining strategies is 

not a feature of equilibrium in our model, e.g., a seller may raise his price offer from one period to 

the next. 
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with equal likelihood. In our model price discrimination arises as a consequence of 

the differential willingness of high-value and low-value buyers to endure delay. When 

equilibrium delay arises, low-value buyers postpone trading until sellers lower their 

price offers from the high-value buyer reservation price to the low-value buyer reser

vation price, i.e., until sellers offer a "sale" price. 

The paper is organized as follows: we describe our model in Section 2. In Section 

3 we establish that a market equilibrium exists. We study the properties of market 

equilibria in Section 4. In Section 5 we conclude. Appendix A contains the proof of 

existence of equilibrium. The remaining proofs are in Appendix B. 

2 The Model 

A market for a single indivisible commodity opens for T + 1 periods, which we denote 

by the positive integers from 0 to T. Each seller is endowed with a single unit of the 

indivisible good. Each buyer is endowed with one unit of money. Buyers and sellers 

preferences are characterized by, respectively, their values and costs: All sellers (8) 

have the same cost, c ~ 0, whereas there are two types of buyers, "high-value" (H) and 

"low-value" (L), whose values are, respectively, uH and uL , where 1 ~ uH > uL ~ o. 
At period t = 0 there is a continuum of traders; no new traders enter the market 

subsequently. Buyers and sellers are initially present in equal measures; high-value 

and low-value buyers are present in the population of buyers in proportions b{f and 

b{; = 1 - b{f, respectively. We assume throughout that u H > c and b{f E (0,1). If 

a buyer whose value is UT trades with a seller at the price p in time t they obtain a 

utility of ot(uT 
- p) and ot(p - c), respectively. Here 0 E (0,1]' the discount factor, 

expresses the traders' impatience. A buyer or a seller who never trades obtains a 

utility of zero. 

Each period every buyer (seller) remaining in the market meets a randomly se

lected seller (buyer) with probability a, where 0 < a < 1. A matched seller does not 

observe the buyer's value. When a buyer and a seller meet, one of them is selected 

randomly (with probability !) to propose a price at which to trade. If the proposed 
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price is accepted by the other party, then the agents trade at that price and both leave 

the market. Otherwise, the agents remain in the market at the next date and wait 

for a new match. An agent who is not matched in the current period also remains in 

the market at the next date. A trader observes only the outcome of his own matches. 

A strategy for a trader of type T E {H, L, S} is a vector of real numbers indicating 

the trader's price offers and reservation prices at each date (Po, ···,Pr; ro, ... , rr) = 

(pT, rT) E lR.2(T+1). The vector of prices specifies the price that an agent would propose 

at each date if matched and selected to propose a price; the vector of reservation 

prices specifies the maximum (minimum) price that a buyer (seller) would accept at 

each date if responding to a price offer. A strategy distribution is a vector (p, r,..\) = 

[(pHi rHi AHi)r:H (pLi rLi ALi)r:L (pSi rSi ASi)r:S] where "n'T ATk = 1 for each T E , , 2=1, , , 2=1, , , 2=1 , L...-k=l 

{H, L, S}, ..\ Tk > 0 is the proportion of type T players using strategy (pTk, rTk) E 

lR.2(T+1) , and nT is the (countable) number of distinct strategies used by (a positive 

measure of) type T traders. 

We do not restrict attention to symmetric strategy distributions (Le., different 

agents of the same type T may follow different strategies). Indeed, allowing asymmet

ric strategy distributions is necessary to guarantee existence of a market equilibrium 

(see Example 3). We consider only strategies in which a trader does not condition 

his actions in the current match on the history of his prior matches. This restriction 

is inconsequential, since for any equilibrium in which the players' strategies depend 

on histories, there is another equilibrium in history-independent strategies which is 

equivalent (i.e., transaction prices, trading patterns, and market compositions are 

the same). For simplicity, we restrict attention to strategy distributions where only 

countably many distinct strategies are used. As we shall see, however, for discount 

factors near or equal to one, in equilibrium at most two different strategies are played 

by each type of trader. 

2.1 Laws of Motion 

Given a strategy distribution (p, r, A), for T E {H, L, S} and k ~ n T let ..\? denote 

the proportion of agents following the k-th type T strategy out of the total measure 
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of agents of type T who remain in the market at time t. (Throughout, we use i, j, 

and k, respectively, to index the strategies of buyers, sellers, and generic traders.) 

This proportion can be computed for t E {O, ... ,T}, given )..~k = )..Tk, as 

where J.l;k denotes the probability that a trader who is in the market at t and who 

follows the strategy (P?, r?) remains in the market at the next period. This proba

bility is computed as follows: For x, y E lR denote by J(x, y) the indicator junction, 

whose value is 1 if x 2: y, and 0 otherwise. Writing B = {H, L} for the set of buyer 

types, then for T E B we have 

For sellers, this probability is given by 

n T n'T 

Si -1 et "'bT'" \TiJ( Ti Si) et "'bT'" \TiJ( Ti Si) J.lt - - 2" ~ t ~ At rt , Pt - 2" ~ t ~ At Pt, r t , 
TEE i=l TEE i=l 

where b[, the proportion of the buyers of type T out of the total measure of buyers 

remaining in the market at time t, can be computed for t > 0, given bo, as 

Since there is a continuum of traders, the market evolves deterministic ally, even 

though a trader's own market experience is stochastic. 

2.2 Value Functions 

Given a strategy distribution (p, r, )..), the expected utility at time t of an agent of 

type T E {H, L, S} who is using strategy Tk is computed recursively, given V;~l = 0, 

as 

In this expression, P? (R?) is the expected utility to a trader of type T following 

the k-th type T strategy who is matched at t and selected to propose (respond to) a 
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price offer. These expected utilities can be calculated for T E B as 

nS nS 

Pti = (UT - p;i) L )..;i I (p;i ,r;i) + (1 - L )..;i I (p;i ,r;i))8~~1' 
j=l j=l 

and 

For sellers we have 

TEE i=l TEE i=l 

and 

n'T n'T 

~i = L b;'2~ Ni (p[i - c)I(p[i, r~i) + (1 - L b[ L )..[i I (p[i ,r~i))8~~1. 
TEE i=l TEE i=l 

Note that >.~i is the probability that a buyer matched at t is matched with a seller 

following the j-th seller strategy. Similarly, b[ >,;i is the probability that a seller 

matched at t is matched with a buyer of type T following the i-th type T buyer 

strategy. 

2.3 Equilibrium 

A strategy distribution (p: r: >.) is a market equilibrium if for each t E {O, ... : T}: 

each T E Band i E {I, ... ,nT}, and each j E {I, ... ,nS } 

(E.1) 
UT - r[i _ 8~~\, 

s· s· 
rt J - c 8~-:1' 

and 

(E.2) 

Condition E.1 requires that at each date a trader's reservation price makes him 

indifferent between accepting or rejecting an offer of his reservation price. Condition 
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E.2 ensures that price offers are optimal. Given the recursive nature of our setting, 

in a market equilibrium traders' strategies are globally optimal, i.e., no trader can do 

better by changing his reservation prices or price offers simultaneously at more than 

one date. 

In a market equilibrium, at each date traders form their expectations of the pro

portion of buyers of each type remaining in the market (bD, and the proportion of 

traders following each of the strategies being played ()..?), on the basis of the strategy 

distribution being played. Moreover, each trader maximizes his expected utility at 

each of his information sets. Thus, the notion of market equilibrium is in the spirit of 

sequential (or Bayes perfect) equilibrium, when agents do not take their own observa

tion of a deviation from equilibrium play as evidence that play of a positive measure 

of agents has deviated from equilibrium. (See Osborne and Rubinstein (1990), pages 

154-162, for a discussion of this issue for related models.) 

3 Existence of Market Equilibria 

In this section we establish that market equilibria exist under general conditions. It 

might seem that one could calculate a market equilibrium via backward induction. 

Computing a traders' reservation price and optimal price offer at a date t, however, 

requires knowing the market composition (i.e., the proportion of traders of each type 

present in the market) at t, as well as his expected utility if he remains in the market 

at t + 1. Since the market composition at date t is determined by the trading patterns 

(and the traders' strategies) prior to t, a market equilibrium cannot be computed by 

backward induction. 

For some parameter configurations it is easy to guess an equilibrium sequence 

of trading patterns (e.g., in the high cost case, or in the low cost case if the initial 

proportion of high-value buyers is small). In general, however, this is a difficult task: 

although the number of "pure" trading patterns that may arise in equilibrium is small 

(as we shall see in the next section), there is a continuum of mixed trading patterns, 

differing in the proportions of traders following different strategies. These mixed 
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trading patterns cannot be neglected since for some parameter values the unique 

market equilibrium has "mixed" trading patterns (see Example 3). Thus, guessing 

equilibrium trading patterns in order to establish existence of equilibrium does not 

seem viable. 

Notwithstanding this difficulty, we establish in Theorem 1 that a market equilib

rium always exists. 

Theorem 1. A market equilibrium exists. 

Proof: See Appendix A. 

Theorem 1 is established using a fixed point argument: We construct a mapping 

which for arbitrary sequences describing the trading patterns, market compositions, 

and reservation prices at each date, provides 

(i) the trading patterns arising when traders make optimal price offers for the given 

sequence of market compositions and reservation prices, and 

(ii) the sequence of market compositions and reservation prices that results from 

the sequence of trading patterns obtained in (i). 

As this description suggests, the "equilibrium mapping" is a composition of two 

mappings. The first mapping turns out to be an upper hemicontinuous non-empty 

compact convex valued correspondence. The second mapping is a continuous function. 

In general, the result of this composition need not yield a convex valued correspon

dence, a property required to use Kakutani's Fixed Point Theorem. Nevertheless, we 

are able to establish existence of a fixed point using Cellina's Theorem. From a fixed 

point of this mapping we construct a strategy distribution which we show is a market 

equilibrium. 

4 Properties of Market Equilibria 

We study the properties of market equilibria for the two cases of interest: the high 

cost case (i.e., uH > c > uL ), and the low cost case (i.e., uH > uL > c). We study 
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these two cases in turn. 

4.1 Properties of market equilibria in the high cost case 

Supply and demand schedules in this case are illustrated below in Figure 1. Beginning 

with this case allows us to discuss the workings of our model in a simple environment 

and facilitates understanding the subtleties that arise in the more interesting case 

where there are gains to trade between sellers and both types of buyers. 

Figure 1 goes here. 

Market equilibria in this case have a simple structure: at every date high-value 

(low-value) buyers offer a price equal to (below) the seller reservation price, and 

sellers offer a price equal to the high-value-buyer reservation price. Thus, only high

value buyers, and the sellers they are matched with, trade. We provide an informal 

discussion of these results. 

Let (p, r, >.) be a market equilibrium. As an agent who does not trade while the 

market is open obtains a utility of zero (i.e., Vi+l = 0), by El reservation prices 

at the last date are r¥ = uH
, r~ = uL

, and r~ = c. Hence r¥ > r~ > r~. It 

is easy to see that high-value (low-value) buyers offer at date T a price equal to 

(belm'.T) the seller-reservation price: A high-value (low-value) buyer obtains a utility 

of 'U
H 

- r~ = uH 
- C > 0 (1.1 L 

- r~ = uL - C < 0) offering r~, the lowest price 

accepted by sellers, and obtains 8V,f!+l = 0 (8Vf:+l = 0) with a lower price offer. 

Thus, p!f. = r~ (p~ < r~). Sellers offer at date T the high-value-buyer reservation 

price (i.e., the highest price accepted by high-value buyers): a seller who offers r¥ 

obtains an expected utility of b!f. (r¥ - c) = b!f. (uH - c) > 0, whereas he obtains 

r~ - c = uL - C < 0 offering r¥.2 Thus, Pf = r¥- Hence the pattern of trade at 

date T is separating: all matched high-value buyers trade, low-value buyers do not 

trade, and sellers only trade when matched to a high-value buyer. Therefore traders' 

expected utilities at T are V,f! = HuH - c), v,f = 0, and vI = ~b!f. (uH - c). 

2Note that b!f. is strictly positive since a measure (1 - a.)Tb{! > 0 of high-value buyers has never 

been matched before T, and therefore at least this measure of high-value buyers remains in the 

market at T. 
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Now, using El again we calculate traders' reservation prices at T - 1 to obtain 

r¥_l = u H - 8~(uH - c), r~_l = c + 8~b¥(uH - c), and r~_l = uL
. Thus r¥_l > 

r~_l > rf_l' regardless of the value of b!f., and the same pattern of trade arises at 

date T - 1. In fact, it can be shown by induction that reservation prices satisfy this 

inequality at every date t, independently of bP, and therefore that the pattern of trade 

is separating at every date. 

Given the initial proportion of high-value buyers in the market and knowing the 

pattern of trade at each date, we can compute the entire evolution of the market com

position (i.e., the sequence {bP};=o). Knowing the trading pattern and the market 

composition at each date, the sequence of reservation prices is then computed re

cursively. Transaction prices are the seller-reservation price when high-value buyers 

propose, and the high-value-buyer reservation price when sellers propose. The market 

equilibrium is therefore unique and symmetric, except for low-value-buyer price offers 

(which are not determined). 

When traders are sufficiently patient (i.e., 8 is close to one) and the time horizon is 

sufficiently long, transaction prices at a given date are close to the competitive price 

(the sellers' cost in this case). Intuitively this is because when the time horizon is 

long, high-value buyers eventually become so scarce that the seller-reservation price 

approaches their cost. Since the probability of a future match is close to one (because 

the time horizon is long and the matching probabilities are constant), if high-value 

buyers do not discount future utilities very much, then their cost of waiting is small, 

and therefore their reservation price also approaches the sellers' cost. 

These findings are summarized in Proposition 1. 

Proposition 1. Assume u H > c > u L . 

(P.I) Let (p, r,,x) be a market equilibrium and f E {O, ... ,T}. 

Reservation Prices: 

(P1.1.I) r? = rf for every T E {H,L,S} and i ~ nT
• 

(PI.l.2) rr > rf > rf· 

Price Offers: 

(PI.I.3) pPi = rf for i ~ n H, pfi < rf for i ~ n L , and pfj = rr for j ~ nS. 
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Market Composition: 

( ) b
H - (l-a)W bH 

Pl.1.4 [+1 - (l-a)W+l-W < [. 
{P.2} For 8 E (0,1]' and T < 00, let r(8, T) be the sequence of equilibrium reservation 

pnces. 

Transaction Prices as Frictions Vanish: 

{Pl.2.1} limo-> 1 limT-> 00 rf(8, T) = limT->oo limO->l rf(8, T) = c. 

{Pl.2.2} limo->llimT--+oo rf (8, T) = limT--+oo limo--+l rf (8, T) = c. 

Example 1 below illustrates the results of Proposition 1. 

Example 1. Figure 2 shows equilibrium transaction prices for a market that opens 

for 10 periods and whose parameter values are the ones specified. 

Figure 2 goes here. 

Seller price offers are not monotonic, as price offers at first decrease as time passes, 

but later increase. There are two effects at work: The first effect is that as time 

passes high-value buyers become scarce, which lowers the reservation price of both 

sellers and high-value buyers. The second effect is that as time passes the end of the 

horizon approaches, which raises the reservation price of high-value buyers. At the 

market open the first effect dominates and the reservation price of high-value buyers 

is falling, while near the market close the second effect dominates and high-value 

buyer reservation price is rising. 

The mean transaction price (weighted by the volume of trade) is .4308 which is 

near reservation prices in the first few periods since most trade occurs within the 

first few periods. In the competitive equilibrium of this market, the price is .2 and 

the entire surplus of .7520 goes to high-value buyers. In contrast, in the market 

equilibrium sellers capture 29% of the total (discounted) surplus of .6834, in spite 

of the fact that frictions are relatively small (the probability that an agent is never 

matched is aT +1 = lO~4)' Even when 8 = 1, sellers capture 15% of the total surplus 

of .7513. Finally, the equilibrium is efficient since all matches between sellers and 

high-value buyers end with trade. 
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4.2 Properties of market equilibria in the low cost case 

Figure 3 below illustrates the supply and demand schedules for this case. We identify 

the trading patterns which may arise in equilibrium and identify the transitions among 

them. We also relate the trading pattern to the market composition, and describe 

how the market composition evolves over time. We show that if the initial proportion 

of high-value buyers in the market is above a critical threshold we identify, then in 

a market equilibrium trade is inefficient. If in addition the time horizon is long 

then a market equilibrium also exhibits delay. Finally, we show that as market 

frictions vanish (i.e., as the discount factor approaches one and the time horizon 

grows long), equilibrium transaction prices converge to a competitive equilibrium 

price. We establish that in the limit equilibrium delay persists, although its cost 

vanishes. 

Figure 3 goes here. 

In order to illustrate the difficulties that arise in the analysis of the present case, 

assume, for the purpose of discussion, that in a market equilibrium (i) traders of the 

same type have the same reservation price, (ii) sellers offer either the high-value-buyer 

reservation price r[I, or the low-value-buyer reservation price rf, and (iii) r[I > rf·3 

\-Vhen a seller offers r[I at date t, he trades only with high-value buyers and obtains 

an expected utility of 

bf (rf - c) + (1 - bf)(rf - c). 

(Recall that 8~~1 = rf - c by El.) A seller who offers rf at date t trades with both 

types of buyers, and obtains rf - c. Therefore it is optimal for a seller to offer the 

high-value-buyer reservation price if 

bf(rf - c) + (1- bf)(rf - c) ~ rt - c, 

i.e., 

bH( H S) > L S t rt - rt _ rt - rt . 

3Each of these facts is proven in Appendix B. 
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In other words, sellers offer the high-value-buyer reservation price if the probability 

that the current partner is a high-value buyer times the gains to trade with high-value 

buyers is greater than the gains to trade with low-value buyers. (In both cases, the 

gains are calculated relative to the reservation prices, rather than the actual values 

or costs.) Writing trt for the ratio (rf - rf)j(rf! - rf), which measures the relative 

gains to trade of sellers with low-value buyers versus high-value buyers, the inequality 

above can be written as 

Hence, in contrast to the low-cost case where the pattern of trade is separating re

gardless of the market composition, in the present case the pattern of trade at date 

t depends on the market composition. Further, the market composition at date t is 

determined in turn by the trading patterns prior to t. Thus, the entire sequence of 

trading patterns and market compositions must be determined simultaneously. 

In spite of this difficulty, we identify the basic properties of market equilibria in 

propositions 2 through 4. Proposition 2 establishes some basic facts about equilibrium 

price offers and reservation prices. 

Proposition 2. Assume that uH > uL > c. Let (p, r, A) be a market equilibrium and 

let lE {a, ... ,T}. 

Reserua.tion Prices: 

(P2.1.1) r? = r[ for every T E {H, L, S} and i :::; nT
• 

(P2.1.2) r? > max{rt, rf}. 

High- Va.lue-Buyer Price Offers: 

(P2.2) pPi = rf, for every i :::; nH . 

Low- Value-Buyer Price Offers: 

(P2.3.1) pfi :::; rf for every i :::; nL . 

(P2.3.2) There is c(a, T) > 0 such that for 8> 1 - c(a, T): 

(i) If pfi < rf for some i :::; nL , then pf; < rf for every t < land i :::; nL . 

(ii) If pfi = rf for some i :::; nL
, then pfi = rf for every t > t and i :::; nL . 

Seller Price Offers: 
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(P2.4.1) pfj E {rf,rf} for every j:::; nS. 

(P2·4.2) If pfj = rf for some j :::; nS, then p~j = rf for every t > f and j :::; nS. 

(P2.4.3) If pfj = rf for some j :::; nS, then p~j = r{f for every t < f and j :::; nS. 

Seller and Low- Value-Buyer Price Offers: 

(P2.5) If pfj = rf for some j :::; nS, then pti = rf for every i :::; n L . 

In a market equilibrium all traders of the same type have identical reservation 

prices (P2.1.1). The high-value-buyer reservation price is above both the low-value

buyer and seller reservation prices (P2.1.2). High-value buyers offer sellers their reser

vation price (P2.2). If the discount factor is sufficiently large, low-value buyers may 

initially offer sellers a price below their reservation price, but once a positive propor

tion of low-value buyers offers the seller reservation price, then all low-value buyers 

offer this price at every subsequent date (P2.3.2). Similarly, seller's may initially of

fer the high-value-buyer reservation price (P2.4.3), but once a positive proportion of 

sellers offers the low-value-buyer reservation price, all sellers offer this price at every 

subsequent date (P2.4.2). Finally, if at date t a positive proportion of sellers offer 

the low-value buyer reservation price, then at date t all low-value buyers offer sellers 

their reservation price (P2.5). 

TRADIXG PATTERNS 

We begin by discussing which trading patterns may arise in equilibrium. A "pure" 

trading pattern, in which agents of the same type make the same price offers, specifies 

whether sellers' price offers are accepted by high-value buyers, whether sellers' price 

offers are accepted by low-value buyers, whether low-value buyers' price offers are 

accepted by sellers, and whether high-value buyers' price offers are accepted by sellers. 

There are 16 possible pure trading patterns. 

Proposition 2 implies that at most three of these pure trading patterns may arise 

in equilibrium: Sellers' price offers are accepted by high-value buyers (P2.1.2 and 

P2.4.1). High-value buyers' price offers are accepted by sellers (P2.2). Hence P2.1.2, 

P2.2, and P2.4.1 rule out all but four of the feasible pure trading patterns. In 

addition, P2.5 rules out the trading pattern in which sellers' price offers are accepted 
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by both types of buyers, but low-value buyers' price offers are not accepted by sellers. 

Thus, only three pure trading patterns may arise in equilibrium: a separating (S) 

trading pattern, where only matches between high-value buyers and sellers end with 

trade; a partially-separating (PS) trading pattern, where matches between high-value 

buyers and sellers end with trade and matches between low-value buyers and sellers 

end with trade only if the buyer proposes; and a pooling (P) trading pattern, where 

all matches end with trade. The relation between price offers and reservation prices 

in each of these trading patterns are described in Table I. 

Trading Patterns Price Offers 

Sellers High-Value Low-Value 

Separating ps _ rH 
t - t pH -rS t - t pL < rS t t 

Partially-Separating ps _ rH 
t - t 

pH _ rS 
t - t 

pL _ rS 
t - t 

Pooling ps _ rL 
t - t 

pH _ rS 
t - t 

pL _ rS 
t - t 

TABLE I: Equilibrium Pure Trading Patterns when uH > uL > c. 

In addition to the three "pure" trading patterns, an equilibrium may also have 

"mixed" ones (i.e., ones in which traders of the same type make different price offers). 

In particular, an equilibrium may have "S-PS" trading patterns and "PS-P" trading 

patter!1.-S. The S-PS trading pattern is the same as S, except that low-value buyers 

::mix," i.e., a positive proportion offer the seller reservation price, and a positive 

proportion offer a price below the seller reservation price. The PS-P trading pattern 

is the same as PS, except that sellers "mix," i.e., a positive proportion offer the 

high-value-buyer reservation price and a positive proportion offer the low-value-buyer 

reservation price. 

Proposition 2 ensures that the PS-P trading pattern arises in at most one period 

(P2.4.3). Moreover, when the discount factor is sufficiently high, the S-PS trading 

pattern arises also in at most one period, since by P2.3.2 once a positive proportion of 

low-value buyers offer the seller reservation price, at subsequent periods all low-value 

buyers offer this price. 
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DYNAMICS OF TRADING PATTERNS 

Proposition 2 also yields conclusions concerning the order in which trading pat

terns arise in equilibrium. P2.4.2 establishes that if at date t a positive proportion 

of sellers offer the low-value-buyer reservation price, then at every subsequent date 

all sellers offer this price. Hence the S, S-PS, and PS trading patterns (when they 

arise) precede the PS-P and P trading patterns. P2.3.2 establishes that when the 

discount factor is sufficiently close to one the S trading pattern precedes all the other 

trading patterns. Furthermore, P2.4.2 and P2.3.2 imply, respectively, that the S-PS 

mixed trading pattern precedes PS, and the PS-P mixed trading pattern precedes 

P. 

It can be shown that if trading patterns Sand P are both visited, then pattern 

PS must also be visited. Also, PSis always visited unless the market opens at P. 

The mixed trading patterns may be skipped, although the subset of the parameter 

space where all market equilibria exhibit mixed trading patterns is not negligible (see 

Example 3). The dynamics of trading patterns are illustrated in Figure 4. 

Figure 4 goes here. 

MARKET COMPOSITION 

The market composition at date t is described by bf, the proportion of high-value 

buyers in t.he market.. Proposit.ion 3 below relat.es t.his proport.ion t.o the t.rading 

pattern and the dynamics of the market composition. Denote by 7r* the ratio (uL -

c)j(uH - c). 

Proposition 3. Assume that uH > uL > c. Let (p, r, >.) be a market equilibrium and 

let t E {a, ... ,T}. 

The Critical Threshold (7r*): 

(P3.1.1) If bp < 7r*, then pii = rt for every j ~ nS and bP-t-l = bP. 

(P3.1.2) If bp = 7r*, then pf; = rf for every i ~ nL , and either 

(i) bP-t-l < bP; or 

(ii) bP-t-l = bp, and p~i = rf for every j ~ n S and t 2: t. 
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{P3.1.3} If bp> 7r*, then p;j = rp for every j ~ nS, and bf-t-l < bP. 

The Critical Threshold is Eventually Reached : 

{P3.2} There is T = T(b/f, Q, 7r*) such that if T> T, then b{1 ~ 7r* for t 2: T. 

Proposition 3 therefore establishes that trading patterns and the dynamics of 

market composition are governed by the relation of the proportion of high-value 

buyers in the market to the critical threshold 7r*. If the proportion of high-value 

buyers in the market is below 7r*, then the trading pattern is P (P3.1.1). If the 

proportion of high-value buyers in the market equals 7r*, then either the trading 

pattern is PS or PS-P and the proportion of high-value buyers in the market is less 

than 7r* at the next period, or the trading pattern is P (and remains at P at every 

subsequent period) and the proportion of high-value buyers is 7r* at the next period 

(P3.1.2). P3.1.1 and P3.1.2 imply that if the proportion of high-value buyers in the 

market equals 7r* at some date, at the next date the trading pattern must be P. If 

the proportion of high-value buyers in the market is greater than 7r*, then the trading 

pattern is either S, S-PS, or PS (P3.1.3). Finally, P3.2 ensures that if the time 

horizon is sufficiently long, then eventually the proportion of high-value buyers in the 

market is less than or equal to 7r*. Hence, by P3.1.1 and P3.1.2, if the time horizon 

is sufficiently long, then the trading pattern is eventually P. 

DYNAMICS OF MARKET COMPOSITION 

In both the S and the PS trading pattern, as well as in the mixed trading patterns 

S-PS and PS-P, the proportion of high-value buyers in the market is falling: in S, 

each period a fraction Q of high-value buyers exit the market, while no low-value buyer 

exits; in PS a fraction Q of high-value buyers and a fraction ~ of low-value buyers 

exit the market each period. In the trading pattern P the same fraction Q of each 

type of buyer exits the market at each date, and hence the proportion of high-value 

buyers in the market remains constant. Thus, the proportion of high-value buyers in 

the market decreases (quickly in S, and more slowly in PS), but once P is reached 

(i.e., once this proportion falls below 7r*), it becomes stationary. 

A numerical example in which all three trading patterns arise in equilibrium is 
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given in Example 2. 

Example 2. Figure 5 shows an equilibrium in which all three pure trading patterns 

arise for a market that opens for 10 periods and whose parameter values are the ones 

specified. 

Figure 5 goes here. 

The top graph in Figure 5 shows transaction prices. The trading pattern is S for 

periods 0 to 2, is PS for periods 3 to 7, and is P for periods 8 and 9. In period 8 the 

good goes on "sale" as sellers switch from offering the high-value-buyer reservation 

price to the low-value-buyer reservation price. Low-value buyers trade with delay: 

they do not trade at period 0 through 2; they trade only if they propose in periods 

3 through 7; and they trade whether they propose or respond in periods 8 or 9. The 

bottom graph shows the evolution of the market composition and the ratio Kt. 

The set of competitive prices for the market in Example 2 is the interval [.2, .4]. 

We focus on the competitive price of .3, since in a market equilibrium all transactions 

are at this price as frictions vanish (see Proposition 4). Table II shows the division of 

the surplus in three different settings: at the competitive equilibrium price of .3; in 

the market equilibrium displayed in Figure 5; and under efficient trading, i.e., when 

each match ends with trade (here the distribution of the surplus is computed when 

each match ends with trade at the price of .3). 

Interestingly, in this market equilibrium sellers capture more than twice the sur

plus than they capture in the competitive equilibrium. The market equilibrium is 

not efficient since low-value buyers do not trade when matched in periods 0 through 

2 and trade only if they propose in periods 3 through 7. The efficiency loss resulting 

from delay (.0045 = .6943 - .6898) is small since only 6% of the buyers are low-value 

at the market open. 
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High-value Low-value Seller Total 

Competitive Equil. .6580 (86%) .0060 (.7%) .1000 (13%) .7640 (100%) 

Efficient Trading .5980 (86%) .0055 (.7%) .0909 (13%) .6943 (100%) 

Market Equil. .4738 (68%) .0033 (.4%) .2128 (30%) .6898 (100%) 

TABLE II: The Division of Surplus 

PRICES AS FRICTION VANISH 

Proposition 4 below establishes that, as frictions vanish, transaction prices con

verge to the competitive equilibrium price that splits the gains between low-value 

buyers and sellers equally, i.e., the price (uL + c)/2. For each 8 E (0,1] and integer 

T, denote by r(8, T) the set of all sequences of equilibrium reservation prices, and 

by V(8, T) the set of all sequences of equilibrium expected utilities. These sets are 

non-empty by Theorem 1. 

Proposition 4: Assume that uH > uL > c. Then jor every f and 'T E {H, L, S} 

lim Hm rf(8, T) = lim Hm rf(8, T) = u
L 

+ c; 
0-+1 T-+oo T-+oo 0-+1 2 

i.e., transaction prices are competitive as jrictions vanish. Furthermore, 

jor each 'T E {H, L}, and 

L 

Hm Hm v'l(8, T) = lim Hm v'l(8, T) = u + c - c; 
0-+1 T-+oo T-+oo 0-+1 2 

i. e., as jrictions vanish each agent obtains his competitive equilibrium utility. 

DELAY 

Although transaction prices converge to a competitive price as market frictions 

vanish, delay persists in the limit and, in this sense, the market outcome is not 

competitive. Consider a market in which b{f > 7r* and let (p, r, >.) be a market 
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equilibrium. By Proposition 3, so long as the proportion of buyers in the market is 

above 7r* then the trading pattern is either S or PS. Define the sequence {Q~} as 

ljf = b{f and, for t ~ 0 

bH = (1- a)Q~ 
-HI (1- a)bH + 1- bH ' 

-t -t 

The sequence {Q~} describes the evolution of the market composition as though the 

trading pattern is always S. Since the proportion of high-value buyers in the market 

falls more quickly in S than in the other trading patterns, then bfI ~ Q~ for all t ~ O. 

Therefore, if t is smallest integer such that M! ::; 7r*, then we have bf > 7r* for t < t; 

hence the trading pattern is either S or PS for periods 0 through t - 1. If the time 

horizon T is sufficiently long that P is eventually reached, then low-value buyers trade 

with delay: low-value buyers do not trade when responding prior to t, but do trade 

if responding when P is reached. (If the market opens at the S trading pattern, then 

low-value buyers do not trade at all if matched initially, but always trade if matched 

once P is reached.) Since t is independent of the time horizon T and the discount 

factor, equilibrium delay persists for at least t periods even as frictions vanish. 

Equilibrium delay can be made to persist arbitrary long, since t can be made 

arbitrarily large by choosing b{f near 1. Nonetheless, by Proposition 4 each trader 

receives his competitive equilibrium utility as market frictions vanish, and therefore 

delay becomes costless. 

SYMMETRY 

We conclude by discussing the asymmetries that may arise in equilibrium. By 

Proposition 2 all high-value buyers follow the same strategy in equilibrium. Also, the 

equilibrium strategies of sellers must be the same at every date, except at the PS-P 

mixed trading pattern (if it arises) where both the low-value and the high-value buyer 

reservation prices are offered by a positive proportion of sellers. Note, however, that 

reaching this mixed trading pattern requires that the proportion of high-value buyers 

exactly equal 7r* at some date (see P3.1.2). 

As for low-value buyers, they all offer the same price except in the S or S-PS 

trading pattern. In S, low-value buyers offer prices below the seller reservation price 
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(which sellers reject). Hence low-value buyer price offers are not determined, and 

therefore there are asymmetric market equilibria in which low-value buyers make 

different (rejected) price offers. Nonetheless, if a market equilibrium exhibits only 

asymmetries of this kind, there is also a symmetric market equilibrium which gen

erates the same trading pattern, market composition and transaction prices at each 

date. There is a more significant asymmetry when the S-PS mixed trading pattern 

arises. In this case, a positive proportion of low-value buyers offer the seller reser

vation price, and a positive proportion offer prices below the seller reservation price. 

As Example 3 shows, there are markets whose unique equilibrium exhibits the S

PS trading pattern. Hence existence of a symmetric market equilibrium cannot be 

guaranteed. 

Example 3: Consider a market with parameter values as given in Example 2, except 

that the initial proportion of high-value buyers is now b{f = .92. Also let the market 

open only for two periods (i.e., T = 1). Note that whatever the trading pattern is at 

date 0, the proportion of high-value buyers at date 1 satisfies 

bH > (l-a)b{f * .4-.2 
1 - ( )bH bH = .85185 > 1f = 2 = .25. I-a 0 +1- 0 1-. 

Hence at date 1 sellers offer pr = rf = uH = 1. Also as rf > rr (because rf 

uL > c = rf), low-value buyers offer pf = rf = c = .2. Therefore, in a market 

equilibrium the trading pattern at date 1 is PS, and the traders' expected utilities 

are 1I;.H = ~(UH - c) = ~(1 - .2) = ~, 1I;.L = ~(UL - c) = H.4 - .2) = io' and 

VIS = ~bf(uH - c) = ibf(1- .2) = ~bf, where bf remains to be determined. 

We must now determine the traders' strategies at date O. By Proposition 2, three 

trading patterns are possible: S, S-PS, or PS. Suppose that the pattern of trade at 

date 0 is S. Then bf = .85185, and rg = c+811;.s = .2+ .9(~)(. 85185) = .35333. Since 

r{; = uL - 611;.L = .4 - .9(210) = .355, we have rg < r{;. But then low-value buyers 

must offer the seller reservation price at date 0 (see Lemma 2.2), and therefore the 

pattern of trade is not S. 

Suppose that the pattern of trade at date 0 is PS. Then 

H (1 - a)b{f 
b1 = (1 _ a)b{f + (1 - ~) (1 _ b{f) = .88462, 
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and rg = .2 + .9( i) (.88462) = .35923 > .355 = rt. But then low-value buyers must 

offer a price below the seller reservation price at date 0 (see Lemma 2.3), and therefore 

the pattern of trade is not PS. 

Since a market equilibrium exists, then the trading pattern at date 0 must be 

S-PS. Indeed, suppose that a proportion )..L1 = .29029 of low-value buyers offer 

p~l = rg, whereas a proportion )..L2 = 1 - )..L1 of low-value buyers offer p~2 < rg. 
Then 

(1- a)bH 

bH = 0 = .86111 
1 (1 - a)b{f + (1 - %)..L1) (1 - b{f) , 

and rg = .2+.9(i)(. 86111) = .355 = rt; bothp~l andp~2 are optimal offers (i.e., low

value buyers are indifferent between trading or not trading at the sellers' reservation 

price). Hence, the strategy distribution described is a market equilibrium. 

5 Concluding Remarks 

Previous work studying the properties of decentralized markets in which traders are 

asymmetrically informed (e.g., Samuelson (1992), Serrano and Yosha (1996)) imposes 

ex-ante restrictions on transaction prices (forcing each transaction to be at one of at 

most three possible prices). Such restrictions seem unnatural in models whose aim 

is to develop a theory of price formation. Ex-ante price restrictions may artificially 

restrict the possibilities for trade: even if a buyer and a seller, when bargaining, have 

gains to trade relative to continuing to search, there may be not be a feasible price 

below the buyer's and above the seller's reservation prices. Price restrictions may 

also qualitatively affect the results (e.g., Serrano and Yosha (1996) find that when 

frictions are small equilibrium is efficient, while we find that the equilibrium may 

be inefficient). Ex-ante price restrictions also seem inconsistent with decentralized 

trading since an external authority must be relied upon to enforce them. 

In our framework, transaction prices, the pattern of trade, and the distribution 

of the characteristics of the active traders are determined endogenously. Our results 

contribute to understanding how in markets these variables are interrelated and how 

they evolve dynamically over time. Our findings illustrate that markets may exhibit 
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interesting dynamics, and these dynamics persist as frictions vanish even though 

transaction prices become competitive. The model we introduce is useful for inves

tigating how the institutional setting (i.e., the bargaining rules) and the nature of 

uncertainty (i.e., whether it is one-sided or two-sided) influence market dynamics and 

the properties of market equilibria. These are important issues which we leave for 

future research. 

6 Appendix A: Existence of Market Equilibria 

We establish existence of a market equilibrium by means of a fixed point argument. 

Market outcomes are completely described by a triple (z, (3, p) specifying, respectively, 

the trading pattern, market composition, and reservation prices at each date. As we 

establish in Appendix B, in equilibrium high-value buyers offer the seller reservation 

price (L6.1); low value buyers offer the seller reservation price or less (L2); and sellers 

offer either the high-value or low-value buyer reservation price (L3.1). Thus, we can 

simplify the representation of trading patterns by focusing on the proportion zf of 

low-value buyers who offer the seller reservation price and the proportion zf of sellers 

who offer the low-value buyer reservation price. (Then 1 - zf is the proportion of 

low-value buyers offering a price below rf and 1 - zf is the proportion of sellers 

offering the price rfl.) The sequence of equilibrium trading patterns is represented as 

Z = (zo, ... ,zr), where Zt = (z;, zi) E [0, IF. The market composition at each date 

is described by (3 = ((30,· .. ,(3r), where (3t E [0,1] is the proportion of buyers in the 

market at date t who have a high value. Reservation prices at each date are given by 

P = (Po,··· ,Pr), where Pt = (pfl,Pt,pf) E [0,1]3. 

The strategy of the proof of existence is as follows: we construct a mapping r.p 

which for each arbitrary triple (z, (3, p) provides the trading patterns that result when 

traders' price offers are optimal, and the market composition and reservation prices 

resulting from these new trading patterns. As we shall see the mapping r.p is upper 

hemicontinuous and non-empty valued, but it may not be convex valued. Hence we 

cannot apply Kakutani's Fixed Point Theorem. Cellina (1969) has shown, however, 
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that if for each (z, j3, p), cp( z, j3, p) is the image of a convex set under a continuous 

function, then cp has a fixed point. Specifically, Cellina establishes the following 

theorem:4 

Theorem (Cellina 1969, Theorem 2). Let K be a non-empty compact convex subset 

of a Banach space. Let cp and, be two upper hemicontinuous correspondences from 

K into K such that for each x E K, cp(x) is closed and ,(x) is convex. Let f 

be a continuous function from the graph of , into K such that for each x E K, 

cp(x) = {f(x, y) lyE ,(xn. Then cp has a fixed point in K. 

With this result in hand we prove Theorem 1. 

Proof of Theorem 1: Let T < 00, (uH,uL,C) E [0,1]3 with uH > max{uL,c}, 

b/f E (0,1),8 E (0,1]' and a E (0,1). Write Q = (1 - a)Tb/f, and denote by K the 

set of triples (z,j3,p) such that z E [0, Ij2(T+1) , j3 E [Q,b/f]T+1, and pE [O,I]3(T+l) 

satisfies PT = (p!j,p!;,p¥) = (uH,uL,c), and for t < T, PP - pf 2: 0, and p[I - pr 2: 

(1 - a81-6~~;g::::r-t)(uH - c). Note that K c [0,1]6(T+1) is a non-empty compact 

convex set. 

The mapping cp : K -» K is constructed as follows: Let , : K -» K be given for 

(z,j3,p) E K by ,(z,j3,p) = (,Z(z,j3,p),j3,p), where 

{(I, In if j3t(p[I - pf) < pf - pr 

{I} x [0,1] if j3t(p[I - pf) - pf - pr 

,:(z, j3, p) = {(I, on if j3t(p[I - pr) > pf - pr> ° 
[0,1] x {O} if pf - pr ° 

{(O, on if pf - pr < 0, 

for each t E {O, ... ,T}. Note that j3t(p[I - pf) > ° for t E {O, ... ,T}, whenever 

(z, j3, p) E K. Hence, is well defined. Also note that, is an upper hemicontinuous 

non-empty compact convex valued correspondence. 

Now let D be the graph of, (i.e., the set {(z, j3, p; z, /3, p) I (z, /3, p) E ,(z, j3, pn), 

and let f : D -4 K be given for (z, j3, p; z, /3, p) E D by f(z, j3, p; z, /3, p) = (z, 9(z), h(z, /3, p)), 

4See also Border (1985), Theorem 15.1, page 72. 
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where 9 is defined as go(z) = b!f, and for t > ° 
(2) = (1 - a)gt-1(Z) 

gt (1- 0:)gt-1(2) + (1- %(2t-1 + 21-1))(1- gt-1(2)) , 

and his defined as hT(z,(:J,p) = (uH,uL,C) and for t < T 

(1- 8)uH + 8(%pr+1 + %Z41Pt+1 + (1 - %(1 + Zf+1))P~1) 
ht(z, (:J, p) = (1 - 8)uL + 8(%zt+1pr+1 + (1 - %Zt+1)Pt+1) 

(1 - 8)c + 8(% (zf+1 (Pt+1 - pr+1) + (1 - Zf+1)(:Jt+1 (P~l - pf+1)) + pf+1) 

The function 9 gives the market composition that results when the sequence of trad

ing patterns is given by 2 and the initial proportion of high-value buyers is b!f. 

The function h gives the reservation prices that result when the sequence of trad

ing patterns, market compositions, and reservation prices is given by 2, (:J, and p, 

respectively. We show that f is well defined, i.e., that for each (z,/3,p;z,(:J,p) E D, 

f(z, /3, P; Z, (:J, p) E K. 

Let (z, /3, P; Z, (:J, p) E D. We show that f(z, /3, P; Z, (:J, p) = (2, jJ, p) E K. Clearly 

2 = z E 't(z, /3, p) C [0, 1j2CT +1). We prove by induction that 

tH A H (1 - a) bo ::; /3t ::; bo , 

for t E {O, ... ,T}, therefore establishing that jJ E [Q, b!f]T+1. (Note that for t ::; T, 

(1- a)tb!J 2:: (1- alb!J = /1.) Since ,130 = b!J, assume that the claim holds at [2:: 0. 

vVe show that it holds at t + 1. By the definition of 9 we have 

A (1 - a)jJl 
/3l+1 = A a L SA' 

(1 - o:)/3l + (1 - "2(Zt + Zt ))(1 - /3l) 

Since jJl+1 is increasing in both zt and zf, and zf ::; 1 and zf ::; 1, we have 

A (l-o:)jJl A H 
/3l+1 < A A = /3l < bo . - (1 - o:)/3l + (1 - 0:)(1 - /3l) -

Also since zf 2: ° and zf 2: 0, and ° < o:jJl < 1, we have 

jJl+1 2:: (1 A- o:)jJl A = (1 - o:)j3l 2:: (1 - o:)jJl2:: (1 - a)l+1bff. 
(1 - o:)/3l + (1 - /3l) 1 - a/3l 

Finally, we show that P E [0, l]3CT+1) , and satisfies PT = (uH,uL,C), and for t < T, 

H L d H S ( s:1-6T- tC1-a)T-t)( H ) B h d fi f h Pt - Pt 2:: 0, an Pt - Pt 2:: 1 - O:u 1-6(1-a) U - c. Y tee nit ion 0 , 
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PT = (uH,uL,c). We show that 0::; P;::; 1 for t E {O, ... ,T} and T E {L,H,S}, 

and therefore that P E [0, Ij3(T+I). Since (z, {3, p) E K, then pr+! ::; 1, pt+I ::; 1, and 

PEt-I ::; 1, and since in the expressions for p~ and pf the coefficients on pr+I' pt+! , 

and PEt-I sum to one, we have 

p; ::; (1 - 8)uT + 8::; 1, 

for T E {H, L}. Rewriting the expression for pr as 

the same argument yields 

pf ::; (1 - 8)c + 8 ::; 1. 

Also (z, {3, p) E K implies that pr+I ~ 0, pt+! ~ 0, and PEt-I ~ 0, and since the 

coefficients of these terms in the expressions for p~, pf, and pf are nonnegative, we 

have p; ~ 0 for T E {H,L,S}. 

Now for t < T, we have 

p~ - pf = (1 - 8)(uH - uL) + 8[~(1 - zt+!)(pr+! - pt+I) + (1 - ~(1 + Zr+I))(p~1 - pf+I)]· 

Since (1- 8)(uH 
- uL

) ~ 0 and (1- zf+I) (pr+I - pf+!) ~ 0 (because zf+! < 1 implies, 

by the definition of 'Y~ that pt+! ::; pr+I)' and PEt-I - pt+I ~ 0 (because (z, {3, p) E K), 

h AH AL > 0 we ave Pt - Pt _ . 

Also for t < T, we have 

p~ - pf (1 - 8)(uH 
- c) + 8[1 - ~(1 + Zf+l) - ~ (1 - Zf+!){3t+I)](P~l - pr+l) 

> (1 - 8)(uH 
- c) + 8(1 - a)(p~1 - pf+!). 

Since (z, {3, p) E K, we have 

and therefore 

1 - 8T - t - I (1 - af-t- 1 

> ((1- 8) + 8(1 - a)(l - a8 1 _ 8(1 _ a) ))(uH 
- c) 

1 - 8T - t(1- af-t H 
(1 - a8 8( ) )(u - c). 

1- I-a 
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Hence f is well defined, and since both 9 and h are continuous functions, f is a 

continuous function. Now let 'P be given for (z, (3, p) E K by 

'P(z, j3, p) = {f(z, j3, p; E, /3, p) I (E, /3, p) E "((z, j3, pH· 

Clearly 'P is an upper hemicontinuous closed valued correspondence. Cellina's Theo

rem therefore implies that 'P has a fixed point. 

Let (z, j3, p) be a fixed point of 'P. We construct a market equilibrium (p, r, A) as 

follows: We use binary strings m = (mo, ... ,mT) E {a, I}T+l to index low-value 

buyers and sellers strategies. For T E {B,L} and m = (mo, ... ,mT) E {a,I}T+l 

define 

T 

ATm = IT (z;)mt(1 - z;)l-mt , 

t=o 

and let MT = {m E {a, IV+l I ATm > a}. Note that L:mEM"T ATm = 1. 

HIGH-VALUE BUYERS: All high-value buyers follow the same strategy, given by 

rf = pp and pp = pr for t E {a, ... ,T}. Hence AH = 1. 

LOW-VALUE BUYERS: Let x = (xo, ... ,XT) be an arbitrary vector of real numbers 

such that Xt < pr for t E {a, ... ,T}. For m E ML define the low-value buyer strategy 

(pLm , rLm ) as rfm = pf and 

pr ifmt=1 

otherwise, 

for t E {a, ... ,T}. 

SELLERS: For m E MS define the seller strategy (pSm, rSm ) as rfm = pr, and 

{ 

pf 
pfm = 

pp otherwise, 

if mt = I 

for t E {a, ... ,T}. 

For t E {a, ... ,T} and T E {L,B}, define M; = {m E MT I mt = I}, i.e., 

MF (Mt
S ) contains the indexes corresponding to low-value buyer (seller) strategies 

which offer sellers (low-value buyers) their reservation price at date t. Straightforward 
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calculations (which we omit) show that under the laws of motion given in Section 2.1, 

the strategy distribution (p, r, >.) defined above satisfies 

mEM[ 

for each t E {O, ... ,T} and T E {L, S}. In other words, at each date t the proportion 

of low-value buyers (sellers) in the market who offer sellers (low-value buyers) their 

reservation price is zf (4). 

We prove that (p, r, >.) is a market equilibrium. Given (p, r, >'), let bP be computed 

according to the laws of motion developed in Section 2.1. We show by induction that 

bP = (3t for t E {O, ... ,T}. Clearly bt! = 90(z) = (30' Assume that bp = 9[(Z) = (3[ 

for f 2 0; we show that bP-t-l = (3[+1' By definition we have 

b!i = bp MP 
HI b!i 1I!i + bI: ~ >.!:m lI!:m . 

t rt t L.JmEML t rt 

In this expression, MP is given by 

For each m' E MS we have p!i = p§ = r~ml and p~ml < r!i (because p~ml E {pI: p!i} 
t tt' t - t t t't' 

and (z,!3,p) E K implies pr ::; pP = rf)· Thus, I(pp,rfm/) = I(rf,pfm/) = 1 for 

each rn' E lv1s , and hence 

Also for Mfm we have 

Note that for each m' EMs, m[ = 1 implies I (pfm , rfm/) = 1, and m[ = 0 implies 

I(pfm,rfm/) = 0; also I(rfm,pfm/) = 1 whenever m' E Mf, and I(rfm,pfm/) = 0 

whenever m' t/:. Mf· Therefore we have 
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Substituting in the expression for b?-t-l' and noticing that bp = f3t by the induction 

hypothesis, we get 

Since mt = 1 if m E Mf and mt = D if m r/:. Mf, we have 

mEMf 

Also as noted earlier LmEMT Ai"' = z[ for each T E {L, S}. Hence, the expression for 
t 

b?-t-l simplifies to 

H f3t(1- et) 
bt+1 = f3 ( ) ( f3 )( 0< L 0< S)· t 1 - et + 1 - t 1 - "2 Zt - "2Zt 

Therefore b?-t-l = gt+ 1 (z) = f3 t+ 1· 

Now we establish by induction that (p, r, A) satisfies Condition El for t E {D, ... ,T}. 

Since VT+1 = D for T E {H,L,S}, the definition of h yields 

H H H H D J;:T/"H 
U - r T = u - PT = = U VT+l' 

and 

L L", L L 0 nTL 
U - r T = U - PT = = U v T +1 , 

S"' S 0 nTS rT - C = PT - C = = U vT+l. 

Thus, El holds at T. 

Suppose that El is satisfied at t + 1 ::; Tj we show that it is satisfied at t, i.e., 

u H 
- rp = 0Vi-!I. For high-value buyers we have 

mE MS mEMS 

Since P?-t-l = P¥+1 = rf.;! for each m EMs, J(P?-t-l' rf;l) = 1 for each m EMs. 

Therefore 

P H H S 
t+l = U - Pt+l· 
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Also 

R~l = L (U
H 

- pf+1).f+1I(r~1,pf+1) + (1 - L ).f+/(r~1,pf+1))8Vf~2· 
mEMs mEMs 

Since Pf+1 = pr+1 :s; P~l = r~l when mt+1 = 1, and Pf+1 = P~l = r~l when 

mt+1 = 0, we have I(r~1,pf+1) = 1 for each m E MS. Thus 

RH -t+1 -
mEMr+1 mEMS\Mr+l 

- uH 
- (Zr+1pr+1 + (1 - Zr+1)p~l)· 

>From the definition of Vf~l in Section 2.2, and as 8Vf~2 = uH - P~l by the 

induction hypothesis, we have 

where the last equality holds by the definition of h. Therefore El holds at t for 

T=H. 

\\le now establish that El holds at t for each low-value buyer strategy m E AIL, 

i.e.) u L 
- rfTn = 811[:'1. For m E ML) we have 

S· LTn - S - STn' Ch' E MS·f - - 1 d LTn _ _ < S _ STn' mce Pt+1 - Pt+1 - rt+1 lor eac m 1 mt+1 - ,an Pt+1 - Xt+1 Pt+1 - rt+1 

if mt+1 = 0, and since 8Vf~2 = uL - pr+1 by the induction hypothesis, we have 

We show that ptI can be written as 

P LTn L [L S (1 L) L 1 t+1 = u - Zt+1Pt+1 + - Zt+1 Pt+1 . 
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If Zf+1 = 0, then mE+! = 0, and therefore 

PLm _ L L _ L [L S (1 L) L 1 
E+1 - U - PE+1 - u - ZE+1PE+1 + - ZE+1 PE+1 . 

If zt+ 1 = 1, then mE+ 1 = 1 and therefore 

PLm L S L [L S (1 L) L 1 E+! = U - PE+! = U - ZE+1PE+1 + - ZE+! PE+! . 

If zt+1 E (0,1), then P¥+1 = pt+1 by the definition of ,,(, and hence 

P Lm L [L S (1 L) L 1 E+! = U - ZE+!PE+1 + - ZE+1 PE+! 

whether mE+1 = 1 or mE+! = 0. 

For m E M L , we have 

RLm 
E+1 = 

m'EMf m'EMf 

L L 
- U - PE+1' 

where the last equality holds since, by the induction hypothesis, 8Vf~2 = uL 
- pr+1' 

Summing up, we have 

where the last equality follows from the definition of h. Since mE ML was arbitrary, 

therefore El holds at t for all m E M L . 

\;Ye show that El holds at f for each seller strategy m E MS, i.e., c - rfm = 8Vf~i' 

For m E MS, we have 

PSm 
E+1 = 

m'EML 

+(1 - b~1I(rY-t-l>pfB) - (1- b~1) L Af;; I (r;;; ,pf';1))8Vf~2' 
m'EAfL 
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Since pf::-1 = Pt+1 ~ PP-t-1 = rP-t-1 if mt+1 = 1, and pf::-1 = PP-t-1 = r~1 if mt+l = 0, and 

since 8Vj-!'2 = pr+l - c by the induction hypothesis, we have 

S { Pt+1 - c if mt+l = 1 

Pt+l = f3t+l (PP-t-1 - c) + (1 - f3t+1)(pr+l - c) if mt+1 = 0, 

where we have replaced bP-t-1 with f3 t+l' We show that P~l can be written as 

This clearly holds if either Zr+1 = ° (and hence mt+l = 0) or zr+l = 1 (and hence 

mt+1 = 1). If zr+1 E (0,1) then f3t+l (PP-t-1 - pr+l) = Pt+l - pr+1 by the definition of ,,(, 

which is the same as Pt+1 = f3t+1PP-t-1 + (1 - f3t+1)pr+l' Hence 

P~l - pt+1 - c = f3t+1 (PP-t-1 - c) + (1 - f3t+1)(pr+1 - c) 

- Zr+1pt+1 + (1 - zf+l)(f3t+1PP-t-1 + (1 - f3t+l)p¥+l) - c. 

For m E MS we have 

+ (1 - bP-t-1 I (PP-t-1 , rf;1) - (1 - bP-t-1) L >..f;; I (pf;; , rf;1) ) 8Vt!'2. 
m'EML 

U · th t H S Sm Lm' S Sm'f' 1 Lm' S smg a Pt+1 = Pt+1 = rt+1, Pt+l = Pt+l = rt+1 1 mt+l = 'Pt+1 = Xt+l < Pt+l = 

rf.::'1 if m[+1 = 0, and 8Vr!'2 = pit! - c by the induction hypothesis we have 

RiB = f3t+1 (p¥+l - c) + (1 - f3t+l) L >..f;; (P¥+1 - c) 
m'EMhl 

+(1 - f3t+l - (1 - f3t+1) L >.f;;)(P¥+1 - c). 
m'EMhl 

H RSTn - S ence t+l - Pt+l - c. 

Substituting these formulas into the expression for Vj-!'1 and using that 8Vj-!'2 = 

pr+l - c by the induction hypothesis, we have 

8Vj-!'1 8; (Pt~l + Rf;l) + (1 - a)82Vj-!'2 

8[; (zf+1Pt+l + (1 - Zr+l) (f3t+1PP-t-1 + (1 - f3t+l)pr+l) + pr+1 - 2c) + (1 - a)(pr+l - c: 
- 8[%(zr+l(Pt+l - pr+l) + (1- zr+l)f3t+l(PP-t-l - pr+l)) + pr+ll- Dc 

S Pt - c, 
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where the last equality follows from the definition of h. Therefore El holds at [ for 

all m EMs. 

Finally we show that (p, r, >.) satisfies E2 for t E {O, ... ,T}. For buyers, E2 

requires that pr maximize 

(Note that for low value buyers P{(x) does not depend upon the particular low-value 

buyer strategy being followed, since V;~1 = uL - pf by El, and so we write PP(x) 

instead of ~Lm(x).) Since rfm = pf for m EMs, P{(x) is given by 

If x > pr, then p{(pf) > Pt(x), as 

If pr > pr, then Pt(pf) > Pt(x) for x < pr, as 

PtT(pf) = UT - pf > UT - pr = Pt(x). 

If pr = pr, then Pt(pr) = Pt(x) > Pt(x' ) for x < pr < x', as 

Finally, if pr < P(, then Pt (x) > P{(X') for x < pr :::; x', as 

For high-value buyers we have pr ~ pr and therefore pr = pr maximizes PtH(x). 

For low-value buyers, let m E ML be arbitrary. If zf = 1, then pf ~ pf by the 

definition of 'Y and so pfm = pr maximizes pt
L (x). If ° < zf < 1, then pf = pr and 

therefore pfm = pr (if mt = 1) and pfm = Xt < pr are both maximizers of PtL(x). If 

zf = 0, then pf :::; pr and therefore pfm = Xt < pr maximizes PP(x). 

Finally, we show that sellers strategies satisfy E2. Let m E MS. We must show 

that for each t E {a, ... ,T}, pfm maximizes 

m'El'vlL 

+(1 - bJI I(rJI, x) + (1 - bJI) L >.~m' I(r~m', x))8V;!i. 
m'EML 
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As shown earlier, br = f3t . Since rf = pr, rfml = pf for each m' E M L , and since 

8~!1 = pf - c by El, this expression reduces to 

Note that for x < pf, since pf ~ pr we have 

Also note that since pf ~ pr, then for x > pr, we have 

Finally, for pf < x < pr, we have 

Thus for arbitrary x, ~Sm(x) ~ max{ptSm(pf), ~Sm(pr)}. 

If zf = 1, then 0 < (pr - pf)f3t ~ pf - pf and therefore 

P Sm( H) _ S (H S)f3 < S L S _ pSm( L) 
t Pt - Pt - C + Pt - Pt t - Pt - c + Pt - Pt - t Pt· 

Hence pfm = pf maximizes ptSm(x). If 0 < zf < 1 then 0 < (pfI -l/)f3t = pf - pf 

and therefore 

P Sm ( H) _ S (H s)f3 _ L _ pSm ( L) 
t Pt - Pt - c + Pt - Pt t - Pt - C - t Pt· 

Hence both pfm = pf (if mt = 1) and pfm = pr (if mt = 0) maximize ptm(x). If 

zf = 0, then (pr - pf)f3t ~ pf - pf and therefore 

P Sm( H) _ S (H S)f3 > S L S _ pSm( L) 
t Pt - Pt - C + Pt - Pt t - Pt - C + Pt - Pt - t Pt· 

Hence pfm = pr maximizes ptSm (x). D 

7 Appendix B: Proofs of propositions 1 to 4 

Before proving propositions 1 to 4, we establish a number of lemmas. Throughout 

assume that (p, r,.\) is a market equilibrium. 
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Lemma 1 establishes that in a market equilibrium all type T traders have identical 

reservation prices and expected utilities. 

Lemma 1. For each T E {H, L, S}, each k, k' E {I, ... ,nT} and each t = 0, ... ,T : 

(L1.1) r? = r;k', 
(L1.2) R? = R?', 
(L1.3) prk = pt

Tk', and 

(L1.4) YtTk 
= YtTk'. 

Proof: We show that if Vl~.\ = Vl;~ for T E {H,L,S}, and k,k' E {I, ... ,nT}, 

then L1.1 - L1.4 hold at t. This establishes the Lemma as V;~l = V;!'l = 0 for 

T E {H,L,S}, and k,k' E {I, ... ,nT}. 

Assume that Vl;l = Vl;~ for T E {H,L,S}, and k,k' E {I, ... ,nT}; then for 

T E B, E.1 implies 

For T = S, E.1. implies 

Hence L 1.1 holds at f. 

S· Tk - Tk' d T7Tk - T/Tk' th RTk - RTk' d th £ L1 2 h Id t t-mce r[ - r[ an ~f+l - Vf+l' en [ - [ ,an ere ore . 0 sa. 

F B T/To V To , d Sj Sj'. 1· pTO pTo,. h·· h Or T E ,vl~I = l~l an rl = r l Imp les l' = l" smce ot erwlse elt er 

p? or p?, does not satisfy E.2. An analogous argument shows P(j = ptj'; hence 

L1.3 holds at f. Finally, trader Tk'S expected utility at t is 

Since L1.2 and L1.3 hold at t, and since Vl;l = Vl;~, L1.4 holds at t. 0 

Hereafter we write r[, R[, Pt, and YtT for the equilibrium reservation prices and 

expected utilities of a trader of type T E {H, L, S} at time t ~ T. Also we denote by 

Pt (x) the expected utility of a buyer of type T who is matched and proposes a price 

of x at date t and follows his equilibrium strategy thereafter, i.e., 

pr(x) = (UT - x)I(x,rf) + (1- I(x,rf))8Yt~1. 
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Analogously, we denote by R[ (x) the expected utility of a buyer of type T who is 

matched, employs a reservation price of x at date t, and follows his equilibrium 

strategy thereafter, i.e., 

n S n S 

R;(x) = 2)uT 
- p~j) .. ~j I(x,p~j) + (1- L)..~j I(x,p~j))8~:1' 

j=l j=l 

Neither P{(x) nor R[(x) depend on which equilibrium strategy a type T buyer might 

be playing since by Lemma 1 buyers of the same type have identical continuation 

payoff ~~1' 

For sellers, we denote by pl(x) the expected utility of a matched seller who 

proposes a price of x at date t and follows his equilibrium strategy thereafter, i.e., 

TEB TEB 

Analogously, we denote by Rf (x) denote the expected utility of a matched seller 

who employs a reservation price of x at date t and follows his equilibrium strategy 

thereafter, i.e., 

TEB i=l TEB i=l 

Condition E.2 can be written as p? E argma.xx P{(x) for T E {H, L, S} and 

k :S nT
•
5 Further, if r[ satisfies E.1, then for any x we have R[(r[) ~ R[(x); i.e., 

r[ E argmaxx R[(x). This follows from r[ = UT - 8~~1' as R[(r[) - R[(x) can be 

written as 

i=l 

which is always non-negative since I(r[,p~j) - I(x,p~j) > 0 implies r[ - p~j > 0, and 

I(r[,p~j) - I(x,p~j) < 0 implies r[ - p~j < O. 

Lemma 2 characterizes buyers' optimal price offers. 

5Note that the sequences P?}i=o for T E {H,L,S} and k E {l, ... ,nr }, and {bni=o for 

T E {H, L} are unaffected by a single trader offering a price different from his equilibrium offer. 
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Lemma 2. For each T E B, each i ::; n T and each t = 0, .. , ,T : 

(L2.1) p;i ::; rf, and 

(L2.2) r[ > rf implies p;i = rf, and 

(L2.3) r[ < rf implies p;i < rf. 

Proof: Let T E B, i ::; n T and t E {O,... ,T}. We prove L2.1. Suppose that 

p;i ;::: rf. Condition E.2 implies that Pt(p;i) ;::: Pt(x) for x ;::: O. In particular, 

Pt(p;i) ;::: Pt(rf), i.e., 

h To < S Th To > s, l' To s· Ti < S Th £ L2 1 h Id ence Pt' _ rt . us Pt' _ rt Imp Ies Pt' = rt ; I.e., Pt _ rt . ere ore . 0 s 

We prove L2.2. Suppose p;i =I rf; then L2.1 implies p;i < rf. By E.2 we have 

T T £TTT PTO( TO) > PTO( S) T S 
U - rt = U Vt+I = t' Pt' _ t' rt = u - rt , 

which yields r[ ::; rf. 

Finally, we prove L2.3. Suppose p;i ;::: rf; then L2.1 implies p;i = rf. Let x be 

such that rf > x ;::: O. By E.2 we have 

T S PT( Ti) > PT() T T U - rt = t Pt _ t X = u - rt , 

, . b' l' T> S n wmc 1 llnp IeS Tt _ r t . LJ 

For each t such that rf - rf > 0, we write 1ft for the ratio (rf - rf)j(rf - rf). 

Lemma 3 characterizes sellers' optimal offers. 

Lemma 3. For each j ::; nS and each t = 0, ... ,T, if rf > max{rf, rf} then 

(L3 1) Sj {L H} . Pt E rt , rt , 

(L3.2) bP < 1ft implies p~j = rf, 

(L3.3) bP = 1ft implies Pl(rf) = ptS(rf), and 

(L3.4) bP > 1ft implies p~j = rf. 

Proof: Let j ::; nS and t ::; T, and assume that rp > max{rf, rf}. We establish 

L3.1. 
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S L H S.) L S) Ifp/ :S rt , then I(rt ,Pt] = I(rt ,Pt] = 1. By E.2 we have 

S· S( s) S( L) L Pt] - c = Pt Pt J ;::: Pt rt = rt - c, 

and therefore p~j = rf. 

If L s· H h rt < Pt] :S rt ,t en 

As bf > 0 (because bff E (0,1) and et < 1), it follows that p~j ;::: rf. Hence p~j = rf. 

We show that p~j :S rf, which establishes L3.1. Suppose p~j > rf; then E.2 

implies 

i.e., rf;::: rf· This contradicts rf > max{rf,rf}, and proves p~j :S rf. 

Now we prove L3.2 - L3.4. If rf > rf, then'Trt > O. Since rf > rf, the definitions 

of pt
S (x) and 'Tr t yield 

ptS(r{f) = b{f (rf - c) + (1 - bf)(rf - c) = (;: - 1) (rf - rf) + pts(rf)· 

If bfI < 'Trt, then Pl(rf) < Pl(rf) and therefore p~j = rf· If bfI = 'Trt, then 

ptS(rf) = pp(rf)· Finally, ifbf > 7rt, then Pt (rf) > Pt(rf) and thereforep~j = rf· 

If rf :S rf, then 7rt :S 0 and therefore bf > 'Trt· We must show that p~j = rf· 

Since bfI > 0 and rf > rf ~ rf, we have bf rf + (1 - bfI)rf > rf, and therefore 

S H hence Pt] = rt . 0 

Lemmas 4 and 5 establish some inequalities between reservation prices and be

tween expected utilities for the different types of traders. 

Lemma 4. For each t = 0, ... ,T : 

(L4.1) rf > rf, and 

(L4.2) ~H _ ~L < uH _ uL . 
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Proof: We establish Lemma 4 by induction. As V~l = V;+l = 0, E.1 implies 

rT = UT for 7 E B; hence r,f! = u H > uL = r~, and therefore L4.1 holds for t = T. 

Also as rf = c, we have r!J. > max{r~,rf}, and L3.1 implies Pf E {r!J.,r~}; hence 

vI! ::; ~(uH - c) + ~(uH - uL), and V; = ~(uL - c). Thus, as 0: < 1 we get 

and therefore L4.2 holds for t = T. 

Assume that L4.1 and L4.2 hold for t = k + 1 ::; T. We show that they hold for 

t = k. By E.1 we have r'k = UT - 8V{+l' and therefore 

where the strict inequality follow from the induction hypothesis. Thus L4.1 holds for 

t = k. 

We show that vt - Vk
L < uH - uL . Let i ::; n H. Since Pf: > Pf:(p-J:i) and 

Rf 2: Rf(r-J:i) by El and E2, respectively, we have 

Also the induction hypothesis yields 

P H pL{~H;\ 
k - k \1'k J J(p-J:;, rZ)( uH - uL

) + (1 - J(p-J:i, re) )8(vl!1 - vl+1) 

< u H _ uL , 

and 

j=l j=l 

Therefore 

vt - Vk
L < ~(PkH - pf(pfi) + R-J: - Rf(rfi)) + (1 - 0:)8(Vk!1 - Vk~l) 

< u H _uL . 

Hence L4.2 holds for t = k. 0 
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Lemma 5. For each t = 0, ... ,T : 

(L5.1) rf > rf, and 

( ) 
H liS (H ) 1_8T - t+1(1_0)T-t+1 

L5.2 ~ + v t ~ Q U - C 1-8(1-0) . 

Proof: First we show that rf > rf implies p t
H + Rf ~ uH - c. Suppose that rf > 

rf; then p~i = rf for each i ~ nH by L2.2. Thus 

and 

(p~i - c)I(p~i, rf) + (1 - I(p~i, rf))(rf - c) = rf - c. 

Since pfi ::; rf for i ::; nL by L2.1, we have 

(pfi - c)I(pfi, rf) + (1 - I(pfi, rf))(rf - c) = rf - c. 

Hence 

TEE i=l TEE i=l 

and therefore ~H + Rf = uH - rf + rf - c = uH - c. 

Next we establish that rf > rf implies Rf + p t
S ::; uH - c. Suppose rf > rf; 

since rf > rf by L4.1, then rf > max{rf, rf} and therefore p~j E {rf, rf} by L3.1. 

If p;j = rf, then L3.4 implies bf ::; 7rt, and since bf > 0, we have rf - rf > 0 and 

£ S S If S H h H S I h s· S Th H S there ore Pt] > rt · Pt] = rt ~ t en as rt > rt we a so ave Pt] > rt . us rt > rt 

implies I(rf,p~j) ~ I(rf,p~j) for j ::; nS, and therefore we have 

( H s· s.) (H s· (S ) (L s.) S ) ( (L s.))( S ) I rt ,p/ )(p/ - c + (1 - I rt ,p/)) rt - c 2:: I rt ,p/ (p/ - c + 1 - I rt ,Pt] rt - c ; 

( 
",ns s· ) Hence recall L..Jj=l At] = 1 

TEE 

Thus 
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Also 

Summing up we obtain RfI + pt :::; uH - c. 

We establish Lemma 5 by induction. Since V;~1 = 0, E.1 implies r¥ = uH > 

C = rf, and therefore L5.1 holds for t = T. Moreover, since r¥ > rf, we have 

pf! + Rf :::; uH - c, and R¥ + Pf. :::; uH - c. Hence, since a < 1, for t = T we have 

a 1 - 8T -t+l(1 - a)T-t+l 
V;S + V;H = _(pS + R S + pH + RH) < a(uH - c) = a(uH - c)-------'-----

T T 2 T T T T - 1 - 8(1 - a) 

Therefore L5.2 holds for t = T. 
H S H S H 1_6T - k (I_0:)T-k 

Assume that rH1 > rH1 , and Vk+1 + VH1 :::; a(u -c) 1-6(1-0:) for k+ 1 :::; T. 
H S H S H 1_6T - k+1(1_0:)T-k+l . 

We show that rk > rk and Vk + Vk < a(u - c) 1-6(1-0:) . Smce 8> ° and 

1 · 1· 1_6
T

-k+
1
(1_0:)T-k+l 1 th . d t· h th· . Id v,H V,S a < Imp Ies a 1-6(1-0:) <, e m uc IOn ypo eSIs YIe s k+1 + HI < 

u H - c, and therefore E.1 yields 

Hence rt: > r~, and therefore PI! + R~ :::; uH 
- c, and Rt: + pt :::; uH 

- c. Thus 

which establishes the lemma. 0 

Lemma 6 establishes a number of basic results that are frequently used in subse

quent arguments. 

Lemma 6. For each t = 0, ... ,T : 

(L6 1) pHi = rS 'or each i < n H . . tt, JI _, 

(L6.2) J.L~i = 1 - a, for each i :::; nH ; 

(L6.3) p t
H = uH - rf; 
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(L6.4) Rf = U L - rf; 

(L6.5) Rf = rf - c. 

Proof: L6.1 is a direct implication of L2.2 and L5.1. In order to prove L6.2, note 

that L6.1 implies I(p~i,rf) = 1 for each j ~ nH, and since rp > max{rf,rf} by 

L4.1 and L5.1, we have rf :s: pfi :s: rp, and therefore I (rp, pfi) = 1 for each j :s: n S 

by L3.1. Hence 

Also note that again rf ~ pfi for each j ~ nS implies I(rf,pfi)(uL - pfi) 

I (rf ,pfi ) (uL - rf), and therefore using E.1 we have 

j=l j=l 

which establishes L6.4. 

Finally, since p;i ::; rf by L2.1, we have J(p;i, rf)(p;i - c) = J(p;i, rf)(rf - c) for 

each T E Band i :s: n T. Hence E.1 implies 

Rs - "'bT"'( Ti )\TiJ( Ti s) + (1 "'bT'" \TiJ( Ti s))( S ) _ S t - ~ t ~ P - C At Pt, r t - ~ t ~ At Pt, r t r t - c - r t - c, 
TEB i=l TEB i=l 

"\vhich establishes L6.5. 0 

Since in a market equilibrium all high-value buyers follow the same strategy by 

L1.1 and L6.1, henceforth we refer to the high-value buyer strategy as (pH, rH). 

Lemma 7 establishes that the proportion of high-value buyers in the market does not 

increase over time. 

Lemma 7. The sequence {bP} ~:al is non-increasing. 

Proof: For t E {O, ... ,T}, b~l is given by 

(1 )bH bL ~nL \Li Li' - a t + t L....i=l At J-lt 
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where we have used the fact that J.L{!i = 1 - Q by L6.2. Since 

for each i ::; nL , we have 

H (1 - Q)b[I H 

bt+1 ::; (1 _ Q)b[I + (1 _ Q)bf = bt . 0 

In lemmas 8 to 12 we for the low cost case which have implications for the dynamics 

of trading patterns. Lemma 8 relates 1['t and 1['* when sellers offer the low-value-buyer 

reservation price. 

Lemma 8. Assume that uH > uL > c. 

(L8.1) If p~j = rf for each j ::; nS and 1['t = 1['*, then 1['t-l = 1['*. 

(L8.2) If p~j = rf for each j ::; nS and 1['t < 1['*, then 1['t-l < 1['*. 

Proof: Suppose that p~j = rf for each j ::; nS. By E.1, the reservation price of a 

buyer of type T E B at t - 1 is 

T T 8rQ/DT. RT) '(1 )( TT)] rt - 1 =U - l2~rt --r t "t' - Q U - rt . 

Also the reservation price of a seller at t - 1 is 

rf-l = c + 8[~(PtS + Rf) + (1 - Q)(rf - c)]. 

Since p~j = rf for each j ::; nS we have Pts = rf - c and R[I = uH - rf. Furthermore, 

since pl;::: Pl(rf) = rf -c by E.2, we have rf ;::: rf; hence Pl = uL-rf. (If rf > rf, 

then L2 1 implies pLi = rS for every i < nL and therefore p'L = uL - rS' if rL = rS 
. t t - , t t, t t, 

then pfi ::; rf for every i ::; nL by L2.2, and we have also ~L = uL - rf = uL - rf.) 

Substituting Pt and R[ from above and noticing L6.3 - L6.5 yields for T E B, 

r;_l - rf-l = (1 - 8)(uT 
- c) + 8(1 - Q)(r; - rf). 
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S· L * (H ) d L S - (H S) h mce u - c = 7f U - C an rt - rt - 7ft rt - rt we ave 

7ft-I = 
(1 - 8)(uL - c) + 8(1 - a)(rf - rf) 
(1 - 8)(uH - c) + 8(1 - a)(rfi - rf) 

* (1 - 8)(uH 
- c) + 8(1 - a)~(rfI - rf) 

7f 
(1 - 8)(uH - c) + 8(1 - a)(rfi - rf) 

Thus, if 7ft = 7f* then 7ft-I = 7f*; hence L8.1 holds. If 7ft < 7f*, then since rfI > rf by 

L5.1, we have 7ft-I < 7f*; hence L8.2 holds. D 

Lemma 9 establishes a dynamic relation between the proportion of high-value 

buyers in the market and ratio 7ft. 

Lemma 9. Assume that uH > uL > c. 

(L9.1) If bfi ~ 7f* ~ 7ft, then 7f* ~ 7ft-I. 

(L9.2) If bfI > 7f* ~ 7ft, then 7f* > 7ft-I. 

(L9.3) If bfi ~ 7f* ~ 7ft and p~j = rfi for some j ::; nS, then 7f* > 7ft-I. 

Proof: Suppose that bfI ~ 7f* 2: 7ft. L3.3, L3.4 and L4.1 imply 

Since Rf = rf - c by L6.5, using E.1 we have 

a 
c + 8["2(bfI (rf - c) + (1 - bf)(rf - c) + rf - c) + (1 - a)(rf - c)] 

(1 - 8) c + 8[~bf (rf - rf) + rf]· 

Let a E [0, 1] denote the proportion of sellers (out of the total measure of sellers 

in the market at date t) who offer rfi at date t. Then by L3.1 a proportion 1 - a of 

sellers offer rf. Thus, RfI = uH - arfI - (1- a)rf, and since pt
H = uH -".f by L6.4, 

E.1 yields 

r~I uH 
- 8[~ (uH 

- arf - (1 - a)rf) + ~ (uH 
- rf) + (1 - a)(uH 

- rf)] 

Thus 

ex 
- (1 - 8)uH + 8{ "2[rf + arf + (1 - a)rf] + (1 - a)rf}· 

r~I - rf-I - (1 - 8)(uH 
- c) + 8(1 - ~)(rf - rf) 

-8~ [bf (rf - rf) + (1 - a)(rf - rf)]· 
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Note that if a < 1, then bfI :::; 7ft by L3.4, and since bfI ?: 7f* ?: 7ft we have bfI = 7f* = 

7f t. Hence b~ (r~ - rt) = rf - rf, and therefore 

b~ (r~ - rf) + (1 - a)(r~ - rf) = r~ - rf - a(r~ - rf)· 

Since Rf = uL - rf by L6.4, and I(pfi,rf)(uL - pfi) = I(pfi,rf)(uL - rt} for 

i :::; nL by Lemma 2, E.1 yields 

rf-I - uL - 8{~[I(pfi, rf)(uL - rf) + (1 - I(pfi, rf))(uL - rf) + (uL - rf)] 

+ (1 - a) (uL 
- rf)} 

L [a (Li s)( L s) L] (1 - 8) u - 8 21 Pt ,rt rt - rt - rt . 

Hence 

Suppose that pfi = rf for every i ::; nL; then 

rf-I - rf-I = (1- 8) (uL - c) + 8(1- ~)(rf - rf) - 8~b~(r~ - rf). 

Noticing that uL - c = 7f*(uL - c) and rf - rf = 7ft(rf - rf), we have 

7f t-I = 7f ( ) S . (1 - J:\ (.,H _,,\ -L" 1 _ £ ('l"H - 'l"S) - f.'£rbH(rH - r ) + (1 - a)(rH _ rL)l ,. c.:1'~ ~/'V~ 2·t 't U 2l t t t t tJ 

If a = 1, then since 7ft :::; 7f* < 1, we have 7ft-1 < 7f*. Note that b~ > 7f* ;:::: 7ft implies 

a = 1 by L3.4, and therefore the conclusion of L9.2 holds. If a < 1, then as shown 

above bfI (rf - rf) + (1 - a)(rf - rt) = rf - rf - a(rf - rf), and therefore 

* (1 - 8) (uH - c) + 8 (1 - a) ;; (rf - rf) 
7ft-1 = 7f (1 _ 8) (uH - c) + 8 (1 - a) (rf - rf) + 81a(rf - rt)· 

Since 7f* ;:::: 7ft and rf - rf > ° by L4.1, we have 7f* ?: 7ft-I. Hence the conclusion 

of L9.1 holds. Moreover, if there is j :::; nS such that p~j = rf, then a > 0, and 

since 8 > 0, we have 7f* > 7ft-I; therefore the conclusion of L9.3 holds. Hence the 

conclusions of L9.1, L9.2 and L9.3 hold when pfi = rf for every i :::; nL. 
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for T E {L, S}, and V~l ~ Vk~l by the induction hypothesis. 

For j ~ nS we have 

TEB TEB 

(rt - c) + L b,J(rLp~j)(p~j - rt)· 
TEB 

Hence 

Thus, since R~ = r~ - c by L6.5, we have 

n S 

pt + R~ = 2(r~ - c) + L A~j L b~J(rt,p~j)(p~j - rn· 
j=l TEB 

For i ~ nL we have 

pt J(p;i, r~)(uL - p;i) + (1 - J(p;i, r~))(uL - rt) 

- (uL - rt) + J(p;i, r~)(rt - P;~l), 

where the last equality follows again from Lemma 2. Hence 

Pt = (uL - rt) + L A;iJ(p;i, rt)(rt - rt)· 
i=l 

Thus, since Rt = uL - rt by L6.4, we have 

n L 

pt + Rt = 2(uL - rt) + LA;iJ(p;i,r~)(rt - r~). 
i=l 

Suppose that p~j = rt: for each j ~ nS. Then we have must show 

n L 

2(rt - c) + b;; (rf: - rt) ~ 2(uL - rt) + (rt - r~) L AtiJ(pti, rt), 
i=l 

which can be written using E.1 as 

n L 

28(Vf+1 - Vk~l) ~ (rt - rt) L Ati J(pti, rt) - b;; (r;; - rt) 
i=l 
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Since Vt+l ~ Vk~l by the induction hypothesis and rt: > r~ by L5.1, this inequality 

holds if rf ::; r~. If rf > r~, then since 0 ::; E7~1 Ati I (pti ,rn ::; 1, it suffices to show 

I.e., 

7rk - b;;_l ::; 0, 

which holds as p;i = rt: implies bt: ~ 7rk by L3.2 and L3.3. 

Suppose that p;i = rf, for some j ::; nS. Then 

pt + Rf = (rt - rf) + 2(rf - c). 

Also 7rk ~ bt: > 0 by L3.2, and since rt: > rf by L4.1, we have rf > rf. Thus 

pti = rf for each i ::; nL by L2.1, and therefore 

Hence we must show 

I.e .. 

(rt - c) - (uL 
- rf) ~ 0; 

I.e., 

which holds by the induction hypothesis. 0 

Lemma 12 establishes that if at some date there are no gains to trade between 

low-value buyers and sellers, then there are no gains to trade at prior dates. 

Lemma 12: Assume that uH > uL > c. There is c(a, T) > 0 such that if (j E 

[1 - c(a, T), 1], then rf - rf ::; 0 implies rf-! - rf-l < O. 
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Proof: Assume rf - rf ::; 0; Lemma 2 implies I(pfi, rf)(uL - pfi) = I(pfi, rf)(uL -

rf), therefore E.1 implies 

Since Rf = uL - rf by L6.4, we have 

Thus, using E.1 we have 

For sellers, since r[I - rf > 0 by L5.1 and rf - rf ::; 0, we have Kt ::; 0 < b[I. 

Thus, p~j = r[I > rf for every j ::; nS by L3.4, and E.1 implies 

pt = b[I (rfI - c) + (1 - b[I)(rf - c). 

Since Rf = rf - c by L6.5, we have 

aSS S "2 (Pt + Rt ) + (1 - a)8~+1 

~(b[I (rfI - c) + (1 - b[I)(rf - c) + rf - c) + (1 - a)(rf - c). 

(rf - c) + ~bf(rf - rf), 

Thus, again by E.1 

rf-l = c + 8~s = (1 - 8)c + 8rf + 8~ bf (rfI - rf). 

Therefore, 

rf-l - rf-l = (1- 8)(uL 
- c) + 8(rf - rf) - 8~bf(rfI - rf)· 

Since rf - rf ::; 0, in order to prove rf-l - rf-l < 0, it suffices to show 

Using E.1, this inequality can be written as 

a8 H[ H H S L 2 bt (u - c) - 8(~+1 + ~+l)] > (1 - 8)(u - c). 
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Since bP > 7rt, L10.1 implies bP ~ 7r*. (For if bP < 7r*, then 7r* = 7rt < bP, a 

contradiction.) Thus by L5.2 we have 

0'.8 1 - 8T- t+l(1 - a)T-t+l 
-7r*(uH - c)[l - 80'. ] 
2 1 - 6(1 - a) 

> 0'.8 (uL _ c)[l _ 80'. 1 - 8
T

+l(1 - a f +
I

]. 

2 1 - 8(1 - a) 

Thus, since uL 
- c > 0, the inequality rf-I - rf-I < 0 holds whenever 

0'.8 1 - 8T +I (1 - af+l 
'ljJ(a, T, 6) = 2(1 - 80'. 1- 8(1 _ a) ) - 1 + 6> O. 

Note that given a E (0,1) and T, 'ljJ(a, T, 8) is continuous on 8 E [0,1]. Also 'ljJ(a, T, 1) > 

O. Hence there is E(a, T) > 0 such that for 6 E [1- E(a, T), 1] we have 'ljJ(a, T, 6) > 0, 

and therefore rf-I - rf-I < O. 0 

We are now ready to prove propositions 1 to 4. 

Proof of Proposition 1: P1.1.1 holds by L1.1. We establish P1.1.2 by induction. 

At date T we have r¥ = uH > rf = C > r¥ = uL
. Assume that rt:+1 > r~+1 ~ c > 

rt+1 = uL for k+ 1 ::; T; we show that rt: > r~ ~ c> rt = uL
. As rt:+1 > r~+1 > rt+I' 

L2.1 and L2.3 imply Pt:+1 = r~+l > Pt+I' Also 7rk+1 < 0 < bt:+1 implies P;~I = rf-t1 

for each j ::; n S by L3.4. Thus, using El we calculate the buyer reservation prices at 

date k as 

and 

The seller reservation price at date k is given by 

S· H d H S h mce u > c an rk+l > r k+l , we ave 
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Hence T{! > Tf 2:: C > Tf = uL
. 

Now, Pl.1.3 is implied by Pl.1.2, L2.1, L2.3, and L3.4. In order to prove Pl.1.4, 

note that Pl.1.3 yields for i ::; n L 

and since f-L~i = 1 - a for i ::; nH by L6.2, we have 

bH "nH 
)..Hi Hi 

t-l wi=l t-If-Lt-l b~ = 
bH "nH 

)..Hi Hi bL "nL 
)..Li Li 

t-l wi=l t-If-Lt-l + t-l wi=l t-lf-Lt-l 

(1- a)b~l H 

(1 - a)bH + 1 _ bH < bt-l· 
t-l t-l 

We prove P1.2.1 and P1.2.2. All transactions are at either the high-value-buyer 

or the seller reservation price. These prices are determined, for t < T, by the system 

of difference equations 

where rfJ = u H and rf = c. Thus, since 1 - I(l + b{!) ::; 1 - I for each k, we have 

Also from above we have for each t 

bH = (1 - a)b~l _ (1 - a)tb/f 
t (1 - a)b~l + 1 - b~l 1 - [1 - (1 - a)t]b/f· 

Then, since 2:r:::~ 8k < 1~6' l-[l-CLa)kjbb" < l_lbb" , and since (1 - a)k < (1 - I)k for 

k > 0, we have 

Tf - (1 - 8)c + 8[Tf+l + ~b~l (T~l - rf+1)] 

T 

C + ~ L 8k
-
tb{! (T{! - r~) 

k=t+l 

a H bff ) 
< c + "2(u - c) (1 _ bff)[l _ 8(1 _ I)]1](8, T , 
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where 

",(8, T) -

Since limT->oo(T - t)(l - %f = 0, we have 

lim lim ",(8, T) = lim lim ",(8, T) = o. 
T->oo 8->1 8->1 T->oo 

Hence, since rf ~ c, we have limT->oo lim8->1 rf = lim8->llimT->oo rf = c. Therefore, 

P1.2.1 holds. 

Also, from above, we have 

holds. 0 

Proof of Proposition 2: Some of the properties listed in Proposition 2 are direct 

implications of the previous lemmas: P2.1.1 has been established in Lemma 1 (L1.1); 

P2.1.2 is implied by L4.1 and L5.1; P2.2 is L6.1; P2.3.1 is implied by Lemma 2; 

P2.4.1 is implied by P2.1.2 and L3.1. 

¥le prove P2.3.2. By Lemma 12 there is c(a, T) > 0 such that if 8> 1 - E(a, T), 

then rf ::; rf implies rf-l < rf-l. Suppose that 8 E [1 - c(a, T), 1]. If pti < rf for 

some i ::; nL , then L2.1 implies rf ::; rf; hence then rf-l < rf_l' and by induction 

rf < rf for t < t; therefore L2.3 implies pfi < rf for every t < t and i ::; nL . Now let 

t and i ::; nL be such that pti = rf, suppose by way of contradiction that p~;' = rf 

for some if ::; n L , and p~;'1 < rf for some i" ::; n L and i > t; then the previous 

argument implies pfi < rf for every t < i and i ::; nL ; in particular, p~;' < rf, which 

is a contradiction. 

We now prove P2.4.2. Assume that pij = rf for some j ::; nS. Then we have 

bp ::; 7r*, for if bp > 7r* then bp > 7rt by LlO.3, and therefore we would have p;j = rp 

for each j ::; nS by L3.4 and P2.1.2, which is a contradiction. Suppose that bp < 7r*; 
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then LlD.1 implies bP < 7rt for each t ;::: t, and therefore p;i = rf for every t ;::: t 
and j ~ nS by L3.2. Suppose that b? = 7r*; then either b~l < 7r* or bP -:- 7r* for 

t ;::: t by L10.2. If b~l < 7r*, then LlD.1 again implies bfI < 7rt for each t ;::: t + 1 and 

therefore p;i = rf for every t ;::: t + 1 and j ~ n S , by L3.2. If bfI = 7r* for t ;::: t, 

since high-value buyers always trade when they are matched (by P2.2, P2.1.2 and 

s· L P2.4.1), then low-value buyers must also trade when matched; hence Pt] = r t for 

every t ;::: t + 1 and j ~ nS. 
S.I H 

We establish P2.4.3. Suppose by way of contradiction that p:/ = r[ for some 

j' ~ nS , and p?' = rt for some j" ~ nS and i < t. Then P2.4.2 implies p;i = rf for 

every t > i and j ~ n s. In particular, p:il 

= rf, which is a contradiction. 

Finally, we prove P2.5. If pfi = rf for some j ~ nS then L3.4 implies b? ~ 7r[, 

and since b? > 0 and r? - rf > 0 (by L5.1), we have rf - rf > o. Hence pf; = rf 

for every i ~ n L by L2.1. D 

Proof of Proposition 3: We prove P3.1.1. Assume b? < 7r*; then b? < 7r[ by 

L10.1, and pfi = rf by L3.2; hence pfi rf by P2.5 for every i ~ n L . Thus 

I (pfi ,rf) = I (rf , pfi) = 1, and therefore 

Since J1fi = 1 - a by L5.2, we have 

b!! = (1 - a)b? = bij 
t+1 (1 - a) b? + (1 - a) bf t . 

Hence P3.1.1 holds. 

We establish P3.1.2. Assume by = 7r*. Then by LlD.2 either b~l < 7r* or 

b? = ... = b!J = 7r*. If b~l < 7r* = br, then b~l < 7r[+1 (by LlD.1), and pf~l = rf+l 

for every j ~ nS by L3.2. Hence 7r[ = 7r* > 0 by L8.1, and therefore rf > rf (because 

rp > rf by P2.1.2), and L2.1 implies pf; = rf for every i ~ nL . 

If bP = ... = bfJ = 7r*, since matched high-value buyers trade (and therefore exit 

the market) by P2.2, P2.1.2 and P2.4.1, then matched low-value buyers must also 

trade; hence for t ;::: t, pf; = rf for every i ~ nL andp;i = rf for every j ~ nS. Thus, 

P3.1.2 holds. 

56 



We show that P3.1.3 holds. Suppose that bp > ?r*; then bp > ?rt by Lemma 

L10.3, and therefore pfj = r[! for each j ::; nS by L3.4; since r[! > rf by L4.1, then 

I (rf , pfj) = 0 for each j ::; n s, and therefore for each i ::; n L we have 

nS nS 

L· a"", s· (L s· a"", s· L S 
J1t ' = 1 - 2" ~ A[ J I Pt, r [J) - 2" ~ A[ J I (r[ , p/ ) 

j=1 j=1 

nS 

Q L s· (L s.) a 1 - - A_J I Pt- r_J > 1 - -. 
2 t 't - 2 

j=1 

Thus, since J.Lfi = 1 - Q by £6.2, we get 

b?-t-l = 
(1 - a)b[! 

(1 - a)b!l + bI:- ,,\,"}'L A!:i ,/:i 
t t L.n=1 t r--t 
(1- a)bp H 

< (1 - a) bp + (1 - ~)( 1 - bP) < bt . 

Therefore P3.1.3 holds. 

Finally, we establish P3.2. Define the sequence {Qt} by Qo = b{f, and for t > 0 

b _ (1 - a)Qt 
-HI - (1 - a)Qt + (1 - ~)(1 - Qt) 

We show that bf > ?r* implies bEt-I::; Qt+1' Assume bf > ?r*; we show by induction 

that bf: ::; Qk for k ::; t + 1. By construction bf! ::; Qo. Assume that bf: ::; Qk for k ::; t; 

we show that bf:+l ::; Qk+l' Since {bf} is non-increasing by Lemma 7 and k ::; t, then 

bf! 2: b~ > 7["*. Therefore P3.1.3 implies p~j = r{!, and hence I(rf,p~j) = 0, for eyery 

j ::; n s. Therefore 

for every i ::; nL . Thus, since J1~i = 1 - a by £6.2, we have 

bH -k+l -
(1 - a)bf: 

(1 - Q)bH + bL ,,\,"}'L ALi IILi k k L .. n=1 r--k 

< (1 - Q)Q~ _ b 
(1 - a)Q~ + (1 - ~)(1 _ M;) - -1' 

We now prove P3.2. If bf! ::; ?r*, the P3.2 holds for T = O. If bf! > ?r*, let 

T = T(b{f, a, ?r*) be the first integer such that Qi' < ?r*. Such integer exists, since 

(1 - a)tbH 
b - 0 
-t - (1 - a)tb{f + (1 - ~)t(1 - bf!)' 
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and therefore H~t} converges to zero. Suppose b¥ > 71"*; then b¥_l > 71"* (by Lemma 

7), and therefore b¥ ~ Qf' < 71"*, which is a contradiction. Thus b¥ ~ 71"*, and since 

{bfI} is a non-increasing sequence (Lemma 7), bfI ~ 71"* for t 2:: T. Hence P3.2 holds. 

o 

Proof of Proposition 4: By P3.2 there is T = T(b{f, a, 71"*) such that bfI ~ 71"* for 

t 2:: T. Thus, P3.1.1 and P3.1.2 imply p~j = rf < rfI for every j ~ nS and t 2:: T + 1, 

and therefore pfi = rf for every i ~ nL and t 2:: T + 1 by P2.5. Also p~i = rf for 

every i ~ nH and t by P2.2. Thus, for each 8 E [0,1] and T, let r E r(8, T) be a 

sequence of equilibrium reservation prices and let V be the corresponding sequence 

of expected utilities. Since r[ = UT - 8~:;'-1 for T E {H, L}, and rf = C+8~~1 by El, 

traders expected utilities for t 2:: T + 1 are given by the system of difference equations 

v:H 2uH - uL - c I-a Q Q 

~~1 t 2" 2 

v:
L 

a 
uL - c +8 ~t1 ° l-Q. _Q. 

t 2 2 2 

~S u L - C ° 
Q 1-Q. ~~1 -"2 2 

Thus, for every date after T = T(b{f, a, 71"*) traders expected utilities are uniquely 

determined. Noting that ~s and ~L are determined independently of ~H, and using 

Vf+l = VI+1 = 0, we can solve for ~s and ~L, to obtain 

VS _ l!"L _ ~( L _ ) 1 - [8(1 - a)]T-t+l 
. t - t - 2 u c 1 _ 8(1 - a) 

Thus, for t 2:: T + 1 \Ye have 

L 

1· 1· v:S 1· 1· v:S u - c lm lm t = lm lm t = , 
6->1 T->= T->= 6->1 2 

and 

L 

1· 1· v:L 1· 1· v:L U - C lm lm t = lm lm t = 
6->1 T->= T->= 6->1 2 

For high-value buyers, since Vf!.t1 = 0, the above system yields for t 2:: T + 1 

v:
H a( H L ) 1- [8(1- a)JT-t+l 

t = - 2u - u - c ---=--'------'--"---
2 1- 8(1- a) 

Hence 

L 
Hm lim ~H = Hm lim~H =uH _ u +c 
6->1 T->= T->oo 6->1 2 
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Now let t < T + 1. A trader of type T who is in the market at date t obtains an 

expected utility of V{ by following his equilibrium strategy; thus the expected utility 

to a trader who remains in the market at t must satisfy ~T ~ 8T-tVi+1' for otherwise 

he benefits from a deviation where he makes unacceptable offers and rejects any offers 

until date T + 1, following his equilibrium strategy thereafter. Also ~s + ~H :S uH 
- c 

by £5.2. Thus 

and therefore 

Also 

hence 

1· 1· Tl'S 1· 1· uS u
L 

- c 1m 1m v t = 1m 1m v t = 
6-->1 T-->oo T-->oo 6-->1 2 

1· 1· TTH 1· 1· uH _ H u
L + c 1m 1m v t = 1m 1m v t - U - ---

6-->1 T-->oo T-->oo 6-->1 2 

For low-value buyers we have ~s ~ ~L ~ 8T- tV#+1' where the first inequality 

follows from Lemma 11 and the second ,vas established above. Thus, 

L 

lim lim v~ L = lim lim v~ L = U - c, 
6-->1 T-->oo T-->oo 6-->1 2 

Furthermore, since Tf = c + 8~! 1 and T; = UT - 8~~ 1 for T E {H, £} by El, the 

above limits imply 

L 

1· 1· T 1· 1· T U + c 1m 1m Tt = 1m 1m Tt = , 
6--> 1 T -+00 T -->00 6--> 1 2 

for T E {H, £, S} and t. 0 
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