Statistical distribution of the estimator of Weibull modulus
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The Weibull statistic [1] has been widely used to study
the inherent scatter existing in the strength properties of
many advanced materials [2-7], as well as in the frac-
ture toughness of steels in the ductile-brittle transition
region [8, 9]

The two-parameter Weibull distribution function is

given by:
F:l—exp|:—<i> } (1)
00

where F is the probability of rupture under uniaxial
tensile stress o, mthe shape parameter or Weibull mod-
ulus and og the scale parameter. From the results of a
limited number of tests and by applying standard sta-
tistical techniques (maximum likelihood, generalized
regression, moments method, etc.), estimations of the
parameters m and og can be obtained. Obviously these
estimation values are subject to uncertainties, so, for
design purposes, it is necessary to calculate the appro-
priated confidence intervals of the estimators.

The confidence interval of the Weibull modulus esti-
mation, rh, can be obtained from the percentage points,
|, of the variable r/m, defined as:

m
Pr[E < Ia] = 2

Thus, the limits of the interval for a confidence level y
are Ilny and .

The percentage points, |,, were numerically calcu-
lated by Thoman et al. [10] without any assumption
about the statistical distribution of the variable m/m,
and they were published in the form of tables.

To obtain the statistical distribution of the pivotal
variable m/m, a simulation procedure based on the
Monte Carlo method may be used. In this procedure, a
set of n values (sample size) are generated as:

oi=00-In (%) 3)

where R is a random variable with uniform distribution
in the [0, 1] interval. From each sample so obtained,
estimations of the Weibull modulus are computed
using the maximum likelihood method, and from these
estimations, the variable m/m may also be built. Re-
peated application of this procedure provides a statisti-
cal distribution of this latter variable. Thoman et al. [10]
showed that, if the method of maximum likelihood is

used to estimate m, the distribution of the variable i/ m
is independent of the true values of the parameters m
and o. Therefore, in order to make the simulation, any
values of these parameters can be chosen (m=1 and
oo =1, for example).

To describe the statistical behavior of m by means of
a conventional probability distribution function, Gong
[11] assumed that this variable follows a Log-normal
distribution, with mean value, M, and standard devi-
ation, S, both of them depending on sample size, n.
Barbero et al. [12] proposed a three-parameter Weibull
distribution for m/m. To obtain a better approxima-
tion, the authors now propose that the variable In (1),
named X throughout this work, follows a three param-
eter Weibull distribution.

The aim of this letter is to compare the results deriv-
ing from the above distributions with those obtained nu-
merically. The authors calculated the percentage points,
repeating 20 000 times the numerical procedure stated
above, for each sample size, increasing progressively
this latter from 5 to 120. From the numerical results, the
mean values, M and M, and the standard deviations,
Sand S, of the variables m/m and X, respectively,
were calculated and fitted to the sample size, n, with
the following four-parameter functions:

1 2.5873
M = 0.9807 +1.7001 - [ —————
09807 +1.700 (In(1.0408-n))

(42)

1 0.7303
S— 01357405297 (——
+ (In (0.3087 - n))

(4b)
1 3.18323
My = —0.01455 4587953  —
x + (In (2.7293- n))
(5a)

1 2.12069
— _0.03669 455248 (———
e + (In (4.79698 - n))

(Sb)

Figs 1 and 2 show the comparison between the nu-
merical and fitted values for the mean and standard de-
viation of the variable m/m (Fig. 1) and In (7)) (Fig. 2).
Excellent agreement is observed in the range of sample
sizes analysed (n =5-120).

To describe the statistical behavior of the vari-
able rm/m, recently Barbero et al. [12] proposed a
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Figure 1 Meanvalue(circles) and standard deviation (triangles) of vari-
able m/m as afunction of sample size. The solid lines in the figure are
the fitted lines according to Equations 4a and b.
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Figure 2 Mean (circles) and standard deviation (triangles) of variable
Infh/m asafunction of sample size. The solid linesin the figure are the
fitted lines according to Equations 5a and b.

three-parameter Weibull distribution:

- Ps
Faym=1-ep - (") | @

where Py, P,, P; are, respectively, the position, scale
and form parameters that were fitted as a functions of
the sample size, n, by:

Pi=ai+az-(Inn)* (=123 (7

the parameters a1, a2 and a3 being those shown in
Tablel.

Now the authors propose a new way to describe the
statistical behavior of the variable m/m, assuming that
the variable X (X = In(Z)) follows a three parameter

TABLE | Parameter of Equation 7

Parameter aj1 a2 a3

Py 0.65303 0.00467 2.33393
P, 2.47938 —1.65201 0.20487
Ps3 —1.13169 1.52229 0.59986
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Figure 3 Relative error between the percentage points numerically ob-
tained and those fitted of variable m/m. @) o =0.975. b) « =0.025.
¢) « =0.950. d) & = 0.050.



TABLE Il Parameter of Equation 9

Parameter bi1 bi2 bis

Q1 —1.50972 0.70844 0.39005
Q2 —1.25257 2.74062 —0.38729
Q3 —1.12766 2.84699 0.29276

Weibull distribution:

o0-s-wf(152)] o

where Q1, Q2, Q3 may be fitted as a function of the
sample size, n, by:

Qi=bi1+biz-(Inn)> (=123 (9

The parameters bj1, b2, y bjz aregivenin TableIl.

To compare the cited approximations, the limits of
two confidence intervals were analyzed. The selected
confidence levels were y = 0.9 and y = 0.95, that are
widely used for design purposes.

The corresponding limits are the percentage points,
|, Of the variable m/m, for « =0.05 and « = 00.95
(case y=0.9) and « =0.025 and « =0.975 (case
y =0.95). The relative errors between the percent-
age points numerically obtained, (I,)num, and those
fitted, (I, )it, by the above mentioned methods (Log-
normal [11], Weibull [12], and that proposed in this pa-
per, (hereinafter named Log-Weibull) were calculated
using

(Ia)nur
(Ia)ﬁt

error(%) = abs(l — ) x 100 (20)

The results obtained are shown in Fig. 3. Log-normal
distribution leads to higher errors than Weibull and
Log-Weibull distributions, particularly for small sam-
ple sizes. For n values larger than 30, all approxima
tionsare similar, with maximum errorslessthan 2%. In
general, Log-Weibull distribution gives errorslessthan
2%, independently of the sample size.
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