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Abstract

Recent literature has shown that the balance space approach may
be a significant alternative to address several topics concerning vec-
tor optimization. Although this new look also leads to the efficient
set and, consequently, is equivalent to the classical viewpoint, it yields
new results and algorithms, as well as new economic interpretations,
that may be very useful in theoretical frameworks and practical appli-
cations. The present paper focuses on the sensitivity of the balance set.
We prove a general envelope theorem that yields the sensitivity with
respect to any parameter considered in the problem. Furthermore, we
provide a dual problem that characterizes the primal balance space and
its sensitivity. Finally, we also give the implications of our results with
respect to the sensitivity of the efficient set.

1 Introduction

Since the concepts of balance point and balance set were introduced in [6] for
vector optimization problems, several authors have analyzed their significant
properties and have developed some algorithms to compute them in practice
(see [5], [6], |7]. [8] and [9] for further details).

Mainly, this approach yields a very general alternative method in vector
optimization because multiobjective problems may be deeply analyzed by
means of their ideal points rather than scalarized problems. It is not necessary
to seek appropriate weights to compute a balance point. Instead, one has to
choose a direction of preferential deviations from the ideal point in order to
reach an optimal point.

*We would like to thank Professor Efim A. Galperin for very helpful commments and
suggestions.

1 Universidad Carlos 111. Departamento de Economia de Ja Empresa. C/ Madrid 126
28903 Getafe, Madrid (Spain). balbas@Gemp.uc3m.es

1U.N.E.D. Departamento de Matematicas Fundamentales. C/ Senda del Rey s/n. 28040
Madrid (Spain). pjimenez@mat.uned.es



Consequently, an interesting economic meaning is possible since the ideal
point may be considered an adequate reference for the decision maker. Given
an arbitrary balance point b = (by, by, ..., bp), b; is the difference between the
final level attained in the i** objective and its “ideal level”, and thus, the
decision maker can choose another balance point when these differences are
not very successful. Furthermore, b is proportional to the direction used to
leave the ideal point and, therefore, each quotient b; /b; provides the number
of units lost in the " objective per unit lost in the j** one. When the
problem is scalarized, the meaning of the weights is not so clear.

This nonscalarized procedure provides new algorithms which, as said
above, are very general. When we are choosing a concrete direction to detect
a balance point we are also choosing ratios of losses among the conflicting
objectives.

As pointed out in [5], the set of Pareto solutions and the balance set are
equivalent from a theoretical viewpoint, in the sense that there exists a simple
relationship between both sets. Thus, balance set techniques also apply to
study the Pareto solutions.

Both advantages, new nonscalarized algorithms and economic interpre-
tations, justify the interest of extending the discussion in order to address
another important issues of vector optimization. So, this paper focuses on
duality and sensitivity since these topics still present many open questions
when dealing with vector problems.

Regarding duality and sensitivity, scalar problems have many deep prop-
erties whose extension for vector problems is not straightforward. This fact
is clearly pointed out in [10] and [15], where interesting, general and classical
treatments are presented. Although significant advances have been achieved
and useful developments have been provided from both theoretical and prac-
tical viewpoints, in general, the dual objective is given by multifunctions?,
and this situation makes it rather difficult to establish saddle point condi-
tions or sensitivity results. In fact, statements are far more complicated than
the corresponding results for scalar problems, and their practical applications
present larger difficulties too. Linear vector problems are much easier but, as
pointed out in [1] and [4], even this case becomes complex when using flexible
criteria to choose an optimal solution in the efficient set.2

In order to overcome these difficulties the recent literature (see for instance
[2], [3], [11] or [12]) has developed new ideas and methods, and we will try
to show here that the balance space approach may be an useful alternative
and can broaden possible techniques. Most of the classical caveats disappear

Lie., if A represents the dual objective and y is a dual feasible element, then A(y) is not
a vector but a set of vectors.

2For instance, in order to guarantee that dual solutions measure the primal sensitivity
with respect to the vector in the right side, one has to impose restrictive assumptions

with regard to the weights used when composing an efficient solution as a linear convex
combination of extreme points.

A
when dealing with the ideal point sensitivity® (see for instance [16] for a
complete analysis that holds in a very general framework) and, therefore,
since the efficient set equals the ideal point plus the balance set (see [5]),
the sensitivity of this set would allow us to obtain the primal sensitivity by
adding two terms.

The remainder of the paper is as follows. Section 2 presents the basic
concepts, notations and hypotheses. Section 3 deals with the primal sensi-
tivity. First of all we establish Theorem 1, that yields a scalar programming
problem whose solution leads to the balance point proportional to the di-
rection of preferential deviations.* Later, we draw on the sensitivity of this
scalar problem, along with the sensitivity of the ideal point, and prove a gen-
eral envelope theorem (Theorem 2) that provides the sensitivity of a general
vector problem with respect to any parameter considered in the problem.
Theorem 2 gives the sensitivity by means of a far simpler analytic expression
than those provided by previous literature (see for instance [2]). Accordingly,
the sensitivity may be easily computed in practical applications. Corollary 3
presents the sensitivity with respect to the vector of the right side.

The duality theory for convex problems is addressed in Section 4. The-
orem 1 allows us to introduce a dual problem for which several properties
are proved. So, the dual objective is never greater than the primal one, the
absence of duality gap may by stated, dual and primal solutions are charac-
terized by saddle points and complementary slackness conditions and, finally,
the dual problem is linear if so is the primal one. Furthermore, the dual so-
lutions coincide with the Lagrange multipliers and, according to our general
envelope theorem, provide the primal sensitivity. Theorem 6 might merit
particular attention since it provides special saddle points and slackness con-
ditions that are given by means of vector inequalities and, consequently, may
be easily applied in practical applications.?

The last section concludes and summarizes the article.

2 Preliminaries and Notations

Let k, I, m and n be entire numbers, W and P subsets of IR™ and IR! respec-
tively, d = (dy,ds,...,dx) € R* with d; > 0 fori = 1,2,....k and d # 0, and
f:W — RFand g: W x P — R™ two vector functions whose real compo-
nents will be denoted by f;, i = 1,2, ..., k, and 95,3 = 1,2, ..., m, respectively.

3Consequently, if there are no conflicts among the objectives and all of them attain
the optimal value at the same feasible point, then the main properties of the scalar pro-
gramming may be extended without introducing more complex statements and stronger
assumptions.

4As said above, the direction of preferential deviations may be easily interpreted because
it provides ratios of losses in each objective.

SIn fact, in the statement of Theorem 6 we will use the symbol < instead of Z However,
previous literature often uses Z unless the author deals with non-conflicting objectives.



Let us focus on the following vector optimization problem

zeW

Min f(z) { g(z,p) <0 (1)

being p € P an arbitrary element. Assume the following assumption:

(A1) For any p € P and i = 1,2, ..., k, there exists z(i,p) € W such that
9(z(i,p),p) < 0 and fi(x(i,p)) < fi(z) for every 2 € W with g(z, p) < 0.

Assumption (A1) just means that the scalar problem
Min{fi(z) : = € W, g(z,p) < 0} (2)

attains an optimal value at z(i,p) € W (i = 1,2, ..., k) and, therefore, the
ideal point (or the set of partial minima)

J(p) = [f1(z(1,p)), f2(x(2,D)), ..., (2 (k,p))] € R

does exist. In order to achieve an easier notation, we will denote Ji(p) =
filz(i,p),1=1,2, .., k.

Following the approach of [8] or [9], an element b € R, b > 0, is said to
be a balance point of (1) if {f(z) : 2 € W, g(z,p) <0} N [J(p), J(p) + b] # 0
and {f(z) 1z € W, g(z,p) <0}N[J(p), J(p) +b*] = 0 for every b* € R* such
that 0 < b* < b, b* # b.5 As pointed out in [5], b € R* is a balance point of
(1) if and only if J(p) + b belongs to the efficient line of (1).

In order to guarantee the existence of balance points in the direction of
preferential deviations, we also impose the following assumption:

(A2) For every p € P there exists a balance point proportional to d.

3 The Envelope Theorem

Let us introduce the following scalar problem whose decision variables are
TeERandz e W

ze W
Min T g(z,p) <0 (3)
f(@) —7d < J(p)

Assumptions (A1) and (A2) allows us to establish the statement below

S1f u,v € R* with u < v, then [u,v] denotes the set {z € R* :u <z < v}.

.
Theorem 1 Assume that p € P and 7, > 0. Then, 7,d is a balance point of
Problemn (1) if and only if there exists x(p) € W such that (x(p), 1p) solves
(3)." In the affirmative case, z(p) € W is a Pareto solution of (1) such that
f(z(p)) = J(p) + 7pd.®

Proof. Suppose that 7,d is a balance point of (1). Then J(p) + 7,d is an
efficient point and there exists z(p) € W, Pareto solution of (1), such that
f(z(p)) = J(p) + 7pd. Thus, f(z(p)) — 7pd = J(p) and (z(p), 7,) verifies the
constraints of (3). Moreover, if (z(p),7,) does not solve (3) we have that
there exists a feasible couple (z,7) such that 7 < 7,. Since (z,7) is feasible
we have that f(z) — J(p) < 7d < 7,d. Hence f(z) € [J(p), J(p) + 7d] and
this is a contradiction because 7,d is a balance point of (1) and 7 < 7,.

Conversely, let us suppose that (z(p), 7,) solves (3) but 7,d is not a balance
point of (1). (A2) guarantees the existence of a balance point 7*d. Assume at
the moment that 7* > 7,. Since (z(p),7,) solves (3) it must be (3)—feasible
and, therefore, f(z(p)) - J(p) < mpd < 7*d. Thus f(2(p)) € [J(p), J(p) +7,d]
and this is a contradiction because 7*d is a balance point. Assume now that
7% < 7p. Since 7*d is a balance point there exists z € W such that z
is a Pareto solution of (1) and J(p) + 7*d = f(z). Therefore, (x,7*) is
(3)—feasible and 7* < 7, which contradicts the hypothesis because Tp must
be the minimum value of (3). m

The latter theorem allows us to compute the balance point associated
with the direction of preferential deviations. In fact, in a first step the ideal
point J(p) may be computed by solving k scalar problems and, later, once
J(p) is known, Problem (3) leads to the balance point 7,d.

As a consequence, the sensitivity of Problem (1) with respect to the pa-
rameter p depends on the sensitivity of k + 1 scalar problems. Theorem 2
establishes this property with precision and extends the classical envelope
theorem, well-known in the scalar programming case.

Theorem 2 Let us assume that W and P are open sets and f and g are
continuously differentiable functions. Denote by

/\(iap) = (Al(iap)))‘Z(ilp)) "-))"m(i,p)) & R™

the Kuhn-Tucker multiplier of (2) associated to z(i,p) (i = 1,2, ...k, p €
P). Suppose that (u(p),v(p)) = (11(p), -, tm(p), 1 (D), ..., vi(p)) € R™HE
represents the Kuhn-Tucker multiplier of (3) for eachp € P. Consider finally
that all of the Kuhn-Tucker multipliers continuously depend on p € P and

7If Tod is a balance point for Problem (1) then the existence of z(p) may be proved
without imposing Assumption (A2).
8(A2) and Theorem 1 guarantee the existence of solutions of (3). Henceforth 7, > 0

will represent the optimal value of (3), and z(p) will represent the corresponding Pareto
solution of (1).



define the function P 3 p — F(p) = J(p) + 7pd = f(x(p)). Then,
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i=1 j=1 i
holds forr =1,2,...,k, s=1,2,...,1 and everyp € P.9

Proof. The envelope theorem of scalar programming guarantees that

T = YA e, )0 )

Jj=1

Thus, the proof will be completed if we show that the function P p —>
h(p) = 7, € R verifies the equality

oh = 8gj X . 8gj ; .
o, = 2 1) 5, @) = >on) | o) 5 wn)p)| (©)

j=1 i=1 j=1
The Lagrangian function of (3) is given by
m k
L(r,,p,m,v) =7+ Y [1ig;(2,0)] + Y vi [fil) = 7di — Ji(p))
j=1 i=1

being pu = (p1, p2, .- pim) € R™ and v = (11,1, ..., 1) € R*. Therefore, the
envelope theorem of scalar programming ensures that

0—105 = E)E = ; [Maps (f’v(P))P)} - ;1/1 [aps} )

and (6) trivially follows from (5). m

The latter theorem can be particularized in order to obtain the sensitivity
of F' with respect to the term of the right side. In this case (4) may be
significantly simplified.

a
9Let us remark that the partial derivative 6—91 is evaluated at k + 1 different points

Ps
((:L‘('i,p),p), 1=1,2,..,k, and (:L‘(p),p)).

&
Corollary 3 Assume that | = m and g(z,p) = g(z) — p, being g : W —
R™ an arbitrary function. Then, under the assumptions of Theorem 2, the
following expression

k
— | As(r,p) + ps(p)dr — d; Z vi(p)As (4,p) (7)

i=1

OF,
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holds for r =1,2,..,k, s=1,2,...,m and everyp € P. m

4 Convex Problems and Duality Theory

Throughout this section we will assume that W is a convex set, fi1s a convex
function (i = 1,2,...,k), | = m and g(z,p) = g(z) —p being g : W — R™ an
arbitrary convex function (i.e., its components gi:W—>R,j=12,...,m,
are convex functions). Therefore, (1) is a convex vector problem and (2) and
(3) are convex scalar problems. .

Consider an arbitrary matrix A = ()\1_3)3:1122‘7;" and two elements pu =
(#1, -y pm) € R™ and v = (v1,...,1%) € R¥ . Suppose that all the compo-
nents of these matrices are nonnegative. Then, (A, u, v) is said to be dual-
feasible if the sets {f(z)+ (g(z) — p)AT : 2 € W} and {r + (g(z) — p)u™ +
(f(z) =1d—J(p))v" : 2 € W, 7 € R} are bounded from below in R* and R,
respectively,'® in which case we will define the dual objectives by!!

¢(A) = Inf {f(z) + (g(z) - p)AT :z € W} € R (8)

and

Y, v) = Inf {1+ (g(z) =p)u" + (f(&) —rd~ J(p))vT :2 € W, 7 € R} € R

(9)
The dual problem of (1) is given by

Maz (p(A), % (1, v)) {(A, p,v) €T (10)

being I' the set of dual-feasible elements.!?
It is clear that (10) is a vector problem with k + 1 objectives, but there
exists a simple relationship between the primal and the dual objectives.

Lemma 4 If (A, pu,v) €T, then the following assertions are fulfilled:

a) p(A) < J(p) and P(p,v) < 7

b) If & € W werifies g(z) < p, then expressions (@) < @A) +p(u,v)d
and f(z) # ¢(A) + P (p, v)d cannot simultaneously hold.

10As usual, if M is an arbitrary matrix, MT will denote the transpose matrix.

HRecall that R* is an order complete Banach lattice (see, for instance, [14]) and, con-
sequently, bounded from below subsets have an infimum element. Besides, notice that
(8) and (9) are related to usual expressions of previous literature when dealing with dual

functions (see, for example, [13] for scalar problems or (3] for vector problems).
LN ntina $hek T cdmsn sk Ao wsd s g o+ 0



Proof. Since A\;; > 0 for:=1,2,..,k and j = 1,2, ..., m, it is obvious
that o(A) < Inf{f(@) + (5(z) - D)AT 5 € W, 5z) —p < 0} < Inf{f ()
€W, g(z) - p < 0} = J(p).

Analogously, Y(u,v) < Inf {7 + (3(z) — p)u” + (f(2) — 7d — J (p))vT :
zeW,g(z)-p<0,7€R, flzg) —1d—J(p) <0} < Inf {r:z ¢ W;
§@) ~p <0, 7€ R, f(z)—7d~ J(p) <0} = 7,

Moreover, bearing in mind a), if f(Z) < @(A) + (g, v)d then f(z) <
J(p) +pd = f(z(p)). Thus, f(Z) = f(x(p)) since z(p) is a Pareto solution
of (1). m

Hereafter the following Slater qualification is imposed:

(A3) The vector of preferential deviations satisfies the inequality d; > 0 for
,2, kK, and for any p € P there exists 7 € W such that g, (z?) -p; <0,
L2,..

As will immediately be shown, the Slater qualification guarantees the
existence of strong dual solutions and the absence of duality gap.

Theorem 5 Given an arbitrary p € P, there exists (A(p), u(p),v(p)) € T
such that:

o) NG 2 ) and (o), ) 2 9(0) for evry (o) 1.5
12) (90)() (#)) = J(®), ¥(u(p),v(p)) = 7, and ©(A(p)) + Y(u(p),v(p))d
= J‘ T

Proof. Assertion a) trivially follows from b) and Lemma 4, so let us prove
b). Let 1 € {1,2,..., k} and consider the convex and scalar Problem (2). The
saddle point theorem of [13] (Chapter /X) guarantees the existence of

/\z(}?) = (/\i,l(p)7 /\-i,Z(p)a ceey /\i,m(p))

such that \; ;(p) >0, 5 =1,2,...,m, and
Inf{fi(z) + (5(z) —=p)Xi(p)" : x € W} = Ji(p)

Now, it is clear that A(p) = (\; ;(p))I=] 1 2 oy satisfies the required condition.
Furthermore, since (3) is also a scalar convex problem that verifies the Slater
qualification, analogous arguments lead to the existence of u(p) and v(p).

The absence of duality gap and the existence of strong dual solutions
allow us to characterize dual solutions and balance points by means of saddle
points and complementary slackness conditions. Furthermore, the saddle
point condition is stated by means of a vector inequality instead of the failure
to hold the opposite inequality, as usual in the vector programming case.

Bie., (A(p), u(p), v(p)) € T is a strong solution of (10)

£

Theorem 6 Consider an arbitrary (3)—feasible (Z,7) € W xR and (A, p, v)
€ I'. Then (z,7) solves (3) ** and (A, p,v) solves (10) if and only if

f@) + (g(@) — p)AT < f(z) + (g(z) — p)AT (11)

for every x € W,
7+ (3(2) - p)u” + (f(&) — 7d — p(A))T
< 7+ (g2) - p)uT + (f(2) — Td — (AT

for every x € W and every 7 € IR, and the complementary slackness condi-
tions

(12)

(g(@) —p)AT =0 (13)
(3(2) - p)u” = (14)
and
(f(@) —Td—oA)v" =0 (15)
hold.

Proof. Suppose that (z,7) solves (3) and (A, u, v) solves (10). Theorem
1 guarantees that @ solves (1) and, therefore, the results of [13] (Chapter
IX) apply on Problems (2) (i = 1,2,...,k) and (3) and show that (11), (13)
and (14) hold and (12) and (15) also hold if (A) is substituted by J(p).
Hence, the conclusion trivially follows from the equality ¢(A) = J(p) already
established in the previous theorem.

Conversely, assume (11), (12) (13), (14) and (15). Then, (8) and (11)
show that o(A) = f(&) + (§(2) — p)AT and, consequently, (13) leads to
©(A) = f(z) > J(p). Now, Lemma 4 proves that p(A) = J(p). Analogous
arguments lead to 1 (u,v) = 7, and the latter theorem proves that (A, u, v)
is a dual solution. Moreover, ¢(A) = J(p) implies that (12) and (15) hold
if (A) is substituted by J(p), and these conditions, along with (14) and
the results of [13], permit us to ensure that (z,7) solves (3). WOnce the
complementary slackness conditions have been provided, standard arguments
permit us to establish the equivalence between dual solutions and Lagrange
multipliers when dealing with convex and differentiable problems. Thus,
Theorem 2 and Corollary 3 may be adapted so that one can measure the
primal sensitivity by means of dual solutions. For instance, the following
result, whose proof is omitted, may be easily obtained.

Corollary 7 Let P be an open (and convez) set. Denote by (A(p), u(p), v(p))
€ I the strong dual solution of (10) (for every p € P) whose existence is guar-
anteed by Theorem 5. Suppose that the function P 3 p — (A(p), u(p), v(p))

14Recall that Theorem 1 ensures that (z, 7) solves (3) if and only if z is a Pareto solution
of (1) and 7d is a balance point such that J(p) + 7d = f(z).



is continuous. Then, the function P 3 p — F(p) = o(A(p))+¥(u(p), v(p))d €
IR* is continuously differentiable and

OF,
ops

k
Ar,s(P) + ps(p)d, — d, Z vi(p)Ais (p)

forr=1,2,...k, s=1,2,...m and everyp € P. W

Remark 8 Notice that (8) is linear if (1) is linear, in which case it may be
proved that (10) is also linear because I' may be given by linear constraints
and ¢ and Y have a linear expression (see [1] or [3] for further details on
this point in a very general setting). Hence, in the important linear case,
the balance space approach yields a linear dual problem with a strong solution
that avoids the duality gap, characterizes the balance points by means of com-
plementary slackness conditions (no saddle point conditions are required in
this case) and measures the primal sensitivity with respect to any parameter
appeared in the problem. These properties are identical to those observed in
the scalar programming and usually fail when dealing with classical duals in
vector optimization.

5 Conclusions

This paper has shown how the theory of global optimization and the balance
space approach may apply in order to develope a general theory of duality
and sensitivity for vector optimization problems. This general theory points
out that the balance space approach is an interesting alternative and comple-
ments the classical Pareto approach. The theory overcomes several caveats
usual in the literature. For instance, it yields a general envelope theorem
that easily applies in practical situations and measures the sensitivity with
respect to any parameter of the problem. Regarding the duality theory for
convex (and linear) problems, the balance set and the set of dual solutions
may be characterized by means of saddle point conditions whose statements
may be given in terms of vector inequalities. Consequently, our saddle point
conditions seem to be more effective than those obtained by previous liter-
ature, and they lead, along with some complementary slackness conditions,
to a system of equations providing us with the efficient line, the set of dual
solutions and the sensitivity with respect to any parameter.
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