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The reduced form of the local level model with conditionally heteroscedastic GARCH(1,1) noises is analyzed.

We show that the IMA GARCH model is a good alternative but its conditional heteroscedasticity is weaker

than this of the unobserved disturbances.

1. Introduction

When economic and financial time series have stochastic trends, it is

common taking differences and fitting ARMA models to the

corresponding stationary transformation. Alternatively, the series may

be represented by unobserved component models. In the presence of

Gaussian disturbances, both models are equivalent in the sense that

they have the same autocorrelation function (acf); see, for example,

(Harvey, 1989). In this paper,we analyze the relationshipbetween them

when the underlying stochastic trends are conditionally heteroscedas

tic; see, for example, (Diebold, 2004) for conditionally heteroscedastic

ARIMA models and (Stock and Watson, 2007) for unobserved

component models with conditionally heteroscedastic noises.

We focus on the following local level model (LLM) in which the

series of interest, yt, is composed by a transitory component, ɛt, and a

stochastic level, μt,

yt = μt + εt ; ð1aÞ

μt = μt 1 + ηt ; ð1bÞ

where ɛt and ηt are mutually independent and serially uncorrelated

processes, with zero means and variances σ
ɛ

2 and ση
2, respectively.

Taking first differences in model (1), we obtain the following

stationary representation

Δyt = ηt + Δεt : ð2Þ

Alternatively, model (2) can be represented by the following IMA

(1,1) model

Δyt = at + θat 1; ð3Þ

where, if Δyt is invertible, θ=[(q
2+4q)1/2−2−q]/2, with q=ση

2/σ
ɛ

2

being the signal to noise ratio, and the reduced form disturbance, at,

is uncorrelated with zero mean and positive variance, σ2a = −
σ2ε
θ
.

Our objective is to analyze the properties of at when ɛt and ηt are

GARCH(1,1).1

2. Properties of the local level model

Conditionally heteroscedastic series are characterized by having

excess kurtosis and positive autocorrelations of squares. Therefore, in

this section,wederive these twomoments forΔyt. Considermodel 1 and
assume that the noises have symmetric distributions around zero, and

finite fourth ordermoments. Then, the excess kurtosis of Δyt is given by

̅κΔy =
q2 ̅κη + 2 ̅κε + 6ð ̅κε + 2Þρε

2

1

ðq + 2Þ2
; ð4Þ
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where κ ̅ε and κ η̅ are the excess kurtoses of ɛt and ηt, respectively, and

ρ1
ε2 is the first order autocorrelation of ɛt

2. Note that q plays an

important role in determining the relative influence of the excess

kurtosis of each noise on κ ̅Δy. The acf of (Δyt)
2 is given by

ρ
ðΔyÞ2
τ =

q2ð ̅κη + 2Þρη
2

τ + ð ̅κε + 2Þðρε
2

τ 1 + 2ρε
2

τ + ρε
2

τ + 1Þ
ð ̅κΔy + 2Þðq + 2Þ2

;τ≥1: ð5Þ

Note that for Gaussian noises, ρ1
(Δy)2=(q+2)−2, which is the

squared first order autocorrelation of Δyt given by ρ1
Δy=−(q+2)−1;

see (Maravall, 1983). However, when ɛt and ηt are not Gaussian, ρ1
(Δy)2

differs from (ρ1
Δy)2. Finally, given that the acf of squares of both

disturbances converge to zero, the acf of (Δyt)
2 also converges to zero.

Consider now that ɛt and ηt are GARCH(1,1) noises2 given

by εt=εt
†ht
1/2 and ηt=ηt

†qt
1/2, with εt

† and ηt
† mutually indepen

dent Gaussian processes and

ht = α0 + α1ε
2
t 1 + α2ht 1; ð6aÞ

qt = γ0 + γ1η
2
t 1 + γ2qt 1: ð6bÞ

In this case, ̅κε =
2α21

1 3α21 2α1α2 α22
, ̅κη =

2γ21
1 3γ21 2γ1γ2 γ22

, ρε
2

1 =

α1ð1 α1α2 α22Þ
1 2α1α2 α22

and ρη
2

1 =
γ1ð1 γ1γ2 γ22Þ
1 2γ1γ2 γ22

. Consequently, the excess

kurtosis and acf of squares of Δyt are given by

κΔy =
3

ðq + 2Þ2
q
2 2γ21
1−3γ21−2γ1γ2−γ22

+ 4
α1ð1 + α1−α1α2−α22Þ
1−3α21−2α1α2−α22

" #

:

ð7Þ

ρ
ðΔyÞ2
τ =

q2ρη
2

1 ð κη + 2Þ + ð κε + 2Þð1 + ρε
2

1 ð2 + α1 + α2ÞÞ
ðq + 2Þ2ð κΔy + 2Þ

; τ = 1

ðα1 + α2Þρ
ðΔyÞ2
τ 1 +

ðγ1 + γ2 α1 α2Þq2ðγ1 + γ2Þτ 2ρη
2

1 ð κη + 2Þ
ðq + 2Þ2ð κΔy + 2Þ

; τ≥2:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð8Þ

Note that when the persistence of both noises is the same, i.e. γ1+

γ2=α1+α2, or only one noise is heteroscedastic, the acf of squares

has an exponential decay, as in a GARCH(p,q) process. However, in

general, the decay of the autocorrelations in Eq. (8) is not exponential.

It can be proved that the rate of decay of ρτ
(Δy)2 converges to max(α1+

α2; γ1+γ2) as τ increases. Therefore, when the persistence of the

GARCH processes are close to each other, the rate of decay of ρτ
(Δy)2

will be approximately constant. Consequently, although the behavior

of Δyt is not GARCH, exponential structures implied by GARCH

processes can be good approximations for its acf of squares. As an

illustration, Fig. 1 plots the acf of squares for a particular specification

of the disturbances, together with the corresponding rate of decay

from the second lag (left and central columns).

3. Properties of the IMA noise

3.1. Excess kurtosis and acf of squares

The objective of this subsection is to derive the excess kurtosis and

acf of squares of at in model (3) when ɛt and ηt are GARCH(1,1)

noises. Consider the reduced form IMA(1,1) model given in Eq. (3).

The excess kurtosis of Δyt in this case is given by

̅κΔy =
̅κað1 + θ4Þ + 6θ2ρa

2

1 ð ̅κa + 2Þ
ð1 + θ2Þ2

; ð9Þ

where κ α̅ and ρ1
α2 are the excess kurtosis of at and the first order

autocorrelation of at
2, respectively. The acf of Δyt

2 is given by

ρ
ðΔyÞ2
τ =

̅κa + 2

ð1 + θ2Þ2ð ̅κΔy + 2Þ
½ð1 + θ

4Þρa
2

τ + θ
2ðρa

2

τ 1 + ρ
a2

τ + 1Þ#;τ≥1:

ð10Þ

The expressions of κα̅ and ρτ
α2 are related to those of the unobserved

component noises in Eq. (4) and (5) in a way that is not easy to derive

analytically. However, onemayfind approximations of thesemoments

by equalling the excess kurtosis ofΔyt given by Eq. (4) and (9), and the
autocorrelations in Eq. (4) and (10)3, as follows

ð ̅κa + 2Þð1 + θ
4
+ 6θ

2
ρ
a2

1 Þ≡ð1 + θÞ4ð ̅κη + 2Þ−8θð1 + θÞ2

+ 2θ
2ð ̅κε + 2Þð1 + 3ρ

ε2

1 Þ;
ð11aÞ

ð ̅κa + 2Þ½ð1 + θ
4Þρa

2

τ + θ
2ðρa

2

τ 1 + ρ
a
2

τ + 1Þ#

≡θ
2ð ̅κε + 2Þðρε

2

τ 1 + 2ρ
ε2

τ + ρ
ε2

τ + 1Þ + ð1 + θÞ4ð ̅κη + 2Þρη
2

τ ;τ≥1:

ð11bÞ

When the local level disturbances are homoscedastic but non

Gaussian, then ρτ
ε2=ρτ

η2=0 and κε̅ and κη̅ are different from zero. In

this case, though still uncorrelated, at is not independent as the

autocorrelations of squares are different from zero; see (Breidt and

Davis, 1992). As an illustration, Table 1 reports the acf of at
2 for several

values of q, κε̅ and κη̅, obtained from the resolution of Eq. (11a) and

(11b). Note that these autocorrelations do not decay exponentially

2 See (Broto and Ruiz, 2006) for the particular case of a LLM with GQARCH

disturbances to account for asymmetries in volatility.

Fig. 1. Autocorrelations of (Δyt)
2 (left column), their rate of decay defined as the ratio ρτ

(Δy)2/ρτ 1
(Δy)2 (central column) and autocorrelations of εt

2 in solid lines, ηt
2 in dashed lines and at

2

in bars (right column). The parameters of the model are fixed to γ1=0.1, γ2=0.85, α1=0.05, α2=0.8 and q=1.

3 To obtain Eq. (11a), recall that θ can be defined in terms of q, so that the following

expressions result: 1+θ2= θ(q+2), 1+θ4=θ2(q2+4q+2).
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and, consequently, they do not reflect the presence of GARCH effects

in the series. However, it is possible to reject the null of homosce

dasticity when using tests based on the autocorrelations of squares.

When the noises are stationary, the right hand side of Eq. (11b)

converges to zero as τ increases. Consequently, there exists a value of τ,

say τmax, large enough such that ρτ
α2
≈0 for τNτmax. Therefore, solving

the systembackwards,we canfindκ α̅ andρτ
α2 for different specifications

of the unobserved component noises. As an illustration, Fig. 1 plots the

acf of at
2 when both noises are GARCH(1,1) (right column).

3.2. Heteroscedastic IMA models

We have seen that if ɛt or ηt are GARCH processes, at does not

share all their properties. However, it still has excess kurtosis and

positive autocorrelations of squares. On the other hand, when

analyzing real time series, it is usual to fit GARCH processes to the

residuals of ARIMA models whenever they show evidence of

conditional heteroscedasticity. Therefore, we simulate data to analyze

the effects of fitting IMA GARCH models to series with conditionally

heteroscedastic stochastic levels. Consider that at is assumed to be a

GARCH(1,1) model, given by at = a†t st
p
, where αt

† is a Gaussian white

noise process and

st = δ0 + δ1a
2
t 1 + δ2st 1: ð12Þ

We generate 1000 series by model 1 with GARCH disturbances

with parameters α1=γ1=0.15, γ1=γ2=0.8 and q=1 and sample

sizes T=200, 1000 and 5000. The parameters of the IMA GARCH

model are estimated by QML in two steps, estimating first the MA

parameter, θ, and then fitting the GARCH model to the residuals.

Furthermore, we also test for homoscedasticity in the residuals of the

first step using the test proposed by (Rodriguez and Ruiz, 2005).

Table 2, which reports the Monte Carlo means and standard

deviations of the QML estimates together with the percentage of

rejections of the homoscedasticity in the residuals, shows that the

estimator of θ is unbiased even in moderate samples. However, when

testing for homoscedasticity in the residuals, the null is not rejected in

47.6% of the series when T=200. This result is also reflected in the

fact that the estimates of δ1 are not significantly different from zero

when T=200. Increasing the sample size leads to significant ARCH

effects. Furthermore, the average of the ARCH parameter estimates is

the same regardless of the sample size, in particular 0.094, while the

average of the GARCH parameter estimates increases with the sample

size. Consequently, the persistence, measured by δ1̂+δ ̂2, increases. In
particular, the persistence goes from 0.841 when T=200 to 0.945

when T=5000. Note that the common ARCH parameter of the

original disturbances is 0.15 while the common persistence is 0.95.

Therefore, although in large samples, δ1 is underestimated with

respect to the ARCH parameters in ɛt and ηt, the average persistence

of the reduced form GARCH model is the same as the common

persistence observed in the local level disturbances.

4. Conclusions

We show that the reduced form noise of unobserved component

models with independent non Gaussian noises is uncorrelated

although non independent. On the other hand, when the noises are

GARCH, the reduced form noise is not a proper GARCH but it can be

well approximated by it. However, taking differences in series with

conditionally heteroscedastic stochastic trends weakens the strength

of the heteroscedasticity. This result could be expected as the

heteroscedasticity weakens under contemporaneous aggregation;

see, for example, (Zaffaroni, 2007). Consequently, in small samples,

often one cannot reject the null of homoscedasticity in series

composed of one or more conditionally heteroscedastic components.

This apparent homoscedasticity of the reduced form noise may have

important implications when building prediction intervals for future

values of the series of interest; see (Pellegrini et al., 2007).
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Table 1

Moments of the reduced form noise, at, for different models with non-Gaussian homoscedastic noises.

q κε κη θ κΔy
ρ1
(Δy)2 κα ρ1

α2 ρ2
α2 ρ3

α2 ρ4
α2 ρ5

α2

0.5 0 3 0.5 0.120 0.151 0.273 0.030 0.008 0.002 0.001 0.000

2
p

0 3 0.324 0.515 0.068 0.665 0.026 0.003 0.000 0.000 0.000

0.5 3 3 0.5 1.080 0.260 0.818 0.194 0.048 0.012 0.003 0.001

2
p

3 3 0.324 1.029 0.142 1.120 0.063 0.007 0.001 0.000 0.000

0.5 3 0 0.5 0.960 0.270 0.546 0.241 0.060 0.015 0.004 0.001

2
p

3 0 0.324 0.515 0.171 0.456 0.109 0.011 0.001 0.000 0.000

Table 2

Monte Carlo averages and standard deviations (in parenthesis) of the QML estimates of the IMA-GARCH parameters. The series are generated by a local level model with GARCH

noises with parameters α1=γ1=0.15, α2=γ2=0.8 and q=1 (θ= 0.382). Q(10) reports the percentage of series in which the null of homoscedasticity is rejected at 5% when

using the statistics proposed by (Rodriguez and Ruiz, 2005) at lag 10.

Estimated IMA(1,1) on yt Estimated GARCH(1,1) on at

T=200 T=1000 T=5000 T=200 T=1000 T=5000

θ̂= 0.389(0.12) 0.386(0.06) 0.383(0.03) δ̂1= 0.094(0.06) 0.094(0.02) 0.094(0.01)

Q(10)= 52.4% 99.6% 100.0% δ̂1+ δ̂2= 0.841(0.21) 0.937(0.04) 0.945(0.01)

3




