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1 Introduction

The capital structure of a firm is basically described by the two main
elements that characterize its debt: Leverage and maturity. Understand-
ing the trade-offs that determine the optimal choice of these two variables,
is therefore a prerequisite to develop a model able to provide quantitative
guidance.
Optimal leverage represents a compromise between the “nominal” stream

of tax benefits that debt generates, and the probability of this stream being
received. As the firm increases its leverage, interest payments are higher,
and also higher the tax deductions associated to these payments. This would
induce the firm to choose a leverage rate equal to 100 percent. However, there
are two reasons why a firm will never do this: First, higher leverage means
higher default probability, with the costs associated to this event. Second,
and more importantly, tax deductions only apply if the firm has a taxable
income, that is, if the firm is getting positive profits, and these are less likely
to happen the higher the interest payments.
On the other hand, the optimal debt maturity choice will balance “firm

flexibility” and issuance costs. The shorter the maturity, the higher the firm
flexibility to accommodate its leverage to new information.1 But at the same
time, the shorter the maturity, the more often the firm has to face issuance
costs. The trade-off between these two contrary incentives will determine the
optimal debt maturity.
One approach to the problem of the optimal choice of the capital struc-

ture, has been to assume that by levering the firm managers can increase
its market value. The measure of the tax advantage to debt is then the dif-
ference between the market value of an optimally levered firm, and that of
its unlevered counterpart. This approach has been widely adopted in recent
years, and includes Brennan and Schwartz (1978), Leland (1994), Leland and
Toft (1996), Leland (1998), and many others.
A different approach to the problem, and the one adopted here, was

introduced by Kane, Marcus and McDonald (1985). In their own words2:

“Equilibrium in the market for real assets requires that the price

1Although this new information may include fluctuations in the risk free interest rate,
the firm per period income, and may other innovations, we will assume that the only
source of uncertainty is the market value of the firm unlevered assets.

2Kane, Marcus and McDonald (1985, p. 479).
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of those assets be bid up to reflect the tax shields they can offer to
levered firms. Thus, there must be an equality between the mar-
ket price of real assets and the values of optimally levered firms.
The standard measure of the advantage to leverage compares the
values of levered and unlevered assets, and can be misleading and
difficult to interpret...”

Kane, Marcus and McDonald (KMM) show that a more reasonable mea-
sure of the advantage to leverage is the “extra rate of return, net of a mar-
ket premium for bankruptcy risk, earned by a levered firm relative to an
otherwise-identical unlevered firm”. They find closed form solutions for the
value of the debt and the equity, and develop a numerical algorithm to find
the optimal leverage and maturity for different parameter values. By identi-
fying the value of an optimally levered firm with that of its unlevered coun-
terpart, they recognize the possibility of optimally levering the firm after the
maturity date of current debt.
Although the trade-offs described above are also the basic hypothesis in

KMM (1985), and although we acknowledge in their article the motivation
for the present one, we have to claim that their formulation of the problem
results in an inadequate “theoretical test” for such hypothesis.
We have argued that the main element that will prevent the firm from

choosing a 100 percent leverage rate, is the possibility of getting non positive
profits, because tax benefits are lost in this case. KMM, however, link the
loss of tax benefits to the situation in which the firm goes to bankruptcy,
which is a much more extreme (and unlikely) situation. Being this point
important, the main limitation of their model comes nevertheless from the
assumption of a zero coupon bond. Brennan and Schwartz (1978) intro-
duced a model in which the firm issued a coupon bond, was levered during
the holding period, and then remained permanently unlevered. This model
predicted that perpetual debt was the optimal choice. KMM then argued
that perpetual debt has to be the optimal choice if the firm can issue debt
only once, because under this assumption this is the only way in which the
firm can enjoy tax benefits indefinitely. A model that allows the firm to issue
new debt optimally after the maturity of current debt, should not give such
a questionable result. The argument, being appealing, cannot however be
“tested” using a zero coupon bond model. The reason is that a model of
this type will result in finite optimal maturity, even if the firm cannot issue
new debt at expiration. We show this by an example in Appendix 1, but
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we provide the basic intuition here: With a zero coupon bond interests are
paid at the end of the holding period. Because no coupon is paid during this
period, interests accumulate exponentially. For short maturities, higher in-
terests and the corresponding tax deductions more than offset the increment
in the default probability that follows from a much higher final payment and
a longer maturity. A higher default probability has two effects: First, it re-
duces the present value of tax benefits because these are enjoyed if and only if
the firm does not default (following Brennan and Schwartz (1978) we assume
in this case that tax deductions are not directly linked to the presence of
positive profits). Second, it increases the present value of bankruptcy costs.
Eventually, the increment in nominal tax benefits does not compensate the
reduction in the probability of receiving this flow on one hand, nor the in-
crement in the present value of bankruptcy costs on the other hand, and the
result is that an optimal maturity has been reached.3

Fisher, Heinkel and Zechner (1989) follow the argument by which the
value of an optimally levered firm and that of an unlevered one has to be
identical in equilibrium. The objective of their model is to analyze how
recapitalization costs make firms to deviate from their optimal leverage, and
how this can make similar firms to exhibit quite different leverage ratios.
Their model considers a quite interesting problem that we acknowledge to
avoid to keep our own model tractable, but they do not allow tax benefits
to be lost in case of non positive profits, and debt is assumed by them to
be perpetual. These two aspects make their model unable to reflect how
leverage and maturity are determined according to the trade-offs discussed
at the beginning of this section.
We introduce a model in which risk free interest rate, firm risk, bankruptcy

costs, issuance costs, tax benefits on debt, and earnings ratio, determine the
optimal choice of leverage and maturity. The model assumes that debt pays
a regular flow of interests, allows the firm to rebalance its optimal capital
structure at maturity, and considers default to be an endogenous decision: At
every period, equity holders decide whether or not they are willing to finance
interest payments (or interest payments plus principal at maturity). Unlike
previous models, this decision is assumed to be time dependent. Simulation
results are also provided, with standard leverage ratios, debt maturities, and
credit spreads, being replicated for reasonable parameter values.

3There is of course an even more intuitive explanation for this result: It would be
difficult to find an investor willing to buy perpetual debt which pays no coupon!.
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The rest of the article is organized as follows: Section II presents the
model; Formal proofs are left to the appendix in section VI. Section III gives
intuition on results found in Section II by considering a simple example based
on the well known binomial model. Section IV develops the numerical algo-
rithm that solves the optimization problem, and provides simulation results.
Finally section V offers some concluding remarks.

2 The Model

We assume that the value of the firm unlevered assets evolves according
to the diffusion process

dA = µAdt+ σAdz (1)

where µ is the expected rate of return on A, σ is the volatility of the rate
of return which will be assumed to be constant, and dz is the increment of a
Wiener process.
Consider the firm issues a coupon bond with principal P and maturity

in T years. To keep the analysis as simple as possible, we restrict T to
be a natural number, and coupon payments, that we denote by c, to be
concentrated at the end of every single year. Debt issuance generates a
cost of βP which is borne by equity holders, with 0 < β < 1. All coupon
payments, and the final payment of coupon plus principal, are to be financed
by issuing additional equity. Tax deductions, τ , on the payment of interests
are also presumed. We also assume that these deductions apply as long as
the firm is profitable. If the firm annual EBIT represents a constat ratio,
ε, of the firm assets value, then this assumption implies that tax deductions
will be available in a given period if and only if εA > c, that is, if and only if
A > Ad, where Ad = c

ε
. Finally, if the firm enters into bankruptcy, its assets

A lose a fraction 0 ≤ α ≤ 1 of its value due to bankruptcy costs.4
4Although default need not lead to bankruptcy, we will use interchangeably the terms

default and bankruptcy to describe the situation in which the firm defaults. This may in
fact lead to any situation from an informal or formal restructuring to a formal liquidation.
What happens when a firm defaults is not modeled here.
Note also that the presence of bankruptcy costs makes (1) not to hold at the time the

firm defaults.
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We denote S (A, t), D (A, t) and v (A, t) the equity, debt and firm value
respectively, when t periods remain to maturity. Given that A represents the
market value of the firm assets, it must reflect all possible future revenues
coming from that assets, including tax benefits net of default costs when the
firm is optimally levered. As a consequence, we may identify the market value
of an unlevered firm with that of an optimally levered one. However, as long
as the firm is unlevered, it losses the return coming from tax benefits net of
default costs. In other words, the unlevered firm earns a below-equilibrium
rate of return. Following McDonald and Siegel (1984), and KMM (1985),
we have that under the assumptions made in Merton’s (1973) intertemporal
CAPM, any contingent claim F , which underlying asset is A, must satisfy
the partial differential equation

1

2
σ2A2FAA + (r − δ)AFA − Ft − rF = 0

where δ represents precisely the difference between the equilibrium rate
of return µ∗ (that necessary to compensate investors for bearing the risk of
asset A) and the actual rate of return µ, that is, it represents the difference
in return between an unlevered firm and an optimally levered firm. As in
KMM (1985), we consider δ to be the appropriate metric of the tax benefits
of debt net of default costs. δ will affect the valuation of S (A, t), D (A, t)
and v (A, t) in the same way it would do the presence of a dividend yield.
The firm value will be the sum of the equity value and the debt value.

However, we also may see the firm value as the sum of two different assets.
Specifically

v (A, t) = V (A, t) + TB (A, t)

t = 0, 1, ..., T − 1, T+

where TB (A, t) represents the present value of the tax benefits of debt.
V (A, t) on the other hand, describes an asset that gives the assets of the
firm whenever it becomes unlevered, either because it defaults and goes to
debt holders hands, or because the debt finally matures. It will not coincide
with the current value of the firm assets for two reasons: First, δ will affect
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the present value of the firm assets, in the same way the value of a forward
contract (with zero delivery price) is affected when the underlying asset pays
a dividend yield. Second, if the firm becomes unlevered because it defaults,
then the value of those assets will lose a rate α due to bankruptcy costs.5

Note that we define v (A, t) as the sum of these two components from t = 0
to t = T+. This is to differentiate the firm value after issuance, v+ (A, T ),
from the firm value before issuance, v− (A, T ). In this last case, another
component must me subtracted: The issuance costs βP . Then

v− (A, T ) = v+ (A, T )− βP (2)

Assuming by the moment that the bankruptcy-triggering firm assets value
when t periods remain to maturity, Abt, is exogenous and strictly lower than
Ad, it is shown in Appendix 2 that

S− (A,T ) = S+ (A, T )− βP

= Ae−δTNT (aT,0)− Pe−rTNT (bT,0) (3)

−
T−1P
k=0

ce−r(T−k) [NT−k (bT,k)− τNT−k (cT,k)]− βP

V (A, T ) = Ae−δTNT (aT,0) (4)

+ (1− α)A
T−1P
k=0

e−δ(T−k)
£
NT−(k+1) (aT,k+1)−NT−k (aT,k)

¤

TB (A, T ) =
T−1P
k=0

τce−r(T−k)NT−k (cT,k) (5)

v− (A, T ) = V (A,T ) + TB (A,T )− βP (6)

5It would be possible to consider two different assets to represent these two effects.
However, the mathematical exposition is simplified by considering both together.
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D (A,T ) = v− (A,T )− S− (A, T ) = v+ (A, T )− S+ (A,T )

= (1− α)A
T−1P
k=0

e−δ(T−k)
£
NT−(k+1) (aT,k+1)−NT−k (aT,k)

¤
+Pe−rTNT (bT,0) +

T−1P
k=0

ce−r(T−k)NT−k (bT,k) (7)

where N0 (·) = 1. For the more general case of z ≥ 1, Nz (·) denotes the
multivariate normal cumulative distribution function of dimension z, with
marginal distribution for each component N1 (0, 1), correlation matrix Rz =©
ρzij
ª
, with6

ρzij =


q

z−i+1
z−j+1 if i ≥ j

q
z−j+1
z−i+1 if i < j

and integration limits7

at,k = [at,k at,k+1 ... at,t−1]

bt,k = [bt,k bt,k+1 ... bt,t−1]

ct,k = [ct,k bt,k+1 ... bt,t−1]

t = 1, ..., T

k = 0, ..., t− 1
6Although this extension of KMM (1985) to a coupon bond, is based on the method-

ology developed by Geske (1977) to value corporate liabilities as compound options, the
correlation matrix we provide apparently differs from that derived by Geske. This is a
simple question of which is considered to be the ”first”, ”second”,..., and ”last” variable
into the multivariate normal density function. As an example, the element ρz12 in Geske

(1977) would be
q

1
2 , while this is the value of the element ρ

z
(z−1)z in our case.

7at,k is the integration limit of the ”first” variable in the multivariate normal density
function, while at,t−1 that of the ”last” one.
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where

at,s =
ln( AtAbs

)+
³
r−δ+σ2

2

´
(t−s)

σ
√
t−s

bt,s = at,s − σ
√
t− s

ct,s =
ln(AtAd)+

³
r−δ−σ2

2

´
(t−s)

σ
√
t−s

s = k, ..., t− 1

with At denoting the firm assets value when t periods remain to maturity
We may now derive the endogenous bankruptcy-triggering threshold, Abt,

as the A value below which equity holders choose not to pay when t periods
remain to maturity. It is reasonable to assume that the firm assets value
that makes the firm to default, is lower than the one that makes it to lose
tax deductions.8 The consequence is that we may presume that the payment
that equity holders choose not to satisfy bringing default is P + c and not
P + c (1− τ) at maturity, and c and not c (1− τ) at any other period. In
order to derive the T critical threshold values we should proceed recursively,
that is, we can find first Ab0 as the solution to

S (A, 0) = A− P − c = 0

getting, Ab0 = P +c, and then find Ab1, Ab2, ..., AbT−1 sequentially as the
implicit solution to

S (A, t) = Ae−δtNt (at,0)− Pe−rtNt (bt,0) (8)

−
t−1P
k=0

ce−r(t−k) [NT−k (bT,k)− τNT−k (cT,k)]− c = 0

for t = 1, ..., T − 1.
8Typically, default will be preceded by a long period of continuous negative profits in

which tax deductions are not enjoyed.
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3 An Example: The Binomial Case for T = 2

In order to give some intuition about what is behind previous expres-
sions, we provide a simple example based on the well known binomial model
for T = 2.9 In the general case we have presented above, a total of three
“states of nature” are feasible at each “node”, namely, non default and enjoy
tax deductions, non default but lose tax deductions, and default. To proceed
with such an example we have then to reduce the set of feasible states of
natures, and this is done by assuming that tax deductions are obtained in
any non defaulting state, that is, Ad is not constant in this case but equal
to Abt when t periods remain to maturity.
Picture 1 describes the possible evolution in the market value of the un-

derling asset A, and therefore, that of an optimally levered firm v.

A

uA

  2

u A

  2

d A

udA

  dA
III

II

I

IV

V

VI

Figure 1: Possible evolution of A.

In a risk neutral world, any agent should expect to get the risk free interest
rate as compensation for holding an optimally levered firm. Then at II

uv = e−r
£
pu2v + (1− p)udv + pu2v ¡eδ − 1¢+ (1− p) udv ¡eδ − 1¢¤

where p denotes the risk neutral probability of an upward movement u,
and the last two terms follow from the fact that, in addition to capital gains

9The author thanks J. Ignacio Peña for proposing him to include this example.
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(or losses), we have to consider the revenues coming from an optimal leverage.
As a result

p =
e(r−δ) − d
u− d

It is easily shown that the same p applies at III and I. We can now use
this risk neutral probability to evaluate the equity value at I, SI , recursively:

At IV

SIV =Max
©
0, u2A− P − (1− τ ) c

ª
Whether or not SIV is strictly greater than zero will depend on the specific

parameters. We assume u2A − P − (1− τ ) c > 0. In which follows, =awill
denote that the statement = holds by assumption. Then

SIV =a u
2A− P − (1− τ) c

At V

SV = Max {0, udA− P − (1− τ) c}

= audA− P − (1− τ ) c

and at VI

SV I = Max
©
0, d2A− P − (1− τ) c

ª
= a0
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At II

SII = Max
©
0, e−r

£
u2A− P − (1− τ) c

¤
p

+e−r [udA− P − (1− τ ) c] (1− p)− (1− τ ) c
ª

= ae
−r £u2Ap+ udA (1− p)¤− e−r [P + (1− τ ) c]− (1− τ ) c

At III

SIII = Max
©
0, e−r [udA− P − (1− τ) c] p− (1− τ) c

ª
= ae

−rudAp− e−r [P + (1− τ ) c] p− (1− τ) c

Finally, at I−

S−I =
£
u2Ap2 + udA2p (1− p)¤ e−2r − Pe−2rp (2− p)

(9)

− (1− τ ) ce−2rp (2− p)− (1− τ) ce−r − βP

If we know set T = 2 in (3), and Ad equal to Abt whenever t periods
remain to maturity, then

S− (A, 2) = Ae−2δN2 (a2,0)− Pe−2rN2 (b2,0) (10)

− (1− τ ) ce−2rN2 (b2,0)− (1− τ ) ce−rN1 (b1,0)− βP
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Ae−2δN2 (a2,0) then represents the present value of the firm unlevered
assets contingent on non defaulting at any period. In (9) this translates into
the value of the firm assets in all possible non defaulting final nodes, times the
risk neutral probability of those nodes being reached, and discounted at the
risk free interest rate. Pe−2rN2 (b2,0) on other hand, represents the present
value of the payment of debt principal, where N2 (b2,0) is the risk neutral
probability of this payment taking place, that is, N2 (b2,0) is the risk neutral
probability of non defaulting at any period, in our example p2 + p (1− p) +
(1− p) p = p (2− p). (1− τ ) ce−2rN2 (b2,0) can be identically interpreted;
This is the present value of the final coupon payment. (1− τ) ce−rN1 (b1,0)
represents the present value of the coupon payment to be satisfied when one
year remains to maturity. N1 (b1,0) is the risk neutral probability of non
defaulting at this period. In our binomial example, we have assumed that in
any case (II or III), the firm does not default, and this makes this probability
to add up to one. Finally βP indicates the issuance costs shared by equity
holders.
It is possible to derive VI , TBI , v

−
I and DI using similar arguments:

VI =
£
u2Ap2 + udA2p(1− p)¤ e−2r + (1− α) d2Ae−2r (1− p)2 (11)

TBI = τce−2rp (2− p) + τce−r (12)

v−I = VI + TBI − βP (13)

DI = v−I − S−I

= (1− α) d2Ae−2r (1− p)2

+Pe−2rp (2− p) + ce−2rp (2− p) + ce−r (14)
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We may relate now DI with its equivalent in the general case D (A, 2)
10

D (A, 2) = (1− α)A
1P
k=0

e−δ(2−k)
£
N2−(k+1) (aT,k+1)−N2−k (a2,k)

¤
+Pe−2rN2 (b2,0) +

1P
k=0

ce−r(2−k)N2−k (b2,k) (15)

In any defaulting state, the debt holders get the firm assets net of default
costs. This is contained in the first element of (14) and (15). Remember that
default only takes place in our example at VI. As a result, this component of
the debt value translates into the value of the firm assets at VI, (1− α) d2A,
times the discount factor, e−2r, times the risk neutral probability of this state
being reached, (1− p)2. If the firm does not default in any state, then at the
final period the debt holders get back the debt principal. This is what the
second term in both cases reflect. Finally, these two expressions take into
account the present value of future coupon payments.

4 Optimal Capital Structure

The capital structure should be chosen as to maximize the market value
of the firm, as a function of the market value of the firm assets. Given
that we assume that the market values the firm assets fully reflecting the
possibility of an optimal leverage, the best the firm can do is confirm the
market expectations. Said in other words, if the firm is unlevered, its market
value should reflect the implicit option to choose an optimal leverage. If
the firm is suboptimally levered later on, its value will fall reflecting that
it has been constrained to have a suboptimal leverage for a given period of
time. This is reasonable: Even if the suboptimally levered firm generates
tax revenues that the unlevered firm does not produce, the market will give
a higher value to the unlevered firm because it maintains the potential for
an immediate optimal leverage. As a result, the solution to the optimization
problem11

10Short-hand notation used.
11The restriction states that debt should be issued at par.
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MaxP,T v− (A,P, T )

s.t D (A,P, T ) = P
(16)

should be that

v− (A,P ∗, T ∗) = A (17)

But maximizing the firm value is equivalent to maximize the return com-
ing from the tax advantage to debt, which is measured by δ. Therefore, no
pare (P, T ) that solves (16) and results in (17) for a given δ can be optimal,
if there is another pare (P ∗, T ∗) that solves (16) and results in (17) for a
higher δ. The solution will be then given by a vector (P ∗, T ∗, δ∗) such that
δ∗ is the highest possible δ for which the solution to (16) is a pare (P ∗, T ∗),
that in addition makes condition (17) to hold. We then propose the following
numerical algorithm:12

1. Set A = 100, and some initial T0 and δ0.
13

2. Search the P value that maximizes v−, given T0 and δ0. This requires
the following procedure: For any guess of P , search the c value that makes
D = P . Any guess of c as the solution to D = P , implies at the same time
to compute Ab0, Ab1, ..., AbT−1 sequentially as described in section II.

3. Once the optimal P has been found, check if v− = A.

4. If v− 6= A, find a new δ1 such that v
− = A, given P . Again, any guess

of δ1, implies to search for the c value that makes D = P , and any guess of
c, implies the computation of Ab0, Ab1, ..., AbT−1.

5. Using this new δ1 instead of δ0, go back to step 2 and repeat until
convergence, that is, until the resulting v− equals A in step 3.

12Although this is similar in spirit to that in KMM (1985), there are two main differences:
First, we have to compute T bankruptcy-triggering firm assets values that are not present
in their model. Second, we force debt to be issued at par, what they do not need to do
given their different formulation of the problem.

13A can be arbitrarilly fixed given that the model does not include any scale effects.
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6. Consider different T values and search for the one that generates the
maximum δ.

The resulting vector (P ∗, T ∗, δ∗) is simultaneously consistent with the
value maximizing criterium (steps 2 and 6), and with conditions v− = A
(step 3) and D = P (step 2). Note that the algorithm requires to evalu-
ate multivariate normal cumulative distribution functions of order equal and
lower than T . We can approximate these estimations by using Monte Carlo
simulations. As an example, consider we need to evaluate N2 (a2,0) for some
given a2,0 and a2,1. In this case we generate 100.000 observations from a
bivariate normal density function, with marginal distribution for each com-
ponent N1 (0, 1), and correlation matrix R2. The result are 100.000 pairs
(ξ1, ξ2). We then compute the number of times it happens simultaneously
that ξ1 < a2,0 and ξ2 < a2,1. The ratio of this number of favorable cases
over the total number of possible cases, gives us finally an approximation of
N2 (a2,0).

14

Base case parameters are chosen as follows:

r = 0.04

σ = 0.25

α = 0.15

β = 0.01

τ = 0.25

ε = 0.035

Ibbotson Associates (1997) reports an historical interest rate on U.S.
Treasury Bills around 0.037. The standard deviation of the value of unlevered
assets is the same used by KMM (1985), and by Fisher, Heinkel and Zechner
(1989), and similar to the one applied in other models. Bankruptcy costs are
the mean of the range found by Andrade and Kaplan (1998) who estimate
financial distress costs to be 10 to 20 percent of firm value. Issuance costs are
consistent with estimations provided by Blackwell and Kidwell (1988). They
find flotation costs to represent 1.165 percent of the issue size for public is-
sues and 0.795 percent for private issues. Tax advantage to debt is chosen to

14The author thanks Santiago Velilla for the suggestion of this method.
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Optimal

Lev.
Coupon

Credit

Spread

Optimal

Mat.

Tax

Adv.
Ad

Base Case 43.10 1.99 51.94 6 25.80 56.93
r = 0.06 37.94 2.42 17.65 4 34.33 69.06
σ = 0.1 68.65 2.85 6.93 8 46.67 81.46
α = 0.05 51.10 2.46 70.63 7 31.26 70.35
β = 0.015 42.57 1.97 51.99 8 23.11 56.24
τ = 0.45 45.18 2.28 68.92 5 59.41 65.06
ε = 0.04 48.15 2.33 73.24 8 28.00 58.34

Table 1: Comparative Statics: Optimal leverage (%), coupon, credit
spread (b.p), optimal maturity (years), tax advantage to debt (b.p), and
no tax benefits-triggering firm value (Ad), for different parameter values.

represent not only corporate, but also personal taxes (Miller, 1977). Finally,
the EBIT ratio generates a “price-earnings ratio” for an optimally levered
firm equal to 16.25,15 close to its historical average which is around 17.
We summary simulation results in Tables 1 and 2. In the base case the

optimal leverage is 43.10 percent. Rajan and Zingalides (1995) find non
equity liabilities to represent on average 44 percent of total assets for U.S
firms. Optimal maturity on the other hand is 6 years, consistent with average
debt maturities reported by Stohs and Mauer (1996). The tax advantage to
debt is 25.8 basis points. In this, and in the rest of cases, the advantage
to debt appears higher than predicted by the one period model in KMM
(1985). The model is also consistent in predicting (for reasonable parameters)
firm values that trigger loss of tax deductions always higher than those that
trigger default. The credit spread for the base case is 51.94 basis points.
Leland (1994) argues that the historical credit spread of investment-grade
bonds with no call provision would be around 52 basis points.
Higher risk free interest rate seems to imply lower leverage. This is a

reasonable result that optimal capital structure models have traditionally
failed to generate. What distinguish our model of those is the recognition that
tax benefits are lost when the firm incur in zero or negative profits. Higher
risk free interest rate means higher coupon payments and higher stream of

15This is computed as the ratio S
εA . Note that even though coupon payments are taken

into account for taxational purposes, they actually do not alter the earnings per share
given that they are already included in the equity price.
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AbT−1 AbT−2 AbT−3 AbT−4
Base Case 33.95 34.37 35.09 36.19
r = 0.06 33.26 34.03 35.35 40.35
σ = 0.1 67.39 67.54 67.70 67.97
α = 0.05 40.70 41.08 41.51 42.25
β = 0.015 32.75 33.12 33.49 33.92
τ = 0.45 38.55 39.28 40.44 42.21
ε = 0.04 37.70 38.08 38.43 38.86

AbT−5 AbT−6 AbT−7 AbT−8
Base Case 38.00 45.10 − −
r = 0.06 − − − −
σ = 0.1 68.24 68.48 69.18 71.50
α = 0.05 43.58 45.44 53.56 −
β = 0.015 34.63 35.69 37.52 44.54
τ = 0.45 49.71 − − −
ε = 0.04 39.62 40.88 42.75 50.49

Table 2: Comparative Statics (continuation): Bankruptcy-triggering
firm value when k periods remain to maturity (Abk), for different parameter
values.
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tax benefits.16 But higher coupon also means lower probability of getting
these benefits. This second effect more than offsets the first one and the firm
reduces its leverage to reduce the coupon (that still will be higher than in the
base case), and with it the probability of getting losses. An increase in the
risk free rate has also the effect of reducing the optimal debt maturity. Lower
maturity could be interpreted as a complementary policy to the reduction in
leverage, that is, lower maturity also means lower probability of getting losses
during the holding period. Both, the reduction in leverage and maturity, lead
to a lower credit spread. Finally, the tax advantage to debt increases with
the risk free rate. This reflects in some sense that “buying tax benefits
becomes cheaper”, said in other words, the firm would need a lower principal
to obtain the same coupon, and lower principal means lower issuance costs
(even though these take place more frequently).
Higher volatility of the firm unlevered assets leads to a lower leverage

and a lower debt maturity. Again the consideration of positive profits as a
condition for tax benefits to take place, implies different results with respect
to previous works. Fischer, Heinkel and Zechner (1989) also predict that
a higher volatility will reduce the initial optimal leverage ratio (in order to
reduce the default probability). The coupon however will still be higher in
their model because of the higher risk, and with it the tax advantage to debt.
In our case, the reduction in leverage is high enough to reduce the coupon
in spite of the higher firm risk. Basically, the firm searches to reduce the
coupon to control the risk of falling in losses. Lower leverage implies lower
issuance costs, while a higher risk results in higher benefits from allowing
the firm to rebalance its leverage more often. Both of these effects bring a
reduction in the maturity of the debt. The lower stream of tax benefits has
a higher impact than the reduction in issuance costs and the result is a lower
tax advantage to debt.
The fourth line in Table 1 analyzes the case of lower bankruptcy costs.

These imply as expected a higher leverage. Lower “loss given default”, allows
the firm to incur in a higher default probability to increase the stream of tax
benefits. Higher leverage, on the other hand, induces the firm to increase
the debt maturity in order to face these cost less often. More leverage and
longer maturity more than offsets the reduction in bankruptcy costs, and

16This is what induce for instance Leland (1994) and Fisher, Heinkel and Zechner (1989)
models to predict a positive relationship between risk free interest rates and optimal initial
leverage ratios.
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the result is a higher credit spread. The mentioned reduction in bankruptcy
costs finally brings, also as expected, an increase in the tax advantage to
debt.
Next line in Table 1 considers this time a higher issuance cost. Although

we observe a reduction in the leverage ratio, this is not as large in magnitude
as we may presume. The higher effect is on the debt maturity: Consistent
with KMM (1985), higher issuance costs makes the firm to reduce the fre-
quency in which the firm faces these costs, and reduces the tax advantage to
debt.
An increase in the relevant tax ratio on the other hand, lead to a higher

leverage, increasing the credit spread. This time tax deductions are more
valuable, but in principle less likely because of the higher coupon. To com-
pensate the negative effect of a higher coupon on the probability of getting
tax benefits, the firm reduces the debt maturity. Higher tax rate implies the
predictable result of a higher benefit from issuing debt.
Finally, the higher the earnings ratio, the higher the leverage and the

debt maturity. This is reasonable because the firm can face a higher coupon
and a longer maturity while controlling the risk for non positive profits. Of
course all of this implies higher tax benefits.

5 Conclusions

We have presented a dynamic model of optimal capital structure. Lever-
age and maturity are chosen according to the risk free interest rate, the firm
risk, bankruptcy and issuance costs, tax benefits of debt, and the earnings
ratio. The model considers the possibility of issuing new debt optimally at
maturity of current debt, and links the availability of tax benefits to debt to
the presence of taxable income. Two elements of our model introduce con-
siderable advantages with respect to previous works: First, debt is allowed
to consist in a regular coupon bond. Second, we distinguish the event of
getting negative profits from the much more extreme event of default. By
doing this we solve some of the limitations in Kane, Marcus and McDonald
(1985) zero coupon bond model, and in Fischer, Heinkel and Zechner (1989)
perpetual debt model. A numerical algorithm has been used to solve the
optimization problem for different parameter values. The model shows to be
able to replicate standard leverage ratios, debt maturities and credit spreads,
for reasonable parameter values.
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6 Appendix

6.1 Appendix 1

Here we show that even a traditional static model of the and Brennan
and Schwartz (1978) type, leads to finite optimal maturity when debt is
assumed to consist in a zero coupon bond.
In this context, there is a distinction between the market value of an

unlevered firm, A, and that of its levered counterpart, v. By levering the firm
its market value increases due to tax benefits on the payment of interests,
but at the same time there is a possibility of default with its associated costs
that pushes the firm value in the opposite direction. Leverage and maturity
are then chosen as to maximize the firm value, that is, making the difference
between tax benefits and bankruptcy costs as large as possible.
Assume the value of the firm unlevered assets evolves according to (1).

This time the unlevered firm is assumed to generate a fear return, and there-
fore the value of any asset, F , whose value depends on A and time to maturity
t, will satisfy the differential equation17

1

2
σ2A2FAA + rAFA − Ft − rF = 0

Consider now that the firm issues a bond with maturity T and face value
P . Interests are paid at maturity and are equal to c. For simplicity, and
in line with Brennan and Schwartz (1978), we also assume that tax deduc-
tions, τ , apply independently of whether or not the firm has positive profits.
On the other hand, if the firm defaults, its assets loose a fraction α of its
market value. For any t ≥ 0, the firm value will be the sum of the firm
unlevered assets, plus the tax benefits to debt, TB (A, t), less bankruptcy
costs BC (A, t),18 that is

v (A, t) = A+ TB (A, t)−BC (A, t)
17Note that under this approach it is implicitly assumed that the firm unlevered assets

are still traded once the firm has been already levered. This is an important weakness of
these group of models.

18See Leland (1994).
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TB (A, t) can be seen as an independent asset that provides the tax ben-
efits generated by the firm. The boundary conditions for this asset are

TB (A, 0) =

 τc if A > P + c (1− τ)

0 if A ≤ P + c (1− τ )

And it is straightforward to show that

TB (A, T ) = τce−rTN (d2)

where

d1 =
ln
³

A
P+c(1−τ)

´
+
³
r + σ2

2

´
T

σ
√
T

d2 = d1 − σ
√
T

On the other hand, BC (A, t) can be seen as another independent asset
with boundary conditions

BC (A, 0) =

 0 if A > P + c (1− τ )

αA if A ≤ P + c (1− τ )

Then

BC (A,T ) = αA [1−N (d1)]

As a result

v (A,T ) = A+ τce−rTN (d2)− αA [1−N (d1)]
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Figure 2: TB, BC and FV I as a function of P and T . Parameters are
A = 100, r = 0.04, σ = 0.25, α = 0.15 and τ = 0.25.

At the same time, we could find the debt value, D (A, T ), by considering
its boundary conditions:

D (A, 0) =

 P + c if A > P + c (1− τ)

(1− α)A if A ≤ P + c (1− τ)

What implies that

D (A, T ) = (1− α)A [1−N (d1)] + (P + c) e−rTN (d2)

Figure 2 represents v (A, T ) as a function of P and T when debt is issued
at par, that is, for D (A, T ) = P .19

19Parameters are the those used in the calibration of our own model.
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Figure 3: TB (dotted line), BC (dashed line) and FV I (solid line) as a
function of T for P = 32. Parameters are A = 100, r = 0.04, σ = 0.25,
α = 0.15 and τ = 0.25.

It is clear that there exists a global maximum, that is, a zero coupon bond
model results in optimal finite maturity even in the traditional Brennan and
Schwartz (1978) framework. In this case P ∗ = 32 and T ∗ = 23 (we have
simply plotted v (A,T ) for P = 0, 1, ..., 70 and T = 0, 1, ..., 99 and have
chosen the pair that yields the highest v). The firm value is increased by
a 2.68 % thanks to this optimal leverage. Figure 3 represents TB, BC and
the increment in firm value (FV I) as a function of the debt maturity for
P = 32, while Figures 4 and 5 explain why we get such results: The interest
payment required by debtholders increases exponentially with the maturity
date (Figure 4), and the result is that the risk neutral default probability
(Figure 5) tends to 1. For T large enough, the increment in the default
probability more than compensates the increment in the interest payment
(and the corresponding nominal tax benefit), and the present value of tax
benefits starts to fall. On the other hand, as the default probability grows,
the present value of bankruptcy costs also does.
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Figure 4: Interest payment as a function of T for P = 32. Parameters are
A = 100, r = 0.04, σ = 0.25, α = 0.15 and τ = 0.25.
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Figure 5: RNDP as a function of T for P = 32. Parameters are A = 100,
r = 0.04, σ = 0.25, α = 0.15 and τ = 0.25.
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6.2 Appendix 2

We provide a formal proof of the valuation formulas presented in the core
of the article. We start by computing three fundamental multiple integrals.
Take 0 ≤ k < t ≤ T , where k, t and T are natural numbers, and define

G (t, k) = e−r(t−k)
Z ∞

Abt−1

Z ∞

Abt−2
...

Z ∞

Abk

Ak
t−1Q
h=k

f (Ah | Ah+1) dAk...dAt−2dAt−1

where Abt−1, Abt−2, ..., Abk are for the moment some given values, and

f (Ah | Ah+1) = 1√
2πσAh

exp

−12
n
ln (Ah)−

h
ln (Ah+1) +

³
r − δ − σ2

2

´io2
σ2


is the density function of Ah conditional on Ah+1.

Consider the following change of variable

x̃l = ln (Al)

l = k, ..., t

and define

f (x̃h | x̃h+1) = 1√
2πσ

exp

−12
n
x̃h −

h
x̃h+1 +

³
r − δ − σ2

2

´io2
σ2


Then

G (t, k) = e−r(t−k)
Z ∞

ln(Abt−1)

Z ∞

ln(Abt−2)
...

Z ∞

ln(Abk)

ex̃k
t−1Q
h=k

f (x̃h | x̃h+1) dx̃k...dx̃t−2dx̃t−1
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Use now

x̃h−
h
x̃h+1+

³
r−δ−σ2

2

´i
σ

=

n
x̃h−

h
x̃h+1+

³
r−δ+σ2

2

´io
+σ2

σ

h = k, ..., t− 1

to get

G (t, k) = Ate
−δ(t−k)

Z ∞

ln(Abt−1)

Z ∞

ln(Abt−2)
...

Z ∞

ln(Abk)

1

(2π)(t−k)/2 σt−k

t−1Q
h=k

exp

−12
n
x̃h −

h
x̃h+1 +

³
r − δ + σ2

2

´io2
σ2

 dx̃k...dx̃t−2dx̃t−1
We can make an additional change of variable

xl =
x̃l−

h
ln(At)+

³
r−δ+σ2

2

´
(t−l)

i
σ
√
t−l

l = k, ..., t− 1

Noting that

x̃h−
h
x̃h+1+

³
r−δ+σ2

2

´i
σ

= xh
√
t− h− xh+1

√
t− h− 1

h = k, .., t− 2

we may express G (t, k) as
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G (t, k) = Ate
−δ(t−k)

Z ∞

−at,t−1

Z ∞

−at,t−2
...

Z ∞

−at,k

p
(t− k)!

(2π)(t−k)/2

t−2Q
h=k

exp

½
−1
2

h
xh
√
t− h− xh+1

√
t− h− 1

i2¾

exp

½
−1
2
x2t−1

¾
dxk...dxt−2dxt−1

Define now Qz =
©
qzij
ª
, as the square symmetric matrix of dimension z,

where

qz11 = z

qzii = 2 (z − i+ 1) for i = 2, ..., z

qzij =

 −
√
z − i+ 1√z − j + 1 if |i− j| = 1

0 if |i− j| ≥ 2

It is possible to show that Qz = R
−1
z . To see this define Wz = RzQz =©

wzij
ª
, and consider the following cases:

a) j = 1

In this case it is easy to see that

wz11 =
zX
k=1

ρz1kq
z
k1 = ρz11q

z
11 + ρz12q

z
21 = 1

wzi1 =
zX
k=1

ρzikq
z
k1 = ρzi1q

z
11 + ρzi2q

z
21 = 0 for i = 2, ..., z
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b) j = z

Check now that

wziz =
zX
k=1

ρzikq
z
kz = ρzi(z−1)q

z
(z−1)z + ρzizq

z
zz = 0 for i = 1, ..., z − 1

wzzz =
zX
k=1

ρzzkq
z
kz = ρzz(z−1)q

z
(z−1)z + ρzzzq

z
zz = 1

c) 1 < j < z

In this case

wzij =
zX
k=1

ρzikq
z
kj = ρzi(j−1)q

z
(j−1)j + ρzijq

z
jj + ρzi(j+1)q

z
(j+1)j

Consider the three possible situations, namely i ≤ j − 1, i = j, and
i ≥ j + 1, and make straightforward computations to see that wzii = 1 and
wzij = 0 for i 6= j; i = 1, ..., z; j = 2, ..., z − 1.

We can now use previous arguments, and |Rz| = 1
z!
, to express G (t, k) as

G (t, k) = Ate
−δ(t−k)

Z ∞

−at,t−1

Z ∞

−at,t−2
...

Z ∞

−at,k

1

(2π)(t−k)/2 |Rt−k|1/2

exp

½
−1
2
XR−1t−kX

0
¾
dxk...dxt−2dxt−1

where X = [xk ... xt−2 xt−1]. Finally
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G (t, k) = Ate
−δ(t−k)Nt−k (at,k)

t = 1, ..., T

k = 0, ..., t− 1

Define also

Ĝ (t, k) = e−r(t−k)
Z ∞

Abt−1

Z ∞

Abt−2
...

Z Abk

0

Ak
t−1Q
h=k

f (Ah | Ah+1) dAk...dAt−2dAt−1

Previous derivations imply that

Ĝ (t, k) = Ate
−δ(t−k)

Z ∞

−at,t−1

Z ∞

−at,t−2
...

Z −at,k

−∞

1

(2π)(t−k)/2 |Rt−k|1/2

exp

½
−1
2
XR−1t−kX

0
¾
dxk...dxt−2dxt−1

and finally20

Ĝ (t, k) = Ate
−δ(t−k) £Nt−(k+1) (at,k+1)−Nt−k (at,k)¤

t = 1, ..., T

k = 0, ..., t− 1

(18)

20An alternative approach to evaluate multiple integrals like Ĝ (t, k) using multivariate
normal cumulative distributions functions, is to consider an appropriate transformation of
the correlation matrix. An example is in the valuation formula for American put options
derived by Geske and Johnson (1984).
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Another useful multiple integral is the following

H (t, k) = e−r(t−k)
Z ∞

Abt−1

Z ∞

Abt−2
...

Z ∞

Abk

t−1Q
h=k

f (Ah | Ah+1) dAk...dAt−2dAt−1

Define

yl =
ln(Al)−

h
ln(At)+

³
r−δ−σ2

2

´
(t−l)

i
σ
√
t−l

l = k, ..., t− 1

then

ln(Ah)−
h
ln(Ah+1)+

³
r−δ−σ2

2

´i
σ

= yh
√
t− h− yh+1

√
t− h− 1

h = k, ..., t− 2

and H (t, k) reduces to

H (t, k) = e−r(t−k)
Z ∞

−bt,t−1

Z ∞

−bt,t−2
...

Z ∞

−bt,k

1

(2π)(t−k)/2 |Rt−k|1/2

exp

½
−1
2
Y R−1t−kY

0
¾
dyk...dyt−2dyt−1

where Y = [yk ... yt−2 yt−1]. If we also set H (t, k) = 1 for t = k, then the
result is that

H (t, k) = e−r(t−k)Nt−k (bt,k)

t = 1, ..., T

k = 0, ..., t
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A final multiple integral we will be using is

I (t, k) =



if t− k = 1

e−r
R∞
Ad
f (Ak | Ak+1) dAk

and if t− k ≥ 2

e−r(t−k)
R∞
Abt−1 ...

R∞
Abk+1

R∞
Ad

t−1Q
h=k

f (Ah | Ah+1) dAkdAk+1...dAt−1

If we now set I (t, k) = 1 for t = k, then previous arguments result in

I (t, k) = e−r(t−k)Nt−k (ct,k)

t = 1, ..., T

k = 0, ..., t

At this point we are ready to derive specific expressions for equity, debt,
and firm value.

Equity:

The equity value when the debt matures will be given by

S (A, 0) =

 A− P − (1− τ) c if A > Ad

Max {0, A− P − c} if A ≤ Ad

and the firm will default whenever A0 ≤ Ab0 = P + c.

When only one year remains to maturity
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S (A, 1) =



G(1, 0)− PH(1, 0)−
1P
k=0

c [H(1, k)− τI(1, k)] if A > Ad

Max {0, G(1, 0)− PH(1, 0)

−c [H(1, 0)− τI(1, 0)]− c} if A ≤ Ad

=



Ae−δN1 (a1,0)− Pe−rN1 (b1,0)

−
1P
k=0

ce−r(1−k) [N1−k (b1,k)− τN1−k (c1,k)] if A > Ad

Max
©
Ae−δN1 (a1,0)− Pe−rN1 (b1,0)

ce−r [N1 (b1,0)− τN1 (c1,0)]− c} if A ≤ Ad

The firm will default this time whenever A1 ≤ Ab1, but now the default
threshold Ab1 will be some non explicit value. Solving for Ab1 leads to

S (A, 2) =



G(2, 0)− PH(2, 0)−
2P
k=0

c [H(2, k)− τI(2, k)] if A > Ad

Max {0, G(2, 0)− PH(2, 0)

−
1P
k=0

c [H(2, k)− τI(2, k)]− c} if A ≤ Ad
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=



Ae−δ2N2 (a2,0)− Pe−r2N2 (b2,0)

−
2P
k=0

ce−r(2−k) [N2−k (b2,k)− τN2−k (c2,k)] if A > Ad

Max
©
0, Ae−δ2N2 (a2,0)− Pe−r2N2 (b2,0)

−
1P
k=0

ce−r(2−k) [N2−k (b2,k)− τN2−k (c2,k)]− c} if A ≤ Ad

In the same way we can find S (A, t), t = 3, ..., T+, and S− (A, T ) as
S+ (A, T )− βP .

Firm:

We may now compute both, V (A, t) and TB (A, t). First note that

V (A, 0) =

 A if A > Ab0

(1− α)A if A ≤ Ab0

and then

V (A, 1) =

 G(1, 0) + (1− α) Ĝ(1, 0) if A > Ab1

(1− α)A if A ≤ Ab1

=

 Ae−δN1 (a1,0) + (1− α)Ae−δ [1−N1 (a1,0)] if A > Ab1

(1− α)A if A ≤ Ab1

For t = 2
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V (A, 2) =


G(2, 0) + (1− α)

1P
k=0

Ĝ(2, k) if A > Ab2

(1− α)A if A ≤ Ab2

=



Ae−δ2N2 (a2,0)

+ (1− α)A
1P
k=0

e−δ(2−k)
£
N2−(k+1) (a2,k+1)−N2−k (a2,k)

¤
if A > Ab2

(1− α)A if A ≤ Ab2

and in general, for any t < T

V (A, t) =


G(t, 0) + (1− α)

t−1P
k=0

Ĝ(t, k) if A > Abt

(1− α)A if A ≤ Abt

=



Ae−δtNt (at,0)

+ (1− α)A
t−1P
k=0

e−δ(t−k)
£
Nt−(k+1) (at,k+1)−Nt−k (at,k)

¤
if A > Abt

(1− α)A if A ≤ Abt

while for t = T

V (A, T ) = G(T, 0) + (1− α)
T−1P
k=0

Ĝ(t, k)

what drive us to expression (4).
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On the other hand

TB (A, 0) =

 τc if A > Ad

0 if A ≤ Ad

then

TB (A, 1) =



1P
k=0

τcI(1, k) if A > Ad

τcI(1, 0) if Ab1 < A ≤ Ad

0 if A ≤ Ab1

=



1P
k=0

τce−r(1−k)N1−k (c1,k) if A > Ad

τce−rN1 (c1,0) if Ab1 < A ≤ Ad

0 if A ≤ Ab1

and in general

TB (A, t) =



tP
k=0

τcI(t, k) if A > Ad

t−1P
k=0

τcI(t, k) if Abt < A ≤ Ad

0 if A ≤ Abt
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=



tP
k=0

τce−r(t−k)Nt−k (ct,k) if A > Ad

t−1P
k=0

τce−r(t−k)Nt−k (ct,k) if Abt < A ≤ Ad

0 if A ≤ Abt

for t < T , while TB (A, T ) results in expression (5).

Finally, v (A, t) = V (A, t)+TB (A, t) for t = 0, ..., T+, whereas v− (A, T )
will be given by (6).

Debt:

The debt value will be the firm value minus the equity value

For any t < T

D (A, t) =



(1− α)A
t−1P
k=0

e−δ(t−k)
£
Nt−(k+1) (at,k+1)−Nt−k (at,k)

¤
+Pe−rtNt (bt,0) +

tP
k=0

ce−r(t−k)Nt−k (bt,k) if A > Abt

(1− α)A if A ≤ Abt

while D (A, T ) is given in (7).¥
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