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Abstract 

This article proposes an omnibus test for monotonicity of nonparametric conditional 

distributions and its moments. Unlike previous proposals, our method does not require smooth 

estimation of the derivatives of nonparametric curves and it can be implemented even when 

the probability densities do not exist. In fact, we only require continuity of the marginal 

distributions. Distinguishing features of our approach are that the test statistic is pivotal under 

the null and invariant to any monotonic continuous transformation of the explanatory variable 

in finite samples. The test statistic is the sup-norm of the difference between the empirical 

copula function and its least concave majorant with respect to the explanatory variable 

coordinate. The resulting test is able to detect local alternatives converging to the null at the 

parametric rate n
-1/2

; like the classical goodness-of-.t tests. The article also discusses restricted 

estimation procedures under monotonicity and extensions of the basic framework to general 

conditional moments, estimated parameters and multivariate explanatory variables. The finite 

sample performance of the test is examined by means of a Monte Carlo experiment. 
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1 Introduction

Let (Y,X) be a bivariate random vector taking values in Y ×X ⊆ R2 with joint distribution

F (y, x) =

∫ x

−∞
FY |X (y| x̄)FX (dx̄) , (y, x) ∈ Y × X , (1)

where FY |X is the conditional distribution function of Y given X and, henceforth, Fξ denotes

the marginal cumulative distribution function (cdf) of the generic random variable (r.v.) ξ.

This article is primarily concerned with nonparametric testing of the monotonicity of FY |X
with respect to the explanatory variable X. That is, the null hypothesis is

H0 : FY |X (y| ·) ∈M for each y ∈ Y , (2)

where

M = {m : X ⊆ R→ R s.t. m (x′) ≥ m (x′′) for x′ ≤ x′′}

is the set of monotonically non-increasing functions with support X . We consider omnibus
tests, where the alternative hypothesis, H1, is the negation of H0. The procedure can also

be applied to testing monotonicity in a subset of Y × X . The discussion and results below
obviously apply to the monotonically non-decreasing case mutatis mutandi.

Notice that, when X is a dichotomous random variable, the null hypothesis is the classi-

cal stochastic dominance hypothesis using two samples, e.g. when comparing distributions

between treatment and control groups. Thus, H0 can be interpreted as the generalization

of the Smirnov’s two sample test, or stochastic dominance test, to an arbitrary (infinite)

number of samples.

Testing monotonicity is interesting, first of all, because estimators of nonparametric

monotonic curves can be obtained without imposing smoothness restrictions, which may be

hard to test in practice. See e.g. Brunk (1958) and the monograph by Barlow et al (1972).

The effi ciency of these isotonic estimators can be improved when it is additionally known

that the nonparametric curve is smooth. See e.g. Mukerjee (1988) and Mammen (1991). A

test for H0 has been recently proposed by Lee, Linton and Wang (2009), LLW henceforth,

generalizing the test of monotonicity for regression functions proposed by Ghosal, Seen and

Van der Vaart (2001). LLW offers a fairly comprehensive account of motivations for testing

H0 in economics research. See also Matzkin (1994) for a survey on how the monotonicity re-

striction, amongst others, can be derived from an economic model and how these restrictions

can be used for identification and estimation of nonparametric curves.

The LLW and Ghosal et al. (2001) tests, as well as the vast majority of existing
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monotonicity tests, rely on the assumption that the nonparametric curve is smooth enough,

and the tests are based on some kind of smooth nonparametric estimator of the first deriv-

ative. See also previous proposals by Schlee (1982), Bowman, Jones and Gijbels (1998) or

Hall and Heckman (2000). The performance of these tests depends on the satisfaction of

several assumptions on the nonparametric curve whose monotonicity is tested, as well as

other underlying nonparametric curves, despite the nuisance of a suitable choice of some

smoothing parameter. These tests are not valid when the underlying nonparametric curve

is not smooth enough. Also, testing the required smoothness, prior to implementing the

monotonicity test, is often too involved and may lead into pretest problems. Therefore,

testing monotonicity in the absence of smoothness is well motivated. The tests proposed in

this article can be implemented only assuming that the marginal distributions of Y and X

are continuous.

In this article, rather than looking at the first derivative of the curve, we pay attention

to its integral. To that end, we introduce the copula function

C (u, v) := F
(
F−1Y (u) , F−1X (v)

)
, (u, v) ∈ [0, 1]2 ,

where F−1ξ denotes the generalized quantile function, i.e. F−1ξ (u) := inf{t ∈ R : Fξ(t) ≥
u}, u ∈ [0, 1], associated to the cdf Fξ. We shall assume that FX is continuous, so that

FX(F−1X (v)) = v for all v ∈ [0, 1]. Hence, from (1) we can write

C (u, v) =

∫ v

0

FY |X
(
F−1Y (u)

∣∣F−1X (v̄)
)
dv̄, (u, v) ∈ [0, 1]2 .

Therefore, since F−1X (v̄) is a non-decreasing function, we can characterize H0 as

H0 : C (u, ·) ∈ C for each u ∈ [0, 1] ,

where C is the set of concave functions.
The null hypothesis can be alternatively characterized using the least concave majorant

(l.c.m) operator, T say, applied to the explanatory variable coordinate. That is, the l.c.m
of C (u, ·) for each u ∈ [0, 1] fixed, T C (u, ·), is the function satisfying the following two
properties: (i) T C (u, ·) ∈ C and (ii) if there exists h ∈ C with h ≥ C (u, ·) , then h ≥
T C (u, ·). Henceforth, T C denotes the function resulting of applying the operator T to the
function C (u, ·) for each u ∈ [0, 1] . Thus, we can alternatively write H0 as

H0 : T C ≡ C. (3)
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Obviously, the greatest convex majorant must be used for characterizingH0 in the monotoni-

cally non-decreasing case. Grenander (1956) found that the slope of the l.c.m of the empirical

distribution is the maximum likelihood estimator of a monotonic non-increasing probability

density. Chernoff (1964) applied Grenander’s ideas to the estimation of a mode and Prakasa

Rao (1969) to the estimation of an unimodal probability density. Brunk (1958) extended

this idea to estimating a monotonic (isotonic) regression function, see Barlow et al (1972)

for a monograph on isotonic regression. These ideas are behind the classical DIP test of

unimodality proposed by Hartigan and Hartigan (1985). More recently, Durot (2003) has

also used the difference between the empirical integrated regression function and its l.c.m.

for testing monotonicity of a regression curve in a fixed regressors set up with independent

and identically distributed (iid) errors.

Estimates of the l.c.m. of the copula process are used in this article for testing monotonic-

ity in the context of general conditional models, only assuming continuity of the marginal

distributions. Distinguishing features of our approach are that the test statistic is pivotal

under the null and invariant to any monotonic continuous transformation of the explanatory

variable in finite samples. Our proposal permits to relax different smoothness assumptions

on the underlying nonparametric curves imposed by the LLW and related tests. Also, the

performance of our test does not depend on the choice of a smoothing number and we are

able to study its power in the direction of local alternatives converging to the null at the

parametric rate n−1/2.

The rest of the article is organized as follows. Next section introduces the new test,

discussing its asymptotic behavior under H0 and local alternatives. The results of a Monte

Carlo study are summarized in Section 3. Last Section is devoted to final remarks, which

include extensions of the basic framework to testing the monotonicity of general conditional

moments, a discussion on restricted estimation procedures under monotonicity, indications

on how to implement the test in the presence of estimated parameters and the extension to

a vector of explanatory variables, were we consider monotonicity with respect to only one

coordinate and the hypothesis of stochastic semimonoticity, in the sense of Manski (1997). A

technical mathematical appendix at the end of the article contains the proofs of the results

presented in the article.
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2 Testing monotonicity of a conditional distribution

Given a random sample {(Yi, Xi) , i = 1, ..., n} of (Y,X) , the natural estimator of C (u, v)

is

Cn (u, v) :=
1

n

n∑
i=1

1{FY n(Yi)≤u}1{FXn(Xi)≤v}, (u, v) ∈ [0, 1]2 , (4)

where, given a sample {ξi}
n
i=1 of a generic r.v. ξ, Fξn (·) := n−1

∑n
i=1 1{ξi≤·} is the sample

analog of Fξ. The process

Kn :=
√
n (Cn − C)

is the standard empirical copula process. Deheuvels (1981a, 1981b) first obtained the exact

law and the limiting distribution of Kn when Y and X are independent, see also Gänssler

and Stute (1987). In particular, Deheuvels (1981a, 1981b) proved that,

Kn →d K∞ on the extended Skorohod’s space in D [0, 1]2 ,

where K∞ is a “completely tucked”Brownian sheet, a continuous Gaussian process with

mean zero and covariance function

E (K∞ (u1, v1)K∞ (u2, v2)) = (u1 ∧ u2 − u1u2) (v1 ∧ v2 − v1v2) ,

for (ui, vi) ∈ [0, 1]2 , i = 1, 2. That is, K∞ is distributed as the product of two independent

standard Brownian Bridges in [0, 1] .

Notice that T Cn (u, ·) , taking u fixed, is the corresponding sample version of T C (u, ·) .
Omnibus tests of H0 are based on the empirical process

K̂n :=
√
n (T Cn − Cn) .

The least favorable case (l.f.c) under the null hypothesis, which is the case closest to the

alternative, corresponds to the situation where X and Y are independent. In that case,

K̂n ≡ T Kn−Kn, after taking advantage of the fact that T (Cn (u, v)− uv) = T Cn (u, v)−uv,
by well-known properties of l.c.m. Hence, applying the continuous mapping theorem, under

the l.f.c.

K̂n →d K̂∞ on the extended Skorohod’s space in D [0, 1]2 ,

where K̂∞ := T K∞−K∞. The l.c.m. of a Brownian Motion has been studied by Groeneboom
(1983) amongst others.

Test statistics can be some suitable functional of K̂n, like other tests based on empirical
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processes. We propose to use the sup−norm, i.e the Kolmorov-Smirnov criteria. That is,
the test statistic is

τn =
∥∥∥K̂n

∥∥∥
∞
, (5)

where, henceforth, with some abuse of notation we denote by ‖·‖∞ the sup − norm in the

corresponding space of functions. For instance, for any generic function f : [0, 1]2 → R,
‖f‖∞ = sup(u,v)∈[0,1]2 |f (u, v)| . Notice that K̂n is a positive function.

The results in Deheuvels (1981a, 1981b) and continuity of T imply that the finite sample
distribution of K̂n is pivotal and can be tabulated. Thus, a finite sample test at the α−level
of significance rejects H0 if τn > τnα, where τnα := inf{t ∈ R : P (τn ≤ t| l.f.c.) ≥ 1 − α}
is the (1− α) − quantile of τn in the l.f.c. Since τnα is diffi cult to calculate analytically, it
is approximated by Monte Carlo as accurately as desired. Table I reports the approximated

critical values of τn for different sample sizes based on 50,000 Monte Carlo simulations.

TABLE I ABOUT HERE

The asymptotic test rejects H0 at the α − level of significance if τn > τ∞α, where

limn→∞ Pr [τn > τ∞α| l.f.c.] = α. Next theorem justifies that the tests have the appropriate

level under the following mild condition.

Assumption A1: The sequence {(Yi, Xi) , i = 1, ..., n} is an iid sample, distributed as
(Y,X) . The cdfs FX and FY are continuous.

Theorem 1 Under H0 and Assumption A1,

Pr (τn > τnα) ≤ α.

Moreover,

lim
n→∞

Pr (τn > τ∞α) ≤ α.

If we are interested in testing monotonicity of FY |X on a subset of S ⊆ Y × X we

should suitably modify the sup-norm on the desired subset. The test statistic would be

τSn = sup(u,v)∈S

∣∣∣K̂n (u, v)
∣∣∣ , which critical values can be approximated by Monte Carlo.

Next Theorem states that the proposed test is able to detect a large class of alternatives,

including local alternatives converging to the null at the parametric rate n−1/2. The following

assumption is needed to ensure the weak convergence of the empirical copula processes Kn

under both the null and (local) alternative hypotheses; see Gänssler and Stute (1987).
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Assumption A2: Under the local alternatives {(Yi,n, Xi,n) , i = 1, ..., n} is a sequence of
iid arrays for each n ≥ 1, with continuous marginal cdfs F (n)X and F (n)Y and a continuously

differentiable copula function.

Theorem 2 Under Assumption A2, for any β ∈ (0, 1) there is some γ > 0 such that

lim
n→∞

inf Pr (τn > τ∞α) ≥ β,

provided limn→∞ inf
√
n ‖T Dn −Dn‖∞ > γ, where Dn(u, v) = E[Cn (u, v)], with the expecta-

tion taken under A2.

Theorem 2 applies to both, fixed and local, alternatives. We first show that our Theorem 2

implies the consistency of our test for fixed alternatives. Under the alternative hypothesis

and Assumption A2, ‖Dn − Cn‖∞ →a.s. 0 as n → ∞, by Glivenko-Cantelli’s theorem and

the continuous mapping theorem. Likewise, ‖T (Dn − Cn)‖∞ →a.s. 0 as n → ∞, since by
well-known properties of the l.c.m, there exists a constant A such that ‖T (Dn − Cn)‖∞ ≤
A ‖Dn − Cn‖∞ . Hence, under fixed alternatives ‖T Dn −Dn‖∞ is close to ‖T Cn − Cn‖∞ ,
which in turn converges to a positive constant. Thus, we can apply Theorem 2 to any

β ∈ (0, 1), which proves that the test is consistent against any fixed alternative.

Theorem 2 also shows that our test is able to detect local alternatives of the form

H1n : T Dn (u, v) = Dn (u, v) +
a (u, v)√

n
, (u, v) ∈ [0, 1]2 ,

with a : [0, 1]2 → R+ such that ‖a‖∞ > γ. Note that these local alternatives are not

necessarily local to the l.f.c. but in the interior. This consistency against local alternatives

in the “interior”of the null hypothesis is confirmed in our simulations below.

3 Monte Carlo

We carried out a simulation study to demonstrate the finite-sample performance of the

proposed test, in comparison with the LLW’s approach. For the sake of completeness we

briefly describe their test statistic. LLW’s approach is an extension of that by Ghosal, Seen

and Van der Vaart (2001) to test for monotonicity in the whole conditional distribution

rather than just in the regression function. Their test is based on the U-process

Ûn(x, y) =

(
n

2

)−1 n∑
1≤i<j≤n

{1{Yi≤y} − 1{Yj≤y}}sgn(Xi −Xj)khi (x) khj (x) , (y, x) ∈ Y × X ,
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where sgn denotes the sign function, kh`(·) = h−1k(X`− ·/h), k is a kernel function and h is

a bandwidth such that h → 0 as n → ∞. Notice that Ûn (x, y) estimates ∂FY |X (y|x)
/
∂x

times a positive function, see LLW. They consider the Kolmogorov-Smirnov criterion

Ûn = sup
(y,x)∈Y×X

Ûn(x, y)

cn(x)
,

for a suitable standardized factor cn(x) = n−1/2σ̂n(x). Their test rejects for large values of

Ûn. Notice that the values of the test statistic Ûn may change under monotonic continuous
transformations of the explanatory variable X, while τn is always invariant under such

transformations for each n. Under H0, Ûn is asymptotically distributed as an extreme value
random variable and the level accuracy is poor in finite samples. This is why LLW suggest

to compute critical values by an approximation to the asymptotic distribution, as in Ghosal

et al. (2001), rather than the asymptotic distribution itself. We refer the reader to LLW’s

article for an explicit expression of the test rejection region. We report results using their

choice for the kernel function and consider the Epanechnikov kernel k(u) = 0.75(1 − u2),

and the bandwidth values h = 0.4, 0.5, 0.6 and 0.7. We denote their test by LLWn,h in our

simulations.

We consider the following data generating processes (DGP). Let {εi}n1 be a sequence of iid
N(0, 0.12) random variables, and let {Xi}n1 be a sequence of iid U [0, 1] variables, independent

of the sequence {εi}n1 . Then, the sample {Yi}
n
1 is generated according to:

N1: Yi = εi.

N2: Yi = 0.1Xi + εi.

ALT1: Yi = Xi(1−Xi) + εi.

ALT2: Yi = −0.1Xi + εi.

ALT3: Yi = −0.1 exp (−250(Xi − 0.5)2) + εi.

ALT4: Yi = 0.2Xi − 0.2 exp (−250(Xi − 0.5)2) + εi.

Models N1 and ALT1 were considered in LLW, whereas the rest of models have been used

in the isotonic regression literature, see Durot (2003) and references therein. We compare

LLW’s test with ours. Table 2 the proportion of rejections in 1,500 Monte Carlo replications

of the two tests at 5% of significance under the six designs and with sample sizes n = 50,

200 and 500. The results with other nominal levels were similar, and hence, they are not

reported.
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TABLE II ABOUT HERE

The reported empirical sizes for τn are accurate for N1. In agreement with the results in

LLW, their test shows some underrejection for the l.f.c. in N1. The design N2 corresponds

to the interior of the null hypothesis and, as expected, the proportion of rejection is small

and converging to zero with the sample size. As for the alternatives, none of the tests

is uniformly better than the others. LLW’s test performs best for the alternative ALT1,

but our test outperforms theirs for ALT2-ALT4. These alternatives suggest that our test

based on τn can be complementary to LLW’s test. In Figure 1(a) we plot the regression

function corresponding to ALT4. We observe that this alternative is in the interior of the

null hypothesis.

To better understand the local power properties of our test, we consider the following

DGP:

ALT5: Yi = a1{Xi≤0.5}(Xi − 0.5)3 − exp (−250(Xi − 0.5)2) + εi,

where {εi}n1 and {Xi}n1 are as in the previous simulations. ALT5 represents a model on the
alternative hypothesis which becomes more far away from the l.f.c. as a → ∞. In Figure
1(b) we plot the regression function corresponding to a = 15. From this plot we observe that

this represents another local alternative close to the interior of the null hypothesis.

Figure 1 ABOUT HERE

In Figure 2, we plot the empirical rejection probabilities for ALT5, based on 1500 Monte

Carlo replications at 5% nominal level and sample size n = 300. Several remarks are in

order. On one hand, LLW’s tests only have power against this alternative for low values of a

and low values of the bandwidth parameter. The proportions of rejections are very sensitive

to the bandwidth choice. On the other hand, τn performs best, particularly for moderate

values of a. For a = 15 none of the tests have power. In unreported simulations, we have

observed that, for n = 500 and a = 15, τn is able to detect this alternative, whereas the

LLW’s tests show a flat power at the nominal level.

Figure 2 ABOUT HERE

To summarize, these simulations suggest that the performance of our supremum statistic

is satisfactory, and compares favorably to competing alternatives in LLW. Our test does not

require bandwidth choices and, hence, should be appealing to practitioners.
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4 Final remarks and extensions

We have proposed a test for the monotonicity of a conditional distribution function, which is

distribution free under fairly primitive assumptions, without resorting to smooth estimators

of first derivatives.

Our procedure can be extended to the case of nonparametric tests of the hypothesis

Hγ
0 : E (γ (Y,X)|X = ·) ∈M

for some given function γ : Y × X→R. This includes monotonicity tests for the regression,
conditional variances and other higher conditional moments. In this situation, tests are

based on continuous functionals of the empirical process

K̂γ
n :=

√
n (T Cγ

n − Cγ
n) ,

where

Cγ
n (v) :=

1√
n

n∑
i=1

(γ (Yi, Xi)− γ̄n) 1{FXn(Xi)≤v}, v ∈ [0, 1] ,

with γ̄n := n−1
∑n

i=1 γ (Yi, Xi). The l.f.c corresponds now to mean independence, i.e.

E (γ (Y,X)|X = ·) = E (γ (Y,X)) a.s. Similarly to our Theorem 1 it can be shown that

if E (γ2 (Y,X)) <∞ and FX is continuous, under the l.f.c,

Cγ
n →d W

γ on the extended Skorohod’s space in D [0, 1] ,

whereW γ (v)
d
= B

(
τ 2γ(v)

)
−vB

(
τ 2γ(1)

)
, τ 2γ (v) := E

(
(γ (Y,X)− E (γ (Y,X)))2 1{FX(X)≤v}

)
,

v ∈ [0, 1] andB is the standard BrownianMotion on [0, 1] . The test statistic is τ γn :=
∥∥∥K̂γ

n

∥∥∥
∞
.

Also, note that, unlike τn, τ γn is no longer distribution-free under the l.f.c, even asymp-

totically. However, the critical values of the test based on τ γn can be approximated with

the assistance of bootstrap using resamples {(Y ∗i , Xi)}n1 with Y ∗i = γ̄n + Vi (Yi − γ̄n) for a

sequence {Vi}n1 of iid variables with zero mean and unit variance, draw independently of

{(Yi, Xi)}n1 . Details are omitted.
Once H0 in (2) is not rejected, nonparametric estimators of the conditional moments

can be obtained without imposing further smoothness assumptions on the underlying non-

parametric curves. That is, we can estimate nonparametrically FY |X , extending the work of

Prakasa Rao (1969) and Brunk (1970) among others, by considering the estimator,

FnY |X (y|x) := arg min
m∈M

n∑
i=1

[
1{Yi≤y} −m (y,Xi)

]2
1{Xi≤x}.
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This is in fact the slope of T Cn (FX (x) , FY (y)) with respect to y, which can be readily

computed from

FnY |X (y|XRi) = max
s≤i

min
t≥i

t∑
j=s

1{YRi≤y},

where {Ri}ni=1 is the sequence of X − ranks, i.e. XR1 ≤ XR2 ≤ ... ≤ XRn . Alternative

monotone estimators can be constructed by monotone rearranging an smoothed estimator,

as recently suggested by Chernozhukov, Fernandez-Val and Galichon (2009). Our estima-

tor FnY |X complements existing methods, as it does not require smoothness of the under-

lying conditional distribution FY |X . Reasoning as Brunk (1970), it can be proved that

FnY |X (y|x) , with (y, x) fixed, is n1/3 − consistent. The convergence rate can be improved,
when it is known that FY |X is smooth enough, by smoothing FnY |X , as proposed by Murk-

erjee (1988) for isotonic non-parametric regression. See also Mammen (1991) for an study

of the effi ciency gains. A thorough study of the properties of these estimators is beyond the

scope of this article and it is left for future work.

In some circumstances, it may be interesting to apply the test to fitted values or residuals

depending on estimated parameters, rather than to raw data. In these cases the test statistics

are no longer distribution-free, even asymptotically. This is the case in most tests using

empirical processes depending on estimated parameters, see e.g. Durbin (1973). However,

the critical values of the tests can be approximated with the assistance of bootstrap using

resamples {Y ∗i , Xi}ni=1, where {Y ∗i }
n
i=1 is either, a näive resample or a random permutation

of {Yi}ni=1 . The bootstrap can be justified in the lines of other tests using empirical processes
depending on estimated parameters, e.g. Andrews (1997).

Another important extension is to multivariate explanatory variables. Consider a 1 +

d − valued vector of r.v.’s (Y,X) taking values in Y×X ⊆ R1+d, with X =
(
X(1), ..., X(d)

)
and X ≡ X (1) × ...×X (d) ⊆ Rd. We may be interested in testing monotonicity with respect
to a particular coordinate, the j − th say, i.e. testing that a partial efect for X(j) is always

negative, or positive. This hypothesis can be written, for a given j ∈ {1, .., d} , as

H
(j)
0 : FY |X

(
y|x(−j), ·

)
∈M for each

(
y,x(−j)

)
∈ Y×X (−j)

where we use the notation x(−j) to denote the subvector of x =
(
x(1), ..., x(d)

)
that excludes

x(j) and X (−j) =
∏d

6̀=j,`=1
X (`) its corresponding support. Hence, H(j)

0 can also be expressed

as (3), in terms of the multivariate copula function

C (u,v) := F
(
F−1Y (u) , F−1

X(1)

(
v(1)
)
, ..., F−1

X(d)

(
v(d)
))
, (u,v) ∈ [0, 1]1+d ,
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where F is the joint distribution of (Y,X) and v =
(
v(1), ..., v(d)

)
. In this situation, T (j)C

denotes the function resulting of applying the l.c.m. operator T (j) to the function C, for
each

(
u,v(−j)

)
∈ [0, 1]d fixed. Given a random sample {Yi,Xi}ni=1 , Xi =

(
X
(1)
i , ..., X

(d)
i

)
, C

is estimated by its sample analog, as in (4),

Cn (u,v) :=
1

n

n∑
i=1

1{FY n(Yi)≤u}

d∏
`=1

1{
F
X(`)n

(
X
(`)
i

)
≤v(`)

}

resulting in the extension to the multiple explanatory variable case of the test statistic in (5)

τ (j)n :=
∥∥∥K̂(j)

n

∥∥∥
∞
,

where K̂(j)
n :=

√
n
(
T (j)Cn − Cn

)
. The computational burden increases with the number of

explanatory variables considered. The test statistic is not distribution free when d > 1 under

the l.f.c., which consists now of the independence between Y and the vector X, except in

the unlikely case where all the explanatory variables in X are independent. However, the

test can be implemented with the assistance of the bootstrap using resamples {Y ∗i ,Xi}ni=1 ,
where {Y ∗i }

n
i=1 is either a näive resample or a random permutation of {Yi}ni=1 .

The extension to testing stochastic semimonoticity in the sense of Manski (1997) is also

straightforward. The stochastic semimonotonicity hypothesis with d explanatory variables

is stated as

H̄
(d)
0 : FY |X (y| ·) ∈ M̄(d) for each y ∈ Y,

were

M̄(d) =
{

m : X ⊂ Rd → R s.t. m (x′) ≥ m (x′′) if x(j)′ ≤ x(j)′′ for all

j = 1, ..., d and x′ =
(
x(1)′, ..., x(d)′

)
, x′′ =

(
x(1)′′, ..., x(d)′′

)
∈ X

}
.

It is straightforward to prove that H̄(d)
0 can be alternatively written as

H̄
(d)
0 : T (j)C ≡ C for each j = 1, ..., d,

which suggests to use as test statistic

τ n = max
1≤j≤d

τ (j)n ,

which asymptotic critical values can be approximated using the bootstrap procedure dis-
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cussed above. These extensions to multivariate explanatory variables naturally apply to

stochastic semimonotonicity of conditional moments.

5 Appendices

5.1 Appendix A: Computation of the test statistic

This appendix contains formulae for computing the test statistic. Following well-known

algorithms for computing the classical Kolmogorov-Smirnov tests, we compute τn as

τn = max
1≤i≤n

max
1≤j≤n

√
n

(
T Cn

(
i

n
,
j

n

)
− Cn

(
i

n
,
j − 1

n

))
,

whereCn (i/n, 0) ≡ 0.Hence, all that is needed are the elementsCn (i/n, j/n) and T Cn (i/n, j/n) .

Computation of the elements Cn (i/n, j/n) is straightforward. A Matlab algorithm to com-

pute T Cn (i/n, ·) for each i = 1, ..., n, and our test statistic is available from the authors

upon request.

5.2 Appendix B: Proofs of the main results

Proof of Theorem 1: Define Gn = Cn − C. Then, by definition of l.c.m the function

T Gn(u, ·) +C(u, ·) is above Cn (u, ·) and is concave in v, for each u ∈ [0, 1] , under H0, since

both T Gn(u, ·) and C(u, ·) are concave for each u ∈ [0, 1]. Hence, T Gn + C is uniformly

above T Cn. Thus, under H0,

K̂n =
√
n (T Cn − Cn)

≤
√
n (T Gn −Gn) (6)

: = K̃n

When C(u, v) = uv, it holds that T Gn(u, v) = T Cn (u, v)−uv, (u, v) ∈ [0, 1]2 , by well-known

properties of the l.c.m. So (6) becomes equality. Hence,

Pr (τn > τnα) ≤ Pr (τ̃n > τnα | l.f.c) ≤ α,

where τ̃n :=
∥∥∥K̃n

∥∥∥
∞
, and

lim
n→∞

Pr (τn > τ∞α) ≤ lim
n→∞

Pr (τ̃n > τ∞α | l.f.c) = α,

13



where the last equality follows from the continuous mapping theorem.

Proof of Theorem 2: It follows from the proof of Theorem 1 that, uniformly,

K̂n =
√
n (T Dn −Dn) +

√
n (T Cn − T Dn − Cn +Dn)

=
√
n (T Dn −Dn) +OP (1).

The OP (1) term follows from the weak uniform convergence of
√
n (Cn −Dn) . To see this

convergence, notice that by Example 2.11.8 in van der Vaart and Wellner (1996, p. 210) the

standard bivariate empirical process

αn (y, x) =
1√
n

n∑
i=1

[
1{Yi,n≤y}1{Xi,n≤x} − E

(
1{Yi,n≤y}1{Xi,n≤x}

) ]
,

converges weakly in D [−∞,∞]2 . Now, the weak convergence of
√
n (Cn −Dn) follows from

the functional delta-method as in Fermanian et al. (2004, Theorem 3).
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Table I
Simulated Critical Values of τn based on 50000 MC simulations.

α/n 10 25 50 100 200 500 1000
0.10 0.759 0.783 0.792 0.800 0.806 0.811 0.811

0.05 0.791 0.840 0.848 0.861 0.864 0.870 0.872

0.01 0.885 0.947 0.970 0.980 0.980 0.988 0.993

Table II
Rejection Frequencies at 5%. 1500 MC simulations.

Model n τn LLWn,0.4 LLWn,0.5 LLWn,0.6 LLWn,0.7

50 0.045 0.020 0.024 0.032 0.034

N1 200 0.056 0.027 0.028 0.031 0.033

500 0.048 0.036 0.043 0.045 0.044

50 0.004 0.004 0.003 0.003 0.006

N2 200 0.000 0.000 0.004 0.012 0.023

500 0.000 0.000 0.002 0.012 0.044

50 0.511 0.672 0.742 0.764 0.749

ALT1 200 0.997 1.000 1.000 1.000 1.000

500 1.000 1.000 1.000 1.000 1.000

50 0.436 0.121 0.190 0.264 0.325

ALT2 200 0.911 0.550 0.760 0.862 0.920

500 0.999 0.949 0.994 0.999 1.000

50 0.090 0.048 0.062 0.061 0.054

ALT3 200 0.281 0.259 0.238 0.227 0.201

500 0.744 0.648 0.609 0.570 0.512

50 0.012 0.014 0.016 0.019 0.032

ALT4 200 0.170 0.022 0.016 0.014 0.010

500 0.806 0.052 0.021 0.008 0.008
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Figure 1. Regression functions for alternatives ALT4 (top panel) and ALT5 (bottom panel)

with a = 15.
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Figure 2. Rejection probabilities for ALT5 as a function of a. 1500 Monte Carlo

simulations. Sample size n = 300.
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