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� Abstract
The evaluation of new therapies to treat allergic asthma makes frequent use of histolog
ical studies. Some of them are based on microscope observation of stained paraffin
lung sections to quantify cellular infiltrate, an effect directly related to allergic processes.
Currently, there is no software tool available for doing this quantification automatically.
This paper presents a methodology and a software tool for the quantification of cellular
infiltrate in lung tissue images in an allergic asthma mouse model. The image is divided
into regions of equal size, which are then classified by means of a segmentation algo
rithm based on texture analysis. The classification uses three discriminant functions,
built from parameters derived from the histogram and the co occurrence matrix. These
functions were calculated by means of a stepwise discriminant analysis on 79 samples
from a training set. Results provided a correct classification of 96.8% on an independ
ent test set of 251 samples labeled manually. Regression analysis showed a good agree
ment between automatic and manual methods. A reliable and easy to implement
method has been developed to provide an automatic method for quantifying micros
copy images of lung histological studies. Results showed similar accuracy to that pro
vided by an expert, while allowing analyzing a much larger number of fields in a repea
table way.

� Key terms
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tation; texture

ASTHMA is a chronic inflammatory disease of the lung, characterized by airway

hyperresponsiveness to a variety of stimuli, eosinophilic inflammation of the airways,

mucus hypersecretion, and elevated serum IgE levels (1). Mortality of asthma has

increased worldwide, despite the use of currently available medications, underlining

the need for the development of novel therapies (2 4).

Previous studies indicate that murine models are useful for studying allergic dis

eases, including certain aspects of bronchial asthma such as cellular tissue inflamma

tion and pulmonary function. Three studies are commonly performed in this type of

experiments to assess the effects: immunologic parameters (immunoglobulines and

cytokines), pulmonary function (bronchial hyperactivity), and histological studies

(cellular infiltrate and bronchial mucus secretion). The latter are currently assessed by

visual inspection by an expert, as there is no automatic analysis tool available. Such a

tool would speed up the process, also providing a more repeatable quantification.

In theory, the amount of cellular infiltrate could be accurately assessed by means

of an appropriate segmentation algorithm (i.e., border detection) identifying each

cell nucleus on the image. The main difficulty for this individual cell segmentation

arises from the existence of cell aggregates, which hinders the detection of the con

tours. This is a difficult task for most image processing algorithms and the authors

do not know of any previous successful attempt. Furthermore, the nuclei of cells in

the bronchial wall are similarly stained and have the same size, making it difficult to
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differentiate them from the cellular infiltrate. The classical seg

mentation by thresholding also proved to be not sufficient to

separate the cellular infiltrate areas. It can be observed, how

ever, that the infiltrate has a texture pattern different from

other regions in the image. This fact suggested applying region

identification based on texture analysis (5).

Methods based on texture analysis have been used suc

cessfully to detect structural alterations in patients with Sjog

ren Larsson syndrome (6), quantify necrosis in cell cultures

(7), for automated migration analysis (8), to segment intravas

cular ultrasound (9), to identify neoplastic nuclei by charac

terizing chromatin structure in breast tumors (10,11) and in

prostate cancer (12), to segment chromatin regions (13), and

for monitoring tumor cell viability during treatment with an

antivascular drug (14).

This paper presents a method for the automatic quantifi

cation of cellular infiltrate in histological studies of the lung

based on texture analysis. Texture parameters have been

extracted from a set of training samples, calculating the opti

mum discriminant functions by stepwise procedures. The

method and its validation against manual quantification are

presented. Preliminary results of this work were presented pre

viously (15,16).

METHODS AND RESULTS

Segmentation is based on the classification of each region

of the image into one of three a priori classes, based on a vec

tor of texture parameters. These texture parameters were pre

viously obtained from the luminance component of the

images in a training data set by means of a stepwise discrimi

nant analysis that also provided the corresponding discrimi

nant (Fisher) functions. We developed a software tool that

makes use of these functions to implement an automatic pa

rameter extraction and classification. This tool also generates a

mask of the tissue area (non air) and provides the final result

in terms of percentage of cellular infiltrate area over total tis

sue area and severity scores.

The overall procedure followed in this work is depicted in

Figure 1. Each box of the flowchart is explained in the follow

ing sections.

Study Acquisition and Preparation

Induction of systemic allergic response was achieved by

the subcutaneous administration of Olea europaea extract in

BALB/c mice. Allergic airway response was generated by trans

nasal instillation of the allergens. For histological analysis,

lungs were fixed in 4% paraformaldehyde PBS and tissue

blocks were embedded in paraffin. Ten micrometer sections

were stained with Hematoxilyn Eosin (17).

We acquired the images with an Olympus CK40 micro

scope at 103 magnification, and captured them with an

Olympus DP11 camera adapted to the microscope. Then

images of size 1712 3 1368 (0.50 lm pixel size) were trans

ferred to a PC for analysis.

The extraction of texture features was performed on the

luminance component, as it conveys enough information to

identify the textures selected. The image was down sampled

by a factor of 4 and a median filter with a 7 point mask was

applied to eliminate impulsive noise.

Total number of images used was 30, divided into two

groups:

� 9 images for training and testing the classifier. We obtained

330 samples from these images to build the dataset: 79 samples

used for training and 251 samples for testing the classifier.
� 21 images with different percentages of infiltrate area for

validation of the complete tool.

Feature Extraction and Classification

Texture parameters used in this application can be classi

fied into first order statistics, computed from the normalized

histogram, and second order statistics, computed using the

Gray Level Co occurrence matrix (GLCM) for distances of 1 5

pixels and angles of 08, 908, 1808, and 2708 with a prequantiza

tion of 5 bits per pixel (18). These parameters were extracted

Figure 1. Flow chart of the overall procedure.
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using MaZda (an acronym derived from ‘‘Macierz Zdarzen,’’

the Polish term for ‘‘co occurrence matrix’’), a software tool

developed at the Institute of Electronics, Technical University

of Lodz, Poland (19,20). As a result, we obtained 229 parame

ters for each sample (9 from the normalized histogram and

220 from the 20 Co occurrence matrices mentioned above).

The final result for the 79 samples in the training set was a

table of 79 3 229 parameter values.

Discriminant Analysis

Given the amount of data generated, a reduction of

dimensionality of the feature vector was clearly advisable. This

reduction was performed by selecting the most discriminant

features by means of a stepwise discriminant analysis based on

the Fisher criterion. At each step, the procedure included the

feature that better contributed to class separation, following

the criterion of maximization of the Mahalanobis distance

between the two closest groups (21). An inclusion condition,

based on an F test, was used to evaluate if the change in discri

mination was significant. The F to enter and F to remove

values used were 3.84 and 2.71, respectively. This analysis was

performed with SPSS for Windows, Rel. 11.5.1. (SPSS,

Chicago).

Selection of the Number of Classes

The lung histological sections can be separated into five

distinct textures, highlighted in Figure 2. These were chosen as

the five initial classes for the texture based classification, and

Figure 2. Image of a 10 lm lung section stained with Hematoxilyn Eosin showing the existence of inflammatory infiltrate in the lung. The

five textures identified in lung studies are shown (‘‘light,’’ ‘‘cellular infiltrate,’’ ‘‘alveoli,’’ ‘‘blood vessel,’’ and ‘‘bronchial wall’’). [Color fig

ure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Figure 3. Left: Five clusters obtained with the stepwise discriminant analysis for five classes on the training set (79 samples). Function 1

and Function 2 are the result of computing the two most discriminant functions. The figure shows a possible cluster regrouping by making

a new class from ‘‘blood vessel,’’ ‘‘alveoli,’’ and ‘‘bronchial wall,’’ denoted ‘‘other tissues.’’ Right: Final clusters obtained after cluster

regrouping and parameter reduction (using only seven parameters). [Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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each of the samples in the training dataset was manually classi

fied by an expert into one of those classes.

Left panel of Figure 3 shows the resulting five clusters of

samples as a function of the result of computing the first and

second discriminant functions. It can be noticed that there are

three main groups, which suggests a possible cluster regroup

ing. This approach is further supported by the fact that our

goal is just to quantify the infiltrate area, thus not being neces

sary to separately identify each one of the five classes.

As a result of this preliminary study, we decided to reduce

the number of classes to three: ‘‘cellular infiltrate,’’ ‘‘bronchial

lumen,’’ and ‘‘other tissues’’ (new class including ‘‘blood ves

sels’’ ‘‘alveoli,’’ and ‘‘bronchial wall’’).

Samples belonging to the new ‘‘other tissues’’ class where

relabeled and the discriminant analysis was repeated. The new

stepwise discriminant analysis resulted in the selection of 13

texture parameters shown in Table 1.

Considering the relatively high number of parameters

obtained from the stepwise process, we decided to study the

effect of eliminating the less significant ones i.e., those

included in the last steps. To this end, we eliminated the less

significant parameters one by one and repeated the leave one

out analysis while the classification success was maintained

within acceptable values (final value of 97.5% of correct classi

fication vs. the initial value of 100%). The final number of pa

rameters was 7, whose names and weighting coefficients for

the three linear discriminant functions are shown in Table 2.

The number of parameters satisfied the well known rule of

thumb of not including more than one independent variable

per 10 cases approximately (there were 79 samples in the

training data set). The reduction in the number of parameters

led to a reduction of 31% in processing time.

Resulting clusters as a function of the result of computing

the two main discriminat functions are presented in the right

panel of Figure 3.

Implementation of the Automatic Tool1

Once the specific texture parameters were selected and

the discriminant functions were known, we implemented an

automatic tool to perform the whole quantification process

using IDL 6.2 (Research Systems, Boulder, CO). This software

tool tessellates the images, calculates the texture parameters

for each region, and applies the discriminant functions (22)

obtained in the previous phase following a process similar to

the one described in (7). Images are divided into regions of

wc 3 wc (wc 55) pixels, denoted as ‘‘classification window,’’

whose size determines the resolution of the classification. Each

region is assigned to a class on the basis of the texture parame

ters computed from a wider region of wa 3 wa pixels, denoted

as ‘‘analysis window’’ (Figure 4, top left).

The size of the classification window, wa, was heuristically

selected to achieve a reasonable trade off between resolution

and speed. To this end, we repeated the complete discriminant

analysis using four different window sizes and compared the

individual classification results with those provided by the

leave one out validation (see section ‘‘Classifier Validation’’ for

details) in order to assess the stability of the results for each

window size. The best results were obtained withwa 85.

The classification process proceeds by moving the analysis

window in steps of size wc, leading to an overlapping of wc wa

pixels between two contiguous windows. The final results are

expressed as the percentage of the total tissue area that corre

sponds to infiltrate. The total tissue area is obtained by thresh

olding the hue component of the image (Figure 4, top right).

Classifier Validation

A leave one out method was used to obtain an initial

estimate of the correct classification rate. This method involves

leaving out each case in turn, calculating the functions based

on the remaining cases, and then classifying the left out case.

The leave one out method yielded a classification success rate

of 97.5% on the training set.

A more accurate estimate of the correct classification rate

was derived by classifying a test dataset of 251 samples not

Table 1. Parameters entered and removed during the definitive

stepwise procedure after clustering regrouping (three classes)

STEP ENTERED REMOVED

1 Inverse difference moment (2,0)

2 Entropy of sum (5,5)

3 Entropy of difference (1,0)

4 Correlation (3,0)

5 2nd order angular moment (5, 5)

6 Percentile 01%

7 Percentile 99%

8 Correlation (3,0)

9 Percentile 90%

10 2nd order angular moment (5,0)

11 2nd order angular moment (1,0)

12 Correlation (1,1)

13 Sum of squares (0,4)

14 Correlation (0,1)

This stepwise discriminant analysis resulted in the selection of

13 texture parameters. For explanation of the parameters, see the

online Supporting Information.

Table 2. Seven most discriminant parameters and their

coefficients for the three linear Fisher functions

CELLULAR

INFILTRATES WALL OTHER TISSUES

Percentile 01% 10.272 9.814 9.573

Percentile 90% 7.430 7.271 7.647

Percentile 99% 0.951 1.026 1.608

Entropy of diff (1,0) 10 113.489 10 179.965 9919.718

Inv diff moment (2,0) 9006.342 9099.251 8734.140

Entropy of sum (5,5) 3141.666 3047.379 2945.159

Angular moment (5, 5) 2878.253 2755.525 2691.116

(Constant) 6408.611 6367.628 5946.772

For explanation of the parameters, see the online Supporting

Information.

1The automatic tool is available under request at: mabella@mce.

hggm.es.
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included in the training set. Results on the test set showed a

classification success of 96.8%.

The robustness of the discriminant functions was also

assessed by jack knifing: 10% of samples were randomly taken

out and the discriminant functions were estimated from the

remaining data in five different runs.

Overall Tool Validation

Finally, to assess the usefulness of the complete quantifi

cation tool, we compared results provided by the automatic

method with those measured manually by an expert on 21

new images which specifically corresponded to cases at differ

ent stages of the disease.

Currently, there is no consensus on how to quantify this

kind of studies, and many different scores or grades have been

proposed, thus hindering any objective comparison. For this

reason, we created a gold standard based on manual segmenta

tion. To this end, an expert segmented all the images by manu

ally delimiting the infiltrate area (Figure 4, bottom left) and

labeled them with a severity score defining four categories ran

ging from no inflammation (Score I) to maximum severity

(Score IV). Infiltrate percentage was obtained by dividing the

manually segmented infiltrate area by the tissue mask area,

similarly to what is done in the automatic method.

We compared the infiltrate percentage values obtained

with manual and automatic methods by means of a regression

analysis. This regression analysis showed a good agreement

between automatic and manual methods (Figure 5, top left).

The top right panel of Figure 5 shows the scatter plot of

infiltrate percentages versus severity scores. From this figure, it

is easy to establish the thresholds that better separate the dif

ferent score categories. To compare the results in terms of se

verity scores, these category limits set by the expert were trans

lated into the range of values provided by the automatic

method by means of the regression curve previously obtained.

The degree of concordance in terms of severity scores was

measured by the kappa coefficient.

The result of the comparison of manual and automatic

severity scores is presented in Figure 5, bottom. Only one mis

match can be observed between types III and IV, yielding a

concordance coefficient (kappa) of 0.87.

The tool has been tested on an Intel Pentium, 3 GHz with

1GB RAM. For images of size 8253 660, average classification

time was 15 s. Almost 60% of the time was dedicated to the

computation of the Co occurrence matrix. An example of the

result obtained is shown in Figure 4, bottom right.

DISCUSSION

This work presents an approach for the automatic quanti

fication of microscopy images of histological lung studies. This

type of studies, very common in the research of allergic asthma

and other pulmonary diseases, are currently performed by

simple visual inspection of the images. Classification results

Figure 4. Top: Analysis window (brighter square) and classification window (grid) overlapped on an image (left) and tissue mask in white

(right). Bottom: Manual segmentation overlapped on the analyzed image (left) and automatic segmentation overlapped on the analyzed

image (right).
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obtained by our procedure are promising (96.8% accuracy) in a

reasonable time (15 sec per image of size 8253 660).

We obtained a very good agreement with manual results

(R2 0.9). One of the possible causes for the differences

between the automatic and manual results may be the partial

volume effect, as manual segmentation is made on a pixel by

pixel basis, whereas automatic segmentation is obtained with

lower resolution on windows of 553 55 pixels.

The analysis window size was fixed and empirically deter

mined. It must be large enough to have a sufficient number of

pixels for parameter computing. The size of the classification

window determines the resolution of the classification. Using

a smaller window increases the resolution (minimizing partial

volume effect) but also the computational burden.

The method presented uses only first and second order

statistics, computed from the normalized histogram and from

the co ocurrence matrices. These parameters are easy to obtain

and require a short processing time.

Regarding processing time, the slowest stage in the quan

tification process is the texture feature extraction algorithm.

The processing time could be reduced by reprogramming and

optimizing the code in lower level programming languages.

However, we considered the processing time achieved as ade

quate, and it would only be a concern if the study included a

very high number of images.

The number of parameters in the discriminant functions

was reduced to seven, based on the classification results

obtained with the leave one out method. A more exhaustive

study, measuring the marginal discrimination power provided

by the last parameters included, would have been advisable.

Nevertheless, for end users, the success rate achieved constitutes

a reasonable trade off between processing time and accuracy.

Although the individual algorithms and techniques used

are well established, we have proposed a combination of dif

ferent steps and a selection of particular algorithms to better

achieve a reliable quantification of lung histological studies,

resulting in an automatic tool for quantification. A methodol

ogy similar to ours could be used to segment and classify other

types of histological studies. To that end, steps 1 3 in the flow

chart would have to be repeated to compute the most discri

minant texture features, and the new discriminant functions

for each particular case. The software tool should be modified

to include the new texture features and discriminant functions

obtained. These changes are straightforward because of the

modularity of the implementation.

In summary, a reliable and easy to implement method

has been developed to provide an automatic method for quan

tifying microscopy images of lung histological studies. Results

showed similar accuracy to that provided by an expert, while

enabling the analysis of a much larger number of fields in an

objective and repeatable way.
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