
UNIVERSIDAD CARLOS III DE MADRID 

DESIGN AND OPTIMIZATION OF FUCTIONS 
FOR MULTICORE EXECUTION IN R 

Bachelor Thesis Summary 
 

Bachelor in Computer Science and Engineering 
 
 

15/06/2012 
 

Carlos Villalba Coronado 

 

Tutors: 

Daniel Higuero Alonso-Mardones 

and 

Juan Manuel Tirado Martín 

 

 

  

 



1 
 

Index 
1 Introduction............................................................................................................... 2 

2 Related work ............................................................................................................. 3 

2.1 Mathematical software...................................................................................... 3 

2.2 Multiprocessing ................................................................................................. 3 

2.3 Graph library ...................................................................................................... 3 

3 Implementation ......................................................................................................... 5 

3.1 Diameter function .............................................................................................. 6 

3.2 Clustering coefficient function ........................................................................... 7 

4 Evaluation .................................................................................................................. 8 

4.1 Diameter ............................................................................................................ 8 

4.2 Clustering Coefficient ....................................................................................... 10 

5 Conclusions.............................................................................................................. 11 

 



2 
 

1 Introduction 

This Bachelor Thesis addresses the optimization of heavy computational functions of a 
mathematical package and its evaluation. Specifically, it considers the optimization of a 
graph library for multicore architecture. The library uses the Graph Theory to solve and 
analyze problems. 

A graph is a group of nodes or vertices connected with other nodes or vertices by 
edges. The edges also can have a numerical value and direction for some problems. 
The Graph Theory is very useful for a lot of purposes: network optimization, social 
network analysis, state machines design and much more. As years go by, the Graph 
Theory is more important and used in different fields. 

The heavy function selected to be optimized in this work determinate if a graph is a 
Small World. A Small World is a property of some graphs. A graph is considered a Small 
World if it has a short diameter and very high clustering coefficient.  

The diameter is the maximum eccentricity of any two vertices of a graph. The 
eccentricity is the shortest path between two vertices of a graph. 

The clustering coefficient is a property of a graph that determinates if a graph is highly 
connected.   

Calculation of the diameter and clustering coefficient are heavy tasks if the graphs are 
very big and needs a lot of computational time. 

 

 



3 
 

2 Related work 

In the previous study of the related work on the subject, different options of 
mathematical software, multicore optimization and graphs libraries have been studied.  

2.1 Mathematical software 
There are a lot of options of mathematical software which can import external libraries 
for others purposes like graph computing. This study evaluates four options that are 
very extended in academic and professional work: 

Comparison of mathematical software. 

The final choice has been R because MatLab and S-Plus are more expensive. And R is 
the most accessible for developers and users. In R there are a lot of open source 
libraries that can be modified and improved easily. 

2.2 Multiprocessing 
The optimization is based on computer parallelism for multicore architectures. For that 
task, there are several options: 

Comparison of multicore optimization options.  

The choice has been OpenMP because is the easier and more portable than 
Multithreading. And it is more appropriate for loop optimization than Intel Threading 
Building Blocks (TBB). 

2.3 Graph library 
The igraph library is the library has been the choice for many reasons. Igraph is an 
open source code for studying and working with graphs. It has a lot of functions to 
create, modify, import, export and calculate properties of graphs. 

Software Operating 
Systems 

Development 
languages 

Commercial 
licensed price  

Library  
availability 

Matlab Multi-platform C/C++, Fortran and 
Java 

2000€ Medium 

Octave Multi-platform C/C++ and Fortran Free Medium 

R Multi-platform C/C++ and Fortran Free High 

S-Plus Windows and 
Linux 

C/C++, Fortran and 
Java 

1000$ / year Low 

Option Portabilility Programming 
Languages 

Development dificult 

Intel TBB High C/C++ Low-Medium 

OpenMP High C/C++ and Fortran Low-Medium 

Multithreading Medium All High 



4 
 

Igraph compute the functions in a sequential way. To improve the performance, igraph 
can be modified to do it in a parallel way. Igraph is perfect for this purpose because is 
an open source code. Also, igraph is written in C/C++. OpenMP makes easier the 
optimization because it supports C/C++ language. 

Igraph has some interfaces. It has an R interface, but it has Python and Ruby interfaces 
too. The open source code in C/C++ makes easier the use without interface or to 
create your own interface. 

The last reason to choose igraph is because it is one of the most widely used graph 
library with an R interface. The following graph show the downloads in the last two 
years: 

 

 

Graph X: Igraph downloads between 2010 and May of 2012. 

 

 

 



5 
 

3 Implementation 

The optimization of the igraph functions are based in distributing the computational 
load of the function between the different cores of the computer. Most specifically, 
OpenMP uses a compilation directive or pragma to distribute the loop iterations 
between the processors creating different threads as the diagram shows:  

 

This example shows how OpenMP distributes a for loop of 400 iterations 
between four cores.  



6 
 

It is important to take care of the dependencies of the variables and use properly all 
the OpenMP resources: the private and the shared variables, the synchronization 
systems and the mutual exclusion access systems.  

3.1 Diameter function 
The diameter function uses the following flow diagram for the execution: 

 

Flow diagram of diameter function.  

It shows that the computational time of the function depends on the number of nodes 
and the number of graph edges. The complexity is O(Nodes*Edges). 

The best way to use parallel computing to optimize this function is to distribute the 
iterations of the loop1 between the cores. This is done with an OpenMP pragma to 
optimize a loop distributing the iterations between the cores.  

 

 

 

 



7 
 

3.2 Clustering coefficient function 
The clustering coefficient function uses the following flow diagram for the execution: 

 

Flow diagram of clustering coefficient function. 

It shows that the computational time of the function depends on the number of the 
nodes and the average number of neighbors that has the node. The complexity is 
O(Nodes*Average Neighbors2). 

The best way to use parallel computing for optimize this function is distribute the 
iterations of the loop1 between the cores. This is doing with an OpenMP pragma to 
optimize a loop distributing the iterations between the cores.   

 

 



8 
 

4 Evaluation 

The evaluation has been done in an AMD Opteron(tm) Processor 6168 with 60GB of 
memory and 24 cores. 

4.1 Diameter 
The diameter function depends on the number of nodes and the number of edges. 

 

Execution time depends on the number of edges.  

 

With 10.000 nodes, the speedup is better with less edges  per node. 

 



9 
 

 

Execution time depends on the number of nodes.  

 

With 256 edges per node, the speedup is better with more nodes.  

 

 



10 
 

4.2 Clustering Coefficient 
The clustering coefficient execution time depends much more on the quantity of 
neighbors than the quantity of nodes. The clustering coefficient computation has 
heavy load in complete graphs. 

 

The time execution is very high with 10.000 nodes.  

 

The speedup is good when a task is heavy.  

 



11 
 

5 Conclusions 

The most important conclusions of the work are: 

 Multicore machines can compute the same work several times more quickly 
than a single process. But it is important to take care of the parallel design to 
maintain the efficiency and the performance of the function. 
 

 The current trend in multicore machines suggests that optimizations like the 
one done will become more important in the short term. Igraph is a good 
example of a program that is easy to improve with greats results.  
 

 The speedup is not a linear function in multicore machines. This is because 
more cores also mean more synchronization and more delay in each core.  
 

 OpenMP is a very useful API, it is very simple and flexible. It is perfect to 
parallel loops in architectures with multicore and shared memory.  
 

 Igraph is a good, easy and complete library for working with graphs. But it 
cannot compute very large graphs with millions vertices and edges and it is not 
prepared to use all the potential of the multicore machines. 
 

 Graph Theory is very useful and it has a lot of uses. Actually, it is essential in 
numerous different areas. 


