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Abstract—It is standard practice for cloud service providers
(CSPs) to overbook physical system resources to maximize
the resource utilization and make their business model more
profitable. Resource overbooking can lead to performance
interference, however, among the virtual machines (VMs)
hosted on the physical resources causing performance un-
predictability for soft real-time applications hosted in the
VMs, which is unacceptable to these applications. Balancing
these conflicting requirements needs a careful design of the
placement strategies for hosting soft real-time applications
such that the performance interference effects are minimized
while still allowing resource overbooking. These placement
decisions cannot be made offline because workloads change
at run time. Moreover, satisfying the priorities of collocated
VMs may require VM migrations, which require an online
solution. This paper presents a machine learning-based, online
placement solution to this problem where the system is trained
using a publicly available trace of a large data center owned
by Google. Our approach first classifies the VMs based on
their historic mean CPU and memory usage, and performance
features. Subsequently, it learns the best patterns of collocating
the classified VMs by employing machine learning techniques.
These extracted patterns are those that provide the lowest
performance interference level on the specified host machines
making them amenable to hosting soft real-time applications
while still allowing resource overbooking.

Keywords-virtual machine placement, cloud computing, per-
formance interference, resource overbooking, application QoS.

I. INTRODUCTION

Resource overbooking [1], [2] is used as a means to
increase resource utilization in servers of a data center and
making the cloud-hosted services more profitable. The idea
behind resource overbooking in the cloud data centers is
to commit more resources, such as CPU and memory, than
are actually available on the physical host machines. The
intuition behind the overbooking strategy is that users often
request more resources than their applications actually need
thereby providing an opportunity to the cloud provider to
overbook. Considering this trend, contemporary hypervisors,
such as Xen [3], KVM [4], and VMware ESX Server [5],
provide the necessary support to make overbooking feasible
to implement in practice.

At the same time, we are witnessing an increasing trend
towards hosting soft real-time applications, such as air-
line reservation systems, virtual reality applications, Netflix

video streaming, and Coursera online digital learning, in
the cloud. These applications demand more stringent per-
formance requirements, i.e., these applications are sensitive
to fluctuations in latency and response times. However,
the resource overbooking used by cloud providers may
incur negative impact on their performance because multiple
VMs collocated due to resource overbooking can trigger
significant performance interference [6], [7], [8], [9] for
applications hosted in their respective VMs.

Although there exists prior work on performance iso-
lation [9] among VMs collocated on an overbooked host
machine, it is still a challenging task to consider performance
interference for VM placement and shield the VMs from its
neighbors due to the nature of resource sharing, resource
overbooking practices employed, and the fluctuating work-
load characteristics in the cloud. Therefore, an application
running on one VM might still impact the performance of
another application running on a separate VM on the same
host machine. Specifically, network- and compute-intensive
applications might be adversely impacted.

Since performance interference is caused because of how
one VM interacts with another VM collocated on a physical
host, addressing the performance interference challenges that
stem from resource overbooking and satisfying the response
time requirements of soft real-time applications will require
effective trade-offs involved in the placement of VMs on
host machines by carefully considering the actual workload
characteristics of the VMs. Due to the changing dynamics
of the workloads on the VMs and also because VMs often
tend to migrate from one physical machine to another for
a variety of reasons, traditional and offline heuristics such
as bin packing will not be applicable for interference-aware
VM placement in cloud computing. Consequently, we have
focused on a VM placement strategy considering not only
the performance interference effects but also the workload
characteristics of VMs.

Our prior work involving VM-based resource manage-
ment has considered power-performance trade-offs [10],
physical server consolidation using VM overbooking [11],
and auto tuning of hypervisor parameter [12] but none
of these works perform resource management considering
performance interference between collocated VMs.
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To assure that latency-sensitive soft real-time applications
receive their required Quality of Service (QoS) despite VMs
being collocated due to resource overbooking strategies
employed by the cloud provider, we present an online VM
placement technique based on machine learning and made
available in a middleware called hALT (The harmonious Art
of Living Together). This paper makes two contributions.
First, we analyze a trace log of a production data center
published by Google [13]. This analysis provides us insights
on how collocation of VMs resulting from a migration
from one machine to another can cause undue performance
interference despite the target machine having more capacity.
Second, using these insights we use machine learning to
learn about the desired VM placement patterns and use these
as a means of making runtime placement decisions.

The rest of this paper is organized as follows: Section II
describes relevant related work comparing it with our contri-
butions; Section III describes our findings from the analysis
of the Google production data; Section IV presents the
system architecture for our machine learning-based solution;
and Section V presents concluding remarks alluding to
future work.

II. RELATED WORK

This section presents related work on VM placement and
solutions to address performance interference, and compares
it with our solution called hALT.

Q-Clouds [6] is a QoS-aware framework to manage per-
formance interference in the cloud. It works on the principle
of provisioning additional resources to alleviate performance
interference. It applies an online feedback mechanism to
build a model for capturing interference interactions and use
it for resource management. Moreover, the system employs
a staging server to determine the resource requirements and
leaves a head room, i.e., slack resource for performance
management. Q-Clouds allows specification of different lev-
els of QoS, known as Q-states, to increase the resource
utilization. However, the slack resources still lead to under
utilization of the server resources. Frequent resource alloca-
tion due to feedback mechanism can also cause performance
overhead for the hypervisor.

Zhu et al. [14] proposed an interference model which
predicts application QoS. It considers time-variant inter-
dependence among the different levels of resource con-
tention. The authors develop a resource usage profile as
a vector of matrices for different performance metrics and
then apply a consolidation algorithm to accommodate ap-
plications to minimize interference and achieve QoS. We
believe this work focuses on developing simplistic models
for complex resource utilization relationships, whereas we
use k-means clustering to group the VMs in different classes
to capture the complex relationships and then apply machine
learning to determine performance interference.

TRACON [15] is a task and resource allocation frame-
work for data-intensive applications. It develops three inter-
ference prediction models: weighted mean method model,
linear model and non-linear model using statistical machine
learning for reasoning. It then employs an interference-
aware scheduler for reducing performance interference. The
focus of this technique is network I/O-intensive applications
whereas our approach is focused on CPU-based applications.
Moreover, the training data used by TRACON is generated
with a workload generator comparable to ours which utilizes
traces from a production data center.

In [16], Kambadur et al. studied the methodology and
several complexities behind measuring performance inter-
ference in data centers due to resource contention and
proposed a new technique based on finding the performance
interference between base application and co-runners on the
same machine. They have also used the Google production
workloads. In this work, the authors have measured the
performance interference in order to identify interference
relationships and classes but have not demonstrated its
application. We have leveraged some of the insights and
parameters from this work.

Moreno et al. [17] proposed a method for interference-
aware virtual machine placement by analyzing its impact
on energy efficiency in data centers. The combined inter-
ference score utilized in this work requires the knowledge
of maximum throughput of each workload running on a
host machine when mixed with other workload types. This
might require employing some applications to reside on
VMs to populate this information from the workload which
may result in high overhead when a host runs numerous
different types of workloads. In contrast, hALT discovers
and extracts the best VM patterns by employing machine
learning algorithms to predict future performance interfer-
ence level. hALT also differs from this work based on its
VM classification features that uses performance.

Modern day hypervisors like Xen and KVM used for
virtualization do not provide an effective solution for per-
formance isolation. Even though resources are sliced and
allocated to different VMs, they are still shared. The iso-
lation across VMs provided by hypervisors reduces the
visibility of application performance from one VM to other,
thus making it difficult to triage the performance issues.
The problem is further aggravated as the host machines
get overloaded by VMs. This performance interference has
been amply demonstrated [18], [8], [6]. The LXC Linux
Container [19] is another virtualization technology which
promises to provide better performance. It reduces hypervi-
sor overhead by running the guest operating systems within
the same host kernel. However, Linux containers suffer from
resource contention and security issues. Thus, we need a
solution which can minimize the performance interference
and provide better results, which is the focus of our work
in hALT.
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III. ANALYZING PERFORMANCE IMPACT OF VIRTUAL
MACHINE MIGRATION AND COLLOCATION

This section presents results from analyzing a trace log of
Google’s data center [13] revealing how the performance of
a VM is affected when it is migrated to a different host
machine in the data center. We present this information
since it provides key insights into making decisions on what
factors to consider in placing a VM such that performance
interference can be minimized and soft real-time applications
can obtain more predictable performance.

To analyze the performance interference in a production,
large-scale data center, we chose the usage trace published
by Google [13]. The trace contains a dataset for about 12,000
distinct machines collected over a 29 day period in the month
of May, 2011.

Each machine in the cluster was defined by its CPU and
memory capacity. There were three distinct CPU capacities
and five levels of memory capacities. Having said that, the
values provided are relative and we do not know what the
actual number for CPU or memory it corresponded to. For
our analysis, the relative values are adequate since we utilize
normalized data.

According to the Google trace usage document [13], a
task or job is migrated into another host machine if either
the actual host machine is overloaded, or because of a high
priority task or job entering the system, or any other issue
related to the physical host machine, such as a failure. Table I
shows how these event types are represented in the cluster
trace, where:

t1: time interval between the time when Task 1 is sched-
uled to run on Host A until it is evicted from Host A and
migrated to Host B.

t2: time interval between the time when Task 1 is sched-
uled to run on Host B until it is completed on Host B.

t3: overall time interval for Task 1.

Table I
SOME EVENT TYPES IN GOOGLE CLUSTER TRACE

Event Name ID Description

SCHEDULE 1 A task or job is scheduled to run on a host
machine

EVICT 2 A task or job is descheduled on a host
machine

FINISH 4 A task or job has completed its task success-
fully

All of the resource usage and request measurements (e.g.,
CPU and memory) are normalized between zero to one by
scaling them to the largest capacity of the resource in the
cluster [13]. The “Cycles Per Instruction” (CPI) [9] metric
is used as a performance metric since it represents the
application response time well enough for compute-intensive
applications. Based on [9], the lower the CPI value, the
better the performance is. Thus, performance values in all

the figures in this section are represented by “Instruction Per
Cycle (IPC),” which is the multiplicative inverse of CPI.
IPC is used because it is more intuitive and effective in
interpreting performance data.

How the collocated tasks running on the same physical
host machine and heterogeneous host machines affect the
performance of the soft real-time applications and how this
scenario can be carefully considered by a VM placement
algorithm are analyzed for a task in the cluster trace.

To that end, a task in the cluster trace is considered as a
VM and the resource overbooking ratio is the value obtained
by dividing the total number of resources requested by the
capacity of the physical host machine. An overbooking ratio
greater than one obviously indicates that actual resource de-
mand exceeds the physical host machine’s resource capacity.

The “Total Number of Tasks” column in Table II does not
include the tasks which have zero mean CPU and memory
utilization values for the tasks shown in Table III. It was
assumed that those are just abnormal data (i.e., outliers) or
binaries were being copied on host machine [13].

As seen in Table III, Task 1 has highest CPU utilization
and quite high memory utilization before migration while
the resource requests remain same before and after the
migration. The CPU utilization has high fluctuation before
migration, but remains low after migration. The reason for
over utilization values is because of the usage of exceeding
the allocated resource [13].

Figure 1. CPU, Memory Usage, and Performance of Task 1 on Host A
and Host B

The CPU usage, memory usage, and performance of Task
1 is depicted in Figure 1. Task 1 was initiated to be migrated
(i.e., EVICTED event type in cluster trace) from Host A to
Host B at the beginning of t2 as shown by a sudden drop
in resource usage values in Figure 1. As seen in Table II,
the capacity of the Host A is lower than the capacity of
Host B. When the task is migrated to Host B from Host A,
the performance of Task 1 dropped about %17. As seen in
Table II, the number of tasks on Host B is much more than
Host A. Host A and Host B have 9 and 19 tasks, respectively.
One of the reasons for the bad performance on Host B is
highly likely because of the performance interference caused
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Table II
HOST MACHINE INFORMATION FOR ONLY THE TIME INTERVAL WHEN THE TASK BEING ANALYZED RESIDES

Name ID Total Num-
ber of Tasks

CPU Utilization
(Mean)

CPU Utilization
(Stdev)

Memory
Utilization
(Mean)

Memory
Utilization
(Stdev)

CPU Capac-
ity

Memory Ca-
pacity

Host A 294823364 9 %6.02 %13.31 %4.64 %6.14 0.5 0.2493

Host B 4874238388 19 %3.15 %5.70 %3.64 %4.80 1 1

Table III
TASK INFORMATION BEFORE AND AFTER THE MIGRATION FOR THE TIME INTERVAL SPECIFIED

Name Job ID Task Index CPU Utilization
(Mean)

CPU Utilization
(Stdev)

Memory
Utilization
(Mean)

Memory
Utilization
(Stdev)

CPU
Request

Memory Re-
quest

Task 1
(before)

6276036736 12 %102.38 %34.57 %72.62 %3.39 0.1814 0.06165

Task 1
(after)

6276036736 12 %103.91 %10.94 %74.45 %2.45 0.1814 0.06165

Figure 2. Overall and Time Limited Overbooking Ratios of Host A and
Host B

by CPU contention.
As depicted in Figure 2, this could also be seen by

overbooking ratios of hosts during t1 and t2. Host A has
mean overbooking ratios of 1.81 for CPU and 2.56 for
memory during t1 which considerably exceeds the Host
A’s resource capacity. The mean overbooking ratios for
Host A during t1 is apparently lower than the machine’s
mean CPU and memory overbooking ratios of 3.55 and
5.90, respectively, during t3. This could be interpreted as
even though (1) the requested resource and mean utilization
values remain the same, (2) Host B has higher capacities, (3)
more number of tasks on Host B and more resource demand
than the actual resource capacity by 1.23 and 1.15, and (4)
different resource usage behavior of other tasks running on
Host B may have triggered more performance interference
and resource contention between tasks.

More importantly, these analyses results indicate that
there might be performance differences in soft real-time
applications on different host machines even though allo-
cated capacity is identical and resource usage pattern is
similar. Therefore, VM placement decisions must be con-
ducted by considering performance interference and resource

contention on the host machine. Moreover, latency-sensitive
applications must be placed into that host machine where
they will receive their desired application performance.

IV. SYSTEM ARCHITECTURE FOR VIRTUAL MACHINE
PLACEMENT

This section presents hALT’s system architecture that
supports soft real-time systems in the cloud to be minimally
affected by performance interference.

A. Rationale Behind the Techniques Leveraged

Our solution approach first classifies the Google cluster
trace log into meaningful categories using heuristics and
then applies machine learning to find best VM collocation
patterns. The classification is performed using a k-means
clustering algorithm [20]. k-means is an unsupervised learn-
ing algorithm that helps to classify the VMs in different
classes based on their performance. It provides good results
with large datasets such as the one used in our approach. The
Silhouette [21] method is used for graphically representing
objects within the cluster. It fits well with the k-means clus-
tered data and is employed in our approach to analyze the
VM clusters. To capture the non-linear relationships between
performance interference amongst the VMs and the large set
of input factors for various classes of VMs, we have applied
back propagation-based artificial neural network [22]. It is
a supervised machine learning technique used to predict
the performance interference which is otherwise difficult to
estimate in our complex model.

B. System Architecture

The architectural diagram of our proposed system hALT
is depicted in Figure 3. hALT comprises three main com-
ponents: (1) virtual machine classifier, (2) back propagation
neural network, and (3) decision maker for placement. hALT
utilizes CPU usage, memory usage, and performance infor-
mation of the VMs as inputs to the virtual machine classifier
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component. The virtual machine classifier classifies VMs
into specific classes by employing the k-means algorithm
and the silhouette method. These classes of VMs are then
used by the back propagation neural network to extract best
VM patterns, which lead to minimal performance interfer-
ence on the host machines. After the neural network is
trained, if and when a VM migration is requested, then hALT
finds the aptly suited host machine which has the minimal
performance interference. Details of each hALT component
are explained below.

Figure 3. hALT architectural diagram

C. Virtual Machine Classifier

The virtual machine classifier component classifies VMs
based on their mean CPU, memory usage, and performance
metrics. Only the tasks having CPU usage more than 25%
are considered for the classifier since the performance metric
we use is CPI and it is well correlated with the response
times of compute-intensive applications [9].

Total number of distinct tasks we utilize for the classi-
fication is 1001 which are the representatives of compute-
intensive tasks of cluster trace log. More than 12K samples
of resource usage data of these tasks are used. To decide the
best number of clusters, the silhouette method is employed
for the cluster data we utilize. The higher the silhouette value
is, the better the classification is. As seen in Table IV, the
best cluster number for the dataset is found as 6 with a
maximum mean silhouette value of 0.8051 over other cluster
numbers.

D. Artificial Neural Network

hALT relies on the historic data to model and capture
the relationships between input and output parameters to
discover the patterns of VM combinations and the resulting
degree of performance interference.

An artificial neural network (ANN) is trained to capture
the relationships on how the different types and numbers of

Table IV
SILHOUETTE VALUES OF CLUSTERS

Number of Cluster Mean Silhouette Value

3 0.7129

4 0.7427

5 0.7560

6 0.8051

7 0.7372

8 0.6577

9 0.6212

10 0.6170

VMs impact performance interference. The input parameters
for the ANN are as follows:

N1 = Total number of VMs of Class 1
N2 = Total number of VMs of Class 2
N3 = Total number of VMs of Class 3
N4 = Total number of VMs of Class 4
N5 = Total number of VMs of Class 5
N6 = Total number of VMs of Class 6
C = CPU overbooking ratio
M = Memory overbooking ratio

The ANN predicts the performance interference level.
The performance interference level is the mean performance
difference of a specified VM before and after a VM is
migrated on a host machine. The reason to choose number
of VMs of each class is to capture the relationships between
the different VM combinations along with host machine
resource utilization levels and discover the regularities in
how these patterns affect the performance interference level
on a host machine.

E. Decision Maker

When a VM placement request is made or if a VM must
be migrated, the decision maker component is responsible
to iterate over all the host machines in the cluster, run the
trained ANN, and return the host machine info which will
provide the lowest performance interference level. The VM
can then be placed in the machine despite the cloud provider
utilizing overbooking strategies.

V. CONCLUSION

This paper presented our preliminary work on a perfor-
mance interference-aware virtual machine placement algo-
rithm named hALT that is used as an online algorithm for
VM placement to support the QoS requirements of soft real-
time, cloud-hosted applications. The approach comprises
two steps. First, a large, trace log of a production data
center from Google is analyzed to glean away key insights
into performance interference caused due to VM collocation.
These insights are used in finding an aptly suited host

REACTION 2014 19



machine for VMs to minimize the performance interference
effects and reduce the performance degradation in soft real-
time applications. To achieve this goal, a classification-based
VM placement algorithm was designed by utilizing feed
forward, back propagation neural network.

In this work, we considered only the compute-intensive
applications because of the performance metric available in
the cluster trace log. A more generic performance metric
such as response time and throughput which might be
representative of a wide range of applications in the cloud
is planned as future work. Additionally, the middleware that
provides a pluggable framework to utilize this algorithm
is still in preliminary stages of development. To that end,
we will conduct the experimental study at our in-house
private cloud to precisely analyze only the performance
interference effects of VMs to each other and convert it
to a pluggable component. Additionally, analyzing hALT’s
energy efficiency effects in data center is left as future work.
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