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This anicle desc ribes a procedure for the detection of multivariate oUlliers based on the analysis 01' 
certain angular properties 01' the observations. The method is simple. exploratory in nature. and par­
ticularly well suited for the detection of concen trated contamination paltems, in which the outl iers 
appear 10 foml a cluster, separated from ¡he sample. II is shown that it presents good properties for 
the identification of contaminations on high-dimensional sample spaces and for high contamination 
levels. including some cases in which methods based on robust estimators (the minimum covariance 
determinan! and minimum volume ell ipsoid estimators, the Stahel-Donoho estimator, or other recen! 
proposals) may fail. The use 01' lhe procedure is illustraled lhrough several examples . 

KEY WORDS : Exploratory data analysis; Q-Q plot: Robust estimation . 

Data often include so me outliers. Ir the mechanism gener­
ating the observations were perfectly well known, it would be 
possible to detect and explain those abnormal observations. 
Often such information is unavailable, so outliers must be 
determined on the basis of data analysis . The need to identify 
the outl iers is an immediate consequence 01' the distortions that 
they introduce on the results obtained from the application of 
c1assical estimation procedures lO contaminated samples. 

Except for low-dimension cases (samples in dimensions 1, 
2, or at most 3), in which a complete graphical representa­
tion of Ihe data may be used 10 visually identify the poten­
tial outliers, detecting mllltivariate outliers is difficlllt with 
no completely satisfactory procedure avai lab le for the general 
case. The usual strategy is based on the computation of sorne 
Mahalanobis distance for each observation x E :HI', detlned as 

(1) 

where e E !H P and the p x p matrix V denote, respectively, the 
estimator for the center and the covariance matrix obtained 
from the ample points. 

However, outliers may result in unreliable distance values 
when e and V are the sample mean and sample covariance, 
respectively. In recent years many robust alternatives for these 
estimators have been proposed in the literature, such as the 
M estimators, studied by Maronna (1976) for the multivariate 
case, the estimator based on the minimum volume ellipsoid 
(MVE) (Rousseeuw 1985) and its derivations such as (he min­
imum covariance determinant (MCD) method, or the Stahel­
Donoho estimator (SDE) (Stahel 1981; Donoho 1982). 

Direct implementations of M estimators may present a very 
low breakdown point, I /( p + 1), and Ihose versions that have 
a high breakdown point, sllch as the S estimators, are very 
expensive to compute even for moderate sample-space dimen­
sions. The other two estimators have a 50% breakdown point, 
independently of the dimension of the data, but their exact 

computation is also expensive. This computation requires solv­
ing a global optimization problem with a nonconvex objec­
tive function that in general presents a large number of local 
minimizers. Solution techniques currently available for this 
problem are too inefficient lO be of practical use, even for low­
dimension problems. As a consequence, in practice approx­
imate solutions based on resampling procedures or heuristic 
procedures are lIsed for both cases. A detailed description of 
the advantages and limitations of these estimators was given 
by Rousseeuw and van Zomeren (1990), Cook and Hawkins 
(1990), and Maronna and Yohai ( 1995). 

In particular, these methods wilI have difficulty identifying 
contaminations that are not far from the original sample, even 
when they presem other distinguishing features. An exam­
pIe ilIustrating thi s last situation is the case of concentrated 
contaminations. In this contamination pattern the outliers are 
cJosely grouped, forming cJusters separated from the main 
sample. The effect of thi s contamination scheme was analyzed 
by Maronna and Yohai (1995), who suggested that this scheme 
may induce the largest bias in the estimation of location and 
scale for multivariate samples. Adrover (1993) showed thal 
this is the case for M estimators. It al so seems to be the most 
difficult case for aIgorithms based on the MVE (see Rocke 
and Woodruff 1996). 

In this work, a procedure that takes into account other 
information, in addition to distances, is proposed. This 
procedure is illustrated throllgh its application to the particular 
case of the detection of concentrated contaminations. It is 
shown to present properties that are complementary to those 
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of di stance-based methods and in particul ar to be able to 
identify outliers in cases in which these melhods may fail. 

The method proceeds by projecti ng the standardized data 
onto the unit hypersphere and lesting the projected data to 
identify any lack of uniformity that might be associated 
with the presence of outliers. This procedure is based on 
the observation that the anomalies that characterize many 
contamination patterns, and in particular those diffic ult to 
detect by distance-based methods. arise from the relati ve 
disposition of the contaminating observati ons and , more 
specifically. from an excessive proximity between these 
observations. The di stortions introduced on the projected data 
by thi s proximity may be easier to detect than the presence 
of large values for sorne robust di stance lo the center of the 
data. Note that it is possible to have contaminations that have 
large distances without di storting any symmetry properti es. 
As a consequence, a reasonable procedure should study both 
distances and angles. We pro pose a practi cal two-step method 
based on the combination of a di stance-based algorithm with 
Ihe one presenled in thi s artide. 

This artide will be concemed only with Ihe detail s of the 
method rel ated to the analysis of the angles, without fu rlher 
refe rence to the analysis of dislances. This latter part has been 
studied extensively in the literature (e.g., see Hawkins J 980; 
Beckman and Cook 1983) and can be carried out using one 
of several procedures (e.g. , ee Rousseeuw and van Zomeren 
1990; Rocke and Woodruff 1996; Bamett and Lewis 1994; 
Rousseeuw and van Driessen 1999). 

In Section 1, we analyze sorne characteri stics of con­
centrated contamination patlerns that j ustify the use of the 
outlier-detection procedure described in the artide. Section 2 
introduces the procedure and j ustifies its validity. Section 3 
studies some properties of the procedure in lerms of the 
configuration of the sample. Finally, in Section 4, the practical 
behavior of this procedure is illustrated on some representative 
examples. 

1. MOllVAllON 

Before de cribing the pro po ed procedure, we illu trate 
some of the practical difficultie with di tance-ba ed outlier­
identification methods. In particular, the e procedures may 
fail to detect outlier when the e ob ervation appear grouped 
together and not very far from the uncontaminated ample. 

Table 1 pre enl the resu lts of a simulation experiment 
conducted u ing everal avaiJable code ba ed on MCD 
technique , and an implementation of the Stahel-Donoho 
e limator (SDE) procedure: FSAMCD from Hawkins (1994), 
MULTOUT from Woodruff and Rocke (1996), FAST-MCD 
from Rou eeuw and van Dries en ( 1999), and the SDE 
implementation of Maronna and Yohai (1995). The experiment 
con ists of randomly generating a sample of n observation , 
whose majority subset of (1 - E)/Z observation is generated 
from an (0, 1) di tribution in dimension p and who e 
minority ubset of En observation (the outlier ) come from 
an N(ke l, Á 21) di tribution , where e l denotes the fir t unit 
vector. One hundred ample were generated for each et of 
parameter value (p = 5, 10,20: n = 10p; E = .05, .1, .15, .2 
and A = . 1). The di tance of the outlier to the center of the 

Table 1. Simulation Experiment: Number of Sueeesses in Identifying 
AlI Coneentrated Outliers Using the Codes FAST-MCD, MULTOUT, 

FSAMCD, and SDE 

% sueeess 
~ p k 

Cont. Dim. Dist. FAST-MCD MULTOUT FSAMCD SDE 

.05 5 6.65 100 100 100 100 
13.31 100 100 100 100 

10 8 .56 100 100 100 94 
17.11 100 100 100 100 

20 11 .21 76 80 91 4 
22.42 100 100 100 100 

.10 5 6.65 98 98 100 99 
13.31 100 100 100 100 

10 8 .56 16 59 26 77 
17.11 100 99 98 100 

20 11.21 O 2 O O 
22.42 O 13 O 100 

.15 5 6.65 69 60 80 93 
13.31 100 100 100 100 

10 8 .56 O 8 O 26 
17.11 5 31 1 100 

20 11 .21 O O O O 
22.42 O O O 92 

.20 5 6.65 O 18 1 55 
13.31 59 92 77 100 

10 8 .56 O O O 3 
17.11 O 5 O 100 

20 11 .21 O O O O 
22.42 O O O 24 

uncontaminaled data, k , wa set to the values 2) X~ .. 95 and 

4) X~ .. 95' as shown by Rocke and Woodruff (1996). 
The codes were run on each sample, and their output was 

compared to Ihe actual outliers from the preceding model. 
Table l gives the number of times each code was able to 
identify as outliers all the sample points generated from the 
contaminating model, for each code and each set of parameter 
values. For FSAMCD, a success was ded ared when none of 
rhe outliers were contained in the basis retumed by rhe code 
(only one solurion was Iracked). For the remaining codes, the 
decision was based on the labeling of the observations pro­
vided in their output fil es . 

From rhe results in Table 1, MCD-based methods work rea­
sonably well for reduced contamination levels (E = .05, . 1) and 
sample-space dimensions (p = 5), but they have increasing 
difficulties in identifying concentrated outliers as the contam­
ination level and the sample-space dimension increases. In 
fact, the percentage of outliers for which these methods start 
to fail seems to decrease monotonically with the dimension 
p. The cond usions for the SDE method are similar, although 
the deterioration is less marked . The preceding results on the 
MCD-based methods are similar for other values of scale con­
tamination (A = .32, .032). 

To examine further this behavior, we consider a particular 
sample obtained from the preceding model having low uc­
ce s rates. The sample ha been generated u ing p = 20, n = 
200, E = .1, k = 11.2 1, and Á = .32. The Mahalanobis dis­
tances to the origin (the center of the original sample) for a11 
the ob ervation , computed u ing both the ample covariance 
matrix and the covariance matrix for the first 180 ob ervation , 

2



            

        

 

 

 
           

    

                       
                     

          
          

        
         

         
           

            
            

     
          

        
          

         
        
         

          

             
 

           
           
          

          
           

           
            
          

          
 

        
         

           
           

        
            

          
        
 

       
          

           
        

          
          

         
         

           
         

     
     

        
           

           
          

                
           

             
          

             
            

       
           

          

          
         

          
           

           
           

             
         

    

   

       

(a) (b) 
12 

11 
~(l)C¡;;~ 

6 

10 

4 
9 • 

'" '" u 
c: 8 
~ '" 'C 

J5 

'" '" 7 
.~ " J5 

o > 
c: -o 

'" 
c: "" '" 6 '" .c " '" " ::; 2 

q, 

3 ~ 
6 

2 
o 20 40 60 80 100 120 140 160 180 200 2 o 2 4 6 8 10 

Observations 1 st variable 

Figure 1. (a) Maha/anobis Distances for the Dataset Using the Mean and Covariance Matrix for the First 85 Observations (o) and the Mean 
and Covariance Matrix for a/l 100 Observations (+); (b) Scatterplot o( the Observations Projected Onto the First Two Coordina te Axes. 

are shown in Figure 1 (a). The outliers (observations 181-200) 
are readily apparent from the values of the distances (indicated 
with an "o") computed using the uncontaminated covariance 
matrix , while the Mahalanobis distances (labeled with a "+") 
computed using the whole sample would not reveal any out­
liers. The horizontal line in the plot corresponds to the value 

j xio .. 975 (the cutoff value used in the code FAST-MCD), 
given as a reference for the actual distance of the outliers to 
the center of the sample. 

Figure 1 (b) pre ents the scatterplot of the projections onto 
the first two coordinates. These projections show the anoma­
lous character of these observations due to both their di stance 
to the center of the remaining observations and their rela­
tive concentration. The robust distances obtained using the 
four codes described previously for this example are shown 
in Figure 2. Again, the horizontal lines correspond to the 

FAST-MCD cutoff value J xio .. 975 and are included as a visual 
reference. 

These plots show that none of the procedures is able to iden­
tify the outliers in this example, as might be expected from 
the simulation results in Table l . A more remarkable result 
from these plots, and a consequence of the concentration in 
the contamination. is that in a1l cases the methods have failed 
to identify any of the outliers. This last behavior is common 
for those cases associated with c\ear failures in Table l. It may 
also be of interest to comment that many regular observations 
would have been labeled as outliers by both FAST-MCD and 
FSAMCD. 

The simulation results and the previous example illustrate 
that robust estimators with high breakdown points ensure the 
identification of "far" outliers but may fail in cases in which 
the outliers are concentrated and nol too far away from the 
uncontaminated sample. In practical cases, we seek to deter­
mine not only the existence of outliers but also the extent to 
which they cluster. This latter anomaly would not be readily 
apparent from an analysis based exclusively on Mahalanobis 
distances. 

Outlier detection procedures based on Mahalanobis dis­
tances could be improved in these cases if angular information 
on the data were taken into account, together with the robust 
distances computed by codes such as FAST-MCD, FSAMCD, 
or MULTOUT. The method that we introduce in Section 2 
is based on the analysis of the distortions introduced by 
the contamination on the distribution of the angles between 
observations. In the cases illustrated previously and in other 
cases analyzed in Seclion 4, these di stortions are far easier to 
detect than anomalies in the distribution of the distan ces. 

2. PROJECTIONS ONTO A HYPERSPHERE: 
A METHOD BASED ON ANGLES 

In thi s section, we propose an outlier-detection procedure 
and present the specific properties of the angles on which it 
is based. Let X denote a random vector in ~w with di stribu­
tion function F . Assume that F is the (ellipsoidal) distribution 
function of X = PY + /L , where P is a nonsingular p x p matrix 
and Y has a spherical (isotropic) distribution; that is , for any 
orthogonal p x p matrix r , both Y and ry have the same 
di stribution. A mu ltivariate normal would be an example of an 
ellipsoidal di stribution. Let S p_1 = {x E ffiP: II xlI = I} denote 
the unit hypersphere in ffiP . The vector U = Y / IIYII has a 
uniform distribution on S p_1 (Eaton 1983). 

The proposed method wiU be based on assuming that for the 
uncontaminated sample U follows a uniform distribution Sp_ l' 

This would be the case, for example, if the uncontaminated 
data carne from an ellipsoidal distribution and in particular 
if it followed a multivariate normal di stribution. The test for 
the uniformity of U wiU be based on a related un ivariate dis­
tribution, that of the angle between U and a given reference 
direction uo' For a given vector Uo the distribution function of 
W , the angle between Uo and U (see Fig. 3), can be obtained 
from the normalized surface measure for the spherical patch 
corresponding to the angle 

Fw(w) = K fow sinP -
2 tdt, O:::: w:::: 1T , (2) 
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Figure 2. Robust Mahalanobis Distanees for the Synthetie Dataset, Computed using (a) FAST-MCD, (b) FSAMCD, (e) MULTOUT, (d) SDE. 

where K i the nonnalizing constant. Some authors refer to 
the angle W as tbe MahaJanobi angle; Fisher (1938) seems 
to have been fir t to use this concept. Mardia (1977) outlined 
its role in various techniques such as factor analysis and dis­
criminant analysis . 

Figure 3. Geometrie Representation of the Probability Distribution 
Assoeiated With the Angle Between Observations for an Ellipsoidal 
Distribution. 

U ing the change of variables u = sin" t the preceding 
equation can be written as 

Fw(w) = 1-1/ 2J(sin2 w, (3) ¡ 1/2J(sin2w; (p -1 ) / 2, 1/ 2) , O ~ w ~ 7T / 2, 

(p-I) / 2 1/ 2), 7T/2~w~7T, 

where J (z; a, b) corresponds to the beta distribution with 
parameters a, b. The qfJ quantile of the di tribution (3) can be 
obtained from 

ISin- I .,¡z:¡p, O ~ (3 ~ 1/ 2, 
qfJ = . - 1 

7T-SIO .JZ2(1-fJ)' 1 /2~{3~ 1, 
(4) 

where za is the a quantile of the beta distribution with param­
eters (p - 1) / 2 and 1/ 2. 

Let the given sample in ¡W be denoted by {XI ' x2' ... , XII }' 

We compute the values y¡ = S- I/2(X¡ - x), where ji and S 
are the sample mean and the covariance matrix . The ample 
mean and the covariance matrix have been chosen to stan­
dardize the data a the be t alternatives in the ca e of ab ence 
of contamination. ote that u ing the sample mean and the 
covariance matrix in the presence of outliers will in genera1 
help to detect the outliers by introducing additional asymrne­
tries in the angles that hould be readily apparent to the te t 
used to identify the presence of outlier . 
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Next, the observation are projected onto the unit hyper-

phere S p_ 1 by computing u¡ = y;/ lly¡ll. Then, for a given 
reference direction 110, selected in the manner to be described, 
the procedure computes the angles between the observations 
u¡ and the reference direction 

- 1 ( T ) w¡ = co UOu¡ , (5) 

The e value w¡ forrn a univariate sample. They are tested to 
see if they follow the distribution defined by (3). This shou ld 
be the ca e in particular in the absence of outlier . Procedure 
to conduct thi s te t will be de cribed. 

2.1 Direction tor the Projections 

We need to select an adequate reference direction 110, as 
mentioned previously. The importance of thi choice li es in 
the fact that the departure from unjformity for a given contam­
inated ample may be far more ignificant for sorne directions 
than for others. For example, with concentrated contamina­
tion , the directions from the center toward the contamination 
are much better able to reveal the pre en ce of outliers. As 
a con equence, in thi s case the reference direction should 
be cho en to be a do e a pos ible 10 the direction of the 
outliers-that is, the direction from the center of the regular 
observation to the center of the outliers. 

In practice, we have found that a very good approximation 
to thi direction can be obtained from the following procedure: 

1. Con ider the normalized direction uk = Yd llYk 11 from the 
center of the data to each observation k = 1, ... , n, where 
YI. = S-I /2(Xk - x). Compute the corresponding value of the 
function z(uk ). defined as 

-(Uk) = t(V(i) - f ¡) 2 

¡= I 

v¡ = u i uk , i = 1, . . . , n , 

where f ¡ denote the val ue of cos q f3 for {3 = (i - .5) / n and q f3 

is the quantile defined in (4); v(¡) denotes the ith ordered value 
of Vi' The function z(u) mea ure the lack of uniformity in 
the cosine of the angles formed by the observations and the 
reference direction u . We have found it more efficient to look 
at the e cosine , rather than the angles becau e they are linear 
function of the directions u . We determine the direction u¡ 
that provides the largest value for ;;, U¡ E arg maxk z(uk). 

2. Using thi direction as the initial point, we solve the 
continuous optimizatíon problem 

max u z(u) 

subject to Ilull = l. (6) 

Thi i a quadratic optirnization problem with discontinuou 
fir t derivative , whose solution can be computed using sorne 
nondifferentiable optimization procedure, for example. In 
practice, we have found that differentiable (Newton-method 
ba ed) procedures also work quite well. The solution of (6) 
i used as the reference direction Uo for all subsequent 
computations in the proposed procedure. 

The function z(u) in Problem (6) pre ents many local 
extrema. The choice of initial direction in Step I of the 
procedure has been designed to ensure that the local mini­
mizer chosen in Step 2 is a very good reference direction. In 
particular, if the contamination would be highly concentrated, 
step 2 could be omitted withoul any ignificanl impact on the 
results. For the simulation study in Table 1, we have verified 
that the direction computed from the preceding procedure i 
very close to the direction of the outliers, e l ' The average 
cosine between both directions for all the simulations in the 
table is .99, with a tandard deviation maller than .0 l. 

2.2 Ouantile-Ouantile Plots and Gaps 

Once the sample {w¡} has been generated using (5), a 
goodne s-of-fit test must be conducted to determine if there 
are outliers in the sample. This test can be carried out u ing 
several procedures. 

Here, we use the quantile-quantile (Q-Q) plot-that i , a 
plot of (J¡, w(i) ' where w (¡) ' i = 1, .. . , fl, denotes the ith 
ordered statistic, n, and J¡ is the quantile (i - .5) / n. 

Figure 4 shows the Q-Q plot for the dataset introduced in 
Section 1, for a reference direction obtained using the proce­
dure described in the preceding section. Note that thi refer­
en ce direction correspond very well to the direction of the 
outliers. A a consequence, a very large gap is dearly vi ible 
in the plot and separates the last 20 contarninating obser­
vations from the initial 180. This lack of uniformity of the 
projection onto!he sphere illustrates the expected pattern for 
the case of concentrated contaminations . 

We now study the pacing in the projected data from the 
Q-Q plot 10 derive a quantitative mea ure of the lack of fit 
and test for the presence of outliers. The pacings in the data 
are defined as the difference between consecutive ordered 
observations in univariate amples. Although any other tan­
dard statistic may be used, re ulting in more powerful test 
than the one suggested later, in our ca e the spacing presents 
ome advantages. The presence of outliers introduces ignif­

icant gaps between the ob ervation and thus large gaps in 
the spacing . The mathematical expressions related to the e 

25 

0.5 

0.5 

.. / 

1.5 
Quantlles 

2.5 

Figure 4. Q-Q Plot for the Synthetic Sample Described in Section 1. 

5



            

       

        
           

         
      

         
 

            
         

          
           

         
         

             
             

            
                

      
          
         

          
           

         
         

             
             
           

    
             

           
              

       
           

              

              
          

           
  

           
 

           
             

           

          
       

          
         

         
         

       
         

         
          

           
           

         
         

           

       

             
       

  

         

       
        
         
          
          
          
          
          
          

          
              

            
            

       
        

         
             

           
          

    
          
         

            
       

          
          

           
            

         
     

         
          

           
           

           
         

               
              

              
          

            
          

               
         
        

            
        
 

     

        
           

value are analytically manageable, allowing the analysis of 
the behavior of the method with respect to changes in the 
contamination level, the concentration of the outliers, or the 
sample-space dimensiono Additionally, thi method provides 
u eful information for eparating the outliers from the regular 
ob ervation . 

The use of spacings for tests of fit has been suggested by 
everal authors. An excellent treatment of this ubject was 

given by Pyke (1965). We briefly describe its application to 
our particular case. Let W1, W2 , •• • , Wn be independent uni­
variate random variables each with distribution function F on 
[0,7T). (If the multivariate observations do not contai n any 
outliers, we shall have F = Fw.) Let (W(I)' W(2) , ... , W(,,) } 
denote the order statistics and set W(O) = O and W(,,+ I) = 7T . 
The pacings of the sample are defined by D¡ = W(i) - W(i- I)' 
for 1 S ¡Sil + l . ote that these spacings or gaps can be 
mea ured directly on a Q-Q plol. 

The outlier identification problem in this setting is ba ed on 
testing the ize of the spacings. Given the distribution func­
lion for the uncontaminated case, we expect to find smaller 
spacings in the rniddle of the data and relatively larger ones 
in the extreme. As the dimension for the multivariate obser­
vation increa es, the size of the mjddle spacings decreases. 
Thus, if a gap in the middle of the distribution is as large 
as one in the tail, it will be much more Iikely to indicate 
the presence of outliers. A a consequence, it is nece sary to 
normalize each angular gap. 

Lel V¡ = F(W,), for 1 S i S n. The tran formed random 
variable V. i a uniform random variable on (O, 1) , and , 
{V( 1)' V (2)' ... , V (n) } are the order statistics of a sample of 11 

independent random variable with that distribution. The pac­
ing 15, between the observations in this sample are called the 
normalized spacings, D¡ = V(¡) - V(i-I)' 1 S i S n+ 1, w~ere 
Veo) = O and V (n+11 = 1. The form of the di stributio~ of 0.(,,), 
the length of the longest interval between n consecutlVe pomts 
cho en at random on the unit interva1 (O, 1), is welI known 
(David 1981 ): 

Pr(D(n)SY)= L (_ I )¡ (n~l)(l_iy)n. (7) 
OS¡ < l /y 

Given a signj fi cance level a , a cutoff value D n;a can be 
obtained from (7) by setting Pr(D(n) S Dn:a) = l - a . If the 
original data di tribution is elliptical and doe not contain out­
lier , we expecl each weighted gap D¡ constructed using Fw 
(3) to be smaller than D ,,;a' 

This cutoff value will be val id only if the reference direc­
tion were selected independently of the data. However, the 
proposed method depends on a direction cho en by applying 
a election criterion to many candidates generated from the 
data. Consequently this data-dependent direction requires a 
modified cutoff value that accounts for these multiple choices, 
determjned tbrough a simulation study. Table 2 presents the 
re ulting cutoff values for a significance level a = .05, differ­
ent values of the sample-space dimension (1 to 25), and the 
sample size (50 to 250). Each va1ue has been estimated from 
5,000 replication of the procedure, except for those in col­
umn 1, computed directly from (7). The values corresponding 
to n/ p < 5 have been ornitted from the table. 

Table 2. Cutaff Values D".p.o far a Significance Level a = .05, Different 
Sample-Space Dimensians p, and Sample Sizes n 

Dimensian p 

n 2 3 4 5 10 15 20 25 

50 .131 .142 .164 .172 .181 .221 
75 .094 .101 .116 .123 .130 .153 .181 

100 .074 .080 .089 .094 .099 .117 .136 .155 
125 .061 .066 .073 .077 .080 .094 .107 .123 .141 
150 .052 .055 .061 .066 .068 .079 .089 .097 .1 12 
175 .046 .049 .054 .057 .059 .067 .075 .085 .098 
200 .041 .044 .047 .050 .051 .058 .065 .074 .082 
225 .037 .039 .043 .045 .046 .052 .058 .065 .072 
250 .034 .036 .039 .040 .041 .046 .051 .058 .065 

We have checked that an empirical rule to derive cutoff 
values for arbitrary va lue of p and 11 (as urning n/ p ~ 5) that 
fits very clo ely the preceding values i given by D " .p:.05 = 
D n. I:.05 p.2 , and the vaJues for D ".I :a == D ,,:a can be obtained 
from (7). This expre sion al o provides reasonable approxi­
mations for a significance level a = .01. 

Consider again the ynthetic dataset introduced in Section 1, 
whose Q-Q plot is hown in Figure 4. The value of the largest 
normalized gap is .263, and from Table 2 the cutoff value 
is D 200.20: .05 = .074. The outliers would be clearly identified 
using the preceding te t. 

To detect the pre ence of several c1usters of outliers, one 
might iterate the propo ed procedure until either the value 
of the largest gap is no longer significant or the number of 
remaining observations becomes smaller than L(n+p+ l) /2J. 
U ing thi s dataset as an example, the procedure could be 
applied again after removing the last 20 ob ervations (the ones 
separated by the largest gap). The largest gap is now .048, 
which is less Ihan the cutoff value DI 80.20:.05 = .085, so the 
procedure tops after this point, correctly identifying alJ 20 
outliers and mislabeling no ob ervation . 

The procedure described in thi s section ha also been 
applied to the dataset u ed in the simulation study de cribed 
in Section l . For each set of parameter values, 1,000 datasets 
were generated, and a ingle pass of the procedure wa applied 
to them. In all cases the procedure had 100% success in 
correctly identjfying aH the outlier , except for the following 
tbree sets of parameter value : ( 1) P = 5, E = .05 , k = 6.65 
(96% succe ); (2) p = 5, E = .1, k = 6.65 (99% success); 
(3) p = 10, E = .05, k = 8.56 (99% success). The experiment 
was repeated using larger amples, composed of n = 50p 
observations, instead of using n = IOp a in Table l. The 
re ults were again 100% succes ful except for the single case 
p = 5, E = .05, k = 6.65 (95% uccess). A a consequence, the 
method seems quite efficient in the detection of concentrated 
outliers, as expected from the motivation presented previously. 
We will try to justify this behavior in a more formal manner 
tbrough the theoretical analysis conducted in the following 
section. 

3. ANALYSIS OF THE PROCEDURE 

The basic requirement for an outlier-detection method is 
that it should be able to detect outlier for any reasonable 
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contamination pattern. A high breakdown point ensures this 
property for very large distances to tbe contaminaríon but not 
neces arily te modera te distances. Section 1 illustrated sorne 
difficulties in robust method in identifying particular classe 
of contaminatíon at moderate distance. As a consequence, it 
would be of interest to study the behavior of the pro po sed pro­
cedure in tho e cases-that is, in the presence of concentrated 
contaminations located at a finite distance from the sample 
center. 

In this section, we show that, for this particular case, the 
pro po ed procedure has propertie that are complementary to 
tho e of di tance-based methods, uch a MeD or SDE. In 
particular, we will see that the procedure works better a the 
sample-space dimension or the concentration in the outliers 
increases. 

We consider again a sample from a contaminated normal 
distributíon-that is, n(l - E) observations from an N(O,I) 
distribution in ¡W (the regular observations), contaminated 
with nE observations from an N(ke l A21) di stribution , where 
e l = (1, O, ... , O)T and E < 1/ 2 denote the proportion of out­
lier in the ample. Note that, because the procedure is affine 
equivariant, the basic assumption made (apart frorn using a 
mixture of normals as the reference di tribution) is that the 
shape of the covariance matrix is the same both for the outliers 
and the uncontaminated sample. 

The observed gap will depend on the characteristics of the 
outlier distribution--dimension of the sample space p, con­
tamination level E, distance to the reference observations k, 
and concentration A. We analyze in particular the dependence 
of the pacing with respect to k, E and p ; in some of these 
ca e the properties of the method are markedly different from 
tho e of methods based on distance . 

The analytic study will focus on a particular quantity related 
to the spacings in the data-an angle (J such that for so me 
0<13 < 1, Pr(E> :::: (J) :::: 13, where ® denote the angle between 
the extreme ob ervations from the regular observations and the 
outliers. A geometric illustration of the meaning of this angle 
is provided in Figure 5. A realization of the random variable 
e would correspond to the gap between the two groups of 
observations, as long as the reference direction is chosen to 
be el. In thi case. the angle (J would provide a (probabilistic) 
bound on the ize of this gap. The procedure presented in 
Section 2 provide reference directions for finite samples that 
are very close to e l (see the result in Seco 4). 

Let zf3 denote the (1 + y!73) /2 quantile of a standard uni­
variate normal distribution. To simplify the derivation of an 
expression for the bound (J for the model introduced previ­
ously, we introduce the following "regularity" condition: We 
require that the parameters E, A, and k satisfy zf3 < min(E, (1-
E) / A)k. If this condition is not satisfied, then with probability 
larger tban l - f3 it is possible to find observations fonning 
arbitrary angles with the reference direction (because the cen­
ter of the data lies within one of the isoprobability curves), and 
the projections onto the unit hyper phere of the two samples 
may overlap. 

We now derive an expression for (J. The first step in the 
application of the outlier-detection procedure presented in 
Section 2 i to introduce an affine transformation to ensure 
that the transforrned observations have zero mean and an 

identity covariance matrix . After this transforrnation , for 
the preceding model, we have two groups of observations, 
one of them composed of n (1 - E) observations from an 
N(-EkS- I/2e l,S-I) di tríbution and another group of nE 
ob ervations from an N«I - E)kS- I / 2e l , A2S- I) distribution, 
where 

11=1-E(1-A2
) 

k2E(I-E) 
12 = 11 + k2E(1 - E) 

S-I /2el = j l - 12 e l. 
11 

(8) 

Due to the (axial) symmetry of the problem, we need to ana­
lyze the properties of the angles for only the projectíons of 
the observations onto aplane defined by el and any direc­
tíon orthogonal to it. For these projections the observation 
will follow the same distributions described previously but 
now restricted to m2 (this is the case illustrated in Fig. 5). 
As mentioned previously, the reference direction affects the 
ize of the observed gap. We consider the case in which the 

reference direction is the direction to the center of the outliers, 
el . For this case, the angle (J (see Fig. 5) can be obtained a 
(J = 7r - (JI - (J2 from the pair of angles (JI and (J2' defined a 
those such that an observation from each of the two samples 
forms an angle with e l that is sma1ler than these ang les with 
probability equal to y!73. 

We will make u e of the fact that the angle with the x axi 
of the tangent to an ellipse of the form ax2 + by2 = e from a 
point (r, O) is given by 

tancp= Ff. 
br2 _ ~ 

e a 

(9) 

From the equations of the i oprobability Iines for each of the 
sample corresponding to a probability level equal to y!73, 

e, 
(e/a) 1> 

Figure 5. Angles Between Observations for the Mixture-of-Two 
Normals Case. 
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derived from (8), and (9), the preceding angles are given by 

z{3 YI / k2 + E(I-E) 
tan 01 =--

.¡;;¡; E2 - z~/ k2 

Z{3 
tan O2 =--.¡;;¡; 

YI / P + E(l - E) 

(1- EF/Á2 - Z~/k2 ' 

Using the trigonometric equivaIence 

° ( ° ° ) 
tan 01 + tan O2 tan = tan 71' - 1 - 2 = - ------"--
I - tan 01 tan O2 

and (10), we obtain the desired express ion, 

lA ¡t;; +'¡¡:; 
tanO= Z{3 y l10 2 2 ~ 

Z{3 110 - y 11 1112 

1 E(I-E) 
110=-+---

k2 YI 

Z2 
11 = E

2 - ....!!.. 
1 k2 

(10) 

(11) 

This expression relates a bound on a particularly significant 
spacing to the characteristics of the observations and the con­
tamination. Although it is fairly complex, sorne conclusions 
can be reached from it. 

l. If limits are taken in (11) as k -+ oo-that is , when con­
taminations arbitrarily removed from the original sample are 
considered-it fo11ows that 

~(l-E) E+(i -E)/Á 
tan 0-+ Z -::"", ----------

(3 YI z~ (E(I-E)/YI)- (E(]-E)/Á) 

~
I 1 - E+AE 

- z 
- (3 E(l-E) ZP -YI . 

From this expression, as k -+ 00 the gap becomes larger than 
71' / 2 (a value that can be trivially identified in a Q-Q plot, for 
example) whenever Z~Á - YI < O. This is equivalent to A ::: 1 
and E::: (zP -1) / (A2 -1), or Á.::: ] and E '::: (1- zP) / (I­
Á 2). The first condition holds for all sufficiently ]arge values 
of Á, while the second one always holds for A sufficiently 
smaI\. 

2. Consider now the behavior of ° with respect to the con­
tamination leve] E for the particular case of a concentrated 
contamination, Á -+ O. From (11), as A -+ O it follows that 

Z2 E + Z2 /k2 

tan ° -+ rf¡ ( E) == - {32 ?{3 2 ' 
E - z~/k 

This derivative is positive for any values of z{3 and k satisfy­
ing the regularity condition z{3 < Ek. Thus, for coneentrated 
eontaminations with sufficieotly small values of A, the gap 
between the two groups of observations increases with the 
contamination level E. This behavior differs from that for most 
distance-based methods. 

The analysis of the behavior of the gap s with respect to p 
cannot be based 00 (1 1) because the size of the gap does 
not depend on p for the model presented in tbis section and 
the reference direction we have considered. If p is increased, 
but the remaining parameters in the contamination rnodel do 
not change, the values of W(i) and W(i+ I) (using the notation 
from Seco 2.2) are not affected. The onIy impact of these 
changes appears through Fw in the value of D; = Fw(W(i+ I» ­
Fw(W(¡» . We now show that this value increases with p (for 
fixed W(;) and W(i+ I» if W(i) < 71' / 2 < W(i+ I)' 

To simp1ify the notation , define 

b 

J(a , b; p) == i sinP- 2tdt , a, bE[0, 71']. 

We have J (a, b; p) ::: O, J(O, a; p) = J(71' - a, 71'; p), and, 
[rom (2), 

D;(p) = J(W(i) , W(i+ I); p) . 
J(0 , 71' ; p) 

We wish to study the sign of D¡(p+ 1) - D¡(p); equivalently, 
we may anaIyze the sign of 

11 = (D;(p + 1) - D;(p) )J(O, 71'; P + I)J(O , 71'; p) 

=J(O, 71'; p)J(W(i)' W(¡+I) ; p+ 1) 

- J(O , 71'; p+ 1)J(W(i) ' W(;+I); p). 

From the mean value theorem, for any O < a < 71' / 2, 

J (O , a; p + 1) = sin epJ (O, a; p), 

J(O, 71' / 2; p+ 1) = TJpJ(O , 71' / 2; p) , 

ep E (O, a) , 

"fJp > sin 'P. 

Let a == W(i) and b == W(i+ I)' and assume that O < a < 71' / 2 < 
b < 71' holds; then 

11 = J(O, 71'; p)J(a, b; p+ 1) - J(O , 71' ; p+ l)J(a , b; p) 

= J(O , 71'; p)(2J(0 , 71' / 2; p + 1) - J(O, a; p + 1) 

-J(O 71'-b;p+I»)-J(0,71';p+1)J(a,b;p) 

= J(O , 71'; p)(2"fJpJ(0, 71' / 2; p) - sin epJ(O, a; p) 

- sin epbJ (0,71' - b; p») - "fJ pJ (O, 71'; p) (2J(0 , 71'/2; p) 

- J(O , a; p) - J(O , 71' - b; p») 

= J(O, 71'; p)("fJp - sin 'Pa)J(O, a; p) 

+ ("fJ p - sin 'Pb)J (0 , 71' - b; p») > O, 

and we have the desired bound. 
From (10), the preceding eondition wil! be satisfied 

whenever °1, O2 < 71' / 2, but this will hold as long as 
z{3 < min(E , (1- E) / Á)k . These eonditions are sufficient, 
but not neeessary and are trivially satisfied if A = O and 
z{3 < €k. Whenever these conditions are satisfied, the distortion 
assoeiated with the presence of outliers inereases with p, 
and as a eonsequenee the probability of observing a given 
normalized gap between the reference observations and the 
outliers inereases with the dimension of the problem. 

This behavior of the method makes the proposed proee­
dure particularly useful for those cases in which either p or E 
are large, eorrespoorung to situations in which the procedures 
based on high breakdown-point estimators are less effective. 
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4. EXAMPLES 

In this section we describe the practical behavior of the 
proposed procedure through several examples, most of them 
taken from the literature. Our goal is ro illustrate the way lhe 
procedure works in different cases, based both on synthetic 
and real data . Although many of the test cases considered 
have already been successfully analyzed using different robust 
procedures, these examples are inrended to show how the pro­
posed method is able to handle a wide range of contamination 
patterns. 

We have analyzed the dataset MULCROSS, available in 
STATUB jointly with the cade MULTOUT. This dataset has 
200 observations in dimension 10, with ISO observations gen­
erated from a normal distribution, and 50 outliers from a dif­
ferent normal distribution, displaced with respect to the initial 
observations. The outliers form a single cluster, with disper­
sion similar to that of the main set of ISO observations. When 
the proposed procedure is applied, the maximum gap appears 
between the ordered observations 150 and 151 ; it is the only 
one Iying above the relevant signification levels and separates 
the regular observations from the outliers. The correspond­
ing Q-Q plOl is shown in Figure 6, where the lwo groups of 
observations are readily apparent; one of them contains the 
50 outliers, and the other corresponds to the remaining 150 
observations. The values for the gap statistics in this example 
are 0 (2001 = .387 and , from Table 2, D200. 10:.05 = .058. 

The "wood gravity" dataset (Rousseeuw and Leroy 1987), a 
sel of 20 observations in dimension 5 that has been studied in 
several works related to multivariate outlier detection, has also 
been analyzed. Previous studies have identified four outliers , 
corresponding to observalions 4, 6, 8, and 19, from the two­
and three-dimensional scatterplots. Nevertheless, sorne iden­
tification methods based on the MVE [MULTOUT; see also 
the comments of Cook and Hawkins (1990) lO Rousseeuw 
and van Zomeren (1990)] and those based on the SDE may 
fail to identify rhese outliers. The procedure described in this 
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Figure 6. Q-Q Plot for the MULCROSS Dataset. 

3 

article generates the Q-Q plot shown in Figure 7(a), where 
the outliers are readily apparent. The normalized gap takes the 
value .490, aboye the cutoff value D 20.5:.05 = .373. 

In a slightly different setting, the procedure was al so applied 
to the well-known Anderson iris data (Anderson 1935; Fisher 
1936). In our case we have used only those observations corre­
sponding lo varieties virginica and versicolor lo obtain a sam­
pie composed of 100 observations in dimension 4. Although 
this is no longer an outlier detection problem, because E = .5, 
it serves to illustrate the possibilities of the proposed method. 
Figure 7(b) shows lhe results from the procedure and the 
large gap between the groups corresponding to each vari­
ety. The normalized gap is .208, much larger than the cutoff 
D loo. 4; 05 = .094. It might be difficult for a procedure based on 
distances to identify both groups correctly. 

We consider next the situation in which the outliers may 
form several clusters. In these situations, MCD- and SD-based 
methods tend to perform better than with just one cluster. We 
wish to show that the proposed procedure (with very minor 
modifications) is also able lo perform reasonably well. 

Consider first a synthetic example, corresponding to a sam­
pie of 100 observations in dimension 10, with 80 observa­
tions from an N(O,I) distribution, 10 observations from an 
N(kle l , A21), and the last 10 observations were generated from 
an N(k2e2 , A21) , where el and e2 denote the first two unit vec­
tors in !)1lo,k l =7.5 , k2 = 10, and A=.1. Figure 8(a) shows 
the scatterplot corresponding to the projections of the dataset 
onto the first two coordinate directions, clearly revea]ing the 
two clusters of outliers. 

After the proposed procedure has been applied once, the 
resulting Q-Q plot is the one shown in Figure 8(b). Note that 
the reference direction Uo is very close to e2. The maximum 
gap is .247 and the cutoff value obtained from Table 2 is 
D 1OO. IO;.05 = .118. As a consequence the last 10 observations 
in the sample would be labeled as outliers. 

This tirst application of the algorithm has not detected a1l 
the outliers. To complete the process, we iterate the proce­
dure, after removing the suspected outliers, until the maxi­
mum gap is no longer significant. If the proposed procedure 
is applied again to observations 1-90 (after removing the last 
10), the resulting Q-Q plot is shown in Figure 8( c). The refer­
ence direction is very close to el' the maximum gap is .291, 
and the cutoff value is D90, 10:.05 = .133. As a consequence, 
observations 81-90 are al so labeled as outliers. After remov­
ing them, the procedure is applied again to the remaining 80 
observations (the first ones) , providing the Q-Q plot shown 
in Figure 8(d). In this case, the maximum gap is .088 and 
the cutoff va]ue is Dso. 10:.05 = .145, no additiona1 outliers are 
detected, and the procedure ends successfully. Note that the 
success of the procedure depends on the ability to identify as 
reference directions Uo the directions to the outliers. The lack 
of fit apparent in Figure 8(d) is due to the fact that the refer­
ence direction has been chosen to maximize this lack of tit. 

FinalIy, we analyze a dataset presented by Campbell (1989), 
obtained in the process of locating bush-tire scars, and com­
posed of 38 observations in dimension 5 . This dataset was 
studied by Maronna and Yohai (1995) regarding the presence 
of outlying observations. It should be noted that, as opposed 
to the preceding example, these data correspond to a real situ­
ation, and as a consequence the evaluation of the results from 
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Figure 7. Q-Q Plots for (a) the Wood Gravity Dataset, (b) the Iris Data. 
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Figure 8. (a) Seatterplot for the Synthetie Example With Two Clusters, (b) First Q-Q Plot for the Synthetie Example, (e) Q-Q Plot After Removing 
ObseNations 91- 100, (d) Q-Q Plot After Removing ObseNations 81- 100. 
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Figure 9. O-O Plots for the Bush-Fire Sear Data: (a) First O-O Plot, (b) O-O Plot After Removing ObseNations 8- 11, (e) O-O Plot After Removing 
10 0bseNations, (d) O-O Plot After Removing 12 ObseNations. 

the identificaríon procedure is not as straightforward as in the 
synthetic case. Maronna and Yohai (1995), using the SDE, 
found that observations 8 and 9 are the ones furthest removed 
from the sample center, followed by observations 32 to 38. 
Different results were obtained by these authors using other 
estimators. 

The result of the application of the proposed procedure 
yields the Q-Q plot presented in Figure 9(a). The largest 
gap has a va1ue of .355 and separates observations 8, 9, 
10, and 1 1 from the rest. The cutoff value from Table 2 is 
D:'8. 5:.05 = .226, and as a consequence these observations are 
labeled as outliers. Following the same approach as in the 
preceding case, we again apply the procedure to the remaining 
34 observations. The corresponding Q-Q plot is given in 
Figure 9(b). Now the largest gap is .297, and the cutoff 
value is D 34. 5:05 = .247. Observations 33- 38 are accordingly 
JabeJed as outliers, and the procedure is repeated on the 
remaining 28 observations. The new Q-Q plot is shown in 
Figure 9(c). The largest gap is .323 and the cutoff value is 

D2M . 5: .05 = .296. Observations 7 and 12 are labeled as outliers. 
Finally, for the remaining 26 observations the resulting Q-Q 
plot is shown in Figure 9(d). Now the largest gap is .230 
and separa tes observations 28-3 1 from the rest ; the culoff 
value is D 26.5:.0S = .315. As a consequence, no additional 
observations would be labeled as outliers. Nevertheless, 
the lack of fit shown in the Q-Q plot, Figure 9(d), might 
provoke sorne doubts on the nature of observations 28-3 J. 
In fact, FAST-MCD labels these last four observations as 
outliers, while both Maronna and Yohai (1995) and Rocke 
and Woodruff (1996) did not consider them to be anomalous. 

5. CONCLUSIONS 

This work attempts to illustrate the difficulties faced by 
many robust procedures, and in particular those based on 
the use of robust Mahalanobis di stances, for the detection 
of concentrated contaminations. Following the remark by 
Gnanadesikan and Kettenring (1972), cited by Barnett and 
Lewis (1994), "The complexity of the multivariate case 
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suggests that it would be fruitless to search for a truly omnibus 
outlier-protection procedure. A more reasonable approach 
seems to be to tailor detection procedures to protect against 
specific types of situations." a simple procedure is proposed 
to detect this contamination pattem. based on the analysis 
of the gaps associated with certain univariate projections of 
the observations. As opposed to other robust procedures, its 
behavior improves with the dimension of the problem and 
with the proportion of outliers in the sample. 

The procedure can be considered as an exploratory tool, 
simple to use, and very effective on concentrated contami­
nation pattems. The combination of this method and other 
traditional outlier-detection procedures should al\ow the iden­
tification of highly complex outlier pattems. 
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