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This article describes a procedure for the detection of multivariate outliers based on the analysis of
certain angular properties of the observations. The method is simple, exploratory in nature. and par-
ticularly well suited for the detection of concentrated contamination patterns, in which the outliers
appear to form a cluster, separated from the sample. It is shown that it presents good properties for
the identification of contaminations on high-dimensional sample spaces and for high contamination
levels, including some cases in which methods based on robust estimators (the minimum covariance
determinant and minimum volume ellipsoid estimators, the Stahel-Donoho estimator, or other recent
proposals) may fail. The use of the procedure is illustrated through several examples.
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Data often include some outliers. If the mechanism gener-
ating the observations were perfectly well known, it would be
possible to detect and explain those abnormal observations.
Often such information is unavailable, so outliers must be
determined on the basis of data analysis. The need to identify
the outliers is an immediate consequence of the distortions that
they introduce on the results obtained from the application of
classical estimation procedures to contaminated samples.

Except for low-dimension cases (samples in dimensions 1,
2, or at most 3), in which a complete graphical representa-
tion of the data may be used to visually identify the poten-
tial outliers, detecting multivariate outliers is difficult with
no completely satisfactory procedure available for the general
case. The usual strategy is based on the computation of some
Mahalanobis distance for each observation x € )", defined as

D\-(x.c):{(x—c)TV"(x—c)}]':. (1)

where ¢ € 7 and the p x p matrix V denote, respectively, the
estimators for the center and the covariance matrix obtained
from the sample points.

However, outliers may result in unreliable distance values
when ¢ and V are the sample mean and sample covariance,
respectively. In recent years many robust alternatives for these
estimators have been proposed in the literature, such as the
M estimators, studied by Maronna (1976) for the multivariate
case, the estimator based on the minimum volume ellipsoid
(MVE) (Rousseeuw 1985) and its derivations such as the min-
imum covariance determinant (MCD) method, or the Stahel-
Donoho estimator (SDE) (Stahel 1981; Donoho 1982).

Direct implementations of M estimators may present a very
low breakdown point, 1/(p+ 1), and those versions that have
a high breakdown point, such as the S estimators, are very
expensive to compute even for moderate sample-space dimen-
sions. The other two estimators have a 50% breakdown point,
independently of the dimension of the data, but their exact
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computation is also expensive. This computation requires solv-
ing a global optimization problem with a nonconvex objec-
tive function that in general presents a large number of local
minimizers. Solution techniques currently available for this
problem are too inefficient to be of practical use, even for low-
dimension problems. As a consequence, in practice approx-
imate solutions based on resampling procedures or heuristic
procedures are used for both cases. A detailed description of
the advantages and limitations of these estimators was given
by Rousseeuw and van Zomeren (1990), Cook and Hawkins
(1990), and Maronna and Yohai (1995).

In particular, these methods will have difficulty identifying
contaminations that are not far from the original sample, even
when they present other distinguishing features. An exam-
ple illustrating this last situation is the case of concentrated
contaminations. In this contamination pattern the outliers are
closely grouped, forming clusters separated from the main
sample. The effect of this contamination scheme was analyzed
by Maronna and Yohai (1995), who suggested that this scheme
may induce the largest bias in the estimation of location and
scale for multivariate samples. Adrover (1993) showed that
this is the case for M estimators. It also seems to be the most
difficult case for algorithms based on the MVE (see Rocke
and Woodruff 1996).

In this work, a procedure that takes into account other
information, in addition to distances, is proposed. This
procedure is illustrated through its application to the particular
case of the detection of concentrated contaminations. It is
shown to present properties that are complementary to those
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of distance-based methods and in particular to be able to
identify outliers in cases in which these methods may fail.

The method proceeds by projecting the standardized data
onto the unit hypersphere and testing the projected data to
identify any lack of uniformity that might be associated
with the presence of outliers. This procedure is based on
the observation that the anomalies that characterize many
contamination patterns, and in particular those difficult to
detect by distance-based methods, arise from the relative
disposition of the contaminating observations and, more
specifically, from an excessive proximity between these
observations. The distortions introduced on the projected data
by this proximity may be easier to detect than the presence
of large values for some robust distance to the center of the
data. Note that it is possible to have contaminations that have
large distances without distorting any symmetry properties.
As a consequence, a reasonable procedure should study both
distances and angles. We propose a practical two-step method
based on the combination of a distance-based algorithm with
the one presented in this article.

This article will be concerned only with the details of the
method related to the analysis of the angles, without further
reference to the analysis of distances. This latter part has been
studied extensively in the literature (e.g., see Hawkins 1980;
Beckman and Cook 1983) and can be carried out using one
of several procedures (e.g., see Rousseeuw and van Zomeren
1990; Rocke and Woodruff 1996; Barnett and Lewis 1994;
Rousseeuw and van Driessen 1999).

In Section 1, we analyze some characteristics of con-
centrated contamination patterns that justify the use of the
outlier-detection procedure described in the article. Section 2
introduces the procedure and justifies its validity. Section 3
studies some properties of the procedure in terms of the
configuration of the sample. Finally, in Section 4, the practical
behavior of this procedure is illustrated on some representative
examples.

1. MOTIVATION

Before describing the proposed procedure, we illustrate
some of the practical difficulties with distance-based outlier-
identification methods. In particular, these procedures may
fail to detect outliers when these observations appear grouped
together and not very far from the uncontaminated sample.

Table 1 presents the results of a simulation experiment
conducted using several available codes based on MCD
techniques, and an implementation of the Stahel-Donoho
estimator (SDE) procedure: FSAMCD from Hawkins (1994),
MULTOUT from Woodruff and Rocke (1996), FAST-MCD
from Rousseeuw and van Driessen (1999), and the SDE
implementation of Maronna and Yohai (1995). The experiment
consists of randomly generating a sample of n observations,
whose majority subset of (1 —e€)n observations is generated
from an N(0,I) distribution in dimension p and whose
minority subsets of en observations (the outliers) come from
an N(ke,, A’I) distribution, where e, denotes the first unit
vector. One hundred samples were generated for each set of
parameter values (p =5, 10,20; n = 10p; € = .05, .1, .15, .2,
and A = .1). The distance of the outliers to the center of the

Table 1. Simulation Experiment: Number of Successes in Identifying
All Concentrated Outliers Using the Codes FAST-MCD, MULTOUT,
FSAMCD, and SDE

% success

€ o] k

Cont. Dim. Dist. FASTMCD MULTOUT FSAMCD SDE

.05 5 6.65 100 100 100 100

13.31 100 100 100 100

10 8.56 100 100 100 94

17.11 100 100 100 100

20 11.21 76 80 91 -

22.42 100 100 100 100

10 5 6.65 98 98 100 99

13.31 100 100 100 100

10 8.56 16 59 26 77

17.11 100 99 98 100

20 11.21 0 2 0 0

22.42 0 13 0 100

15 5 6.65 69 60 80 93

13.31 100 100 100 100

10 8.56 0 8 0 26

17.11 5 31 1 100

20 11.21 0 0 0 0

22.42 0 0 0 92

.20 5 6.65 0 18 1 55

13.31 59 92 77 100

10 8.56 0 0 0 3

711 0 5 0 100

20 11.21 0 0 0 0

22.42 0 0 0 24

uncontaminated data, k, was set to the values 2 X,:,_ 95 and
4 X,ZL 5. as shown by Rocke and Woodruff (1996).

The codes were run on each sample, and their output was
compared to the actual outliers from the preceding model.
Table 1 gives the number of times each code was able to
identify as outliers all the sample points generated from the
contaminating model, for each code and each set of parameter
values. For FSAMCD, a success was declared when none of
the outliers were contained in the basis returned by the code
(only one solution was tracked). For the remaining codes, the
decision was based on the labeling of the observations pro-
vided in their output files.

From the results in Table 1, MCD-based methods work rea-
sonably well for reduced contamination levels (€ = .05, .1) and
sample-space dimensions (p = 5), but they have increasing
difficulties in identifying concentrated outliers as the contam-
ination level and the sample-space dimension increases. In
fact, the percentage of outliers for which these methods start
to fail seems to decrease monotonically with the dimension
p. The conclusions for the SDE method are similar, although
the deterioration is less marked. The preceding results on the
MCD-based methods are similar for other values of scale con-
tamination (A = .32, .032).

To examine further this behavior, we consider a particular
sample obtained from the preceding model having low suc-
cess rates. The sample has been generated using p =20, n =
200,€ = .1,k = 11.21, and A = .32. The Mahalanobis dis-
tances to the origin (the center of the original sample) for all
the observations, computed using both the sample covariance
matrix and the covariance matrix for the first 180 observations,
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(a) Mahalanobis Distances for the Dataset Using the Mean and Covariance Matrix for the First 85 Observations (o) and the Mean

and Covariance Matrix for all 100 Observations (+); (b) Scatterplot of the Observations Projected Onto the First Two Coordinate Axes.

are shown in Figure 1(a). The outliers (observations 181-200)
are readily apparent from the values of the distances (indicated
with an “0”) computed using the uncontaminated covariance
matrix, while the Mahalanobis distances (labeled with a “+)
computed using the whole sample would not reveal any out-
liers. The horizontal line in the plot corresponds to the value

/ X3, 975 (the cutoff value used in the code FAST-MCD),
given as a reference for the actual distance of the outliers to
the center of the sample.

Figure 1(b) presents the scatterplot of the projections onto
the first two coordinates. These projections show the anoma-
lous character of these observations due to both their distance
to the center of the remaining observations and their rela-
tive concentration. The robust distances obtained using the
four codes described previously for this example are shown
in Figure 2. Again, the horizontal lines correspond to the
FAST-MCD cutoff value \/
reference.

These plots show that none of the procedures is able to iden-
tify the outliers in this example, as might be expected from
the simulation results in Table 1. A more remarkable result
from these plots, and a consequence of the concentration in
the contamination, is that in all cases the methods have failed
to identify any of the outliers. This last behavior is common
for those cases associated with clear failures in Table 1. It may
also be of interest to comment that many regular observations
would have been labeled as outliers by both FAST-MCD and
FSAMCD.

The simulation results and the previous example illustrate
that robust estimators with high breakdown points ensure the
identification of “far” outliers but may fail in cases in which
the outliers are concentrated and not too far away from the
uncontaminated sample. In practical cases, we seek to deter-
mine not only the existence of outliers but also the extent to
which they cluster. This latter anomaly would not be readily
apparent from an analysis based exclusively on Mahalanobis
distances.

X30. ¢75 and are included as a visual

Outlier detection procedures based on Mahalanobis dis-
tances could be improved in these cases if angular information
on the data were taken into account, together with the robust
distances computed by codes such as FAST-MCD, FSAMCD,
or MULTOUT. The method that we introduce in Section 2
is based on the analysis of the distortions introduced by
the contamination on the distribution of the angles between
observations. In the cases illustrated previously and in other
cases analyzed in Section 4, these distortions are far easier to
detect than anomalies in the distribution of the distances.

2. PROJECTIONS ONTO A HYPERSPHERE:
A METHOD BASED ON ANGLES

In this section, we propose an outlier-detection procedure
and present the specific properties of the angles on which it
is based. Let X denote a random vector in )” with distribu-
tion function F. Assume that F is the (ellipsoidal) distribution
function of X =PY + u, where P is a nonsingular p x p matrix
and Y has a spherical (isotropic) distribution; that is, for any
orthogonal p x p matrix I', both Y and I'Y have the same
distribution. A multivariate normal would be an example of an
ellipsoidal distribution. Let 8, , = {x € %" : [x|| = 1} denote
the unit hypersphere in R”. The vector U =Y/|Y| has a
uniform distribution on §,_; (Eaton 1983).

The proposed method will be based on assuming that for the
uncontaminated sample U follows a uniform distribution §,_,.
This would be the case, for example, if the uncontaminated
data came from an ellipsoidal distribution and in particular
if it followed a multivariate normal distribution. The test for
the uniformity of U will be based on a related univariate dis-
tribution, that of the angle between U and a given reference
direction u,. For a given vector u, the distribution function of
W, the angle between u, and U (see Fig. 3), can be obtained
from the normalized surface measure for the spherical patch
corresponding to the angle

Fw(w)=Kf sin” ¢ dt, O<w<m,
0

()
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Figure 2. Robust Mahalanobis Distances for the Synthetic Dataset,

where K is the normalizing constant. Some authors refer to
the angle W as the Mahalanobis angle; Fisher (1938) seems
to have been first to use this concept. Mardia (1977) outlined
its role in various techniques such as factor analysis and dis-
criminant analysis.

Figure 3. Geometric Representation of the Probability Distribution
Associated With the Angle Between Observations for an Ellipsoidal
Distribution.

Computed using (a) FASEMCD, (b) FSAMCD, (c) MULTOUT, (d) SDE.

Using the change of variables u = sin’r, the preceding
equation can be written as

1/21(sin’w; (p—1)/2,1/2),
1—1/21(sin’w,
(p—1)/2,1/2),

where /(z;a,b) corresponds to the beta distribution with
parameters a, b. The g5 quantile of the distribution (3) can be
obtained from

O<w=<m/2,
Fy(w)= (3)

w/2<w<m,

0<B=1/2,
1/2=p =1,

{sin'l Z2p

4= b

T—SsIn - [T1-p)
where z,, is the a quantile of the beta distribution with param-
eters (p—1)/2 and 1/2.

Let the given sample in R” be denoted by {x,,X,,...,X,}.
We compute the values y, = S~'/?(x; —X), where X and S
are the sample mean and the covariance matrix. The sample
mean and the covariance matrix have been chosen to stan-
dardize the data as the best alternatives in the case of absence
of contamination. Note that using the sample mean and the
covariance matrix in the presence of outliers will in general
help to detect the outliers by introducing additional asymme-
tries in the angles that should be readily apparent to the tests
used to identify the presence of outliers.

(4)

4



Next, the observations are projected onto the unit hyper-
sphere 8, , by computing u, =y,/|ly,||. Then, for a given
reference direction u,, selected in the manner to be described,
the procedure computes the angles between the observations
u; and the reference direction

w; = cos ™' (uju,;). (5)

These values w; form a univariate sample. They are tested to
see if they follow the distribution defined by (3). This should
be the case in particular in the absence of outliers. Procedures
to conduct this test will be described.

2.1 Direction for the Projections

We need to select an adequate reference direction u,, as
mentioned previously. The importance of this choice lies in
the fact that the departure from uniformity for a given contam-
inated sample may be far more significant for some directions
than for others. For example, with concentrated contamina-
tions, the directions from the center toward the contamination
are much better able to reveal the presence of outliers. As
a consequence, in this case the reference direction should
be chosen to be as close as possible to the direction of the
outliers—that is, the direction from the center of the regular
observations to the center of the outliers.

In practice, we have found that a very good approximation
to this direction can be obtained from the following procedure:

1. Consider the normalized direction u, =y, /||y | from the
center of the data to each observation k =1,..., n, where
¥, = S7'%(x, —x). Compute the corresponding value of the
function z(u,), defined as

n
2(w) =) (v — ri)2
i=1

V=T s b =50y s
where 7; denotes the value of cos gz for B = (i —.5)/n and g,
is the quantile defined in (4); v;, denotes the ith ordered value
of »;. The function z(u) measures the lack of uniformity in
the cosines of the angles formed by the observations and the
reference direction u. We have found it more efficient to look
at these cosines, rather than the angles because they are linear
functions of the directions u. We determine the direction u;
that provides the largest value for z, u; € arg max, z(u,).

2. Using this direction as the initial point, we solve the
continuous optimization problem

max, z(u)
subject to  |luf = 1. (6)
This is a quadratic optimization problem with discontinuous
first derivatives, whose solution can be computed using some
nondifferentiable optimization procedure, for example. In
practice, we have found that differentiable (Newton-method
based) procedures also work quite well. The solution of (6)
is used as the reference direction u, for all subsequent
computations in the proposed procedure.

The function z(u) in Problem (6) presents many local
extrema. The choice of initial direction in Step 1 of the
procedure has been designed to ensure that the local mini-
mizer chosen in Step 2 is a very good reference direction. In
particular, if the contamination would be highly concentrated,
step 2 could be omitted without any significant impact on the
results. For the simulation study in Table 1, we have verified
that the direction computed from the preceding procedure is
very close to the direction of the outliers, e,. The average
cosine between both directions for all the simulations in the
table is .99, with a standard deviation smaller than .01.

2.2 Quantile-Quantile Plots and Gaps

Once the sample {w;} has been generated using (5), a
goodness-of-fit test must be conducted to determine if there
are outliers in the sample. This test can be carried out using
several procedures.

Here, we use the quantile-quantile (Q-Q) plot—that is, a
plot of (f;,w;), where w,i=1,...,n, denotes the ith
ordered statistic, n, and f; is the quantile (i —.5)/n.

Figure 4 shows the Q-Q plot for the dataset introduced in
Section 1, for a reference direction obtained using the proce-
dure described in the preceding section. Note that this refer-
ence direction corresponds very well to the direction of the
outliers. As a consequence, a very large gap is clearly visible
in the plot and separates the last 20 contaminating obser-
vations from the initial 180. This lack of uniformity of the
projections onto the sphere illustrates the expected pattern for
the case of concentrated contaminations.

We now study the spacing in the projected data from the
Q-Q plot to derive a quantitative measure of the lack of fit
and test for the presence of outliers. The spacings in the data
are defined as the differences between consecutive ordered
observations in univariate samples. Although any other stan-
dard statistic may be used, resulting in more powerful tests
than the one suggested later, in our case the spacing presents
some advantages. The presence of outliers introduces signif-
icant gaps between the observations and thus large gaps in
the spacings. The mathematical expressions related to these

¥ 4

15
Quantiles
Figure 4. Q-Q Plot for the Synthetic Sample Described in Section 1.
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values are analytically manageable, allowing the analysis of
the behavior of the method with respect to changes in the
contamination level, the concentration of the outliers, or the
sample-space dimension. Additionally, this method provides
useful information for separating the outliers from the regular
observations.

The use of spacings for tests of fit has been suggested by
several authors. An excellent treatment of this subject was
given by Pyke (1965). We briefly describe its application to
our particular case. Let W, W,,..., W, be independent uni-
variate random variables each with distribution function F on
[0, 7). (If the multivariate observations do not contain any
outliers, we shall have F = Fy.) Let {W,. W, ..... W}
denote the order statistics and set W, =0 and W, = 7.
The spacings of the sample are defined by D, = W, — W,,_,,
for 1 <i <n+1. Note that these spacings or gaps can be
measured directly on a Q-Q plot.

The outlier identification problem in this setting is based on
testing the sizes of the spacings. Given the distribution func-
tion for the uncontaminated case, we expect to find smaller
spacings in the middle of the data and relatively larger ones
in the extremes. As the dimension for the multivariate obser-
vations increases, the size of the middle spacings decreases.
Thus, if a gap in the middle of the distribution is as large
as one in the tail, it will be much more likely to indicate
the presence of outliers. As a consequence, it is necessary to
normalize each angular gap.

Let V., = F(W,), for 1 <i < n. The transformed random
variable V, is a uniform random variable on (0, 1), and
{Viiys Viays - - -+ Vi, } are the order statistics of a sample of n
independent random variables with that distribution. The spac-
ings D, between the observations in this sample are called the
normalized spacings, D, = V,;, — V,._,, | <i <n+1, where
Vioy=0and V., = 1. The form of the distribution of 5(,,),
the length of the longest interval between n consecutive points
chosen at random on the unit interval (0, 1), is well known
(David 1981):

Pri(Dy<y)= X (—1>‘("+1)<|—i.v)". (7)

i
O<i<l/y

Given a significance level a, a cutoff value D,., can be
obtained from (7) by setting Pr(5(,,, <D,,)=1—a. If the
original data distribution is elliptical and does not contain out-
liers, we expect each weighted gap D, constructed using Fy,
(3) to be smaller than D,_,,.

This cutoff value will be valid only if the reference direc-
tion were selected independently of the data. However, the
proposed method depends on a direction chosen by applying
a selection criterion to many candidates generated from the
data. Consequently this data-dependent direction requires a
modified cutoff value that accounts for these multiple choices,
determined through a simulation study. Table 2 presents the
resulting cutoff values for a significance level @ = .05, differ-
ent values of the sample-space dimension (1 to 25), and the
sample size (50 to 250). Each value has been estimated from
5,000 replications of the procedure, except for those in col-
umn 1, computed directly from (7). The values corresponding
to n/p < 5 have been omitted from the table.

Table 2. Cutoff Values D, ,., for a Significance Level a = .05, Different
Sample-Space Dimensions p, and Sample Sizes n

Dimension p

n 1 2 3 4 5 10 15 20 25

B0 - A31 942 "84 172 A8l | 221 — —_ —

75 094 101 .16 .123 .130 .153 .181 — —
100 074 080 .089 .094 .099 .117 .136 .155 —
125 061 066 .073 .077 .080 .094 .107 .123 .141
150 .052 055 .061 .066 .068 .079 .089 .097 .112
176 046 .049 054 057 .059 .067 .075 .085 .098
200 .041 .044 047 .050 .051 .058 .065 .074 .082
225 037 .039 .043 .045 .046 .052 .058 .065 .072
250 034 036 .039 .040 .041 046 .051 .058 .065

We have checked that an empirical rule to derive cutoff
values for arbitrary values of p and n (assuming n/p > 5) that
fits very closely the preceding values is given by D, . o5 =
D, \.0s p2, and the values for D, ., = D,., can be obtained
from (7). This expression also provides reasonable approxi-
mations for a significance level @ = .01.

Consider again the synthetic dataset introduced in Section 1,
whose Q-Q plot is shown in Figure 4. The value of the largest
normalized gap is .263, and from Table 2 the cutoff value
is Dy 20. 05 = -074. The outliers would be clearly identified
using the preceding test.

To detect the presence of several clusters of outliers, one
might iterate the proposed procedure until either the value
of the largest gap is no longer significant or the number of
remaining observations becomes smaller than [(n+p+1)/2].
Using this dataset as an example, the procedure could be
applied again after removing the last 20 observations (the ones
separated by the largest gap). The largest gap is now .048,
which is less than the cutoff value D g 5. o5 = .085, so the
procedure stops after this point, correctly identifying all 20
outliers and mislabeling no observation.

The procedure described in this section has also been
applied to the datasets used in the simulation study described
in Section 1. For each set of parameter values, 1,000 datasets
were generated, and a single pass of the procedure was applied
to them. In all cases the procedure had 100% success in
correctly identifying all the outliers, except for the following
three sets of parameter values: (1) p = 5,€ = .05,k = 6.65
(96% success); (2) p=5,e =.1,k = 6.65 (99% success);
(3) p=10,€ = .05, k = 8.56 (99% success). The experiment
was repeated using larger samples, composed of n = 50p
observations, instead of using n = 10p as in Table 1. The
results were again 100% successful except for the single case
p=35,€=.05,k=06.65(95% success). As a consequence, the
method seems quite efficient in the detection of concentrated
outliers, as expected from the motivation presented previously.
We will try to justify this behavior in a more formal manner
through the theoretical analysis conducted in the following
section.

3. ANALYSIS OF THE PROCEDURE

The basic requirement for an outlier-detection method is
that it should be able to detect outliers for any reasonable
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contamination pattern. A high breakdown point ensures this
property for very large distances to the contamination but not
necessarily to moderate distances. Section 1 illustrated some
difficulties in robust methods in identifying particular classes
of contaminations at moderate distance. As a consequence, it
would be of interest to study the behavior of the proposed pro-
cedure in those cases—that is, in the presence of concentrated
contaminations located at a finite distance from the sample
center.

In this section, we show that, for this particular case, the
proposed procedure has properties that are complementary to
those of distance-based methods, such as MCD or SDE. In
particular, we will see that the procedure works better as the
sample-space dimension or the concentration in the outliers
increases.

We consider again a sample from a contaminated normal
distribution—that is, n(1 —€) observations from an N(0, I)
distribution in N7 (the regular observations), contaminated
with ne observations from an N(ke,, A’I) distribution, where
e, =(1,0,...,0)" and € < 1/2 denotes the proportion of out-
liers in the sample. Note that, because the procedure is affine
equivariant, the basic assumption made (apart from using a
mixture of normals as the reference distribution) is that the
shape of the covariance matrix is the same both for the outliers
and the uncontaminated sample.

The observed gap will depend on the characteristics of the
outlier distribution—dimension of the sample space p, con-
tamination level €, distance to the reference observations &,
and concentration A. We analyze in particular the dependence
of the spacings with respect to k, €, and p; in some of these
cases the properties of the method are markedly different from
those of methods based on distances.

The analytic study will focus on a particular quantity related
to the spacings in the data—an angle # such that for some
0<B<1,Pr(®>86)> B, where O denotes the angle between
the extreme observations from the regular observations and the
outliers. A geometric illustration of the meaning of this angle
is provided in Figure 5. A realization of the random variable
® would correspond to the gap between the two groups of
observations, as long as the reference direction is chosen to
be e,. In this case, the angle # would provide a (probabilistic)
bound on the size of this gap. The procedure presented in
Section 2 provides reference directions for finite samples that
are very close to e, (see the results in Sec. 4).

Let z5 denote the (1+ \/ B)/2 quantile of a standard uni-
variate normal distribution. To simplify the derivation of an
expression for the bound 6 for the model introduced previ-
ously, we introduce the following “regularity” condition: We
require that the parameters €, A, and k satisfy z; < min(e, (1—
€)/A)k. If this condition is not satisfied, then with probability
larger than 1 — B it is possible to find observations forming
arbitrary angles with the reference direction (because the cen-
ter of the data lies within one of the isoprobability curves), and
the projections onto the unit hypersphere of the two samples
may overlap.

We now derive an expression for 6. The first step in the
application of the outlier-detection procedure presented in
Section 2 is to introduce an affine transformation to ensure
that the transformed observations have zero mean and an

identity covariance matrix. After this transformation, for
the preceding model, we have two groups of observations,
one of them composed of n(l —€) observations from an
N(—ekS~"%e,,S™") distribution and another group of ne
observations from an N((1 — €)kS~'%e;, AS™") distribution,
where

§7'=-(I-yee])

n=1-e(1-1)
_ Ke(l—¢)
V2= T iee(l—e)
1_ 2
§ g = |- Vg ®)
Y

Due to the (axial) symmetry of the problem, we need to ana-
lyze the properties of the angles for only the projections of
the observations onto a plane defined by e, and any direc-
tion orthogonal to it. For these projections the observations
will follow the same distributions described previously but
now restricted to M (this is the case illustrated in Fig. 5).
As mentioned previously, the reference direction affects the
size of the observed gap. We consider the case in which the
reference direction is the direction to the center of the outliers,
e,. For this case, the angle @ (see Fig. 5) can be obtained as
0 =7 — 6, — 6, from the pair of angles 6, and 6,, defined as
those such that an observation from each of the two samples
forms an angle with e, that is smaller than these angles with
probability equal to \"/—E

We will make use of the fact that the angle with the x axis
of the tangent to an ellipse of the form ax®+ by®> = ¢ from a
point (r,0) is given by

b _ b
a

P

tan @ = )

From the equations of the isoprobability lines for each of the
samples corresponding to a probability level equal to \/ﬁ

\
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derived from (8), and (9), the preceding angles are given by

g 0k el g
vnY o €-zp/k
z Y /k*+e(l—e)
SO TR g G L e i ) (10)
A Jvl\/(l—E)-/AZ—zg/k

Using the trigonometric equivalence

tan 0, +-tan 6,

tanf =tan(mr — 0, —6,) = —————— %
% 1 —tan @, tan 6,

and (10), we obtain the desired expression,

tanG:zB\/A—OM

:E,A% T \/AIAZ

|t tefils—¢)
A= —
: k2+ Y
A,=e“—%
(1-eP 7z
A, =- L3 11

This expression relates a bound on a particularly significant
spacing to the characteristics of the observations and the con-
tamination. Although it is fairly complex, some conclusions
can be reached from it.

1. If limits are taken in (11) as k — oo—that is, when con-
taminations arbitrarily removed from the original sample are
considered—it follows that

Sani €(l—e) e+(l—e)/A
PV n B —e/n)—(e(1—e)/A)
Sy o WL o
e e ZA—y,

From this expression, as k — oo the gap becomes larger than
/2 (a value that can be trivially identified in a Q-Q plot, for
example) whenever z%)t — 7, <0. This is equivalent to A > 1
and € > (zgA—1)/(A*=1), or A< 1 and € < (1 —z5A)/(1 -
A?). The first condition holds for all sufficiently large values
of A, while the second one always holds for A sufficiently
small.

2. Consider now the behavior of 6 with respect to the con-
tamination level € for the particular case of a concentrated
contamination, A — 0. From (11), as A — 0 it follows that

2 #2112
"BE +"B/k
e -k

V(€)= i L/ 2/ + € [ & -2/
2 (e-Z/k)? | etk

This derivative is positive for any values of z; and k satisfy-
ing the regularity condition zz < €k. Thus, for concentrated
contaminations with sufficiently small values of A, the gap
between the two groups of observations increases with the
contamination level €. This behavior differs from that for most
distance-based methods.

tanf — Y(e) = —

The analysis of the behavior of the gaps with respect to p
cannot be based on (11) because the size of the gap does
not depend on p for the model presented in this section and
the reference direction we have considered. If p is increased,
but the remaining parameters in the contamination model do
not change, the values of W, and W,,,,, (using the notation
from Sec. 2.2) are not affected. The only impact of these
changes appears through Fy, in the value of D, = Fyy(Wiipp) —
Fy(W;)). We now show that this value increases with p (for
fixed W) and W, ) if W, < /2 < W),

To simplify the notation, define

h 2
J(a, b; p) Ef sin”2 ¢ dr,

a

a,bel0, ).
We have J(a,b;p) >0, J(0,a; p) = J(7 — a, m; p), and,
from (2),
I (Wi, Wiy p)
J(0, m; p)

We wish to study the sign of D;(p+ 1) — D;(p);: equivalently,
we may analyze the sign of

A= (D(p+1) =D, (p)J (0. 7 p+1)J(0, 7 p)
=J(0, 7 p)J (Wi, Wi p+1)
—J(0, 75 p+ 1D)J (W), Wii)s p)-

D;(p) =

From the mean value theorem, for any 0 < a < /2,
J(0,a; p+1)=sineJ(0,a; p),
J(O,7/2; p+1)=n,J(0, m/2; p), 1, > sin@.

Leta=W,; and b= W), and assume that 0 <a < 7/2 <
b < 7 holds; then

A=J(0,m; p)J(a,b; p+1)—J(0,7; p+1)J(a, b: p)
=J(0,7; p)(2J(0, 7/2: p+1)—J(0,a; p+ 1)
—J(0,7m—b; p+1)) = J(0, 75 p+1)J(a, b; p)
=J(0, m; p)(2n,J (0, 7/2; p) —sin@,J (0, a; p)
— sin @, J (0, 7 — b; p)) — 1,4 (0, 7; p)(2J(0, 7/2; p)
—J(0,a; p)—J(0, 7 —b; p))
=J(0, 7; p)((n, —sing,)J (0, a; p)
+(m, —sing,)J (0, m = b; p)) > 0,

¢ €(0,a),

and we have the desired bound.

From (10), the preceding condition will be satisfied
whenever 6,6, < /2, but this will hold as long as
7z < min(€, (1 — €)/A)k. These conditions are sufficient,
but not necessary and are trivially satisfied if A =0 and
75 < €k. Whenever these conditions are satisfied, the distortion
associated with the presence of outliers increases with p,
and as a consequence the probability of observing a given
normalized gap between the reference observations and the
outliers increases with the dimension of the problem.

This behavior of the method makes the proposed proce-
dure particularly useful for those cases in which either p or €
are large, corresponding to situations in which the procedures
based on high breakdown-point estimators are less effective.
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4. EXAMPLES

In this section we describe the practical behavior of the
proposed procedure through several examples, most of them
taken from the literature. Our goal is to illustrate the way the
procedure works in different cases, based both on synthetic
and real data. Although many of the test cases considered
have already been successfully analyzed using different robust
procedures, these examples are intended to show how the pro-
posed method is able to handle a wide range of contamination
patterns.

We have analyzed the dataset MULCROSS, available in
STATLIB jointly with the code MULTOUT. This dataset has
200 observations in dimension 10, with 150 observations gen-
erated from a normal distribution, and 50 outliers from a dif-
ferent normal distribution, displaced with respect to the initial
observations. The outliers form a single cluster, with disper-
sion similar to that of the main set of 150 observations. When
the proposed procedure is applied, the maximum gap appears
between the ordered observations 150 and 151; it is the only
one lying above the relevant signification levels and separates
the regular observations from the outliers. The correspond-
ing Q-Q plot 1s shown in Figure 6, where the two groups of
observations are readily apparent; one of them contains the
50 outliers, and the other corresponds to the remaining 150
observations. The values for the gap statistics in this example
are D gy, = .387 and, from Table 2, Dy 1o, o5 = -058.

The “wood gravity” dataset (Rousseeuw and Leroy 1987), a
set of 20 observations in dimension 5 that has been studied in
several works related to multivariate outlier detection, has also
been analyzed. Previous studies have identified four outliers,
corresponding to observations 4, 6, 8, and 19, from the two-
and three-dimensional scatterplots. Nevertheless, some iden-
tification methods based on the MVE [MULTOUT; see also
the comments of Cook and Hawkins (1990) to Rousseeuw
and van Zomeren (1990)] and those based on the SDE may
fail to identify these outliers. The procedure described in this

251
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Figure 6. Q-Q Plot for the MULCROSS Dataset.

article generates the Q-Q plot shown in Figure 7(a), where
the outliers are readily apparent. The normalized gap takes the
value .490, above the cutoft value D, 5. o5 = .373.

In a slightly different setting, the procedure was also applied
to the well-known Anderson iris data (Anderson 1935; Fisher
1936). In our case we have used only those observations corre-
sponding to varieties virginica and versicolor to obtain a sam-
ple composed of 100 observations in dimension 4. Although
this is no longer an outlier detection problem, because € = .5,
it serves to illustrate the possibilities of the proposed method.
Figure 7(b) shows the results from the procedure and the
large gap between the groups corresponding to each vari-
ety. The normalized gap is .208, much larger than the cutoff
D0, 4. 05 = -094. It might be difficult for a procedure based on
distances to identify both groups correctly.

We consider next the situation in which the outliers may
form several clusters. In these situations, MCD- and SD-based
methods tend to perform better than with just one cluster. We
wish to show that the proposed procedure (with very minor
modifications) is also able to perform reasonably well.

Consider first a synthetic example, corresponding to a sam-
ple of 100 observations in dimension 10, with 80 observa-
tions from an N(O, I) distribution, 10 observations from an
N(k,e,, A’I), and the last 10 observations were generated from
an N(k,e,, A’I), where e, and e, denote the first two unit vec-
tors in R'%, k, =7.5,k, = 10, and A = .1. Figure 8(a) shows
the scatterplot corresponding to the projections of the dataset
onto the first two coordinate directions, clearly revealing the
two clusters of outliers.

After the proposed procedure has been applied once, the
resulting Q-Q plot is the one shown in Figure 8(b). Note that
the reference direction uy is very close to e,. The maximum
gap is .247 and the cutoff value obtained from Table 2 is
D)0, 1005 = -118. As a consequence the last 10 observations
in the sample would be labeled as outliers.

This first application of the algorithm has not detected all
the outliers. To complete the process, we iterate the proce-
dure, after removing the suspected outliers, until the maxi-
mum gap is no longer significant. If the proposed procedure
is applied again to observations 1-90 (after removing the last
10), the resulting Q-Q plot is shown in Figure 8(c). The refer-
ence direction is very close to e, the maximum gap is .291,
and the cutoff value is Dy 4. 05 = .133. As a consequence,
observations 81-90 are also labeled as outliers. After remov-
ing them, the procedure is applied again to the remaining 80
observations (the first ones), providing the Q-Q plot shown
in Figure 8(d). In this case, the maximum gap is .088 and
the cutoff value is Dy, 4. o5 = -145, no additional outliers are
detected, and the procedure ends successfully. Note that the
success of the procedure depends on the ability to identify as
reference directions u, the directions to the outliers. The lack
of fit apparent in Figure 8(d) is due to the fact that the refer-
ence direction has been chosen to maximize this lack of fit.

Finally, we analyze a dataset presented by Campbell (1989),
obtained in the process of locating bush-fire scars, and com-
posed of 38 observations in dimension 5. This dataset was
studied by Maronna and Yohai (1995) regarding the presence
of outlying observations. It should be noted that, as opposed
to the preceding example, these data correspond to a real situ-
ation, and as a consequence the evaluation of the results from

9
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Figure 7. Q-Q Plots for (a) the Wood Gravity Dataset, (b) the Iris Data.
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Figure 8. (a) Scatterplot for the Synthetic Example With Two Clusters, (b) First Q-Q Plot for the Synthetic Example, (c) Q-Q Plot After Removing
Observations 91-100, (d) Q-Q Plot After Removing Observations 81-100.
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Figure 9. Q-Q Plots for the Bush-Fire Scar Data: (a) First Q-Q Plot, (b) Q-Q Plot After Removing Observations 8-11, (c) Q-Q Plot After Removing

10 Observations, (d) Q-Q Plot After Removing 12 Observations.

the identification procedure is not as straightforward as in the
synthetic case. Maronna and Yohai (1995), using the SDE,
found that observations 8 and 9 are the ones furthest removed
from the sample center, followed by observations 32 to 38.
Different results were obtained by these authors using other
estimators.

The result of the application of the proposed procedure
yields the Q-Q plot presented in Figure 9(a). The largest
gap has a value of .355 and separates observations 8, 9,
10, and 11 from the rest. The cutoff value from Table 2 is
Dy 5. 05 = .226, and as a consequence these observations are
labeled as outliers. Following the same approach as in the
preceding case, we again apply the procedure to the remaining
34 observations. The corresponding Q-Q plot is given in
Figure 9(b). Now the largest gap is .297, and the cutoff
value is D,y 5. o5 = .247. Observations 33-38 are accordingly
labeled as outliers, and the procedure is repeated on the
remaining 28 observations. The new Q-Q plot is shown in
Figure 9(c). The largest gap is .323 and the cutoff value is

Dy 5. o5 = .296. Observations 7 and 12 are labeled as outliers.
Finally, for the remaining 26 observations the resulting Q-Q
plot is shown in Figure 9(d). Now the largest gap is .230
and separates observations 28-31 from the rest; the cutoff
value is Dy 5.0 = .315. As a consequence, no additional
observations would be labeled as outliers. Nevertheless,
the lack of fit shown in the Q-Q plot, Figure 9(d), might
provoke some doubts on the nature of observations 28-31.
In fact, FAST-MCD labels these last four observations as
outliers, while both Maronna and Yohai (1995) and Rocke
and Woodruff (1996) did not consider them to be anomalous.

5. CONCLUSIONS

This work attempts to illustrate the difficulties faced by
many robust procedures, and in particular those based on
the use of robust Mahalanobis distances, for the detection
of concentrated contaminations. Following the remark by
Gnanadesikan and Kettenring (1972), cited by Barnett and
Lewis (1994), “The complexity of the multivariate case
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suggests that it would be fruitless to search for a truly omnibus
outlier-protection procedure. A more reasonable approach
seems to be to tailor detection procedures to protect against
specific types of situations.” a simple procedure is proposed
to detect this contamination pattern, based on the analysis
of the gaps associated with certain univariate projections of
the observations. As opposed to other robust procedures, its
behavior improves with the dimension of the problem and
with the proportion of outliers in the sample.

The procedure can be considered as an exploratory tool,
simple to use, and very effective on concentrated contami-
nation patterns. The combination of this method and other
traditional outlier-detection procedures should allow the iden-
tification of highly complex outlier patterns.
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