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a b s t r a c t

In this paper we study the properties of a kurtosis matrix and propose its eigenvectors
as interesting directions to reveal the possible cluster structure of a data set. Under a
mixture of elliptical distributions with proportional scatter matrix, it is shown that a
subset of the eigenvectors of the fourth-ordermomentmatrix corresponds to Fisher’s linear
discriminant subspace. The eigenvectors of the estimated kurtosis matrix are consistent
estimators of this subspace and its calculation is easy to implement and computationally
efficient, which is particularly favourable when the ratio n/p is large.

1. Introduction

Given a multivariate sample in Rp drawn from a mixture of k populations, cluster analysis attempts to partition the
sample into homogeneous groups, according to the populations that generate them. Projection Pursuit finds subspaces of
low dimension that show interesting views of the data according to some criteria, see [6,5]. Projection Pursuit can be useful
in cluster analysis. One may first reduce the dimensionality of the sample by projecting it on a lower-dimensional subspace
and then finding the clusters there. The curse of dimensionality can thus be avoided, but care needs to be taken to make
sure that the projected data preserve the cluster structure of the original sample. Non-normality is one of the criteria used
to find the projections. Huber [8] emphasized that interesting projections are those that produce non-normal distributions.
However, non-normality is a general condition, and we need to specify how to measure it.
The idea of maximizing the kurtosis has also been used in cluster analysis, see [9]. Peña and Prieto [19] showed that

for clustering the directions that minimize the kurtosis can be more useful than the ones that maximize it. The reason is
that the kurtosis can be seen as the variance of the squared standardized differences between the variable and its mean.
Consequently, if all observations of the sample are approximately at the same distance to the mean, the variance of these
distances is near zero, and the kurtosis will have a small value. This would be the case with two well-separated clusters
of the same size. Therefore, directions that minimize the kurtosis could reveal the cluster structure. The method proposed
by Peña and Prieto [19] (and Projection Pursuit methods in general) needs to perform numerical optimization in order to
find the optimal directions. This is computationally intensive and its efficacy may depend on the choice of the optimization
algorithm to be used.
An alternative to this approach is to find a matrix whose eigenvectors are directly directions of maximum or minimum

kurtosis. In this paperwe study a kurtosismatrix and show that under amixture of two elliptical distributionswith the same
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scatter matrices, the eigenvector associated to the eigenvalue different from the others coincides with the direction that
optimizes the kurtosis coefficient, which is Fisher’s linear discriminant function. The kurtosis matrix, thus, has similarities
to the nonlinear cluster algorithm in [19]. Based on this result, we explore the general case of k groups and we prove
that the subspace orthogonal to the eigenspace associated to an eigenvalue with multiplicity p − k + 1 is Fisher’s linear
discriminant subspace. Similar results are found in [3,4], where it is shown that Fisher’s subspace can be estimated using
the k largest eigenvectors of some Generalized Principal Components matrix based onW -estimates of dispersion. Recently,
Tyler et al. [24] prove that a subset of eigenvectors of S−11 S2 generate Fisher’s subspace, S1 and S2 being any pair of affine
equivariant scatter matrices.
The kurtosis matrix, however, is based on an existent kurtosis-based algorithm which can always be used. The advan-

tage of using the eigenvectors of a kurtosis matrix instead of the univariate kurtosis directions is dependent on the ratio
n/p, where n is the sample size and p the dimension. If this ratio is large, the estimation of the kurtosis matrix of dimension
p is reliable and therefore the estimation of its eigenvectors becomes accurate and useful. Also, in this case numerical op-
timization is computationally intensive. However, when n/p is small the estimation of the elements of the matrix has very
low precision andwe have found that the eigenvalues are not useful. Wewill illustrate in which situations is more adequate
to use one approach or another. Also, we will show that these eigenvectors are consistent estimators of Fisher’s subspace,
which ensures their convergence.
Note that, similarly to the procedure described in [20] for methods based on the univariate kurtosis extreme directions,

the algorithmproposed in this paper, based on the eigenvectors of the kurtosismatrix, can be complementedwith additional
directions to improve its efficiency on those cases when the kurtosis values are similar for all directions and the extreme
directions are not informative.
This paper is organized as follows. Section 2 is a review of multivariate kurtosis coefficients and matrices defined in the

literature. In Section 3 we study the theoretical properties of the eigenvectors of a kurtosis matrix for cluster analysis and
present results regarding the convergence of their estimators. In Section 4 the behaviour of the eigenvectors to perform
cluster analysis is analyzed through a simulation study. We finish with some final remarks in Section 5.

2. Multivariate kurtosis coefficients and matrices

Let X be a multivariate p × 1 random vector, µ its mean vector, Σ its covariance matrix and Z = Σ−1/2(X − µ) the
corresponding standardized vector. For p = 1 the univariate kurtosis coefficient is E(z4), where z = (x − µ)/σ , and
a natural extension of kurtosis to multivariate samples is to consider the second moment of the Mahalanobis distances,
β2,p = E(ZTZ)2, which is Mardia’s multivariate kurtosis coefficient, see [14]. Since β2,p can also be expressed as β2,p =
var(ZTZ)+E(ZTZ)2 and E(ZTZ) = p, then β2,p ≥ p2. The sample counterpart of β2,p is b2,p = 1/n

∑n
i=1[(xi− x̄)

TS−1(xi− x̄)]2,
where x̄ and S are the mean and covariance matrix of x1 · · · xn, a random sample of X . Mardia proposes to use b2,p when
testing for normality. Under a Gaussian distribution β2,p = p(p + 2), therefore values of b2,p differing significantly from
p(p+ 2) indicate non-normality.
Koziol [12] proposes as measure of multivariate kurtosis β̃2,p =

∑p
i,j,k,l E(ZiZjZkZl)

2. The difference between β̃2,p and β2,p
is that β2,p is the sum of only the fourth-order moments of the type E(Z4i ) and E(Z

2
i Z
2
j ), while β̃2,p is the sum of squares of all

fourth-order moments of Z . Oja [17] defines a multivariate kurtosis coefficient considering the volume of the simplex in a
p-dimensional space determined by p+ 1 points as β∗2,p = E[∆(X1, . . . , Xp, µ)]

4/[E[∆(X1, . . . , Xp, µ)]2]2, being X1, . . . , Xp
independent random vectors distributed as X and∆ is the volume of this simplex:

∆
(
X1, . . . , Xp+1

)
= abs

 1p!
∣∣∣∣∣∣∣∣
1 · · · 1
X11 · · · Xp+1,1
...

...
X1p · · · Xp+1,p

∣∣∣∣∣∣∣∣
 .

Finally, Malkovich and Afifi [13] define the multivariate kurtosis as the maximum univariate kurtosis produced by any pro-
jection of the p-dimensional distribution onto a direction d; βM2 = maxd |β2(d)−3|, where β2(d) = E[(d

TX−dTµ)4/dTΣd].
Themeasures β2,p, β∗2,p and β

M
2 are invariant under nonsingular affine transformations and reduce to the univariate kurtosis

when p = 1, which is not the case for β̃2,p.
Let M4 = E(ZZT ⊗ ZZT) be the p2 × p2 matrix that collects all p2 × p2 multivariate fourth-order moments, where ⊗

denotes the Kronecker product. We have found two multivariate p × p kurtosis matrices in the literature. The first one is
due to Cardoso [2] and Móri et al. [16], who define

K = Ip ∗M4 = E(ZTZZZT), (1)

whereas Kollo [11] defines a kurtosis matrix as

B = 1p×p ∗M4 = E
[
(ZT1)2ZZT

]
, (2)
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where ∗ denotes the star product defined in [15]. The two matrices can be seen as weighted scatter matrices with weights
ZTZ and (ZT1)2 respectively. Both matrices are positive semidefinite and reduce to the univariate kurtosis coefficient when
p = 1. Also, the trace of K is β2,p, Mardia’s kurtosis coefficient.
We are interested in projecting themultivariate sample onto the (sub)space generated by (some of) the eigenvectors of a

kurtosismatrix, expecting that this new coordinate systemwill give us insight on the cluster structure of the data. Thematrix
K in (1) has an important invariant property which is not present in B in (2). Let E be an orthogonal matrix whose columns
are eigenvectors of K , the new coordinate system ETZ is invariant under affine transformations of X . In effect, if Y = AX + b
with A nonsingular, then KY = UKUT, where U is some orthogonal matrix. This is true because the standardizations of X and
Y are the same up to a rotation, ZY = UZ , where ZY = Σ

−1/2
Y (Y − µY ). That implies that the eigenvalues of K and KY are

the same and the eigenvectors are rotated versions of each other (the eigenvectors of KY are UE). When applying the same
transformation to ZY , we obtain the same coordinates ETUTUZ = ETZ . The matrix B, however, does not have this desirable
property because its weights are not invariant under orthogonal transformations.
Our intention is to continue to explore the properties of the matrix K to perform cluster analysis. Up to now, only the

univariate kurtosis has been explored for clustering.

3. The eigenvectors of a kurtosis matrix and cluster properties of the data

Let X follow a mixture of k elliptical distributions such that, with probability πi > 0, Xi has density
fXi(x) = |Vi|

−1/2hi[(x− µi)TV−1i (x− µi)],

with parameters µi, Vi and for some nonnegative function hi, i = 1, . . . , k and
∑k
i=1 πi = 1. The matrix K in (1) can be

expressed as (see Appendix A for details)

K =
k∑
i=1

πi[trWi(k̃iWi + δiδTi )+ k̄iW
2
i ] +

k∑
i=1

πi
[
2(δiδTi Wi +Wiδiδ

T
i )+ δ

T
i δi(Wi + δiδ

T
i )
]
, (3)

where δi = Σ−1/2(µi − µ) andWi = Σ−1/2ViΣ−1/2 are the means and scatter matrices of the standardized Zi = Σ−1/2

(Xi − µ). This explicit expression for the matrix gives insight on the structure of the problem. Some terms depend on the
variability between clusters, the δi’s, and others on the variability within clusters, theWi’s. We need the eigenstructure of K
to capture the cluster structure, which is found in the δi’s.

3.1. Proportional scatter matrices

If the scatter matrices of the groups are proportional, it is seen in Theorem 1 that the eigenvectors of K reveal some
desirable properties for clustering.

Theorem 1. Suppose X is a mixture of elliptical distributions as stated above with Vi = V , for i = 1, . . . , k. The matrix K is

K = αI +
k∑
i=1

k∑
j=1

βijδiδ
T
j , (4)

with α = k̃p+ (1− k̃)
∑k
i=1 πiδ

T
i δi + k̄ and where

βij =

{
γπi + (πi + ηπ

2
i )δ

T
i δi if i = j

ηπiπjδ
T
i δj if i 6= j

with γ = (1− k̃)p− 2k̄+ 4, η = k̃+ k̄− 6, k̃ =
∑k
i=1 πik̃i and k̄ =

∑k
i=1 πik̄i.

We name∆ = 〈δ1, . . . , δk〉 the subspace spanned by the δi’s, where dim∆ = q ≤ k− 1. If u ∈ ∆⊥, Ku = αu holds, and α is
an eigenvalue of K with multiplicity p− q associated to the eigenspace∆⊥. The remaining q eigenvectors of K are found in the
∆ subspace.
Let Φ = 〈φ1, . . . , φk〉 be the subspace spanned by Fisher’s directions, φi = V−1(µi − µ).
Then, the subspacesΦ and∆X are the same

Φ = ∆X , (5)

where∆X is the∆-subspace expressed in the space of the original variables,∆X = Σ−1/2∆.

Under the assumption of proportional scatter matrices the best discriminant procedure is linear and Fisher’s linear
discriminant subspace is optimal in the sense that the relative separation betweenmeans is maximized. The theorem states
that an identifiable subset of q eigenvectors of the kurtosis matrix K give the subspace on which the clusters appear more
separated. Some details of the theorem are found in Appendix B.

Corollary 1. In the particular case of a mixture of normal distributions, the constants are respectively k̃i = 1 and k̄i = 2 and the
eigenvalue associated to∆⊥ has known value α = p+ 2. Also, if there are no clusters, from (4) we have K = αI .
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Also, in the particular case of a mixture of two normal distributions, the matrix K simplifies to

K = (p+ 2)I + βϕTϕϕϕT, (6)

where β = π1π2(1 − 6π1π2) and ϕ = Σ−1/2(µ2 − µ1). The vector ϕ is an eigenvector of K with associated eigenvalue
λ = p + 2 + β(ϕTϕ)2, the rest of eigenvalues are equal to p + 2. Also, tr (K) = p(p + 2) + β(ϕTϕ)2 and det(K) =
(p + 2)p + β(p + 2)p−1(ϕTϕ)2. Note that ϕ is Fisher’s best linear discriminant function in the Z-space. The eigenvalue λ
is the largest if β > 0 and the smallest otherwise. The parameter β is positive if π1 ∈ (0, (

√
3 − 1)/(2

√
3)) and negative

if π1 ∈ ((
√
3 − 1)/(2

√
3), 0.5]. Therefore, if we have homogeneous clusters, the eigenvector associated with the smallest

eigenvaluewill be the one that better separates the clusters,whilewhen the two clusters have very different sizes, the largest
eigenvalue is the one that identifies the significant eigenvector. These values are the same values that arise in Corollary 2
in [19], where they prove that the direction that optimizes the univariate kurtosis coefficient corresponds to Fisher’s best
linear discriminant function, maximizing it if π1 ∈ (0, (

√
3− 1)/(2

√
3)) and minimizing it if π1 ∈ ((

√
3− 1)/(2

√
3), 0.5].

Both approaches give estimations of Fisher’s linear discriminant function, and the question is in which circumstances one
way is more appropriate than the other. On one hand, the estimation of eigenvectors can suffer from lack of precision
when the sample size is small, on the other hand a nonlinear computationally intensive algorithm is needed to solve the
optimization problem of finding the direction of kurtosis.Wewill address the issue in the next sectionwith the help of some
simulations.
Theorem 1 is in agreement with Theorem 5.2 in [24] and is similar to Proposition 1 in [3]. In the former the authors

present a generalmethod to generate an affine invariant coordinate system to reveal interesting departures froman elliptical
distribution by using the eigenvectors of S−11 S2, one scatter matrix relative to another. The idea is to first ‘standardize’ the
data with respect to one scatter matrix S1, and then perform generalized principal components on the ‘standardized’ data
using a different scatter statistic S2. Calculating the eigenvectors of the kurtosis matrix K is equivalent to choosing S1 = Σ ,
and S2 = E[ZTZ(X − µ)(X − µ)T]. In this case S−11 S2 = Σ−1/2KΣ1/2, and the eigenvalues of S−11 S2 and K are the same
while the eigenvectors areΣ−1/2u and u respectively. As a matter of fact, these choices are the ones proposed in Caussinus
and Ruiz-Gazen [3], where more generally they study S2 = E[ω(βZTZ)(X − µ)(X − µ)T]/E[ω(βZTZ)], being ω a positive
decreasing function and β a positive parameter.
The general case of different scatter matrices, however, is not considered in these references. In particular, the use of just

any pair of robust scattermatrices in [24] does not guarantee the identification of the clusters, while the kurtosis has already
proven to be effective in this situation. Also, the calculation of most robust matrices is computationally very expensive. For
further details, we wrote a contribution to the discussion of Tyler et al. [24].
Under the same assumptions considered when calculating (4) plus normality for the components of the mixture, the

matrix B in (2) is

B = pI + 211T +
k∑
i=1

k∑
j=1

γijδiδ
T
j 11

T,

where

γij =

{
(πi − 3π2i )δ

T
i δi if i = j

−3πiπjδTi δj if i 6= j.

Let∆1 = 〈∆, 1〉 be the subspace spanned by the 1 and the δi’s and suppose we are in the general case 1 6∈ ∆ and 1 6⊥ ∆. If
u ∈ ∆⊥1 , Bu = pu holds, and p is an eigenvalue of Bwith multiplicity p− k associated to the eigenspace∆

⊥

1 . The remaining
k eigenvectors are found in the ∆1 subspace. When using the matrix K , the ∆ subspace can be identified by selecting the
eigenvectors with eigenvalues different from p + 2. Instead, if we were to use the matrix B, we could only isolate the ∆1
subspace, which has a redundant non-informative dimension. The procedure thus becomes dependent on the position of the
δi’swith respect to the vector 1. This dependency is the reasonwhy thematrix B is not invariant under affine transformations.
In the two special cases where 1 ∈ ∆ or 1 ⊥ ∆, the ∆ subspace can still be identified using eigenvectors of B. In effect, if
1 ∈ ∆ then we can choose p− k+ 1 orthogonal eigenvectors from∆⊥ with eigenvalues equal to p. And if 1 ⊥ ∆ then 1 is
an eigenvector itself with eigenvalue 3p, which also brings the total number of eigenvectors in∆⊥ with known eigenvalues
to p− k+ 1. The remaining k− 1 eigenvectors are therefore an orthogonal basis of∆.

3.2. Consistency of the eigenvectors of the estimated matrix Kn

Let µr1,...,rp = E(
∏p
j=1 X

rj
j ) be a k-order moment of X , r1 + · · · + rp = k, then µ̂r1,...,rp converges to µr1,...,rp in probability

and, since K is a continuous function of the moments, Kn converges to K in probability and therefore the matrix Kn is a
consistent estimator of K . The spectral set of K , denotedΛ, is the set of all eigenvalues of K . The eigenspace of K associated
with λ is V (λ) = {x ∈ Rp | Kx = λx}, whose dimension is the algebraic multiplicity of λ. Since K is symmetric, then
Rp = span

(∑
λ∈Λ V (λ)

)
holds. The eigenprojection of K associated with λ, denoted P(λ), is the projection operator onto

V (λ) with respect to the decomposition of Rp. If v is any subset of the spectral set Λ, then the total eigenprojection for K
associated with the eigenvalues in v is defined to be

∑
λ∈v P(λ). The following lemma [23] states that, for any subset v of
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Table 1
Twogroups and equal scattermatrices. Angle between Fisher’s direction and: 1. Thedirection (kurt) thatmaximizes | log(κd)−log(3)| and2. The eigenvector
of Kn (eig K ) whose eigenvalue maximizes |λi − (p+ 2)|.

p kurt eig K kurt eig K kurt eig K kurt eig K

4 16.03 35.39 10.10 21.45 6.91 15.08 3.64 8.01
8 16.03 36.44 12.93 21.74 6.88 18.15 4.36 7.52
15 11.25 42.86 8.96 25.92 14.82 19.61 9.60 10.28
30 24.99 50.30 12.41 26.37 8.32 19.95 4.77 8.70

n = 100p n = 500p n = 1000p n = 5000p

eigenvalues ofΛ, we can identify the corresponding subset vn (because of the relative position of the eigenvalues), and the
subspace sum of subspaces span

(∑
λ∈vn

Vn(λ)
)
will converge in probability to the subspace span

(∑
λ∈v V (λ)

)
. That is, the

subspace generated by eigenvectors of Kn associated to an eigenvalue or a subset of them, is a consistent estimator for the
subspace generated by eigenvectors of K associated to the corresponding eigenvalues v.

Lemma 1. Let Kn be a p× p symmetric matrix with eigenvalues λn1 ≥ · · · ≥ λ
n
p . Let P

n
j,t represent the subspace generated by the

eigenvectors of Kn associated with λnj , . . . , λ
n
t for t ≥ j. If Kn converges to K in probability, then

1. λnj converges to λj in probability,
2. Pnj,t converges to Pj,t in probability, provided λj−1 6= λj and λt 6= λt+1.

The distance between two subspaces is measured using ‖P1 − P2‖2, the matrix spectral norm, and the proof of the lemma
can be found in Section VIII–Section 3.5 of [10]. A corollary of the lemma is that, when the scatter matrices are the same, the
subspace orthogonal to the eigenspace associated to the eigenvalue equal to α of multiplicity q, is a consistent estimator for
Fisher’s subspace.
In order to study this convergence we will generate samples from mixtures of normal distributions with equal scatter

matrices. Throughout the paper, themixtures are generated as sets of 100p random observations, with dimensions p = 2, 4,
8, 15, 30, fromamixture of kmultivariate normal distributions. The number of observations in each population is determined
randomly, but ensuring that each cluster contains aminimum of p+1 observations. Themeans for each normal distribution
are chosen as values from a multivariate normal distribution Np(0, fI), for a factor f selected to be as small as possible
whereas ensuring that the probability of overlapping between groups is roughly equal to 1%, see Table 1 in Peña and
Prieto [19] for the values of f . The covariance matrices are generated as S = UDUT, using a random orthogonal matrix
U and a diagonal matrix Dwith entries from a uniform distribution on [10−3, 5

√
p].

In Table 1we deal with the case of amixture of two normal distributions and present the angle between Fisher’s discrim-
inant function V−1(µ2 − µ1) and the eigenvector of Kn associated to the eigenvalue that differs most from the value p+ 2.
Also, we compare the results with the angle between Fisher’s and the direction of kurtosis that maximizes |log(κd)− log(3)|
among the 2p considered in [19], where κd is the univariate kurtosis coefficient of the direction d.
The results for small sample sizes are better for the kurtosis directions due to the limited precision of the eigenvectors

and therefore it is advised to use the optimization algorithm in these circumstances. However, the angles become more
similar as the sample size increases, as expected.
We generate now mixtures of three normal distributions. In this case the subspace of interest is a plane and we want to

measure howclose Fisher’s plane, and the plane generated by the two eigenvectors associated to eigenvalues that differmost
from the value p+ 2, are. Again, in order to compare the results with the kurtosis directions, we will also consider the plane
generated by the two directions that maximize | log(κdi) − log(3)|. When comparing directions, the angle between them
was a convenient measure. As a measure of distance between subspaces we will compute the angle between two planes,
which is defined as stated in Section 12.4.3 of [7]. Section 16.5 of [18] provides a geometrical interpretation of the angle. Let
F and G be planes in Rp, the angle between F and G is defined as the angle θ∗ between u∗ and v∗, the vectors that maximize
cos θ = uTv, where u ∈ F and v ∈ G, subject to ‖u‖ = ‖v‖ = 1. Geometrically, u∗ is collinear with the projection of v∗ into
F and v∗ is collinear with the projection of u∗ into G. In practice, to obtain θ∗ we perform the singular value decomposition
of Q TF QG, where the columns of the p×2matrices QF and QG define orthonormal bases for F and G respectively. The smallest
singular value is the cosine of θ∗. The angles in Table 2 are calculated using this decomposition. This case is an example of
the benefit of using the matrix Kn. For three groups we know that the optimal direction is a combination of the directions
δ1 and δ2, the ones related to the cluster structure, but we cannot identify the directions that would define the best plane.
Instead, the eigenvectors do identify the optimal subspace. The angles in both approaches are similar for small samples, but
as soon as the sample size increases, the eigenvectors reduce the distance to Fisher’s subspace, as expected from the results
in Lemma 1, while the convergence of the directions has slower rates.
Another factor in considerationwhen comparing both approaches is related to the time needed for the kurtosis directions

and the eigenvectors to be calculated. We did compute the running times for the p eigenvectors of Kn and the two extreme
kurtosis directions. Their increase with n is similar for both approaches, slightly faster than linear. This agrees with the fact
that the main effort affected by n is the computation of the kurtosis matrix and the evaluation of the kurtosis coefficient,
respectively. Regarding increases in p, the matrix Kn presents a clear advantage, as the time ratios grow from values in the
order of 4 for small dimensions to values in the order of 13–20 for the largest dimension under consideration (p = 30).
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Table 2
Three groups and equal scattermatrices. Angle between Fisher’s plane and: 1. The plane generated by the directions (kurt) thatmaximize |log(κd)− log(3)|
and 2. The plane generated by the two eigenvectors of Kn (eig K ) whose eigenvalues maximize |λi − (p+ 2)|.

p kurt eig K kurt eig K kurt eig K kurt eig K

4 44.90 44.53 37.76 26.75 30.68 19.03 33.47 10.21
8 43.55 51.28 39.69 27.66 31.34 20.47 25.71 12.77
15 51.62 56.05 42.65 35.94 42.10 30.78 35.86 16.54
30 62.79 63.76 45.59 41.80 40.63 33.12 35.94 19.47

n = 100p n = 500p n = 1000p n = 5000p

This growth is associated with the use of Newton’s method in the optimization of the kurtosis coefficient, and the need to
factorize the corresponding second-derivative matrix in each iteration, as opposed to a single eigenvalue computation for
the matrix Kn. In summary, the proposed algorithm seems to be computationally more efficient, particularly for the case of
higher-dimensional data.

3.3. Different scatter matrices

In order to study the general case of different scatter matrices in a mixture of elliptical distributions, we will start by
studying a perturbation of the simplermodel, amixture of two normal distributionswith equal scattermatrices.We perturb
the covariancematrix of one of themixtures in order to see the effect that the relaxation in the condition of equal covariances
causes in both the eigenvectors of K and the directions that optimize the kurtosis coefficient.
After standardization and using the same notation as in previous sections, the mixture is characterized as π1N(δ1,W )+

π2N(δ2,W + 1W ), where 1W is the perturbation added to the model. Consider now the equations that define the
solutions for both approaches, an eigenvector of K and the optimum univariate kurtosis direction. For the kurtosis matrix,
an eigenvector d is such that Kd = λd, which in our case can be formulated as

(a0 − λ)d+ a11Wd+ a21W 2d = −b1δ1 − b21Wδ1. (7)
For the kurtosis direction, the equivalent equation comes from ∇κd = λd, and reduces to

(c0 − λ)d+ c11Wd = −f1δ1. (8)
Details of the derivations are found in Appendix C.
When the scatter matrices are the same, the solution to both approaches is d = cδ1, for some constant c. Deviations from

this solution appear as terms related to the perturbation such as1W and1W 2, the latter found only in (7). Consequently,
in addition to 1W , the eigenvectors of K differ from Fisher’s discriminant function also in a quadratic term that does not
arise in (8). Nevertheless, as we will see in simulation studies, the use of K is helpful when the sample size is not small, as in
these cases the nonlinear algorithm for finding the optimal directions is time consuming and the results are similar to the
ones obtained using K .
Moreover, this result gives hints on how one might modify the matrix K in order to improve the performance when the

scatter matrices are different, which has not been addressed yet in the literature. Further research will we focus in finding
a matrix that could manage to reduce the impact of the terms1W and1W 2.

4. Computational results

We perform a set of simulations to evaluate the properties of the eigenvectors of Kn for cluster analysis. The measure
chosen to assess the performance is the proportion of total projected variance explained by the projected clusters, given
by φ = dTBd/(dTΣd), where B = π1π2(µ2 − µ1)(µ2 − µ1)T. The larger the gap between the projected means, the more
separated the clusters are. Note that in the case when the scatter matrices are different other alternative measures may
have better properties. In particular, and related to the ideas in [1], dTBd could be replaced for example by [(µ2 − µ1)Td−
zα(
√
dTV1d +

√
dTV2d)]2, a measure of the gap between the α quantiles of the distributions, (V1 and V2 are the covariance

matrices of each population). In our simulation studies the variability is relatively small compared to the distance between
means, and we use φ as our separation measure.
We are interested in the directions that return a large value of φ. It is well known that Fisher’s direction d = (π1V1 +

π2V2)−1(µ2 − µ1) satisfies the condition δφ/δd = 0, maximizing φ. We generate random samples from a mixture of
two p-variate normal populations, and estimate φ for the eigenvectors of Kn and for the directions of minimum and
maximum kurtosis as follows. We assume we do not know the parameters of the two populations, although we know
of the existence of the two clusters. For each eigenvector and direction, we need a procedure to assign the projected
observations to clusters. Since the clustering in this case reduces to one dimension, the problem of finding the optimal
assignment (the one that maximizes φ̂) reduces to determine n1 such that φ̂ = dTB̂d/[(n − 1)dTSd] is maximized, where
B̂ = n1n2/(n1 + n2)(x̄2 − x̄1)(x̄2 − x̄1)T and x̄j = 1

nj

∑nj
i=1 x(i). There are exactly n different ways of assigning observations

to the two clusters, since in a one-dimensional space the observations can be sorted. Also, in order to have an idea of how
close we are to the optimum, we will include the value φ̂ for Fisher’s direction.
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Table 3
Two groups and equal scatter matrices. Proportion of variance explained by the clusters (φ̂) for the optimum direction (d. opt), the eigenvector of Kn
associated with the max/min eigenvalue (max/min eig K ), the max/min kurtosis direction (max/min kurt), the best eigenvector of Kn (best eig K ) and the
best kurtosis direction (best kurt).

p n d. opt max/min eig K max/min kurt best eig K best kurt

2 200 0.80 0.77 0.77 0.77 0.79
4 400 0.86 0.79 0.77 0.79 0.83
8 800 0.89 0.79 0.82 0.79 0.84
15 1500 0.93 0.78 0.86 0.78 0.87
30 3000 0.95 0.75 0.87 0.75 0.88
2 1000 0.78 0.78 0.76 0.78 0.78
4 2000 0.84 0.80 0.79 0.81 0.82
8 4000 0.89 0.85 0.85 0.85 0.88
15 7500 0.94 0.87 0.90 0.87 0.92
30 15000 0.96 0.86 0.92 0.86 0.93
2 2000 0.82 0.81 0.79 0.81 0.81
4 4000 0.84 0.82 0.82 0.83 0.83
8 8000 0.88 0.85 0.85 0.85 0.86
15 15000 0.93 0.86 0.89 0.86 0.90
30 30000 0.96 0.87 0.92 0.87 0.93
Average 0.88 0.82 0.84 0.82 0.86

Table 4
Two groups and equal scatter matrices. Percentage (%) of misclassified observations for the optimum direction (d. opt), the eigenvector of Kn associated
with themax/min eigenvalue (max/min eig K ), the max/min kurtosis direction (max/min kurt), the best eigenvector of Kn (best eig K ) and the best kurtosis
direction (best kurt).

p n d. opt max/min eig K max/min kurt best eig K best kurt

2 200 2.0 3.9 5.1 3.9 2.7
4 400 0.7 4.9 6.4 3.9 1.5
8 800 0.1 6.1 7.0 5.2 3.4
15 1500 0.0 6.9 6.1 6.2 4.2
30 3000 0.0 8.4 7.6 8.1 5.6
2 1000 2.8 3.7 4.6 3.7 3.2
4 2000 0.7 4.0 5.4 2.3 2.0
8 4000 0.1 2.5 3.7 2.2 0.9
15 7500 0.0 3.4 3.5 2.7 1.8
30 15000 0.0 2.8 3.3 2.6 2.3
2 2000 1.9 2.3 3.5 2.3 2.1
4 4000 0.9 2.0 3.2 1.6 1.5
8 8000 0.1 2.7 3.6 1.7 1.5
15 15000 0.0 3.4 4.2 2.9 2.2
30 30000 0.0 3.0 3.3 2.9 2.5
Average 0.6 4.0 4.7 3.5 2.5

4.1. Proportional scatter matrices

We start analyzing the results when the scatter matrices are the same. The mixtures are generated as stated above in
Section 3.2. Table 3 presents themeasure φ̂ for the optimumdirection V−1(µ2−µ1), the eigenvector of Kn (‘max/min eig K ’)
that maximizes φ̂ among the two eigenvectors corresponding to the maximum and minimum eigenvalue, the univariate
kurtosis direction (‘max/min kurt’) that maximizes φ̂ among the maximum and minimum univariate kurtosis directions,
the eigenvector of Kn (‘best eig K ’) that maximizes φ̂ among the p existing eigenvectors and the univariate kurtosis direction
(‘best kurt’) that maximizes φ̂ among the 2p directions considered in Peña and Prieto [19]. In Table 4 we present the
proportion of misclassified observations after assigning them to clusters as stated above. Each value has been replicated
100 times.
When considering only two eigenvectors and two kurtosis directions, the results in the two tables are similar.We observe

that the extreme eigenvector of Kn performs better when the dimension of the space is small (2, 4, 8), whereas the univariate
kurtosis has better results when p is larger. We also observe that the values are very close to the optimum ones, indicating
the appropriateness of the twomethods. However, when all eigenvectors and kurtosis directions are considered, the results
for the eigenvectors are very similar (column ‘max/min eig K ’ and ‘best eig K ’ are practically identical) whereas there is some
improvement in the projected kurtosis directions, especially for large p. Note that, for a given p, the eigenvectors improve
as n increases, while the kurtosis directions behave more stable in this sense. Also, if we count the number of times that
the selected eigenvector in ‘best eig K ’ does not correspond to one of the extreme eigenvalues, we obtain that this number
is very small, specially when n is large. Thus we conclude that the maximum/minimum eigenvalue of the kurtosis matrix
provides a useful direction for clusteringwhich is very fast to compute. The computation of thematrix K and its eigenvectors
is computationally very efficient, while the directions of kurtosis require an optimization algorithm and are computationally
more expensive.
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Table 5
Two groups and different scatter matrices. Proportion of variance explained by the clusters (φ̂) for the optimum direction (d. opt), the eigenvector of Kn
associated with the max/min eigenvalue (max/min eig K ), the max/min kurtosis direction (max/min kurt), the best eigenvector of Kn (best eig K ) and the
best kurtosis direction (best kurt).

p n d. opt max/min eig K max/min kurt best eig K best kurt

2 200 0.78 0.74 0.72 0.75 0.77
4 400 0.82 0.74 0.75 0.74 0.76
8 800 0.87 0.72 0.77 0.73 0.78
15 1500 0.90 0.66 0.77 0.76 0.81
30 3000 0.93 0.61 0.78 0.69 0.80
2 1000 0.78 0.75 0.75 0.75 0.77
4 2000 0.81 0.77 0.77 0.77 0.77
8 4000 0.87 0.71 0.77 0.79 0.80
15 7500 0.90 0.68 0.78 0.76 0.79
30 15000 0.93 0.61 0.79 0.75 0.82
2 2000 0.77 0.76 0.76 0.76 0.76
4 4000 0.82 0.75 0.77 0.77 0.77
8 8000 0.87 0.72 0.77 0.77 0.78
15 15000 0.90 0.68 0.78 0.80 0.81
30 30000 0.93 0.60 0.79 0.75 0.81
Average 0.86 0.70 0.77 0.75 0.79

Table 6
Two groups and different scatter matrices. Percentage (%) of misclassified observations for the optimum direction (d. opt), the eigenvector of Kn associated
with themax/min eigenvalue (max/min eig K ), the max/min kurtosis direction (max/min kurt), the best eigenvector of Kn (best eig K ) and the best kurtosis
direction (best kurt).

p n d. opt max/min eig K max/min kurt best eig K best kurt

2 200 3.20 6.00 8.00 5.30 4.30
4 400 1.10 7.00 7.00 4.00 3.90
8 800 0.30 8.00 8.00 5.00 3.30
15 1500 0.10 9.00 8.00 4.40 5.20
30 3000 0.00 1.10 8.00 6.10 5.50
2 1000 2.80 5.00 6.00 4.80 3.50
4 2000 1.30 5.00 5.00 4.90 4.10
8 4000 0.30 7.00 8.00 3.80 3.50
15 7500 0.10 9.00 8.00 3.30 5.10
30 15000 0.00 1.10 8.00 3.90 5.00
2 2000 3.30 5.00 5.00 5.00 4.00
4 4000 0.90 6.00 5.00 4.40 3.70
8 8000 0.30 7.00 6.00 4.00 3.10
15 15000 0.10 9.00 8.00 2.60 4.70
30 30000 0.00 1.20 1.00 3.80 5.40
Average 0.92 8.00 7.00 4.35 4.29

4.2. Different scatter matrices

In the general case of different scattermatrices, the optimumdirection forφ is (π1V1+π2V2)−1(µ2−µ1). Ifwe compare in
Table 5 the columns ‘best eig K ’ and ‘best kurt’ we observe that the kurtosis directions perform slightly better. However, if we
look at the same columns in Table 6, the proportion of misclassified observations, the results are very similar. In particular,
the eigenvectors perform better when the sample size is large. This behaviour could be due to the lack of precision in the
eigenvectors when the sample size is small.
As for the column ‘max/min eig K ’, we observe that the extreme eigenvalues not always identify the best eigenvector (in

terms of φ̂) particularly when p, the number of eigenvalues, is large. In Table 7 we show the number of times the maximum
or minimum eigenvalues correspond to the eigenvector of Kn that maximizes φ̂.
Also, instead of considering only the maximum and minimum eigenvalues, we can extend it to all eigenvalues that are

significantly different from the rest, taking for example the median of all eigenvalues as a central measure, and the median
absolute deviation as a measure of dispersion. If we do so, the values in Table 7 increase considerably.
Alternatively, we can use other criteria to decide which eigenvectors to consider, such as a measure of the significative

gaps between consecutive observations, as it is suggested in [1,19].

4.3. Comparison with some choices proposed by Tyler et al. [24]

Aswe havementioned earlier, Tyler et al. [24] use the eigenvectors of S−11 S2, S1 and S2 being any pair of affine equivariant
scatter matrices, in order to find interesting views of the data. Among others, they suggest using as the second scatter
matrix S2 robust estimations of the covariancematrix, such as theMinimumCovariance Determinant (mcd) or theMinimum
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Table 7
Two groups and different scatter matrices. Number of times out of 100 where the extreme eigenvalues (maximum or minimum) correspond to the
eigenvector of Kn that maximizes φ̂.

p n

2 200 100
4 400 92
8 800 80
15 1500 70
30 3000 57
2 1000 100
4 2000 96
8 4000 81
15 7500 68
30 15000 56
2 2000 100
4 4000 94
8 8000 77
15 15000 71
30 30000 54

(a) A group of outliers—large kurtosis. (b) Two same-size clusters—small kurtosis.

(c) Two groups of outliers—small kurtosis.

Fig. 1. The value of the univariate kurtosis coefficient for different scenarios.

Volume Ellipsoid (mve), see [22]. Although in some cases these matrices perform well to identify clusters, the truth is that
robust statistical theory assumes that the observed data are a mixture of good data (or clean data) and contamination, and
generally the goal is to ignore the contaminated cases. When performing cluster analysis, we want the opposite: identify all
the populations of the mixture. Therefore, it is easy to find examples where the eigenvectors of these robust matrices fail to
identify the groups.
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(a) Minimum Volume Ellipsoid (mve). (b) Minimum Covariance Determinant (mcd).

(c) Kurtosis.

Fig. 2. A standardized mixture of two bivariate normals with different scatter matrices projected onto the eigenvectors of the corresponding matrix
S−11 S2 , with S1 being the regular covariance matrix and S2 being respectively the estimates mve, mcd and the matrix based on fourth-order moments. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

On the contrary, the properties of the kurtosis are more suitable to identify clusters or outliers. Let zi = s−1(xi − x̄) be
the scores of a univariate distribution, the variance of the squared scores is,

sz2 =
1
n

n∑
i=1

(z2i − x̄z2)
2
=
1
n

n∑
i=1

z4i − 1 = k− 1,

where x̄z2 = 1 is the mean of the squared scores, and k the univariate kurtosis coefficient. The kurtosis can be seen
as the variance of the distances between the observations and their mean and therefore as a measure of heterogeneity.
Heterogeneity arises in several situations; if for example the sample is given by two clusters of similar size, the mean of the
sample will be located in themiddle of the two clusters and therefore the distances between the observations and themean
will be similar for all observations, specially if the clusters arewell separated and their variances are small. Thus, the kurtosis
will have a small value, reaching itsminimum in the extreme case of a two point-mass distribution. The same happens under
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(a) Caussinus and Ruiz-Gazen [3]. (b) Kurtosis.

Fig. 3. A standardized mixture of two bivariate normals with different scatter matrices projected onto the eigenvectors of the matrices proposed by
Caussinus and Ruiz-Gazen [3] and kurtosis respectively.

the presence of three clusters, if the clusters in the extremes have the same size. On the other hand, if we have a sample
where most of the observations come from a given distribution except for some outliers, the mean of the sample will be
located near or in the larger cluster, and the distances between the outliers and the mean will be large compared to the
other observations, returning a large value of kurtosis. Note that these properties do not depend on any assumption on the
distribution of the elements of the mixture, and therefore is not restricted to normal (or elliptical) mixture types, (see [19,
21] for details). Fig. 1 illustrates these situations.
Suppose that the sample comes from a mixture of two bivariate normal distributions with parameters µ1 =

[
0
0

]
,

µ2 =
[
4
4.5

]
, V1 =

[
0.55 0.5
0.5 0.5

]
and V2 =

[
1 −0.95
−0.95 1

]
, and sample sizes n1 = 1000 and n2 = 500. We will compare

the results obtained.
Fig. 2 shows the standardized sample projected onto the eigenvectors of the corresponding matrix S−11 S2, where S1 is the

regular covariance matrix and S2 is respectively the robust estimate mve, the robust estimate mcd, and the scatter matrix
based on fourth-ordermoments. The estimatesmve andmcd are calculated taking into account only half of the observations
of the sample appropriately taken from the larger cluster (coloured purple in Fig. 2(a) and (b)). They are robust estimates so
they manage to ‘successfully’ ignore the smaller cluster. Thus, if we project the observations onto any eigenvector ofmve or
mcd, which are the principal axes of the larger cluster, the two clusters will overlap. In this case the good direction is

[
1
1

]
,

the direction of the means, and the second eigenvector of the kurtosis matrix does capture it; the clusters do not overlap
when projected onto it, see Fig. 2(c).

4.4. Comparison with the method proposed by Caussinus and Ruiz-Gazen [3]

The method proposed by Caussinus and Ruiz-Gazen [3] can also be seen as a particular case of the general setting
described by Tyler et al. [24]. In this case, the choice for S2 is the following weighted covariance matrix,

S2 =
E[ω(βZTZ)(X − µ)(X − µ)T]

E[ω(βZTZ)]
, (9)

with ω = exp
(
−x
2

)
being a positive decreasing function. The choice proposed in our paper, using the notation in Tyler

et al. [24], is S2 = E[ZTZ(X − µ)(X − µ)T], which can also be seen as a weighted covariance matrix. However, the weights
in both cases are to be interpreted differently. For our choice, the larger the Mahalanobis distance of an observation to the
mean, the larger the influence of the observation on the calculation of the eigenvectors. On the other hand, the weights in
(9) are robust and givemore influence to observations close to themean, and the eigenvectorsmight ignore the directions of
the clusters. In Fig. 3 we use the same example described above (nowwith n2 = 100) to compare both approaches. Fig. 3(a)
shows the overlapping of the two clusters when projected onto the second component, which is not the case in Fig. 3(b).
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Although the proposed method performs quite well in practice, as shown in the preceding results, it should be noted
that in some cases, for example when we have two groups with π = (

√
3− 1)/(2

√
3) = 0.2113, the matrix K is diagonal

(see expression (6)), and therefore the eigenvectors will not identify the direction of the means. In these cases the proposed
algorithm can be complemented with additional directions, as mentioned in the introduction and along the lines proposed
in [20].
Additionally, if we consider the example presented by Hennig in his contribution to the discussion of Tyler et al. [24], we

observe that the kurtosis approach (Fig. 7) does not provide the optimal solution,whereas the approach suggested byHennig
(Fig. 9) performs better in terms of the separation between clusters. Nevertheless, in practice the differences are small and
the kurtosis approach is still able to identify the three clusters from the projections onto the extreme eigenvectors. Also,
the computational cost for the kurtosis approach is quite low compared to that for the scatter matrices suggested in the
discussion, which require computing a matrix of Mahalanobis distances and a covariance matrix for each observation.

5. Discussion

Further researchwill be focused onmodifying the kurtosis matrix to improve the performancewhen the scattermatrices
are different, which has not been addressed yet in the literature. In particular, it would be interesting to explore variations of
the kurtosis matrix where the terms in (3) that depend on the scatter matricesWi have less influence on the eigenstructure
of the matrix.

Appendix A. Matrix K under a mixture of elliptical distributions

We standardize X using its global mean µ =
∑
i πiµi, and covariance matrix Σ =

∑
i πiVi +

∑
i πi(µi − µ)(µi − µ)

T.
The standardized variable Z = Σ−1/2(X −µ) is also a mixture of elliptical distributions Zi with means and scatter matrices
δi andWi, δi = Σ−1/2(µi − µ) andWi = Σ−1/2ViΣ−1/2. Using expectation properties

K = E(ZTZZZT) =
k∑
i=1

πiE(ZTi ZiZiZ
T
i ).

The fourth-order moment matrix is

E(ZTi ZiZiZ
T
i ) = E{(Zi − δi)

T(Zi − δi)(Zi − δi)(Zi − δi)T} + trWiδiδTi + δ
T
i δiWi + 2(δiδ

T
i Wi +Wiδiδ

T
i )+ δ

T
i δiδiδ

T
i ,

where we have used that Zi = W
1/2
i Y + δi, with Y following a spherical distribution, the intermediate results E(ZiZ

T
i ) =

Wi+ δiδTi , E(Y
TWiY ) = trWi, E(δTi W

1/2
i YW

1/2
i Yδ

T
i ) = E(W

1/2
i YY

TW 1/2i δiδ
T
i ) and the fact that all oddmoments of Y are equal

to zero.
The fourth-order central moment matrix of Zi is

M4 = E{(Zi − δi)T(Zi − δi)(Zi − δi)(Zi − δi)T}

= |Wi|−1/2
∫
(z − δi)T(z − δi)(z − δi)(z − δi)Thi((z − δi)TW−1i (z − δi))dz

=

∫
yTWiyW

1/2
i yy

TW 1/2i hi(y
Ty)dy = W 1/2i U

∫
tTΩtttThi(tTt)dtUTW

1/2
i

= W 1/2i U
∑
j

ωj

∫
t2j tt

Thi(tTt)dtUTW
1/2
i =

∑
j

ωjk̃iWi + k̄iW
1/2
i UΩU

TW 1/2i

= k̃itrWiWi + k̄iW 2i ,

where we have introduced y = W−1/2i (z − δi), t = UTy and
∫
t2j tt

Thi(tTt)dt = k̃iI + k̄iejeTj for k̃i =
∫
t2j t
2
k hi(t

Tt)dt where
j 6= k, and k̄i =

∫
t4j hi(t

Tt)dt − k̃i. Thus, K reduces to (3).

Appendix B. Proof of Theorem 1

Proof of Theorem 1. The result in (4) is obtained using in expression (3) the resultWi = Σ−1/2VΣ−1/2 = I −
∑
i πiδiδ

T
i ,

where V = Σ −
∑
i πi(µi − µ)(µi − µ)

T.
Denote Σ = V + MPMT, with M = (µ1 − µ, . . . , µk − µ) and P diagonal with elements (π1, . . . , πk), then, from the

inverse of the sum property, we haveΣ−1 = V−1 − V−1M(MTV−1M + P−1)−1MTV−1, and multiplying byM ,

Σ−1M = V−1M
{
I − (MTV−1M + P−1)−1MTV−1M

}
.

Therefore,Σ−1M = V−1MT . And, if we add and subtract P−1 appropriately, we can see that T = {P(MTV−1M + P−1)}−1 is
invertible. Therefore, the columns ofΣ−1M and V−1M generate the same subspace and thusΦ = ∆X and (5) is proven. �
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Appendix C. Derivations for the case of different scatters

We have that δ2 = −
π1
π2
δ1 and, from the decomposition of the covariance matrix in the case of mixture distributions,

I = π1W +π2W +π21W +
∑
i πiδiδ

T
i , and thusW = W̄ −π21W , where W̄ = I−

π1
π2
δ1δ

T
1 corresponds to the equal scatter

matrices case. AlsoW + 1W = W̄ + π11W . ReplacingW1 = W = W̄ − π21W andW2 = W + 1W = W̄ + π11W in
(3) we obtain

K = K̄ + π1π21W tr1W + 2π1π21W 2 +
π1

π2
(π1 − π2)δ1δ

T
1tr1W

+2
π1

π2
(π1 − π2)

(
δ1δ

T
11W +1Wδ1δ

T
1

)
+
π1

π2
(π1 − π2)δ

T
1δ11W ,

where K̄ = (p + 2)I + π1
π32
(1 − 6π1π2)δT1δ1δ1δ

T
1 . The kurtosis coefficient on a direction is κd = 3

∑
i πi(d

TWid)2 +

6
∑
i πi(d

TWid)(δTi d)
2
+
∑
i πi(δ

T
i d)

4, and substituting in our case

κd = κ̄d + 3π1π2(dT1Wd)2 + 6
π1

π2
(π1 − π2)(δ

T
1d)

2dT1Wd,

where κ̄d = 3(dTd)2 +
π1
π32
(1− 6π1π2)(δT1d)

4. The parameters in Eqs. (7) and (8) derived from these results are a0 = p+ 2,

a1 = π1π2tr1W +
π1
π2
(π1 − π2)δ

T
1δ1, a2 = 2π1π2, b1 =

π1
π32
(1 − 6π1π2)δT1δ1δ

T
1d +

π1
π2
(π1 − π2)(δ

T
1d tr1W + 2δ

T
11Wd),

b2 = 2
π1
π2
(π1−π2)δ

T
1d, c0 = 12, c1 = 12π1π2d

T1Wd+ 12π1
π2
(π1−π2)(δ

T
1d)

2 and f1 = 4
π1
π32
(1− 6π1π2)(δT1d)

3
+ 12π1

π2
(π1−

π2)δ
T
1dd

T1Wd.
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