Design and manufacturing of complex moulds for powder injection moulding

Industrial Engineer

Miguel Angel Enríquez Baranda
Final Project of Industrial Engineer
Design and manufacturing of complex moulds for powder injection moulding

PIM TECHNOLOGY

PROCESS

- Feedstock Elaboration → Powder + Binder → Pellets
- Injection Moulding
- Debinding → Solvent or Thermal
- Sintering
Final Project of Industrial Engineer
Design and manufacturing of complex moulds for powder injection moulding

INJECTION MOULDING MACHINE

INJECTION MACHINE

- Hydraulic System
- Control System
- Screw
- Barrel
- Hoper
- Supports

Mould tool ➔ Plates
- Fix
- Mobile
- Ejectors

1. Index
2. PIM technology
3. Moulding machine
4. Mould design
5. Moulded Parts
6. Mould Cost
7. Conclusions
8. Questions
Final Project of Industrial Engineer
Design and manufacturing of complex moulds for powder injection moulding

1. Index
2. PIM technology
3. Moulding machine
4. Mould design
5. Moulded Parts
6. Mould Cost
7. Conclusions
8. Questions
Final Project of Industrial Engineer
Design and manufacturing of complex moulds for powder injection moulding

1. Index
2. PIM technology
3. Moulding machine
4. Mould design
5. Moulded Parts
6. Mould Cost
7. Conclusions
8. Questions

FIXED SUPPORT

MOBILE SUPPORT

FIXED PLATE

MOBILE PLATE

EJECTOR
Final Project of Industrial Engineer

Design and manufacturing of complex moulds for powder injection moulding

PLATES AND SUPPORTS ASSEMBLY

FIXED PLATE MOBILE PLATE

DISPOSITION
Final Project of Industrial Engineer
Design and manufacturing of complex moulds for powder injection moulding

1. Index
2. PIM technology
3. Moulding machine
4. Mould design
5. Moulded Parts
6. Mould Cost
7. Conclusions
8. Questions

TOTAL ASSEMBLY
MOULD DESIGN

DESIGN PROCESS

► Part Dimensions

► Cavity Location ➔ Part geometry

➔ Blank mould availability

► Nozzle

CONIC NOZZLE

HOT RUNNER
Runner System

Circular Trapezoidal Semi-Circular

SECTION

LOCATION
Ejection System

PART EXTRACTION

EJECTORS CUT

\[L = (12 + 12.10 + 45.10) - L_{RUNNER} - L_{COLDTRAP} \]
Cold Trap ➔ Improves part homogeneity

DIMENSIONS

\[L_{\text{Cold Trap}} = 1.5 \times D_{\text{runner}} \]

- **Main Runner**
 - Semi-Circular
 - \(\Phi = 4 \text{ mm} \)
- **Cold Trap**
 - \(\Phi = 4 \text{ mm} \)
 - \(L = 6 \text{ mm} \)
- **Ejector Hole**
 - \(\Phi = 3 \text{ mm} \)
- **Toroid Section**
- **Flow Direction**

Source: J.P. Beaumont *Runner and Gating Handbook*
Final Project of Industrial Engineer
Design and manufacturing of complex moulds for powder injection moulding

Vents ➔ Remove compressed gases (air)

LOCATION: Last area to fill

Source: J.P. Beaumont Runner and Gating Handbook
Final Project of Industrial Engineer
Design and manufacturing of complex moulds for powder injection moulding

 Heating System Improves injection process

ELECTRICAL HEATER

WATER HEATER
MOULDS

DESIGNED

Toroid
Flat Specimen
Dog-Bone Specimen
Microstep

MANUFACTURED

Toroid
Double Cavity
Switch Valve
Final Project of Industrial Engineer
Design and manufacturing of complex moulds for powder injection moulding

TOROID

- Magnetic properties characterisation (Fe-Si 2.7%)
- Feedstocks
 - ADVANCED METALWORKING PRACTICES
 - HES-SO VALAIS

GREEN PART

SINTERED PART

PART FILL
Final Project of Industrial Engineer

Design and manufacturing of complex moulds for powder injection moulding

1. Index
2. PIM technology
3. Moulding machine
4. Mould design
5. Moulded Parts
6. Mould Cost
7. Conclusions
8. Questions
DOG - BONE

- Testing mechanical properties
- Feedstocks: Aluminium oxide (Al_2O_3 - 99%)
 ➞ INMATEC

PART FILL

GREEN PART
Final Project of Industrial Engineer
Design and manufacturing of complex moulds for powder injection moulding
FLAT SPECIMEN

- Testing mechanical properties
- Feedstocks: Aluminium oxide ($Al_2O_3 - 99\%$)

→ INMATEC

**Switch over point = 2.9 cm³
Volume = 0.95 cm³**

PART FILL

GREEN PART
Final Project of Industrial Engineer
Design and manufacturing of complex moulds for powder injection moulding

1. Index
2. PIM technology
3. Moulding machine
4. Mould design
5. Moulded Parts
6. Mould Cost
7. Conclusions
8. Questions
Final Project of Industrial Engineer
Design and manufacturing of complex moulds for powder injection moulding

MOULD COSTING METHODS

Rhode Island University (RI)
Boothroyd. Dewhurst and Knight (BDK)

HES-SO Valais

Source: Randall M. German PIM: Design and Applications
Final Project of Industrial Engineer
Design and manufacturing of complex moulds for powder injection moulding

HES-SO VALAIS TOOL COSTING METHOD

TOTAL COST = MATERIALS + LABOUR + (ACCESORIES)

MATERIALS = PLATES + EJECTORS
 ➔ PLATES = MOBILE + FIX + EJECTOR
 ➔ EJECTORS = n° x C unit

LABOUR = C unit x Manufacturing time

MANUFACTURING TIME = SETUP + FIX-MOBILE + EJECTOR
 ➔ SETUP = Machine preparation
 ➔ FIX MOBILE = Base Time + Complexity
 Base: Basic holes and chamfer
 Complexity: Xp (perimeter, length, width)
 Historical time manufacturing - Interpolation
 \[X_p = \left(\frac{P}{L} \right) \cdot \left(\frac{P}{W} \right) \]
 \[t_{COMPLEXITY} = 4.05 + \frac{X_p}{107.51} \]
 ➔ EJECTOR = Base Time + Complexity
 Base: Basic holes and chamfer
 Complexity: Number of holes x drilling time
COMPARISON METHOD RESULTS

<table>
<thead>
<tr>
<th>MOULD / METHOD</th>
<th>RHODE ISLAND</th>
<th>B.D.K.</th>
<th>HES-SO VALAIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOROID</td>
<td>CHF 1.830</td>
<td>CHF 2.886</td>
<td>CHF 1.864</td>
</tr>
<tr>
<td>DOUBLE CAVITY</td>
<td>CHF 2.418</td>
<td>CHF 1.741</td>
<td>CHF 2.463</td>
</tr>
</tbody>
</table>

RHODE ISLAND ≈ HES-SO VALAIS

B.D.K. ➔ Sensitive small width variations
 ➔ Consider number of parts moulded
CONCLUSIONS AND PERSPECTIVES

➤ Five moulds designed ➔ Two manufactured and tested
➤ Ferromagnetic toroids moulding OK
➤ Double cavity mould with switch valve OK
➤ Cost method compared ➔ Usefully to create HES-SO method

➤ Microstep mould
➤ Heating system ➔ Room temperature not enough
➤ Hot nozzle
QUESTIONS TIME

Thank you for your time
FLOW ENTRANCE

Flow Direction Main Runner
Φ = 4 mm
SPRUES

<table>
<thead>
<tr>
<th>Submarine or Tunnel Gate</th>
<th>Pinpoint or Restricted Gate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter of 0.049-0.060 inch (1.25-1.524 mm)</td>
<td>Diameter of 0.064-0.070 inch (1.625-1.778 mm), or 10% of wall thickness</td>
</tr>
<tr>
<td>An edge gate located below the parting line or moulded surface</td>
<td>A restricted opening between the runner and moulded part. Normally used with thin wall parts.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fan or Edge Gate</th>
<th>Tab Gate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter normal (\approx 1/8)</td>
<td>Safe from welds</td>
</tr>
<tr>
<td>A common gate located in the sidewall of the part to prevent restriction of resin flow. Normally used with multi-cavity, two-platen moulds.</td>
<td>Used for most orientation when a large volume is needed for mould fill. The tab helps avoid surface splatter due to high shear, direct gating, or ejection.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprue Gate</th>
<th>Flash Gate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A long, shallow, rectangular edge gate</td>
</tr>
<tr>
<td>Recommended for single cavity moulds requiring symmetrical filling (usually used with circular parts)</td>
<td></td>
</tr>
</tbody>
</table>
MOULD MATERIAL

<table>
<thead>
<tr>
<th>Material No.</th>
<th>Code</th>
<th>AVIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>M01-001</td>
<td>XGOD156</td>
<td>450 F9</td>
</tr>
</tbody>
</table>

Chemical composition (mass analysis, %)

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>Cr</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25–0.35</td>
<td>+1.00</td>
<td>+1.40</td>
<td>+0.20</td>
</tr>
<tr>
<td>0.25–0.35</td>
<td>0.25</td>
<td>1.50</td>
<td>1.50-17.0</td>
</tr>
</tbody>
</table>

Physical properties

- **Morsing hardness**: 250 – 300 HB
- **Achimotive hardness**: 62-65 HRC
- **Tensile strength 80,500 MPa**
- **Density**: 1.99 g/cm³

Characteristics

- Plastic mold steel
- Good resistibility to wear and erosion, high hardness and good wearability

Applications

- Used in injection molding processes for components where high wear resistance is required.

Heat treatment

<table>
<thead>
<tr>
<th>Process</th>
<th>Temperature</th>
<th>Cooling medium</th>
<th>Hardness after heat treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moulding</td>
<td>850 – 900°C</td>
<td>Oil</td>
<td>350 HB</td>
</tr>
<tr>
<td>Hardening</td>
<td>850 – 1000°C</td>
<td>Water</td>
<td>500 HRC</td>
</tr>
<tr>
<td>Tempering</td>
<td>600 – 650°C</td>
<td>Oil</td>
<td>300 HRC</td>
</tr>
</tbody>
</table>

Mould Design

Design and manufacturing of complex moulds for powder injection moulding

Mould Material

- MOULD MATERIAL

Moulded Parts

- Moulded Parts

Mould Cost

- Mould Cost

Conclusions

- Conclusions

Questions

- Questions