
www.elsevier.com/locate/jnca

Author’s Accepted Manuscript

Flaws on RFID grouping-proofs. Guidelines for
future sound protocols

PedroPeris-Lopez,AgustinOrfila, JulioC.Hernandez-
Castro, Jan C.A. van der Lubbe

PII: S1084-8045(10)00082-2
DOI: doi:10.1016/j.jnca.2010.04.008
Reference: YJNCA516

To appear in: Journal of Network and
Computer Applications

Received date: 31 October 2009
Revised date: 25 March 2010
Accepted date: 28 April 2010

Cite this article as: Pedro Peris-Lopez, Agustin Orfila, Julio C. Hernandez-Castro and
Jan C.A. van der Lubbe, Flaws on RFID grouping-proofs. Guidelines for future sound
protocols, Journal ofNetwork andComputer Applications, doi:10.1016/j.jnca.2010.04.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As
a service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting galley proof
before it is published in its final citable form. Please note that during the production process
errorsmay be discoveredwhich could affect the content, and all legal disclaimers that apply
to the journal pertain.

http://www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2010.04.008

Acc
ep

te
d m

an
usc

rip
t

Flaws on RFID grouping-proofs. Guidelines for future

sound protocols

Pedro Peris-Lopeza,∗, Agustin Orfilaa,b, Julio C. Hernandez-Castroc, Jan
C.A. van der Lubbea,

aInformation Security and Privacy Lab, Faculty of Electrical Engineering, Mathematics,
and Computer Science, Delft University of Technology, P.O. Box 5031, 2600 GA, Delft,

The Netherlands
bDepartment of Computer Science, Carlos III University of Madrid, Leganes, Madrid,

28911, Spain
cSchool of Computing, Buckingham Building, Lion Terrace, Portsmouth PO1 3HE,

United Kingdom

Abstract

During the last years many RFID authentication protocols have been pro-
posed with major or minor success (van Deursen and Radomirović (2008)).
Juels (2004) introduced a different and novel problem that aims to evidence
that two tags have been simultaneously scanned. He called this kind of ev-
idence a yoking-proof that is supposed to be verifiable offline. Then, some
authors suggested the generalization of the proof for a larger number of tags.
In this paper, we review the literature published in this research topic and
show the security flaws of the proposed protocols, named RFID grouping-
proofs generally. More precisely, we cryptanalyze five of the most recent
schemes and we also show how our techniques can be applied to older pro-
posals. We provide some guidelines that should be followed to design secure
protocols and preclude past errors. Finally, we present a yoking-proof for
low-cost RFID tags, named Kazahaya, that conforms to the proposed guide-
lines.

Keywords:
RFID; Grouping-proof; Security; Privacy, Cryptanalysis

∗Corresponding author
Email addresses: P.PerisLopez@tudelft.nl (Pedro Peris-Lopez),

Preprint submitted to Journal of Network and Computer Applications March 25, 2010

Acc
ep

te
d m

an
usc

rip
t

1. Introduction

A typical RFID system consists of three different types of entities: tags,
readers and a verifier. The tags are embedded in, or attached to, objects to
be identified. The most expensive are active, i.e. have power supply (usually
a battery) that is used to energize the microchip’s circuitry and to broad-
cast a signal to the reader. As they have their own power source, active
tags support large memory and processing capabilities. Semi-passive tags,
which are also too expensive to place on low-cost items, use a battery to
run the microchip’s circuitry but communicate by drawing power from the
reader. The remaining ones are passive i.e., have no internal power source
neither to energize the microchip nor to communicate to the reader. Thus,
the computation and communication capabilities of the latter are very lim-
ited. Nevertheless, it is generally assumed that they are able to perform
basic cryptographic operations such as generating pseudo-random numbers
and evaluating pseudo-random functions (Burmester et al. (2008)). RFID
tags do not have clocks. However, the activity time of a tag during a single
session can be limited using techniques such as measuring the discharge rate
of capacitors, as described in (Juels (2004)). Accordingly timeouts can be
implemented on RFID passive tags. FCC regulations require the termination
of tag-reading within 400ms. The readers provide power to the tags in order
to communicate with them. The verifier (a back-end server) is a trusted en-
tity that maintains a database containing the information needed to identify
tags (e.g. their unique identifiers and their secret keys).

A grouping-proof is an evidence that two or more RFID tags were scanned
simultaneously by a reader within its broadcast range. For example, in the
pharmaceutical sector, it can prove that a medicine has been sold with its
prescription or with the patient information leaflet. The proof should be
verifiable by the corresponding verifier. During a grouping-proof protocol
execution, the verifier can be in two different modes: online or offline. In the
first mode the verifier can send and receive messages from specific tags (via
the reader) throughout the protocol execution. In contrast, in offline mode
the verifier can only broadcast challenges to the reader. Thus, the verifier in
offline mode never unicasts messages to tags. Although it is straightforward

A.OrfilaDiazPabon@tudelft.nl (Agustin Orfila),
Julio.Hernandez-Castro@port.ac.uk (Julio C. Hernandez-Castro),
J.C.A.vanderLubbe@tudelft.nl (Jan C.A. van der Lubbe)

2

Acc
ep

te
d m

an
usc

rip
t

to design solutions for the online mode (indeed a proper RFID authentication
protocol is enough (Chien et al. (2010)), some research has focused on the
protocol design for this mode (Leng et al. (2009); Huang and Ku (2009);
Chien et al. (2010)). Nevertheless, the interesting case is the offline mode
because it does not need the persistent presence of the verifier to generate
grouping-proofs.

Some assumptions are generally accepted for the design of grouping-proofs
(Burmester et al. (2008)):

• RFID readers are potentially untrusted. The only trusted entity is a
verifier.

• RFID readers keep a record of proofs for each session. These records
cannot be manipulated by the adversary. In the offline case readers
must also store private information regarding interrogation challenges
obtained from the verifier.

• The verifier is a trusted entity, that may share some secret information
with the tags such as cryptographic keys. The verifier has a secure
channel (private and authenticated) that links it to the (authenticated)
RFID readers. In contrast, the channel between tags and the reader is
considered insecure.

• For the protocol design of grouping-proofs, the focus is generally set
on security issues at the protocol layer and not on physical or link
layer issues. Problems such as the coupling design, the power-up and
collision arbitration processes or the air-RFID interface are not usually
addressed.

There are practical scenarios where grouping-proofs could significatively
expand the capabilities of RFID-based systems. For example, 1) In the phar-
maceutical sector to prove that a medicine is sold joined with its prescription
or with its information leaflet; 2) In the government paperwork to check that
a single form is enclosed with its corresponding stamp or label; 3) In meet-
ings or access control systems to generate an evidence that a group of people
are present at an specific location. In airport check-in desks to link your
boarding card with your passport and baggages; 4) In auto-lending library
services to associate a book with the e-identity card of an user.

The remainder of this paper is organized as follows. Section 2 presents
a critical review of the related work. Next, Section 3 shows a flaw in the

3

Acc
ep

te
d m

an
usc

rip
t

protocols proposed by Burmester et al. (2008) that is also present in other
yoking protocols. Section 4 discusses the traceability problems of the anony-
mous protocol proposed by Chien and Liu (2009). Then, Section 5 describes
specific attacks on two online proposals and Section 6 show how some of the
protocols that have been proposed recently are vulnerable to replay attacks.
Consequently, Section 7 proposes some guidelines for future sound grouping-
proofs that avoid the security pitfalls described in this paper. Next, Section
8 presents a novel RFID grouping-proof, named Kazahaya, which complies
with the guidelines previously defined. Finally the article ends up with the
main conclusions.

2. Related Work

The idea of generating an evidence that a pair of tags has been scanned
simultaneously was introduced by Juels (2004). He named such evidence
a yoking-proof and he proposed two protocols to generate it. The first re-
quires more expensive tags while the second is thought for severely resource-
constrained ones. Saito and Sakurai (2005) showed that the second protocol
is not immune to replay attacks and Bolotnyy and Robins (2006) extended
the attacks to the first. In addition, Burmester et al. (2008) pointed out
two additional weaknesses: Denial-of-Service (DoS) and impersonation at-
tacks were feasible. Yoking-proofs have been extended to prove simultane-
ous presence of a group of tags in the range of an RFID reader (Saito and
Sakurai (2005)). They called this kind of proof a grouping-proof. In order to
thwart replay attacks, both for two or a group of tags, their protocol includes
timestamps. Nevertheless, Piramuthu (2006) showed Saito’s protocol is also
vulnerable to replay attacks. Accordingly, he proposed to include random
values instead of timestamps. This is important, because timestamps can be
predicted, allowing an attacker to collect prior responses and combine them
to forge proofs. However, Peris-Lopez et al. (2007) proved Piramithu’s pro-
tocol used random numbers in such a way that it is vulnerable to multi-proof
session replay attacks. Accordingly, Peris-Lopez et al. (2007) also proposed
a new grouping-proof protocol.

Since then several grouping-proof protocols have been proposed that have
not been cryptanalyzed yet. In this paper, we will examine most recent pro-
posals in depth and we will identify flaws in their design. Then, guidelines for
proper grouping-proof protocol design are provided according to the previous
analysis.

4

Acc
ep

te
d m

an
usc

rip
t

Cho et al. (2008) proposed a variant of Piramithu’s protocol to make
it immune to brute force attacks. However, it turns out to be vulnerable
to multi-proof session replay attacks. Lin et al. (2007) propose both online
and offline grouping-proof protocols to avoid race conditions and to face
the problem of determining if tags that are supposed to be present in a
grouping-proof are missing. However, the offline protocol is vulnerable to
multiple impersonation attack, as describe in Section 3. Burmester et al.
(2008) proposed three new protocols. First introduces the utility of group
keys to avoid the generation of useless proofs (a kind of DoS) in such a way
that a tag can verify that the other belongs to the group before generating an
offline proof. Second achieves an anonymous yoking-proof and last (online)
provides anonymity and forward security. We will show in Section 3 that
they are all vulnerable to multiple impersonation attacks.

The idea of anonymous grouping-proofs was first introduced by Bolotnyy
and Robins (2006). Burmester et al. (2008) stated that in Bolotnyy’s schema
is not clear how the reader can pair tags from their pseudonyms and propose
an alternative. Peris-Lopez et al. (2007) and Chien and Liu (2009) also
proposed anonymous yoking protocols.

Lien et al. (2008) introduced a reading order independent grouping-proof
to improve efficiency and reduce failure rates. Leng et al. (2009) proposed a
select-response grouping-proof protocol. They argue that previous proposals
assume that a reader queries and computes a proof for the verifier. Thus,
there is no information for the reader to judge the completeness of the proof
in advance (there can be missing tags due to transmission errors, ineffective
tags or interruption attacks, etc.). In addition, DoS is also possible since a
malicious tag can avoid a legitimate proof to be generated or force a useless
proof to be created. To overcome these problems, they propose an online pro-
tocol where the verifier is involved in each step instead of waiting. However,
as Chien et al. (2010) stated, if an online verifier is available it can directly
authenticate and verify the presence of each tag, and an RFID authenti-
cation protocol is usually simpler and more efficient than a grouping-proof
protocol as it runs an authentication instance for each tag respectively and
independently. Accordingly, Chien et al. (2010) present an authentication
protocol for this purpose that improves a previous grouping-proof protocol
for enhancing inpatient medication safety using online mode (Huang and Ku
(2009)). Both protocols conforms to EPCglobal Class-1 Gen-2 specification
and both protocols have certain weaknesses as we will discuss later in this
paper (see Section 5). Chien et al. (2010) also proposes an offline grouping-

5

Acc
ep

te
d m

an
usc

rip
t

proof protocol. Unfortunately it is vulnerable to replay attacks as we show
in Section 6.

Finally, Chien and Liu (2009) proposed an anonymous tree based yoking
proof to reduce the computational cost of identifying a tag in the verifier
from O(N) to O(1). However, this protocol has serious privacy weaknesses
as we show in Section 4. Amongst others, it is possible to track when two
tags of a certain group are being scanned together to generate a proof.

It is important to agree on a common way of naming grouping-proofs
because different names can be found in the literature: yoking-proofs (Juels
(2004)), grouping-proofs (Saito and Sakurai (2005)), existence-proofs (Pira-
muthu (2006)), clumping-proofs (Peris-Lopez et al. (2007), and coexistence-
proofs (Lin et al. (2007))). In this paper, we refer to yoking-proofs when the
protocol concerns exclusively two tags and grouping-proofs when the protocol
is designed for a set of tags.

3. Multiple Impersonation Attack

In 2008, Burmester et al. (2008), proposed three RFID protocols in strong
adversary models. The first scheme does not guarantee anonymity, the second
supports anonymity and finally the third adds forward security to the set of
properties supported by the second. In this section, we analyze the first
of these proposals, named a robust grouping-proof. Although the reader is
referred to the original paper for a description of the two last protocols, the
attack described against the first scheme can be also put in action over the
later ones.

3.1. Robust grouping-proof (Burmester et al. (2008))

Tags are divided into groups, which are identified by a group identifier
(IDgroup). Each tag stores two private keys: a group key (Kgroup) proves
its membership to a specific group, and a secret key (Ktag) facilitates the
authentication of tags. For each tag, the above information is stored in a
database (D = {IDgroup, Ktag, Kgroup}). The protocol has three phases (as
described at the top part of Figure 1):

First Phase The reader broadcasts a random challenge rsys, which is gen-
erated by a trusted verifier at regular intervals. The tags in its range
backscatter their group identifier IDgroup.

6

Acc
ep

te
d m

an
usc

rip
t

Second Phase Tags are linked by channels to the reader. Note that this
phase takes place at data link layer.

Third Phase In these phase, TagA plays the role of the initiator of the
proof. The counter c of this tag determines the current state of the
group and is updated during every protocol execution. The messages
exchanged between two tags to prove their simultaneous reading is
described below. f symbolizes a pseudo-random function and || denotes
concatenation operator.

1.0 TagA computes rA||sA = f(Kgroup; rsys, c) and sends {rA, c} to the
reader. Finally, TagA updates its counter (c = c + 1).

1.1 The reader stores the received values and forwards them to TagB.

2.0 TagB computes its local version of the token (rB||sB = f(Kgroup;
rsys, c)) to prove TagA belongs to the group. If rA �= rB the
protocol is aborted. Otherwise, TagB computes an authentication
message xB = f(KB; rsys||rB) and sends the pair {sB, xB} to the
reader.

2.1 The reader stores xB and forwards sB value to TagA.

3.0 TagA checks if TagB belongs to the group (sA = sB). If so, TagA
computes its authentication message xA = f(KA; rsys||rA) and
sends this token to the reader. Otherwise, the protocol is aborted.

4.0 The completion of the proof is achieved and the reader builds the
grouping-proof (PAB = (rsys, IDgroup, c, rA, sA, xA, xB)).

3.1.1. Multiple impersonation attack on robust grouping-proof

We now show that the robust grouping-proof is vulnerable to multiple
impersonation attack. Basically, an adversary can generate a proof of simul-
taneous reading of TagB and TagX , where X symbolizes any tag belonging
to the same group. In order to perform this attack, an adversary has to
eavesdrop the public messages transmitted over the insecure radio channel
during the execution of a proof between an initiator TagA and the target
TagB. Then, the captured messages are replayed to TagX to build a coun-
terfeit proof. Following, the attack, which has two stages, is described in
detail (see Figure 1).

Stage 1. Legitimate Robust Grouping-proof:

7

Acc
ep

te
d m

an
usc

rip
t

First & Second Phase {TagA, TagB} are linked and rsys represents the
random number associated with the current session.

Third Phase Each tag checks the membership of the other participant and
generates an authentication message. The messages exchanged between
TagA and TagB to proof their simultaneous reading is described below.

1.0 TagA computes rA||sA = f(Kgroup; rsys, c) and sends {rA, c} to the
reader. Finally, TagA updates its counter (c = c + 1).

1.1 The reader stores the received values and forwards them to TagB.

2.0 TagB computes its local version of the token (rB||sB = f(Kgroup;
rsys, c)) to prove TagA belongs to the group. If rA �= rB the
protocol is aborted. Otherwise, TagB computes an authentication
message xB = f(KB; rys||rB) and sends the pair {sB, xB} to the
reader.

2.1 The reader stores xB and forwards sB value to TagA.

3.0 TagA checks if TagB belongs to the group (sA = sB). If so, TagA
computes its authentication message xA = f(KA; rsys||rA) and
sends this token to the reader. Otherwise, the protocol is aborted.

4.0 The completion of the proof is achieved and the reader builds the
grouping-proof (PAB = (rsys, IDgroup, c, rA, sA, xA, xB)).

At this point of the attack, the adversary knows the values {IDgroup, c, rA,
sA, xA, xB} passed over the insecure channel. The knowledge of these values
can be exploited by an attacker to generate a proof of the simultaneous
reading of TagB and any other tag (TagX) of the group. The procedure
followed by the the attacker is described below.

Stage 2. Multiple Impersonation Attack:

First & Second Phase The impersonated TagA and TagX are linked and
rsys represents the random number associated with the current session.

Third Phase The messages exchanged between the adversary –impersonating
TagA– and TagX are described below:

1.0 The adversary replays the tuple {rA, c} to TagX .

8

Acc
ep

te
d m

an
usc

rip
t

2.0 TagX computes its local version of the token (rX ||sX = f(Kgroup;
rsys, c)) to prove TagA belongs to the group. As rA = rX , the tag
computes an authentication message xX = f(kX ; rsys||rX) and
sends the tuple {sX , xX} to the adversary.

3.0 The adversary builds the bogus grouping-proof (PBX = (rys,
IDgroup, c, rB, sB, xB, xX))1.

The attacker may thus deceive the verifier into thinking that TagB and
TagX are read simultaneously. Indeed, the attack is viable as the robust
grouping-proof does not satisfy one of the premises necessary to generate a
secure grouping-proof (see Guideline 2). Basically, the attacker exploits the
fact that, in step 3.0 of the protocol, the authentication message computed by
the initiator tag is independent of the other participant computations. Read-
ers should note that the other two protocols proposed (a robust anonymous
grouping-proof and a robust grouping-proof with forward secrecy) suffer from
the same weaknesses as they follow the same scheme.

Finally, we have examined how to apply these attacks to different grouping-
proofs found in the literature. The attack results completely effective against
recent proposals such as the Yoking-Proof (Juels (2004)), the groping-proof
(Saito and Sakurai (2005)) and the Enhanced Yoking-proof (Lin et al. (2007)).

Countermeasure: As dictated by Guideline 2 in Section 7, when just
two tags are involved, the computations of a tag – except the first message
in the protocol – should be dependent on the values computed by the fellow
tag participating in the proof.

4. Privacy Attacks

One of the fundamental issues still to be addressed on RFID systems is
privacy. Products labeled with tags reveal sensitive information, such as their
static identifier, when queried by readers, and they do it indiscriminately.
A problem closely related to privacy is tracking, or violations of location
privacy. Most of the times, tags provide always the same identifier, which
will allow a third party to easily establish an association between a given tag

1Similarly, a counterfeit grouping-proof can be also built at this point yoking TagA and
TagX (PAX = (rsys, IDgroup, c, rA, sA, xA, xX))

9

Acc
ep

te
d m

an
usc

rip
t

and its holder or owner. Even in the case in which tags try not to disclose
their identity, there are situations where, by using a constellation of tags,
this tracing is still possible (Juels (2006)).

In most of the grouping-proof proposals tag identifier is sent in plaintext
(e.g. Piramuthu (2006), Lin et al. (2007), Chien et al. (2010)). As a conse-
quence, privacy is compromised. Those few schemes that face the problem
propose some kind of pseudonym to hide the identity of tags during trans-
mission. Although this is a solution for anonymity it is not, by itself, for
traceability. This is the case of Chien and Liu (2009) that presents serious
traceability problems. First we introduce their protocol and then we explain
four possible traceability attacks.

4.1. Tree-Based Yoking-Proof (Chien and Liu (2009))

Chien and Liu (2009) proposed a tree based yoking proof to reduce the
computational cost of identifying a tag in the back-end server (verifier) from
O(N) to O(1). In their proposal the tags are assigned to the leaves of a
tree and the path from the root to the leaf serves as the identity of a tag.
Those tags belonging to the same group are assigned to the same subtree and
those tags of the same group (within the same sub-tree) are potentially to be
yoked. It is assumed that the verifier is offline and the channel between the
reader and the verifier is secure. Chien’s proof only allows a yoking-proof of
two tags of the same group. However, it may be useful to generate a proof
of tags in different groups. This situation could not be managed by Chien’s
protocol.

The identity of a tag is represented by a path that is split in two parts.
The first (namely path1) serves as the group identity and the second (namely
path2) is used to identify the tag of the group. Figure 2 shows one example
of the tree organization of tags, where the triangles with dash lines denote
groups. Each tag, say Tagi, has its group identity Path1Ti and its distinct
tag identity Path2Ti . It also has three keys which are gkGY , lkT i, rk, where
gkGY is the shared group key of the same group, and lkT i is Tagi’s secret
key and rk is a root key shared by every tags. The verifier (back-end server)
maintains all the paths and the secret keys of every tag, while the reader
only keeps the group level information of each tag; that is rk, Path1Ti and
gkGY .

The reader periodically receives an authenticated random number, rsys,
from the verifier. It is used to verify whether two tags were simultaneously
scanned. Table 1 summarizes the notation used and Figure 3 shows the

10

Acc
ep

te
d m

an
usc

rip
t

protocol, which consists of two phases. In the first phase (Round 1 to 3) the
reader, based on the group key and the responses from the tags, links the
tags from the same group. In the second phase (Round 4 to 8) reader and
tags cooperate to generate the evidence of the simultaneous presence of two
tags within the specified time window. In detail the rounds can be described
as follows:

Round 1: Reader → TagA and TagB: rsys

The reader receives the authenticated rsys from the verifier and forwards
it to TagA and TagB.

Round 2: TagA → Reader: rA, P
′
TA

, hA

TagB → Reader: rB, P
′
TB

, hB

When TagA and TagB receive rsys, TagA computes P
′
TA

= h(rk) ⊕
Path1TA and hA = h(gkGY , rsys, rA), and, P

′
TB

= h(rk) ⊕ Path1TB and
hB = h(gkGY , rsys, rB), where rA and rB are two random numbers
chosen by TagA and TagB respectively. From the received P

′
TA

and

P
′
TB

the reader is able to derive Path1TA and Path1TB because she can
compute h(rk). Thus, she verifies whether both tags belong to the
same group. If so, the reader uses the corresponding group key gkGY
to verify hA and hB. If the verification succeeds, the reader is convinced
that the tags belong to the same group, and proceeds to Round 3 to
link the two tags; otherwise, it stops the protocol.

Round 3: Reader → TagA and TagB: hA, hB, h(gkGY , hA, hB).

The reader sends to the tags hA, hB, h(gkGY , hA, hB) from which they
can verify whether they belong to the same group, and, if so, they
proceed to Round 4 to 8 to co-operatively generate the evidence of
simultaneous presence.

Round 4: TagA → Reader: P
′′
TA

, a1

TagA computes P
′′
TA

= h(gkGY , rsys) ⊕ Path2TA to securely convey its
identity Path2TA and calculates a1 = h(lkTA , hA, hB, rsys).

Round 5: Reader → TagB: a1

The reader forwards a1 to TagB.

11

Acc
ep

te
d m

an
usc

rip
t

Round 6: TagB → Reader: P
′′
TB

, b

TagB computes P
′′
TB

= h(gkGY , rsys) ⊕ Path2TB to securely convey its
identity Path2TB . It computes b = h(lkTB , hA, hB, a1, rsys) as well.

Round 7: Reader → TagA: b

The reader forwards b to TagA.

Round 8: TagA → Reader: a2

TagA computes a2 = h(lkTA, hA, hB, b, rsys) and sends it to the reader.
The final proof PAB consists of {rsys, P ′′

TA
, P

′′
TB

, hA, hB, a1, a2, b}, from
which the verifier later can certify the simultaneous presence of the two
tags TagA and TagB.

4.1.1. Traceability Attacks to Tree-Based Yoking-Proof

Chien and Liu (2009) claim that their protocol is unsusceptible to trace-
ability attack. They argue that the encrypted identity P

′′
TA

= h(gkGY , rsys)⊕
Path2TA is random and independent for different sessions what avoids trace-
ability. Following we show that four traceability attacks are possible. Three
are passive and one is active.

First, an eavesdropper is able to know if two tags (TA and TB) that are
being scanned simultaneously belong to the same group or not. In order
to do this it is only necessary to eavesdrop P

′
TA

and P
′
TB

in Round 1. If

P
′
TA
⊕ P

′
TB

= 0 then TA and TB belong to the same group, else they do

not. This is due to the involution property of XOR operator: P
′
TA
⊕ P

′
TB

=

h(rk) ⊕ Path1TA ⊕ h(rk) ⊕ Path1TB = Path1TA ⊕ Path1TB . If P
′
TA
⊕ P

′
TB

= 0
then Path1TA = Path1TB .

Second, if an eavesdropper captures the message P
′
Ti

of two different ses-
sions, she is able to know if both were sent from tags of the same group. In
such a case the XOR of the messages would be zero (P

′old
Ti
⊕ P

′current
Ti

= 0)
Third, it is also possible to track tags on a pair basis. In other words,

it is possible to know if a current attempt to generate a grouping-proof of
two tags in a group (e.g. PAB) corresponds to past attempts. An eavesdrop-
per is able to fingerprint pair associations in a group and recognize them
afterwards when a value is repeated. Formally, from Round 4 and Round
6, an eavesdropper is able to sniff P

′′
TA

and P
′′
TB

. An XOR of both values

results in P
′′
TA
⊕ P

′′
TB

= h(gkGY , rsys) ⊕ Path2TA ⊕ h(gkGY , rsys) ⊕ Path2TB =

12

Acc
ep

te
d m

an
usc

rip
t

Path2TA ⊕ Path2TB . This value can be stored and if the same value is com-
puted in the future (from new eavesdropped messages) then the attacker
knows that a grouping-proof of the same pair was generated in the past. It is
important to note that it is not necessary to eavesdrop every possible com-
bination of two tags in a group to compute every possible fingerprint. This
is due once again to XOR involution property. For instance if the pairs P

′′
TA

,

P
′′
TB

and P
′′
TA

and P
′′
TC

are intercepted then it is straightforward to compute

P
′′
TB
⊕ P

′′
TC

. In general, for a group of N tags, instead of being necessary to

eavesdrop combinations of N elements taken two at a time (CN,2 =
(
N
2

)
) it

is enough to eavesdrop N different combinations. Although Path2Ti are not
revealed, traceability is compromised.

It is also feasible an active attack to achieve traceability at tag level. Let
us consider that a grouping-proof is generated for TA and TB and an attacker
has eavesdropped the message rsys and P

′′
Ti

. Under these circumstances, the
attacker (via a rogue reader) can replay rsys. Then the attacker can eaves-
drop a new P

′′
Ti

and if its value matches with one previously captured, the
corresponding tag is tracked. This situation happens because the messages
exchanged in Round 4 to 7 do not include random numbers generated by the
tags. Therefore, no freshness is provided.

Countermeasures: The traceability attacks are based on two main
weaknesses of the protocol. First, the author assume that tags support on-
chip a hash function and a PRNG function. Nevertheless, the protocol abuses
of the XOR operator, which facilitates its cryptanalysis. Bitwise operations
(e.g. XOR and AND operators) should be combined with non-triangular op-
erations (e.g bit rotation) to hinder the task to cryptoanalysts (see Guideline
1 in Section 7 for details). Secondly, as suggested by Guideline 3 in Section 7,
tags should include fresh random numbers as one of inputs to the functions
invoked. Furthermore, the composition of the input parameters – external
and internal values – of these functions should prevent that an adversary
may set arbitrarily its input value.

5. Forged Proofs

A grouping-proof generates an evidence that two or more tags are scanned
simultaneously. An attacker should not be able to impersonate one or more
tags to generate a grouping-proof. However, some protocols are not carefully
designed and leak private information in the messages transmitted over an

13

Acc
ep

te
d m

an
usc

rip
t

insecure radio channel (see Guideline 1). In this section, we show how two
very recent protocols (Huang and Ku (2009); Chien et al. (2010)) suffer from
the aforementioned vulnerability. Both were designed for online mode.

5.1. Huang and Ku (2009) online protocol for medication safety of inpatient

Huang and Ku (2009) proposed an online grouping-proof compatible
to Gen-2 standard (EPC Class-1 Generation-2 (2008); ISO/IEC 18006-C
(2005)), which is one of the most relevant standards for low-cost RFID
tags. Unlike previous proposals that use a Message Authentication Code
(MAC) and hash functions, operations supported on tags are limited to 16-
bit Pseudo-Random Number Generation (PRNG), bitwise operations (e.g.
exclusive OR operation), and Cyclic Redundancy Check (CRC) function.
Additionally, tags have two passwords of 32-bit each: 1) Access password
controls the access to the reserved memory; 2) Kill password deactivates the
tag upon its reception, being an irreversible operation.

The authors proposed an scheme to generate an evidence that {Tag1, Tag2,
. . . , Tagn, Pallet Tag} are scanned simultaneously (see Figure 4). Reader is
referred to the original paper for a detailed explanation of the analyzed pro-
tocol. We now focus on the messages received/transmited by one of the
participating tags (e.g. Tagi):

1.0 The reader sends to Tagi the authentication message mi−1 computed
by Tagi−1.

2.0 Tagi first inserts mi−1 and PINi into its PRNG to generate ri =
PRNG(mi−1) and ci = PRNG(PINi), respectively. Second, the tag
concatenates the Electronic Product Code (EPCi) and ci and computes
its CRC. Third, the bitwise XOR operation between the above result,
ci and ri is calculated (mi = CRC(EPC||ci) ⊕ ci ⊕ ri). Finally, the
tuple {EPCi, mi} is sent to the reader and the tag updates its secret
password (PINi = ci).

5.1.1. Forgery attack on Huang and Ku (2009) protocol

An attacker can obtain information of the messages passed over the chan-
nel due to CRC is not a secure hash function as assumed by the authors. CRC
functions are based on polynomial arithmetic in F2. Computing a CRC value
for a given binary stream is essentially performed by dividing the polynomial

14

Acc
ep

te
d m

an
usc

rip
t

associated with this stream by another fixed polynomial (generator poly-
nomial) and obtaining a remainder. Due to the linearity, CRCs have the
following properties (Peris-Lopez et al. (2009b); Han and Kwon (2009)):

CRC(A⊕B) = CRC(A)⊕ CRC(B) (1)

CRC(A||B) = CRC(A << n)⊕ CRC(B) (2)

where n is the bit-length of B.
An attacker can exploit the above properties to obtain private information

linked to the target tag and impersonate this tag in a future grouping-proof.
The attacker follows the phases described below.

Phase 1. Acquiring private information:

1.0 The adversary sends to Tagi a known a value.

1.1 Tagi first inserts a and PINi into its PRNG to generate ri =
PRNG(a) and ci = PRNG(PINi), respectively. Second, the
tag concatenates EPCi and ci and computes its CRC. Third,
the bitwise XOR operation between the above result, ci and ri
is calculated (mi = CRC(EPC||ci) ⊕ ci ⊕ ri). Finally, the pair
{EPCi, mi} is sent to the adversary and the tag updates its pass-
word (PINi = ci).

1.2 The adversary is able to know ri value as only a known seed a
takes part in its generation. The static identifier of the tag EPCi

is transmitted in clear over channel and revealed to the adversary.
Taking advantage of this knowledge and the properties of CRC
functions, the adversary can disclose certain private information
linked to the tag:

mi = CRC(EPCi||ci)⊕ ci ⊕ ri = (3)

= CRC(EPCi << n)⊕ CRC(ci)⊕ ci ⊕ ri

Simplifying, the adversary obtains CRC(ci)⊕ ci, which is a value
linked to the target tag univocally. According to Gen-2 standard ci
bit-length is 16. Therefore, n = 16 in Equation 3. Reader should
note that only public messages are used for this computation.

Si = CRC(ci)⊕ ci = mi ⊕ CRC(EPCi << 16)⊕ ri (4)

15

Acc
ep

te
d m

an
usc

rip
t

Phase 2. Generation of a forged proof:

2.0 The legitimate reader sends to the adversary –impersonating Tagi–
the authentication message m

′
i−1 computed by Tagi−1.

2.1 The adversary inserts m
′
i−1 into its PRNG and generates r

′
i =

PRNG(m
′
i−1). Then, the message authentication m

′
i is computed

by means of Equation 4 and the EPCi identification number, m
′
i =

Si ⊕ r
′
i ⊕ CRC(EPCi << 16).

Thus, the adversary can mislead the reader/verifier that Tagi is in-
volved in the proof when this tag is absent. It is important to note
that Si is closely related to PINi. The strength of this attack resides
on when the attack is launched. In the protocol, the target tag updates
its PIN just after the interrogation by the adversary. However, the up-
dating is not performed by the verifier as this entity is not aware of
the reading of the tag. That is, the reader and the tag have loss their
synchronization after the reading of the tag by the adversary. This
fact is very advantageous for an adversary. The adversary has thus
at one’s disposal an indefinite time window to impersonate the tags.
After tag impersonation, the corresponding legitimate tag and the ver-
ifier are resynchronized, and the whole attack -phases 1 and 2- would
have to be repeated in order to supplant the legitimate tag again. So
the updating of the secret information (PIN) seems appropriate as it
reduces the consequence of leaking private information on the channel.
However, the updating is performed even if there is no confirmation
that interrogation comes from a legitimate reader. An adversary can
exploit this weakness to conduct a very easy denial-of-service attack. If
a fake request is sent to a tag, the tag and the verifier would be out of
synchronization as a consequence of this simple attack. Additionally,
Chien et al. (2010) show that Huang and Ku (2009) scheme is also
vulnerable to replay attacks.

Countermeasures: CRC functions should be confined to detect errors
transmission and secure cryptographic primitives should be used instead.
On the other hand, when internal secret values are updated in the protocol,
the scheme should support authentication and/or data integrity checking
mechanisms (i.e. Chien (2007) protocol). Furthermore, extra protection
mechanisms (e.g. store the old and potential value of the updated variables)
to combat desynchronization attacks are convenient.

16

Acc
ep

te
d m

an
usc

rip
t

5.2. Chien et al. (2010) online protocol to enhance inpatient medication
safety

In an attempt to correct the security weakness of a previous scheme by
Huang and Ku (2009), Chien et al. (2010) proposed two grouping-proofs
protocols. First for online mode and the second for offline mode. The analysis
of the online scheme is subject of this section.

The authors proposed an authentication protocol conforming to the stan-
dard EPC Class-1 Generation-2 (2008). The operation on the tags are limited
to 16-bit PRNG and bitwise XOR operation. Additionally, the verifier and
each tag share a secret PINi and tags also store an static identifier (EPCi)
into its memory. As the verifier (reader) is online, any RFID authentication
protocol may be used. Specifically, the following scheme was proposed (see
Figure 5):

0.0 The reader starts the timer.

1.0 The reader generates a random number NR as challenge to all the tags
in its range.

The following procedure is repeated for all the tags:

2.0 The tag generates a random number Ni, and computes a pseudo-
random message authentication code:

MACi = PRNG(EPCi ⊕ PRNG(PINi) (5)

⊕ PRNG(NR)⊕ PRNG(Ni))

The tag sends to the reader the tuple {EPCi, Ni, MACi}.
2.1 The reader stops the timer and checks the correctness of MACi for

each tag. If it passes, the tags {Tag1, Tag2, . . . , Tagn, TagPallet} are
associated. Otherwise the protocol is aborted. Finally, the reader
verifies that all the tags’ answers are within a predefined time window.

5.2.1. Forgery attack on Chien et al. (2010) protocol

We now show how the above protocol results vulnerable to a passive
attack. Basically, an adversary after eavesdropping several grouping-proof
sessions can impersonate a target tag indefinitely. We focus our analysis on
an specific Tagi but it is straightforward to perform the attack in parallel for

17

Acc
ep

te
d m

an
usc

rip
t

a set of tags. Suppose that the adversary is listening the messages exchanged
between this tag and a legitimate reader. If the adversary detects that the
random number generated by these two entities are equal (i.e. NR = Ni),
then she eavesdrops the corresponding MACi and stores it for future use. In
such a case MACi value is independent of any random number.

Si = PRNG(EPCi ⊕ PRNG(PINi)⊕ PRNG(NR)⊕ PRNG(Ni)) (6)

= PRNG(EPCi ⊕ PRNG(PINi)⊕ PRNG(NR)⊕ PRNG(NR))

= PRNG(EPCi ⊕ PRNG(PINi))

As a consequence, the adversary can impersonate the target tag as described
below:

1.0 The reader generates a random number N
′
R as challenge to the adver-

sary.

2.0 The adversary sends to the reader the tuple {EPCi, N
′
R, Si}.

The adversary -impersonating Tagi- is thus authenticated by the reader
and the attack succeeds. The adversary exploits the linearity of bitwise
operations to perform this attack. It is important to note that this attack
can be launched at any time.

The remaining question is how many grouping-proof sessions have to be
eavesdropped by the adversary to detect a session where NR = Ni. Reader
should note that random challenges are 16-bit length as required by Gen-2
standard. Therefore, and due to the birthday paradox (Blomm (1973)), the
adversary has to eavesdrop approximately

√
π
2
216 � 286 sessions to find a

collision. In summary, the adversary needs to eavesdrop a small number of
sessions to impersonate the target tag and generate a forged grouping-proof.

6. Subset Replay Attacks

In this section we describe a new type of replay attack on grouping-proofs
–compared to those put forward against (Juels (2004); Saito and Sakurai
(2005))– that allows the generation of fake proofs. Specifically, a rogue reader
is able to generate a proof that links a subset of simultaneously read legit-
imate tags to any other legitimate tag. Chien et al. (2010) and Saito et al.

18

Acc
ep

te
d m

an
usc

rip
t

(2004) are protocols that fall into this flaw. Guideline 2 discusses this prob-
lem. Following we explain the attack focusing on Chien et al. (2010). First
we begin with the protocol description, then we explain the attack.

6.1. Chien et al. (2010) offline protocol to enhance inpatient medication
safety

This protocol is focused on proving that specific group of drugs are indeed
given to specific inpatients. Accordingly, the offline verifier knows in advance
what drugs correspond to each inpatient (i.e. the prescription). Thus, each
drug is associated with a tag and a special tag refers to inpatient (Pallets).
In their notation, EPCi is the tag identifier of Tagi and EPCPallet is the tag
identifier of the Pallet. The steps of the protocol, represented in Figure 6,
are:

1. V erifier → Reader: t = EKV
(timestamp)

First, the reader gets an encrypted timestamp t = EKV
(timestamp)

from the verifier, where EKV
(timestamp) denotes an encryption of the

current timestamp using verifier’s secret key KV .

2. Reader → Tag1, Pallet: t

The reader sends the encrypted timestamp to Tag1 and Pallet.

3. For i = 1, . . . , n− 1

3.1 Tagi → Reader: EPCi, mi

If i = 1, then let m0 = t;

Tagi computes mi = PRNG(EPCi ⊕ PRNG(mi−1)⊕
PRNG(PINi)) and sends it to the reader with EPCi.

3.2 Reader → Tagi+1: mi

The reader forwards mi to the next tag Tagi+1.

4. Tagn and Pallet

4.1 Tagn → Reader: EPCn, mn

Tagn computes mn = PRNG(EPCn ⊕ PRNG(mn−1)⊕
PRNG(PINn)) and sends it to the reader with EPCn.

4.2 Reader → Pallet: mn

The reader forwards mn to Pallet.

19

Acc
ep

te
d m

an
usc

rip
t

4.3 Pallet→ Reader: EPCPallet, mPallet

Upon receiving mn, Pallet computes mPallet = PRNG(EPCPallet⊕
PRNG(mn)⊕PRNG(PINPallet)) and sends both EPCPallet and
mPallet to the reader.

5. Reader → V erifier: (t, EPC1, m1, . . . , EPCn, mn, EPCPallet, mPallet)

Reader collects the evidence (t, EPC1, m1, . . . , EPCn, mn, EPCPallet,
mPallet) and forwards it to the verifier.

6. The verifier checks:

6.1 whether the association (EPC1, . . . , EPCn, EPCPallet) holds for
the prescription.

6.2 whether the evidence (m1, ..,mn, mPallet) holds.

6.3 that the decrypted timestamp DKV
(t) is within a reasonable time

span. If so, the grouping-proof succeeds.

6.1.1. Subset Replay Attacks on Chien et al. (2010) offline protocol

Chien et al. (2010) protocol assumes that the verifier knows in advance
what the prescription for each inpatient is. Let us suppose that the prescrip-
tion of inpatient A is a subset of the prescription of inpatient B. In these
conditions, it is possible to generate a proof that inpatient A has received
her prescription just eavesdropping the messages exchanged when generat-
ing the proof for inpatient B. For instance, let Inpatient A (PalletA) pre-
scription be ibuprofen (Tag1) and paracetamol (Tag2) and let inpatient B
(PalletB) prescription be ibuprofen (Tag1), paracetamol (Tag2) and mor-
phine (Tag3). Once the messages corresponding to the grouping-proof for
inpatient B (t, EPC1, m1, EPC2, m2, EPCPalletB , EPC3, m3, mPalletB) have
been eavesdropped, a rogue reader can replay m2 to PalletA and generate the
corresponding fake proof with the response (t, EPC1, m1, EPC2, m2, EPCPalletA ,
mPalletA).

In addition, it is important to note that Chien et al. (2010) grouping-
proofs could not be applied to other scenarios such as a supply chain. In such
scenario the number and type of tags are not known in advance. Therefore,
it is straightforward according to the previous analysis how a rogue reader
can generate a grouping-proof stating that just a subset of legitimate tags
were on any pallet (when for instance the complete set was on a specific

20

Acc
ep

te
d m

an
usc

rip
t

one). To this end, it is necessary that an adversary eavesdrops the channel
to capture t, EPCi and the corresponding mi (i from 1 to x with x ≤
n). Then, the adversary via a rogue reader forwards mx to any pallet and
uses the response (manyPallet) to generate a fake proof. In such a case, the
proof (t, EPC1, m1, . . . , EPCx, mx, EPCanyPallet, manyPallet) would state that
x legitimate tags were simultaneously read with anyPallet.

The implications of the aforementioned attack are determined by the
usefulness of using the subsets of a sequence of tags. That is, the adversary
can not select a sequence of tags but she can associated a subset – in the
same positions – of this sequence with a different inpatient (anyPallet). On
the other hand, the verifier does not set in advance a correspondence between
an encrypted timestamp t and an specific sequence of tags. So the adversary
can eavesdrop the messages associated with a sequence of tags – including
the t value – and then she can use these values to generate an evidence for a
subset of these tags.

In this context, Saito et al. (2004) protocol is also vulnerable to this kind
of attack but in a more severe way. It is possible to generate a grouping proof
stating that any subset of legitimate tags (not necessarily ordered now) were
simultaneously read with any Pallet. We could think that Lien et al. (2008)
suffers from a similar problem but the Chaining-Proof they propose is not a
real offline protocol but online. Thus, they assume the reader is connected
to a trusted security database (TSD) that can be consulted in each phase of
the protocol.

Countermeasure: The computation of a Tagi should be dependant on
the values computed by its predecessors {Tag1, ...Tagi−2, Tagi−1} instead of
being exclusively dependant on a value generated by Tagi−1. The reader is
urged to consult Guideline 2 in Section 7 for details.

Finally, Table 2 summarizes up to date attacks on state-of-the-art grouping-
proofs. First four columns represent the attacks described in this paper.

7. Guidelines for Securing RFID Yoking/Grouping-proofs

In previous sections, we show several attacks to recent schemes that fail
in their attempt to design a secure yoking/grouping-proof. Indeed, every
protocol published to date result vulnerable to attacks of major or minor
relevance. We now provide a list of practical tips that should be followed by
protocol designer to preclude past errors:

21

Acc
ep

te
d m

an
usc

rip
t

1. Computing Capabilities RFID tags are devices which a computing
power severely restricted. The designer of a grouping-proof should be
aware of this condition. Tags should use just pseudo-random authen-
tication messages for tags conforming to EPC Class-1 Generation-2 or
Message Authentication Codes (MACs) for more powerful tags.

Low-cost RFID tags conforming to Gen-2 use cover-coding to obscure
passwords and information written to or read from a tag. This tech-
nique is only useful when adversaries are expected to be at greater
distance from the tags than readers. The 16-bit PRNG supported on-
board by Gen-2 tags may be used to build a kind of pseudo-random
authentication message in that cases in which the eavesdropper can
capture messages transmitted on the backward and forward channels.
In this context, bitwise operations generally appear to make up certain
messages because these operators can be easily implemented in hard-
ware. However, some protocols abuse of the usage of these functions
which facilitates their cryptanalysis. An attacker may exploit their
vulnerability against active attacks (Alomair and Poovendran (2008))
and even linear cryptanalysis techniques, as a consequence of being
triangular-functions (Klimov and Shamir (2005)). Note that a com-
bination of triangular functions results in another triangular function
being still possible a simple analysis. A triangular-function has the
property that output bits only depend on the leftmost input bits, in-
stead of every input bit. This undesirable characteristic (lack of diffu-
sion) greatly facilitates the analysis of the messages. We recommend
the combination of triangular (e.g bitwise exclusive-OR operation) and
non-triangular-functions (e.g circular shift or bit rotation) for the com-
position of the messages or the input parameters of the pseudo-random
functions.

Apart from tags conforming Gen-2, it is commonly assumed that tags
are able to compute a MAC, like a HMAC function. The verifier and
the tag share a common secret key that can be used in combination
with a hash algorithm to provide one-way or mutual authentication
between these two entities. The integrity of data in messages is also
ensured. Furthermore, tags should include fresh random numbers as
one of the inputs of MAC function to prune the probability of launching
a replay attack successfully.

22

Acc
ep

te
d m

an
usc

rip
t

2. Dependence Every input to a given tag (except the first one) should
be derived from computations that can only be carried out by fellow
tags participating in the proof. This guarantees the causality of the
tokens generated during the proof. Furthermore, the proof should be
ended in a time window defined by the verifier. When just two tags are
involved in the proof, the causality and the completion of the proof in
a limited time window certify that they have been scanned simultane-
ously. On the contrary, if the proof is made up of three or more tags,
causality only guarantees the sequential scanning of the tags but simul-
taneity can not be verified. To prove simultaneity, the input of a Tagi
should be a combination of the values computed by its predecessors
{Tag1, ...Tagi−2, Tagi−1} instead of being exclusively dependant on a
value generated by Tagi−1. The requirement of completing the proof in
a time window defined by the verifier is also demanded in these cases.

3. Identification Privacy protection is one of the fundamental concerns
linked with the deployment of RFID systems. Nevertheless, in the
vast majority of existing proposals, tags transmit their static identifier
uncovered over the insecure radio channel. Thus, a simple eavesdropper
can capture these values, compromising the privacy of tags’ holder. An
encrypted version of the identifier may be used to protect privacy, but
traceability is still at risk because the answer provided by each tag
is a constant value. Therefore, static identifiers should be disguised
(anonymized) and different (non-traceable) at each protocol execution.
The inclusion of random numbers looks convenient to build privacy-
protected identifiers but by itself does not guarantee that the proposed
protocol is immune to privacy attacks (Peris-Lopez et al. (2009a)).

4. Matching Burmester et al. (2008) introduced the interesting idea of us-
ing an identifier (IDgroup) and a key (Kgroup) to prove membership to a
group. At the start of the proof, tags can check each other’s computa-
tion and make sure that only tags in the group participate in the proof.
If verification success the proof continues; otherwise it is aborted. If
tags do not verify their belonging to the group, unrelated tags can be
participants of a proof, and the failure would only be detected when the
proof is sent to the verifier. We recommend the use of groups to avoid
wasting resources by filtering out useless proofs. Certain applications
may require greater accuracy in the identification process and groups

23

Acc
ep

te
d m

an
usc

rip
t

could be divided into subgroups.

5. Verification Saito and Sakurai (2005) proposed the inclusion of times-
tamps to thwart replay attacks. Nevertheless, replay attacks are not
prevented as future proofs can be generated in advance due to times-
tamps -transmitted in clear- are predictable values (Piramuthu (2006)).
We suggest the usage of an encrypted version of the timestamps. The
verifier computes this protected timestamps, using its long-term secret
key (i.e t = EKV

(Timestampi)). Finally, she stores these values and
also annotates a time window (Δi) in which each of these values is
valid. Hundreds of these values may be computed in advance by the
verifier and sent out to the reader at regular times.

6. Performance Inspired by Chien and Liu (2009), Table 3 shows a perfor-
mance comparison of every grouping-proofs proposed up to date. The
performance is evaluated according four main criteria. First, the uti-
lization of the radio channel is quantified by counting the number of
messages and packets transmitted on the channel. Secondly, we esti-
mate the cost of the whole computations performed by one – the worst
case – of the tags participating in the proof. More precisely, we sum
the number of invocations to a hash function, a PRNG function and
bitwise operators by each tag involved in the proof. The maximum of
the values obtained is finally annotated in the Table. Thirdly, as tags
are the most restricted devices, we count the number of variables stored
in their memory. Finally, we show the computation cost of identifying
a tag in the back-end database.

The number of computations as well as the messages transmitted on
the channel by tags should be minimized, without compromising the
security of the scheme proposed. According to memory requirements,
protocol designers should limit the use of non-volatile tags’ memory in
which identifiers and secret keys are stored. Furthermore, the length of
variables used in a proposed scheme should be carefully checked when
these are combined. Sometimes this simple point is overlooked as in a
recent proposal that claims the Gen-2 specification conformance (Chien
et al. (2010)).

7. Forward security An attacker may disclose secret keys stored on tag’s
memory as these devices are susceptible to physical manipulation. In

24

Acc
ep

te
d m

an
usc

rip
t

certain scenarios, privacy of past communications has to be guaran-
teed even if a tag is compromised some time later. This property is
commonly named as forward security. Indeed, there are some RFID
authentication protocols that claim to satisfy this property (e.g. Conti
et al. (2007); Le et al. (2007)). Nevertheless, the design of RFID of-
fline grouping protocol with forward security is an open problem. The
protocol designer have to sort out two important restrictions: 1) The
verifier is offline –in the interesting case–, in contrast to the online
verifier in authentication protocol; 2) Tags and verifier have to keep
on their synchronization state. In a RFID authentication protocol, a
tag and a reader (verifier) are the only entities involved. However, in
a grouping-proof several tags and a (untrusted) reader participate in
proof generation and the verifier takes part some time later. In addi-
tion, only a subgroup of tags in the group may be involved in a proof,
which makes difficult the updating of the key in the group.

8. Kazahaya: An RFID Yoking Proof for Low-Cost RFID Tags

In this Section, we present an RFID yoking proof for tags conforming to
the Gen-2 standard and the Guidelines defined in the previous section. Tags
operations are limited to the invocation of a PRNG function and the bitwise
XOR operator as dictated by Guideline 1. The number of invocations, as
recommended by Guideline 6, is minimized but the security of our proposed
protocol is not put at risk.

Tags are divided into groups, which are identified by a group identifier
IDgroup. By using this technique, we prevent the participation of unrelated
tags in the proof (Guideline 4). Tags have an unique identifier IDTi and store
two private keys. A group key Kgroup proves its membership to a specific
group, and a secret key KTi facilitates the authentication of tags. For each
tag, the back-end database stores the tuple {IDTi , IDgroup, KTi , Kgroup}.

Following Guideline 3, the static identifiers {IDTi , IDgroup} of a tag are
never sent in clear on the channel to guarantee privacy protection. Further-
more, in the generation of messages transmitted on the radio channel by each
participating tag, two random numbers {rTi , r′Ti} are used in each session to
prevent the traceability of tags’ answer. The compositions of messages has
been analyzed in depth to avoid straightforward attacks such as those that
exploit the involution property of the XOR operator.

25

Acc
ep

te
d m

an
usc

rip
t

In the initialization phase, the verifier computes encrypted timestamps
tn = EKV

(Timestampn)), where KV represents the secret key of the veri-
fier. Each of these values are not valid indefinitely but during a limited time
window Δn (Guideline 5). Finally, the verifier stores the tuples {tn, Deltan}
computed. The protocol starts once the reader receives an encrypted times-
tamp tn.

For tagA and tagB belonging to the same group, the messages exchanged
are described below. Basically, the computations of each tag – except the first
one– derive from results previously computed by the other tag participating
in the proof. By this condition and assuming that the proof is delivered to
the verifier in the defined time window (Guideline 2), we can assert that the
two tags have been read simultaneously.

Step 1 The reader queries TagA by sending the timestamp {tn}.
Step 2 The TagA generates two random number {rTA , r′TA} and computes:

M1
group = PRNG(IDgroup ⊕ rTA ⊕ PRNG(Kgroup)⊕ PRNG(tn))

MTA = PRNG(IDTA ⊕ r′TA ⊕ PRNG(KTA)⊕ PRNG(tn + 1))

The tag sends {rTA , r′TA , M1
group, MTA} to the reader.

Step 3 The reader stores r′TA and submits {tn, rTA , M1
group, MTA} to the tagB.

Step 4 The tagB checks if the other participant in the proof belongs to the
same group. More precisely, she computes a local version of M1

group

using its internal values:

M1∗
group = PRNG(IDgroup ⊕ rTA ⊕ PRNG(Kgroup)⊕ PRNG(ti))

If M1∗
group

?
= M1

group, the TagB generates two random number {rTB , r′TB}
and computes:

M2
group = PRNG(IDgroup ⊕ rTB ⊕ PRNG(Kgroup)⊕ PRNG(M1

group))

MTB = PRNG(IDTB ⊕ r′TB ⊕ PRNG(KTB)⊕ PRNG(MTA))

The tag sends {rTB , r′TB , M2
group, MTB} to the reader.

Step 5 The reader stores r′TB and submits {rTB , M2
group, MTB} to the tagA.

26

Acc
ep

te
d m

an
usc

rip
t

Step 6 The tagA checks if the other participant belongs to the same group.
More precisely, she computes a local version of M2

group using its internal
values:

M2∗
group = PRNG(IDgroup ⊕ rTB ⊕ PRNG(Kgroup)⊕ PRNG(M1

group))

If M2∗
group

?
= M2

group, the TagA computes the final message and sends
the result to the reader:

MTAB
= PRNG(IDTA ⊕MTA ⊕ PRNG(MTB)⊕ PRNG(KTA + 1))

Step 7 The reader generates the evidence, eTAB
n = {IDTA , IDTB , tn, r

′
TA

, r′TB , MTAB
}

and submits it to the verifier.

9. Conclusions

Since the introduction of the concept of yoking-proofs by Juels (2004),
more than a dozen of new schemes have been proposed. In general, the
methodology followed by authors has been, first, the identification of se-
curity vulnerabilities in a specific protocol and, then, the proposal of an
enhancement scheme that claims to be immune to the flaws of its predeces-
sor. Nevertheless, we analyze the security of grouping-proofs from a global
perspective. Only after a complete revision and analysis of the literature we
identify the guidelines that should be followed by protocol designers. Tables
2 and 3 give the reader a quick and all-embracing overview of the state-of-
the-art regarding to performance and security properties. From a security
perspective, Peris-Lopez et al. (2007) and Chien and Liu (2009) are the most
secure schemes but certain flaws are still present. Efficiency is superior on
the first scheme but the complexity in the back-end database is lower in the
second one. Other interesting schemes are (Burmester et al. (2008); Lien
et al. (2008)) which introduces the great idea of using groups to avoid the
generation of useless proofs. In summary, the design of secure and efficient
RFID grouping-proofs is not closed yet. The Kazahaya protocol represents a
step further to achieve this objective. Nevertheless, nowadays the challenge
of including forward-security on RFID grouping-proofs is an open problem
in RFID offline grouping-proofs.

27

Acc
ep

te
d m

an
usc

rip
t

References

18006-C, I., 2005. Information technology – Radio frequency identification for
item management – Part 6: Parameters for air interface communications
at 860 MHz to 960 MHz. http://www.iso.org.

Alomair, B., Poovendran, R., 2008. On the authentication of RFID systems
with bitwise operations. In: Proc. of the second IFIP conference on New
Technologies, Mobility and Security - NTMS’08. pp. 1–6.

Blomm, D., 1973. A Birthday Problem. American Mathematical Monthly 80,
1141–1142.

Bolotnyy, L., Robins, G., July 2006. Generalized ”yoking-proofs” for a group
of RFID tags. In: International Conference on Mobile and Ubiquitous
Systems: Networking & Services, MobiQuitous. IEEE Computer Society,
San Jose, California, USA, pp. 1–4.

Burmester, M., de Medeiros, B., Motta, R., September 2008. Provably Secure
Grouping-Proofs for RFID Tags. In: Proceeding of the 8th Smart Card
Research and Advanced Applications – CARDIS 2008. Lecture Notes in
Computer Science. Springer, Royal Holloway University of London, UK.

Chien, H.-Y., Liu, S.-B., April 2009. Tree-based RFID yoking proof. In: In-
ternational Conference on Networks Security, Wireless Communications
and Trusted Computing – NSWCTC 09. IEEE Computer Society, Wuhan,
China, pp. 550–553.

Chien, H.-Y., Yang, C.-C., Wu, T.-C., Lee, C.-F., 2010. Two RFID-based
solutions to enhance inpatient medication safety. Journal of Medical Sys-
tems.

Chien, H.-Y., December 2007. SASI: A New Ultralightweight RFID Authen-
tication Protocol Providing Strong Authentication and Strong Integrity.
IEEE Transactions on Dependable and Secure Computing 4 (4), 337–340.

Cho, J.-S., Yeo, S.-S., Hwang, S., Rhee, S.-Y., Kim, S. K., March 2008. En-
hanced yoking proof protocols for RFID tags and tag groups. In: Interna-
tional Conference on Advanced Information Networking and Applications
- Workshops – AINAW 2008. IEEE Computer Society, Okinawa, Japan,
pp. 1591–1596.

28

Acc
ep

te
d m

an
usc

rip
t

Conti, M., Di Pietro, R., Mancini, L. V., Spognardi, A., November 2007. Fas-
tRIPP: RFID Privacy Preserving protocol with Forward Secrecy and Fast
Resynchronization. In: 33th Annual Conference of the IEEE Industrial
Electronics Society (IEEE IECON 07). Taipei, Taiwan, pp. 52–57.

Generation-2, E. C.-., 2008. Class-1 Generation 2 UHF
Air Interface Protocol Standard Version 1.2.0: “Gen-2”.
http://www.epcglobalinc.org/standards/.

Han, D., Kwon, D., 2009. Vulnerability of an rfid authentication protocol
conforming to epc class 1 generation 2 standards. Computer Standards &
Interfaces 31 (4), 648 – 652.

Huang, H.-H., Ku, C.-Y., December 2009. A RFID grouping proof protocol
for medication safety of inpatient. Journal of Medical Systems 33 (6), 467–
474.

Juels, A., March 2004. “Yoking-Proofs” for RFID Tags. In: Sandhu, R.,
Thomas, R. (Eds.), International Workshop on Pervasive Computing and
Communication Security – PerSec 2004. IEEE, IEEE Computer Society,
Orlando, Florida, USA, pp. 138–143.

Juels, A., February 2006. RFID Security and Privacy: A Research Survey.
IEEE Journal on Selected Areas in Communications 24 (2), 381–394.

Klimov, A., Shamir, A., 2005. New applications of t-functions in block ci-
phers and hash functions. In: Proc. of 12th International Workshop, Fast
Software Encryption. Vol. 3557 of Lecture Notes in Computer Science.
Springer, pp. 18–31.

Leng, X., Lien, Y., Mayes, K., Markantonakis, K., Chiu, J.-H., April 2009.
Select-response grouping proof for RFID tags. Vol. 0. IEEE Computer
Society, Dong Hoi City, Vietnam, pp. 73–77.

Le, T. v., Burmester, M., Medeiros, B. d., 2007. Forward-Secure RFID
Authentication and Key Exchange. Cryptology ePrint Archive, Report
2007/051.

Lien, Y., Leng, X., Mayes, K., Chiu, J.-H., June 2008. Reading order inde-
pendent grouping proof for RFID tags. In: IEEE International Conference

29

Acc
ep

te
d m

an
usc

rip
t

on Intelligence and Security Informatics, ISI 2008. IEEE, Taipei, Taiwan,
pp. 128–136.

Lin, C.-C., Lai, Y.-C., Tygar, J. D., Yang, C.-K., Chiang, C.-L., June 2007.
Coexistence proof using chain of timestamps for multiple RFID tags. In:
Chang, K. C.-C., Wang, W., Chen, L., Ellis, C. A., Hsu, C.-H., Tsoi, A. C.,
Wang, H. (Eds.), International Workshop on DataBase Management and
Application over Networks – DBMAN 2007. Vol. 4537 of Lecture Notes in
Computer Science. Springer-Verlag, Huang Shan, China, pp. 634–643.

Peris-Lopez, P., Hernandez-Castro, J. C., Estevez-Tapiador, J. M., Li, T.,
van der Lubbe, J. C., July 2009a. Weaknesses in Two Recent Lightweight
RFID Authentication Protocols. In: Workshop on RFID Security – RFID-
Sec’09. Leuven, Belgium.

Peris-Lopez, P., Hernandez-Castro, J. C., Estevez-Tapiador, J. M., Rib-
agorda, A., July 2007. Solving the Simultaneous Scanning Problem Anony-
mously: Clumping Proofs for RFID Tags. In: IEEE International Confer-
ence on Pervasive Services, Workshop on Security, Privacy and Trust in
Pervasive and Ubiquitous Computing – SecPerU 2007. IEEE, IEEE Com-
puter Society Press, Istanbul, Turkey, pp. 55–60.

Peris-Lopez, P., Hernandez-Castro, J. C., Estevez-Tapiador, J. M., Rib-
agorda, A., 2009b. Cryptanalysis of a novel authentication protocol con-
forming to epc-c1g2 standard. Computer Standards & Interfaces 31 (2),
372 – 380.

Piramuthu, S., June 2006. On Existence Proofs for Multiple RFID Tags.
In: IEEE International Conference on Pervasive Services, Workshop on
Security, Privacy and Trust in Pervasive and Ubiquitous Computing –
SecPerU 2006. IEEE, IEEE Computer Society Press, Lyon, France.

Saito, J., Ryou, J.-C., Sakurai, K., August 2004. Enhancing Privacy of Uni-
versal Re-encryption Scheme for RFID Tags. In: Jang, L., Guo, M., Gao,
G., Jha, N. (Eds.), Embedded and Ubiquitous Computing – EUC 2004.
Vol. 3207 of Lecture Notes in Computer Science. Springer-Verlag, Aizu-
Wakamatsu City, Japan, pp. 879–890.

Saito, J., Sakurai, K., March 2005. Grouping Proof for RFID Tags. In: Con-
ference on Advanced Information Networking and Applications – AINA.
Vol. 2. IEEE, Taiwan, pp. 621–624.

30

Acc
ep

te
d m

an
usc

rip
t

van Deursen, T., Radomirović, S., July 2008. Attacks on RFID Protocols.
Cryptology ePrint Archive, Report 2008/310.

31

Acc
ep

te
d m

an
usc

rip
t

Tag A
Reader

IDgroup,Kgroup,KA, c

IDgroup,Kgroup,KX

rsys

rsys

IDgroup

sB

{tag A, tag X} is linked

rsys

Set timer

rA||sA = f(Kgroup; rsys, c)

IDgroup

timeout

if sA �= sB then timeout
else xA = f(kA; rsys||rA)

Set timer

rX ||sX = f(kgroup; rsys, c)
if rX �= rA then timeout
else xX = f(kX ; rsys||rX)sX , xX

timeoutPBX = (rsys, IDgroup, c, rA, sA, xB , xX)

Tag B

IDgroup,Kgroup,KB

link tag A to tag B

{tag A, tag B} is linked

Set timer
rB ||sB = f(kgroup; rsys, c)
if rB �= rA then timeout
else xB = f(KB ; rsys||rB)sB , xB

timeout

PAB = (rsys, IDgroup, c, rA, sA, xA, xB)

Tag X

rsys

IDgroup

xA

rA, c

rA, c

c = c+ 1

{tag A, tag B} is linked

rA, c

Figure 1: Multi-proof Replay Attack on Burmester’s Scheme

32

Acc
ep

te
d m

an
usc

rip
t

rk

Path1Ti

gkGY

TagA
lkTi

TagB

Path2Ti

Figure 2: Tree Organization of Group of Tags

33

Acc
ep

te
d m

an
usc

rip
t

Tag A
lkTA, rk, gkGY , Path

1
TA
, Path2TA lkTB , rk, gkGY , Path

1
TB
, Path2TB

Tag B

Round 1

Reader
(rk, gkGY , P

′
Ti
)

request, rsys request, rsys

P
′
TA
= h(rk)⊕ Path1TA

hA = h(gkGY , rsys, rA)
P

′
TB
= h(rk)⊕ Path1TB

hB = h(gkGY , rsys, rB)

Round 2rA, P
′
TA
, hA rB , P

′
TB
, hB

derive Path1TA , Path
1
TB
, gkGY

verify hA, hB

Round 3link hA, hB , h(gkGY , hA, hB) link hA, hB , h(gkGY , hA, hB)

Verify h(gkGY , hA, hB)
set timer

verify h(gkGY , hA, hB)
set timer

Round 4 Round 5

Round 7 Round 6

P
′′
TA
= h(gkGY , rsys)⊕ Path2TA
a1 = h(lkTA , hA, hB , rsys)

P
′′
TA
, a1 a1

P
′′
TB
= h(gkGY , rsys)⊕ Path2TB

b = h(lkTB , hA, hB , a1, rsys)

P
′′
TB
, bb

a2 = h(lkTA, hA, hB , b, rsys)

a2

Round 8

PAB = (rsys, P
′′
TA
, P

′′
TB
, hA, hB , a1, a2, b)

Figure 3: Tree Based Yoking Protocol

34

Acc
ep

te
d m

an
usc

rip
t

Tag n

Reader Pallet Tag

mn−1

TS

EPCn, mn

mn

P, EPCpallet
cpallet = PRNG(PINpallet)

PINn = cn

P = CRC(TS||EPCpallet||mn||cpallet)

mn = CRC(EPCn||cn)⊕ cn ⊕ rn

Tag 1

TS

EPC1, m1

r1 = PRNG(TS)

PIN1 = c1

c1 = PRNG(PIN1)

m1 = CRC(EPC1||c1)⊕ c1 ⊕ r1

Tag 2
m1

EPC2, m2

r2 = PRNG(m1)

PIN2 = c2

c2 = PRNG(PIN2)

m2 = CRC(EPC2||c2)⊕ c2 ⊕ r2

rn = PRNG(mn−1)

cn = PRNG(PINn)

TS

P

Figure 4: Huang and Ku (2009) Online Protocol for Medication Safety of Inpatient

35

Acc
ep

te
d m

an
usc

rip
t

TagPallet

⊕ PRNG(NR)⊕ PRNG(NPallet))
NR

Reader

NR

Set Timer

Verify MACi

Check Timer

Tag1
NR

EPC1, N1,MAC1

Tag2
NR

EPC2, N2,MAC2

NR

EPC3, N3,MAC3

Tag3

MAC1 = PRNG(EPC1 ⊕ PRNG(PIN1)⊕ PRNG(NR)⊕ PRNG(N1))

MAC2 = PRNG(EPC2 ⊕ PRNG(PIN2)⊕ PRNG(NR)⊕ PRNG(N2))

MAC3 = PRNG(EPC3 ⊕ PRNG(PIN3)⊕ PRNG(NR)⊕ PRNG(N3))

EPCPallet, NPallet,

MACpallet

MACPallet = PRNG(EPCPallet ⊕ PRNG(PINPallet)

Figure 5: Chien et al. (2010) Online Protocol to Enhance Inpatient Medication Safety

36

Acc
ep

te
d m

an
usc

rip
t

t t

m1

mn−1

Tag 1

Tag 2

m2 = PRNG(EPC2 ⊕ PRNG(m1)⊕ PRNG(PIN2))

Tag n

mn = PRNG(EPCn ⊕ PRNG(mn−1)⊕ PRNG(PINn))

EPC1,m1

EPC2,m2

EPCn,mn

Offline Verifier

Offline Verifier

Verify mis and association

mPallet, EPCPallet

mn

Reader Pallet

m1 = PRNG(EPC1 ⊕ PRNG(t)⊕ PRNG(PIN1))

t = EKV (timestamp)

Figure 6: Chien et al. (2010) Offline Protocol to Enhance Inpatient Medication Safety

37

Acc
ep

te
d m

an
usc

rip
t

Table 1: Notation of tree-based yoking protocol
Notation Desciption Notation Description
rsys Random number from

the verifier
lkTi The secret key of a leaf

node (Tagi)
gkGY The key of a group rk The root key
Path1Ti The identity of a

group; that is the path
the from the root to
the first node of the
group

Path2Ti The path from the first
node of a group to the
leaf node of the tag
Tagi

h() Hash function ri Random number gen-
erated by Tagi

38

Acc
ep

te
d m

an
usc

rip
t

T
ab
le
2:
Su
m
m
ar
y
of
up
to
da
te
at
ta
ck
s
on
yo
ki
ng
/g
ro
up
in
g-
pr
oo
fs

T
r
a
c
e
a
b
il
it
y

Im
p
e
r
so

n
a
ti

o
n

F
o
r
g
e

S
u
b
se

t
A
n
o
n
y
m
it
y

R
ep
la
y

M
u
lt
i-
p
ro
o
f

U
se
le
ss
p
ro
o
fs

p
r
o
o
f

R
e
p
la

y
(P
er
is
-L
o
p
ez

(D
o
S
)
(B
u
rm
es
te
r

et
a
l.
(2
0
0
7
))

et
a
l.
2
0
0
8
)

J
u
el
s
(2
0
0
4
)

x
x

-
-

x
x

-
x

S
a
it
o
a
n
d
S
a
k
u
ra
i
(2
0
0
5
)

-
x

-
x

-
x

-
x

B
o
lo
tn
y
y
a
n
d
R
o
b
in
s
(2
0
0
6
)

-
-

-
x

-
-

x
x

P
ir
a
m
u
th
u
(2
0
0
6
)

x
-

-
-

x
-

x
x

P
er
is
-L
o
p
ez
et
a
l.
(2
0
0
7
)

-
-

-
-

-
-

-
x

C
h
o
et
a
l.
(2
0
0
8
)

x
-

-
-

x
-

x
x

L
ie
n
et
a
l.
(2
0
0
8
)

x
-

-
-

x
-

-
x

B
u
rm
es
te
r
et
a
l.
(2
0
0
8
)

-
x

-
-

-
-

-
-

C
h
ie
n
a
n
d
L
iu
(2
0
0
9
)

x
-

-
-

-
-

-
-

H
u
a
n
g
a
n
d
K
u
(2
0
0
9
)

x
-

x
-

x
-

-
x

C
h
ie
n
et
a
l.
(2
0
1
0
)

x
-

x
-

x
-

-
x

L
in
et
a
l.
(2
0
0
7
)∗

x
x

-
-

x
-

-
x

C
h
ie
n
et
a
l.
(2
0
1
0
)∗

x
-

-
x

x
-

-
x

∗
O
ffl
in
e
v
er
si
o
n

39

Acc
ep

te
d m

an
usc

rip
t

T
ab
le
3:
P
er
fo
rm
an
ce
C
om
pa
ri
so
n
of
G
ro
up
in
g
P
ro
of
s

�
M
es
sa
g
es

�
P
a
ck
et
s

�
H
a
sh
in
g

�
R
a
n
d
o
m
N
u
m
b
er

�
B
it
w
is
e

S
to
ra
g
e

C
o
st
o
f
C
o
m
p
u
ti
n
g

O
p
er
a
ti
o
n

G
en
er
a
ti
o
n

In
v
o
ca
ti
o
n

o
f
th
e
ta
g

o
f
B
a
ck
-e
n
d
S
er
v
er

J
u
el
s
(2
0
0
4
)

6
9

1
1

—
2

O
(N
)

S
a
it
o
a
n
d
S
a
k
u
ra
i
(2
0
0
5
)

5
5

1
—

—
2

O
(N

2
)

B
o
lo
tn
y
y
a
n
d
R
o
b
in
s
(2
0
0
6
)

†
5

1
0

2
—

—
3

O
(N
)

P
ir
a
m
u
th
u
(2
0
0
6
)

6
1
2

2
1

—
2

O
(N
)

P
er
is
-L
o
p
ez
et
a
l.
(2
0
0
7
)

6
9

2
—

1
∗∗

3
O
(N
)

C
h
o
et
a
l.
(2
0
0
8
)

6
7

2
1

—
2

O
(N
)

L
ie
n
et
a
l.
(2
0
0
8
)

†
8

1
8

2
1

1
2

O
(N
)

B
u
rm
es
te
r
et
a
l.
(2
0
0
8
)‡

1
1

1
4

2
—

—
4

O
(M
)

C
h
ie
n
a
n
d
L
iu
(2
0
0
9
)

1
1

2
3

5
1

2
5

O
(1
)

H
u
a
n
g
a
n
d
K
u
(2
0
0
9
)

†
5

8
—

3
3

1
0
(N

2
)

L
in
et
a
l.
(2
0
0
7
)∗

4
9

1
—

—
2

O
(N

2
)

C
h
ie
n
et
a
l.
(2
0
1
0
)∗

†
5

7
—

3
2

2
0
(1
)§

†
W
e
co
n
si
d
er
th
a
t
th
e
p
ro
o
f
o
n
ly
in
v
o
lv
es
tw
o
ta
g
s

‡
R
o
b
u
st
G
ro
u
p
in
g
P
ro
o
f,
w
h
er
e
M
sy
m
b
o
li
ze
s
th
e
n
u
m
b
er
o
f
ta
g
s
in
th
e
g
ro
u
p

∗
O
ffl
in
e
v
er
si
o
n

∗∗
In
v
o
ca
ti
o
n
o
f
N
u
n
fu
n
ct
io
n

§
P
ri
v
a
cy
is
n
o
t
a
co
n
ce
rn
is
su
e:
id
en
ti
fi
er
s
a
re
p
a
ss
ed
in
cl
ea
r
o
v
er
th
e
ch
a
n
n
el
a
n
d
a
re
in
cl
u
d
ed
in
th
e
p
ro
o
f

40

