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Abstract 
 
 
This paper discusses how to determine the order of a state-space model. To do so, we start by 

revising existing approaches and find in them three basic shortcomings: i) some of them have a 

poor performance in short samples, ii) most of them are not robust and iii) none of them can 

accommodate seasonality. We tackle the first two issues by proposing new and refined criteria. 

The third issue is dealt with by decomposing the system into regular and seasonal sub-systems. 

The performance of all the procedures considered is analyzed through Monte Carlo simulations. 

 
 
 
Keywords: System order, State-space models, subspace methods, information criteria, seasonality 
 
 
 

                                                           
∗  This research was supported by the Spanish Ministry of Education and Science, under grant SEJ2005-
07388. 
 
1 Department of Statistics, Universidad Carlos III de Madrid, Campus de Getafe, 28903 Madrid (SPAIN). 
email: aghierna@est-econ.uc3m.es
2 Department of Quantitative Economy, Universidad Complutense de Madrid 
3 Department of Quantitative Economy, Universidad Complutense de Madrid 
 

 



1 Introduction

The order of a linear system is the number of dynamic components that must be

combined to represent the data dynamics. Determining this value, also known as

McMillan index, is critical in applied data modelling and, accordingly, there is an

extensive literature about this subject which can be broken into two broad cate-

gories: i) preliminary data analysis, or a priori methods, and ii) model comparison

procedures, also known as a posteriori methods.

The first group includes very different proposals. Some of them check whether

the model dimension is too high using the condition number of the information ma-

trix, see Stoica and Söderström (1982). Other authors, Cooper and Wood (1982),

Tsay (1989), Tiao and Tsay (1989), estimate the system order using canonical cor-

relations. In a recent paper, Toscano and Reisen (2000) revise and compare these

methods. Aoki (1990) applies the same technique to state space models. Close

to this approach, Bauer (2001) presents a subspace-based criterion to determine

the system order, while Sorelius (1999) does it by testing the rank of a particular

sample covariance matrix, see also Woodside (1971). Finally, other authors apply

spectral techniques to fit an empirical transfer function, which points out what

system orders are required to describe the data dynamics, see e.g., Wei (1990).

A posteriori methods typically rely on information criteria. Broadly speak-

ing, they compare several alternative models by balancing their data fit, mea-

sured through the log-likelihood, with a penalty that depends on the sample size

and a measure of model complexity. The pioneer criterion in this line is due to

2



Akaike (1976), which seminal work motivated many other proposals such as those

of Schwartz (1978) and Hannan and Quinn (1979).

When applied to economic time series, all these procedures share a basic short-

coming: they were not originally designed to cope with seasonality. On the other

hand, Monte Carlo experiments reveal two additional weaknesses: (a) many pro-

cedures are not robust, meaning that their ability to choose the right system order

depends critically of the dynamics of the data; and (b) some methods display a

poor performance in short samples. According to this diagnostic, the contribu-

tion of this paper is threefold. First, we propose two refinements of the criteria

suggested by Bauer (2001), designed to improve its finite-sample performance.

Second, we present a simple automatic procedure that has a clear advantage in

terms of robustness when compared with other methods. Last, we extend the use

of any criterion to determine the order of the seasonal and regular sub-systems in

multiplicative seasonal processes. The performance of all these proposals is ana-

lyzed through Monte Carlo simulations.

The paper is structured as follows. Section 2 defines the notation and intro-

duces subspace estimation. The main order-determination procedures are reviewed

in Section 3. Section 4 presents the main results of the paper. In Section 5 we dis-

cuss the performance of several methods by means of a simulation study. Finally,

Section 6 provides some conclusions and indicates how to obtain a free MATLAB

toolbox that implements all the algorithms proposed.
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2 Model set and subspace estimation algorithms

Consider a linear fixed-coefficients system that can be described by the state space

(SS) model,

xt+1 = Φxt +Eψt (1a)

zt = Hxt +ψt (1b)

where xt ∈ Rn is a state vector and n denotes the true order of the system.

zt ∈ Rm is an observable output vector, ψt ∈ Rm is a white noise vector such

that ψt iidN(0, Q) and Φ ∈ Rn×n,E ∈ Rn×m and H ∈ Rm×n are the parametric

matrices of the system. The system is assumed to be stable and strictly minimum-

phase, so that all the eigenvalues of Φ and (Φ − EH) lie inside the unit circle.

Many SS models have different errors in the transition and observation equa-

tions, as well as a coefficient matrix affecting the observation error. The inno-

vations model (1a)-(1b) does not conform to this common specification, but is

general in the sense that any fixed-coefficients SS model can be written in this

specific form (see, Casals et al., 1999, Theorem 1). Also, no generality is lost by

assuming that the model has no observable inputs, since any model with inputs

can be decomposed into an input-related and an error-related model (see e.g., Chui

and Chen, 1999).

Subspace methods derive from the representation (1a-1b) in matrix form. By
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recursive substitution in (1a) we obtain,

xt = Φtx0 +
t−1∑
j=0

ΦjEψt−j−1 (2)

and substituting (2) into the observation equation (1b), we get:

zt = HΦtx0 +H
t−1∑
j=0

ΦjEψt−j−1 +ψt (3)

so the endogenous variable, zt, depends on the initial state vector, x0, and the

present and past innovations, ψt. Equation (3) can be written in matrix form as,

Zi = OiX0 + ViΨi (4)

where the subscript i is an integer that denotes the dimension of the row space of

Zi. This parameter may be set by the user or automatically chosen, depending on

the specific subspace algorithm applied. In this work, we determine it using the

rule i = max(4, ht), being ht the nearest integer to log T . This is an heuristic rule

supported by empirical experience, but our methods can be used with any other

criterion to determine i.

Equation (4) requires the following matrices related to the data:

1) Block-Hankel Matrices (BHM): The dimension of the row space of these

matrices are denoted by p and f , which stand, respectively, for the past and the

future. The choice of these integers is discussed by Viberg (1995) and Peternell
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et al. (1996). Here, for convenience and simplicity, we assume that p = f = i.

Under these conditions, the output BHM would be given by:

Zp =



z0 z1 . . . zT −2i

z1 z2 . . . zT −2i+1

...
...

...

zi−1 zi . . . zT −i−1


; Zf =



zi zi+1 . . . zT −i

zi+1 zi+2 . . . zT −i+1

...
...

...

z2i−1 z2i . . . zT −1


(5)

where z0 is a vector of m components. In (4), Ψi is as Zi but with ψt instead of zt.

2) The state sequence, defined as Xt = (xt xt+1 xt+2 . . . xt+T −2i).

The past and future state sequences beginning, respectively, at t = 0 and t = i,

can also be written as Xp = X0 and Xf = Xi.

On the other hand, equation (4) includes also the following matrices related to

the parameters in model (1a-1b):

3) The Extended Observability Matrix, which is:

Oi =

(
H ′ (HΦ)′ (HΦ2)′ . . . (HΦi−1)′

)′
∈ Rim×n (6)
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4) The lower block triangular Toeplitz matrix, defined as:

Vi =



Im 0 0 . . . 0

HE Im 0 . . . 0

HΦE HE Im . . . 0

...
...

...
...

...

HΦi−2E HΦi−3E HΦi−4E . . . Im


∈ Rim×im (7)

Due to the linearity of the system, the future state sequence can be written as

Xf = MZp, where the rank ofM is n, the true system order. Therefore, shifting

time subscripts in (4) and, substituting Xf , by MZp, we obtain,

Zf = OiMZp + ViΨf (8)

whereZf , Zp and Ψf are as in (5), andOi and Vi are respectively as in (6) and (7).

Subspace methods estimate Oi, M and Vi in (8) by solving a reduced-rank

weighted least square problem. This is typically done by means of the Singular

Value Decomposition (SVD, Eckart and Young, 1936) of the product W1ZfW2,

being W1 and W2 two weighting matrices (see, e.g., Katayama, 2005). Then,

an estimation of the parameter matrices in (1a-1b) can be straightforwardly ob-

tained from Oi, M and Vi. Computing the SVD requires specifying the matrices

W1, W2. The literature provides several methods to solve this issue. For in-

stance, Larimore-type methods (Larimore, 1983, 1990) use the weighting matrices

W1 = (ZfZ
′
f)

−1
2 and W2 = Z′

p(ZpZ
′
p)

−1Zp. In this work, we will also consider

the weighting matrix W1 = (Z̃f Z̃
′
f)

−1
2 , where Z̃f are the residuals of regressing
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Zf onto Zp in a previous step.

3 An overview of some specification procedures

Estimating the dimension of the state vector, n, is not trivial, in particular when

the sample is short. In this section we describe some criteria and test statistics that

can be applied to this purpose, distinguishing between a priori and a posteriori

methods. The difference between both approaches is in the need of estimating a

model: the latter requires to do so while the former does not.

3.1 A priori methods

Tsay (1989) approaches order determination by testing the null hypothesis that the

smallest canonical correlations σ̂n+1, σ̂n+2, . . . , σ̂im are zero. To do so, he suggests

the statistic D(n), that can be straightforwardly adapted to subspace methods as:

D(n) = −(T − 2i + 1)
im∑

k=n+1

log

(
1− σ̂2

k

d̂k

)
(9)

with

d̂k = 1 + 2
i∑

l=1

ρ̂pk(l)ρ̂fk(l) (10)

where ρ̂fk(l) and ρ̂pk(l) are the sample l-order autocorrelations of the canonical

variables (see Tsay, 1989). Subscripts p and f refer to the past and future blocks

respectively. The term d̂k is related to the asymptotic variance of the estimated

canonical correlation coefficients in a context of serial correlation. Tsay (1989)

proves that, under H0 : σ̂n+1 = σ̂n+2 = . . . = σ̂im = 0, the statistic D(n) follows a
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χ2 distribution with 2(im− n) degrees of freedom.

In a subspace framework, some procedures use the SVD decomposition to es-

timate the rank of W1ZfW2, which is the number of singular values statistically

different from zero and coincides with the system order. In this line, Bauer (2001)

proposes a criterion, called SV C or “Singular Value Criterion”, to determine the

smaller non-null singular value. The criterion is defined as:

SV C(n) = σ̂2
n+1 + C(T )d(n) (11)

where σ̂n+1 is the n + 1 singular value of W1ZfW2 and d(n) = 2nm denotes the

number of parameters of a (1a-1b) system, excluding those in the error covari-

ance matrix. Note that the singular values are denoted by σj ∀j = 1, 2, ..., im

as the canonical correlations. This notation is motivated by the fact that, when

Larimore-type method are used, the weighting matrices W1, W2 are such that the

singular values of W1ZfW2 coincide with the canonical correlations between Zp

and Zf . In that case, the idea is close to that of Tsay (1989).

Equation (11) compares the information contained in σ̂n+1, with a penalty

function weighted by the number of parameters in the model. The estimated

order is obtained as the argument that minimizes (11). C(T ) must fulfill some

requirements to assure the consistency of the method. Bauer (2001) shows that

SV C with C(T ) = log T/T outperforms several information criteria when rel-

atively large samples are analyzed, but recognizes that the penalty function is

somewhat arbitrary. The author also finds that the choice of the weighting matrix
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W1, used to solve the subspace reduced-rank regression, has a large impact on the

performance of SV C in finite samples.

3.2 A posteriori methods

Other useful tools to determine the system order are the, so-called, information

criteria. The well-known AIC (Akaike, 1976), SBC (Schwartz, 1978) or HQ

(Hannan and Quinn, 1979) belong to this family. A general representation of all

these criteria is:

IC(n) =
−2 log l(n)

T
+ C(T )d(n) (12)

where, l(n) and d(n) denote, respectively, the log-likelihood function value and

the number of parameters corresponding to a system of order n. C(T ) is again

a penalty function that depends on the criterion. In AIC C(T ) = 2/T , in SBC

C(T ) = log T/T and in HQ, C(T ) = 2 log log T/T .

These a posteriori procedures are ell known and widely employed, see recently

Stoica et al. (2004) or Bengtsson and Cavanaugh (2006). In practice they have

an important drawback, as they require estimating several models and, therefore,

may be computationally expensive.

4 Main results

This section presents three criteria to determine the system order. Two of them

are conceived to improve the performance of the SV C in small samples, while

maintaining its consistency. The third one is devised to be more robust than
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alternative methods. Finally, we describe a method to determine the regular and

seasonal orders in series with seasonal fluctuations.

4.1 Estimating the order of non-seasonal systems

To improve the performance of SV C we propose two enhancements: refining the

choice of the weighting matrix and optimizing the penalty function through sim-

ulation.

The first improvement consists of substitutingW1 = (ZfZ
′
f)

−1
2 , hereafter Ω1,

byW1 = (Z̃f Z̃
′
f)

−1
2 , from now on Ω2, where Z̃f contains the residuals of regress-

ing Zf onto Zp in a previous step. This choice is supported by the fact that Ω2 is

the prediction error covariance matrix obtained from an autocorrelated noise term

and therefore, as in generalized least squares, it should be an adequate weighting

matrix. The choice of this weighting matrix will change the finite sample results of

the procedure but its consistency will not be affected, provided that rank(Ω2) ≥ n.

The second enhancement consists of using a refined penalty function, denoted

by H(T, i), which depends not only on the sample size, but also on the dimension

of the row space of the output BHM. Building on this idea, we define the criterion

NIDC, which stands for “n identification criterion”, as:

NIDC(n) = σ̂2
n+1 + H(T, i)d(n) (13)

where, again, d(n) = 2nm denotes the number of parameters. To specify H(T, i)

with good performance both, when T → ∞ and also in finite samples, we build
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on the idea of Bengtsson and Cavanaugh (2006), who optimize the small sample

performance of AIC-type criteria through Monte Carlo simulations.

In the following simulations, we will consider the data generating process

(DGP) zt = at, with at ∼ iidN(0, 1) and, accordingly, we will optimize the penalty

criterion to check whether the DGP is white noise. These decisions are mitivated

by the fact that the resulting criterion will be applied to a sequence of models, with

increasing orders, until finding the minimum n which corresponding model filters

the data autocorrelation to white noise residuals. On the other hand, choosing a

white noise DGP has a secondary advantage, as the properties needed by NIDC

to assure a consistent order estimation are straightforward. In this case, NIDC

will determine n̂ = 0 instead of n̂ = 1, if NIDC(0) < NIDC(1), or substituting,

if σ̂2
1 < σ̂2

2 + 2H(T, i), since, in this particular case, d(n) = 2n. Rearranging terms

we obtain, (σ̂2
1 − σ̂2

2)/2 < H(T, i). Likewise, to obtain n̂ = 0 instead of n̂ = 2, it

must fulfill, (σ̂2
1 − σ̂2

3)/4 < H(T, i) and so on. Thus, we define νj as:

νj =
σ̂2

1 − σ̂2
j+1

2j

with j = 1, ..., i − 1. Therefore the optimal penalty term must be larger than νj

assuring a correct performance of the criterion for this specific process.

[INSERT FIGURE 1]

Figure 1 shows that H(T, i) = e−2T−.9i1.6 is an estimate of the lower bound below

which one can find (by simulations) about the 95% of the realizations of ν1, a

larger percentile of ν2 and in general of νj for j = 3, ..., i − 1. As we can see

in the Figure, C(T ) = log T/T is systematically above H(T,i) in short samples,
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but the distance between them decreases when T → ∞. This partially explains

the different performance of both criteria in Section 5. Moreover, following the

Proposition 4.1, the use of H(T, i) in NIDC can be extended to other DGPs.

Proposition 4.1 The penalty function H(T, i) = e−2T−.9i1.6, that fits ν1, assures

the almost sure consistency of the system order estimated by minimizing NIDC(n).

The proof is given in Appendix A.

By construction, NIDC tends to overestimate n in finite samples when com-

pared to SV C, although both criteria lead to consistent estimation of the system

order. Note that this is not a drawback since, as we will see in the simulations,

SV C shows a significant underestimate bias in short samples. This happens be-

cause C(T ) is systematically smaller than the 95 percentile of the realizations of

ν1, see Figure 1. Moreover, provided that the sample size is reasonable, we think

that overestimating is better than underestimating n, as further steps in model-

building may lead, through the pruning of insignificant parameters, to the correct

dimension. In comparison, the standard diagnostics provided by estimation will

not reveal the right dimension if the initial value is underestimated.

In any case, the performance of the different methods depends on the DGP

and the sample size. This fact explains why there are so many procedures in the

literature: none of them dominates systematically the rest and, as a consequence,

the ability of each method to choose the right system order depends critically on

the dynamics of the data. This lack of robustness motivates the idea of combining

several methods, to avoid extreme (sometimes good, sometimes bad) performances.
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To this end, we suggest the following procedure:

1) Compute all (or a selection of) the criteria discussed in Sections 3 and 4: i)

SV CΩ2 , which is the Bauer’s original SV C but computed with our weighting

matrix Z̃f Z̃
′
f , ii) the proposed NICD, iii) AIC, SBC and HQ, and iv) the

χ2 test due to Tsay (1989). Despite the large number of criteria involved the

computational cost is acceptable because, for each n, we only need to run a

single least-squares subspace regression.

2) Set n̂ as the value chosen by most methods, i.e., the sample mode. The mode

is not necessarily unique, as different values of n̂ can be chosen by the same

number of methods. In this case, given our preference for overparametriza-

tion, we suggest picking the larger n̂.

As we will see in Section 5, this Mode-based Criterion (MbC) is robust and

diversifies the risk of error when choosing the system order.

4.2 Estimating the order in seasonal systems

An important limitation of existing methods is that they cannot cope with mul-

tiplicative seasonal processes. To see this, consider the very common MA(1)×

MA(1)s process, where the seasonal frequency of the data is s = 12. In the best

case, a standard order-determination method would choose n̂ = 13. In compari-

son, a seasonality-tolerant method, such as that of Box and Jenkins (1976), would

choose two different orders: one for the regular subsystem and another one for

the seasonal subsystem. We will denote these orders by nr and ns respectively.
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Obviously, none of the previously revised methods could provide this double choice.

To solve this issue, we propose decomposing the process (1a-1b) into a seasonal

subsystem:

xs
t+s = Φsx

s
t +Esrt (14a)

zt = Hsx
s
t + rt (14b)

and a regular subsystem:

xr
t+1 = Φrx

r
t +Erψt (15a)

rt = Hrx
r
t +ψt (15b)

and applying the methods previously described to determine the order of each

subsystem. Note that these processes are defined in different frequencies, as xs
t

propagates in increments of s periods in (14a), while xr
t propagates in increments of

one period in (15a); rt is an unobserved input of the seasonal subsystem (14a-14b)

representing the regular structure of the original process. To estimate sequentially

both subsystems, we assume that rt is a white noise term in the s frequency, un-

correlated with xs
t ∀t. To support this assumption, Appendix B shows that the

expectation of rt+jr
′
t for all j = s, 2s, ... converges to zero at a speed governed by

the seasonal period s and the eigenvalues of Φr.

This approximation, which is exact when the regular system follows an MA(q)

with q < s, allows us to estimate both subsystems using subspace methods. How-
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ever, in (14a-14b) the states propagate in increments of s periods and, as a conse-

quence, we cannot use the standard BHM defined in (5). This issue can be solved

by defining the Seasonal Block Hankel Matrices (SBHM) of period s, as:

Zs
p =



z1 . . . zT−s(2i−1)

zs+1 . . . zT−s(2i−2)

...
...

zs(i−1)+1 . . . zT−si


; Zs

f =



zsi+1 . . . zT−s(i−1)

zs(i+1)+1 . . . zT−s(i−2)

...
...

zs(2i−1)+1 . . . zT


(16)

Note that these matrices are analogous to the standard ones, although the time

indices in each row are adapted to the seasonal period. Similarly, we denote both,

the past and future-seasonal information blocks by Zs
p and Zs

f respectively. Build-

ing on these matrices, one can estimate the seasonal parameters and, accordingly,

the order of the seasonal subsystem, ns, by applying any subspace method to the

seasonal regression model:

Zs
f = Os

iM
sZs

p + V s
i Ψs

f (17)

instead of the standard subspace regression (8).

This generalization of conventional subspace methods allows us to apply the

procedures discussed in Sections 3 and 4.1 to determine the seasonal and regular

orders, by means of the following structured method:

1) Create the SBHM and compute the seasonal order n̂s by applying the pro-

cedures previously described to the seasonal subsystem (14a-14b).
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2) Estimate the seasonal subsystem, conditional to the choice done in step 1),

using e.g., the techniques shown in Section 2. Compute the residuals of this

subsystem, r̂t.

3) Determine the order of the regular subsystem, n̂r, by applying standard

methods to r̂t.

Note that if SVD methods (SV CΩ1 , SV CΩ2 or NIDC) are applied to deter-

mine the system orders, the seasonal subsystem (14a-14b) does not need to be

estimated, as n̂s can be directly obtained from W1Z
s
fW2, where W1 and W2 are

as in Section 2 but replacing Zp by Zs
p and Zf by Zs

f .

The order of steps 1) to 3) in the previous procedure could be reversed, to

determine first n̂r and, afterwards, n̂s. However this is not advisable because: i)

in series with a short seasonal period, e.g. quarterly data with s = 4, it would be

difficult to determine the correct regular order in the first step, and ii) the choice

of n̂r is often more complex than that of n̂s, increasing the chance to contaminate

the second decision with the effects of a previous specification error.

5 Monte Carlo results

This section analyzes the performance of several criteria by simulating univariate

and multivariate models. Tables 1 to 8 show the percentage of replications where

each criterion chose n and the contiguous dimensions, n − 1 and n + 1 in non-

seasonal processes, while Tables 9 and 10 offer the relative frequency of hits in

two seasonal models. In all cases, we discard the first 50 draws of each replication
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to improve randomization. Each table shows the results obtained using SV CΩ2 ,

NICD, AIC, SBC, HQ, the χ2 test and MbC. Additionally, SV CΩ1 , as pre-

sented in Bauer (2001), is included.

The specific formulations employed in this exercise have been chosen to show

how any individual criterion may perform both, very well and badly, depending

on the dynamic structure of the DGP and the sample size.

On the other hand, the univariate GDPs assumed in the first five tables show

a sequence of common nonseasonal ARMA models, with increasingly complex dy-

namic structures. Accordingly, the white noise DGP in Table 1 is followed by

an AR(1) process with low persistence, a strong MA(1) structure, an AR(2) with

complex roots in Table 4 and, finally, an ARMA(2,1) in Table 5. These basic re-

sults are supplemented by the three vector processes assumed in tables 6, 7 and 8,

being the last two of them taken from the literature. The last two processes were

chosen to illustrate the performance of the proposed decomposition for seasonal

processes. The model in Table 9 adds a seasonal MA(1) term to the AR(2) with

complex roots that was previously assumed and, finally, the model in Table 10 is

a somewhat artificial combination of different seasonal factors, that we specified

to show how our decomposition procedure is able to cope with multiple periods.

Table 1 shows that the best estimates are provided by SBC. In this case there

is no risk of underestimation, as the DGP is a white noise, so SV CΩ1 dominates

our two alternative criteria which, in small samples tend to overestimate n.
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The second model considered is an autoregressive process with small persis-

tence. This structure deteriorates the performance of all the methods. In this case:

i) AIC displays the best performance for almost every sample size, ii) SV CΩ2 and

NIDC widely dominate SV CΩ1 and iii) assuming that a small overparametriza-

tion can lead to an adequate model in next steps, NIDC shows remarkable results

in very small samples. The DGP M3 has also n = 1, but the moving average pa-

rameter is large enough to improve the outcomes of all the methods. Again SBC

exhibits the best behavior, reaching the asymptotic value with a moderate sample

size.

Table 4 displays the results obtained with an autoregressive model with com-

plex roots. This time NIDC beats the rest of the methods for almost all the

samples analyzed. Surprisingly, SBC presents the worst results, with less than

10% of correct estimates even with a large sample.

The DGP M5 is an ARMA(2,1) model with complex roots, so its order is again

2. Including a moving average term improves substantially the results provided

by all the methods. Again, NIDC and AIC show the best behavior in small and

large samples, respectively.

Table 6 summarizes the results obtained with a bivariate VARMA(1,1) process,

with n = 2. One of the series has an autoregressive term close to be cancelled out

by a moving average root. The performance, which is good in all cases for large

samples, is very heterogeneous in small samples. SV CΩ1 tends to underestimate

n, while this is corrected in SV CΩ2 and NIDC that clearly dominate it when
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T ≤ 100.

Tables 7 and 8 display the results corresponding to two trivariate VARMA(1,1)

models, with n = 3. In both cases, we omit the smaller sample sizes due to the

complexity of the systems. The first one, M7, is taken from Koreisha and Pukkila

(1989). The results obtained are similar to those of previous cases, but the dif-

ferences in performance are amplified by the increased complexity of the order

selection problem. SV CΩ1 shows a clear bias towards underestimation and does

not find any n̂ = n− 1 even when T ≤ 100. Its enhanced versions produce much

better results, as NIDC and SV CΩ2 show a reasonably good behavior. Note,

also, that MbC presents remarkably good results. The second process, M8, is

taken from Reinsel et al. (1992). The results are better than those of Table 7,

because the structure of M7 is closer to a lower-order representation. In this case

the χ2 test beats all the criteria when T ≤ 100, and all the methods behave well

when the sample is large.

Tables 9 and 10 present two seasonal models. Here we are interested in assess-

ing their performance when combined with the method described in Section 4.2.

In both models the sample sizes are increased to represent the typical size of a

seasonal data sample. The orders are estimated by following the stages stated in

Section 4.2, using MbC to obtain the residuals in step 2).

M9 adds to M4 a monthly MA(1) term. In this case all the methods compared

behave well, although the χ2 test has some difficulties when T = 100. In the

second step, the results are similar to those in Table 4. This suggests that the
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method employed to determine the seasonal order does not distort the estimation

of the regular order.

Model M10 has multiple seasonal factors at frequencies 3, 9 and 36. This

could happen, for instance, with financial data observed once each 10 days. Table

10 reveals: i) the remarkable performance of SBC in these models, and ii) the

outstanding ability our decomposition to estimate the seasonal order in each fre-

quency, in combination with all the criteria considered. Note that, when using a

posteriori criteria, we have estimated only 12 models as we have tried ns = 0, 1, 2

for each factor. On the other hand, if we search the dynamic of this data using the

same methods over the currently BHM, we should estimate, at least, 50 models as

49 is the order of the original process.

Previous results support the consistency of all the methods compared and also

provide specific clues about their specific performance.

Criteria based on SVD. In small samples the performance of SV CΩ1 is worst

than that of SV CΩ2 and NIDC. This difference is even more remarkable in mul-

tivariate processes. Note also that NIDC is often the best method when the

persistence is small.

Information Criteria. The information criteria considered display different per-

formances. AIC occasionally overestimates n in univariate process but provides

good enough results with multivariate DGPs (see Gonzalo and Pitarakis, 2002).

SBC is one of the best options in both, univariate and multivariate processes,
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when the sample is large and/or the parameters persistent enough. Nevertheless,

it shows the worst performance with low-persistence DGPs. HQ displays an inter-

mediate performance: i) better than SBC (but worst than AIC) in low-persistence

AR processes or when there are AR and MA factors close to cancellation, but ii)

worst than SBC (better than AIC) in other cases.

χ2 test. The χ2 test shows poor results in small samples, improving substan-

tially as the sample size grows. In univariate process it is not the best option while

in multivariate systems its performance improves remarkably.

Mode-based criterion. This procedure is very robust, as it is never the worst

option, but sometimes is the best (see Table 7, T ≥ 300). In our opinion, this

should be the method-of-choice for automatic implementations useful, e.g., when

the analyst has to work with a large set of series.

6 Conclusions

This paper discusses how can one estimate the order of a SS process using sub-

space methods. These methods are powerful, flexible and computationally efficient.

Our first contribution consists of proposing two new criteria that improve the

small-sample performance of Bauer (2001) SV C method. Second, we propose an

automatic model-building procedure based on the sample mode of several meth-

ods. A simulation analysis confirms that the mode-based procedure is more robust

than any specific criterion. Last, we extend the use of any criterion to processes
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with seasonality. Monte Carlo results show that the resulting criteria display a

remarkable performance, even in a complex multiple seasonality framework.

In comparison with the popular VAR approach, which is very close to ours in

terms of simplicity and computational efficiency, the methodology illustrated here

has pros and cons. On the minus side, the rank-deficient GLS regressions required

by subspace methods are more complex than OLS or GLS VAR. However it has

two clear advantages over VAR, as it: i) supports seasonal time series and ii) is

intrinsically more parsimonious, as it looks for the right system order by increasing

the dimension of the state vector one-by-one. To clarify this remark, consider e.g.,

a vector of m time series and the decision to increase the order of a VAR(p) model

to VAR(p +1). To do so implies increasing the dimension of the state vector by

adding m new states, while our method would try all the possible choices in the

sequence of 1, 2, m additional states.

The algorithms described in this article are implemented in a MATLAB toolbox

for time series modeling called E4. The source code of this toolbox is freely pro-

vided under the terms of the GNU General Public License and can be downloaded

at www.ucm.es/info/icae/e4. This site also provides a complete user manual for

the Toolbox and other reference materials.
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Appendix A

Proof. The conditions on the penalty function that are sufficient for the almost

sure consistency of the order estimated by minimizing (13) are: 1) H(T, i)T > 0,

2) H(T, i) → 0 and, 3) H(T, i)T/(i2 log log T ) → ∞, when T → ∞ (see Bauer,

2001, Theorem 3).

Although in practice we implement i = max(4, ht), being ht the integer closer

to log T , in sections 2) and 3) of this proof we consider, without lost of generality,

that i = log T . Let H(T, i) = aT−bic with a = e−2, b = .9 and c = 1.6, under these

conditions:

1) It is straightforward to see that,

H(T, i)T = aT−b+1ic > 0, ∀T > 0

2) The limit,

lim
T→∞

aT−b(log T )c =
a(log T )c

T b

converges to the indeterminate ∞
∞ . Applying twice L’Hôpital rule we obtain,

lim
T→∞

ac(c− 1)(log T )c−2

b2T b
= 0

and as the numerator tends to zero and the denominator to infinity, we get:

lim
T→∞

H(T, i) = 0

26



3) Finally,

H(T, i)T

i2 log log T
=

aT−b+1(log T )c−2

log log T

where the numerator can be written as,

aT−b+1(log T )c−2 =
a(log T )c−2

T b−1

that gives the indeterminate 0
0
. By L’Hôpital we get,

lim
T→∞

a(−b + 1)T−b+3

(−c + 2)(log T )−c+1
= ∞

and therefore both, the numerator and the denominator, tend to infinity. We

can then apply L’Hôpital to the initial limit, obtaining:

lim
T→∞

aT−b+1(log T )c−2

log log T
= lim

T→∞
aT 1−b

[
(1−b)(log T )c−1+(c−2)(log T )c−2

]
= ∞

�

Appendix B

By recursive substitution in (15a) and shifting time subscripts, the regular subsys-

tem (15a-15b) can be expressed as:

xr
t+s = Φs−1

r xr
t+1 +

s∑
j=0

Φj
rErψt+s−j−1 (A.1a)

rt+s = Hrx
r
t+s +ψt+s (A.1b)
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From these two equations, it is easy to see that:

E
[
rt+sr

′
t

]
= E

[
(Hrx

r
t+s +ψt+s)r

′
t

]
= HrΦ

s−1
r E

[
xr

t+1r
′
t

]
(A.2)

where E[·] is the mathematical expectation. Since zt is stationary, and as a con-

sequence all the eigenvalues of Φr are inside the unit circle, then, provided that s

is large enough, we will assume that:

E[rt+jr
′
t] ' 0, ∀j = s, 2s, ... (A.3)
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Figure 1: Estimated penalty function of NIDC. ν1 and ν2 are computed using the
singular values obtained as the 95 percentile of 2000 simulations of the univariate
model zt = at. H(T,i) is the lost function fitted to ν1, proposed in NIDC. C(T ) is
the penalty term suggested in Bauer (2001).
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Table 1: System order estimates, M1 model ?.

M1(n = 0): zt = at, at ∼ iidN(0, 1).

T SV CΩ1 SV CΩ2 NIDC AIC SBC HQ χ2 MbC

n̂ = n

30 0.945 0.812 0.703 0.828 0.965 0.846 0.948 0.899
50 0.948 0.850 0.726 0.816 0.979 0.889 0.950 0.919
100 0.918 0.862 0.797 0.768 0.975 0.908 0.955 0.927
300 0.905 0.889 0.867 0.722 0.990 0.944 0.939 0.948
500 0.934 0.919 0.892 0.711 0.993 0.947 0.950 0.953

n̂ = n + 1

30 0.053 0.152 0.250 0.156 0.035 0.141 0.040 0.098
50 0.050 0.132 0.266 0.172 0.020 0.115 0.031 0.065
100 0.075 0.118 0.184 0.203 0.025 0.092 0.036 0.057
300 0.083 0.096 0.110 0.239 0.010 0.055 0.042 0.041
500 0.059 0.071 0.092 0.239 0.007 0.063 0.034 0.031

? The table shows the percentage of cases where each criteria chose n, and the contiguous
choice n + 1. The number of replications is 2000. The methods analyzed are the following:
SV CΩ1 from Bauer (2001), SV CΩ2 that has the same structure but computed with the proposed
weighting matrix Ω2 = (Z̃f Z̃

′
f)− 1

2 , NIDC which is as SV CΩ2 but replacing the penalty term
C(T ) = log T/T by H(T, i) = e−2T−.9i1.6. AIC, SBC and HQ are the information criteria due
to Akaike (1976), Schwartz (1978) and Hannan and Quinn (1979) respectively. χ2 is the test
proposed by Tsay (1989) with conventional significance level 5% and MbC is the n̂ value most
often for each realization in the criteria collection, except SV CΩ1 . For each sample size, the
largest relative frequency of hits is underlined.
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Table 2: System order estimates, M2 model?.

M2(n = 1): (1− 0.2B)zt = at, at ∼ iidN(0, 1).

T SV CΩ1 SV CΩ2 NIDC AIC SBC HQ χ2 MbC

n̂ = n− 1

30 0.913 0.801 0.384 0.680 0.866 0.682 0.878 0.721
50 0.861 0.728 0.445 0.551 0.818 0.672 0.841 0.657
100 0.782 0.676 0.498 0.314 0.697 0.521 0.729 0.532
300 0.486 0.415 0.373 0.037 0.273 0.130 0.246 0.212
500 0.243 0.204 0.166 0.007 0.081 0.027 0.051 0.078

n̂ = n

30 0.086 0.185 0.385 0.315 0.134 0.305 0.098 0.272
50 0.133 0.244 0.395 0.435 0.182 0.311 0.127 0.324
100 0.204 0.290 0.408 0.649 0.301 0.470 0.238 0.446
300 0.490 0.548 0.575 0.916 0.724 0.849 0.713 0.771
500 0.724 0.757 0.778 0.967 0.915 0.961 0.906 0.922

n̂ = n + 1

30 0.001 0.014 0.211 0.005 0.0 0.013 0.019 0.016
50 0.006 0.027 0.115 0.013 0.0 0.017 0.026 0.019
100 0.013 0.033 0.081 0.036 0.002 0.009 0.023 0.019
300 0.020 0.036 0.047 0.043 0.003 0.021 0.027 0.015
500 0.032 0.039 0.054 0.024 0.004 0.012 0.029 0.025

? The table shows the percentage cases where each criteria chose n, and the contiguous choices
n − 1 and n + 1. The number of replications is 2000. The methods analyzed are the following:
SV CΩ1 from Bauer (2001), SV CΩ2 that has the same structure but computed with the proposed
weighting matrix Ω2 = (Z̃f Z̃

′
f)− 1

2 , NIDC which is as SV CΩ2 but replacing the penalty term
C(T ) = log T/T by H(T, i) = e−2T−.9i1.6. AIC, SBC and HQ are the information criteria due
to Akaike (1976), Schwartz (1978) and Hannan and Quinn (1979) respectively. χ2 is the test
proposed by Tsay (1989) with conventional significance level 5% and MbC is the n̂ value most
often for each realization in the criteria collection, except SV CΩ1 . For each sample size, the
largest relative frequency of hits is underlined.
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Table 3: System order estimates, M3 model?.

M3(n = 1): zt = (1− 0.8B)at, at ∼ iidN(0, 1).

T SV CΩ1 SV CΩ2 NIDC AIC SBC HQ χ2 MbC

n̂ = n− 1

30 0.179 0.032 0.021 0.021 0.057 0.025 0.284 0.020
50 0.019 0.001 0.0 0.0 0.006 0.0 0.018 0.0
100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

n̂ = n

30 0.793 0.819 0.761 0.932 0.934 0.929 0.676 0.919
50 0.929 0.850 0.767 0.932 0.988 0.978 0.946 0.960
100 0.941 0.907 0.813 0.935 0.998 0.981 0.965 0.967
300 0.949 0.934 0.918 0.915 1.0 0.984 0.971 0.973
500 0.954 0.944 0.931 0.909 1.0 0.981 0.966 0.980

n̂ = n + 1

30 0.027 0.124 0.166 0.045 0.009 0.041 0.03 0.055
50 0.048 0.120 0.171 0.067 0.006 0.022 0.017 0.029
100 0.052 0.076 0.126 0.063 0.002 0.019 0.012 0.034
300 0.044 0.053 0.062 0.082 0.0 0.016 0.013 0.019
500 0.040 0.047 0.053 0.090 0.0 0.019 0.01 0.014

? The table shows the percentage cases where each criteria chose n, and the contiguous choices
n − 1 and n + 1. The number of replications is 2000. The methods analyzed are the following:
SV CΩ1 from Bauer (2001), SV CΩ2 that has the same structure but computed with the proposed
weighting matrix Ω2 = (Z̃f Z̃

′
f)− 1

2 , NIDC which is as SV CΩ2 but replacing the penalty term
C(T ) = log T/T by H(T, i) = e−2T−.9i1.6. AIC, SBC and HQ are the information criteria due
to Akaike (1976), Schwartz (1978) and Hannan and Quinn (1979) respectively. χ2 is the test
proposed by Tsay (1989) with conventional significance level 5% and MbC is the n̂ value most
often for each realization in the criteria collection, except SV CΩ1 . For each sample size, the
largest relative frequency of hits is underlined.
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Table 4: System order estimates, M4 model?.

M4(n = 2): (1− 0.4B + 0.3B2)zt = at, at ∼ iidN(0, 1).

T SV CΩ1 SV CΩ2 NIDC AIC SBC HQ χ2 MbC

n̂ = n− 1

30 0.247 0.419 0.415 0.652 0.441 0.628 0.257 0.563
50 0.439 0.555 0.480 0.800 0.673 0.803 0.520 0.664
100 0.653 0.640 0.517 0.814 0.939 0.909 0.767 0.756
300 0.487 0.445 0.401 0.460 0.958 0.796 0.464 0.527
500 0.290 0.263 0.233 0.229 0.908 0.605 0.204 0.249

n̂ = n

30 0.026 0.147 0.326 0.085 0.022 0.062 0.082 0.110
50 0.079 0.179 0.376 0.126 0.018 0.049 0.111 0.167
100 0.199 0.283 0.402 0.182 0.019 0.081 0.157 0.216
300 0.500 0.532 0.567 0.539 0.042 0.204 0.481 0.463
500 0.689 0.710 0.728 0.771 0.092 0.395 0.738 0.738

n̂ = n + 1

30 0.0 0.006 0.039 0.002 0.0 0.0 0.012 0.009
50 0.001 0.005 0.053 0.001 0.0 0.0 0.021 0.006
100 0.004 0.015 0.043 0.003 0.0 0.0 0.023 0.004
300 0.013 0.023 0.032 0.001 0.0 0.0 0.055 0.010
500 0.021 0.027 0.038 0.0 0.0 0.0 0.058 0.013

? The table shows the percentage cases where each criteria chose n, and the contiguous choices
n − 1 and n + 1. The number of replications is 2000. The methods analyzed are the following:
SV CΩ1 from Bauer (2001), SV CΩ2 that has the same structure but computed with the proposed
weighting matrix Ω2 = (Z̃f Z̃

′
f)− 1

2 , NIDC which is as SV CΩ2 but replacing the penalty term
C(T ) = log T/T by H(T, i) = e−2T−.9i1.6. AIC, SBC and HQ are the information criteria due
to Akaike (1976), Schwartz (1978) and Hannan and Quinn (1979) respectively. χ2 is the test
proposed by Tsay (1989) with conventional significance level 5% and MbC is the n̂ value most
often for each realization in the criteria collection, except SV CΩ1 . For each sample size, the
largest relative frequency of hits is underlined.
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Table 5: System order estimates, M5 model?.

M5(n = 2): (1− 0.4B + 0.3B2)zt = (1− 0.7B)at, at ∼ iidN(0, 1).

T SV CΩ1 SV CΩ2 NIDC AIC SBC HQ χ2 MbC

n̂ = n− 1

30 0.337 0.461 0.363 0.444 0.256 0.386 0.243 0.393
50 0.589 0.588 0.360 0.483 0.481 0.510 0.478 0.524
100 0.611 0.502 0.353 0.280 0.675 0.429 0.604 0.408
300 0.168 0.129 0.115 0.015 0.204 0.051 0.152 0.060
500 0.038 0.030 0.021 0.001 0.032 0.008 0.017 0.008

n̂ = n

30 0.069 0.252 0.449 0.294 0.081 0.286 0.136 0.289
50 0.186 0.321 0.516 0.459 0.146 0.402 0.229 0.394
100 0.365 0.469 0.581 0.712 0.310 0.571 0.341 0.587
300 0.802 0.837 0.835 0.973 0.796 0.947 0.802 0.929
500 0.931 0.928 0.927 0.997 0.968 0.992 0.935 0.984

n̂ = n + 1

30 0.0 0.007 0.066 0.004 0.0 0.013 0.026 0.011
50 0.0 0.008 0.092 0.003 0.0 0.014 0.023 0.009
100 0.008 0.027 0.069 0.008 0.0 0.012 0.026 0.008
300 0.028 0.031 0.044 0.011 0.0 0.015 0.021 0.011
500 0.029 0.040 0.047 0.002 0.0 0.004 0.022 0.008

? The table shows the percentage cases where each criteria chose n, and the contiguous choices
n − 1 and n + 1. The number of replications is 2000. The methods analyzed are the following:
SV CΩ1 from Bauer (2001), SV CΩ2 that has the same structure but computed with the proposed
weighting matrix Ω2 = (Z̃f Z̃

′
f)− 1

2 , NIDC which is as SV CΩ2 but replacing the penalty term
C(T ) = log T/T by H(T, i) = e−2T−.9i1.6. AIC, SBC and HQ are the information criteria due
to Akaike (1976), Schwartz (1978) and Hannan and Quinn (1979) respectively. χ2 is the test
proposed by Tsay (1989) with conventional significance level 5% and MbC is the n̂ value most
often for each realization in the criteria collection, except SV CΩ1 . For each sample size, the
largest relative frequency of hits is underlined.

34



Table 6: System order estimates, M6 model?.

M6(n = 2): (I + ΦB)Zt = (I + ΘB)at, at ∼ iidN(0,Σa)

Φ =

(
−0.4 0

0 −0.8

)
;Θ =

(
−0.7 0.5
−0.3 −0.7

)
;Σa =

(
1 0.5

0.5 1

)
T SV CΩ1 SV CΩ2 NIDC AIC SBC HQ χ2 MbC

n̂ = n− 1

30 0.002 0.355 0.287 0.519 0.536 0.581 0.540 0.614
50 0.068 0.491 0.358 0.517 0.702 0.632 0.699 0.665
100 0.432 0.323 0.196 0.302 0.701 0.501 0.554 0.410
300 0.007 0.002 0.002 0.005 0.249 0.078 0.054 0.012
500 0.0 0.0 0.0 0.0 0.035 0.0 0.005 0.001

n̂ = n

30 0.0 0.311 0.329 0.270 0.080 0.203 0.097 0.201
50 0.001 0.354 0.429 0.379 0.137 0.275 0.171 0.275
100 0.199 0.611 0.655 0.617 0.290 0.470 0.414 0.555
300 0.975 0.957 0.943 0.885 0.751 0.909 0.825 0.970
500 0.982 0.972 0.958 0.896 0.965 0.992 0.851 0.984

n̂ = n + 1

30 0.0 0.183 0.224 0.081 0.008 0.031 0.007 0.033
50 0.0 0.072 0.143 0.084 0.003 0.026 0.011 0.021
100 0.001 0.047 0.112 0.071 0.001 0.027 0.024 0.035
300 0.018 0.040 0.053 0.106 0.0 0.014 0.119 0.018
500 0.018 0.028 0.040 0.098 0.0 0.002 0.148 0.015

? The table shows the percentage cases where each criteria chose n, and the contiguous choices
n − 1 and n + 1. The number of replications is 2000. The methods analyzed are the following:
SV CΩ1 from Bauer (2001), SV CΩ2 that has the same structure but computed with the proposed
weighting matrix Ω2 = (Z̃f Z̃

′
f)− 1

2 , NIDC which is as SV CΩ2 but replacing the penalty term
C(T ) = log T/T by H(T, i) = e−2T−.9i1.6. AIC, SBC and HQ are the information criteria due
to Akaike (1976), Schwartz (1978) and Hannan and Quinn (1979) respectively. χ2 is the test
proposed by Tsay (1989) with conventional significance level 5% and MbC is the n̂ value most
often for each realization in the criteria collection, except SV CΩ1 . For each sample size, the
largest relative frequency of hits is underlined.
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Table 7: System order estimates, M7 model?.

M7(n = 3): (I + ΦB)Zt = (I + ΘB)at, at ∼ iidN(0,Σa)

Φ =

−0.7 0 0
0 0 0
0 −0.4 0

 ;Θ =

0 1.1 0
0 −0.6 0
0 0 0.5

 ;Σa =

 1 −0.7 0.4
−0.7 1 0
0.4 0 1


T SV CΩ1 SV CΩ2 NIDC AIC SBC HQ χ2 MbC

n̂ = n− 1

50 0.0 0.232 0.274 0.362 0.644 0.604 0.344 0.535
100 0.0 0.485 0.484 0.215 0.678 0.399 0.298 0.382
300 0.164 0.026 0.020 0.0 0.043 0.004 0.003 0.006
500 0.001 0.0 0.0 0.0 0.0 0.0 0.0 0.0

n̂ = n

50 0.0 0.353 0.429 0.345 0.149 0.276 0.330 0.334
100 0.0 0.448 0.449 0.638 0.317 0.590 0.641 0.594
300 0.836 0.965 0.966 0.954 0.957 0.962 0.943 0.991
500 0.997 0.995 0.992 0.968 1.0 0.999 0.945 1.0

n̂ = n + 1

50 0.0 0.270 0.246 0.178 0.013 0.052 0.023 0.099
100 0.0 0.060 0.060 0.125 0.0 0.010 0.031 0.024
300 0.0 0.009 0.014 0.044 0.0 0.004 0.047 0.003
500 0.002 0.005 0.008 0.031 0.0 0.001 0.051 0.0

? The table shows the percentage cases where each criteria chose n, and the contiguous choices
n − 1 and n + 1. The number of replications is 2000. The methods analyzed are the following:
SV CΩ1 from Bauer (2001), SV CΩ2 that has the same structure but computed with the proposed
weighting matrix Ω2 = (Z̃f Z̃

′
f)− 1

2 , NIDC which is as SV CΩ2 but replacing the penalty term
C(T ) = log T/T by H(T, i) = e−2T−.9i1.6. AIC, SBC and HQ are the information criteria due
to Akaike (1976), Schwartz (1978) and Hannan and Quinn (1979) respectively. χ2 is the test
proposed by Tsay (1989) with conventional significance level 5% and MbC is the n̂ value most
often for each realization in the criteria collection, except SV CΩ1 . For each sample size, the
largest relative frequency of hits is underlined.
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Table 8: System order estimates, M8 model?.

M8(n = 3): (I + ΦB)Zt = (I + ΘB)at, at ∼ iidN(0,Σa)

Φ =

−0.4 −0.3 0.6
0 −0.8 −0.4

−0.3 0 0

 ;Θ =

−0.7 0 0
−0.1 −0.2 0
0.4 −0.5 0.1

 ;Σa =

 1 0.5 0.4
0.5 1 0.7
0.4 0.7 1


T SV CΩ1 SV CΩ2 NIDC AIC SBC HQ χ2 MbC

n̂ = n− 1

50 0.0 0.199 0.228 0.257 0.658 0.440 0.284 0.345
100 0.002 0.314 0.311 0.055 0.295 0.110 0.057 0.116
300 0.025 0.002 0.001 0.0 0.0 0.0 0.0 0.0
500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

n̂ = n

50 0.0 0.380 0.429 0.428 0.264 0.490 0.602 0.547
100 0.0 0.607 0.608 0.789 0.700 0.869 0.908 0.861
300 0.971 0.978 0.974 0.979 0.999 0.998 0.966 0.992
500 0.998 0.987 0.983 0.987 1.0 0.999 0.961 0.997

n̂ = n + 1

50 0.0 0.286 0.270 0.226 0.026 0.068 0.047 0.101
100 0.0 0.071 0.073 0.123 0.005 0.021 0.033 0.023
300 0.004 0.020 0.025 0.021 0.001 0.002 0.034 0.008
500 0.002 0.013 0.017 0.013 0.0 0.001 0.038 0.003

? The table shows the percentage cases where each criteria chose n, and the contiguous choices
n − 1 and n + 1. The number of replications is 2000. The methods analyzed are the following:
SV CΩ1 from Bauer (2001), SV CΩ2 that has the same structure but computed with the proposed
weighting matrix Ω2 = (Z̃f Z̃

′
f)− 1

2 , NIDC which is as SV CΩ2 but replacing the penalty term
C(T ) = log T/T by H(T, i) = e−2T−.9i1.6. AIC, SBC and HQ are the information criteria due
to Akaike (1976), Schwartz (1978) and Hannan and Quinn (1979) respectively. χ2 is the test
proposed by Tsay (1989) with conventional significance level 5% and MbC is the n̂ value most
often for each realization in the criteria collection, except SV CΩ1 . For each sample size, the
largest relative frequency of hits is underlined.
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Table 9: System orders estimates, M9 model?.

M9(nr = 2, ns = 1): (1− 0.4B + 0.3B2)zt = (1− 0.6Bs)at, at ∼ iidN(0, 1).

T SV CΩ1 SV CΩ2 NIDC AIC SBC HQ χ2 MbC

n̂s = ns, s = 4

30 0.453 0.634 0.734 0.816 0.569 0.747 0.470 0.690
50 0.771 0.842 0.786 0.954 0.887 0.943 0.664 0.905
100 0.925 0.897 0.819 0.952 0.996 0.985 0.888 0.961
300 0.916 0.896 0.876 0.943 1.0 0.991 0.884 0.960
500 0.920 0.907 0.883 0.943 1.0 0.996 0.890 0.962

n̂r = nr, s = 4

30 0.020 0.121 0.288 0.065 0.011 0.037 0.071 0.061
50 0.041 0.117 0.314 0.068 0.009 0.031 0.104 0.071
100 0.133 0.197 0.331 0.122 0.009 0.043 0.142 0.120
300 0.415 0.457 0.497 0.443 0.021 0.152 0.467 0.400
500 0.651 0.673 0.712 0.703 0.061 0.329 0.747 0.654

n̂s = ns, s = 12

100 0.969 0.972 0.960 0.984 0.992 0.996 0.460 0.988
300 0.944 0.935 0.930 0.971 1.0 0.996 0.878 0.972
500 0.946 0.938 0.931 0.942 1.0 0.998 0.894 0.975

n̂r = nr, s = 12

100 0.181 0.264 0.401 0.162 0.023 0.071 0.205 0.187
300 0.495 0.529 0.562 0.487 0.040 0.192 0.536 0.476
500 0.712 0.733 0.762 0.759 0.089 0.396 0.802 0.753

? The table shows the percentage cases where each criteria chose ns and nr. The num-
ber of replications is 2000. The methods analyzed are the following: SV CΩ1 from Bauer
(2001), SV CΩ2 that has the same structure but computed with the proposed weighting matrix
Ω2 = (Z̃f Z̃

′
f)− 1

2 , NIDC which is as SV CΩ2 but replacing the penalty term C(T ) = log T/T

by H(T, i) = e−2T−.9i1.6. AIC, SBC and HQ are the information criteria due to Akaike (1976),
Schwartz (1978) and Hannan and Quinn (1979) respectively. χ2 is the test proposed by Tsay
(1989) with conventional significance level 5% and MbC is the n̂ value most often for each realiza-
tion in the criteria collection, except SV CΩ1 . For each sample size, the largest relative frequency
of hits is underlined.
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Table 10: System orders estimates, M10 model?.

M10(n36 = 1, n9 = 1, n3 = 1, n1 = 1):
zt = (1− 0.6B)(1− 0.5B3)(1− 0.4B9)(1− 0.3B36)at, at ∼ iidN(0, 1).

T SV CΩ1 SV CΩ2 NIDC AIC SBC HQ χ2 MbC

n̂36 = n36

400 0.890 0.887 0.879 0.947 0.981 0.984 0.573 0.939
600 0.902 0.888 0.866 0.955 0.997 0.992 0.764 0.952
1000 0.846 0.832 0.867 0.949 0.998 0.991 0.760 0.930

n̂9 = n9

400 0.937 0.917 0.897 0.967 0.999 0.994 0.922 0.980
600 0.931 0.920 0.896 0.972 0.999 0.995 0.989 0.996
1000 0.929 0.918 0.942 0.980 1.0 0.997 0.989 0.996

n̂3 = n3

400 0.958 0.950 0.937 0.983 1.0 0.998 0.989 0.996
600 0.950 0.946 0.934 0.987 1.0 0.998 0.988 0.996
1000 0.932 0.928 0.944 0.985 1.0 1.0 0.988 0.992

n̂1 = n1

400 0.974 0.969 0.962 0.994 1.0 0.999 0.995 0.997
600 0.981 0.979 0.971 0.996 1.0 1.0 0.993 0.999
1000 0.963 0.959 0.970 0.986 1.0 1.0 0.989 0.997

? The table shows the percentage cases where each criteria chose ns, s = 3, 6, 9 and nr. The
number of replications is 2000. The methods analyzed are the following: SV CΩ1 from Bauer
(2001), SV CΩ2 that has the same structure but computed with the proposed weighting matrix
Ω2 = (Z̃f Z̃

′
f)− 1

2 , NIDC which is as SV CΩ2 but replacing the penalty term C(T ) = log T/T

by H(T, i) = e−2T−.9i1.6. AIC, SBC and HQ are the information criteria due to Akaike
(1976), Schwartz (1978) and Hannan and Quinn (1979) respectively. χ2 is the test proposed by
Tsay (1989) with conventional significance level 5% and MbC is the n̂ value most often for each
realization in the criteria collection, except SV CΩ1 . For each sample size, the largest relative
frequency of hits is underlined.
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